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PREFACE

The techniques which are the subject of this report were developed to support
the Agriculture and Resources Inventory Surveys Through Aerospace Remote
Sensing program. Under Contract NAS 9-15800, Dr. C. B. Chittineni, a
principal scientist for Lockheed Engineering and Managemint Services Company,
Inc., performed this research for the Earth Observations Division, Space and
Life Science Directorate, National Aeronautics and Spacé Administration, at
the Lyndon B. Johnson Space Center, Houston, Texas
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1. INTRODUCTION

Recently, considerable interest has been shown in developing techniques for
the classification of imagery data such as remote sensing data obtajned using
the multispectral scanner (MSS) on board the Landsat for inventorying natural
resolrces, monitoring crop conditions, detecting mineral and oil deposits,
etc. Usually, the inherent classes in the data are multimodal, and non-
supervised classification or clustering techniques (refs. 1-3) have been found
to be effective (refs. 4, 5) in the classification of imagery data. Cluster-
ing the data partitions the image into its inherent modes oi clusters.
Labeling the clusters is one of the crucial problems in the application of
clustering techniques for the classification of imagery data.

Cluster labeling is similar to the prohlem of labeling the regions obtained by
using segmentation algorithms in the development of scene understanding sys-
tems. The recent literature shows considerable interest in the use of relaxa-
tion labeling algorithms for labeling the segmented regions (refs. 6-8). '
These algorithms use relational properties of the regions through compatibil-
ity coefficients. In cluster labeling, the relational properties of tha
clusters are either not available or not meaningful. For example, in aero-
space agricultural imagery, the regions of interest are crops, nonagricultural
areas, etc. These can be anywhere in the image. Hence, it is not meaningful

to define relational properties for the clusters.

Most of the imagery data contain much spatial information, and several
researchers (refs., 9-12) have attempted to use spatial information in the
classification of imagery data.

This paper documents an investigation of the problem of labeling the clusters
using spectral and spatial information. It is assumed that the probability
density functions and a priori probabilities of the clusters or modes are
given. Let these respectively be p(X|2 = 1) and 6i; i =1,2,e00,m, where

m is the number of modes or clusters. It is also assumed that a set of
labeled patterns Xi(j) with labels mi(j) = i and their neighboring patterns
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Y%(j)(k = 1,2,000,23f = 1,2,---,N1 and i = 1,2,++4+,C) are given, where C is
the number of classes.

In remote sensing, the labels for the patterns are provided by an analyst
interpreter (AI), who examines imagery films and uses other data such as
historic information and crop calendar models. Very often the Al labels are
imperfect. Recently, Chittineni (refs. 13-15) investigated techniques for the
estimation of probabilities of label imperfections using imperfectly labeled
and unlabeled patterns. It is assumed that the probabilities of label
imperfections are available. Methods are developed in the paper for obtain-
ing probabilities of class labels for the clusters using all the available
information.

This paper is organized as follows. In section 2, a relationship is developed
between class coriditional densities and cluster conditional densities in terms
of probabilities of class labels for the clusters. Section 3 concerns the
problem of obtaining probabilities of class labels for the clusters without
using spatial information. Expressions are presented in section 4 for updat-
ing the a posterjori probabilities of the classes of a pixel using spectral
and spatial information from its neighborhood. Section 5 deals with the
problem of obtaining probabilities of class labels for the clusters using
spectral and spatial information. Imperfections in the labels of the given
pattern set are considered in section 6. Section 7 contains the experimental
results in the processing of remotely sensed imagery data, and the concluding
remarks are given in section 8. In Appendix A, the problem of obtaining the
probabilities of class labels for the clusters using information from a given
set of labeled fields is considered. Contextual cluster labeling with the
probability of correct labeling as a criterion is treated in Appendix B.
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2. A RELATIONSHIP BETWEEN CLUSTER AND CLASS CONDITIONAL DENSITIES

In this section, a relationship is developed between cluster and class con-
ditional densities. In general, the class conditional density functions are
multimodal. Let C be the number of classes and m be the number of clusters.
Let p(X|lw = i) be the class conditional densities and p(X|{® = i) be the mode
o+ cluster conditional densities. Let P{w = i) and P(2 = i) be the a priori
probability of class i and the a priori probability of cluster i,
respectively. The mixture density p(X) can be written in terms of class
conditional densities as

p(X) = ZC: Plw = 1)p(X|w = 1) (1)

The mixture density p(X) can also be written in terms of mode conditional
densities as

m
p(X) = P(a = 2)p(X|a = %)

=1
m C

= p{Xje = &) 3, P(2 = 2,0 = i)
=1 171
C m

= 3 Plw=1) 2 P(a=2w=1)p(Xla=2) (2)
i=1 =1

The following assumption is made from comparing equations (1) and (2).
. m
p(Xlw = 1) = 22:1 P(a = 2w = 1)p(X|e = 2) (3)
Equation (3) can be rewritten as

m
plw = i|X) = z% ag:p(2 = 2|X) (4)

where Ay = P(w = i]@ = 2) and is the probability that the label of mode % is

class i. The probabilities a,; satisfy the constraints given in equation (5).
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A ? 0 ; 1 =1,2,¢¢0,Cand £ = 1,2,¢00,m

¢ (5)
.Zl Gzi = 1 ; ’l = 1‘2,'..)"‘
1=

Equation (3) provides a relationship between class and cluster conditional
densities in terms of probabilities of class labels for the clusters.
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3. MAXIMUM LIKELIHOOD PROBABILISTIC CLUSTER LABELING

This section concerns the problem of obtaining the probabilities Y (the
probabilities of class labels for the clusters). It is assumed that we are
given a set of labeled patterns Xi(d) with class labels wi(j) = 13

Jj= 1’2"'°’Ni and i = 1,2,9¢¢,C. It is also assumed that the a priori proba-
bilities of the modes or clusters and mode conditional densities are given.
Let &, and p(X|2 = i) be the mode a priori probabilities and mode conditional
densities, respectively. The criterion used in obtaining the probabjlistic
description of class labels for the clusters is the likelihood function. The
Tikelihood of an occurrence of patterns Xi(j) with their labels

“i(j) = { is given by

N,

i
- £ T oDty ()0 (0) = 1] (6)
=1 4=1 !
Since II II p[X is independent of w,(j), for mathematical simplicity,

i=1 J
dividing the above equation by it yields

N. . . :
C 1 ptxi(J):“’i(J) = 1]
) 11;11 jl;ll pLA; (30 (7)

Noting that the logarithm is a monotonic function of its argument and taking
the logarithm of Ly of equation (7) and using equation (4) yield the
following.

C
s ]og(Ll) = 2 i log R.zm:l aupfﬂ = E[Xi (J)]% (8)

The probabilities LY satisfy the constraints given in equation (5). Closed-
form solutions for a ; by maximizing L of equation (8), subject to the con-
straints of equation (5), seem to be difficult to obtain. The probabjlities
a, ; can easily be obtained using optimization techniques such as the Davidon-
Fletcher-Powell procedure (refs. 16-18).
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3.1 A FIXED-POINT ITERATIOH HCHEME FOR OPTIMAL Xy

The following fixed-point iteration equation (similar to maximum 1ikelihood
equations in parametric clustering in reference 3) for the solution of the
above optimization problem can easily be obtained by introducing Lagrangian
multipliers. That is:

Ng
;E% dxid
% e Ni (9)
> 2 d
=1 =1 *1
a,pLa = 2|X:(3)]
where dogg = 21 ] (10)

m
éé%“sipﬁﬂ = s{X;(3)]
However, closed-form solutions for a4 CaA be obtained with the criterion

as the maximization of a Tower bound on L, and they are given in the next
section.

3.2 CLOSED-FORM SOLUTIONS FOR THE PROBABILITIES %y

Since the logarithm is a convex upward function, we have the inequality

c c
109[12___31 a,-gi(x)] > 1§ a; loglg, (X)] (11)
¢ :
where > a; =1
i=1
(12)
and a; >0 5 1=1,2,000,C

i

Using the inequality of equation (11) in equation (8), a lower bound on the
log Tikelihood function L can be obtained as

N,
C im
infg = ;
L> Egi 3%% 2 (Pl = elXy(3)Nog(ay)] (13)

J
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With the introduction of the Lagrangian multipliers, the probabilities
%4 that maximize the lower bound of equation (13), subject to the con-
straints of equation (5), can be obtained as follows.

Nieix (14)
i FCT
5;& Nrerg
1
where i PLARRNCH (15)

This solution simply states that the probability of the ith ¢1ass 1abel for a
given cluster 2 is the ratio of the sum of the a posteriori probabilities of
cluster & given the labeled patterns from class i to the sum over all classes
of the sum of a posteriori probabilities of cluster & given the labeled pat-
terns from each class. Having obtained Gpis 9y (the proportion of class i)
can be estimated as follows.

qy = Pl = 1)
5 b )= 3
= Plw= 1,0 = 8) = § a,. (16)
£=1 =1 A

Hence, ai (the estimate of q4) can be computed from the following.

” ~

m
= ,eg':l 62“&1 (17)
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4. UPDATING A POSTERIORI PROBABILITIES OF THE CLASSES OF
A PIXEL USING INFORMATION FROM ITS NEIGHBORHOOD

The last section covered the probiem of estimating the probabilities %y (the
probabilities of class labels for the clusters) using information from a given
set of labeled patterns. The probabilities g, are seen to be functions of
pDui(j) = ilXi(J)];the a posteriori probabilities of the classes and spatial
information is not used in obtaining L Most of the natural imagery is
abundant in spatial information and can be used to obtain better estimates
for s In this section, expressions are developed for updating the a
posteriori probabilities of the classes of a picture element (pixel) using
information from its local neighborhood. These expressions are used in
section 5 to obtain the probabilities of class labels for the clustars using
both the spectral and spatial information.

Let the pixel under consideration be pixel 0. Its four neighbors in a two-

dimensional Yocal neijghborhood are shown in figure 1.

1,

Y3 (3)
1

H@ o @, | b
4 wi(j) 2

0

K

Yi(J)

3

[ ! [ 1
|

Figure 1.- Four neighbors of a pixel G.
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The following a posteriori probabilities of the classes of a pixel O are
obtained by using information from its local neighborhood.

p[00) = KXy () a¥1(9), e e500)]
IHEIRHEIRENHE )]

ooy (i) = kixy @) d @) eee ¥ a)] -

(18)

The denominator of equation (18) can be written as

8)
ool . ool 4,,
p[xi(J)sY-'(J)"" ] Z [ kyx-i(J)sY-i(J)s"'sYi(J)] (19)
Similarly, from the numerator of equation (18), we obtain

p[‘”j(j) = k.XI(J) \F (3 oo, (j)]

¢ ¢ TR
= 2 ves Z p[m‘i(j) = k’xi(J)’mi(J I)Y (J)) 'o'l\ (J) = k4! (\j)]
1° ¢!

©
€
-
—
.
~—
[}
x
-
€
e
—~
.
~
~
-
-
.
-
€
—~
.
~—
u
&x
| S |

where C is the number of classes.

In the following, it is assumed (a) that the probability density function of a
pattern, given its label, is independent of other patterns and their labels
and (b) that the labels of the patterns are independent of the labels of their
nonneighbors. In the following analysis, the pixels having a common side are
considered as neighbors. (For example, in figure 1, pixels 0 and 1 are
neighbors, whereas pixels 1 and 2 are nonneighbors.) By repeatedly using
assumption (a), the following is obtained.
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pXs (0¥ F () aree () g (3) = Kpud(d) = kppeee,ad(s) =

p[X (@) 105 (3) = k¥} (5 (3) = kppeee ¥ (i), (h) = kq]

(V) YR () = K0}(9) = kpeenud(9)]= &,

PLAG (9) 0 () = KIp[¥55),e oo YF () oy ) = Ko} (3) = kpoeemsu () = )

4
v s N RN P
PLX, ()] (3) - k]{g!i o[PHo 1) = &, ! (21)
By repeatedly using assumption (b), the second term in the summations of

equation (20) can be written as follows.

P[w1(3) = k,m:.]"(j) = kl,""m?(j) = k4]

= PLag () = KIP[ud(3) = ke eesad () = Ky lo (3) - ]
= Plog(3) = kP[u}d) = kylu;(3) = kood(3) = kppeeenud(9) = K]

i
o
—_
=2
-
—~
(1
~
i
=~
| -}
P pp—
—
-
€
—
—
[
N
i
x
=
=
)
-~
Ca
S
i
x
—
N
-
N
~nN
~—
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Using equations (21) and (22) in equation (20) results in

JOIORY P RHOREINHE)

1]
O
[y}
e
—t
-
[
g
|
>
[
=]
™
>
el
-
e
SN
| =
— o
——
[
e
u
=
[
L ]
L]
L ]

-
=

4 C H 0 R » 0
Il (kﬂlgp[wﬁ(d) = kolwy () = k]p[Yf(Jwa(J) = kz]} (23)

From equations (18), (19), and (23), we obtain

ooy () = kI;(@),v3(a)see v d(0)]

0

4 C
w.(j) = kiX.(i
plog(3) = ki) TL <k2=1

2

;P[m:(j) AZORL p[w¥(9) = kzlvi"(J')]:)
1 1

Losy .
mi(\]) = kz

c ¢ (Plo}(d) = Kk, lu(d) =k
i) o= kX, (5)" 1 ' 2. - p, .
2, Ploy(d) = kIxy(9) gl(zl{ T = v p[w}td) kzlY,(J)]}

(24)

In equation (24), the spectral and spatial information from the neighborhood
of a pixel is used in obtaining the a posteriori probabilities of its classes.



5. PROBABILISTIC CLUSTER LABELING WITH SPECTRAL AND SPATIAL INFORMATION

This section covers the problem of obtaining the probabilities g (the
probabilities of class labels for the clusters) using spectral and spatial
information. It is assumed that we are given a set of labeled patterns
X;(3) with labels w,(§) = i and their neighbors VI, 2 = 1,2,000,4, as
shown in figure 1. For j = 1,2,see, Ni and, i = 1,2,¢+,C, the likelihood
of occurrence of patterns X;(j) with Tabels w,(j) = i and with

i
Y%(J), £ = 1,2,00+,4, as their neighbors is given as

N

C
[ I ] . . - 03 1 ] 4 [
DL {p[x,-m,wim - 1,Y1~(J),--°,Y1-(J)]} (25)

e

From equations (24) and (25), the log 1ikelihood function can be written as

c N
L= 2, 2, Tog{plw, (3) = 1|X, ()]
i=1 j=1
N.
cC i 4 C Pw(J)~=1lw(J)=1]
< 1 2., Y o4 .?, . {'l ' '
+ 1};1 J=Z P 0g 1';1{[)[“1(3) 1le1(J)] p[wf(J) =1, }
(26)
Using equation (4) in equation (26) yields
C N m )
L = ;[,1 J'2=:1 109{;::1 a.;pla = rlxi(a)]}
N, £ . .
c "i 4 C PE» (§) = i,|w;(J) = 1] m
+ 1 1 21 a - L
1z=:1 a‘g zgl ” 1E:=1 P[m?(i) = ig] {r;l ”zp[g rlY](J)]}
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Closed-form solutions for the probabilities L that maximize L of

equation (27), subject to the constraints of equation (5), seem to be diffi-
cult. Optimization methods (refs. 16-18) such as the Davidon-Fletcher-Powell
procedure can easily be used to obtain probabilities L that maximize L of
equation (27), subject to the constraints of equation (5). By introducing
Lagrangian multipliers, the following fixed-point iteration equation for the

solution of the above optimization problem can easily be obtained. That is,

N, .
i pla = r|X,(J)]
%pi 5%% m : * Opy
2 OtsiP[Q = Slx-i(j)]
ri T Y pla- j
pLi = rlxi(J)]
;g% % &3 * 6y
& “siPL = sl ()] (28)
where
Pluf(d) = i]u,(d) =
" : — ] p[a = rivi(s)]
_ EC: 2[( % Plo (3) =i
L= B | Z% Plog(3) = 1,lw, (3) = k| ‘E v )]
a_. Q= s{Y (J
i,=1 P[wﬁ (3) = 1%} 5=1 s‘zp[ M

(29)

If the spatial information is not used (that is, when §pi = 0), it is easily
seen that equation (28) becomes identical to equation (9).
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6. CLUSTER LABELING WHEN THE LABELS OF THE
GIVEN PATTERN SET ARE IMPERFECT

In practice, such as in the classification of remotely sensed, MSS imagery
data, it is difficult and expensive to obtain labels for the training pat-
terns. The labels for the patterns are usually provided by an Al who examines
imagery films and uses some other information. (For example, in labeling
pixels of remote sensing agricultural imagery, the information that is most
often used is historic information, crop growth stage models, etc.) These
labels are very often imperfect. Recently, there has been considerable
interest (refs. 13-15) in estimating the probabilities of label imperfections
and using these estimates to obtain the improved classification and to
identify mislabeled patterns with a specified degree of confidence. This
section pertains to the problem of probabilistic cluster labeling by taking
into acount the imperfections in the labels of the given labeled pattern set.
Let w and w' be the perfect and imperfect labels, respectively, each of which
takes values 1,2,+¢+,C. The imperfections in the labels are described by the
probabilities

BJ] = P(‘” = 1'“’ = j) (30)
C
where Y g..=1 (31)
i=1 9

To obtain a relationship between class conditional densities with and without
imperfections in the labels, consider

C
p(X|w' = 1) =Ww—'l=—1'_y j=1 p(X,w' = 1,0 = j)
1 C
SR & Pl 7 e P 1l = 920 = 5)
1 ¥ )
T ) B5iP(w = §)p(X[w = J) (32)
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where it is assumed that

*

p(X|w' = i,w = j) = p(X|w = J) (33)
Using the Bayes rule, from equation (32), we obtain

P = 11X = 3 8l = 410 (34)
J=1

In the following, it is assumed that a set of 1abe1ed patterns X;(j) with
imperfect labels m1(J) = i and with the neighbors Y: (J),"' Y4( ) as shown in
figure 1 for j = 1,2.---,N and i = 1,2,09¢,C is g1ven. It is also assumed
that the probabilities of 1abe1 imperfections Bji are available. The probab-
ilities of imperfections in the labels being Bji’ the 1ikelihood of the
occurrence of patterns X;j(j) with imperfect labels wi(j) = 1, Y%(j),---,Y?(j)
being their neighbors is given by the following

-t

¢ N
- 5} II

bPay - 4 + 1,.
bl p[‘*’i(J) 1,X1(J),Y1-(J

N
-

L ]

®

e
-
-

E
-_
.

—

—
(XY
131
N

Consider

BIERY ARG RN )

y Zf o Ef pE»‘(‘) = oK (3) Y1) b (g) = ; e ¥4y, 6}y =
k1=1 k4=1 i J U J)» i J p“’i J) = 120 1(j),ml(J) = k4]
c ¢ )
= klz=1 oo k4Z=1 [ ( ) Y; (J)) )'w (J) = k wi(j) = kl,ono’mi(j) = k4]
Plujtd) = kw}(d) = &pueees w() = k] (36)
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Given the probabilities of imperfections in the labels and proceeding simi-
larly to equations (21) and (22) while using assumptions (a) and (b) of
section 4, the following can easily be obtained.

p [ty (027 (300w Y3 ()0} (3) = kot () = kyseemsuf(d) = k)

4
- pDXy(a) 1w ta) < 13T
=1

{HP[ ) = kylat(9) ]} (38)

Since p[X {II }15 a constant, dividing equation (35) by it and
s (37

using equations and (38) in equation (35) yields

plud(3) = k.X,(9),¥39) e v (9)

pLX, ( gl'l p Y“ }
= plw}(d) = k[X;(3)] i[l (kél pluf(s) = kzlv;‘m]{')[w?(i m}(ifl?;ii), - k]})
] p[mp[:: (;)kixl]m] zf:Il {k; o[ = aivio)] vkz’} (39)
where RPN EE:%E; :] Pluf(d) = Kyl () = 5] (40)
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1)

and it is assumed that
Bo = Plof(d) = Kluy(3) = 5)

= Pluj(d) = klog(3) = s,0i(3) = k] (41)

Since the logarithm is a monotonic function of its argument, taking the loga-
rithm of equation (35), using equation (39) in equation (35), and treating a

priori probabilities of the imperfect labels as constant, the log 1ikelihood

function becomes

c N 0
L = 1};1 Py 109{P[w13(a) = 1|x1.(J)J$
C Ni 4 C
! 1§1 32...:1 gl ‘°9{k§1 “kzip[‘”?(a‘) = t«.dvf(j)]% (42)

Using equations (4) and (33) in equation (42) yields

i m C
L = 1og{ a B_.pla = PIX-(J)]}
& &% & st ’
3D IDIRTE Ny [a=rivda]l )
+ 0g a, v, :pl9=r|YI(J :
= e S = P AP 1

Optimization methods such as the Davidon-Fletcher-Powell procedure (refs. 16-
18) can easily be used to the obtain optimal @y that maximizes L, subject to
the constaints of equation (5). Also, fixed-point iteration equations similar
to equation (28) can easily be derived to obtain the optimal %y by introduc-
ing Lagrangian multipliers and are given in the following.

1 2
“uv(suv * Guv)

uv C 1 P )
ggi“us(sus * 8

(44)
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where

N .
C B,:pLR = ulX; (J)]
6tv N 12:; 21 m C - ! (48)
=] j= ‘ ,
r§l sgl arsasjp[g r‘x"(J)J
, & Ny 4 vvip[n = ulY?(jﬂ
and I IEDIEDY = (46)
DO RS ég S oa, v .p[n = rle(jﬂ
=1 KEL TR Ky i
If the spatial information is not used, the fixed-point iteration equa-
tion (44) for obtaining %y the probabilities of class labels for the
clusters become the following.
c. M
- géi ;E% dijvu
ay * (47)

5y
=g v

a . BoipL = ulX:(j)]
where d = uy_vi | i (48)

ijvu C m .
2 2 xshsirla = kIX(3)]
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7. EXPERIMENTAL RESULTS

This section presents some results obtained in the processing of remotely
sensed Landsat MSS imagery data. The objective of the processing is to
estimate the proportion of the class of interest in each image. There are two
ciasses in the image. flass ) is wheat, and class 2 is nonwheat, which is
designated as "other." The class of interest is wheat. The MSS images of
several segments were processed in the following manner. [A segment is a 9~
by 11-kilometer (5- by 6-nautical-mile) area for which the MSS image is
divided into a rectangular array of pixels, 117 rows by 196 columns.] The
image 1s overlaid with a rectangular grid of 209 grid intersections.

Class labels were given to the pixels corresponding to a subset of 209 grid
intersections by an Al who examined che imagery films and used some other
information such as crop growth stage models and historic information. These
are imperfect labels. Also, ground-truth labels or true labels of these
pixels are acquired.

The numbers and locations of the segments, the number of pixels labeled, and
the number of features or the number of channels used for each segment are
listed in table 1. Several acquisitions were used for each segment. The
Gaussian mode (cluster) conditional densities and a priori probabilities of
the inherent modes in the data of each segment are obtained using a maximum
1ikelihood clustering algorithm (refs. 3, 19). The number of clusters
generated for each segment is listed in table 1. The theory developed in
sections 3 and 5 is applied in estimating the probabilities of class labels
for the clusters of each segment using Al-labeled patterns and ground-truth-
labeled patterns, both with and without the use of contextual information,

The proportion of class 1, the class of interest, is estimated for each
segment using equation (17) for all the cases, and, the estimates are listed
in table 1. The proportion of class 1 of each segment based on true [ground
truth (GT)] labels of all the pixels in the segment is listed in the last
column of table 1. In equations (28) and (29), the following a priori and

7-1
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transition probabilities are used, where we is the label of the central pixel
and wy is the labe)l of its neighbor.

P(wc =) =05 ; {=1,2 1
0.8 if i = j

(49)
o.z_ifwdj

P(mN = J/wc = i) a;

From table 1, it is seen that considerable improvement has been mace in the
praportion estimates with the use of contextual information if the labels
are good.

The prébab11it1es of label imperfections of Al labels or the g-matrix are
estimated for each segment by comparing imperfect (AI) labels and perfect
(ground-truth) labels. These are 1isted in table 2. From tables 1 and 2, it
is observed that, when the imperfections in the labels are small, the use of
contextual information with the Al labels resulted in improved proportion
estimates (see segment 1231).

Equations (44), (45), and (46) are used with the AI labels and the corre-
sponding g-matrix for estimating the probabilities of class labels for the
clusters. The values used for a priori and transition probabilities in these
equations are given in equation (49). ..e resulting proportion estimates are
Tisted in column 5 of table 2. The proportion of wheat in each segment is
also estimated using equations (47) and (48) with the AI labels and the
corresponding B-matrix. The resulting proportion estimates are listed in
column 6 of table 2. From table 2, it is seen that there is considerable
improvement in proportion estimates when the probabilities of label
imperfections are taken into account.



Fa W =N

TABLE 2.- ESTIMATION OF PROPORTION OF CLASS 1 WITH AI LABELS AND B-MATRIX

No, of Al-labeled Proportion Proportion | Proportion
Location patterns Computed estimate estimate estimate 6T
Segment | (county, B-matrix comparing using using directly with] proportion
state Wheat “Other" | Al and GT labels |egs, (:4()‘,6)(45), eqs; g‘gg eq. (9)
an an
1008 ;honnan, 20 17 [ 33’;33 8.;2;3] 0,3227 0.3025 N.2456 n.348
exas . .
1060 g?yange. 17 89 [g gggz 3’33;37] N.2174 n.,2172 0,1975 0.231
orado .
1233 });?kgon, n 25 [ g.‘;g‘l)g ggggg] 0.6921 n.7139 0.6265 N.744
ahoma . .
1520 a‘i)gtStOne. 20 7 [8 6?% 8.8322] 0.2432 0.3647 0.2109 0.301
ntana *
1604 sena‘l g)e‘.‘ . 3 10 [8 :ggg gggg?] 10,4987 0.4814 0.2963 0.524
North Dakota .
1675 SMcp?:rgoa.t 10 97 [3 gggg g.;g:l!g] 0.2142 0,2156 0.1n8% n.291
outh Dakota .
1805 groggro.k ¢ 15 129 [g 83‘}) g.gggg] 0.1569 0,1932 0.1181 0.164
outh Dakota +9360
1853 gess. 24 67 [ggg;; g,éggg] 0,3021 0.3082 0.3246 7,306
ansas . .
3{as 0.3271€-N1 0.1441€-01 0,9763E-01
Mean square error 0.1682E-02 0,19476-02| 0.1514€-0}
7-4




8. CONCLUDING REMARKS

In the classification of imagery data such as in the machine processing of
remotely sensed MSS data, unsupervised classification techniques have been
found to be effective. Clustering of the data partitions the image into its
inherent modes. Labeling these clusters is one of the crucial problems in the
application of clustering techniques for the classification of imagery data.

In the énalysis of remotely sensed data, labels for the training patterns are
usually provided by an Al who examines the imagery films and uses ancillary
information such as historic information and crop growth stage models. These
labels are usually imperfect. Most of the imagery data are abundant in
spatial content, and spatial information improves the classification by
machine processing.

In this paper, the problem of obtaining the probabilities of class labels for
the clusters is considered. It is assumed that a set of labeled patterns
X;(3) with class labels “i(j) = i and their neighbors Yf(j)(z = 1,2, ,4;
=12, LN andi=1,2, ,C) are given, where C is the number of
classes. The probabilities of imperfections in the labels are assumed to be
available. It is also assumed that the number of inherent modes in the data,
mode conditional densities, and a priori probabilities of the modes are given.
Expressions are developed for obtaining the probabilities of class labels for
the clusters using all the available information.

Experimental results are obtained from the processing of remotely sensed MSS
imagery data. Ope of the important objectives in the analysis of remotely
sensed data is to estimate the proportion of the crop of interest. In
estimating the proportions through cluster labeling, use of contextual
information resulted in better estimates when the imperfections in the labels
are small. Furthermore, the use of probabilities of label imperfections
resulted in better proportion estimates through cluster labeling.
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APPENDIX A
PROBABILITIC CLUSTER LABELING WITH FIELD STRUCTURE

In the practical applications of pattern recognition, such as in the classifi-
cation of remotely sensed agricultural imagery data, one of the difficult
problems is obtaining labels for the trainina patterns. The labels for the
training patterns are usually provided by an analyst-interpreter who examines
imagery films and uses other information such as historic information and crop
calendar models.

It has been observed that the field-1ike structures that are normally in agri-
cultural imagery are relatively easy to label in comparison to the pixels.
Recently, considerable interest has been shown in developing techniques for
locating fields in the imagery data (ref. 20) and for developing maximum 1like-
Tihood clustering algorithms (ref. 21) to fit the mixture of Gaussian density
functions by taking the field structure of the data into account. These
algorithms typically give the a priori probabilities and Gaussian cluster
conditional densities for the inherent modes in the data. The situation is
j1lustrated in the following figure.

.’:-—-:.\ y— -
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\ \\\ Q I’ \ . \\.§~~ |‘- "_-,~\
. - . \
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Figure A-1l.- ITlustration of fields, clusters, and classes in an image.

It is the purpose of this appendix to consider the problem of obtaining the
probabilities of class labels for the clusters using information from a given
set of labeled fields. It is assumed that a set of labeled fields from each
class is given. Let Fj(i), J = 1,2,00e,f(i) be the labeled fields of class i,
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i=1,2,000,C. Let N; (i) be the number of pixels in the jth 1abeled field of
class i. Let Xx; k(i) be the spectral vector of the kEh pixel of Jth labeled
field of class i. Let X ( ) be the concatenated vector of spectral vectors of
pixels in the Jth labeled field of class i. That is

oo

le(i)
Xi(1) = [ xj2(i)
(A-1)

It is also assumed that the probability density functions and a priori
probabilities of the clusters are given. Let these be p(X|@ = i) and

61,1 = 1,2,7e+,m, respectively, where m is the number of clusters. Assuming
the fields are independent, the likelihood of occurrence of Xj(i) with their
labels w.(i) = i, but normalized, is given by

J
C f(i p[X 1) = ]
i

o
i

=1 §e1 pEX (1

ICI T e () XS (A-2)
= = 'I -

0T e

If X is a concatenated vector of spectral vectors in a field, similar to
equation (4), we have

m
plw = i|X) = ég% a;p(a = £|X) (A-3)

Using equation (A-3) in equation (A-2), the log likelihood function can be
witten as

L = Tog (2)
C. (i) m . (A-4)
A-2



A fixed-point iteration equation for the probabilities of class labels for the
clusters % 5 that maximize L of equation (A-4), subject to the constraints of
equation (5), can be written from equations (9) and (10) as

f(i) 4
o~ i
. _Js
i =TT (A-5)
where
a,spla = 2]X.(i)]
Lij T m - . (A-6)
SZ=1 asip[Q = S|XJ(1)]

But from the Bayes rule, we have

L Pla = el (i)1a = 2]
pla = 2[X;()1 = p[xj%i)]

_ P(a = 2)plX;(i)|a = 2] (4-7)

m
3, P(a = s)plX;(i)[a = s]
s=1

The computation of a posteriori probabilities of the clusters p[Q = lej(i)]
can be considerably simplified by noting that the sequence [Xj(i),sj(i),
J=1,2,00e ,f(i); i = 1,2,00¢,C] is a sufficient statistic for the criterion,
where Xj(i) and Sj(i) are the sample mean and the sample scatter matrix of the

jth field of the ith class, respectively. That is

N; (1)

- . 1 '
XJ-(1) =W3"(‘Ty kZ=:1 "jk(’)
) (A-8)

N. (i
J
and Sj(” = k2=:], [xJk(1) “ XJ(I)][XJK(” - XJ(1)]T}

A-3
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The sufficiency of the sequence [Xj(i).sj(i)] implies that

P(a = )pIXs(i)]a = ] 8,9,k ;(1),54(1)]

4 (A-9)
p[X‘(i)] qlX;(1),55(1)]

where qztij(i),sj(i)] is the joint density of ij(i) and S;(i), given that.the
cluster 2 contains the field Fj(i) and

m
QEXJ(”:SJ“)] 2= zqz[x 3(1)] (A-10)

If p{x|e = 1)~ N(”z’zz)’ the joint density qgtij(i)’sd(i)] can be expressed
as

9y (X 4(1),8(1)] = Nd[ij(ﬂ; oo T zz]wdcsjm; Ny (1) - 1, 1]

(A-11)
where Nd(ij(i); “z"NT%TY zz)is the d-variate normal density of Xj(i) and
wd[Sj(i); Nj(i) -1, Zz]iS'the Wishart density of Sj(i) with Nj(i) - 1 degrees
of freedom. It can easily be shown that the density of sample mean ij(i) is
given by

- . _ . 1 i
p[Xj(1)|n = 2] N(uz, NETTT Zz) (A-12)
The Wishart density of S;(i) with Nj(i) - 1 degrees of freedom can be written
as

l(l/Z)}[N.(i) -11-d- 1

exp'- -é- tr[s.(i) z;l]:

wd[Sj(i),Nj(i) - 1.z‘] _

L1210, (1)11¢ 1d(d-1) |4 Ix‘1/201(1)1][ (b Jong () - 10+ '“‘ﬂ

(A-13)
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Using equations (A-12) and (A-13) in equatijon (A-9) yields

3 '-..2-.."3(” exp |- & o (27t sy00 #mgTk - 20,00 - 0,071
Pla = t)g [(1,55(1]  “elis, PLz b B Sy j R B
; "7 1T
q[XJ(i).SJH)] r‘ :lx "'"2"‘ exp[ tr( ;1353(1) + NJ(MD'(JH) - "r][ij“) - ol ;)]:
(A-14)

Equation (A-14) can be used in equaitons (A-5) and (A-6) to obtain optimal
probabilities of ¢lass labels for the clusters using information from a given
set of labeled fields.
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APPENDIX B

CONTEXTUAL CLUSTER LABELING WITH THE CRITERION OF PROBABILITY
OF CORRECT LABELING

The probiem of obtaining the optimal probabilities of class labels for the
clusters using the criterion of probability of correct labeling is formulated
in this appendix. It is assumed that a set of patterns X;(Jj) with imperfect
labels wi(j) = i and with the neighbors Y; (J),"',Y?( ) as shown in figure 1,
for j = 1 yCyo e N1 and 1 = 1,2,¢¢+,C, are given. The probabilities of label
imperfections s j are assumed to be available. It is also assumed that the
probability density functions and the a priori probabi1it1eo of the clusters
are given. If a pattern X with the neighbors Y ,m,Y4 comes from class 1,
then for particular a priori probabilities and probability densities of the
classes the probability with which it is correctly classified into class i is
plu = iIX,Yl,eee, 4)a Since logorithm is a monotomic function of its argu-
ment, the criterion of probability of correct labeling (PCL) may be defined.as

= Y Plw=1) [ Toglpw = 4]X,¥ 000 Y} Ip(K|w = §)dx  (B-1)

Let B be the matrix of probabilities of label imperfections, where

B = [B’ij] (B-2)
Let v= ()t (8-3)
Using equations (B-2) and (B-3) and inverting equation (32) results in

Plw = 1)p(X|w = Z: ) p(X{w' = J) (B-4)

B-1
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From equations (B-1) and (B-4) we get

C C
PCL i El E:l v’ijp(w' = J) [ loglp(w = 1|X.Y1,-~-,Y4)]p(X|w' = j)dX
{B-5)
Using the given imperfectly labeled patterns and their neighbors, an estimate
for P of equation (B-5) can be written as

. cC C N b ;% . 1 400
CRD R S RIS PERTINORE T RRRAT

- -
= -

(8-6)

Substituting sample estimates for P(w' = j) and using equations (24) and (4)
in equation (B-6), the criterion can be written as

¢ @gz m
Cr = 12;‘1 2 Vi 1og§;‘_‘i a;ple = Y‘lxj(k)l}

A&
?.Ci 5 vy 2% togf 5 5 [o = rlY¥(k)] (8-7)
+ v 0g a, £ ple=r -
ST R = | {k2=1 1 Tk kgl J }
E N
Plo*(k) = Kk, [, (k) = u
where By u © [ J z A ] (B-8)
2 Pmﬁm-kd

The probabilities g that maximize Cr of equation (B-7) and that are subject
to the constraints of equation (5) can be obtained using optimization tech-
niques such as Davidon-Fletcher-Powell (refs. 16-18). However, fixed-point
iteration equations are developed in the following.
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B.1 FIXED-POINT ITERATION SCHEME FOR OPTIMAL S

It is noted that in equation (B-7), Yij might be negative. In the following
fixed-point iteration eqiations for obtaining optimal LR the probabilities
of class labels for the clusters are developed. Consider

.
pXlo = 1) = praey & Pl =t )

C
= ) . LI | -
J};l Biy P(X[w' = §) (B-9)
where it is assumed that
p(Xlw =1, o = §) = p(X]w' = J) (8-10)

In terms of probabilities of label imperfections, the a priori probabilities
of perfect and imperfectly labeled classes are related as

C s
Plu' = 1) = 2, 84;P(w = J) (B-11)
J=1

Inverting equation (B-11), we get

C
Plw = i) = JZ_:I vﬁP(m‘ i) (B-12)

Using equation (B-9) in equation (B-1), an estimate for PcL can be written as

N

S ] 1 4
PCL - 'i=21 ng niJ kz=:1 {p[ﬂ) = ."xj(k)’v\]‘(k)’".’YJ(k)]t (8'13)
where ngj = Eﬁf-gfiliii (B-14)
J
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From equations (4), (24), and (B-13), the criterion becomes

ey 3 ;in {'ﬁ 2 = r[X <m}
r o= N 0g a..ple = r|X,
i=1 =1 W k=1 r=1 T J

R R
+ N, 0g
u=l j=1 W k=31 =1

k2=1 r=

C m .
2 Z% “rkzikzupﬁl= rJYj(kﬂ (B-15)

The following fixed-point iteration equations for obtaining optimal o that

maximize Cr of equation (B-15), subject to the constraints of equation (5),
can easily be obtained by introducing Lagrangian multipliers. That is

“Pi = C ) ) (8‘16)
1%% ari(s?i * 6;1)
where
U S C T (3N
Sy = 2o My - (B-17)
=1 Wi o ,
Y. agi Lo = s|Xy{0)]
5:
y j TR
C 4 E: Pl2 = r]Yi(k)
and 631 ) 5;& j@% W) 8 & = [ : ] : (B-18)
lkfgl 2 %k 5 up[“ SIYJ(k)]

If the spatial information is not used, the fixed-point iteration equations
for obtaining the optimal probabilities @ become the following.

1

a. 6.

; ri_°r
R (B-19)

12%“r16 ri



where sii is given by equaion (B-17). It is noted that when there are no
imperfections in the labels, equation (B-19) is identical to equation (9).

B.2 EXPERIMENTAL RESULTS

This sectijon presents some results from the processing of remotely sensed
multispectral scanner imagery data. The objective of the processing is to
estimate the proportior of class of interest through probabilistic cluster
labeling. The class of interest is wheat and its proportion is estimated
using equation (17). The same labeled patterns and the cluster statistics of
section 7 are used. The a priori probabilities of imperfectly labeled classes
for use ir 2quation (B-12) are estimated as sample estimates. The a priori
and the transition grobabi]ities used in the local neighborhood of the given
labeled patterns are given in equation (49). The results are listed in

table B-1. From table B-1, it is seen that better proportion estimates are
obtained by taking the imperfections in the labels into account.

B-5
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TABLE B-1.- ESTIMATED PROPORTION OF CLASS 1 WITH IMPERFECT LABELS AND g-MATRIX !
Proportion Proportion
Location Computed estimate Proportion estimate
Segment (county, g-matrix comparing using eqs. wstimate directly with G. T,
state A.l. and G,T, labels | (B-16), (B-17) using eas. Al labels proportion
and (B-18) (B-19) and (B-17) | using eqs. (9)
1005 ?her'nan, [8gggg gggg;] 0.3194 0.3641 0.2456 0.348
exas . .
1060 ghfyenge, [8.832; g.g;g;] 0.2297 0.2787 0.1975 0.231
olorado . .
1231 &ajk;an. [g.ggg ggggg] 0.7640 0.7546 0.6265 0.744
ahoma . .
1520 %g Stone, [0.79}; g.ggg:ll] 0.2398 0.2661 0.2109 0,301 v
ntana 0.01 .
1604 genvglle‘.‘ [0.4ggg 0.3:?0] 0.4981 0.5035 0.2963 0.524
orth Dakota) L0.1 .8431
1675 HcPhgrgo‘r:. [ggggg 8;2?3] 0.2681 0.2448 0,1085 0.291
South Dakota . '
1805 gr'eg;.;n"ty),k [8.8%}3 g.g;gg] 0.1502 0.1385 0.1181 0.164
outh Dakota . .
1853 Ness, [0.80_77 0.1923] 0.2769 0.3164 0.3246 0.306
Kansas 0,0615 0.9385
Bias 0.20350E-01 0.52875E-02 0.9763E-01
Mean square error 0.89969£-03 0.89725€-03 0.1514€-01
|
NASA-JSC

'L})
o
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