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ABSTRACT

An attempt is made to validate a method that uses radiometric

surface temperatures and a boundary layer model to estimate surface

energy budgets and characteristics. The surface temperatures are

area-averaged values so the results from the Radiometric Data/Model

System (RDMS) are also area-averages. Another remote sensing method,

sodar, is used to obtain heat flux estimates on the same scale ae

the RDMS values for ground truth measurements. A simultaneous

collection of radiometric surface temperatures from a hand-held

radiometer and sodar data was made on seven days between mid-July

and mid-October 1980. The comparison of the RDMS and sodar heat

fluxes proved disappointing. Free convection conditions, required to

a

	

	produe sodar-derived heat fluxes, were inhibited by a terrain-

induced low level inversion. Only three out of seven cases produced

12

	

	 meaningful sodar heat fluxes. Of those three cases, one had good

agreement and the other two had sodar heat fluxes 15 to 45 W m-2

lower than the RDMS values. Since the RDMS method is relatively

untested, it was impossible to conclusively determine its valieity

from the results. There was evidence that the true heat flux was

not underestimated by the RDMS, so it could be concluded that the

Bowen ratios over well-watered vegetation were likely to be quite

small.
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1.0 INMODUCTION

1.1 DEVELOPMENT OF THE SATELLITE DATUMODEL SYST24 (DM,1B)

Carloon and Boland ( 1970) developed a ono—dimonoional boundary

layer model capable of predicting the ourface temperature and the

ourface energy budget. They wood the model to oxamino the relative

importance of the variouo terrain paramotoro governing the rooponoo

of the ground to heating. From a oerioo of oonoitivity tooto,

two parametoro, the ground moioture availability and the ground

conductance ( thermal inertia), were found to dominate the rooponoo

of the ground to oolar radiation. `-huo, they felt that if the

valueo of moioture avoilabi^ity (M) and thermal inertia (P) for a

ourfaco could be obtained, initialization of the other variabloo

in the model using standard meteorological data oourceo would produce

0	 ground temperatureo accurate to i 2C.

They noted that black body ourface temperatureo clearly ohowed

the response of a given type of ourface to heating. Thio reoult

ouggeoted a way of determining values of M and P for a ourface.

Carloon and Boland propooed to combine an inveroion of the model

output with a pair of observed radiometric ourface temperatureo.

Surface temperature variations ouch as thooe meaoured by a satellite

would be matched to the variations calculated by the model. From

that matching, unique values of M and P for a ourface would be

defined. Given estimates of those two dominant parametoro, the

model could then calculate the heat flux and evaporation for the area

observed by the satellite. Thus, Carlson and Boland felt that the
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oubotrato charactoriotico and ourfaco encroy budget for an area

could be ootimatod from oatellito oboorvationo combined with the

output from .a ono-dimonsional boundary layer model.

Auguotine (1970) accelerated the linking of oatellito data with

the model by developing a technique to produce ourfaco temperature

mapo for an area uoing radiomotric oatollite data. He produced day

and night tomporature mapo of Loo Angoloo. Unfortunately, the

oatoll+to overpaoo timoo were 9uot after ounrioo and ounoet, and

the mapo produced did not dhow the maximum diurnal temperature

variation. The matching technique prop000d by Carloon and Boland

requires that surface temporatureo be mcaourod near the timoo of

maximum and minimum heating. Thuo, no attempt wao made in Augguotino'o

worts to implement their procedure.

It wao not until 26 April 1970 that a satellite capable of

producing effective black body temperature meaouremento of the earth

°	 ,00e to the times of maximum and minimum temperatures wao launched.

On than day, a small aipplicaitiono -uplorer oaitellite was launched

by the National Aeronautics and Space Adminiotration (NASA) ao part

of the Heat Capacity Mapping Misoion (HDMM) 	 The operational

characteristics of the HCMM satellite are diocuooed by Barneo and

Price (1950). By that time, the method for linking the one-dimensional

boundary layer model with satellite-sensed surface temperaatureo had

been ; erfected.

When HD'1 data became available, the satellite data/model system

was used to produce maps of M, P, heat flux, and evaporation for

St. Louis and Los Angeles. Carloon at al. (1901) detailed the results
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of th000 ca000. Vroo the mapo of W and P, they oado conclunLono

°	 concerning the mochani000 behind the urban teoperoturo anomaly. The

mopo of heat flue and ovaporation portrayed the opotial variation

of the partitioning of solar radiation cauood by difforoncoo in land

ubo and vogotativo cover.

Additional worts wao done uoing HCtiti data by Kocin (1999) and

®iCriotofaro (1900). Kocin onaminod the pattorno of N, P, heat flue

;;a evaporation over a vegetated watorohod in Mi000uri. 0e wao able

to rolato opocifie regional foaturoo (forooto, croplando, etc.) and

rainfall to the anilyoio of moioture,availability. Changoo in the

diotribution ;f moi©ture availability were found to be co-dominated

by rainfall amounto and rhangoo in the ourface'o vegetative canopy.

®iCriotofaro produced ma^o of the ground characteriotico and energy

0 budget for both urban and rural aroao. Variationo in moioture

availability and thermal inertia wore ohown to be rooponoible for

o	 the temperature d:fforenceo between urban and rural rogiono. Hio

rooulto ror the rural areao indicated that pho variability in heat

iiuu and evaporation wao caubed by variationo in land uoo.

1.2 STATEMENT OF THE PROBLEM

Before employing the satellite data/model oyotom (SH;1S) for

f , :,ther investigations, the validity of its products needed to be

established. Although the previously mentioned investigators have

demonstrated the ability of the system to produce reasonable patterno

of the surface energy budget and substrate characteristics, the valueo

of these parameters needed confirmation by independent measurements.
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Unfortunately, independent measurements of the oame nature and

type as the model products are not easily obtained. The eotimdteo

of all the parametero produced by the SDMS customarily use radiometric

surface temperature measurements averaged over approximately 1 IUD

It follows that the values of moisture availability, thermal inertia,

heat flux, and evaporation are also area-averaged. A large array of

point measurements is usually required to determine area-averaged

ground truth values for these parameters. However, the financial

and physical resources for such a measurement program can be enormous.

Thus, here we have used other methods in an attempt to verify the

SDMS results.

One such method is aircraft measurements. DiCristofaro (1950)

attempted to verify some of his results utilizing this procedure.

O
	 He obtained aircraft measureme:it:s of surface heat and evaporative

fluxes from the Sulfur Transport and Transformation in the Environment

0
	

(STATE) project (Schiermeir et al., 1979). A comparison between

results from the SDMS and the STATE data was attempted. Unfortunately,

the results were inconclusive. The agreement was reasonable for the

evaporative fluxes, but the aircraft measured values of heat flu.:

were sev_--tal times larger than the satellite derived values. It was

noted, however, that the aircraft measured large heat fluxes in a

forested area which displayed low daytime temperatures on the satellite

pictures. In fact, the aircraft-measured heat fluxes for this area

were only slightly lower than the values found in downtown St. Louis.

Another remote sensing method, sodar, can produce values of heat

flux averaged over the same scale as the satellite measurements. The

sodar measures the scattering of sound in a volume of air by temperature
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fluctuationo. The scattering can be related to the temperature

structure conotant CT. When free convection conditiona exist in

the atmosphere, the ourface heat flux obeyo a 4/3 power law between

CT and height (Wyngaard at al., 1971). In thin oituation, the large

CT values are concentrated in updrafto generated by the heating of

the terrain and advected by the mean wind. Neff (1975) found regiono

of large C2 that were localized at a horizontal scale of about 300m.

Heat flux estimates derived from CT valued during free convection

conditions were therefore averaged over a section of the terrain

upwind of the sodar antenna. The exact area of the average depended

on the mean wind speed.

1.3 PURPOSE Or THE THESIS

A need existed to verify the values of the SDMS by independent

measurement. One technique that can measure heat flux on the same

scale as the SDMS is sodar. This research compared sodar measure-

ments of heat flux with those from a version of the SDMS that used

surface temperature measurements from a hand-held radiometer instead

of a satellite. Radiometric temperature and sodar data were collected

simultaneously on seven days in the summer and autumn of 1980 to

provide the raw data for the two methods. The sodar data was

processed by producing ten minute averages of CT profiles. If free

convection conditions were present in the atmosphere, an estimate of

the heat flux for that period could then be made from the profile.

The heat flux estimates of the modified SDMS and the sodar were

analyzed over the diurnal cycle. An effort was made to determine the
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validity of the modified 3DM5 valueo by comparing them with the aodar

reoulto.

0
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2.0 METHODS OF ESTIMATING THE HEAT FLUX

2.1 THE SATELLITE DATA/MODE,. SYSTEM (SDMS) METHOD

The one-dimensional boundary layer model uaed and the procedure

of 1^nking the model with the oatellite data in the SDMS have been

well documented (see Carlson and Boland (1978), Carlson et al. (1981),

Dodd (1979), Kocin (1979), and DiCristofaro (1980)). Thus, only a

brief summary of the SDMS is presented here.

The purpose of the SDMS is to produce maps of substrata

characteristics and surface fluxes for an area using surface tempera-

ture measurements near the maximum and minimum of the heating cycle.

The maps are created by matching the observed surface temperatures

to surface temperatures calculated for the observation time by the

model. The basic assumption which allows the transformation between

surface temperatures and substrate parameters to be made is that a

given model maximum/minimum temperature pair is computed from a

unique pair of M and P values and vice-versa. Thus, a measured

temperature pair can be combined with the model output to infer

specific values of M and P. Carlson and Boland (1978) found that M

and P are the dominant factors in determining the partitioning of

incoming solar radiation into sensible and latent heat flux at the

surface. Accordingly, solutions yielding a unique M and P also

correspond to a unique solution of the surface energy budget. The

model output at the time of the temperature measurements for a wide

range of M and P values is represented by a set of regression

equations involving the maximum/minimum temperature pairs as
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predictors. In this manner, oubotrate characteristics and the surface

energy budget are obtained when an observed maximum/minimum temperature

pair is inserted into the regression equations. Maximum/minimum

aurface temperature maps from an aircraft or satellite can be trano-

formed using the regression equations into maps of the two ourface

parameters and the surface fluxes.

2.2 SODAR HEAT FIUX THEORY

A monostatic sodar measures acoustic energy backscattered by

the atmosphere. This energy can be related to a temperature structure

parameter CT which, in turn, can be used to estimate heat flux.

The radar equation for backscattered energy can be modified to

apply to a monostatic sodar. Following Underwood (1981), a form of

the monostatic sodar equation is

0  AP(r) = P o 2 Lv a- tar E a(Tr)	 (2.1)
r

where

P(r) = received acoustic power,

Po = transmitted acoustic power,

A 
	 = cross-sectional area of the antenna,

r	 = range of scatterer from antenna,

a	 = path averaged molecular attenuation coefficient,

L 
	 = length of the scattering pulse in space,

E	 = turbulence induced excess attenuation,

Q(Tr) = backscattering cross section.



a

D

0
9

The backocattering croon section a is the fraction of the

incident power backocattered per unit oolid angle. With proper

calibration of the oodar system and estimates of the attenuation,

Equation 2.1 can be used to obtain values of v. Those values are the

basis for estimating heat flux with the oodar. However, the calcula-

tion is done indirectly through another variable, the temperature

structure parameter CT, which is related to both o and heat flux.
CT is defined as

i

4 CT(T(x) ® T(x+r))/r2/3
	

(2.2)

where CT represents the variance of the temperature difference

between two points a distance r apart and r is assumed to be in the

inertial subrange. Using Tatarski (1971) it can be shown that a

is related to CT in this fashion:

O

Q	 0.0039 k1/3 CT/ T2	.	 (2.3)

Wynga-.d et al. (1971) derived the free convection limit

C 2	 3 ( T ) 2/3 ( Ho ) 4/3 294/3	 (2.4)
R	 T	 4 kg	 pCp

{
where

^F	 e

I	 k Q the von Karman constant,
s;

T	 the average air temperature,xj

f
g	 gravity,

p	 density,

't

t ^.
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C  a the specific heat at constant pressure,

•	 H o the heat flux.
0

Coulter and Vesely (1980) added a humidity correction factor y00 to

equation 2.4 where

yso a {il + (0.07/0) 2 )/fl + (0.06/0)21)3/4

2c (1 + 0.07/0 0 ) -1 	(2.3)

Thus, when free convection conditions exist, solar, by measuring; 0,

can be used to estimate the heat flux.

0
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3.0 DATA COLLECTION

3.1 DESCRIPTION OF FIELD EXPERIMENT

The SDMS requires measurements of the surface temperature near

the maximum and minimum of the heating cycle to produce estimates

of heat flux. The SDMS was designed to utilize temperature data

from polar orbiting satellites that pass over a site at the proper

points in the heating cycle. The surface temperatures from these

satellites represent an average value for an area of one pixel,

which is about one half to one square kilometer for the highest

resolution infrared satellite radiometers. SDMS values of heat

flux were intended originally to be calculated from satellite data.

Unfortunately, no satellite capable of producing surface temperature

measurements at the optimum times was operational during the period

of the experiment. Thus, it was necessary to simulate satellite
O

measurements by conducting a small field experiment to collect the

temperature data required to calculate the SDMS heat flux values.

The necessary surface temperature values near the maximum and minimum

of the heating cycle were recorded using a handheld radiometer in

an observation technique, to be described below, which was designed

to determine an area-averaged temperature value. This modified

version of the SDMS was called the Radiometric Data/Model System (RDMS).

The acoustic signal returns of the sodar were collected at the same

time and stored on magnetic tape to later be converted into heat

fluxes.

The locale for the field experiment was the Rock Springs

Agricultural Research Center of The Pennsylvania State University.
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This facility in oituated several mileo from the Penn State campus

(oee Figure 3.1) and was chooen because it io the site of the

Meteorology Department's oodar antenna. The area ourrounding the

oodar consists mainly of heterogeneous cropland, in which large

fields of alfalfa, corn, and ooybeano pluo small toot ploto of

alfalfa, corn, and onto are present within 500m of the antenna. A

picture of the Rock Springs site is presented in Figure 3.2.

The duration of the experiment was July to October 1980. Since

the boundary layer model employed in the RDMS procedure can simulate

only clear sky and non-advective conditions, the temperature and

sodar data were collected only when those conditions were present.

In all, seven days met the criteria for data collection as demonstrated

by the strong diurnal variation in the air temperature traces recorded

at Penn State for each case (see Figures 3.3-3.9). A summary of the

dates and weather conditions of each data collection day is presented

in Table 3.1.

3.2 SURFACE TEMPERATURE DATA COLLECTION

The radiometer used in this research was a Barnes PRT-5 on loan

from the Environmental Protection Agency (EPA). The radiometer was

calibrated at Penn State by using a calibration box where the

radiometer views a 'black box' cavity with a water bath of variable

known temperature. The temperature reading of the radiometer is

r?.	 compared with the water temperature. It was discovered through this

°	 process that the radiometer consistently gave readings 1.5 to 2.00

i	
too warm. Thus, all temperature readings from the field were corrected

before final use by subtracting 1.7C from the raw value.
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Figure 3.2	 A section of the Rock Springs Agricultural Research
Center of The Pennsylvania State University where
the sodar and surface temperature data for this
experiment were collected.
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The idea of using a handheld radiometer (also called an infrared

°	 thermometer) to make surface temperature measurements of vegetation

has been exploited previously on numerous occasions. Fuchs and

°	 Tanner (1966) found that, given the emissivity of the surface and the

i	 reflected atmospheric radiation, they could measure vegetative canopy

temperatures with a radiometer to t O.1C.

Fuchs et al. (1967) measured crop surface temperatures using a

radiometer. They examined the dependence of the temperature on viewing

angle and solar azimuth angle (see Figure 3.10).

The incident angle had a minor effect on the measured temperature

with variations usually less than 1C. Lower temperatures were

recorded for incidenr angles near normal and greater than 60 degrees.

At the small viewing angles, the radiometer looks deeply into the
S

vegetation and sees more of the shaded (cooler) portions of the

vegetation and ground surface. At large incident angles, the radiometer

°	 sees plant tips plus the horizon and therefore can produce a lower

reading.

The solar azimuth angles had an effect in the case of Fuchs et

al. (1967) only when the radiometer was viewing row crops. In this

case, when the radiometer was facing the sun and the crop rows formed

an angle greater than 10 degrees with the sun, temperatures were

consistently 1.3C lower than when the radiometer viewed the same

crops while pointed away from the sun. This difference was confirmed

by leaf temperature measurements made with thermocouples. The

radiometer views primarily shaded leaves at a solar azimuth angle of

°	 0 degrees, versus the primarily sunlit leaves when the solar azimuth

angle of the radiometer is 180 degrees. Fuchs et al. also found a
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Figure 3.10	 Schematic of the incident angle a, and the solar
azimuth angle 0 of the radiometer sensing beam.
The field of view of wide and narrow beam instru-
ments is given by S 1 and S 2 , respectively.
(Source: Fuchs et al., (1967)).
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t .3C variation in time when the viewing angle wao kept conotant.

They felt this variation wao caused by air turbulence changing the

ventilation of the crop leaves. A 30 degree field of view radiometer

produced loco variation in temperature meaouremento than a 7 degree

field of view instrument since it averaged the temperaturo over a

larger area.

The observation technique for the radiometric surface temperatures

in the Rock Springs data collection was designed to enable one

temperature to be determined for the entire site. A hand—held

radiometer with a narrow field of view can only ocan a small area.

Thus, to produce an average value for the site, the observation

technique had to satisfy two objectives:

1. Maximize the area that the radiometer viewed in one scan.

2. Provide a large number of temperature readings to obtain

temperature values of all the crops present at the site.

The first step in maximizing the area viewed by the radiometer

was to use a wide angle field of view lens. Further, the radiometer

was operated at a height of about 5m above the surface from a site

atop a tower mounted on a mobile van (see Figure 3.11). Finally,

temperature measurements were made at three or more locations by

driving the van/tower platform around the site.

Twelve temperature observations were made at each site. Because

of the surface temperature variations with incident angle and solar

azimuth angle noted by Fuchs et al. (1967), the observations were

made at three incident angles at each of four solar azimuth angles

(see Figure 3.12). The temperature values were recorded both manually
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ORIGINAL WAGE
BLACK AND WHITE PHOTOGRAPH

Figure 3.11	 Van/tower platform that surface temperature measurements
were made from using a hand-held radiometer.



Figure 3.12a	 The four solar azimuth anglers at
which surface temperature data
were measured.
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and automatically by means of a strip chart recorder. Additionally,

the type of vegetation viewed by the radi(motor for each observation

wao noted, as were the local weather conditions (see Table 3.1).

Unlike Fuchs and Tanner (1966), in this field experiment the

vegetative emiooivity was assumed to be equal to one, although plant

canopies typically have an emiooivity of about .97. Therefore, the

amount of atmospheric downwolling longwave radiation reflected by

the vegetation was not calculated. The high degree of accuracy that

F'ucho and Tanner achieved with their radiometric temperature

measurements was not required for this experiment. A detailed

discussion of the error produced by assuming a vegetative emiooivity

of one is given in Appendix A. The results show that the temperatures

measured in this experiment are accurate to ± O.5C.

Thus, the result of the radiometer part of the data collection

was 36 surface temperatures measured over a variety of vegetation

types. Temperature observations were made twice on a data collection

day; first at approximately 1200 EST and again just after 0000 EST

the following night.

3.3 SODAR DATA COLLECTION

The sodar used in the Rock Springs data collection was a

modified Aerovironment Model 300. The sodar was calibrated on June 11,

1980, using the method described by Underwood (1978). No post-

experiment calibration was performed.

Th" received acoustic energy of the Aerovironment is usually

qualitatively recorded on a facsimile display. At Penn State, however,

I'll
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the oyotow hao boon modified to allow the received signal to be both

quantitatively dioplayed in faloo color imagory and lagged on

magnetic tape.

Figure 3.1.3 io a block diagram of the oodar oyotoa wood in thio

ouperiment. The Data General Nova 2/10 minicomputer triggoro a burot

r. 1600 h2 acouotic energy from the Aorovironment every eight oecondo.

After a pauoe of .3 mo, the oodar becomoo a receiver and converto

the backocattered acoustic energy into a voltage. The voltage oignal

io transformed in a coupler for tranomiooion via phone line from

the site back to the computer laboratory. There a demodulator

converts the oignal back to a voltage that io oampled at 50 hz by an

analog to digital converter. The Nova 2/10 procoocoo the digitized

signal, displaying it in falop color on a video terminal and otoring

it on magnetic tape.

This entire proceoo is automated. On the morning of a data

collection day, the data logging program was entered into the

minicomputer and the phone link with hock Springs established.

Then the sodar data was logged until the evening of that day at which

point the data collection program wau terminated by the user.

9



!!

.!

a

0

...

^

Q)

en / ~
a g e
n G p

..	 .
k
w a u
J 2 ®o )

r i
a U A

\Q
% © ® 5C:B #

a Q

f\ ^

® ^ /
^
o

\ ^
^

Ch

/ %
q
Q
n
Qj

2 _
n ®

/ a
n d 20

22
0̂

9
g
§

(
® o A %

\ eo {

® ® ^
. ^

0

%̂
k
n

^
41
g §

( ( ^
« w

\ F-4
^

co
% § \
2 Aj
^

'F4
3



32

4.0 DATA ANALYSIS

4.1 INTRODUCTION

After the last data collection day on October 19, 1980, the

process of converting the raw sodar and temperature data into heat

fluxes began. The temperatures were analyzed to produce a oingle

day/night pair of surface temperatures for each case. The temperature

pair was then used in the RDMS to determine the heat flux for that

case. The sodar data was plotted and examined for periods when free

convection conditions were present. During those periods, heat

fluxes were estimated with the sodar.

4.2 SURFACE TEMPERATURE DATA

The temperature data collection process yielded 36 day and night

temperature values for each case. Figures 4.2-4.8 display the raw

temperature data for each case and the symbols are explained in

Figure 4.1. Note the large amount of variation present. The average

difference for the seven cases between the high and low daytime values

is 10C. Highlighted in Figures 4.2-4.8 are the three main causes of

this variation:

1. The viewing angle of the radiometer.

2. The solar azimuth angle of the radiometer.

3. The type of crop viewed by the radiometer.

A further discussion of each of these factors follows.

Fuchs et al. (1967) showed that when using a 30 degree field of

view lens, extreme incident angles (> 60 degrees) tend to produce
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0°

70°
Incident	 500
Angle	 350 G=

NIGHT TEMPERATURES

Incident 70 0 	 Vertical lines inoide a box

Angle 500c= indicate two or more measure=

35 °..	
ments of that value were
obtained.

CROP ABBREVIATIONS

C - Corn	 G - Grass

A a Alfalfa	 S Q Soybeans

SHADED BARS

The shaded bars represent the best estimate
of two standard deviations around the area-
averaged temperature determined from the data.

Figure 4.1 Explanatior of the symbols used in the
radiometric surface temperature charts
(Figures 4.2-4.8).
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cooler readings. An examination of the 70 degree incident angle

temperaturev (marked with a single '.','/','n', or " ' in Figures

4,24.8) shows that theee temperatures were among the coolest for

every crop type. The average 70 degree incident angle temperature

was 1-2C cooler than the average 30 degree temperature and 1-4C

cooler than the 33 degree temperature. It is clear, since the

radiometer was equipped with a 20 degree field of view lens, that at

an incident angle of 70 degrees the temperature reading from the

radiometer viewed a portion of the horizon. 	 1
The temperature difference in row crops viewed at different

solar azimuth angles found by Fuchs et al. was also present in the

Rock Springs temperature data. Corn was the only row crop at the

Rock Springs site, and the average corn temperature at a solar
n

a-imuth angle of 0 degrees (marked by '/','//', and '///' in Figures

4.2-4.8) is about 2C cooler than the average value measured at other

azimuth angles.

The spread in the temperature data was also increased by the

variety of crops at the Rock Springs site. Whether a particular

crop is green and growing or brown and senecent causes a different

reaction to the incident solar radiation. Radiometric measurements

made by Blad and Rosenburg (1976) and Heilman and Kanemasu (1976)

showed that leaf temperatures can vary between crops under the same

micrometeorological conditions due to differences in evapotranspira-

tion between the canopies. The grass at Rock Springs was characterized

as "dry" in observations from all seven casas because of its brown

color. Note in Figures 4.2-4.8 that the grass temperatures were

consistently among the highest measured. When the soybeans were
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well watered and green, as in Cases 2 and 3 (Figures 4.3 and 4.4),

their temperatures were some of the lowest found. In 'Cases 4 and 5 in

September, the soybean field was characterized as "discolored (yellow)

and only 25% green." This effect %as causel by lack of watering

during a very dry period. In the earlier cases the soybean tempera-

tures were in the lower and middle portions of the temperature distribu-

tion. In Case 6 (Figure 4.7), the soybean temperatures were as high

as the dry grass values. At this time (late September), the entire

crop had dried out. Finally, in Case 7 the soybeans were harvested

and only a dried stubble remained. The radiometer was then essentially

viewing dry ground and the soybean temperatures were the highest

values recorded in Case 7.

The large variability in the temperat+ro.s caused by the three

aforementioned factors made it difficult to come up with an area-

averaged value. A subjective analysis procedure was used that

involved examining the temperatures as displayed in Figures 4.2-4.5

and usir three guidelines:

1. The average tempe r ature at an incident angle of 70 degrees

was 1 to 4C cooler than the temperatures from the 50 and

35 degree incident angles.

2. It is the crop temperatures upwind of the sodar antenna

which determine the sodar measured heat fluxes.

3. The more area a crop covered, the greater its contribution

to the heat flux.

n	 The temperature value and uncertainty for Case 1 (the shaded

bar in Figure 4.2) provide an example of this process. Note that all

but 2 of the 11 temperatures omitted at the low end of the error bar
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are from a 70 degree incident angle. The temperatures at the other

extreme were eliminated for two reasons:

1. Although the soyba?ns covered a large area, they were

located downwind of the sodar antenna.

2. Grass covered a very small portion of the site, and therefore

would not ha	 had a 1p.rze effect.

This subjective analysis procedure yielded a temperature value

with an uncertainty that was felt to be equivalent to two standard

deviations. The shaded bars in Figures 4.3-4.8 are the estimated

temperatures and uncertainties for Cases 2-7. The subjectively

determined temperatures were within .5 to .15C of the average

temperature of the cramps upwind of the sodar antenna (alfalfa, corn,

and grass) in all seven cases. Additionally, the average 50 and 35

degree incident angle temperatures of every case were within 1C of

the subjective value or within the calculated uncertainty.

The nighttime temperatures are displayed in Figures 4.2-4.8 in

somewhat the same manner as the daytime values, except there was no

need to specify the solar azimuth angle. The average spread in the

nighttime temperatures is only about 4C. The view factor problem of

the 70 degree values is still present, but the vegetation has had

enough time to reach a fairly uniform temperature. The nighttime

temperature value and error for each case was de-ermined through the

same subjective analysis method as the daytime temperatures. However,

because of the small spread of the night temperatures, the nighttime

uncertainty was smaller than the daytime version. Note that no

nighttime temperature data was obtained for Case 5. Thus, the value

determined for Case 4 (the previous night) was used in the RDMS.
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At this point, the process of calculating heat fluxes with the

RDMS began. First, the boundary layer model was initialized for each

case with data obtained from standard meteorological sources such

as facsimile maps. Table 4.1 lists values of some of the important

input variables.

The model eras also initialized with a sounding that is a smoothed

version of the morning (12Z) observation. During July and August 1990,

radiosondes were being launched every six hours here at Penn State as

part of the Northeast Regional Oxideat Study (NEROS). These local

sounding data were used in the first three cases. For Cases 4 through

7, the soundings from Pittsburgh (about 20( km away) were used. Since

the data collection days were chosen for their lack of advection, the

Pittsburgh data were considered representative of the local conditions.

Next the model was put through a 'productioi run' where a wide

range of surface temperatures and fluxes for the same initial

conditions were created by varying the values of moisture availability

(M) and thermal inertia (P). The output from a 'production run' of

the model was used to create a set of regression equations. These

regression equations inverted the model output and thus were able

to predict values of M and P for every case from the observed day

and night temperatures. The predicted M's and P's were then used

to calculate the RDMS heat fluxes. The model was run again for

each case using the same set of initial conditions, but M and P

were fixed at their predicted values. The heat flux curve from

this model run was taken as the RDMS heat flux estimate for a given

case. Appendix C contains an example of the process for determining

a heat flux estimate.
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In order to project the uncertainty in the temperature valued

°
through the RDMS, day and night temperatures from either end of

their respective error bars were used to create two additional day/

night temperature pairs for every case. The results from calculations

with the extreme temperature pairs thus defined the uncertainty in

the RDMS M, P, and heat flux values.

4.3 SODAR DATA ANALYSIS

In Section 2.2 it was shown that under free convection conditions,

CT is related to the heat flux in this fashion:

C2 . 3 ( T ) 2/3 ( Ho ) 4/3 Z-4/3	 (4.1)
T 4 kg	 PC 

The result of taking the logarithm of this equation is a linear

relationship between log CT and log Z.

H
log CT = log [4 (kg
	

PC
) 2/3 ( o )

4/3^ _ 4/3 log Z	 (4.2)

P

Note that the slope of this line is -4/3 and the intercept A is

H
A = log [4 (kg)2/3 

(pC0 )4/3]	
(4.3)

P

Free convection is usually confined to a layer of the atmosphere

several hundred meters deep. Thus, only a section of a log-log plotted

CT profile will have the characteristic -4/3 slope present if free

convection exists (see Figure 4.9). A straight line with a -4/3

f

er



4y

a

0.0
Im

•Pr
41

•.a

fll

ed
.^ C
00 O

•rl -H
v ^+
,C Ou

m o
►^ u

a v
W

N E- W
u w
w w
0 0

o a
r+ o
a .^a

O
O ^"1

I ^Y

OL 1
O
^ u

O u
w

w •^
o w

u
W u
^4 u

cc cu
x 
W u

M
I

N
I^

N

N E^
u

I

O

o^

v
sw0
00

w

54

ev
I

.a-

E at	 ;01	 lot
ut)

.34 Fah



55

slope can then be fit to that portion of the profile, and the value

of the intercept is used to produce a heat flux estimate.

Using the sodar data collected from every case, C,2, values were

calculated and then averaged over each ten minute period from 900 to

1700 EST. From those averages, the log-log plots of CT versus height

were produced. When a portion o! a profile showed a -4/3 slope, a

'nomogram' of lines with a -4/3 slope and various intercepts calibrated

in values of heat flux was placed over the CT profile. Figure 4.10

is an example of a 'nomogram' that goes from values of 5 to 60 W m_2

by increments of 5 W m 2 . The average heat flux for that ten-minute

period based on the free convection section of the profile was

calculated using the 'nomogram'.
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5.0 ''F.SULTS

5.1 INTRODUCTION

The results from this research need to be discussed in terms

of two separate measurement periods:

1. The first three data sets collected in mid ® and late July.

(Hereafter referred to as the J cases.)

2. The last four data sets taken dui:ing mid-September and

early October. (Hereafter referred to as the S cases.)

An examination of the heat flux estimates from both the sodar and

the SDMS suggests significant differences between the two periods.

In the S cases, no usable sodar values of heat flux were obtained

due to the absence of a clear-cut free convection regime, whereas

the SDMS estimates of heat flux increased between the J and S cases.

In the discussion below, three primary causes for variations in

surface heat flux between the J and S cases are evaluated:

1. The change of	 anon.

2. The aging of the crop between the two periods.

3. The change in the soil moisture between July and September.

5.2 RADIOMETRIC/MODEL DERIVED HEAT FLUXES

Figure 5.1 displays the surface temperature ranges for every

case. Between the J and S cases there is a drop of 6C and 7C

in the average day and night temperatures, respectively. This step

change is caused by the seasonal decrease in the amount and intensity
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of oolar radiation. Solar radiation records from the Penn State

Meteorological Oboervatory ohowed 482 W m 
2 

received on July 25

(Case 3) verouo 422 W m 
2 
on September 11 (Ca ge 4). The zenith angle

of the sun wao larger in the S caoeo, reoulting in a docroaoo in tho

intenoity of the solar radiation. Although the temperature ranged

for the S cases were cooler, the RDMS heat fluxes (see Figure 5.2)

increased an average of 25 W m -2 between the J and S cases. Apparently,

although the solar radiation was weaker in the S cases, it was

partitioned in ouch a manner ao to produce heat fluxes greater than

those in the J cases. There is evidence that a reduction in the

evaporative flux is responsible for this result.

Along with the amount of rainfall, the age of the plants is an

important factor determining the evaporation from a canopy. When

vegetation becomes senecent, reaching the end of its life cycle,

evapotranspiration is greatly reduced. Observations indicated that

senecent vegetation and a lack of rainfall were present in the S

cases.

Sirce the S cases occurred in the autumn, the crops at Rock

Springs were brown and dying. To quantify the lack of rain in the S

cases, an Antecedent Precipitation Index (API) was calculated for

each case from the rainfall data at the Penn State Meteorological

Observatory. The API, following Blanchard et al., (1980) 1 , expresses

moisture depletion as an exponential decaying function of the rainfall

in this form,

1Blanchard, B. J., McFarland, M. J., Schmugge, T. J., and Rhoades, E.:
"Estimation of soil moisture with API algorithms and microwave
emissions." Unpublished manuscript.
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()1

API, 0 P i + (API (i-l) ) It I	 0.0

where

API o moioturc inden

P o daily effective rainfall

It - depletion conotant < 1 and a function of time

i o day of the eotlmate.

An average depletion conotant (h) for the period of .920 wao uoed and

the effective rainfall P xvao related to the actual rainfall P a in

6',10 faohion:

P	 P • 829
	

(5.2)
a

The API values for each caoo are displayed in Figure S.3. The average

API in the S caoco io one-half the value in the J caoco.

This change in coil and crop moisture wao reflected in the RDMS

measuremento. Figure 5.4 io a block diagram of the RDMS M and P

values for every case. Note that the average RDMS eotimate of M

for the S cases decreases by three tenths from the J cases. When the

moisture availability of a surface decreases, a larger amount of the

net radiation is partitioned into sensible heat flux instead of

evaporative flux. By examining the RDMS-computed Bowen ratios for

each case (Figure 5.5), the change in the partitioning of the net

radiation between the J and S cases is clearly demonstrated.
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1	 2	 3	 4	 5	 6	 7

Case Number

Figure 5.3	 The Antecedent Precipitation Index (API)
for each case. An average depletion constant
(k) of .92 was used.
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Figure 5.5	 Bowen ratios calculated by
the RDMS for Cases 1-7.
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5.3 SODAR DERIVED HEAT FLUXES

When the sodar data were first analyzed, the CT profiles produced

were 30 minute averages. Very few -4/3 slopes that extended over 100

meters were observed in any of the cases. Figure 5.6 illustrates the

state of the atmosphere when free convection exists. A matching layer

where both surface and mixed layer scaling are valid is present from

a height of the absolute value of the Monin Length (L) to one tenth

of the inversion height (.1 Zi ). A matching layer is most often

found when winds are light, and solar heating is strong. Thus, the

absence of extensive -4/3 slopes in the CT profiles was puzzling

because of the clear skies and light winds (3-5 m/s) present when

the data were collected.

The original intent of the 30-minute averages was to eliminate

the effects of individual thermals and thereby show the average free

convection layer. It appeared from the 30-minute averages however,

that only a small portion, if any, of most 30-minute periods had free

convection conditions existing. To see if free convection periods

were present on a shorter time scale, CT profiles averaged over 10-

minutes were produced for all the cases. The 10-minute averages

indicated that the sodar heat fluxes were also divided into J and

S cases. With the sodar, however, the difference was much more

drastic since the 10-minute averages improved the heat flux estimates

in the J cases but failed to produce better results in the S cases.

Although the J cases showed deeper free convection with the 10-

minute averages, free convection was still present only intermittently

throughout the day. The inconsistent presence of free convection in
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Free Atmosphere
Zi

Mixed Layer

®	 ._.__	 .1 z i

ELI

Surface Layer

Figure 5.6	 A schematic diagram of the atmosphere when free

convection conditions exist.
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the J cases is illustrated by examination of two of the log-log plots

of C,
2
 versus height used to estimate the heat flux. Figure 5.7a is

the average CT profile for 1350-1400 EST on July 24 (Case 2), and

Figure 5.7b is the average profile for the following ten minutes. It

should be noted that the -4/3 slope line drain on each plot is not

the best linear fit to the -4/3 slope over the entire depth of the

free convection layer, but merely a line drawn through the CT value

at 150 m to illustrate the -4/3 slope. Figure 5.7b has a free

convection layer extending from 80 to 200 meters, while that for the

previous ten-minute average indicates a shallow layer of about 30 m

at a height of 150 m. This lack of continuous free convection is

present throughout the J cases.

In the S cases, the situation was even worse. Occasional free

convection periods were noted in the early morning hours (900-1100 EST),

but were lacking in the remainder of the day. Figure 5.8 is a CT

profile for 1400-1410 EST on September 11 (Case 4) showing the weak

CT values characteristic of an S case afternoon. Thus, any heat

fluxes that were determined in the S cases were weak and failed to

display a diurnal trend. The lack of the expected diurnal variation

increased doubts about obtaining any useful heat fluxes from the S

cases' sodar data.

Obviously something was disrupting the establishment of continuous

free convection conditions at the site of sodar antenna. A mixed

layer depth experiment using aircraft and sodar measurements had been

performed at Rock Springs in 1978 (Lipschutz, 1978). Underwood (1981b)

noted the presence of a low level inversion in the sodar data below

the inversion height measured from the aircraft. In order to see if
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a low level inversion was prevent in this experiment, the six hourly

NEROS sounding data taken at Penn State during Cases 2 and 3 (July 24

and 25) were examined. Figure 5.9 includes the series of soundings

for Case 3 (July 25). Note the weak inversion at 920 mb in the

afternoon (18Z) sounding that is still present in the evening (00Z)

sounding. Thus, even during the strong solar radiation of the J cases

a low level inversion was present.

Speculation on the cause of this inversion centered on the non-

homogeneity of the terrain surrounding the site. As Figure 5.10 shows,

the sodar is located on the east side of a broad valley. To the west

are a ridge and elevated plateau. When the western ridge and plateau

were heated, a plume of warm air at the surface of the plateau could

have been advected by northerly winds at levels above the valley

floor 
2. 

This elevated plume was a possible cause of the low level

inversion plaguing the sodar results.

The intermittent nature of the free convection conditions in the

J case sodar data indicated that the low level inversion might

periodically be disrupted by the penetration of a large thermal.

At that time, short-lived free convection would exist and the sodar

could estimate the heat flux. Figure 5.11 shows the quantitative

false color display of the sodar data from Case 2 (July 24) and

Case 6 (September 19). As shown by the Case 2 sodar returns, strong

thermals were rising from the surface to about 200 m, whereas in

Case 6 there was only weak thermal activity. The conclusion is

that because of the reduced solar radiation in the S cases, the thermals

2 observed winds were northerly during every case.
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BLACK AND WHITE PHOTOGRAPH

White and Red - highest C2 values.

Black and Blue - lowest CT values.

Date, time and location are displayed vertically
near the left side.

The scale on the le f t side is in hundredths of

meters.

Figure 5.11a	 Quantitative false color display of
sodar data for Case 2.
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7
White and Red - highest CT -values.

Black and Blue - lowest CT val.-!s.
Date, time and location are displayed vertically
near the left side.

The scale on the left side is in hundredths of
meters.

Figure 5.11b	 Quantitative false color display of
sodar data for Case 6.
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were weaker than in the J cases and were never able to break the

inversion. Since a free convection layer coui.d not be established,

no heat flux estimates could be made from the S cases' sodar data.

5.4 COMPARISON OF THIS SDMS AND SODAR HEAT FLUXES

Because the sodar heat flux values from Cases 4-7 were considered

unreliable, the comparison between the RDMS and sodar values was

attempted only for Cases 1-3. Figures 5.12-5.14 display the RDMS heat

flux and solar radiation estimates compared with sodar heat flux and

pyranometer data, respectively.

The uncertainty in the RDMS heat flux estimates was caused by the

problems in determining an area-averaged temperature for the hetero-

geneous Rock Springs site. There were three day/night temperature

pairs for each case that defined the estimated area-averaged value

and its error. The three heae flux curves produced from those

temperatures therefore defined the RDMS heat flux estimate and its

uncertainty. In Figures 5.12-5.14, the RDMS heat flux is plotted as

a swath with boundaries that lie halfway between the RDMS heat flux

curve and the curves defining its uncertainty. The high and low

heat flux curves themselves were not plotted as the error limits

because those curves were often based on extreme values of M. For

example, the low heat flux curve of Case 1 is calculated using an

M value slightly greater than 1. Thus, the most reasonable uncertainty

for the RDMS heat flux was felt to be halfway between the middle

curve and each extreme curve.

The sodar heat flux values plotted in Figures 5.12-5.14 were

corrected for three known error sources:
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Figure 5.12	 Heat flux and solar radiation data measured
and calculated for Case 1.
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Figure 5.13	 Heat flux and solar radiation data calculated
and measured for Case 2.
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1. Uncertainties in the calibration of the oodar.

2. Excess attenuation from turbulence of the sodar signal.

3. An increase in the sodar signal caused by humidity fluctuations.

The calibration process as described by Underwood (1978) requires

a measurement of the acoustic pressure at the antenna beam axis and

the variation of output acoustic powez with RMS voltage given to the

transducer. Both these measurements are determined in part using a

microphone placed in the far field of the antenna beam pattern. If

the microphone is not in the far field of the antenna, the sodar

will be incorrectly calibrated. The far field of an antenna begins

at about ten rimes the antenna diameter. Since the Aerovironment

antenna is 1.2m in diameter, tte microphone should have baen at least

12m away. The calibration for t'&-.-4 G experiment was performed with the

microphone approximately 7m from the antenna. Thomson (1981) estimated

that the sodar heat fluxes could be in error from this problem by 5%.

Excess attenuation of the sodar signal is caused by turbulent

spreading of the acoustic beam (Underwood, 1981a). The amount of

excess attenuation is dependent on the antenna beam pattern and

several atmospheric variables. Figure 5.15 developed by Underwood

(1981c) was used to determine the excess attenuation term E in

equation 2.1 for this experiment and was drawn using a friction velocity

of 0.20 ms-1 , a frequency of 1600 hz, an antenna diameter of 1.2m, and

an inversion height of 1000m. By determi,

Z /z 1 (.15), and z i J-L (200) for the first

results, E was estimated from Figure 5.15

F	 only an estimate of the average E and the

zing the average z  (% 1000m),

three cases from the RDMS

as 10%. Since this value is

heat flux varies as the .75
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Figure 5.15	 Plot of excess attenuation (E) versus Z/Z i for
various values of Z /L used to estimate the
error in the sodar results caused by excess
attenuation. (Source: Underwood (1981c)).
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power of CT , the reduction in the sodar heat flu:: values due to exceos

attenuation was established at 10%.

Humidity fluctuations can cause the sodar to overestimate the

heat flux by increasing the amount of backscattered energy. Coulter

and Wesely (1980) derived a correction factor 
y 0 

that utilizes Bowen

ratio measui- ants to correct sodar heat flux values for humidity

fluctuations. To a first approximation, for all values of the Bowen

ratio

yso -- (1 + 0.07 /R s ) -1	(5.5)

where Ss is the surface Bowen ratio. Multiplying y so times the

measured heat flux produces the correct value. Since no measurements

of the evaporative flux were made in this experiment, an average RDMS

value of the Bowen ratio in the first three cases was computed. Using

this value for 6s in equation 5.5, y3o was approximately 0.7.

lite three aforementioned error sources were combined into a

correction factor that lowered all the sodar-derived heat fluxes by 1!%.

'rhe corrected values are plotted in Figures 5.12-5.14. The error bar

on each value represents a 10% uncertainty following Coulter and

Wesely (1980). The actual comparison of the RDMS and sodar heat flux

values was disappointing. in Case 3, the magnitudes were somewhat

smaller, but there was a sevire lack of agreement (% 30-50 W m 2 ) in

Cases 1 and 2.

The disagreement of Case 1 (Figure 5.12) was characterized by the

sodar values being about 45 W m 2 lower than the RDMS heat fluxes



s

	

05

between 1130 and 1330 EST. While the smooth RDMS heat flux curve

was peaking, the aodar estimates suddenly dropped to a lower level.

In the hours leading up to 1130 EST, the RDMS and sodar results

disagreed in magnitude by 25 to 35 W m 2 , but increased at the same

rate. At 1330 EST, the aodar estimates gained 5 to 10 W m 2 . Thereafter,

the rate of decrease of the sodar heat fluxes matched that of the RDMS

values. This afternoon period (1330-1700 EST) had better agreement than

the morning period since the heat flux magnitudes differed by only 10 to

30 W m2.

The sodar results of Case 2 (Figure 5.13) followed the same basic

pattern of Case 1. Between 900 and 1130 EST, the sodar values were

35 to 45 W in 2 too low, but increased at the same rate as the RDMS

values. Between 1130 and 1500 EST, 4 out of the 5 sodar values were

at a level 10 to 25 W m 2 below the values at 1105 and 1515 EST. The

exception for this period was one sodar value at 1405 EST that was

within 20 W m 2 of the RDMS estimate. After 1500 EST, the sodar results

were within 15 W m 2 of the RDMS heat flux curve in magnitude and

declined at the same rate.

Case 3 (Figure 5.14) also had the same pattern of midday disagree-

ment, but the RDMS and sodar values of the afternoon and morning

periods were much closer than in the first two cases. The morning

period of 900 to 1200 EST had two values within 10 W m 2 of the RDMS

results. Three values were only 15 to 30 W m 2 lower than the RDMS

estimates and had the same rate of increase. Between 1200 and 1400 FST,

only two sodar estimates were obtained. These sodar values were 20 to

30 W m 2 less than the RDMS values for that time and 10 to 15 W m 2
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below the oodar estimates at either and of the period. In the afternoon

period for Caoe 3 (1415-1700 CST), the RDMS and oodar magnitudes were

close. All the oodar values were within 10 W m 2 of the RDMS valueo.

Since an energy budget equation is the basis of the boundary

layer model in the RDMS, if the model cannot accurately predict the

amount of incoming solar radiation, the RDMS results will be invalid.

Pyranometer data from the Penn State Weather Observatory were available

for Cases 1-4 and 7. The model-predicted and measured solar radiation

values are included in Figures 5.12-5.14. The agreement between the

measured and predicted values is excellent. This result indicates

that the RDMS heat flux curves are valid for Cases 1-3. The comparison

for Case 7 is not as good, however (see Figure 5.16). The boundary

layer model is overestimating the measured solar radiation by ti 500 W m 2

during the middle part of the day. In Case 7, therefore, the RDMS

results may be incorrect since they are based on more solar radiation

than was actually received.

In the preceding discussion, a pattern of agreement in the trend

of the values for a morning and afternoon pericd emerges. During

the midday hours a period of strong (25 to 45 W m 2 ) disagreement

was present. Within this pattern, only Case 3 had comparable sodar

and RDMS magnitudes for the heat flux. The boundary layer model and

pyranometer solar radiation data agreed almost exactly for Cases 1-3.
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solar radiation for Case 7.
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6.0 CONCLUSIONS AND RECOM ENDATIONS

The purp000 of thio research wao to validate a method that uoeo

remotely derived ourface temperatureo and a boundary layer model to

ootimato ourface energy budgeto and certain ourface paramotoro.

Secauoo remotely oenoed temperature meaouremonto tend to ropr000nt

values averaged over an area, the ourface fluaxeo determined uoing

ouch data muot aloo be area-averageo. To carry out an effective

validation study, ground truth data muot be obtained from an independent

technique which aloo produces area-averaged valueo.

One ouch method io oodar. The oodar can produce heat flux

actimateo averaged over the same scale ao the remotely oenoed tempera-

ture data. By measuring the scattering of sound in a volume by

temperature fluctuations uoing oodar, one can compute valueo of a

temperature structure constant, C T CT can in turn be related to

the surface heat flux by a 4/3 power law when free convectic-

conditions exist in the atmosphere.

In this research, the remotely sensed temperature data was

obtained using a hand-held radiometer. A simultaneous collection

of radiometric surface temperature and oodar data was made on seven

occasions between mid-July and mid-October 1950.

The comparison betw een the radiometric data/model system (RDMS)

and sodar derived heat fluxes proved disappointing. Free convection

conditions were not present in Cases 4-7 and only intermittently in
a

Cases 1-3. The oodar heat fluxes obtained in the first two cases

were 25 to 45 W m 2 lower than the RDMS values. In the third case,

the sodar and RDMS heat flux values were within 20 W 
m-2  

of each other.
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The RDMS io a relatively unPaoted method. It io difficult to

make strong concluoiono concerning ito validity oinee the RDMS and

oodar reoulto disagree. However. the evidence preoented indicates

that the oodar valued could be in error by greater than the 102

figure given by Coulter and Wooly (1950). A p000ible oource for

the poor oodar reoulto was the presence of a persistent low level

inversion. This inversion wao formed by a warm plume advected over

the valley oodar site from an elevated heated plateau.

The results do suggest, however, that the true heat fluxes were

not undereotimated by the RDMS. Therefore, the Bowen ratioo over

wall-watered vegetation are likely to be quite small. Computation

of an Antecedent Precipitation Index (API) suggests a decreaoc in

the soil moisture between July and September. This decreaoe io aloo

present in the RDMS results.

Any future attempts to validate the remotely-oeneed surface

temperature and boundary layer model method should take heed of tLe

difficulties encountered in this research. If the radiometric

surface temperature data is to be used again, a leas subjective

method to determine an area-averaged temperature should be developed.

Steps should also be taken to improve the quality of the oodar results

by insuring that.the effects of complex terrain are minimized. In

addition, the technique successfully used by Coulter and Wesely (1950)

to obtain sodar-derived heat fluxes should be emulated. Their

procedure includes simultaneous heat flux measurements using the

eddy correlation method and real time display of CT profiles to

determine conclusively if free convection exists. Improving the

0

r
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oodar results and using better surface temperature data will enable

stronger conclusions to be drawn about the validity of the remotely

sensed surface temperature and boundary layer model method.



e

91

REFERENCES

Augustine, J. A., 1978: A detailed analysis of urban ground temperature
using high resolution satL^lite measurements. M.S. Thesis,
Department of Meteorology, The Pennsylvania State University.

Barnes, W. L. and Price, J. C., 1980: Calibration of a satellite
infrared radiometer. Appl. Opt., 19, 2153-2161.

Blad, B. L. and Rosenberg, N. J., 1976: Measurement of crop temperature
by leaf thermocouple, infrared radiometry and remotely sensed
thermal imagery. Agronomy J., b5, 341-347.

Carlson, T. N. and Boland, F. E., 1978: Analysis of urban-rural canopy
using a surface heat flux/temperature model. J. Appl. Meteor.,
17, 998-1013.

Carlson, T. N., Dodd, J. K., Benjamin, S. G., and Cooper, J. N., 1981:
Satellite estimation of the surface energy balance, moisture
availability and thermal inertia. J. Appl. Meteor., 20, 67-87.

Conway, J. and Van Bavel, C. H. M., 1967: Evaporation from a wet
soil surface calculated from radiometrically determined surface
temperatures. J. Appl. Meteor., 6, 650-655.

Coulter, R. L. and Wesely, M. L., 1980: Estimates of surface heat
flux from sodar and laser scintillation measurements in the
unstable boundary layer. J. Appl. Meteor., 19, 1209-1222.

DiCristofaro, D. C., 1980: Remote estimation of the surface character-
istics and energy balance over an urban-rural area and the effects
of surface heat flux on plume spread and concentration.
M.S. Thesis, Department of Meteorology, The Pennsylvania State
University.

Dodd, J. K., 1979: Determination of surface characteristics and
energy budget over an urban-rural area using satellite data
and a boundary layer model. M . S. Thesis, Department of
Meteorology, The Pennsylvania State University.

Fuchs, M., Kanemasu, E. T., Kerr, J. P., and Tanner, C. B., 1967:
Effect of viewing angle on canopy temperature measurements with
infrared thermometers. Agronomy J., 59, 494-496.

Fuchs, M. and Tanner, C. B., 1966: Infrared thermometry of vegetation.
Agronomy J., 58, 597-601.

Fuchs, M. and Tanner, C. B., 1968: Surface temperature measurements
of bare soils. J. Appl. Meteor., 7, 303-305.

r



0
92	 a

0

REFERENCES (Continued)
.

Heilman, J. L. and Kanemasu, E. T., 1976: An evaluation of a
°	 resistance form of the energy balance to estimate evapotranspira-

tion. Agronomy J., 68, 607-611.

Kocin, P. J., 1979: Remote estimation of surface moisture over a
watershed. M.S. Thesis, Department of Meteorology, The
Pennsylvania State University.

Lipschutz, R. A., 1978: An experimental study of the relationship
of surface wind fluctuations to the stability, mixing depth and
terrain. M.S. Thesi-, Department of Meteorology, The Pennsylvania
State University.

Neff, N. D., 1975: Quantitative evaluation of acoustic echoes from
the planetary boundary layer. NOAA Technical Report ERL 322-WPL-
38, NOAA, ERL, Boulder, CO, 34 pp.

:Schiermeier, F. A., Wilmon, W. E., Pouler, F., Ching, J. K., and
Clarke, J. F., 1979: Sulfur transport and transportation in the
environment (STATE): A major E.P.A. research program. Bull. Amer.
Meteor. Soc., 60, 1303-1312.

Sellers, W. D., 1965: Physical Climatology, The University of
Chicago Press, Chicago, 272 pp.

Tatarski, V. I., 1971: The effects of the turbulent atmosphere on
wave propagation. U.S. Department of Commerce, IPST Cat. No. 5319,
NTIS, Sprinfield, Virginia.

"homson, D. W., 1981: Error in 	 heat flux values from the
calibration procedure. PrivaL: communication, June 1981.

Underwood, K. H., 1978: A quantitative study of cooling tower plumes
using a monostatic sodar. M.S. Thesis, Department of Meteorology,
The Pennsylvania State University.

Underwood, K. H., 1981a: Sodar signal Frocessing for the Ris6 78
Experiment. Ph.D. Thesis, Depart%ent of Meteorology, The
Pennsylvania State University.

Underwood, K. H., 1981b: Presence of low level inversions in Rock
Springs sodar data. Private communication, April 1981.

Underwood, K. H., 1981c: Calculation of the error in sodar heat flux
values from excess attenuation. Private communication, May 1981.

O

Wyngaard, J. C., Izumi, Y., and Collins, S. A., Jr., 1971: Behavior
of the refractive index structure parameter near the ground.
J. Opt. Soc. Amer., 61, 1646-1650.



93

APPENDIX A

	

°	 SURFACE TEMPERATURE ERROR FROM ASSUMING A GROUND EMISSIVITY OF ONE

Many investigators (Fuchs and Tanner (1966), Conway and Van navel

(1967), Fuchs and Tanner (1965)) using radiometers to determine

vegetatian and surface temperatures, estimated the surface emissivity

and atmoopha ric downwelling radiation in order to increase the

accuracy of their measurements. An investigation into the error

caused by assuming a surface emissivity of one is shown below. From

that explanation, it was determined that for the purposes of this

research it was not necessary to take the reflected downwelling

radiation into account.

Figure A.1 shows that the longwave radiation reaching the

radiometer is a combination of ground and reflected downwelling

radiation from the atmosphere. This situation can be written

mathematically using Planck's Law as

a Teo = e  o Too + (1-e
9
)ea v Tao	(A.1)

where

a = Stefar aoltzman constant,

T  = effective temperature as measured by the radiometer,

E  = emissivity of the ground,

	

0	
To = actual ground temperature,

Ea = emissivity of the air,

T  = temperature of the air.
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Solving equation A.? for the actual temperature T o yields

T	
`Q Teo - ( 1-EA)ta a Ta 1/4	 (A.2)To
	 e a

g

By using some reasonable values in (A.2), an estimate of the

difference between the real and actual values for this research can

be obtained. It if is assumed th,;t

the effective temperature T  is 300 K,

the air temperature T  is 300 K,

the emissivity of the air e a is 0.6 (Sellers (1967)),

and the emissivity of the ground 
c
  is 0.98 (Fuchs and

Tanner (1966)),

then the actual ground temperature To is 300.31 K. Thus, the actual

temperature is only .3C warmer than the temperature measured by the

radiometer. It is clear then, that to achieve an accuracy of ± MC,

one must determine the actual emissivity of the ground.

However, two other error sources in this experiment overwhelm

the emissivity error.

1. Tanner et al. (1967) noted a ± 0.3C variation in time

with their temperature measurements ,just from air turbulence.

2. A pre-experiment calibration of the radiometer showed that

it consistently overestimated the temperature of a stirred

water surface by 1.5 to 2C. This error was accommodated by

subtracting a constant 1.7C from the measurements.

0
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The additional effort of determining the surface omiooivity of

a
the heterogeneous cropland at the Bock Springs site is clearly not

worth the effort. The error from assuming a surface emisoivity of

one is loot in the radiometer and turbulence errors which combined,

make each measurement accurate to ± 0.5C. Since satellite radiometric

and the boundary layer model temperatures are accurate only to ± 1 or

2C, the error of t 0.5C is acceptable.

0
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APPENDIX B

SURFACE TDIPERATURE MEASUREMENTS FROM AN AIRBORNE RADIOMETER

In Caoe 6, in addition to the regular ourface temperature

mcaourementa, temperature data were collected from an airborne

radiometer. An Everest Infrared Thermometer with a 3 degree field

of view was flown four times at about 150m over the Rock Springo

site. During the overflights, temperature values for various cropo

were recorded. The raw data are presented in Table B.1. The Evereot

radiometer does not assume an emissivity of one in producing its

temperature values. Unlike the Barneo radiometer used on the ground,

the Everest user specifies an emissivity from 0 to .99. Thus, the

theory discussed in Appendix A must be altered to include the radiometer

radiometer emissivity E r
. 

Putting Er
 
in equation A.1 we obtain

E a T	
c3 

E a T	 + E a T (1-E )	 ( B-1)

We want to calculate how much the radiometer-measured (effective)

temperature T 
e 
changes when E r

 
is changed from a value of one. If

we assume E 9
 
is constant and known and differentiate (B.1) with respect

to E r
 
we get

9

3 
aT	

4

	

Er 4T as - + T 	 Er a 0
r

9T
Solving (B.2) for - e , the result is

ae r

(B.2)
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3T	 T

—4
	 (B.3)

a	 r

Uoing finite diffaroncoo, we can oolve for the change in T 
0 

cauood by

a change in e 
r 

from a value of one.

To compare the Evereot temperature meaouremonto with the tempera-

tureo made on the ground, a correction in the Everest T 
0 

for an E
r 

of

.98 must be made following the theory previoualy diocucoed. If the

Everest measures a temperature of 300 K using an E
r 

Of .98, AE 
r 

io

-0.02 and the corrected Everest temperature 
is 1.5 It warmer than the

measured value.

The average Everest temperature for the site 
was 

24.3C. Adding

in the correction factor of 1.5C, the result io 25.8C. This value is

1.5C cooler than the 27 3C estimated from the ground data. However,

the uncertainty of the ground estimate 
is t 2.5C and no water vapor

correction 
was 

made to the Everest value. The biggest difference

between the two sets of temperatures was the spread in the values.

The ground data went from 21.1C to 29.6C while the Everest values

ranged from 23.6C to 28.5C. The Everest values narrow down, but do

not extend beyond the range of ground values. The agreement between

the estimated area-averaged values indicates that the subjective

analysis performed on the ground temperature data produces a reasonable

area-averaged temperature value.
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APPENDIX C

DETERMINATION OF ISMS HEAT FLUX POn CASE 3

O

The boundary layer model, rafter having been ouitably initialised

for Caoe 3 (July 25, 1900), wao run for the period 0600 to 2400 EST

16 timeo uoing different moioture availability (M) and tho mal

inertia (P) combinationo that spanned those parameters lihely rangeo

(M - 0.25-1, P - 0.005-0.00). The ourface temperature data for

Case 3 wao collected at 1500 EST and 2400 CST. At those timeo, the

model output for each M and P combination wao entracted and otored.

Ac a Dimple way of representing the 16 seta of model output, oecond

order regression equationo were formed with ourface tomperatureo ac

predictors and M, P, or a sca l face flue as the predictind. The

regresoion equations had the form

X o C0 
+ C 1 T d + C 

2 
T d 2 + C 

3 
T N 2 + C 

4 
T 
N 2

where X is M, P, heat flux, etc., C0®C5 are the regression coefficiento

for the parameter, Td is the day surface temperature, and T N is the

night surface temperature. In this research, the important equations

were those predicting M and P and the regression coefficients for

those equations are given in Table C.I.

The next step was to use the observed surface temperatures to

6
	 predict an M and P value for this case. T d and TN , estimated at

30.3C and 14.3C, respectively, produced an M of 1.0 and a P of 0.068.

To determine the RDMS heat flux estimate for Case 3, the model was

run again with the same set of initial conditions, but M and P were

D

0

w`T..



101

hold fined at 1.0 and 0.060, reopoctively. The reoulting diurnal

heat flue curvo and 9to uncertainty are plotted ao a owath in Figure

5.14.
0

Table C.1 nog reooion coofficionto for M and P in Caoo 3.

m P

C0 4.75 0.446

C 1 -0.165 -0.0201

C 2 0.0376 -0.00504

C 3 0.00147 0.00231

C 4 -0.00209 0.000451

k,
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