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CHAPTER I: EXECUTIVE SUMMARY

Section 1: Need for Study

Various investigations and model calculations yield evidence that

thermal infrared remote sensors are useful'in assessing water-related

surface and near-surface land conuitions. Soil moisture is highly

dynamic having extreme spatial and temporal variability. This charac-

teristic makes ground point-sampling observation programs expensive and

relatively ineffective for the sequential and synoptic, yet detailed,

information required in management programs. Remote sensing systems have

the capability to provide these data characteristics if the information

content of the data can be quantitatively used to assess moisture related

ground variables.

The agriculturalist has an interest in soil moisture which is

available to the growing plants. This varies with season and crop but

ranges from surface moisture to profile soil moisture at depths of a

meter or more. Conversely, the hydrologist may have an interest only

in the surface few centimeters of the land surface. Of special interest

in South Dakota is the depth to the zone of saturation. Where this

depth is within a few centimeters to approximately one meter, the soils

may have a limited rooting depth and may tend to develop soil salinity

caused by upward mobility of the water table moisture with subsequent

evaporation and deposition of salts. The contamination of water table

water associated with leaching of the soil horizons has a higher poten-

tial if the water table is near the land surface.

I
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The depth to the saturated zone provider an indication of the water

budget of surficiai aquifers. Where discharge through evapotranspiration

of phreatrophytes or of irrigated crops and the domestic consumption of

water in combination with other loss factors exceeds recharge, water

tables will lower. The importance of understandira aquifer water buOlgets

is acknowledged since tedious ground observation programs are already in

place in eastern South Dakota. A remote sensing program could potentially

aid these programs for appropriate placement of sounding wells or infer-

ring contours among the point observations for final mapping.

For many areas in :,outh Dakota and other regions, monitoring the

depth to the saturated zone, where it occurs in the top 2-3 meters of

the land surface, would provide a valuable input into water and land

management. Remote sensing approaches to a monitoring program would

use surface or near-surface measurements (i.e. thermal or microwave) to

infer certain water-related properties. Therefore, changes in the energy

budget of the surface which result from a variety of factors must be

evaluated and understood before thermal-infrared remote sensing data can

provide the desired information. The shading effects of the crop canopy,

water use by evapotranspiration, incomplete canopy cover, temperature

indicators associated with variations of thermal diffusivity, slope, etc.,

are all candidate topics which must be addressed and understood to fully

utilize the data derived from thermography.

The objectives pursued under this investigation were to:

(1) Develop a finite-difference simulation model for specific

application -co 4CMM data which simulates and predicts the

thermal regimea associated with occurrence of shallow groundwater.
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(2) Evaluate HCMM data for locating regions of shallow groundwater

and estimating the depth to the water table.

Section Z: Report Format

Detailed results are presented as various chapters. Each chapter

includes published or submitted papers which identify results relevant

to the dual objectives. An additional topic beyond the original objec-

tives was investigated which was tc; determine the uses of HCMM or

similar data in soil geography studies.

The specific background, procedures, and discussion are presented

within each chapter. A generalized summary of the investigation results

is presented in the follow'ng section. Since potential applications of

HCMM-type data have many questions to be resolved, any number of valid

Experimental topics could be addressed. Many were pursued under , this

program using ground or aircraft observations since it was questionable

during the investigation if appropriate HCMM data would be receive6 'in a

timely manner to use the data for analysis. Therefore, results and pub-

lications were fragmented and are presented in entirety in this report

since procedures, test sites, etc. were not consistent for all investi-

gations.

Section 3: Summary of Significant Results

Section 3.1. - Introduction

Landforms associated with areas of shallow groundwater in glaciated

W

eastern South Dakota can be recognized using standard image interpretation

techniques of multidate Landsat data. Therefore, this investigation was
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to determine, once these regions were identified and mapped, if synoptic

thermal data from HCMM could be used to assess the depth to the water

table. Since the thermal signal measured by HCMM is a function of

emitted radiation from the atmosphere and from the land surface, both

must be considered when relatin; HCMM data to land or water features.

The a; , ;:roach to reduce atmospheric variation used spatial differences

within dates for analysis. No further attempts were utilized to reduce

the influence of the atmosphere on the thermal signal even though the

authors realize this as a significant problem in quantitative remote

sensing using thermography. Therefore, most equations and statistical

relationships presented in this report require that some form of

quantitative field data are required to implement any of the algorithms.

Since the composite "surface" radiance is that which is sensed

from the remote sensor, evaluations of the effects of vegetation cover

and soil moisture were investigated. Sections 1-5 of Chapter II detail

each specific study. In general, the topics included the use of thermal

data for assessing actual soil temperatures under conditions of incom-

plete and complete canopy covers and the assessment of near-surface soil

moisture. Chapter III follows with the relationship of ground, aircraft,

and HCMM data to the depth-to-water tables. Since the program had

considerable delays in dissemination of HCMM data, another objective was

pursued to evaluate HCMM for use in operational soil surveys. Chapter IV

clearly illustrates and demonstrates examples where HCMM or similar data

could provide inrut to the field soil surveyor. The final Chapter V

defines a model and its results for developing a theoretical base to
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understand thermal infrared potentialities in water resources monitoring.

Section 3.2 - Qualitative Monitoring of Wet Versus Dry Surfaces

In its simplestfvr" 1 , daytime thermoa raphy should provide a qr lita-

tive mapping tool to locate regions which have a wate r saturated surface

versus 9 surface where the soil moisture is at Ici s than saturation.

The effects of higher thermal inertia and increased partitioning of in-

coming energy into latent heat (increased evapotranspiration) result in

cooler surface temperatures. Chapter II, Section 1 (II-1) and Figures

1-3 illustrate the phenomena. The predawn image in Figure 1 demonstrates

that the area of a cool anomaly presented in Figure 2 was probably both

a function of differences in evapotranspiration and of thermal inertia.

The warmer apparent temperiicures predawn results from a thermal inertia

change of increased moisture when compared to surrounding regions. The

cooler apparent temperatures of the saturated area during daytime hours

results from both thermal inertia variations and increased evapotrans-

piration.

Section 3.3 - Thermography of Incomplete Canopy Cover

The remotely measured '°nd surface emission includes radiation

emitted from both soil and vegetated surfaces. If the intended applica-

tion requires either soil or vegetation temperatures independently , a

method to separate and calibrate the contribution of each emitting com-

ponent must be developed. For the water table monitoring objective,

the need is to measure soil surface temperature. If the application is

to monitor transpiration of plants as an indicator of moisture or other
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Figure 1. Photographic enlargement of a May 14, 1978 night thermal infra-
red image 'scene I.D. A-A0018-08420) showing a high soil mois-
ture area arrows) in southeastern South Dakota. Thermal
inertia is apparently ciusing a warmer signature during the
predawn cooling portion of the diurnal cycle. Dark is cool.
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Figure 2. Photographic enlargement of a May 15, 1978 day thennal infrared
image (scene I.D. A-A0029-19515) showing a high soil moisture
area (arrows) in southeastern South Dakota. The area is
approximately that of Figures 1 and 3. Increased evapotranspira-
tion and increased thermal inertia are probably responsible
for the cooler apparent temperatures of the wetter area. Dark
is cool.
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BLACK AND WHITE PHOTOGRAPH

Figure 3. Photographic enlargement of a May 13, 1978 Landsat MSS7
image (scene I.D. E-21207-16083) of the same approximate
area as Figures 1 and 2. The area in question does not

have standing surface water but has either bare or iege-

tated fields as the emitting surface.
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stress, the vegetation component must be estimated. Sccti'go 2 in Chapter

II presents an algorithm to extract canopy temperature from radiometric

measurements at incomplete cover.

A ground-based study was conducted on a developing barley canopy

in which canopy temperatures were measured with an infrared radiometer

at 300 from horizontal. Contact soil temperatures at a 1-mm depth were

measured using thermocouples. Composite radiometric temperatures which

included radiance contributions both from the soil and from the barley

vegetation were measured with a radiation thermometer at 2-m above the

canopy. This measurement simulates that of vertical remote sensors.

Emissivity and sky irradiance corrections were applied to the data. The

measurements were acquired at approximately 1330 LST (HCMM overpass time)

throughout the barley growing season. The canopy covers seasonably

varied from 30% to 90% (=LAI 0.3 to 3.2).

The radiometric temperatures of the composite radiating surface,

including bo;h soil and crop canopy, were 0.5 to 11.5 C higher than

canopy temperatures alone. Surface soil temperatures were 1.5 to 20.0 C

higher than canopy temperatures. Correlation between measured canopy

temperatures and composite temperatures was not statistically signifi-

cant.

The uifflclence between composite and canopy temperatures was highly

correlated with percent canopy cover (r 2 = 0.52). Therefore, an approxi-

mation equation was applied which separated the radiance contributions

of the bare soil and the canopy. The equation incorporated terms for

canopy and soil emissivities, percent crop co%,-r, longwave sky irradiance,

d
k

_..,..... way,
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and composite temperatures. Applying the correction resulted in a

r2 = 0.88 for relating predicted versus observed values for estimating

the temperature of the canopy. Differences between predicted and ob-

served values ranged from -1.84 to 2.5 C for the data acquired throughout

the barley growing season.

The significance of the procedure was,even at low canopy covers

estimates of canopy or soil temperatures can be successfully measured

using remote sensors. Figure 4 summarizes the data for the barley study.

Remote sensing estimates of percent cover and composite temperatures

are available with existing technology. When emissivity corrections

were not applied, prediction accuracy varied with percent cover. The

largest errors occurred at low canopy cover. Canopy emissivity was

measured as 0.98 and was assumed constant throughout the growing season.

Soil emissivity varied with water content. Measured values ranged be-

tween 0.95 and 0.97. Wider ranges of soil emissivities can be experi-

enced since the value is soil specific. If emissivities were assumed

to be one for the calculations in this field experiment, predicted

canopy temperatures would range from 6.4 C lower to 1.7 higher than

actual observed values. Where measured emissivities were used in the

equation but the longwave sky irradiance was ignored, differences be-

tween predicted and observed canopy temperatures ranged from 0.8 to

10.7 C.

The significance of the study was that canopy temperatures at in-

complete covers can be estimated using a nadir-viewing radiometer if

appropriate considerations are given to soil background radiance,
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emissivities, and sky irradiance. Techniques are available for measur-

ing or estimating some of the inputs required for the canopy motel.

'carious models which have been developed for simulating bare surface

soil temperatures can feasibly be extended to soil surfaces including

crop canopies.

Section 3.4 - Diurnal Surface Temperature Change as a Measure of Near-
Surface Soil Moisture

The basic assumption in rising thermography to estimate near-surface

soil moisture is that surface temperatures or their changes in time are

related to the therwal properties of soils in a predictable fashion when

other components of the energy budget are not accounted for or can be

accounted by use of auxiliary data which are easily available. The

paper presented in Chapter II, Section 3 describes in ;retail the experi-

mental framework to determine if AT of the surface relates to near-surface

moisture and if this relationship is maintained with the variability

introduced throughout a barley growing season having variations in canopy

cover. The same rainfed barley field as described in the previous sec-

tion was instrumented and measured on 22 dates over a 45-day period.

Volumetric soil water content of the 0-4 cm layer was the variable

to be predicted by thermography. The field data were collected through-

out a barley growing season where percent cover ranged from 30% to 90%

and leaf area index from 0.3 to 3.2. Diurnal changes in 1-mm soil

temperatures between 1330 and 0230 LST (AT.) were used in an exponential

equation to predict soil moisture content of the 0-4 cm soil layer. An

r2 = 0.81 was derived for the equation which incorporated data from the

M



4t

3C

OV

X2 C
a

IC

13

VOLUM TRIC SOIL WATER CONTENT (%)

Figure 5. Relationship of the difference (oT S ) between soil surface
temperatures measured at 1330 and 0230 LST and the average
24 hr volumetric soil water content in the 0 to 4 cm layer
of the profile.

a

a

k

.If'y



0

I4

14

total season. The resulting equation and plot is illustrated in Figure

5.	 Attempts to normalize among dates using air temperatures provided

no significant improvement to the results.

The quantitative relationship is significant in illustrating that

if an estimate of actual daily surface temperature difference 15 available.

it is statistically highly significant 'n direct relation to near-surface

moisture. The diversity in canopy cover, air temperature and humidity,

and other energy budget terms did not mask the relationship.

Section 3.5 - Surface Soil Temperature and Moisture Estimates Using

it	 Radiometry.

The same barley canopy and experimental data were evaluated to

determine if radiometric temperatures of "composite" land surfaces (in-

cluding both canopy and bare soil) could be used to quantitatively re-

late to the 0-4 cm soil moisture. The actual 0230 LST composite temp-

eratures ranged from 1.1 - 2.2 C higher than canopy temperatures (ex-

cluding soil background). This predawn background soil irradiance

was typically higher than the canopy temperature. The surface soil

temperatures were higher by 1.1 - 5.4 C than canopy temperatures. This

trend remains during the 1330 LST measurements. The composite radio-

metric temperatures were 0.5 - 17.0 C higher and s6 "ace soil tempera-

tures 1.5 - 20.0 C higher than temperatures of the vegetation in the

canopy. Therefore, changing canopy cover affects the ability to esti-

mate the actual soil surface temperature which is the temperature that

is related to near-surface moisture.
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Regression equations were developed using the seasonal data of the

barley canopy to relate composite (or remotely sensed temperatures) to

the actual soil surface temperatures. For the 0230 LST measurement time,

the resulting equation included modifying the thermography measurement

with National Weather Service daily minimum air temperature. For the

1330 LST measurement, the equation included a term modifying the

thermography with an exponential term of fraction of vegetation cover.

The two equations had R2 = 0 . 78 and r2 $ 0.86, respectively. Figure 6

illustrates the corrected data after application of the canopy cover

correction equations.

The equations were derived empirically and should be questioned and

evaluated over a larger set of environmental variables than were included

in this original data set. However, the need for some 'type of correction

of the thermal radiance measure is required to relate ^o actual soil

surface conditions where pa rtial or incomplete cover by a crop canopy

is present.

The equations presented in this study illustrate that easily derived

field properties such as air temperature or percent canopy cover may pro-

vide the necessary information. The equations developed were limited

in geographic extent but did encompass data throughout a complete

growing cycle of one crop.

Section 3.6 - Aerial Thermography as an Estimate of Near-surface Soil
Moisture Undcr a Variety of Land Covers.

The correction equations developed from the barley study were

applied to an aircraft study of a larger region in eastern South Dakota

which inclOed a diversity of canopy covers (50%-95% cover including

i
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corn, soybeans, millet, and pr,sture) and differences in soil textures

and other soil properties (Chapter II, Section 3). The day/night air-

craft thermal data were collected on only one date. Soil moisture was

estimated as percent of field capacity to reduce variations associated

with soils. The average difference between measured and predicted

values was 1.6% of field capacity. Figure 7 provides a plot of the

measured versus predicted soil water contents.

The significance of the study was that the correction equations

were applicable to a wide range of crop cover conditions. This range

is normally prevalent when avplying the techniques over large agricul-

tural areas where soil moisture monitoring programs might be established.

Section 3.7 - HCMM Thermography as an Estimate of Near-surface
Moisture Under a Variety of Land Covers

Satellite applications have the advantage of covering large regions

in a short time period. When the theme to be estimated is confused with

other scene variables, the complexity caused by heterogeneity of the

terrain normally increases as larger areas are observed. The same

correction procedures were tested using data as thermography covering

multiple dates over a sizable area in eastern South Dakota having a com-

plex agricultural landscape.

HCMM data were treated with correction equations similar to those

discussed in the previous paragraph (Chapter II, Section 5). Soil

moisture data from the 0-4 cm soil layer were acquired from 23 fields

having a variety of crop covers for four dates ranging from June

through early September. The HCMM radiometric temperatures without
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correction for land cover did not significantly relate to soil moisture.

However, when actual surface soil temperatures were empirically estimated

from HCMM radiometric temperatures using land cover corrections, a highly

significant correlation (r - 0.74) was obtained between the estimated

soil temperatures and 0-4 cm soil moisture content. Figure 8 illustrates

the derived relationship.

Section 3.8 - Depth to Water Table

If the water table or zone of saturation is at a greater depth than

the diurnal damping depth, the amplitude of the diurnal temperature curve

is not affected but a shift in the curve up or down in absolute magnitude

will be noticed where the depth to saturation is within the depth of

annual temperature variations. Many investigations, as reported in

Chapter III, Sections 1 and 2, have demonstrated that 50-cm deep soil

temperatures will vary with depth to water table. The saturated zone

acts as a heat sink or source which delays warming in the summer and

retards cooling in the winter.

The Big Sioux River Basin in eastern South Dakota is a surficial

shallow water table aquifer of glacial origin. The land use is predomi-

nantly agriculture including small grains, pasture, hayland, and row

crops. A considerable difference in the thermography can be expected

as associated with land cover. Contact temperature measurements at a

50-cm depth were acquired to determine if a significant relationship

between the soil profile temperatures and depth to water table was

e+	 retained even under varying land cover (Figure 9). Similar to

it
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observations reported in the literature, a significant relationship be-

tween measured 50-cm ssil temperatures and depth to water , table was

observed for water tables in the Big Sioux Basin of eastern South

Dakota. Three meters was the depth limitation of a significant correlation.

These correlations were observed during early September near the annual

maximum downward temperature gradient. The saturated soil materials

act as a heat sink as the annual temperature mark progresses into the

summer in the northern latitude of South Dakota. This creates cooler

land surfaces over the water saturated zone. However, both soil moisture

and vegetation cover may obscure any surface expression of this tempera-

ature anomaly.

The range of 50-cm temperatures was about 5 C for the data acquired

under this investigation. The 50-cm temperature anomaly predicted by

modeling and field observations has previously been shown in the litera-

ture to be 1-2 C as associated with water tables. However, data points

in this study were in soil profiles having a variety of crop cover

conditions on the surface which also affected the 50-cm temperatures.

High soil moisture and shallow groundwater tend to affect surface tempera-

tures in the same direction - the surface remains cooler during the day

(in periods of maximum downward temperature gradients - August or

September)	 but in opposite directions at night. At night, the high

soil moisture areas should remain warmer when considering thermal inertia,

and the shallow groundwater areas should remain cooler.

Previous investigations have shown that aircraft radiometric

temperatures were related to water table properties. Predawn HCMM

I
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imagery was effectively used with cooler anomalies delineating the

alluvial basin when the water tables were shallow in Figure 10. Land-

form recognition from Landsat or aircraft image data was also used to

locate these potential areas. During the day, the HCMM thermal data

did not reveal the locations of the basin as illustrated in Figure 11.

The landforms (alluvium and terraces) where high water tables are

commonly located were delineated using a combination of Landsat and

HCMM predawn data. Since the depth to the water table had significant

correlations to the 50-cm temperatures, HCMM data were evaluated to de-

termine if the radiometric surface temperatures were correlated with

water table depths. Uncorrected HCMM data were evaluated for estimating

water table depths within the basin for four dates from June through

early September. No significant relationship was found. The data

were corrected using the empirical vegetation transformation developed

under the previous soil moisture studies to reduce the effect of the

crop canopies when estimating surface temperatures. Each date was

analyzed separately. The correlations irrlroved from 0.59 to 0.8 as

the season progressed from June 5 through September 4. The September 4

date is plotted in Figure 12 which relates corrected HCMM data to water

table lepth.

This parallels model predictions. The maximum anomaly should occur

in the season of greatest downward temperature gradijnt. Since both

soil moisture and water table depth can affect surface soil temperature,

a multiple regression analysis was conducted to determine the proportion

of the HCMM radiometric temperature which could be accounted for with

these two variables. The resulting R2 = 0.87 was for the September 4
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Figurel0. Photographic enlargement of an August 29, 1978 night HCMM

thermal infrared image (scene ID A-A-125-08340) showing
the Big Sioux Basin. Note that the Basin appears cooler
than the surrounding areas, due primarily to the heat sink
produced by shallow groundwater within the Basin.
(App roximate scale 1:1,000,000; dark is cool)
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Figure 11. A September 4, 1978 photographic enlargement of a HCMM day
thermal infrared image (scene ID A-A0131-19420) of the same
area shown in Figure 10. Note that the Big Sioux River Basin
is not visible because of emittance variation associated with
land use (Approximate scale 1:1,000,000; dark is cool).
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date. This compared to r 2 a 0.64 when relating only water table to HCMM

thermography. Please note that depth to the water often influences soil

moisture.

Data such as HCMM can be beneficial in guiding well drilling pro-

grams for monitoring and mapping water table depths where the water

tables range from 0 to 3 m. Land cover masks the thermal anomaly

associated with water tables but the effect can be reduced by using pre-

dawn data or by accounting for land cover in the prediction equation.

Since the thermography signal is a function of many variables including

thy: heat sink (or source), land cover, and soil moisture, results of

,.he investigation revealed that if the 'latter two are introduced into

equations to assess depth to water table, improved correlations can be

derived.

Section 3.9 - Soil Geography

Soil moisture, vegetation cover, elevation, slope aspect, soil

texture, and many additional variables affect land surface temperatures.

Many of these 'variables are useful to the soil surveyor who is classi-

fying soils and estimating land capabilities. Image interpretation of

HCMM thermal data of South Dakota was conducted to determine its use

for the soil surveyor. Results were that elevated areas, soil textural

differences, and slope aspect were apparent in the imagery. Warmer

radiometric predawn temperatures of north-facing slopes were evident.

The data provide a pictoral illustration of how soil moisture and vege-

tation variations are associated with aspect of slope. North-facing

slope aspect reduces solar insolation to the surface resulting in less

n

k
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e'^apotranspiration and higher soil moisture. HCMM or similar data can

provide this information by estimating the net effect of slope aspect

as it relates to vegetation growth and production ( Chapter IV). Simi-

lar observations were made for elevation differences between areas where

parent materials and soils appear similar but noted differences in soil

productivity are present. Figures 13, 14 and 15 illustrate the principles.

Section 3.10 - Model Development

Since the surface temperatures as measured radiometrically by remote

sensors can vary with many factors, a finite-difference simulation model

was developed to isolate variables and estimate their magnitude of effect.

The concept was to measure profile temperatures, insolation, etc. at one

site and correlate the differences in variables which are present at a

second site and are causing the differences in radiometric temperature.

Using this spatial differencing approach also reduces the effects of

atmospheric disturbances. The model (Chapter V) showed that the 50-cm

soil temperature difference associated with water table depth differences

between two sites was apparent as temperature differences at the surface.

These surface difference!,, were nearly constant in magnitude throughout

the diurnal cycle. However, the difference was destroyed during pre-

dawn in areas having dense canopy covers. Therefore, remote measurements

can be day or night, whenever the actual soil surface temperature related

best to the radiometric temperature as measured with remote sensors if

dense crop cover is not present. Soils with different moisture profiles

differed in surface temperature variations Burin, the diurnal cycle.

This functional form of differences was changed less by variations in

f
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Figure 14. Enlarged area from Figure 13.
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canopy cover than was the functional form of the individual sites.

Multiple pass satellite data should be acquired during dayligt,t hours

according to the model predictions for assessing temperature differences

related to soil moisture. Model calculations using day minus night

temperatures were not useful f(,r assessing water table depths since the

thermal inertial change was not within the diurnal damping depth.

Either day or night data could be used for this relationship. If dense

canopy cover was present, the timing of data collection was limited to

day periods.

t
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BACKGROUND

Thermal infrared detection and quantification of near-surface soil

water content are based on relationships between surface soil tempera-

ture and soil moisture. Diurnal variations of surface soil temperature

are related to soil thermal properties and meteorological factors such

as solar radiation, air temperature, relative humidity, ind, etc. The

meteorological factors represent the driving force for diurnal soil

temperature variations. Thermal inertia (Jm -2 sec-^ 
K-1), 

defined as

(XC) 4 where a(Wm
-1
 K-1 )  is thermal conductivity and C(Jm -3 K-1 ) is

volumetric heat capacity, represents a soil's resistance to the driving

force. Since a and C increase with an increase of soil moisture, the

resultirg range of surface soil temperature will decrease.

When the soil surface is wet, evuooration is a ma,;or factor

controlling surface heat loss. As the surface 'layer dries and the soil

water supply cannot meet the evaporative demand, soil temperature is

largely influenced by thermal inertia. Thus, the diurnal range of

surface soil temperature can be an indication of soil water content.

Idso et al. (1975) found a significant relationship between the diurnal

range of surface soil temperature (bare soil) and surface soil water

content, and reported that the relationship was a function of soil

type. Pratt and Ellyett (1979) presented a method for estimating soil

thermal properties for changes in composition, porosity, and moisture

content. Although temperature versus water content relationships are

complicated by vegetation, Heilman et al. (1978) demonstrated the

a
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potential for estimating near-surface soil moisture from remote

temperature measurements of crop canopies at incomplete cover.

One objective of NASA's Heat Capacity Mapping Mission (HCMM)

Is to evaluate the feasibility of using HCMM data to assess soil mois-

ture effects by observing temperatures near the maximum and minimum of

the diurnal temperature cycle. The satellite, which carries a two-

channel radiometer (0.5 to 1.1 and 10.5 to 12.5 um), collects data at

1:30 p.m. and 2:30 a.m. local time at mid latitudes with a reF Aat cycle

of 5 or 16 days depending on latitude. Spatial resolutions are 0.5 x

0.5 km at nadir for the visible channel and 0.6 x 0.6 km at nadir for

the thermal infrared channel. An example of HCMM detection of a

region of high soil moisture is presented in the following discussion.

DISCUSSION

In early April 1978 heavy runoff from snowmelt and ice blockage

caused significant flooding of alluvial areas in a portion of the Big

Sioux River Basin in southeastern South Dakota (Figure 1). By mid-May,

flood waters had receded, but an area of high soil moisture (at or near

field capacity) remained. Soil moisture in the surrounding terrace

soils was generally less than in the flood plain.

The high moisture area appeared warmer than surrounding areas on

May 14 HCMM night thermal imagery (Figure 2) and cooler than surrounding

areas on May 15 HCMM day thermal imagery (Figure 3). The temperature

differences between alluvial and surrounding areas were probably the

result of thermal inertia and evaporation differences associated with

soil moisture differences. The high moisture area was not visible on

Landsat imagery (Figure 4).

x
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Fig. 1. Landform map of Brookings County, South Dakota,
showing location of alluvial soils (bottomland) of
the Big Sioux River Basin which were flooded in
early April 1978.
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Fig. 3.	 ,0'aphi:. enlargement of a May 15, 1978, day thermal
infr;xr^d image (scene ID A-A0029-19575) showing a high
soil moisture area (arrows) in southeastern South Dakota.
Dark is r;ool .
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Photographic enlargement of a May 13, 1978, Landsat MSS 7
image (scene ID E-21207-16083) of the same area shown in

Fig. 2 and 3.

Fig. 4.
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Although digital data were not available at the time of the

writing of this article to quantify radiometric temperature differences

associated with the sail moisture differences, results presented here

demonstrated the superiority of HCMM thermal data acquired at the appro-

priate periods of the diurnal temperature cycle over Landsat data for

assessing soil moisture differences. Final results from HCMM soil

moisture investigations currently in progress will fully evaluate the

utility of using HCMM and similar data for evaluating soil moisture from

space.
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ABSTRACT

A field study was conducted in a barley (Hordes w vutgare L.) canopy

to assess the potential for extracting canopy tempetsture information from

nadir radiometric measurements at incomplete cover. Composite tempera-

tures consisting of emitted and reflected longwave radiation from the

barley and the soil background were measured by a nadir-viewing infrared

radiometer. Canopy temperatures were measured by an infrared radiometer

at a 300 angle from the horizontal. Soil temperatures were measured

with thermocouples.

Composite temperatures were 0.5 to 11.5 C higher than canopy tempera-

tures with the largest difference occurring at low canopy cover. The

correlation between composite and canopy temperature for data acquired

throughout the growing season was not significant. A model which con-

sidered emitted radiation from both the canopy and the soil background,

and which included reflected longwave sky irradiance was used to predict

crop temperatures from nadir measurements. Predicted temperatures agreed

with observed values (r2 = 0.88), and the prediction accuracy was inde-

pendent of canopy cover. When em i ssivity corrections were not applied,

prediction accuracy varied with percent cover with largest errors occur-

ring at low cover. Prediction accuracy also varied with canopy cover

when appropriate emissivities were used but sky irradiance was ignored.

Result: i ndicate that canopy temperatures can be estimated from nadir

measurements at incomplete cover if percent cover, soil temperature,

soil and canopy emissivities, and sky irradiance are known.

4.

4
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INTRODUCTION

Remotely-sensed surface temperatures can be useful for many agricul-

tural applications including evapotranspiration modeling, soil moisture

detection, plant stress detection, yield prediction, and irrigation

scheduling. Mcst studies which have used remote measurements have been

restricted to bare soils or fully developed crop canopies because of the

complexities involved in interpreting thermal data at less than full

cover.

Much of the complexity results because the remote sensing instrument

measures emitted and reflected radiation from vegetation and soil which

generally have different temperatures and emissivities. Hatfield (1979)

reported that differences between angular and vertical infrared ther-

mometer measurements of canopy temperatures were great ,- 31: at 20 to 50%

cover and decreased as canopy density increased. He speculated that

differences were enhanced by emissivity variations. Millard et al.

(1980) found that for canopies covering at least 85% of *he soil surface,

airborne measurements of plant temperatures differed from ground measure-

ments by less than 2 C. At 50% cover, differences were as large as 9 C.

Investigdtors have shown that even at full cover thermal radiance from

the soil surface can affect remote temperature measurements of crop

canopies ( glad and Rosenberg, 1976).

Incomplete plant canopies are important remote sensing targets be-

cause of the potential benefits arising from early assessment of crop

condition. Jackson et al. (1979) presented a model for extracting

canopy temperature information from a composite of soil and plant
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temperatures measured by a sensor scanning perpendicular to canopy rows.

They found that if a critical scan angle (determined from reflectance

measurements) was exceeded, the temperature obtained from the scanner

was that of sunlit vegetation. They also found that the extraction

process was difficult for canopies having low percent cover.

We evaluated relationships among percent cover, soil temperature,

and radiometric measurements of canopy temperature, and used a model of

emitted canopy and soil background radiance and reflected sky irradiance

to assess the potential for extracting canopy temperatures from nadir

radiometric measurements. Effects of neglecting emissivity variations

and sky irradiance in the model calculations were evaluated.

MA"CERIALS AND METHODS

Experiments were conducted on a 25 m X 300 m field of Volga loam

(fine-loamy over sandy or sandy-skeletal, mixed (calcareous), frigid,

Cumulic Haplaquoll) at the South Dakota State University Agricultural

Engineering Research Farm located 8 km south of Brookings, South Dakota.

Larker barley (Hordeum vulgare L.) was planted in the field at 15-cm

row spacing (north-south rows) at a population of 2.5 million plants ha -l.

The barley was not irrigated. Surface roughness of the soil was minimal.

Surface soil temperatures (approximately 1 mm below the soil surface)

were measured with copper-constantan thermocouples at two locations (A

and B) within the field. For each location, three thermocouples were

wired in parallel to obtain an average measurement of shaded and sunlit

soil which approximated surface temperature. For bare soil, thermocouple

measurements were within 1.0 C of radiometric surface temperatures
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(corrected for emissivity and sky irradiance) measured with a precision

radiation thermometer (Model PRT-5, Barnes Engineering Company). 
3

Com-

posite temperatures consisting of radiance contributions from the roil

surface and the barley were measured at both locations at 1330 Local

Standard Time (LST) on clear days at a vertical position (zero degree

look angle measured from nadir) 2 m above the canopy. The temperature

resolution of the 200 field of view PRT was t0.5 C in the 8-14 um wave-

length interval. Canopy temperatures were measured with the PRT-5 at a

height of 1 m above the canopy and a look angle of 30 0 from the horizon-

tal (Millard et al., 1980) pointing to the east and the west (perpendicu-

lar to row direction). At that angle and direction, radiance contribu-

tions from the soil were minimized (Hatfield, 1979). Canopy temperatures

were corrected for emissivity and sky irradiance using a canopy emissivity

of 0.98.

Emissivities of the canopy at full cover were measured using a pro-

cedure similar to that described by Fuchs and Tanner (1966). We used a

painted aluminum plate with an emissivity of 0.52 rather than an anodized

plate to determine sky irradiance ( g lad and Rosenberg, 1976). Soil

emissivities were measured on a bare soil plot adjacent to the barley

field.

Soil water contents (0 to 4-cm layer) for each location were deter-

mined gravimetrically on soil samples collected at the time of the temp-

erature measurements. Percent cover was determined using 35 mm color

infrared slides of the canopy (photographed from a vertical position

approximately 1 m above the canopy) projected on a random dot grid.

Mention of trade name does not imply endorsement of a particular
product or company.
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Figure 1 shows seasonal trends in percent cover of the barley canopy.

RESULTS AND DISCUSSION

In the discussion that follows, composite temperature refers to

apparent temperatures measured by the nadir-viewing PRT-5. Canopy

temperature refers to temperature measured by the PRT-5 at a 30 0 angle

from the horizontal.

During the investigation, composite temperatures were 0.5 to 11.5 C

higher and zurface soil temperatures 1.5 to 20 C higher than canopy

temperatures (Figure 2). As expected, differences between composite and

canopy temperature decreased as canopy cover increased and less emitted

radiation from the warm soil background was detected by the radiometer.

The correlation between composite and canopy temperature was nonsignifi-

cant (r - 0.41).

Millard et al. (1980) found that errors from assuming nadir-viewing

thermal scanner measurements represented actual canopy temperature were

a linear function of canopy cover. We found a highly significant linear

relationship (r2 = 0.52) between the composite-canopy temperature dif-

ference and percent cover (Figure 3). However, the considerable scatter

in our data suggests that it may not be possible to assess errors in

determining canopy temperature using only canopy cover information as

Millard et al. (1980) suggested.

We assumed the longwave radiation flux from a canopy and the soil

background could be approximated by the relationship

R - fc E caTc4 + (1-fc ) E saT s4 + fc (1- e c )B* + (1-fc)(1-ES)B*	 [1]

where R(W m-2 ) is longwave flux, f  is percent cover of the canopy
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expressed as a fraction, c c is canopy emissivity, e s is soil emissivity,

T  (K) is canopy temperature, T s (K) is surface soil temperature, Q

(5.67 x 10-8 W m-2 K-4 ) is the Stefan-Boltzmann constant, and B* (W m-2)

is longwave sky irradiance. The first two terms on the right-hand side

of equation [1] represent longwave radiation emitted from the canopy and

exposed soil background, respectively. The last two terms represent long-

wave sky irradiance between the canopy and the soil is ignored in equation

[1]. Equation [1] also does not partition fractions of shaded and sunlit

leaves, or fractions of exposed soil background which are shaded and sun-

lit. Canopy temperature can be expressed by rearranging equation [1] to

give

4

T = 
R-( 1-fc)exQTx'i-fc(1-ec)B*-(1-fc)(1-ex)B*

c

	

	 [2]
fcecQ

We compared observed values of T  with values predicted using equa-

tion [2] and measured values of fc , Tx and

from measurements of composite temperature

where 
Tcomp 

is composite temperature. A mi

for ec . Soil emissivity varied with water

B* (Fig. 4). R was calculated

using the relationship R = QTcomp

?asured value of 0.98 was used

content as shown in Figure 5.

Linear regression analysis of predicted versus observed canopy temperature

yielded a slope of 1.04, an intercept of -0.53, and a r 2 of 0.88. Differ-

ences of observed from predicted values ranged from -1184 to +2.50 C.

The prediction accuracy of equation [2] was independent of canopy cover.

The corre,ation between the predicted minus observed canopy temperature

difference and percent cover was 0.26 (non-significant).
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Many investigators have discussed the importance of correcting

radiometric data for emissivity variations. Bartholic et al. (1972) re-

ported temperature errors ranging from 1.9 C for bare, dry soil to 0.8

for cotton which arose from assuming an emissivity of 1. Jackson et al.

(1977) reported a nearly constant error of 1.7 C for wheat temperature

by not correcting for emissivity. Similarly, Sutherland and Bartholic

(1977) found that assuming an emissivity of 1 produced errors on the

order of 1.0 C for complete canopies.

When emissivities of 1 were used for the soil and canopy in equation

[2], predicted canopy temperatures ranges from 6.43 C lower to 1.70 C

higher than observed values. Linear regression analysis of predicted ver-

sus observed canopy temperatures yielded a clope of 1.14, an intercept

of -5.08, and a r2 of 0.76. Prediction accuracy varied with canopy cover

as shown in Figure 6 with largest errors occurring at low percent cover

when radiance contributions from the soil were at a maximum. The magni-

tude of the error from assuming emissivities of 1 depends not only on

canopy cover, but also on soil type and water content. Soil emissivities

ranging from 0.90 for dry sand to 0.99 for loamy soils have been reported

(Sellers, 1972; Sutherland and Bartholic, 1977; Taylor, 1979).

Prediction accuracy when measured emissivities were used in equation

[2] but the B* terms were neglected also changed with canopy cover (Fig. 6).

The sum of the reflected B* components ranged from 13.2 W.m
-2
 at 23% cover

to 5.6 W m-2 at 90% cover. Differences of observed from predicted canopy

temperatures ranged from 0.8 to 10.7 C. Regression analysis of predicted

versus observed canopy temperatures gave a slope of 0.66, an intercept of

7.74 and a r2 of 0.66.
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This study has shown that canopy temperatures at incomplete cover

can be estimated using nadir-viewing radiometers if appropriate con-

siderations are given to soil background radiance, emissivity and

sky irradiance. Techniques are available for estimating some of the in-

puts to the canopy temperature model. Canopy cover can potentially be

estimated from remote sensing data (Heilman et al., 1977; Tucker et al.,

1978; Jackson et al., 1979). Emissivity data can be obtained from the

literature for a wide range of soil types. Sky irradiance can usually

be estimated from prevdiling sky conditions (Boer, 1980). However, under

certain conditions, sky irradiance can be highly variable and may require

direct measurement (Conaway and van Bavel, 1967). Estimating the radiance

contribution from the soil background remaii;; a difficult problem. Models

have been developed for estimating surface and near surface soil tempera-

ture (Behroozi-Lar et al., 1975; Pratt and Elyett, 1979; Meyer et al.,

1975; van Bavel and Hillel, 1976) and they can potentially be extended to

crop canopies.
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ABSTRACT

Previous investigations of thermal infrared techniques using

remote sensors (thermography) for estimating soil water content have

been limited primarily to bare soil. Ground-based and aircraft

investigations were conducted to evaluate the potential for extending

the thermography to approach to developing crop canopies. A signifi-

cant exponential relationship was found between the volumetric soil

water content in the 0-4 crr soil layer and the diurnal difference

between surfacr* soil temFz;rature measured at 0230 and 1330 LST

(satellite overpass times of NASA's Heat Capacity Mapping Mission -

HCMM). Surface soil temperatures were estimated using minimum s'r

temperature, percent cover of the canopy and remote measurements of

canopy temperature. Results of the investigation demonstrated that

thermography can potentially be used to estimate soil temperature

and soil moisture throughout a complete growing season for a number

of different crops and soils.

INTRODUCTION

Remotely sensed surface temperatures have hLaen investigated for

estimating soil water content (Idso et al., 1975; Idso and Ehler, 1976;

Schmugge et al., 1978). Soil water contents have been relate:' to

differences between the daily maximum and minimum soil or crop

temperatures. The investigations generally have been limited to bare

soils or fully developed crop canopies because of difficulties in

f
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interpreting thermal data at less than full cover when significant

emittance contributions from both soil and vegetation occur. The

ability to derive usoful information from remote temperature measure-

ments for conditions other than bare soil or fully developed canopies

would greatly expand the u sfulness of the remote sensing techniques.

Investigators have st ,, ,n that even at full cover, thermal

emittance from the soil surface can affect remote temperature

measurements of crop canopies (Bled and Rosenberg, 1976). Thus,

surface soil temperatures can potentially be estimated from remote

measurements of land surface emittance where a crop canopy is the

primary source of radiation.

We conducted a ground based and aircraft investigation to evaluate

the potential for estimating soil surface temperature and soil

moisture from measurements of total area emittance at various stages

of crop canopy development. The investigation was conducted to

examine data collected during times of the diurnal temperature cycle

corresponding to data :ollection by NASA's Feat Capacity Mapping

Mission (HCMM), launched in April 1978. The satellite, which carries

^.	 a two-channel radiometer (0.5-1.1 and 10.5-12.5 um) in a sun-synchronous

orbit, collects data at midlatitudes at approximately 0230 and 1330

LST during the diurnal cycle with repeat coverage of 5 or 16 days

dependings on latitude.

MATERIALS AND METHODS

Plot Study

Experiments were conducted on a 25 m x 300 m field of Volga loam

(fine, loamy over sandy, mixed (calcarious), frigid, Cumulic Haplaquoll)

i
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at the South Dakota State University Agricultural Engineering

Research Farm located 8 km south of Brookings, South Dakota. Larker

barley (Hordeum vulgare L.) was planted in the field at 15 cm row

spacings (north-south rows) and a population of 2.5 million plants

ha-1 . Rainfall in the Brookings area averages 558 mm year -1 . No

supplemental water was applied to the barley. Surface roughness of the

soil was minimal.

Surface soil temperatures (I mm below the soil surface) were

measured with copper-constantan thermocouples at two locations

(A and B) within the field, For each location, three thermocouples

were wired in parallel to obtain an average measurement which

approximated surface temperature. Apparent canopy temperatures consisting

of emittance contributions from the soil surface and the barley (shaded

and sun l it leaves) were measured with a portable infrared radiometer

(Model PRT-5, Barnes Engineering Co.) at a vertical position (zero

degree look angle measured from nadir) at a height of 2 m above the

canopy. The temperature resolution of the 200 field of view PRT-5

was ±0.50 C in the 8-14 um wavelength interval. Apparent crop

temperatures were measured with the PRT-5 at a height of 1 m above the

canopy and a look angle of -60 0 to minimize emittance contributions

from the soil. Temperatures were measured at 0230 and 1330 LET.

The temperatures measured with the PRT-5 were not corrected for

emissivity. Emissivities, determined using a procedure similar to that

described by Fuchs and Tanner (1966), ranged from 0.96 for bare, dry

soil to 0.98 for the fully developed barley canopy. For the range of

temperatures and percent cover encountered, the maximum error from not

correcting for emissivity was 1.5 0 C.

r

9
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16 June and 19 July, respectively.
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Soil water contents (0-4 cm layer) for each location were determined

gravimetrically on soil samples collected at the time of the temperature

measurements. The average of soil watc y, contents measured at 0230 and

1330 LST was used to represent the 24 h average. Jackson et al.

(1976) reported that the average of the daily maximum and minimum

water content closely approximated the 24 h average.

Temperature and soil water content measurements were initiated

when the canopy cover reached 30 %. Data were collected for 22 dates

during the 45-day investigation.

Plant samples for determining leaf area index (leaf area/soil

area) were taken every 5-7 days. Leaf areas (green leaves only)

were measured Frith an optical planimeter (Lambda Instrument Corp.).

Percent cover was determined using 35 mm color infrared slides of the

canopy (photographed from a vertical position -1 m above the canopy)

projected on a random dot grid. Daily values of lead area index (LAI)

and percent cover were estimated from graphs of observed LAI and

percent cover versus date (Fig. 1). We did not estimate percentages

of shaded and sunlit leaves, or percentages of shaded and sunlit soil.

Maximum and minimum air temperatures were obtained from the Brookings

National Weather Service Station (-ls km from the research site).

All data were subjected to regression analyses.

Aircraft Study

Apparent canopy temperatures of corn, soybean, millet and pasture

were collected along a 24 km flight line northwest of Brookings by a

quantitative thermal scanner (Daedalus Enterprises, Inc., Ann Arbor,

1.
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Michigan) flown in the Remote Sensing Institute ' s twin-engine Beech-

craft at an altitude of 3650 m above ground level. The 1.6 mrad

scanner detector has a neat of 0.5 0 C. Data wr  ,• ,ollec ted at 1330

and 0230 LST on 5 and 6 September 1978. Scanner data were not corrected

for atmospheric attenuation of emissivity variations. Sky conditions

were clear for all flights. Errors from neglecting emissivity

variations and atmospheric effects were <1 0 C.

Soil water contents ( 0-4 cm layer) were gravimetrically sampled

in each of the fields at the time of the aircraft overflights. Percent

cover was estimated using the same procedure used in the plot study.

Data from the aircraft study were used to test the predictive equations

developed from the plot study on barley.

RESULTS AND DISCUSSION

Soil Water Content Versus Temperature Relationships

The amplitude of the diurnal soil surface temperature wave is a

function of thermal inertia and meteorological factors (solar

radiation, air terrs::.̂, rature, humidity, etc.) Thermal inertia - an

indication of a soil ' s resistance to temperature change - is defined

C^	

as pca 1/2 , where p is density, c specific heat and a thermal

conductivity. Since p, c and a of a soil increase as soil water

content increases, the resulting amplitude of the diurnal temperature

wave decreases.



40

67

1978
BARLEY

30
	

O

"*C'
0 0

O0 ll^

O O O
O

O

^T = 2-
0 .06 SWC +3.59) 	 O O O

R^ = 0.81	 O

2	 4	 6	 91	 10	 12	 14	 16	 19	 20

VOO.UMETROC SOIL WATER CONTENT (%)

Fig. 2. Relationship of the different (LT ) between soil surface
temperature measured at 1330 and s023J LST and the
average 24 h volumetric soil water content (SWC) in the 0
to 4 cm layer of the profile.

aV

rM 20
Q

10



68

When the soil surface is wet, evaporation is a major factor con-

trolling surface heat loss. After the surface layer dries and the

soil water supply cannot meet the evaporative demand, surface heat

loss is by conductive transfer (soil heat flux) and is largely

influenced by thermal inertia. Nocturnal cooling is highly related

to thermal inertia. Thus, the jiurnal surface temperature range can

be an indication of soil water content. Idso et al. (1975) found a

linear relationship between the diurnal range of surface soil

temperatures and soil water content in the 0-4 cm layer of soil, and

reported that the temperature versus water content relationship was a

function of soil type. However, they also found that if soil water

content was expressed in units of pressure potential, this

dependence was minimal.

Vegetation cover alters the solar radiation at the soil surface

and thus affects soil evaporation and soil temperatures. Therefore,

dynamic growth and development of vegetation would be expected to

complicate the temperature versus water content relationship.

Initially, we evaluated the relationship of day minus night surface

soil temperatures (oT s ) versus suil water content at various stages of

canopy development. Leaf area index and percent cover of the barley

canopy ranged from 0.3 to 3.2 and 30-90%, respectively. The exponential

equation

AT = e
(-0.06SWC+3.59)	 (1)S

with an r 2 of 0.81 and a standard deviation from regression of 2.540 C,

was found to best represent the relationship between 
AT  

and the

I
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average 24 h volumetric soil water content (SWC) in the 0-4 cm layer

of the soil profile (Fig. 2). The exponential form fit the data better

than linear (r2 = 0.71), power (4 2 n 0.76) or quadratic (r 2 a 0.77)

curves.

Idso et al. (1976) proposed a procedure for cnmpensating for

environmental variability in the thermal inertia approach by normalizing

AT  measurements with respect to an arbitrary standard diurnal air

temperature variation. We found no significant improvement in the

AT  versus SWC relationship using the same normalization procedure.

The temperature versus water content re l ationship [Eq. (1)]

applies only to Volga loam. However, Idso et al. (1975) converted

soil water content to a pressure potential and found a more universal

relationship that appeared to be independent of soil type. Schmugge

et al. (1978) reported that in the absence of pressure potential data,

textural differences in temperature versus water content relationships

could be reduced by expressing soil water content as a percent of

field capacity. The temperature versus soil water content relationships

have limited usefulness unless soil temperatures can be estimated from

remote measurements under all crop-cover conditions.

Estimating Soil temperature from measurements of canopy temperature

During the investigation, surface-soil temperatures at 0230 LST

were 1.1-2.20 C higher than apparent crop temperatures (Fig. 3a).

Differences between canopy and crop temperatures, even at full cover,

probably were the result of significant amounts of thermal radiation

from the soil aurface being detected by the infrared radiometer at

0230 LST (Blad and Rosenberg, 1976).
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At 1330 LST, radiometric measurements of apparent canopy

temperature were 0.5-17 0 C higher, and surface-soil temperatures

1.5-200 C higher, than apparent crop temperatures (Fib. 3b). Greatest

differences between canopy and crop temperatures at full cover

occurred on days with high temperatures and high evaporative demand.

On those days, some silting of leaves occurred, which exposed more of

the soil background to inrcming solar radiation.

Because emittance contributions from the soil surface apparently

were detected by the infrared radiometer, equations were developed

from regression analyses to estimate soil temperatures from remote

measurements of canopy temperature. For the 0230 LST measurements,

the resulting equation was

Ts(0230) ' 0.40 PRT(0230) + MOT  min + 5.10,,
	 (2)

with an R2 of 0.78 and a standard deviation from regression of 1.31 0 C

Here Ts(0230) ( 00 is surface soil temperature, PRT(0230) measurement
of canopy temperature, and T  

min 
is the minimum NWS air temperature

For the 1330 LST measurement, the surface soil temperatures were related

to the PRT measurements of canopy temperature and an exponential

function of percent cover (PC). The resulting equation was

Ts(1330) - 0.79 
PRT

(1330) x 
e (-0.80PC) + 20.35	 (3)

with an r2 of 0.86 and a standard deviation from regression of 2.630 C

where PC is expressed as a fraction. We found no improvement in

estimating soil temperature by including leaf area index, solar

radiation or maximum air temperature in the analyses. Fig. 4 compares

predicted soil temperature with observed values.

r
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Measurements of canopy temperature used to derive (2) and (3)

ranged from 13 to 220 C for (2), and from 24 to 52 0 C for (3).

Percent cover ranged from 0.3 to 0.9.

Evaluation of results

Fig. 5 compares observed soil water contents with values predicted

using Eqs. (1)-(3), and the aircraft thermal scanner measurements of

apparent corn, soybean, millet and pasture canopy temperatures. Eq.

(1) was converted to express soil water content as a percent of field

capacity to minimize differences associated with soil texture (Schmugge

et al., 1978). Percent canopy cover ranged from 50 to 80% for pasture

and from 90 to 95% for corn, soybean and millet. Soil textures ranged

from sandy loam to silty clay loam. Differences of observed from

predicted values ranged from -24.5 to +15.3% of field capacity.

The average differences was 1.6% of field capacity. The less accurate

estimates of soil moisture for corn, soybean and millet were

probably due to their high percent cover.

CONCLUDING REMARKS

The rest-lts of this investigation indicate that thermography for

extimating soil water content can potentially be extended to

developing crop canopies. The diurnal difference between surface

soil temperatures measured at HCMM overpass times is correlated with

surface soil water content. Surface soil temperatures can be
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estimated from remote measurements of canopy temperature if minimum

air temperature and percent cover of the canopy are known. Remote

sensing evaluation of crop cover has been demonstrated (Heilman et

al., 1977; Kanemasu et al., 1977; Tucker, 1979) for certain species.
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ABSTRACT

Results of ground, aircraft, and satellite investigations are

presented that demonstrate the potential for using data from NASA's

Heat Capacity Mapping Mission (HCMM) satellite to provide information

on near-surface soil moisture,	 The satellite,

which carries a two-channel radiometer (0.5 to 1.1 and 10.5 to 12.5 um)

in a sun-synchronous orbit, collects data at approximately 0230 and

1330 local standard time with repeat coverage of five or 16 days

depending on latitude. Near-surface soil moisture influences surface

temperature through conductive heat transfer (affected by thermal

inertia) and evaporation. Thus, HCMM data acquired near maximum and

minimum periods of the diurnal temperature cycle can provide useful

soil moisture information. Hydrologic interpretations of HCMM data

are complicated by vegetation, evapotranspiration, topography, atmo-

spheric absorption and other environmental variables such as solar

radiation, temperature, wind, etj^.

KEY TERMS; HCMM, Thermal Inertia, Energy Balance, Soil Moistur
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INTRODUCTION

Virtually all physical processes occurring at the earth's surface

or in the atmosphere involve transformations or transfers of energy.

Energy balance interactions have important hydrologic implications since

water and energy balances are intimately related (evapotranspiration

requires a source of energy). Distribution of precipitation affects

the thermal regime of the surface through changes in evapotranspiration

and thermal properties of soil and vegetation. Surface temperatures

are also influenced by distribution and flow of shallow aquifers.

Surface temperatures can provide information on the nature of surface

and subsurface hydrology. However, spatial and temporal variations in

surface temperature are difficult to evaluate on the ground. The

spatial criterion can be fulfilled by remote sensing from aircraft and

satellite. Monitoring of dynamic hydrologic features, such as soil

moisture, which requires repetitive coverage is feasible only with

satellites.

NASA's Heat Capacity Mapping Mission (fICMM) launched on April 26,

1978, is the first satellite designed to evaluate re ... ute sensor-derived

temperature measurements of the earth's surface at times when the

temperature variation is at a maximum. Thus, the HCMM represents a

potentially useful tool for hydrologic studies.

Ground, aircraft, and satellite investigations were conducted in

eastern South Dakota to evaluate the potential for tsing HCMM data to

monitor soil moisture and depth to shallow groundwater. Many of the

results are preliminary since investigations are still in progress.

j
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Eastern South Dakota is characterized by shallow perched water tables

and significant spatial and temporal variations in soil moisture and

agricultural land use. Most topographic features in the area are re-

lated to glaciation or stream erosion. The complexities of the ground-

water regime and land use ,-atterns in eastern South Dakota provide a

wide range of conditions in which HC14M c:ata can be evaluated.

14EAT CAPACITY MAPPI14G MISSION

The HCMM carries a two-channel radiometer (0.55 to 1.1 and 10.5

to 12.5 um) in a sun-synchronous orbit (orbital altitude is 620 km).

Spatial resolutions are 0.5 x 0.5 km at nadir for the visible channel

and 0.6 x 0.6 km at nadir for the thermal infrared channel. The neot

of the thermal channel is 0.4°K at 280°K. Swath width is 716 km. HCMM

collects data at 2:30 a.m. and 1:30 p.m. local standard time at mid-

latitudes with a repeat cycle of five of 16 days depending on

latitude.

Standard data products include visible, day Ik, and night IR

imagery (1.-4,000,000 scale), and associated computer compatible tapes.

An example of a night thermal IR image is shown in Fig. 1. Spec`al

data products include day-night temperature difference and apparent

thermal inertia (ATI). ATI, which has many attributes of true thermal

inertia, is defined at C(1-a)/oT where C is a constant related to

latitude and solar declination, a is apparent albedo obtained from

daytime HCMM reflectivity measurements, and of is th^ day-night

radiometric temperature differenc3 observed by HCMM,
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Figure 1. An August 29, 1978, night HCMM thermal infrared image (scene
ID A-A0125-08340) of portions of the upper Midwest 	 (Approxi-
mate scale 1:4,000,000, dark is cool). neAT = 0.4 bC; IFOV
0.6 x 0.6 km; overpass time = 0234 local standard time.
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INTERPRETATION EXAMPLES

Diurnal variations of surface soil temperatures are principally

related to thermal iner'J a, evaporation, land use, and meteorological

factors (solar insolation, air temperature, humidity, etc.). Thermal

inertia, an indicatior. of a soil's resistance to temperature change, is

defined as (CO where C is volumetric heat capacity and a is thermal

conductivity. Since C and a increase as soil water content increases,

the resulting amplitude of the diurnal soil temperature wave decreases.

When the soil surface is wet, evaporation is a major factor

controlling surface heat loss since more energy is partitioned into

latent heat of vaporization and is not available for heating the soil.

After the surface layer dries and the soil water supply cannot meet the

evaporative demand, surface temperature of a bare soil is largely

related to thermal inertia. Nocturnal cooling is highly dependent

on thermal inertia. Thus, the amplitude of diurnal soil temperature

variations can be an indication of near-surface soil water content.

Idso et al. (1975) found a linear relationship between the

diurnal range of surface soil temperatures (bare	 " and near-surface

soil water coricent, and reported that the temperature: versus water

content relationship was a function of soil type. The textural

dependence can be minimized by expressing soil water content in units

of pressure potential or as a percent of field capacity (Idso et al.,

1975; Schmugge et al., 1978). Meteorological variability can be reduced

A
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by normalizing the amplitude of the diurnal surface soil temperature

wave with respect to a standard diurnal air temperature variation

(Idso et al., 1976).

Vegetation alters solar insulation at the soil surface and thus

affects soil temperature. Therefore, growth and development of

vegetation would je expected to complicate tempera tore versus soil

water content relationships. Since crop canopies are the primary source

of land surface emittance during most of the growing season in South

Dakota, the use of HCMM data for hydrologic investigations requires that

vegetation be considered in the analysis.

A ground study was conducted in a barley canopy planted in a 25 x

300 m field of Volga loam to evaluate soil temperature (measured at

HCMM overpass times by thermocouples 1-mm below the soil surface)

versus water content relationships at various stages of canopy develop-

ment (Heilman and Moore, 1980).	 Percent cover of the developing barley

canopy ranged from 30 to 90 percent over the 45-day study. The

exponential equation

aT
s
 = e(-0.06 SWC + 3.59) 	 (1)

with an r2 of 0.81 was found to best represent the relationship

between day minus night surface soil temperatures (AT s ) and the

average 24-hr vol:;metric soil water content (SWC) in the 0 to 4-cm

layer of the soil profile (Fig. 2).

The relationship in (1) has limited usefulness unless AT  can be

estimated from remote measurements under a wide range of crop-cover

n
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conditions. The ground study found that apparent canopy temperatures

measured 2 m above the canopy by a 20° FOV infrared radiometer (Model

PRT-5, Barnes Engineering Co.) at a vertical position (zero degree look

angle measured from nadir) at HCMM overpass times contained significant

emittance contributions from both the soil and the crop canopy through-

out the growing season. Therefore, equations were developed from

regression analyses of surface-soil and apparent-canopy temperatures

to estimate surface-soil temperature from remote measurements. For

0230 LST measurements, the equation

Ts(0230) 3 0.40 Tc(0230) + 0.60 T  min + 5.10	
(2)

with an R of 0.78 was obtained where 
Ts(0230) 

(`C) is surface sail

temperature, and Tii 
min 

( O C) is the minimum air temperature obtained

from the nearest National Weather Service station. For the 1330 LST

measurement, surface soil temperature was related to apparent canopy

temperature and an exponential function of percent cover (PC). The

equation

T	 = 0.79 T_	 x e( -0.80 PC) + 20.35	 (3)
s(1330)	 c(1330)

with an r2 of 0.86 was obtained where PC is expressed as a fraction.

Equations (1), (2), and (3) were tested using simulated HCMM

data (aircraft thermal scanner data collected at an altitude of 3650 in

AGL) collected over corn, soybean, millet, and pasture (Heilman and

Moore, 1980).	 Percent canopy cover ranged from 50 to 80 iercent for

pasture and from 90 to 95 percent for'corn, soybean, and millet. Soil

textures ranged from sandy loam to silty clay loam.
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Figure 3 compares observed soil water content with values predicted

using equations (1) through (3) and simulated HCMM me,9surements of

apparent canopy temperature. Equation (1) was converted to express

soil water content as a percent field capacity to minimize textural

differences (Schmugge et al., 1978). The average difference of observed

from predicted values was 1.6 percent of field capacity.

Preliminary analyses of actual HCMM data of eastern South Dakota

indicates that high soil moisture areas can b^ detected using HCMM

the rmal imagery. In early April 1978 heavy spring runoff and ice

blockage caused significant flooding of alluvial areas in a portion of

the Big Sioux River Basin in southeastern South Dakota (Fig. 4). Flood

waters had receded by mid-May, but an arec of high soil moisture (at

or near field capacity) remained. Soil moisture in the surrounding

upland soils was generally less.

The high moisture area appeared cooler thar, surrounding areas

on May 15 day thermal imagery (Fig. 5). Temperature differences

between the flood plain and surrounding areas were probably the result

of thermal inertia and evaporation differences associated with soil

moisture differences. landsat imagery (Fig. 6) confirmed that no standing

water was present in the fields. Adjacent alluvial areas did not appear

different from uplands, indicating that the anomaly was not associated

with inherent thermal inertia of the soil but with a moisture difference.

i
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Figure 3. Comparison of predicted and observed values of 24-hr
average soil water content in the 0 to 4-cm layer of the
soil pro-File. Predictions were made using equations (1),
(2), and (3) and simulated HCMM measurement of canopy

x	 temperature (Heilman and Moore, 1980).
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Figure 4. Landform map of Brookings County, South Dakota, showing
location of alluvial soils (bottomland) in the Big Sioux
River Basin which were flooded in early April 1978 (Heilman
and Moore, 1981).

54



ORIGINAL PAGE	 90
BLACK AND WHITE PHOTOGRAPH

Figure 5. Enlargement of May 15, 1978, day HCMM thermal infrared data
(scene ID A-A0029-19575) showing a high soil moisture area

(arrows) in eastern South Dakota (Heilman and Moore, 1981).
Dark is cool.
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Figure 6. Photographic enlargement of a May 13, 19/8, Landsat :olor
composite (scene ID E-21207-16083) of the same area shown

in Figure 5. Note that no standing water is visible in
the flood plain of the Sioux River Basin.
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These results indicate a potential for evaluating soil moisture

using HCMM data. Final results from HCMM soil moisture investigations

:urrently in progress will continue to evaluate the utility of using

HCMM and similar data for quantifying soil moisture differences from space.

DISCUSSION

Although the potential for using HCMM and similar data in soil

moisture investigations has been demonstrated, there are limitations

in the use of such data which must be considered. Environmental factors

which influence energy balance interactions must be considered when

using thermal data. Due to its large heats of fusion and vaporization,

water undergoing phase transformations acts as a heat source or sink.

Changes in heat content will not be represented by a corresponding

temperature change if a phase transformation occurs. Thus, conditions

favoring high evapotranspiration rates or dew or frost formation are

not favorable for remote sensing of near-surface soil moisture.

Wind patterns may obscure thermal anomalies created by :oil

moisture (Fig. 7). Topographic variations and vertical extrusion^i

affect the boundary layer and thus affect sensible and latent heat

transport.

Atmospheric constituents (clouds, aerosols, water vapor, etc.)

influence surface temperature by attenuating incoming solar radiation

and affecting radiative cooling of the surface. Since atmospheric

counter-radiation is emitted by atmospheric constituents, radiative
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Figure 7. Wind patterns on night thermal imagery of an area south of
and including Sioux Falls. Wind was from the northeast at
a speed of 10 knots. Approximate scale 1:55,000; dark is
cool.
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cooling will be greater under a clear sky. Atmospheric components

also affect the amount of longwave radiation emitted by the surface

that is detected by HC14M or other thermal sensors.

Thermal remote sensing has an advantage of relating to subsurface

properties since surface temperatures and emittances are a function of

both surface and subsurface properties. These preliminary results

indicate that observations at appropriate periods within the diurnal

cycle can provide info onion on soil moisture. These and other

preliminary results appear promising for development of interpretation

models to advance the use of thermography.

ACKNOWLEDGMENTS

Partial support for the investigations was provided by NASA

under contract No. NAS5-24206 and the State of South Dakota. Contribution

No. SDSU-RSI-J-80-03 from the Remote Sensing Institute, South Dakota

State University.

€a



LITERATURE CITED

Heilman, J.L., and D.G. Moore. 1980a. Thermography for estimating
near-surface soil moisture: under developing crop canopies. J.
Appl. Meteor.	 19:324-328.

Heilman, J.L., and D.G. Moore. 1981. HC14M detection of high soil
moisture areas. Remote Sensing Environ. (In press)

Idso, S.B., T.J. Schmugge, R.D. Jackson, and R.J. Reginato. 1975.
The utility of surface temperature measurements for the
remote sensing of surface soil water status. J. Geophys. Res.
80:3044-3049.

Idso, S.B., R.D. Jackson, and R.J. Reginato. 1976. Compensating for
environmental variability in the thermal inertia approach to
remote sensing of soil moisture. J. Appl. Meteor. 15:811-8'.1.

Schmugge, R., B. Blanchard, A. Anderson, and J. Wang. 1978. Soil
moisture sensing with aircraft observations of the diurnal
sensing with aircraft observations of the diurnal range of
surface temperature. Water Resour. Bull. 14:169-178.

95



EVALUATING NEAR-SURFACE SOIL MOISTURE USING
9/

HEAT CAPACITY MAPPING MISSION (HCMM) DA7

J. L. Heilman
Remote Sensing Center

Texas A & M University
College Station, TX 77843

D. G. Moore
Remote Sensing Institute

South Dakota State University
Brookings, SD 57007

96

l/
Contribution No. SOSU-RSI-J-80-08 from the Remote Sensing Institute,
South Dakota State University. This investigation was supported by
NASA under contract NAS5-24206.



r

97

ABSTRACT

Four dates of Heat Capacity Mapping Mission (HCMM) data were analyzed

to evaluate the utility of HCMM thermal data for estimating near-surface

soil moisture in a complex agricultural landscape. Because of large

spatial and temporal ground cover variations, HCMM radiometric tempera-

tures consisted of radiance contributions from different canopies and

their respective soil backgrounds. However, when surface soil tempera-

tures were empirically estimated from HCMM temperatures and percent cover

of each pixel, a highly significant correlation (r - 0.74**) was obtained

between the estimated soil temperatures and near-surface soil water

content.
^-
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INTRODUCTION

Remotely sensed surface eemperatur,.,, a have been investigated for

estimating soil water content in the surface layer of soil (Idso et al.,

1975; Reginato et al., 1976; Heilman and Moore, 1980). Generally the

investigations have been limited to bare soil or fully developed crop

canopies because of difficulties in interpreting data at less than full

cover when significant radiance contributions occur from both vegetation

and soil. Heilman and Moore (1980) found that thermal techniques could

potentially be extended to conditions of partial canopy cover.

Investigations have also been limited to ground or aircraft studies

since high resolution thermal data from satellites were unavailable for

the appropriate periods of the diurnal temperature cycle. The Heat

Capacity Mapping Mission (HCMM) satellite, launched in April 1978,

was the first satellite devoted to acquiring high resolution thermal

data at optimum periods of the diurnal cycle. The HCMM carried a two-

channel radiometer (0.55 to 1.1 and 10.5 to 12.5 um) in a sun-synchronous

orbit at an altitude of 620 km. Spatial resolutions were 0.5 x 0.5 km

at nadir for the visible channel and 0.6 x 0.6 km at nadir for the

thermal channel. The NEot of the thermal channel was 0.4 K at 280K.

The HCMM collected data at approximately 0230 and 1330 local standard

time (LST) with a repeat cycle of 5 or 16 days depending on latitude.

An investigation was conducted to evaluate the utility of using

HCMM data to evaluate near-surface soil moisture for a complex agricul-

tural landscape.
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MATERIALS AND METHODS

The study was conducted in an 8 x 24 km area within the Big Sioux

River Basin in Brookings County in southeastern South Dakota. Surficial

deposits in the drainage basin are prR:iominantly of glacial origin, and

consist of end moraine, ground moraine, and outwash deposits (Ellis et

al., 1969).

The large study area was required to obtain a wide variation of soil

textures and agricultural land use. Soils in the basin range from poorly

drained silty clay loams in the flood plain to well drained sandy loams

in the slightly elevated terraces, Major agricultural land use cate-

gories are small grains, row crops, hayland, and pasture with field sizes

generally less than 16 ha.

Soil water contents (0 to 4 cm layer were determined gravimetrically

on samples collected on HCMM overpass days in fields representative of

soil and land use variations in the basin. Three samples were collected

per field and averaged. Sampling occurred between 1000 and 1400 I_ST.

The soil water content for each field was ised 4o represent an entire

HCMM pixel, although each pixel ultimately contained more than one land

use.

The number of sampling locations varied because of logistical prob-

lems associated with collecting samples over a large area in a short

period of time. Table 1 summarizes the soil moisture data collections.

Percent cover at Each location was determined using 35 mm slides of

the canopies (photographed from a vertical position approximately 1 m

above the canopies) projected on a random dot grid. When the canopies
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Table 1. Number of fields sampled for soil moisture on cloud-free days of HCMM
overpass selected for analysis. Three samples were collected in each
field.

Date	 No. of Fie1Js	 Land Cover

June 5, 1978	 4	 corn, pasture

July 13, 1978	 2	 corn

August 8, 1978	 4	 corn, pasture

September 4, 1978	 13	 corn, pasture, stubble

Table 2. HCMM scenes analyzed in soil moisture study

Date	 Time	 Scene I.J.

June 5, 1978	 1330 LST	 AA0040-19500

July 13, 1978	 1330 LST	 AA0070-19570

August 8, 1978	 1330 LST	 AA0104-19400

September 4, 1978	 1330 LST	 AA0131-19420
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were too tall for the photographic procedure, percent cover was estimated

from visual inspection. These data were used to prepare average percent

cover curves for the growing season for each land use category. Daily

maximum air temperatures were obtained from the Brookings National

Weather Service Station.

your dates of daytime HCMM data representative of the growing season

were selected for analyses (Table 2). Cloud-free day/night data were

available only for July 13, but insufficient soil moisture data were

collected on that date to relate diurnal temperature variations to soil

water content.

Radiometric temperatures were extracted for each pixel containing

a field where soil samples were collected by overlaying computer gray

maps of HCMM data with a Brookings County map containing the sampling

sites. Radiometric temperatures were corrected for atmospheric effects

by comparing HCMM and ground measurements of Missouri River reservoir

temperatures in central and southeastern South Dakota. Radiometric

temperatures were not corrected for ;missivity variations.

Percentage of each land use category for each pixel was determined

using photointerpretation of a May 13, 1978, Landsat color composite

(scene I.D. E-21207-16803) superimposed on HCMM gray maps via a Bausch &

Lomb Zoom Transferscope. Percentage of each land use within each pixel,

and the average percent cover curves for each land use category were

used to calculate a pixel percent cover for each date of HCM14 data.
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RESULTS AND DISCUSSION

Surface soil temperature variations are a function of soil thermal

properties, land cover, evaporation, albedo, meteorological and other

factors (ai r temperature, solar radiation, wind, etc.). When the soil

surfaF:e is wet, evaporation is a major factor controlling heat loss.

After the surface layer dries and the soil water supply cannot meet the

evaporative demand, surface heat loss is largely influenced by thermal

inertia. Thermal inertia, defined as (pca) 1/2 where p is density, c

specific heat, and A thermal conductivity, is an indication of a soil's

resistance to temperature change. Since p, c, and a of a soil increase

as soil water content increases, the resulting amplitude of the diurnal

surface temperature wave deceeases. Thus, soil surface temperatures at

maximum and minimum periods of the diurnal temperature cycle can be an

indication of soil water content.

Idso et al. (1975) found linear relationships between the diurnal

range of surface soil temperatures (bare soil) and soil water content

in the 0 to 4-cm layer of soil, and between the surface soil - air

temperature difference and soil water content for the same depth inter-

val. The temperature versus water content relationships were a function

of soil type. However, Idso et al. also found that if soil water con-

tent was expressed in pressure potential units, this dependence was

minimal.

Unfortunately, bare soil conditions seldom exist for any length of

time in agricultural areas. Thus, remote sensing techniques must be

developed for a wide range of ground cover conditions. HCMM radiometric

t
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temperatures (corrected for atmospheric effects but without consideration

given to groan(rover variations) did not correctte (r - 0.16) with soil

water content for the four dates analyzed. Generally, each pixel con-

tained more than a single .and use. Thus, the radiometric temperatures

consisted of a combination of radiance contributions from different cano-

pies and their respective soil backgrounds. Estimated percent cover for

the pixels ranged from 10 to 95 percent during the study.

Heilman and Moore (1980) found that soil surface temperatures

beneath crop canopies were correlated with near-surface water content,

and developed a procedure for estimating soil surface temperatures under

crop canopies from remote measurements of a composite temperature. They

used the euation

Ts - 0.79 Tce(-0.80 PC) + 20.35 	 (1)

where Ts ( oC) is predicted soil surface temperature, Tc ( oC) is a compo-

site temperature consisting of radiance contributions from the crop and

soil background, and PC is percent cover expressed as a fraction.

Equation (1) was used to estimate surface soil temperatures from

HCMM temperatures and pixel percent cover. Regression analyses were

used to correlate T s with soil water content (SWC). The following

equation was

Ts - 58.35 SWC-0.18
	

(2)

with a r of 0.A (significant at the 0.01 level) and a Sy.x of 2.1 0 
(Figure 1).
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Soil water content was expressed as a percent of field capacity to mini-

mize differences associated with soil texture (Schmugge et al., 1978).

Soil surface temperatures are affected by day-to-day environmental

variations (wind, humid dity, air temperature, etc.). We attempted 0

compensate for some of that variability by relating differences between

Ts and maximum air temperature to soil water content (Idso et al., 1975).

Table 3 lists maximum air temperatures for the four analysis dates. How-

ever, we found no significant improvement using that procedure.

Results of this study indicate that thermal data acquired frum

spacecraft can be correlated with near-surface soil moisture if consid-

erations are given to spatial and temporal groundcover variations. Remote

sensing of crop cover using multispectral reflectance data has been

successfully demonstrated (Heilman et al., 1977; Kanemasu et al., 1977;

Jackson et al., 1979; Tucker et al., 1979; Holben et al., 1980).

Reflective and thermal data have the advantage of high spatial

resolution, but their usefulness is lost in the presence of clouds.

Microwave sensors have the ability to penetrate non-raining clouds. How-

ever, the spatial resolution of passive sensors is limited by antenna

size, while active microwave sensing is strongly influenced by look

angle and surface roughness (Schmugge, 1978). Thus, the combined use of

reflective, thermal, and microwave sensors may be the logical approach

for assessing soil moisture from satellites. Investigations of simul-

taneous observations in the various spectral regions should be pursued

to determine where each data set is unique and/or where the multiple

estimates can be used to improve accuracies.



Table 3. Maximum air temperature for the four dates of analysis.

Date	 Tmax (C)

June 5	 25.0

July 13	 26.1

August 8	 31.7

September 4	 31.1

106
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ABSTRACT

krsults of ground, aircraft, and satellite investigations are

presented that demonstrate the potential for using data from NASA'-.

Heat Capacity Mapping Mission (HCMM) satellite to provide information

on perched water tables. The satellite, which carries a two-channel

radiometer (0.5 to 1.1 and 10.5 to 12.5 um) in a sun-synchronous

orbit, collects data at approximately 0230 and 1330 local standard

time with repeat coverage of five or 16 days depending on latitude.

Perched water tables influence surface and subsurface ;oil temperatures

because of a heat sink effect created by the high heat capacity of

water. HCMM data acquired at appropriate periods of the diurnal and

annual temperature cycle can provide useful information on shallow

groundwater. Hydrologic interpretations of HCMM data are complicated

by thermal inertia-heat sink interactions, vegetation, evapotranspiration,

topography, atmospheric absorption and other environmental variables

such as solar radiation, temperature, wind, etc.

KEY TERMS: HCMM, Thermal Inertia, Energy Balance, Soil Moisture,

Groundwater, Perched Water Tables
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INTRODUCTION

This paper discusses the groundwater portion of a hydrologic

investigation of eastern South Dakota using data from the Heat Capacity

Mapping Mission (HC11M) satellite. Background material and information

about the HCMM are presented in the paper "Soil Moisture Applications

of the Heat Capacity Mapping Mission" in the preceding soil moisture

section.

INTERPRETATION EXAMPLES

Surface soil temperatures are controlled by meteorological factors

and soil/water/vegetation properties at depths within the diurnal

damping depth, and also by the ability of underlying soil material to

store and transfer heat. For example, the high heat capacity of ground-

water within the depth of annual soil temperature variation produces

a heat sink in summer and a heat source in winter which reduces annual

temperature variations (Cartwright, 19613). Temperatures are influenced

by aquifer thickness, rate of horizontal and vertical warer movement,

and depth to the water table.

Variations in groundwater depth do not significantly affect the

amplitude of the diurnal temperature curve, but do shift the curve

up or down in absolute magnitude (Huntley, 1913). 	 Figure 1 illustrates

the effect of depth to groundwater on subsurface soil temperatures

measured in the Big Sioux River Basin in southeastern South Dakota.



11 2

A highly significant positive correlation (r n 0.68**) was found

between 50-cm soil temperature and depths to groundwater of three

meters or less.

Myers and Moore (1972) and Moore and Myers (1972) evaluated

aerial t".rmography of the Sioux Basin and found that apparent thermal

anomalies related to shallow groundwater could be detected during

predawn hours in August and early September, the period of the

maximum downward temperature gradient in South Dakota (Fig. 2). In

addition, they found that the thickness of saturated sands and gravels

corresponded closely to an apparent cool anomaly. During the daytime,

they found that thermal patterns produced by differential ET rates,

ground shadings, reflectances, and other factors mashed thermal patterns

produced by subsurface conditions (Fig. 2).

Similar results are vi sible on HOM imagery. The Big Sioux Basin

appears cooler than surrounding are-is on August night thermal imagery,

primarily because of the heat sink created by shallow aquifers within

the Basin (Fig. B). The Big Sioux Basin is not visible on day thermal

or visible imagery because of the masking effect associated with land

use (Figs. 4 and 5).	 Investigations are in progress to evaluate HC"-1

and similar data for evaluating depth to groundwater for the shallow

water tables.

DISCUSSION

An important consideration in the use of HCMM and similar data

in groundwater studies is the interaction of soil moisture and

4
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groundwater. An increase in near -surface soil moisture produces lower

soil temperatures during the day and higher temperatures at night,

whereas, shallow groundwater produces lower soil temperatures throughout

the diurnal cycle. Thus, soil moisture and groundwater affect surface

temperature in the same direction during the day and in opposite

directions at night during the late-summer period of maximum downward

,emperature gradients. Other limitations in the use of HCMM data are

discussed in the previous soil moisture paper.

Observations at appropriate periods of the diurnal and annual

temperature cycle may reveal information on shallow water tables

within the range of the annual damping depth (10 to 15 m in northern

latitudes of South Dakota). These results appear promising for

development of interpretation models to advance the use of HCMM and

similar data.

ACKNOWLEDG14ENTS

Partial support for the investigation was provided by NASA under

contract No. NAS5-24206, USGS under contract No. 14-08-0001-12510, and

the State of South Dakota. Contribution No. SDSU-RSI-J-80-04 from

the Remote Sensing Institute, South Dakota State University.

{
r



r
r

a

114

LITERATURE CITED

Cartwright, K. 1968. Temperature prospecting for shallow glacial
and alluvial aquifers in Illinois. Illinois State Geological
Survey Circular 433, Urbana, Illinois.

Huntley, 0. 1978. On the detection of shallow aquifers using thermal
infrared imagery. Water Resour. Res. 14:1075-1083.

Moore, D.G. and V.I. Myers. 1972. Environmental factors affecting
thermal groundwater mapping. Interim report RSI-72-06 to USGS.
Contract Poo. 14-08-0001-12510, Washington, D.C.

Myers, V.I. and D.G. Moore. 1972. Remote sensing for defining
aquifers in glacial drift. Proc. of 8th International Symp.
of Remote Sensing of Environment, Ann Arbor, Michigan.
pp•715-128.

I



YI
al223
t

d2
W
-3

r

O2N

0
w

9

115

I

ss

J! 1 4

Be* Caere-- O
 ►eetVu

O	 r. e.e ► ..

O	 O O
O

1	 O
O 0 00

A
0

9

a	 O

2	 9
DEPTH TO WATER TASTE (m)

Figure 1. Relationship of 50-cm soil temperatures to depth to
groundwater for row crops and pasture. Temperatures
were measured in the Big Sioux River Basin during
daylight hours on September 5-7, 1978.
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BLACK AND YVHITE PHOTOGRAPH

Figure 2. Day and night thermal imagery of the Sioux Basin north of
Sioux Falls. The night image (b) shows a broad cool pattern
within the flood plain associated with subsurface conditions.
Daytime (a) thermal patterns mask anomalies associated with
subsurface conditions. The flood plain is delineated by the
dotted line; numbers are thickness (w) of saturated sands and
gravels. Approximate scale 1:60,000, dark is cool. (After
Moore and Myers. 1972; Myers and Moore, 1972).
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F igure 3. Photograpm c enlargement of an august 29, 1978, night HCMM
thermal infrared image (scene ID A-A0125-08340) showing the

Big Sioux Basin. Note that th^ Basin appears cooler than
surrounding areas, due primarily to the heat ink produced
by shallow groundwater within the Basin. (Approximate scale
1:1,000,000; dark is cool).
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Figure 4. A September 4, 1978, photographic enlargement of a HCMM

day thermal infrared image (scene ID A-A0131-19420) of the
same area -, ;iown in Figure 3. Note that the Big Sioux River
Basin is not visible because of emittance variation associated
with land use.	 (Approximate scale 1:1,000,000; dark is cool).
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Figure 5. A September 4, 1978, positive photographic enlargement of
a HCMM day visible image of the same area shown in Figures 3

and 4. Note that the Big Sioux River Basin is not visible.
(Approximate scale 1:1,000,000).
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INTRODUCTION

Soil temperatures are controlled not only by meteorological factors and

thermal properties within the depth of diurnal temperature variation, but

also by thermal properties of the underlying material. For example, Cart-

wright (1968a,b, 1970, 1974) found that water tables within the depth of

annual soil temperature variation create a heat sink during the summer which

produces cooler soil temperatures throughout the diurnal temperature cycle.

This heat sink does not affect the amplitude of the diurnal temperature

variation (Huntley, 1978). The magnitude of the temperature anomaly associa-

ted with shallow water tables is dependent upon aquifer thickness, rate of

horizontal and vertical water movement, and water table depth.

Existence of temperature anomalies produced by shallow water tables has

led investigators to evaluate the potential of thermal remote sensing for

locating shallow aquifers. Chase (1969) found that apparent cool anomalies

on thermal infrared imagery corresponded with shallow groundwater. Myers

and Moore (1972) found a correlation between predawn radiometric temperatures

and aquifer thickness. Huntley (1978) reported that surface temperature

anomalies related to water table depth variations could be .separated from

reflectance and thermal inertial variations, but not from variations in

evaporation rates.

We evaluated the utility of using Heat Capacity Mapping Mission ;HCMM)

radiometric temperatures to estimate water table depth. The HCMM, Bunched

in April 1978, carries a two-channel rac'ir,meter (0.55 - 1.1 and 10.5 - 12.5 um)

4
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in a sun-synchronous orbit (orbital altitude is 620 km). Spatial resolu-

tions are 0.5 x 0.5 km for the visible channel and 0.6 x 0.6 km at nadir

for the thermal channel. The NEAT for the thermal channel is 0.4 K at

280 K. Swath width is 7'i6 km. The HCMM collects data at approximately

0230 and 1330 local standard time (LST) with a repeat cycle of 5 or 16

days depending on latitude.

MATERIALS AND METHODS

The study was conducted in the Big Sioux River Basin in Brookings

County in southeastern South Dakota (Figure 1). Surficial deposits in

the drainage basin are predominantly of glacial origin, and consist of

end moraine, ground moraine, and outwas;i deposits (Ellis et al., 1969).

Most groundwater in the basin is obtained from shallow outwash deposits

(within 10 m of the surface) and from sand and gravel lenses in morainal

deposits.

The Big Sioux River is in contact with the outwash deposits, and

groundwater discharge forms the base flow of the river. Most of the

aquifer recharge occurs from runoff from snowmelt and early spring rains.

Groundwater levels in the basin usually rise from late March through May,

and decrease from June through September.

Soils in the basin are generally poorly drained in the flood plain

and well drained in the slightly elevated terraces. Major agricultural

land use categories in the basin are small grains (oats, spring wheat,

barley), row crops (corn, soybeans), hayland and pasture.

Water table elevations in the basin were measured in U.S. Geological

Survey observation wells (Figure 1). Soil water contents (0 to 4-cm

1T
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Figure 1. Landform map of Brookings County, South Dakota showing the flood
plain (bottomland) and terraces of the Big Sioux River Basin. The
stars indicate locations of U.S. Geological Survey groundwater
observation wells.
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layer) at selected locations were determined gravimetrically on soil

samples collected on days of HCMM overpass.

Percent cover at several locations representative of the major land

use categories were determined using 35 mm slides of the canopies (photo-

graphed from a vertical position a..pproximately 1 m above the canopies)

projected on a random dot grid. Wien canopies were too tall for the

photographic procedure, percent cover was estimated from visual inspec-

tion. These data were used to prepare average percent cover curves for

each category.

Radiometric temperatures from five HCMM scenes (Table 1) were ex-

tracted for each pixel encompassing an observation well by overlaying

computer gray maps of HCMM data with a Brookings County map containing

the well locations. Radiometric temperatures were corrected for atmos-

pheric effects by comparing HCMM and ground measurements of Missouri

River reservoir temperatures in central and southeastern South Dakota.

Radiometric temperatures were not corrected for emissivity variations.

Table 1. HLMM scenes analyzed in water table study.

Date Time Scene	 I.D.

June 5, 1978 1330 LST AA0040-19500

July 13,	 1978 1330 LST AA0070-19570

July 13,	 1978 0230 LST AA0078-09020

August 8, 1978 1330 LST AA0104-19400

September 4, 1978 1330 LST AA0131-19420

s
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Percentage of each land use category for each pixel containing an

observation well was determined using photointerpretation of a May 13,

1978, Landsat color composite (scene I.D. E-21207-16803) superimposed on

HCMM computer gray maps via a Bausch & Lomb Zoom Transfer Scope. Percen-

tage of each land use within a pixel, and the average percent cover curves

for each land use category were used to calculate a percent cover for each

pixel for every date of HCMM data analyzed.

RESULTS AND DISCUSSION

In an earlier paper we reported a highly significant relationship

X = 0.68**) between 50-cm soil temperatures and water table depths of

3 m or less in the flood plain of the Big Sioux River Basin (Heilman and

Moore, 1980). Subsequent analysis of additional temperature data indi-

cated that the relationship could be extended to water tables as deep as

5 m. Water table depths in terraces and uplands were greater than 9 m

and did not correlate with 50-cm soil temperatures. Thus depths

greater than 5 m were excluded in the analyses of HCMM data.

Myers and Moore (1972) found that on daytime thermal imagery, thermal

anomalies related to shallow water tables were overshadowed by vegetation

differences (primarily differential evapotranspiration rates and shading).

Similar results were found with the HCMM data (Table c). HCMM tempera-

tures at 1330 LST did not correlate with water table depth, primarily

because the temperatures measured were mainly those of vegetation, or a

composite of vegetation and soil.

s
t
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Table 2. Coefficients of determination (r 2 ) between HCMM radiometric
temperatures and water table depth.

Date	 Time	 r2

June 5 1330 LST 0.02

July 13 1330 LET 0.02

July 13 0230 LST 0.03

August 8 1330 LST 0.06

September 4 1330 LST 0.02

Myers and Moore (1972) also reported that effects of vegetation

were minimized at night and thus were able to obtain significant rela-

tionships between radiometric temperature and aquifer thickness using

predawn thermography. We did not find any significant correlation be-

tween HCMM temperatures and water table depth for the July 13 0230 LST

data (Table 2), possibly because of the small variation in radiometric

temperature (less than 2 C) within the Sioux River Basin.

Heilman and Moore (1980) found that surface soil temperatures be-

heath a crop canopy could be estimated from remote measurements of com-

posite temperature using the equation

Ts = 0.79 a (°0.80 PC) + 20.35

where T s (C) is surface soil temperature, T c (C) is a composite radiometric

temperature consisting of radiance contributions from the soil and the

crop, and PC is present cover expressed as a fraction. Equation (1) was

developed for measurements at 1330 LST.

We lased equation (1) to estimate soil surface temperatures from HCMM

temperatures (corrected for atmospheric effects) and pixel percent cover,
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and found linear relationships between the predicted soil temperatures

and water table depth (Figs. 2-5). Highest correlations occurred for the

August 8 and September 4 data. Summertime soil temperature gradients in

South Dakota are at a maximum in August and early September.

Although the correlations improved in August and September, the

slopes and intercepts of the four relationships in Figs. 2-5 were not

significantly different at the 0.01 level. Thus, data for the four dates

were pooled, and the equation

Ts - 26.90 + 1.30 D	 (2)

with a r2 of 0.45 was obtained where D(m) is water table depth (Fig. 6).

Predicted soil temperatures were correlated not only with water

table en-pth, but also with soil moisture (Fig. 7). Multiple regression

analysis of the September 4 data yielded the equation

Ts - 26.60 - 0.05 SWC + 2.50 D 	 (3)

with a r2 of 0.87 where SWC(%) is the volumetric soil water content in

the 0 to 4-cm layer. Increasing soil water content reduces the ampli-

tude of the diurnal surface temperature variation through thermal inertia

and evaporation effects which cannot be 'separated from heat sink effects

using a single daytime meajurement (Huntley, 1978).

Results of this investigation demonstrate a potential for using

satellite thermography to detect regions of shadow water tables and

estimate water table depth if appropriate considerations are given to

the effect of vegetation on the surface thermal regime. However, tech-

niques for separating water table influences from those of soil moisture

must be developed before satellite thermography can be a useful tool

for groundwater studies.
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Figure 2. Relationship between predicted soil surface temperature and :eater
table depth on June 5, 1978.
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Figure 3. Relationship between predicted soil surface temperature and water
table depth on July 13, 1978.
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USE OF HEAT CAPACITY MAPPING MISSION (HCMM)

DATA IN SOIL GEOGRAPHY STUDIES

INTRODUCTION

Producing enough food is an increasingly serious problem in the

world. Production of food, directly or indirectly depends partly on

soil. Although inventory of soil resources is well along in some coun-

tries it lags in others.

The Heat Capacity Mapping Mission (HCMM) satellite is a new tool

that may be used in reconnaissance soil inventories. HCMM was launched

in April 1978, and collects data in the visible and near infrared

(.5-1.1 um) and thermal infrared (10.5-12.5 um) regions on the spectrum

at a spatial resolution of 0.5 x 0.5 km. At mid4 atitudes the satellite

collects data at approximately 0230 and 1330 local standard time with a

repeat coverage of five days. The two channels on the HCMM allow both

reflectance and thermal properties to be used in soil studies. The ob-

jective of this study was to compare land characteristics such as eleva-

tion, soil texture, and slope aspect of known areas on HCMM imagery.

BRIEF LITERATURE REVIEW

Lat.tman (1963) found valley side springs showed up more clearly on

night time aerial TIR images than on conventional aerial photography.

This was thought to be due to eifferences in the night time temperatures

of the ground and the warmer ground water coming from the springs.

Cantrell (1964) working with surface water found that as stream

water begins cooling the thermal energy given off seems to warm the

133
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vegetation and air thus forming a heat sink. The heat sink superimposes

the drainage net on the imagery.

Sabins (1969) used IR imagery for structural mapping in Southern

California. He found that flooded fields in the Imperial Valley appeared

warm on the imagery. Damp ground gave a cold signature.

Cannon (1973) found that predawn IR Imagery provided a detailed

drainage map and was a good way to inventory surface water distribution.

Offield (1975) mapped structure of the front range and adjacent

plains of Colorado on IR images derived from a scanner on a RB 57 air-

craft.

Schnieder et al (1979) used enhanced night time thermal imagery and

diyltal data from a NOAA polar orbiting satellite to map drainage patterns

and landforms in North and South Dakota. The Missouri and FOairie Coteaus,

glacial moraines and partial drainage boundaries of major rivers were

discerned. Analysis of satellite digital thermal data for western tribu-

taries of the Missouri River showed north-facing slopes to be warmer than

south-facing slopes by an average of 1.50C.

THE STUDY AREA

HCMM imagery of South Dakota was examined for a number of dates.

Visible and thermal IR images (day and night) were used. Figure 1

shows a night IR mosaic from August for an area in east-central South

Dakota. The same scene appears in both panels. The annotation in the

lower panel indicates elevat i rn, soil texture and slope aspect differ-

0,	ences. The upper right area labeled "warm-lower elev." is the east facing

slope of the Prairie Coteau and the lower lying Minnesota-Red River Valley.

a
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Figure 1. Predawn thermal infrared HCMM image (dark is cool) for an area in
east-central South Dakota.
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The Prairie Coteau lying west of this separates into two areas - the

eastern cooler area of finer textured silty, clay loam soils (Kranzburg

series) and the warmer silt loam soils (Poinsett series). These two

areas have about the same elevation (1700 ft.) but the temperature at the

time the image was recorded was 490  for the cooler Kranzburg series and

520F for the warmer Poinsett series. West of the Prairie Coteau the

elevation is about 1280 ft. and the temperature is 49
0
F. This cool

area has more dense clay loam soil having a high component of shale and

has shale bedrock nearer the surface than the rest of the James Valley

to the west. Temperature in the warmer part of the James Valley lowland

(elevation about 1290') was about 56 
O
F. In the lower left of the scene

the warmer northeast and east facing coteau escarpment is seen. West

of the escarpment is the higher lying and cooler Missouri coteau.

Figure 2 shows the portion of the mosaic west of Figure 1. The

warmer Missouri escarpment is clearly delineated as are the cooler

Missouri coteau and the somewhat warmer James River Lowland.

Figure 3 coverage lies west of the area shown on Figure 2 and en-

compasses the Black Hills on the extreme west and the plains east of the

Black Hills. The Black Hills appear cooler on the image while the north-

facing slopes of the east-flowing streams and rivers are warmer. This

verifies the results found by Schneider et al that the north-facing

slopes are warmer than crest positions or south facing slopes.

DISCUSSION

The 3 figures show landscapes from night IR taken in August. The

results show that elevated areas, finer textured soils, and crest or

Wr
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Figure 2. Enlarged area from Figure 1.
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south-facing slopes are cooler than lower lying areas, coarser textured

soils, and north-facing slopes. Scenes examined for June 21, 1978, and May 14,

1978, show the same relationships.

Perhaps the most significant relationship for soil geography is the

warmer temperatures that exist on north-facing slopes. Logically the

opposite situation would be expected since these slopes escape the direct

rays of the sun. It appears that the lack of direct sunlight results in

cooler temperatures during the day which in turn means less evapotrans-

poration. Thus, more moisture is available which holds heat better

than the drier crest and south-facing slopes.

No difference in soil mapping units in soil survey operations is

recognized on north-facing slopes from other aspect sites. One reason

is that prior to HCMM there was no means to measure this heat difference.

Yet the heat difference must be a significant factor in.vegetative growth.

Since most of western South Dakota is rangeland the difference in grass

production and stocking rate probably is the principal kind of land use

affected.

Elevation differences of as much as 1000 feet occur between the

northern part of the Prairie Coteau and the Red River-Minnesota River

Lowland. Elevation differences are somewhat lower than this (about

600-700 feet) between the northern part of the Prairie Coteau and the

James River Lowland. Separate soil series have been mapped on the

northern Prairie Coteau and the lowlands on either side due to soil

parent material differences (texture and mineralogy differences).

Although it was realized that temperature differences also occur

tr



among these areas there has been no method for showing this spatially

until the introduction of thermal imagery.

Soil texture differences exist between the cooler eastern side

of the Prairie Coteau and the warmer western side. The eastern area is

covered by older glacial materials and has a mature landscape where

streams drain off excess water. These are the Kranzburg soils. The

western area is characterized by younger glacial deposits in an irregu-

lar immature landscape. Here precipitation tends to remain in the

area since few streams exist and water drains to a nearby marsh or lake.

This is the Poinsett soil area. The HCMM image clearly shows the high

concentration of surface water present in the western Prairie Coteau

area. In fact the warmer temperatures of this area of coarser textured

soils may be due in part to the significant percentage of surface water

holding heat through the night over the entire area.
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ABSTRACT

Experimental and theoretical investigations were carried out relating to the
detection and mapping of near-surface groundwater by the use of remote-sensed
thermal emittance data (thermography). Soil temperature profiles, thermal
emittance, soil moisture, depth to groundwater table, and other pertinent data
were collected for test plots under fallow and crop cover conditions.

Data were collected simultaneously for two plots having similar surface
conditions except that one of the plots was irrigated to create a difference in
soil moisture profile. Calculations of surface temperature differences as a
function of time for these soil moisture conditions were made utilizing a finite-
difference model. The functional Corm of the theoretical temperature
difference with time was shown to be very close to the experimental apparent
temperature difference for both crop cover and bare soil conditions. This
result strongly suggests that a technique can be developed by which the effects
of near-surface soil moisture can be separated from the total thermal emittance
data by subtracting the data component having this functional form from total
thermal emittance. This component could then be used to calculate soil moisture
differences for a group of chosen sites. If a soil moisture profile is measured
at one site, the soil moisture profile could be calculated for other sites.

A series of model calculations were carried out to simulate the effect of a
near-surface water table at one site and a similar site without such a water
table. These calculations show the effect of a water table is to give rise to
a temperature difference at th3 surface which is nearly constant through time over
a currerit cycle. The presence of a water table thus may be detected from a
component of thermal emittance difference which remains constant during the
diurnal cycle when compared to a reference site.

The model was tested utilizing widely spaced sites resolved by HCMM.
theoretical surface temperature differences calculated using the model agreed
well with apparent temperature differences measured by HCMM.
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INTRODUCTION

Re:;ent launchings of satellites with thermal infrared imaging sensors

together with those planned in the near future hold great promise for appli-

cation of thermal emittance data as a tool for resource management and development.

These earth resources satellites allow time-sequential monitoring of land surface

emittance over large areas of the earth at relatively low cost. They allow data

to be readily available on a routine basis for use by the resource specialist

in making management decisions.

i	 The potential use of thermography for monitoring groundwater uses remote

sensing measurements of thermal emittance to estimate surface temperature. Any

factor which causes a variation in surface temperature may ;hus be measured by

thermography. Near-surface groundwater is such a factor. Its presence causes

large changes in the specific heat and thermal conductivity of the soil. Phase

transformations of water during evaporation .)r freezing also have large thermal

effects on the energy budget of land surface and thus affects the land surface

temperature.

Complications with this method arise because soil temperature and surface

emi ance depend on a multitude of physical factors. Plant growth, aspect of

slope, water table, wind velocity and other variables alter soil temperatures

and thermal emittance in addition to variations associated with differing

water table depths. Thus isolation of emittance variations caused by the

presence of soil moisture alone is very difficult. Therefore, models

describing emittance variations associated with varioiis physical features must
i	

be developed to isolate their effects and to understand their interdependence.

This may allow one to compensate for their effect during data analysis or to

schedule the collection of data when their effect is small.
5

Another complication arises when the thermal infrared (TIR) image is obtained

from satellite-borne sensors. The image includes components of radiation
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emitted and reflected by the surface modified by absorption and ero ssion from

the intervening atmosphere. To determine exact values of surface temperature,

corrections in the measured signal must be made which depend very heavily on

atmospheric conditions and thus change with time. Corrections must also be made

for surface emissivity and reflection which also change with surface conditions.

Thus considerable difficulty is involved in converting a satellite image into

a surface temperature map. Temperature differences between two points on the

earth may be mush easier to obtain with reasonable accuracy from TIR satellite

data than to obtain exact teraperatures. For example, absorption by the

atmosphere will decrease the apparent temperature of two points but the

apparent temperature difference between the t.,Yn points will remain near ?y

constant if the absorption is similar over both points, Also  emissivity and

reflectivity differences can also be minimized by making the comparisons between

points which have the same plant cover such as two wheat fields.

The emphasis of the effort was on relating these surface temperature

differences to the variation in groundwater presence. Particular attention was

placed on the use of the variations in temperature differences during the

diurnal cycle to separate effects of groundwater tables in the top 50 c„^ of

soil from that at larger depths. A technique of this type would be particularly

applicable to satellites such as HCMM which allow more than one apparent

tF__perature measurement during a single diurnal cycle.

The technique envisioned for mapping groundwater over large areas using data

collected by a satellite such as HCMM would be as follows;

1. A reference site would be selected where groundwater would be monitored

(water table and near-surface soil moisture) on a continuing basis.

2. The proposed model would be used to calculate the difference in near-

surface soil moisture and water table depths between this site and a
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second from the difference in apparent temperatures acquired by remote

sensors during a diurnal cycle.

3.	 This procedure can then be repeated using any group of sites and thus

near-surface soil moisture and water table maps may be constructed.

The general objective of this phase of the project was to d.:velop and test

a model which could be used as described in step 2 of the above procedure.
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BACKGROUND LITERATURE

The study was to develop a model useful for interpreting remote sensing data

for mapping of near-surface soil moisture and measurement of water table depth.

TIR images have been used to locate springs and wells (M ,,ers and Moore, 1972)

by the use of predawn images. This together with a former study by Myers and

Heilman (1969) showed that predawn images exhibited a higher surface temperature

for bare soil with higher moisture content in the top 50 cm. Myers and Moore

(1972) evaluated the use o f airborne thermography for mapping shallow aquifers

using emittance patterns of predawn thermography. They obtained statistically

si,an'Jicant results for predicting the thickness of the saturated sands and

gravels for an August (maximum annual downward temperature gradient) predawn

flight over shallow aquifers in eastern South Dakota. In a further study,

Moore and Myers (1972) illustrated the thermal response to climatic variables

for diurnal and seasonal thermography. Land use. soi'! moisture, and other sources

of thermal differences were easily observed for daytime thermography with their

effects diminishing for predawn thermography. They concluded predawn August

data were the most useful for identifying shallow aquifers in South Dakota.

Several investigators have studici^ the relationship between thermal emittance

measured from aircraft altitudes and soil temperatures. Schmugge (1978) and

Reginato (1976) have shown agreement between such TIR temperatures and those

measured by thermocouples in contact with the soils. A study by Tunheim (1977)

found a positive correlation between aircraft TIR imagery and soil temperature

fields caused by near-surface water tables associated with saline seeps. Results

of this project showed the need for modifying the existing model to include

the effects of near-surface soil moisture.

The first evaluation of satellite thermography as an indicator of soil

moisture was performed by Moore, et al (1975). Analysis of SKYLAB data showed

'a
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a positive correlation between soil moisture and thermal emittance. It was

concluded that thermal data from satellite altitudes had good potential for use

in monitoring soil moisture and for irrigation scheduling.

Quantitative estimates of soil moisture using thermal emittance data,

however, require a model relating the effects of subsurface soil moisture on

the surface temperature. No such model has yet been developed, although

several similar types of models exist. A model proposed by Kahle, et al (1975)

relates the change in land surface temperature during the diurnal cycle to the

thermal inertia of subsurface geological materials. This model, however, does

not allow for effects of groundwater, soil moisture , evapotranspiration, or crop

cover.

Two other models have been developed by Meyer (1972) for relating surface

thermal emittance to the presence of shallow aquifers. These models use the

assumption that a shallow aquifer would cause the soil temperature at a 50-cm depth

to vary 1°C to 3°C frnm that of a non-aquifer region. The ability of this

subsurface thermal anomaly to produce a corresponding surface thermal anomaly we-

investigated by use of these models. The first model simulated the development

of a surface thermal anomaly during a single night and the second simulated the

behavior of the thermal anomaly during several successive days.

Each model considered heat transfer in two identical soil layers of 50-cm

thickness. Since daily variations in the temperature are small at 50 cm

(Cartwright, 1968; Carson, 1961) the lower boundary temperature of each soil

layer was held constant. The subsurface thermal anomaly was presented by

letting these fixed temperatures differ by an amount AT.

The first ,.,odel assumed a constant heat flux due to radiation. Using a

finite integral transform, the heat transfer problem was analytically solved.

Results predicted that a surface temperature difference ranging from 20% to 40%

F	 of that assumed at a 50-cm depth would develop in 9 hours. The rate of development

t'
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depended only on the thermal diffusivity of the 50-cm soil profile. Values

of diffusivity for the calculations were chosen according to Sutton (1953).

A result of this calculation was the prediction that the development of a

surface thermal anomaly does not depend on the magnitude of the heat flux

radiated from the surface.

The second model assumed a surface heat flux approximated by a rectified

sine wave and a terrestrial radiation term as suggested by Smith (1966). No

analytic solution was possible in this case and thus a finite-difference

technique was used in a numerical solution by computer. Calculated temperature

profiles showed good qualitative agreement with data taken by Carson (1961).

One significant result was that a maximum value for the thermal anomaly

would occur at 0700 hours. This result has recently received support

experimentally for the case of ground water associated with saline seeps

Aaron, et al (1976).

The finite-difference model by Meyer is the one which was modified and

applied to this project.
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THEORETICAL MODEL

The finite difference heat flow model developed by Meyer (1972) uses

homogeneous soil profiles, each 50 cm in thickness. The 50-cm depth was chosen

since daily variations in soil temperature are small at this depth (Cartwright,

1968; Carson, 1961). The 50-cm soil profile is divided into 50 one-cm layers with

50 equally spaced reference nodes as shown in Figure 1. The m reference points are

usually referred to as nodal points. Notice that nodal point 1 coincides with the

upper surface of the slab at x = 0. The point m coincides with the other boundary

at x = 50 cm. The heat flux into the surface x = 0 has been denoted q s while the

heat flux out of the lower surface at x = L is denoted as qL.

tr	 A	 y

qy

d	 1	 I

•3

-----------

° nn -- — — 4X —
on+1 _—

..._ --•772 —

m

qL

Figure 1. Assignment of Nodal Points and Heat Flux Terms for the Finite Difference
Model.
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A rectified sine wave is used to approximate heat flux q  (Smith, 1969).

Since it is difficult to measure, it was treated as a parameter composed of a

sinusoidal solar term and a blackbody radiation term. Its functional form was

taken as:

qs =M sin r-R

where M, the amplitude of the solar term, is the maximum solar radiation during

the daylight hours. The variable t is the time of day measured from sunrise and

L is the number of hours of daylight. The second term R is the terrestrial

radiation term as suggested by Smith (1969). The radiation term results in a

negative surface heat flux during the night as has been observed experimentally

(Lettau and Davidson, 1957). The terrestrial radiation equation used was,

R = J[T4 - (T') 4 ].	 (2)

where R is the net outgoing radiation, v is the Stefan-Boltzmann constant, T

is the surface temperature in degrees Kelvin, and T' is the effective atmospheric

temperature in degrees Kelvin (Fleagle, 1950).

Consider a volume of material surrounding node n (n = 2, 3,"', m-1) as

shown in Figure 2. The volume of the material surrounding node n is Aox where A

is a unit surface area and ox is the distance between nodal points. The amount

of heat transferred from node n-1 to node n is denoted by 
qn-1,n 

and the amount

of heat transferred from node n to node n+l is denoted by q n,n + 1. The heat

stored within, the volume is giver by Esn'

A

qn-1,n

n	 Ax
sn

qn, n+l

Figure 2. Energy Balance for Node n.
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For one dimensional heat transfer, the law of conservation of energy

applied to node n results in the equation

qn-1 ,n 
s q

n,n+l + E sn	 (3)

The rate at which heat is transferred between nodal points is written in finite

difference form as

Tn-Tn—1
qn-1,n 

s	
AX (4)

kA Tn+1 - T 
	

(5)qn,n+l	 AX

where Tn-1 is the temperature of node n-1, T  is the temperature of node n,

Tn+l , is the temperature of node n+l, and k is the thermal conductivity of the

material between the nodal points. If the conductivity of the volume element

surrounding each nodal point is different, the conductivity between nodal points

may be written as the average of the volume elements. Thus for equation (5)

k m kn-1 + kn	
(6)--	 —_

2

Equation (4) may then be written as

k
n-1 + k 
	 T  - Tn-1

qn-1,n	 -^	 2	 ) A
	

AX	 (7)

Similarly, equation (5) becomes

kn + kn+1	 Tn+1 Tn
qn,n+l	 -	

_ 

2
-	 ) A	

^X	 (8)

The energy storage term expresses the rate at which the temperature of the

volume changes. This term may be written in finite difference form as

T	
T

Esn	
(Pc)nALX	

nat
=	 n	 (9)

where at is the time increment, T  is the temperature of node n at time t and

Tn ' is the temperature of node n at time t+ot.

Substituting equations (7), (8), and (9) into equation (3) and rearranging

n

terms yields
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T  -Tn 1
At	 2(pc)n(Bx)2 

I (kn-1 + kn )Tn-1 - (kn - 1 + 2 kn + kn+1) Tn

(10)

+ (kn + kn+1 ) Tn+1 I .

Solving for the temperature at time t+©t results in the equation

	

T
	

(k n-1+ kn)At	 _ (kn-1 + 
2kn + kn

+1M t

	

n	 2(Pc) (L1x) 2	Tn-1 + I 1
	

J T

(kn + kn+1)At	
(11)

+

2(pc)n(4x)2
	

T
 n+1

Now consider the transfer of heat at the surface x = 0. Figure 3 shows the

volume element for node 1.

^^- -- A	 ,y

^	 ^	 I
q 

IES1	
Ax

q1,2

Figure 3. Energy Balance for Node 1.

The energy balance can be written as

	

qS = q1,2 + Es1,
	

(12)

The rare of heat transfer from node 1 to node 2 is

	

kl +lc2	T2 -Ti

(13)
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Since nc;de 1 is at the surface, the volume of material surrounding node 1 is

Ax
A. The energy storage term is then

T " - T	
(14)

Substituting equations (12) and (13) into equation (14) and rearranging yields

T 1 - T1 - 2qs
	 + k  + k2

At	 4(pc)lAx	 (pc)l(Ax)2 [12 - 
Tl).	 (15)

Solving for the new demperature T 1 ' aives

2g 8Lt	 (kl+k2)'^t	 (k.l+k2)L't

T 1 	 A(pc)I x + 	 (pc)l(AX,	 T1 + ( p c) l (Gy
 )2 	 (16)

Finally, consider the node at the lower boundary x = L. Figure 4 shows the volume

element for node m.

	

A	 —;1

i	 l

C9m-- 1 'n — --^^ '" G X

^. i sm	 m	 ^1 _ -

^i

q L	 I

Figure 4. Energy Balance for Node m.

The energy balance equation for node m iF

	

qm-1,m - q L + ESm.	 (17)

The rate of heat transfer from node m-1 to node m is

	

_ _ ( km-1	 m) A rm - Tm-1	 (18)

qm-1,m	 2	 A x.

F

G
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Again since the volume element surrounding node m is only Ax— A, the energy

storage term can be written as

0x Tm - Tm
E8m ' (Pc)M 

2	 At	 (19)

Substituting equations (17) and (18) into equation (19) and rearranging results

in the equation

TM'	
TM _ km-1

 + km	 2g1.

At	 (Pc)m(Ax)2 Tm-1	
Tm	

^^(oc)mC,x	 (20)

Solving for the new temperature T m ' gives

(km-1 + km)At Tm-1	 (k M-1 + kMMtTm 
s (POM(Ax)	 + (1 - (PC)m(AX) -2— 1 rm

2gLAt	 (21)

(PC)mALx

The finite difference equations have now been derived. These are equations

(11), (16), and (21). To solve a heat transfer problem, the initial temperature

of each of the m nodal points must be specified. This is identical to the

specification of an initial condition for an analytically solved problem. To

calculate the new temperature at time At, the heat flux terms q  and q  must be

specified. Equations (16) and (21) can be used to determine the new boundary

temperatures. The new temperature of each of the interior nodal points can be

determined by solving equations (11) for each node. The resultant temperatures

obtained for the m nodal points can be used to calculate the temperature at time

2ot. The interation process is continued to obtain the temperature at any desired

future time.

Choice of values for ax and At depends on the thermal properties of the

soil considered and the thickness of the soil layer. For the 50-cm layer

considered and the thermal properties of soil used, the values At = 60 seconds

and ox = 1 cm were found to be sufficient.
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The model was modified during this study by considering two soil profiles

having different soil moistures but which were identical in other respects. When

the percent soil moisture (evw ) and percent soil solids (evx ) are known, the

percent air (aeration porosity Ea) can be found. With these values, the heat

capacity and conductivity can be calculated in the following manner.

C - evwcw + dvs Cs + Ea Ca ,	 (22)

where Cw , Cs and Ca are the heat capacities of water, soil and air,

respectively.

The values used for heat capacities are:

Cw = 1.00 cal/cm 3/°C

Cs - 0.48 cal/cm3/°C

Ca = 0.00030 cal/cm3/°C

Since C a is a sma " part of the heat capacity, it is neglected in model

calculations. The original model was only applicable to a homogeneous soil layer

of 50-cm, thus it was modified so each 1-cm soil layer could have a different

moisture value. If the moisture of the soil profile varies with depth, variations

in heat capacities and thermal conductivities occur. To adapt to these non-

homogeneous conditions the model was modified to accept experimental soil moisture

values at depths of 1, 8, 25, and 42 cm. Values are then calculated by the model

by interpolation and extrapolation over the rest of the 50-cm profile. Thermal

conductivity for each soil volume is calculated by the method developed by

DeVries (1963). This method generates an apparent thermal conductivity which

approximates heat transfer due to mass movement of water, phase changes of water,

convection, and conduction.

This equation is given by:

FK i xi pia
a = EK 

xi

(23)

i
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where A is the apparent thermal conductivity of a granular material; A i is the

thermal conductivity of the soil's individual components; x i is the volume

fraction occupied by each soil fraction; and K i is the ratio of the average

temperature gradient in the granules across the medium. The value of K can be

calculated from the following question:

K i	 1/3t i [1 + (^i- "gal
0

The g  value is found using an unsaturated soil using water as a continuous medium:

ga = 0.333 - Ea (0.333-0.035)	 (25)

where E is the soil porosity.

The conductivities of tke various soil constituents, a, are given these

val ues :

Xs - conductivity of soil = 0.00525 cal/cm sec °C

aw = conductivity of water = 0.00142 cal/cm sec °C

a s = conductivity of air	 = 0.0000615 + 0.00196 x  cal/cm sec °C

The finite-difference model (Figure 5) has the following inputs: (1) soil

heat flux, (2) soil moisture profile, (3) dry soil conductivity, (4) physical

properties of the soil which include (a) bulk density, p, (b) amount of soil by

volume, (5) initial temperature profile and (6) effective air temperature.

The effect of water table is entered into the model as a difference in soil

temperature at the 50-cm depth. For example, a water table present at one site

causes its soil temperature at a 50-cm depth to be cooler by a constant amount

in summer than an identical site with no near-surface water.

Outputs from the model calculations are soil temperature profiles for the two

sites and a surface temperature difference as a function of time.

(24)
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Figure 5. Schematic representation of the finite-difference model in its
present format.
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DATA COLLECTION

Data used in this phase of the project were of two types. The first type

consisted of intensive data collected on small soil plots over several diurnal

cycles. The second was a series of data collections on a group of sites which

were separated so as to allow resolution by HCMM sensors. Only the first type

df data collection is described here.

Sites chosen for this study were located at the South Dakota State University

Agricultural Engineering Farm, which is near Brookings, South Dakota. Since soils

vary considerably in this area, soil texture by hydrometer method, bulk density

and porosity were analyzed throughout the profile depth of 50 cm. Results are

shown in Table 1 and in Figures 6, 7, and 8. The percent of volume occupied by

soil particles for a dry soil condition is shown in Figure 6. Since the percent

soil pa rticles increases with depth, the porosity decreases with depth. Figure 7

shows the v riation in soil components with depth. The bulk density increases tilth

depth as shown in Figure 8.

Table 1. Physical Properties of Soil Used.

Sample Depth
Sand

Particle Size
Silt Clay

Porosity (Ea)
Bulk

aensity

(cm) M M M (g/cm3)

0.0	 -	 7.6 27.7 61.5 10.9 .49 1.36

15.2	 - 22.9 25.0 65.5 9.5 .4. 1.40

30.5	 - 38.1 18.6 74.3 7.1 .41 1.47

45.7	 - 53.3 15.6 78.4 6.0 .39 1.61

Each data collection site was divided into two plots, each approximately 10m2.

To prevent water movement from one plot to the other a trench was excavated to a

depth of 100 cm and a plastic barrier buried. This barrier allowed one plot to

remain dry while the other was irrigated to whatever soil moisture desired.
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Figure 6. Percent soil solid by volume of soil profile as a function of depth.
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To measure soil temperatures,thermocouples were implanted in each plot at

depths of 1, 5, 10, 25, 50, and 100 cm. Thermal emittance (apparent surface

temperature) was measured utilizing a Barnes PRT-5 mounted on an appartus as shown

in Figure 9 which scanned each plot every 15 minutes r'.--ing data collection. Soil

and air temperatures together with relative humidity were :ollected every hour

while solar radiation and net radiation data were collected every fifteen minutes.

Soil moisture data ware acquired by the gravimetric method with collection of

soil samples an hour before solar noon (Jackson et al., 1976) to best represent the

average moisture content. The gravimetric method of soil moisture gives a value of

soil moisture by weight, em,

8 = mass water
	

(26)
m mass ry so iT

In the model soil moisture by volume is required. Thus e m is multiplied by bulk

density to give the model input or,

e v = pem	(27)

where a is volumetric soil moisture.
V

Data were collected for several diurnal cycles for both barley and rye crop

covers together with bare soil conditions after these canopies were removed.

Figure 10 shows the barley crop canopy for which detailed data are used in this

report. Data for the rye crop were qualitatively similar and will not be shown

in detail.
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Barnes PRT-5 across the experimental plots.
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Figure 10. Barley -rop canopy present during the data collection
on August 5 and 6, 1978.
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RESULTS

Data were collected for bare surface conditions for a 52-hour period starting

at 1000 hours, August 7, 1978. Two adjacent plots were prepared as previously

described so that one plot would have a higher soil moisture profile than the other.

Gravimetric soil moisture measurements for these plots were made as a function of

depth. A smoothing of the curve of field measurements was conducted using a cubic

spline as described by Kimball (1976;.

Apparent surface temperatures of these plots are shown in Figures 11 and 12

for the 52-hour period. The measurements were made utilizing the Barnes-PRT 5

mounted on the scanning apparatus shown in Figure 9. The points shown are the field

values while the continuous curve resulted from smoothing data by use of a cubic

spline. Note the amplitude of the temperature variation during the diurnal cycle is

less for the higher moisture plot. This is consistent with the results reported

previously by Idso et al (1975).

The apparent surface temperature difference between the two plots is shown as

a function of time in Figure 13. Values for this plot are temperature differences

calculated from the values of the cubic spline curves of Figures 11 and 12. A

surprising feature is its close similarity in functional form to the individual

apparent temperature curves from which it was derived. This similarity is

particularly significant since the diurnal amplitude of the surface temperature

has previously been related to near-surface soil moisture (Idso et. al. 1975:

Idso and Ehler, 1976; Schmugge et. al., 1978). Since the temperature difference

curve shows the same functional form as curves of surface temperatures, the

amplitude of the temperature difference should also be related to soil moisture

differences. This type of technique for remotely measuring soil moistures would

have the advantage of bypassing the calibration problems inherent in thermal

emittance measurements.

_.
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thereafter.
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Results of theoretical model calculations for August 8, 1978, are shown in

Figure 14. Inputs to the calculation are the bulk densities of the soil, the

measured net radiation, and percent soil moisture by volume (See Appendix A).

Comparing Figure 14 with the experimental plot of Figure 13 shows the functional

dependence of the theoretical curve to agree very well with the experimental

curve, particularly during the daylight hours. The magnitude of the calculated

daylight temperature difference is smaller with a maximum calculated temperature

difference of about 7° C compared to a measured difference of about 10° C. A

possible explanation of this difference is the additional cooling of the

irrigated plot due to water evaporation from the surface. Increasing the amplitude

for net radiation allows the model to simulate the daytime surface temperature

differences very accurately. However, the calculated soil temperature profiles

become much warmer than those measured.

Experimental soil temperatures are compared in Figures 15-18 with theoretical

temperature profiles calculated by the model using measured inputs. The functional

form of the calculated temperature profiles are very similar to the measured

profiles. The theoretical values, however, tend to be warmer during the day and

cooler during the night. This result also implies that evaporation from the surface

cannot be ignored in model calculations and must be accounted for with a parameter

which effectively reduces the net radiation term to obtain the soil heat flux.

Data were collected for the barley canopy shown in Figure 10 for these same

two plots prior to the bare soil data previously discussed. These plots were

prepared in the same general manner as the bare plots and the same types of data

were collected. Figures 19 and 20 show the apparent surface temperatures of the

two plots for a 32-hour period beginning at 1100 hours, August 5, 1978. Figure 21

shows the apparent surface temperature difference obtained by subcontracting cor-

responding apparent temperatures from the cubic spline graphs of Figures 19 and 20.
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1978, and continues for 32 hours thereafter.
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Comparison of Figures 19 and 20 with Figures 11 and 12 shows a drastic effect

of the plant canopy on apparent surface temperatures. Both the functional

dependence and the actual apparent temperature values are quite different for the

barley canopy. However, the functional dependence for the apparent temperature

differences as shown in Figures 13 and 21 are considerably more alike in functional

form than the apparent surface temperatures. During the daylight hours the barley

plots exhibit approximately one half the temperature difference of the bare plots

but the only difference in functional form is a slightly slower rate of decrease

in temperature difference late in the afternoon. The crop canopy, however,

essentially eliminates the observed temperature difference for the nighttime hours.

These results suggest that apparent temperature differences during the middle of

the day may be the most likely indicator of soil moisture differences in the case

of a thick plant canopy.

A theoretical calculation of the surface temperature difference for the barley

plots is shown in Figure 22 for August 5, 1978. Again the calculated temperature

difference is smaller than the naeasured apparent temperature difference; but the

ratio of the two is approximately the same as -for the wet/dry bare soil discussed

previously. Since no apparent temperature difference is observed for the barley

canopy during the night, the model obviously is not valid in its present form for

that time period.

Several calculations were carried out to determine the dependence of the

surface temperature difference on surface soil heat flux. In these calculations

two plots were considered with soil properties ident°cal to the experimental plots

used for this study. :oil moisture by volume was assumed to be 10% in one plot and

20% in the second. Soil heat flux values were chosen to span a range which would

include most experimental situations for a clear day. The maximum temperature

difference predicted during the day was plotted as a function of the maximum soil

heat flux. Results shown in Figure 23 display the resulting relationship. If
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further theoretical and experimental results show this relationship to be valid,

differences in daily solar radiation which exist during the satellite overpass

could be easily accounted for during analysis of data.

Calculations were also carried cut to determine the relationship which would

be expected to exist between moisture difference and maximum temperature difference

observed during the day. Values for soil heat flux and physical properties of the

soil were again chosen to correspond to the experimental plots of this study. The

reference plot was chosen to have a soil moisture of 10% by volume and the soil

moisture of the other was varied to a maximum of 21%. Results shown in Figure 24

display an approximately parabolic relationship. If this proves true in further

theoretical and experimental investigations, the development of a paractical

technique for utilizing apparent surface temperature differences to measure soil

moisture will be greatly simplified.

A series of calculations were carried out to determine the feasibility of

using diurnal surface temperature fluctuations (thermal inertia) as a measure of

presence of water tables below the 50-cm profile. Two identical soil profiles were

considered with the temperature at a 50-cm depth for one of these profiles cooler

by an amount AT due to the presence or groundwater. Both profiles in these

calculations were assumed to have the same soil heat flux at the surface.

The amplitudes of the surface temperature variations for a diurnal cycle were

the same for both profiles. The su,-face temperature of the profile with the cooler

50-cm temperature, however, remained cooler throughout the diurnal cycle by a

constant amount. This constant surface temperature difference varied between 20%

and 50% of the 50-cm difference of AT depending in soil parameters.

These calculations suggest the variation in surface temperature differences

during a diurnal cycle does not depend on the temperature at a 50-cm depth, but

rather on soil parameters within the 50-cm profile and the soil heat flux. Thus

thermal inertia would seem an unlikely candidate for determining presence of
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subsurface water tables unless the presence of these water tables affect the soil

moisture in the 50-cm profile. However. the presence of such a subsurface water

taole will give rise to a constant temperature difference at the surface. In order

to separate this factor from other factors which would Give rise to time dependent

temperature differences one will need a minimum of two observations of apparent

surface temperature differences during a diurnal cycle which a satellite such as

HCMM makes available. Also data from several successive days would be helpful in

removing other factors from the data.

Calculations were made for the series of sites where ground truth was

collected at the time of HCMM overpass.	 For these calculations average soil

parameters for the area were used as model inputs together with experimentally

measured soil moistures and 50-cm soil temperatures. Soil heat flux was adjusted

in the model so that soil temperatures calculated agreed approximately with

experimental values. This value was then used for all calculations for the

respective site. To account for differences in crop cover, the value of soil heat

flux was adjusted for one of the two sites.

Results of the calculations are shown in Table II. Calculated surface

temperature differences agree well with the apparent surface temperature differences

from HCMM. To use the model as a method of estimating near-surface soil moisture

and depth to water tables; the differences in surface soil heat flux was used as

a parameter in these calculations.

Therefore, differences in soil heat flux must be measured, predicted by a model,

or empirically estimated using readily available data. Since percent cover,

differences, temperature difference at 50-cm, and apparent surface temperature

difference data were available for this investigation, a step-wise multiple

regression (28) was conducted to determine their use in predicting surface heat flux

differences u-;.ing data presented in Table II.
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y - (7.64 x l + 1.56 x2 - 1.0 x 3 - 5).2) (10 3 ) 	 (28)

where y is soil heat flux difference, x is percent difference of canopy cover,

X2 
is percent soil moisture difference, and x 3 is 50-cm soil temperature

difference. The resulting equation when entering variables significant at the

0.05 level follows with a multiple step-wise correlation coefficient as 0.835 - R.

Therefore, up to 70% of the variation could be accounted for using measure-

ments or model predication which could be available during model implementation.

Percent cover could be estimated with Landsat, apparent surface temperature

difference between two sites estimated with HCMM or other satellites, and the 50-cm

temperature difference estimated with a model prediction. Soil moisture i.nd heat

flux differences may possibly be separated by use of multiple data collections of

surface apparent temperature differences during the diurnal cycle. The technique

shows promise and should be explored further.

M
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PROJECT CONCLUSIONS

Conclusions of this study are:

1. Soils with different soil moisture profiles differ in surface temperature in

a well-defined functional manner during the diurnal cycle. This functional

dependence is similar to the diurnal surface temperature variations (or each

plot.

2. A thick crop canopy destroys the water-related apparent surface temperature

difference during the nighttime hours.

3. The functional form of the apparent surface temperature difference measured in

the field divfitally which was associated with a soil moisture difference is

changed less by the presence of a crop canopy than the functional form of the

individual surface temperatures.

4. The theoretical model used in this study predicts a functional form for the

apparent surface temperature difference very similar to that observed for the

daylight hours. However, the magnitudes of the theoretical temperature

differences are smaller than the experimental values for both a bare soil and

a crop canopy. The ratio of calculated temperature difference to that

measured is approximately the same in both cases. Multiple pass satellite

data would serve a better purpose if acquired solely during daylight hours

rather than in an orbit similar to HCMM where a night pass is included.

5. Since the observed nighttime surface temperature differences vary considerably

in functional form for the bare soil situation and are zero for dense crop

canopies during the night, nighttime emittance data do not seem promising for

use in measuring soil moisture.

6. Model calculations predict a linear relationship between soil heat flux

and the surface tewperature difference arising from soil moisture variations.

'.	 Model calculations predict a relationship between surface temperature

difference and soil moisture difference. Only limited field sto,!ies were
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conducted during this effort and further field verification should be

pursued.

8. Model calculations indicate that day-minus night apparent temperatures are

not useful in predicting depth to the water table. However, either day or

night temperature differences between twe, sites are related to differences

in water table depths. Field data showed that where dense crop canopies

were present, the night data differences are not observed.

9. Model calculatioas of surface temperature differences agree well with

observed apparent temperature differences from HCMM when soil heat flux is

used as a parameter.

10. Initial observations are that a significant portion of the variance of soil

heat flux can be accounted for with remote sensing observations and model

estimates. Further investigation into the approach is warranted.

11. The overall results of this study reveal,promise for the development of a

method to monitor soil moisture by satellite. Using points on the curve

comparing ipparent surface temperature differences, one could calculate

soil moisture differences for a group of chosen sites. If soil moisture

is then measured at one site, soil moisture niay be calculated for the

other site.
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Appc:idi4 A

HPL PR OGRM FOR :'INITF-0;;-fEI?EN r-L, HEAT FLOW SI .IULATION M001,7I,

The following program listing is written in a language uscd by

Hewlett-Packard in the 9635A mini-computer furulshe d by the Eater

Resources Institute at South Dakota St: !ate University

C(*) Conductivity Pru`'i.lc A

D[*) Conductivity Profile G

E( *) Neat Capacity Profile A

F(*) Heat Capacity Profile B

H[*] Time of Day (flour)

A[*] Temperature of Profile A

B(*) Temperature of Profile B

G[0) Term us,d by DeVries in c-lculation of cordtiztivity

G[1] Heat capacity of water

G(2) Heat capacity of soil

If[ 11 Initial	 starting hULIV

H[2) Ending hour

I(O:SO) Thermal inertia for site A

J[0:501 Thermal inertia for site B

K[01 Conductivity of air

K[1) Conductivity of water

K[2) Conductivity of soil

AI[1) Initial starting minute

M[2j Minute when calculation is to end

0[*) Soil moisture for site A

I1
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M

P1 *1 Soil muisture for site S

Q[*1 Thermal diffusivity for site A

R(*1 Allocation to store old temperature for site A

S(*j Allocation to store old temperature for site B

T[*] Thermal diffusivity for site 8

U(0:501 Aeration porosity for site A

11 (0:501 Aeration porosity for site B

{,[11 Effective air temperature

W[21 Amount of soil by volume at 1 cm depth

W[31 Amount of soil by volume at 8 cm depth

Pi[ 41 Amount of soil by volume at 24 cm depth

W(51 Amount of soil by voluine at 42 cm depth

X[l) Distance between nodal points

Y111 Ending day

Z[I,J,K1 Real data

A Soil Belt flux for site A

B Soil	 }scat flux for site B

C Time from sunrise to solar noon

D,E,F,G Soil bulk density at	 1,	 8,	 24 and 42 centimeters

1 Counter

J Counter

K ('cunt(^r

L	 Day Length

M '	 Amplitude of soil lieat flux for site A

N	 Nwnber of equally spaced nodal points

r	 fine between printouts

Q	 Ampli.tudc CF soil heat flux for si.,:e 3
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R	 Punny variable

l inc	 between calcul V.ion Ln fe,:ands

:^	 Duruc,y variable

Z	 Real rota file
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PROMV LISTING (11PL)

Operational Procedure

0: 705-rO;gto 119
*103(12

Subroutine for Soil He-t Flux

1: "011ChT":A Ill /GO+r21
2: 11111-,r21•r22
3: r22-C*r23
4: W(11+273.16)/100°r24
S: (h(01+273.1-5)/100+r25
6: (1)(OJ+273.16)/100+r26
7: .000136*r24"4•x27
Ot -(.000135kr25"4-r27)*rll
9: -(.00013G*r26"4-r27)+rl2
10: if r23<=O;gto 15
11. : if r23>=L;gto 15
12: rnd
13: :1*sin (r23* u/L) *rll+rll
14: ()' ^in (r23 1- r/L) +rI2-r12
15: c11+A;r12 +3; ret
*17415

Subroutine for Construction of Profile Plot

16: "Plots":
17: dcg; 0 +R
13: scl 0,10,0,7
19: fxd 0
20: c3iz 1.25,1,1,0
21: vlt .5,6.5,1;lbl "SOIL Tr:1P FOR SITE A"
22: Felt 3.7,G.0 1;1131. "110UR
23: OIL 4.7,6.3,1
24: if H(11<10;str( :i(11) +::;;ib] "O";colt -1,O;1bl C$,"00";jno 2
25: Cnit	 r$,1100"
26: qlt 5.5,6.5,1;1b1 "SOIL Ti;:1P FOR SITE 13"
27: nit 1,1,1
23: p1t 4,1,2
29: plt 4,6,2
30: [alt 1,6,2
31: plt 1,1,2
32: pen
33: csiz 1,1,1,0
34: for I=O to -50 by -5
3:: if I<- ,);plt .4,GaI*.l,l;lbl I;jno 2
36a ri lt .5S,G+i*.l,l;lhl I
37: plt .95,5+I*.1,1;1bl	 -";nj+xt I
38: csiz 1.25,1,1,9:,
39: alt, . 2, 2. G, 1 : lbl "DEPT11 (C!1)11
40: Cciz
41: for 1=10 tU 50 by 5
42: olt -.OS+I*.075,.75,1;lbl I
43: nit .25+1'.075,1,1;lb1 "I";next I
44: csiz 1.25,1,1,0
45: p1.t 2, .5, 1 ; 1b1 "TrAP (C)'•
46: if 3=R;ofs 5,0;10 • R:gto 27
47: of r. -5,0; re 
*31254

189

i .
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Subroutine for Plat of meoreticrtl Profile A

" oloC,%"
Dlt .25+A(I)*.G75,6+G(I)*.1
if I=50;oen
rat

3

Subroutine for Plot of Experimental Profile A

53: colt -.33,-.25
54: alt• .25+2(1,;1(11/2,1.1-.075,6-P1(J)*.l,l.;lbl "A"
55: ray
*1007U

SLbroutinc for Plot of Theoretical Profile B

56: "nlon"
57: )1.t 5.25+81[],'.075,5+1.(IJ*.3
50 : if I =50 ;yen
50: rd't
0lG074

Subroutine for Plot of Experimental. Profile B

60: "iea:S"•
61: colt -,33,-.25
62: plt S.2S+Z(J,`I(1	 2]*.075,6-2t(J)*.1,1;lbl
G3: rat
*10725

4a:
49:
50.
51:
*21

a
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Subroutine for Construction of Temperature Difference'Plots

64: "Diff Mot":
65: deq ; O -R
66: scl 0,10,0,7
67: csiz 1.25;1,1,270
68: pit 4.5,6.2,1; lbl "SUPTACr, TCAPERA`t'URC U17MW ICt:"
69: Olt 9.5,6,1;161 "5 CA ZMPERA ,' U;q; JdPE'%kC^I:,f:"
7U: fxd 0
71: plt 1,1,1
72: Olt 4,1,2
73: Plt 4,6,2
74: Olt )„ 6, 2
75: plt 1,1,2
76: ..)en
77: csiz 1,1,1,270
78: for I . 0 to 24 by 4
79: if I<10;plt .7,5.2-I*.21,1;lb1 I;jmo 2
80: nit .7,'.25-I*.21,1; lbl I
81: nit .9,6-I*.21,1;lbl "I";next i
82: csiz 1.25,1,1,270
83: plt .5,3.75,1;1bl "HOUR"
g 4: cs -:z 1,1,1,270
35: for I=-G to 10 by 2
86. if. I<9; olt 2.125 +I* .1875, 6.5,1; lbl I, " °"; jmp 2
07: vlt 2.125+I*.1875,6.6,1;lbl I,"
68: next I
89: csiz 1.25,1,1,0
90: Olt 2.2,6.75,1;1bl "TF. 4P (C)"
91: line 1,2
92: for I=0 to 24;olt 2.125,G-I*.21;next I;oen
93: fxd 2
94: line
95: if R = O;Ofs 5,0;1' >R;gto 70
96: ofs -5,0; ret
"26434

Subroutine for i'lot of Surface Temperature Difference

97:
90: line
97: p1t 2.125+U(I)*.1875,6-0(I)*.21
100: if I-72;^en
101: ret
*17461

Subroutine for Plot of 5 cm Temperature Difference

102: "Olotc":
103: .line
104: nit 7.12:>+v(I)*.1375,G-0(I)*.21
105: if 1=72;n-on
106: rot
*6996
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Subroutine for Conductivities in Profile A

107: °'CO'tOU; 1":
103: .333-u(I)/(I.- 'Ifx1 )' (.333-,035)-r;jo
109: .00)OG15+.011?;„0(1)•K (01
110: (2/(1 +(4,(21/'..11 1-1)0'3(01)+1/(1+Ur 1,2 )	 -1) 	 (1-2 :,(01) 1)/3•r!
131: (2/(1+(;;i;1)/ail)-11'C.10H+)/(1+(r;Iuj/^,(1^-1)*(1-2*r(01)))/3•cl
1.12: r.et
*31543

Subroutine for Conductivities in Profile B

113 : "CJPIDUC B” :
114: .333-V(Iji (1-;!(X)) (.333-.035)-G 10)
115: .000nG15+.00175*P(I)-K(0)
116: (2/(1+( 111 31/9(1)-1) *op j) +1/(1+(K(3}/K(1)-1)*(1-2*;(01)))/3•-3
11'/: (?/(1+(K 1 0 1/K(11-1)*G(01)+1/(1+(K 101/K 111-1)*(1.-2^G(01))),3•• r2
113: ret
*13617

Dimension Statements

119: dim Al0: 50),n(0:50}, C( 0:501, D( 0:50),E(0:501,F10:501,010:Ir)5I,Y(n:50j120: ,g in X(1},V13:10SI,)•i(51,^;5(41
121: dint 't(0:4}),n(0: ?I,C(0:2),1,(tj: 501,Y(,.:1),R(0:5,1,5(0:51	 105}122: :iim Z(;,12,.),':f .),I(3:5;,j
*1.0727	

11(0.50),'010.501,:10.50 ►

Entering of Calculation Parameters

123: ent X(1),^,t1, P,' i( 1),!1(1),td(2j,'.I(2),Y(1),^S(1)
1.24: ent "real c°ata file",Z;ldE 7,,Z(*)
*-32553

'Temperature 5ata Storage
125: 1U(11;5-'!(2);10-:;131;25-A(41;50+:1(51
126: -11.,111
127: for I=2 to 53:L(I-1)-1+Lj1);next I
123: 0-J- ;1131- :d(4)+r 10
129: 11111*60 +1(11•;1131
130: 1-rl3
•279130

Entering3 of L'oil TCMJ.)(rrature Profiles
131: ent AI 3 1, A ( 11,A( 51, A( 10), A 251, A . I S0. ), B 1 0 1, 13 111,13(51 B1101,1(251	 41
*0924

t
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Interpolation of Soil Temperaturer,

132: for I . 2 to 4;( ►̂ (, ► -All))/4*(I-1j^'h(1)•A(Il
133: (U(5)-,1(lj) /^i*(1-lj+O(lj •Z(iltnext I
134: for 1-5 to 9;(A(10 ► - A(51)/5* (I-5)+A(5)•N(I)
135: (DII,01- B(51) /5*(I-1)+3(51.3(I);next I
136: for I-11 to 24;(A(251-A(101)/15*(I-1)+A(10)•A(I)
137: (81251 -31 101)/15*(1-10)+3(101 . 11(Il;ncxt I
138: for 1 . 26 to 49;(A(SO)-x,(251)/25*(I-25)+A(251.11(I)
139: (8(531-a(251)/25*(I-25)+3(251 . 3(1);next I
*40S9

Surface 7cmperature Difference

140: M01-3(01-S(511
*5957

Determination of Diode for Enterin" !I ,aat Capacicy and Thermal Conductivity

141: J+1 • J;if J>1;gto 250
*2597.1

Entering of Soil Physical Properties

142: ent 0(11,0181,0(251, 0(42 1,P(11,P(cS1,P(251,P(421,1112).sa13)OW141,"11`1
143: ent E:O.(,'C(?1,K(31rG(11r^(21rn,^,Fr^+,^'^r:^rC,L
*29564

Calculation of Percent Moisture by Volume

144: 0(11*^ •O(11;0(31 k r• 0(91;'J (7.51*(''0(251;0(42)*^*J(42J
145: P( 11* D+P(11;?1,31*C-P(O1;P1251 *V-P(25) ;P1421*:a•P(42)
* 23434

Calculation of Percent Air

1-0111-1.1121-Ut11
1-P( 1)-11121•V(1)
1-0(81-14(31•U(31
1 - , P 181-.-1131•V131
:-0(251-:1(41 •:;(251
.1-P(251-:1141 •V 1251
1-0(421-;1(51•U(62)
1-P(1121- '.1[51•V(42j

23

193

146:
147:
148:
149:
1 1—. :
151:
15^-
153:
* 177
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Specification of Thermal Conductivi.tic:,
154: 1 • I;2 - X;c11 'CC:IUUC A'('JIII,,-)III	 X))
155: (Oi l 1'1,11)+•r1*.a( 2)*)'(2)+r2* UIII*K(0))/(0f)•1 +r1*'4(2)+r?*U(I)) - C 11)156: 1•1;2•X:cII 'co:1JU4 13'(VII),piI),;.I(:S))
157: M11*Y,(11'+C3',i(2I*Kj3)+r2*V(1)6Kj0j)/(PI1)yr3*-i(21+r2*V(1))*t)(l)
153: 8 • I;3-X; ,1) ':;0l4DU- A'(:)(11,01r),,.,IX))
159: (D(31*<( 1)+rl*''If 31*1'( 21+r2* U(31*K(01 ?/(0(R) +r1* 	i'j•,q(3) +r2*U()-C(3)160: 8 • I; 3 • X; cl I 'C0r1!)uC 11' (VI I ),P! I ) ,:J('<I )
161: (PI31* x( 11+r3*•. 11 31*1;(3)+r2*vfl11*K(01U(PIS)+r3 *I1(3I+r?*vI5))-D(aI
162: 25-I;4-X c)l 'C0:1DUC A' (U(I),O(r),tl(X1)
1G3:	 O125)4 4111+r1*;1 141* 1,( 2)4r210f25}	 +r2*U125) )- ,7 J: r164: 25 - I; 4 - X;cll	 fl' ( V (11 :)( 11,1(:':1 )
165: (P( 251*::(11+r3*,a(4P-K[3)ir2•v(251*1;10))/(P(251+r3*,i14)+,2•V;251?- 0(25)166: 42 . 1;5-X;c11 'CO N IDU C A' ('JI11,nIr),;Ixi)
157:	 (Of .*,-') I K (l)A-r111;,! IS 1 111K (21 +r2 +1.' (4 1.1 k 1',j0j	 +r2'U(421 ) -C(421168: 42+1,-5 • X;c11	 -0:1L)UC ;3'(V[I), PIT, 1,,a(^l)
169: ( P( 2)* K( 1)+r3*,a(5)* K(31+r2*V(42)*K(01)/(P(421+r3 *,a(5) +rV* (4121)-D(,2)*791;3

Specification of [feat Capacity

170. 11121*;,I214. 0111	 11- ir(1 1
1'1: X2 1 2 )*31?1 4 P111' •(11-F(1)
172: u ( 3 J*•?I"1 4 01` 1 I :(11 •r.(31
173: '3(3) *'3121+P131';.(1.1 -FI31
174: a( 411*J121+,)f.	 1 3111-Ef251
175: ;i141 a G ')I+P(?51*"(11•^f 251
176: ,x151*C(21+0(321 *;,fl)•-'..(421
177: 0151 *01 2)+P142) 4 ;, 1i} •F1421
* 1671 3

Interpolation of Thernial C071ductiviLies aaJ }lent Capacity
173: Cat I=2 to 24;C (3)-(C(251-C10)) /17*(3-I)-C(I)
179: D131-(U(251- 7(91 }/17*(9-I}-:`(IJ
180: L131-ie1251	 1 1	 /17"'(3-

1)- ,:(II
181: F ( 3 )- ( F 1 25 1-P(11) /17*(3-I) -eI11 ;next I182: for .-2G to 5:1;-fl.51+	 (2r))/17^(I-25)-C(11183: D1 251x•(D1 4i21-t)(.^.x))/17*(I-25)-`1111
184: E1251	 x(321-c(251)/17*(I-25)•3;(11
185: F ( 25 1 + ( r̂ (42)- FI251) /17*(I-1;i)-r(I);,-I ext 1
186: C(1)-CM;0(11-D(0) ;E11)- Flo);r(1)-viol
*4021
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Printout of Thermal Conductivit; (cal/ oC cm)

107: Ent 1,7/,"C3'1->'JCT1V1TY";Nrt 706.1
100: fmt 1,3/,4x,3"7t;PT11	 SITE A	 SITE 0	 ";wrt 706.1

109: int(:1/3)+1-r2

190r r2*3-:°3
1°1: N-r3+1-r4

192: for I . 0 to r2-1;I-r5-r6
193: if r4>-1;r5+1• ► r5
194: r6+r2-r7-r3
195: if r4>-22;r0+1-r1
196: r3+r2-rl
197: fait 1,5x,f3.,1,3x,f7.5,2x,f7,5,4x,f3.0,3x f7.5,2x,E7.5,z
193: wrt 705.1,r5,C(r5I,D(r51,r7,C(r7),D(r7)

199: fnt. 2,4x,f3.U,3x,f7.5,2x,f7.5

200: wrt 706.2,r9,C(r9),D(r9);nmxt I

* 31900

Printout of Volumetric Heat Capacity (cal/cm3 sec oC)

201: f-at 1,9/,"F1CNT C,'1PACIrY";% rt 706.1

202: fnt 1,3/,4x,3"DEP711	 SITE A	 SITE B	 ";wrt 706.1

203: int(N/3)+1-r2
204: r2,13-r3

205: ',1-r3+1-r4
206: for I.3 to r2-1;I-r5-rG

207: if r4>=2:ry+I-r6
200: rG+r2-r7-r.8

209: 1.' r4> s 1; r6+1-rG

210. r©+r2-rj

211: fmt 1,5x,E3.0,4x,f6.3,3x,f6.3,4x,f3.0,4x,16.3,3x,f6.3,z

212: wr't 70G..,r5,E(r5l,F(r5),r7,E(r7),Ffr7I

213: fmt 2,4x,f3.0,4x,f6.3,3x,fG.3

214: wrt 706.2,0,£(0),F(r9);next, I
*1G222

Calculation of Thermal Inertia

215: for K=0 to 50

216: (CIKI *E(r;))".5•-I (K 
217: (D(KI*F(ii))".5-J(IC)

*24481

Calculation of Thermal Diffusivity

218: C(K)/r,(I;)•(:;)

219: D(ICI/F(KI-T(K)
220: next K

629332
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Printout of Thermal Inertia

221: imt 1,9/,"CN'i't't1L I,tF.RTIA";wrt 706.1
271
	

fort 1,3/,4x,3 "DrP'."N 	 SITE A	 SITE a	 ";wtt 706.1
223: int(;1/3)+1•r2
224: is*3•x3
22 5: ,t-r3+1-r4
226: for I-0 to r2-1:I-r5-r6
227. if r4>-1;rG+1•r6
2?.P: r6+r2•r7•rB
220: if r4>-2; r3+1•r3
230: r3+r!-0
2.11.: fmt 1,5x f3.0,3r„f7.5,2x,f7.5,4x,f3.0,3x,f7.5,2x,C7.5,z
232
	

wt  7 06 . I,r5,IIr5),J(r51,r7,I(r71,J(r7j
233: frt 2,4x,f3.0,3x,f7.5,2x,[7.5
234: wct 706. 1,r9,Itr9j,J(r9j;next I
*13 ua

Printout of Thermal Diffusivity

235: fort 1,9/,"Ti!CRTkL 01FM31IVITY";wrt 706.1
236: Irit 1.,3/,ix,3 "DEFT(1 	 31IT A	 SI1i: G	 ";wr 	 706.1
237: int(:4/3)4-1•r2
223: r2*3+r3
239: N-r 3 Vl+r 4
240: for I=0 to r2-1;I•r5+r6
241: i;: r4>-1; r6-fI-rG
242: r.G+r2•r7-:3
243: if r4>=2; t3+1•rc3
2' 4: r34r2•:9
245: Ent 1,5x,f3.0,3x.f7.5,2x,f7.5,4x,f3.003x,f7.5,2x,f7.5,z
246: wrt 706.1,r5,;?Ir51,T(r5),r7,Q(r71,TIr7)
1.41: fmt 2,4x,f 1.0,lx,f7.5,2x,:7.5
243: wrt 706.2,x9„ )jr9j,T(r)j;ncxt I
*'25225

Time Interval Between Calculations

249: T/(2 *X(II"X(1j } • r1;9to 264
*:516

Call for Soil beat Flux Subroutine

250: cll 'Q11EAT'
* 112 51

I
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Calculation of Nodal Temperatures and Lower Boundary

251: for I=1 to :1-1;(r( i)/ rl-C1I-11-2*C(11-C(1+11)*All)-rG
2521 ((C(1-11+C(I))'A(1- 1)+( C(I)+C(1+11)'^^ll+l)+ru)'rl/l:(I)•R(S)
253: (F(I)/rl-DII-11-2'D(I)-D(I+11)*13111-r7
254s ((U(I- 11+ D( II)'31 I '-11+(0(II+Uj1+1))*t3(I+1)+r7)*rl/R(I) + G''II;ne •„ t 1
255: 4*X(11*rll +(t;(1) /rl-2*C11)-2*C(2))'1101+(.''C(11+2 *Cl21)' %^111•a(0)
256: e1 /CI11 *R(0 ► -R(O1
257: 4 'X(11*rl2+(F( 1)/rl-2*0(11-2* 012 1)*11(0)+(2 *D(1) +2*u121)411111-SIC)
259: r1 /F(1)*S101 *3(0)
257: A( A I -n(,:1
260: 91 (: ) -SI:i)
*32346

Reassignment of Nodal Temperatures for Succeeding Interation

2GLs for 1-0 to 1;R(11 • P,I1);S(I) • 3I 1);nexL I
262: A(01•-B(0)4;(511
*29299

Test for Printout Tiwe

2b3: if '1(4)<1);9to 305
*256

Printout of Pertinent Data

264: r10+1 •r10
265: int(r1O/2)-r11;r11*2-r12
266: fnt 1, 4/, "i'::'1PGR\PUR'r' VRDFII,E nT ",fz2.0,fz2.0," UOURS”
2G7: rirt 706.1,;((1),:1(1)
268: fmt 2,/,/, "Si1Ri'a:1: TE7.1P^RMPE DIFFCRr'ICE _" ,fG.3
269: wrt 706.2,3(51)
270: f n t 4,/," 133IL W;'Ar FLUX	 SITE A - ",f12.9,"	 SITE 13

	
",f12.9

271: art 706.4,A,13
272: fmt 1, 2/, 4x , 3 "DEPTc;	 TEPiP A	 TEMP 3
273: wrt 70G.1
274: int('1/3)+1-r2
275: r2*3-r3
276: N-r3+1-r4
277: for I=0 to r2-1;I+r5+rG
?8: if r4>=1;rG+1- r5

279: r5+r2 -r7 -r5
230: if r4>=2;r3+1-r4
281: rO+r2+r1
282: fmt 1, 5x,f3.0,4x,fG.3,3x,fG.3,4x,f3.0,4x,f6.3,3x, CG. 3,z
233: wrt 706.1,rS,A(r5),3(r51,r7,^1(r7),3(r7)
2A4: f.nt 2,4x,f1.3,4.,ff%.:l,Ix,41().3
285: wrt 706. 2, r9,A(r91,31r9);next I
*5549

Procedural Step (Reset_)

236: 0- 4(41
*3574
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Call for Mot Routine
287: if rl24r10;qto 306
M: ell 'Plots'

'19455

Plot of Theoretical 	 J Experimental 5011 Temperatures

2',: for I n 0 to 50tc11 'o1otA'(A(11,1.,I11);ncxt I
210: if !1(11=3;24.1!(1)
211: for ,)=1 to 5:ell 'reala'( %(,7 ,11(11 /2,1),IJ(,TI);ncxt J
12: r o v I=0 to 50;c)1 ' ,)lot'!'(3111rL(1 1 1, ; , rt:xt l

1.')3: Inc ;J a i to 5;c)1 ' re:^l1'(t%fJ,'!(1)/%,'",;J(,TI)-next J
29	 f n t, 1,/,1x,5"u:: t> T11	 T1','1 	 to	 t 7A.1
2)",: f n t 4 	 l:'G' 1	 z;wrt 7 0G.4
296r f w t 2,3x,(3.7,?;•:,f5.2,4x,f3.0,3x,f5.2,4x,f3.0,3x,f5.2,z
297: fr+t 3,4;:,f3.0,3.4,f5.2,4x,f3.0,3,,,f5.2
2113: wrt 70;

Plot of 'Theoretical and Experimental Soil Temperatures

259: for I-0 to 511 :c11 'nlot rl'(A(I),L(I));nex ►.	 I
200 if	 11(1.1- 0;.:4•!!fI)
29', 1, r,^ t e' ^I I , o 5;c1). ' rGcil^ ' (	 (J,! ! (1j%2	 11,'I(.T));ncxI..	 J
2:2: for 1-3 Lo 50;cl1. 'olot3'(3111,L(I));next	 I
293: for J- 1. to 5;(-11 'real.C' ('LfJ,H(1)/2,21,!!(3) ):ricxt 	 J
*69361

P r':T'rtuL-l t u:F Experimental Soil Temperatures fur Piu ,,l e ,%

2a': fllt I,/,9x,5":ISPTH	 M11'	 ";wrt
2	 't J,"';I ?E	 z; wrt 706.4
276	 T. .. 2,^	 ,1:3.0, v ,f5 2,4x,f.3 0,3v f5 2,4x,fI.0,3'<, 7i.i,^
297: 1.1,. 3,4x,:3.0,3.4,"`.2, -A f21 0, 3;; ,f 5.2
?.9J: a,ct 70i.2,.J(11,2(1, 1 1111/2,I	 ,N 2),Z(2,H(II/2,11„ 7(^),;;f"s:!!(1)!I,,
230: wrt 706. 3, :1 ( 4 ),~(4, ! 1(11/ 2 ,11,. 1 51,Z(5,HII)/2,1.1
*2683

Priiitot,t of Experimental Soil Temperatures for Profil 6

300: r m t 5,/,"SIPE B",z;wc • C 706.5

307: f, rr.t 2,3x,f3.0,3x,f.5.2,4x,f.3.0,3x,f5.?,4x,t3.0,3x,f5.2,z
f.r, 3,4x,63.0 3x,15.?,4x,f3.0,3x,f5 2

333: wrt '7 05 2,' J f l lr'Z f1, 3 (11/2,21, ; 1(21,Z1' 2 	!111/2, 1 .9 131," j 3, r! f ! 1 /•'-,2)
304: t;r'1-- 70G.3,`J(t1,?.(4,11(1)/2, 21 	 1151, 7,15,ff11.)/2,21
'2;42).

Test if Calculwtion Has Run Desirud Time
305: if 1.1(11 -2Is;0 11(11
3^E: ii !!O.I<'t(21 ;n 1,-) 313
307: if H11 1,C3	 1 ;ato X10
3061: if y (0) ' y 111	 Lo 3).0
3-^4: 9 t 324
711

x

(r^	 Y _

198
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Test if Temperature Difference is to lxv Calculated

3101 11(31+1*11(3)
311: it '1(31/(c13'20)> n 119to 313
3121 qto 317
313: x13+1*rl3
1630522

Calculation of Surface and 5 cm Temperature Difference

314: A(01- 3101*u1:1131/201
315: A(51-3151-V(.i;31/2Q1
*30792

Calculation of New Time

3161 MM /60 *0 (1(31/201
3171 ;1(41 +r*>110
`191 !1(11+T/60•!1111
319: if 1 1(11<60;gto 323
320: 4(11-60*1111
321: 4(1)+1*'f(11;if If 111<24;c; to 323
322: 11(11-24*11(1) ;Y(014•1*Y101
3231 9 to 1.41
324: nto
* 2852 6

Plotting of Surface and S cm Temperature Differences

325: c11 'Oiff *lot'
326: for 1-1 to 72;c!' 'olots'(0(Il,u(r p;next 1
327: for I n 1 to 72;c1.. 'Dlot--'(0(I),V(1));ncxt I
320: end
*29769


	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf
	0001F10.pdf
	0001F11.pdf
	0001F12.pdf
	0001F13.pdf
	0001F14.pdf
	0001G01.pdf
	0001G02.pdf
	0001G03.pdf
	0001G04.pdf
	0001G05.pdf
	0001G06.pdf
	0001G07.pdf
	0001G08.pdf
	0001G09.pdf
	0001G10.pdf
	0001G11.pdf
	0001G12.pdf
	0001G13.pdf
	0001G14.pdf
	0001G15.pdf
	0002A02.pdf
	0002A03.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A07.pdf
	0002A08.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A12.pdf
	0002A13.pdf
	0002A14.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002B13.pdf
	0002B14.pdf
	0002C01.pdf
	0002C02.pdf
	0002C03.pdf
	0002C04.pdf
	0002C05.pdf
	0002C06.pdf
	0002C07.pdf
	0002C08.pdf
	0002C09.pdf
	0002C10.pdf
	0002C11.pdf
	0002C12.pdf
	0002C13.pdf
	0002C14.pdf
	0002D01.pdf
	0002D02.pdf
	0002D03.pdf
	0002D04.pdf
	0002D05.pdf
	0002D06.pdf
	0002D07.pdf
	0002D08.pdf
	0002D09.pdf
	0002D10.pdf
	0002D11.pdf
	0002D12.pdf
	0002D13.pdf
	0002D14.pdf
	0002E01.pdf
	0002E02.pdf
	0002E03.pdf
	0002E04.pdf
	0002E05.pdf
	0002E06.pdf
	0002E07.pdf
	0002E08.pdf
	0002E09.pdf
	0002E10.pdf
	0002E11.pdf
	0002E12.pdf
	0002E13.pdf
	0002E14.pdf
	0002F01.pdf
	0002F02.pdf
	0002F03.pdf
	0002F04.pdf
	0002F05.pdf
	0002F06.pdf
	0002F07.pdf
	0002F08.pdf
	0002F09.pdf
	0002F10.pdf
	0002F11.pdf
	0002F12.pdf
	0002F13.pdf
	0002F14.pdf
	0002G01.pdf
	0002G02.pdf
	0002G03.pdf
	0002G04.pdf
	0002G05.pdf
	0002G06.pdf
	0002G07.pdf
	0002G08.pdf
	0002G09.pdf
	0002G10.pdf
	0002G11.pdf
	0002G12.pdf
	0002G13.pdf
	0002G14.pdf
	0003A01.pdf
	0003A02.pdf
	0003A03.pdf
	0003A04.pdf
	0003A05.pdf
	0003A06.pdf
	0003A07.pdf
	0003A08.pdf
	0003A09.pdf
	0003A10.pdf
	0003A11.pdf



