NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
SECRETARIA DE PLANEJAMENTO DA PRESIDÊNCIA DA REPÚBLICA

(E82-10172) PHOTOGEOLoGIC MAPPING IN CENTRAL SOUTHWEST BAHIA, USING LANDSAT-1 MULTISPECTRAL IMAGES (Instituto de Pesquisas Espaciais, São José) 57 p HC A04/MP A01

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Instituto de Pesquisas Espaciais
A área estudada situa-se na porção centro-sudoeste da Bahia, estando o centro da imagem (órbita 164, ponto 21) nas coordenadas de 13°08'S/44°12'W. A metodologia para interpretação de imagens MSS-LANDSAT foi baseada nas características diferenciais do relevo, drenagem, tonalidade, textura e aspectos espectrais do sistema LANDSAT. Predominantemente, a área estudada é constituída de rochas pré-cambrianas de baixo grau de metamorfismo, cobertas por rochas sedimentares mesozóicas e por sedimentos inconsolidados cenozóicos. Os principais recursos minerais de valor econômico são representados por fluorita e calcário, além de outras ocorrências de pequeno significado econômico, tais como, ouro, calcita, cristal de rocha, cobre, salitre e alumínio.

Trabalho aceito para apresentação na 33a. Reunião Anual da Sociedade Brasileira para o Progresso da Ciência (SBPC) - Salvador, de 09 a 15 de julho de 1981.
ÍNDICE

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUÇÃO</td>
<td>1</td>
</tr>
<tr>
<td>2. ASPECTOS FISIOGRÁFICOS</td>
<td>2</td>
</tr>
<tr>
<td>2.1 - Localização e Vias de Acesso</td>
<td>2</td>
</tr>
<tr>
<td>2.2 - Relevo</td>
<td>3</td>
</tr>
<tr>
<td>2.2.1 - Planicie do Rio São Francisco</td>
<td>3</td>
</tr>
<tr>
<td>2.2.2 - Chapadão dos Gerais</td>
<td>3</td>
</tr>
<tr>
<td>2.3 - Vegetação</td>
<td>5</td>
</tr>
<tr>
<td>2.3.1 - Caatinga</td>
<td>5</td>
</tr>
<tr>
<td>2.3.2 - Cerrado</td>
<td>5</td>
</tr>
<tr>
<td>2.4 - Hidrografia</td>
<td>6</td>
</tr>
<tr>
<td>2.5 - Clima</td>
<td>6</td>
</tr>
<tr>
<td>2.6 - Solos</td>
<td>7</td>
</tr>
<tr>
<td>2.6.1 - Solos Residuais</td>
<td>7</td>
</tr>
<tr>
<td>2.6.2 - Solos Transportados</td>
<td>7</td>
</tr>
<tr>
<td>3. MATERIAIS E MÉTODOS</td>
<td>8</td>
</tr>
<tr>
<td>3.1 - Materiais Utilizados</td>
<td>8</td>
</tr>
<tr>
<td>3.2 - Método de Trabalho</td>
<td>3</td>
</tr>
<tr>
<td>3.2.1 - Coleta de Dados Preexistentes</td>
<td>8</td>
</tr>
<tr>
<td>3.2.2 - Análise Bibliográfica</td>
<td>9</td>
</tr>
<tr>
<td>3.2.3 - Interpretação das Imagens</td>
<td>9</td>
</tr>
<tr>
<td>3.2.4 - Trabalho de Campo</td>
<td>12</td>
</tr>
<tr>
<td>3.2.5 - Avaliação</td>
<td>13</td>
</tr>
<tr>
<td>3.2.6 - Elaboração de Mapas Finais e de Relatórios</td>
<td>13</td>
</tr>
<tr>
<td>4. GEOLOGIA</td>
<td>13</td>
</tr>
<tr>
<td>4.1 - Trabalhos Anteriores</td>
<td>13</td>
</tr>
<tr>
<td>4.2 - Estratigrafia</td>
<td>15</td>
</tr>
<tr>
<td>4.2.1 - Formação São Marcos</td>
<td>15</td>
</tr>
<tr>
<td>4.2.2 - Grupo Bambuí</td>
<td>17</td>
</tr>
<tr>
<td>4.2.3 - Formação Urucuia</td>
<td>21</td>
</tr>
</tbody>
</table>
ABSTRACT

The studied area corresponds to a LANDSAT multispectral image (orbit 164 point 21) that covers a central-southwestern portion of Bahia. The process of extracting information from LANDSAT imagery was based on the analysis of the various features on the Earth's surface, which are reflected by diverse photographic elements such as tonal, drainage, topographic, vegetation and land-use patterns, in each spectral band. The geology of the studied area is composed of low grade Precambrian rocks, covered by Mesozoic and Cenozoic sediments. The principal economic mineral prospects are represented by fluorite and calcareous rocks, plus several other occurrences of minerals of little economic value, such as gold, calcite, rock crystal, copper, potassium nitrate and alumina.
1. INTRODUÇÃO

O presente relatório objetiva apresentar as potencialidades dos produtos finais, principalmente fotográfico, do sistema LANDSAT, e a síntese geológica da área referente à imagem MSS-LANDSAT, juntamente com o levantamento de seus recursos minerais.

A área estudada situa-se na porção centro-sudoeste do Estado da Bahia, perfazendo um total de 34.000 Km², aproximadamente (Figura 1). Essa área corresponde à imagem MSS-LANDSAT-1, identificada pelo número E-1048-12303 (órbita 164, ponto 21), com passagem de 09 de setembro de 1972; o centro dessa imagem possui as coordenadas de 13902'S / 44912'W.

A imagem estudada corresponde a uma das primeiras obtidas pelo satélite LANDSAT-1, visto que seu lançamento ocorreu em 23 de julho de 1972 e está desativado pela NASA desde outubro de 1976. Um segundo satélite desse programa foi lançado em 22 de janeiro de 1975, e desligado pela NASA a partir de 03 de abril de 1978, quando se iniciou a gravação de dados do terceiro satélite.

O LANDSAT-3 foi lançado com sucesso, pela NASA, em março de 1978, e ligado para envio normal de dados para a estação de Cuiabá em 03 de abril de 1978; nesse último satélite, a inovação foi a inclusão da banda termal (canal 8 do MSS), operando com comprimento de onda de 10,4 a 12,6 micrômetros.

É interessante lembrar que o programa LANDSAT, ex-ERTS (Satélite Tecnológico de Recursos Terrestres), constituiu-se em um primeiro passo para a união de tecnologias espaciais com o sensoriamento remoto, no sistema de pesquisa e desenvolvimento, para implantar e demonstrar técnicas eficientes de controle dos recursos terrestres.
Importante vantagem desse sistema de satélites é a cobertura sistemática e repetitiva da Terra, sob condições quase constantes de observação. O satélite funciona em uma órbita circular, sincrona com o sol, quase polar, a uma altitude aproximada de 914 quilômetros; a rotação em torno da Terra leva aproximadamente 103 minutos completando 14 órbitas por dia. No fim de 18 dias (ou da conclusão de 251 órbitas) o período de cobertura é completado.

A área estudada, de tectônica simples, foi escolhida para testar e verificar as potencialidades dos produtos finais, principalmente fotográfico do sistema LANDSAT, no mapeamento geológico regional.

2. ASPECTOS FISIOGRÁFICOS

2.1 - LOCALIZAÇÃO E VIAS DE ACESSO

A área estudada é limitada pelas seguintes coordenadas de seus vértices: 12°02'2''S/43°01'11''W - 12°05'5''S/44°51'W - 13°04'2''S/45°14'W - 13°05'9''S/43°33'W, situando-se no centro-sudoeste da Bahia, sendo parte integrante da Folha Brasília (SD-23), da Carta Internacional do Mundo Milionésimo (Figura 1).

O rio São Francisco, principal via de abastecimento e escoamento para toda a região estudada, atravessa a área, no sentido S-N, aproximadamente.

Partindo de São José dos Campos, o acesso rodoviário mais seguro é através da rodovia BR-116 até Vitória da Conquista (BA), depois seguindo pela BA-630 até Brumadinho, continuando pela BR-030 até Caetité e, em seguida pela BA-252 atingindo Bom Jesus da Lapa, na margem direita do rio São Francisco (extremo oriental da área estudada).

Das estradas que cortam a área estudada, a mais importante é a BA-252, que liga as cidades de Bom Jesus da Lapa e Correntina, estrada estadual em terra cascalhada, de fácil tráfego. As outras
existentes são de uso temporário, interrompidas na época de chuvas e de cheias do rio São Francisco.

As principais cidades ou vilas, na área estudada, são: Bom Jesus da Lapa, Santa Maria da Vitória, Correntina, Santana, Porto Novo, Coribe, Serra Dourada, Brejolândia, Baianópolis, Cristópolis, Catolândia, Várzeas, Inhaúmas e outras vilas menores.

2.2 - RELEVO

Duas grandes unidades geomórficas caracterizam a área estudada segundo Bahia/Secretaria das Minas e Energia (1974).

2.2.1 - PLANÍCIE DO RIO SÃO FRANCISCO

Está relacionada ao ciclo Velhas de King (1956), com cotas médias oscilando em torno de 500 metros, largura variável, alongando-se na direção aproximada N-S, sendo limitada, a grosso modo, pelo Espinhaço setentrional a leste e pelo Chapadão dos Gerais a oeste.

2.2.2 - CHAPADÃO DOS GERAIS

Essa unidade geomórfica se faz representar, essencialmente, pelos platôs de arenitos friáveis da Formação Urucuia, de idade cretácica. Estando quase perfeitamente aplainada, em cotas de 900 a 1.000 metros, correlaciona-se ao ciclo Sul-Americano de King (1956), possivelmente, do Terciário inferior. Cobre grande parte do ocidente bahiano, a oeste do rio São Francisco, atingindo os limites com os Estados de Goiás, Piauí e Minas Gerais.
Fig. 1 - Mapa de localização da área.
A monotonia da paisagem é quebrada quando os rios regionais entalham os arenitos, pondo a descoberto rochas do Grupo Bambuí, originando vales limitados por encostas extremamente escarpadas.

2.3 - VEGETAÇÃO

2.3.1 - CAATINGA

Caracteriza-se por um extrato arbustivo a subarboreo espinhoso, com raras espécies arbóreas. Durante as estiagens, apresenta-se ressecada, dando ao conjunto um aspecto cinzento, recebendo a coloração verde já no início da estação chuvosa.

É a vegetação típica de clima semi-árido, onde plantas como xique-xique, manda-aru, coroa de frade, jurema e unha de gato são constantes na paisagem. Em solos caracteristicamente hidromórficos, desenvolve-se uma vegetação mais imponente, cognominada por alguns de "mata de caatinga", onde é comum a existência de árvores de caules retos, tais como cedro, aroeira, peroba, angico, pau-ferro, ipê e outros. Essa vegetação pode se tornar mais exuberante, quando desenvolvida em terrenos mais férteis, originados de rochas básicas ou rochas calcárias.

Merece especial destaque em algumas regiões onde predomina esse tipo de vegetação, uma espécie arbórea de caules altos e de formados, denominada "barriguda".

2.3.2 - CERRADO

Compõe-se, essencialmente, de gramíneas e outras vegetações rasteiras com esparsas aglomerações arbórea-arbustivas, baixas, de caules tortuosos.
E a vegetação predominante do Chapadão dos Gerais desen
volvendo-se sobre solos arenosos da Formação Urucuia, também ocorrendo,
restritamente, nas partes mais elevadas da unidade geomorfológica do
Espinhaço setentrional. Mais a oeste, observaram-se extensas campinas
de raquíticas gramíneas, que caracterizam os chamados campos gerais, os
quais representam variações dentro desse tipo.

2.4 - HIDROGRAFIA

A área estudada é subordinada às bacias hidrográficas
dos rios Corrente e São Desidério e dos rios Brejo Velho, Serra
Dourada e Pitubas, todos afluentes da margem esquerda do médio curso
do rio São Francisco.

O rio São Francisco é navegável desde Pirapora (MG) a
Juazeiro (BA), e o rio Corrente é a partir de Santa Maria da Vitória,
indo desaguar no rio São Francisco.

Uma análise do tipo da rede de drenagem da área mostra,
de uma maneira geral, dois padrões distintos: paralelo a subparalelo,
nos arenitos da Formação Urucuia, e dendrítico na região de sequência
carbonática do Grupo Bambuí (Apêndice A).

2.5 - CLIMA

O clima dessa área, banhada pelo médio rio São Francis-
co, é semi-árido, possuindo uma estação chuvosa, que se estende de de
zembro a março, com uma precipitação pluviométrica anual, oscilando
entre 700 a 900 mm. De acordo com a classificação de Köppen, enquadr-
se no clima de transição Aw-BSh.

A temperatura ambiente é bastante variável em toda a re-
gião, registrando máximas médias de 33°C, nos meses de setembro a no
vembro, caindo consideravelmente no inverno, para valores mínimos mé-
dios em torno de 10°C.
Há um aumento gradual das isotermaas de sul para norte, sendo a mesma progressão verificada quando se aproxima do vale do rio São Francisco, de leste para oeste.

2.6 - SOLOS

Com base numa classificação de caráter regional foram distinguidos, na área, dois tipos principais de solos: residuais e transportados. Ambos tiveram as suas origens condicionadas aos fatores climáticos, litológicos e morfológicos das diversas regiões de ocorrência dos mesmos (Bahia, Secretaria das Minas e Energia, 1974).

2.6.1 - SOLOS RESIDUAIS

Esse tipo predomina em grande parte da região. Nas chapadas ocorre um solo arenoso ou silto-arenoso, pouco profundo, de reduzida fertilidade e com tonalidades claras.

Os solos mais férteis de toda a região abordada, na sua maioria, estão ligados à presença de rochas calcárias do Grupo Bambuí, que formam um manto argiloso, vermelho, consideravelmente espesso.

Solos calcários do Grupo Bambuí aparecem nos vales escavados do Chapadão dos Gerais, em virtude da remoção do arenito Uruçuia, pelo forte poder erosivo dos rios que drenam a região.

Diferenciações locais para solos hidromorrficos são observadas em estreitas faixas, acompanhando cursos de rios e riachos, com larguras e intensidades proporcionais aos volumes de água que apresentam.

2.6.2 - SOLOS TRANSPORTADOS

Os solos aluviais da região são moderadamente bem drenados, formados de material arenoso e argilo-arenoso, não consolidados, de deposição recente, e mostrando camadas estratificadas sem qualquer
relação genética entre si. São encontrados ao longo dos rios, sobre topografia plana e normalmente com associações de solos hidromórficos. Realiza-se, em destaque primeiro plano, a extensão planítica do rio São Francisco e, em igualdade de condições, as coberturas aluviais dos rios perenes que cortam o Chapadão dos Gerais.

Ocorrem também solos transportados, arenosos, de origem coluvial, com raros aparecimentos de depósitos de talus, dispondo-se ao sopé das escarpas do Chapadão dos Gerais.

3. **MATERIAIS E MÉTODOS**

3.1 - **MATERIAIS UTILIZADOS**

Para a realização desse trabalho foram utilizadas cópias em papel preto e branco, de imagens multiespectrais do satélite LANDSAT-1, na escala ao milionésimo, nos seus quatro canais espectrais; base planimétrica da Folha Brasília (SD-23) da Carta Internacional do Mundo ao Milionésimo (IBGE) e, cartas geomorfológicas da bacia do rio São Francisco, na escala de 1:250.000, das folhas Barreiras(SD-23-NE-1) e Santa Maria da Vitória (SD-23-NE-3).

3.2 - **MÉTODO DE TRABALHO**

O método de trabalho utilizado foi baseado numa sequência óbvia em seus aspectos gerais (Figura 2), entretanto difere em alguns detalhes, principalmente, naqueles relacionados às imagens MSS-LANDSAT, tais como: visão sinótica, características multiespectrais, repetitividade de cobertura imagemada.

3.2.1 - **COLETA DE DADOS PREEXISTENTES**

Para a aquisição de imagens MSS-LANDSAT, inicialmente foi feita uma prévia seleção, através do "Catálogo Geral de Imagens de Satélites Tecnológicos para Recursos Terrestres", realizado pelo Departamento de Produção de Imagens do INPE e periodicamente atualizado. Den
tre as diversas informações contidas nesse catálogo, as de interesse foram principalmente: cobertura de nuvens, qualidade (radiométrica e geométrica) e data da passagem do satélite pela área de interesse.

De posse dessas informações, foi solicitada a aquisição das imagens selecionadas, na escala, na apresentação (papel preto e branco) e nos canais desejados.

A coleta bibliográfica é uma etapa básica para qualquer atividade de pesquisa geológica, portanto procurou-se, sempre que possível, permanecer atualizado sobre as informações recentes da área estudada.

3.2.2 - ANÁLISE BIBLIOGRÁFICA

Essa etapa consistiu na leitura e análise dos trabalhos efetuados na área, principalmente, daqueles compatíveis com a escala de trabalho, para a aquisição de conhecimentos prévios sobre a geologia da área.

3.2.3 - INTERPRETAÇÃO DAS IMAGENS

Essa etapa de interpretação visual de imagens, como nos métodos de fotointerpretação convencional, baseou-se em feições características de tonalidade, textura, padrões de drenagem e feições morfológicas, além das características multiespectrais das imagens, para a identificação das unidades mapeadas.

Na fotointerpretação visual da área estudada, os canais 5, 6 e 7 foram os mais empregados, pelas características descritas a seguir:
Fig. 2 - Sequência de trabalho utilizada na pesquisa com imagens MSS-LANDSAT.
canal 4 - abrange as regiões de comprimento de onda correspondentes ao verde e ao amarelo, do espectro visível. O principal elemento de identificação dos afluentes foi o tom fotográfico, embora não tenha apresentado contraste suficiente para delimitá-los com precisão. Pela própria posição que ocupa no espectro eletromagnético, o canal 4 não mostra as mesmas utilidades que os demais canais, apresentando pobreza de textura, ficando as feições morfológicas e estruturais indefinidas;

canal 5 - opera na região do espectro visível, entre o laranja e o vermelho; espectralmente se aproxima muito de fotografias aéreas convencionais. Esse canal apresentou diferentes tons de cinza e contrastes, permitindo delimitar, com grande precisão, as diferentes unidades mapeadas. A drenagem intermitente, dotada de mata-galeria, e os sistemas viários foram facilmente identificados;

canal 6 - abrange parte do espectro visível e infravermelho próximo; esse canal permite uma delimitação sugura da drenagem com rios perenes, tais como São Francisco, Corrente e seus tributários. O tom fotográfico, aliado às feições morfológicas, facilitou grandemente a delimitação entre as unidades Urucuia e Bambuí. As estruturas em geral e grandes lineamentos, quando presentes, podem ser identificados, com certa facilidade, porém, não tão bem realçados, se comparados com o canal 7;

canal 7 - possui maior intervalo espectral, na região do infravermelho próximo, salientando distintamente as feições texturais e geomórficas, auxiliando grandemente na identificação de unidades e estruturas. Fácil identificação e de limitação são conseguidas por esse canal das drenagens de rios perenes, que observem as radiações eletromagnéticas. Aspectos morfológicos e estruturais apresentam-se com grande destaque nas imagens MSS-LANDSAT.
Na interpretação visual das imagens, esboçou-se toda a drenagem perceptível para a escala de trabalho: o canal 7 permitiu retirar todos os cursos principais, complementando-se a rede de drenagem através do canal 5. As feições morfológicas foram analisadas, principalmente, nos canais 6 e 7.

A combinação dessas diferentes características, obtidas nos diferentes canais espectrais, aliados aos critérios de fotointerpretação, levaram à individualização das diversas unidades existentes na área estudada.

Durante a fase de interpretação e/ou reinterpretação de imagens MSS-LANDSAT, surgiram algumas dificuldades, principalmente, na delimitação dos corpos graníticos da região de Correntina, observados em campo, as quais foram sanadas tentativamente com o uso de imagens MSS-LANDSAT na escala de 1:500.000.

Os dados obtidos com a interpretação visual das imagens foram frequentemente comparados com os da literatura disponível, para uma melhor caracterização fotogeológica.

O passo seguinte dessa etapa de interpretação de imagens foi a elaboração do mapa geológico preliminar, onde se procurou reunir todas aquelas informações obtidas através da fotointerpretação das imagens MSS-LANDSAT, com aquelas pré-existentes em bibliografias.

3.2.4 - TRABALHO DE CAMPO

A finalidade dessa etapa consistiu, basicamente, em verificar a fidelidade das informações obtidas através da fotointerpretação das imagens MSS-LANDSAT, além da obtenção de possíveis novos dados, para uma posterior etapa de reinterpretação.

O trabalho de campo foi realizado na primeira quinzena de maio de 1976, aproveitando os dados e/ou observações obtidos para a Folha Brasília (SD-23) e publicados em relatórios interno (INPE-1358 - RVi/028) do Instituto.
3.2.5 - AVALIAÇÃO

Após analisar os dados e/ou observações de campo proce
deu-se uma avaliação dos dados obtidos até essa fase do trabalho. Foi
necessário a realimentação para a etapa de interpretação das imagens,
ou mais especificamente, uma reinterpretação das imagens, incorporando
os dados obtidos em campo ao mapa geológico preliminar.

3.2.6 - ELABORAÇÃO DE MAPAS FINAIS E DE RELATÓRIOS

Essa fase somente foi efetuada, após os dados obtidos
nas diversas etapas anteriores terem sido considerados satisfatórios,
procedendo-se à conclusão dos trabalhos.

4. GEOLOGIA

4.1 - TRABALHOS ANTERIORES

Tratando-se especificamente da região baiana, a oeste
do rio São Francisco, o trabalho mais significativo e expressivo foi o
de Moraes Rego (1926), num reconhecimento geológico da região entre o
rio São Francisco e os limites de Goiás e Piauí, desde o paralelo de Remanso até o rio Carinhanha. Moraes Rego fez um levantamento das ocorrências minerais, definindo grupos litológicos e propondo divisões estratigráficas.

Oliveira (Oliveira e Leonardos, 1943) denominou Arenito Urucuia, os arenitos que cobrem o topo das serras e chapadões, a oeste do rio São Francisco.

Godoy (1956) fez um levantamento das ocorrências minerais da região, para a Comissão do Vale do São Francisco, onde são feitas as primeiras referências à fluorita e sua viabilidade econômica.

Em 1954, o prospector prático, Sr. Ludgero Rego Barros, comandou os primeiros trabalhos de garimpagem de fluorita, em Campo Alegre e adjacências, tendo sido o pioneiro em trabalhos exploratórios na região, e um autêntico desbravador no então quase inacessível sudoes

Godoy (1958) estudou, preliminarmente, as ocorrências de galena e fluorita da serra do Ramalho, descrevendo a geologia geral da região, além de localizar e descrever detalhadamente, essas ocorrências minerais.

Cassedanne (1964 a 1972) publicou uma série de trabalhos sobre as mineralizações do Grupo Bambui, incluindo as do Estado da Bahia, para as quais estabeleceu tipos e hipóteses genéticas.

Campbell e Moutinho da Costa (1965) fizeram um reconhecimento regional, através da região entre Goiânia e a Chapada Diamantina (Bahia); na área estudada nesse trabalho, os autores fizeram um perfil desde Posse até Bom Jesus da Lapa, passando por Correntina e Santa Maria da Vitória.

Beurlen (1971) se refere a uma área superior a 40.000 Km², numa faixa que vai de Bom Jesus da Lapa, na Bahia, até Vazante(MG), acompanhando o lado ocidental do rio São Francisco, onde mais de 30 ocorrências de chumbo, zinco, fluorita e prata, são reconhecidos. Este autor sugere uma gênese sin-sedimentar para o minério.

Bevilacqua (1973) lança o Perfil Analítico da Fluorita, onde é feito um estudo pormenorizado das características do mineral e sua situação no Brasil.
Na década de 70, Moutinho da Costa et alii (Bruni e Schobbenhaus Filho, 1976) realizaram o mapeamento do Projeto Leste do Tocantins/Oeste do Rio São Francisco (LETOS), redefinindo vários conceitos estratigráficos.

No período de 1974 a 1976, Miranda et alii realizaram o Projeto Fluorita da Serra do Ramalho, através de mapeamento regional e de detalhe, cadastramento das ocorrências minerais e prospecção geoquímica.

4.2 - ESTRATIGRAFIA

4.2.1 - FORMAÇÃO SÃO MARCOS

Moraes Rego (1926) equiparou os quartzitos das serras do Boqueirão e do Estreito à Série Lavras de Derby (1906), o mesmo tendo feito Kegel (1956). Posteriormente, este último autor ressaltou as semelhanças litológicas, cronológicas e estratigráficas entre as serras de Jacobina, do Estreito e do Boqueirão.

Winge (1968) correlacionou esses metassedimentos com o Grupo Itacolomi, baseado em semelhanças litológicas descritas para esse grupo, na região de Diamantina, na serra do Espinhaço Mineiro.
Pflug et alii (1969) admitem os grupos Santo Onofre e Chapada Diamantina como equivalentes estratigráficos, apresentando, contudo, diferenças litológico-estruturais provocadas por condicionamentos diversos em um mesmo ambiente geotectônico. A deposição dessas unidades estaría relacionada ao Ortogeossinclinal Minas, descrito por Pflug et alii em Minas Gerais, na serra do Espinhaço. Essa serra é formada por uma estreita faixa, predominantemente quartzítica, que se estende desde o Quadrilátero Ferrífero (MG) até a divisa da Bahia com o Piauí, incluindo as serras do Estreito e Boqueirão.

No presente trabalho, utilizou-se a terminologia "Grupo Espinhaço", caracterizada no "Mapa Geológico do Brasil", edição de 1971, para designar os metassedimentos constituintes da serra do Espi...
nhaço, em parcial correspondência com o trabalho de Schobbenhaus (1972).

Litologicamente, essa unidade é constituída por quartzitos, variando desde puros até sericíticos fílitos (itacolomíticos, ocasionalmente) e de compactos, silicificados a friáveis. Ocorrem, ainda, fílitos de baixo grau, na maioria sericíticos, contendo grafita ou matéria carbonosa.

Face à ausência de níveis-guia e por causa da complexidade estrutural, não é possível fazer um cálculo preciso da espessura desse unidade. Entretanto, Winge (1968), por correlação com seções medidas de metassedimentos da mesma unidade, na zona central da Bahia, estimou essa espessura entre 2.000 e 5.000 metros.

O grau metamórfico da sequência varia de epizonal (sericita e muscovita neoformados) a mesozonal (muscovita, granada, cianita, estaurolita), localizando-se o maior grau de metamorfismo entre as serras do Estreito e do Boqueirão (Winge, 1968).

Na área estudada, os contatos dos metassedimentos da Formação São Marcos estão cobertos por sedimentos carbonáticos intercalados por metapelitos, do Grupo Bambuí, e sedimentos inconsolidados Cenozóicos, através de discordância angular.

4.2.2 - GRUPO BAMBUÍ

Remontam a 1817 as primeiras referências às formações calcárias da bacia do rio São Francisco.

Derby (1880) estudou minuciosamente a distribuição geográfica e a litologia dos calcários da bacia sanfranciscana, advindo da denominação "Série São Francisco". Posteriormente, Branner (1910), es
tudando essas rochas na bacia dos rios Salitre e Jacaré, na Bahia, de
nominou-as Calcário Salitre.

Rimann (1917) introduziu o termo Bambuí, na categoria de
Série, para caracterizar os calcários que ocorrem próximo à cidade ho
mônica, no Estado de Minas Gerais. Essa designação passou, então, a ser
amplamente difundida na estratigrafia brasileira, preterindo-se, dessa
forma, aquela primeira conceituação de Derby.

Moraes e Guimarães (1930) descreveram o Bambuí como cons
stituído de ardósias, calcários, siltitos metamórficos e arenitos, desta
cando que os calcários se intercalam em ardósias, enquanto os arenitos
incluem arcósios em sua base.

Posteriormente, Freyberg (1932), estudando a geologia da
região central de Minas Gerais, subdividiu a "Série Bambuí" de Rimann
(1917), nas Camadas Indaiá (base) e Camadas Gerais (topo), divisão esta
baseada apenas no grau de dobramento.

Após Freyberg (1932) ocorreram várias tentativas de subdi
visão estratigráfica da "Série Bambuí", sendo as principais resumidas
na Tabela 1.

Amaral e Kawashita (1967) determinaram a idade do Grupo
Bambuí, pelo método K/Ar, em 600 ± 50 m.a., em amostras de folhelhos in
tercalados em calcários, da região de Vazante, no Estado de Minas Ge
rais, idade essa relacionada a efeitos termo-tectônicos que afetaram
o Grupo Bambuí, no ciclo Brasiliano.

O estudo de estromatólitos, encontrados em dolomitos da
Formação Paraopeba, ao norte de Vazante (MG), levou Cloud e Dardenne
(1973) a correlacioná-los com a mesma sequência desses fósseis do Rio
feano médio da União Soviética, que abrange o intervalo de 950 a
1.350 milhões de anos.
A região de ocorrências de rochas do Grupo Bambuí, na área estudada, não apresenta diferenciações, como verificadas em Goiás e Minas Gerais, estando individualizadas apenas algumas unidades lógicas (não representadas, devido à escala de trabalho). Entretanto, sua descrição se encontra baseada no relatório final do Projeto LETOS de Moutinho da Costa et alii em 1975 (Bruni e Schobbenhaus Filho, 1976) que levou em consideração as zonas isópicas dos tectonogrupos, mencionados na Tabela 1.

Segundo os conceitos descritos por Moutinho da Costa et alii 1975 (Bruni e Schobbenhaus Filho, 1975), a área de ocorrência de rochas do Grupo Bambuí, no presente trabalho, está contido numa zona cratônica.

O Grupo Bambuí, nessa zona cratônica, é constituído por uma sequência superior, formada por intercalações de metapelitos (metasiltitos e ardósias, alternados), calcários microcristalinos, às vezes argilosos, margas e leitos fíticos, bastante sericiticos. Esse conjunto mostra uma pronunciada variação lateral de facies onde, em determinados locais, predominaem metapelitos, enquanto em outros, predominaem calcários. Sotopostos a essa sequência, ocorrem camadas bem estratificadas de calcários quase silicificados, algo argilosos e recristalizados, atravessados por veínulas de calcita branca e com intercalações de níveis sericiticos (Bruni e Schobbenhaus Filho, 1976).

O calcário é do tipo "plaqueado", microcristalino, algo argiloso, mostrando colorações cinza, marrom e roxa, com níveis de calcário silicificado. Ocorre, predominantemente, nas regiões que circundam as janelas de erosão, onde afloram as rochas do Pré-cambriano indiferenciado, entre as cidades de Correntina e Coribe.

O desenvolvimento de "lapiês", dolinas e sumidouros, nessas calcários, é notável, principalmente, na região da serra do Ramalho, onde essas rochas estão associadas à mineralização de fluorita.
TABELA 1

Evolução da Estratigrafia do Grupo Bambui – (segundo Bruni e Schobbenhaus Filho, 1976 - p.54).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Forma Rio Paraopeba</td>
<td>Forma Rio Paraopeba</td>
<td>Forma Três Marias</td>
<td>Forma Três Marias</td>
<td>Forma Três Marias</td>
<td>Forma Três Marias</td>
</tr>
<tr>
<td>M. Serra de Sáo Pedro</td>
<td>M. Serra de Sáo Pedro</td>
<td>"Legado de Castelo"</td>
<td>"São Perespolo"</td>
<td>"São Perespolo"</td>
<td>"São Perespolo"</td>
</tr>
<tr>
<td>F. Serra de Sáo Pedro</td>
<td>F. Serra de Sáo Pedro</td>
<td>"Serra Gerais"</td>
<td>"Serra Gerais"</td>
<td>"Serra Gerais"</td>
<td>"Serra Gerais"</td>
</tr>
<tr>
<td>Forma Serra Lagesa</td>
</tr>
<tr>
<td></td>
<td>Forma Carreiras</td>
<td>Forma Carreiras</td>
<td>Forma Carreiras</td>
<td>Forma Carreiras</td>
<td>Forma Carreiras</td>
</tr>
<tr>
<td></td>
<td>Forma Lagesa</td>
<td>Forma Lagesa</td>
<td>Forma Lagesa</td>
<td>Forma Lagesa</td>
<td>Forma Lagesa</td>
</tr>
</tbody>
</table>

Grupos

- **Grupão Bambuí**

Zonas

- **Zona Cratônica**

Aréas

- **do Sudeste**

Referência

- **São Francisco**

Notas

- **Nota Importante**

Observações

- **Observações**
- **Observações**
- **Observações**
- **Observações**
- **Observações**
4.2.3 – FORMAÇÃO URUCUÍA

Claussen, Paula Oliveira e Derby foram os primeiros autores a descreverem o arenito das chapadas do noroeste de Minas Gerais, no vale do São Francisco, denominado posteriormente por Eusébio de Oliveira (Oliveira e Leonardos, 1943) "Arenito Urucuia".

Muitos outros pesquisadores voltaram a estudar esses sedimentos, tratando-os por diversas designações.

Cardoso et alii em 1968 (Brito Neves, 1968) propuseram incluí-la no Grupo Mata da Corda, representando a "Facies Urucuía".

Barbosa et alii (1969), na região dos Estados da Bahia e de Goiás, reutilizaram o termo Formação Serra Negra, para essa unidade litoestratigráfica; nome esse originalmente proposto por Campbell e outros geólogos do Conselho Nacional do Petróleo (CNP), em 1949, na região homônima, no Estado do Maranhão.

Northfleet e Melo (1967) correlacionaram a Formação Urucuía à Formação Itapecuru de Lisboa (1914), descritas no Estado do Maranhão. Posteriormente, Aguiar (1969) considerou equivalência a essas
duas formações, mantendo, no entanto, a designação Urucuia.

Nunes et alii (1973) optaram pelo termo Formação Itapecuru, para caracterizar essas rochas sedimentares, por ter sido o primeiro nome utilizado.

A Formação Urucuia constitui-se, exclusivamente, de arenitos de cores variegadas, predominando os tons rosa, vermelho, branco e marrom. Em geral, possuem granulação média a grosseira e estratificação laminar a cruzada. A sua espessura é de aproximadamente 360 metros.

O contato inferior da formação é discordante sobre rochas graníticas do Pré-cambriano indiferenciado ou sobre rochas carbonáticas do Grupo Bambuí.

4.2.4 - TERCIÁRIO-QUATERNÁRIO

Após a sedimentação da Formação Urucuia, as unidades geológicas, abrangidas no presente trabalho, estiveram sujeitas a processos erosivos que se desenvolveram em diversos ciclos, tendo sido parcialmente aplainadas e rejuvenescidas em consecutivas fases.

Essas unidades terciáro-quaternárias distribuem-se em cotas de 500 metros, aproximadamente, correspondendo ao Ciclo Velhas de King (1956), do Terciário superior. Recobrem, principalmente, rochas carbonáticas do Grupo Bambuí.
Essas coberturas apresentam-se, quase sempre, com veis lateritizados com indícios ocasionais de silicificação, originando cascalheiras, areias e argilas.

4.2.5 - QUATERNÁRIO

Na área de estudo, o período Quaternário está representado por depósitos aluvionares, de idade holocênica. Esses depósitos, predominantemente arenosos, ocorrem preenchendo calhas do rio São Francisco e de seu principal afluen te, na área estudada, rio Corrente.

4.2.6 - ROCHAS IGNEAS

Bruni e Schobbenhaus Filho (1976) relacionaram as rochas ígneas da região compreendida entre as cidades de Correntina e Coribe, Estado da Bahia, com o Pré-cambriano indiferenciado, o qual compreende rochas metamórfico-migmatíticas, abrangendo, regionalmente, os diatexitos ácidos.

Os diatexitos ácidos são representados por rochas migmatíticas, com estruturas tipo "augen" ou textura grosseira porfirítica, como também por migmatitos de textura equigranular, foliados ou não. Predominam aqueles de composição granítica e granodiorítica.

Barbosa et alii (1969) interpretam essas rochas ígneas como um grande alto estrutural do embasamento cristalino, de direção N-S, que divide a bacia Bambuí em duas partes. Os autores fazem correlação com os gnaisses de composição granodiorítica e tonalítica, frequentemente calcíticos, que englobam massas mais homogêneas, de mesma composição.

Essas rochas ígneas ocorrem frequentemente, em fundos e partes mais baixas de vales dos rios Correntina, Arrojado, do Meio e Formoso, constituídos de rochas graníticas de granulação grosseira e textura localmente homogênea e orientada. Afloramentos frescos de grani
tos acinzentados são os mais comuns, apresentando localmente textura porfirítica grosseira.

4.3 - TECTÔNICA E ESTRUTURAL

Almeida (1967) denominou Plataforma Brasileira e, posteriormente, Plataforma Sul-Americana (Almeida, 1971) à imensa plataforma pré-paleozóica que ocupa a maior parte do continente homônimo, especialmente, o território brasileiro.

Essa plataforma, que se estende dos limites das regiões oceânicas às bordas da cordilheira dos Andes, é constituída por áreas cratónicas, anteclíses ou plataformas menores, ainda mais antigas, como por exemplo, o Craton ou Plataforma do São Francisco.

O arcabouço dessa anteclíse é formado por unidades do Pré-cambriano indiferenciado, localmente aflorante em janelas erosivas, estando em grande parte mascarado por coberturas de plataforma tabulares do Grupo Bambuí (Pré-cambriano), Formação Urucuia (Cretáceo) e sedimentos terno-quaternários.

A sua individualização, como craton ou plataforma estável dentro dos limites atualmente conhecidos, processou-se durante a evolução dos Grupos Araxá e Araç e do Supergrupo Espinhaço de Bruni et alii (1974), representativos do ciclo Uruaquano os quais, sob a forma de ante-pais, serviram localmente como porção emersa doadora de sedimentos para as calhas marginais, nas quais se depositaram os sedimentos Bambuí e Macaúbas.

Após a Orogenese Uruaquana, o craton sofreu subsidência que permitiu vasta e pouco espessa sedimentação plataforma (facies crático do Grupo Bambuí), progressivamente mais jovem em direção ao seu núcleo.
A zona cratônica foi afetada por esforços tangenciais de periferia, responsáveis pela última fase de dobramento do Pré-cambriano, mostrando vergências em direção ao seu núcleo, tanto na sua porção oriental, quanto na ocidental (Bruni e Schobbenhaus Filho, 1976).

A zona cratônica constitui o litotopo do Grupo Bambuí, orogeneticamente estável. O seu limite setentrional se faz com o tecto fácies pericratônico, aproximadamente ao longo de uma linha imaginária de direção N60°E, que passa pela cidade de Brejolândia, situada a 85 Km a oeste do rio São Francisco (Paratinga). A oeste, o contato é bastante recortado, ao longo da base das escarpas de erosão da Formação Urucuaia. Os limites leste e sul se encontram além da área estudada.

O estilo geral do Grupo Bambuí, na zona cratônica, é o de uma cobertura tabular não-deformada, na escala regional. Em zonas locaisizada, falhas normais de pequeno rejeito são comuns (Bruni e Schobbenhaus Filho, 1976).

A Formação Urucuaia não mostra qualquer efeito de esforço tectônico, pois suas camadas se encontram horizontalizadas. Apenas movimentos de natureza epigenética parecem ter afetado a região estudada, após a estruturação do Grupo Bambuí.

4.4 GEOLOGIA ECONÔMICA

As principais concentrações minerais de valor econômico, na área estudada, são aquelas de fluorita e calcário, além de inúmeras outras ocorrências de pequeno significado econômico.

As mineralizações de fluorita mais importantes são aquelas do distrito de Serra do Ramalho, onde a fluorita se constitui no mineral predominante das mineralizações, estando algumas das ocorrências associadas às mineralizações de Pb-Zn.
A fácies carbonática do Grupo Bambuí representa, sob o ponto de vista econômico, uma colossal reserva de calcário.

Além das mineralizações já citadas, a área estudada apresenta, ainda, ocorrências de ouro, calcita, cristal de rocha, cobre, salitre e alumínio (Apêndice D).

4.4.1 - ALUMINIO

De acordo com Godoy (1958), as primeiras referências à presença de bauxita em Correntina, na região centro-sudoeste da área estudada, remontam a 1924, quando o engenheiro francês Apolinaire Frot, ao realizar um reconhecimento geológico da faixa arenítica da Formação Urucuia, localizou, na confluência dos rios do Meio e Morrinhos, concretizações argilosas cobrindo grande área. Ainda segundo Godoy (1958), essas ocorrências de bauxita são destituídas de interesse econômico face aos baixos teores em alumínio.

4.4.2 - CALCário

Grandes reservas de calcário são registradas na área estudada, correspondendo às áreas de ocorrências do Grupo Bambuí, na bacia do rio São Francisco.

O calcário é encontrado principalmente numa faixa irregular, que borda a Formação Urucuia, com largura variável entre 10 e 40 Km.

Esses calcários são caracterizados pela presença de corpos maciços puros, de forma lenticular, bastante alongada, quase sempre oolíticos, microcristalinos e de coloração variável entre cinza-chumbo e negro. Muito frequentemente apresentam veínulas de calcita branca leitosa ou escura, anastomosadas.

Em muitos dos locais de ocorrência de calcário, explora-se uma atividade muito rudimentar e de caráter intermitente, isto é, o fabrico de cal e, mais raramente, pedra de construção e pavimentação.
4.4.3 - CALCITA

As ocorrências de calcita, situadas dentro dos limites da área estudada, estão condicionadas ao domínio geomorfológico da extensa planície do rio São Francisco. Foge a essa caracterização, o garimpo de Montevidéu, o qual está localizado em pequena elevação, na borda ocidental da serra do Ramalho.

Esse mineral é encontrado, quase sempre, em forma de finas vênulas, que cortam o calcário do Grupo Bambuí, o qual possui cores branca leitoso, marrom escuro e as vezes, incolor.

4.4.4 - COBRE

Constatou-se apenas uma ocorrência desse nobre metal, na área estudada, destituída de significado econômico.

Essa ocorrência, situada no município de Serra Dourada, foi objeto de investigações por parte da PROSPEC e da GEOSOL, as quais realizaram estudos geoquímicos e furos profundos de sondagem, a partir dos quais ficou constatada a extrema disseminação de mineralização, bem como a sua insignificância.

4.4.5 - CRISTAL DE ROCHA

A única ocorrência de cristal de rocha, na área estudada, está relacionada a possantes veios de quartzo, encaixados em quartzitos da Formação São Marcos, da região de Paratinga.

A sua exploração é feita em escavações irregularmente distribuídas, existindo locais onde elas atingem a 10 metros de profundidade.

Atualmente, esses garimpos encontram-se em estado de completo abandono, notando-se apenas em alguns deles a presença ocasional
de garimpeiros que se dedicam à cata de lascas, em rejeitos de explorações anteriores.

4.4.6 - FLUORITA

Segundo Bahia/Secretaria das Minas e Energia (1974), na área estudada, foram cadastradas 19 ocorrências de fluorita.

As ocorrências de fluorita, observadas em diversos municípios da área estudada, estão todas distribuídas ao longo da serra do Ramalho, unidade geomórfica de pequena altitude, que se destaca na planície sã franciscana, sendo constituída por calcários do Grupo Bambuí. Essas ocorrências se fazem representar por veios e bolsões lentiformes de fluorita, encaixados nos citados calcários. Esses veios e bolsões apresentam espessuras variáveis, sendo muito frequente o seu adelgaçamento brusco. Em determinados locais, chegam a atingir espessuras de até 2 metros e comprimentos superiores a 30 metros, verificando-se uma ligeira concordância entre a disposição dos mesmos e a direção de fracturamento da encaixante. Os calcários são de cor cinza-chumbo, microcristalinos e muito frequentemente exibem vênulas de calcita branca leitosa e escura, entrecortando a sua massa. A fluorita apresenta-se associada à calcita e menos frequentemente à galena, à calcopírita e à esfalerita.

A origem desses depósitos é incerta, havendo possibilidades de que os mesmos venham a ser resultados de uma atividade hidrotermal associada a fenômenos tectônicos de falhamentos.

A fluorita vem sendo garimpada em diversas ocorrências, sendo mais intensamente explorada em cascalhos eluvionares. Esse tipo de depósito chega a atingir espessuras superiores a 2 metros. Acumulações de fluorita em cavidades e dolinas dos calcários são também alvos visados pelos trabalhos exploratórios.
As ocorrências de Santo Antonio e Campo Alegre surgem como de maior destaque, pelo maior volume das explorações ali desenvolvidas. Em Santo Antônio foi totalmente lavrado um filão, considerado o maior da região, com uma espessura de 2 metros, largura de 10 metros e comprimento de mais de 40 metros. Também ocorrem, nesse local, depósitos eluvionares de grande extensão. Em Campo Alegre, o maior filão explorado tinha aproximadamente 50 metros de comprimento por 2 metros de espessura e 5 metros de largura, sendo entretanto o maior volume da produção oriundo de depósitos de cavidades e dolinas.

A garimpagem na região é feita com a utilização de explosivos para o caso de depósitos de filão, enquanto para os demais são feitos desmontes e catas de fluorita.

4.4.7 - OURO

Na área estudada, a única ocorrência de ouro é citada no município de Correntina, onde houve uma incipiente e rápida atividade de de garimpagem em depósitos aluvionares, ao longo do rio das Eguas e seus tributários.

Segundo Moraes Rego (1926), o ouro dessa região é encontrado em veieiros de quartzo, associados às rochas graníticas.

A opção pela cata de lascas de cristal de rochas tem sido um dos fatores determinantes do abandono do garimpo de ouro nessa região, por ser uma atividade que apresenta maiores facilidades e não implica riscos financeiros.

4.4.8 - SALITRE

A única ocorrência de salitre corresponde a simples eflorescência, que aparece impregnando os calcários do Grupo Bambuí, no município de Bom Jesus da Lapa.
5. ANÁLISE DAS UNIDADES FOTOINTERPRETADAS

A técnica de fotointerpretação utilizada para a análise de imagens múltiespectrais do satélite LANDSAT é semelhante àquela de fotografias aéreas convencionais, isto é, devem-se considerar todos os fatores-guias da interpretação geológica convencional (tonalidade e textura, formas de relevo e padrões de drenagem).

Identificaram-se 9 unidades fotointerpretadas (Apêndice B). As tonalidades extremas, verificadas nas unidades separadas, foram: unidade 7 como escura; unidades 4 e 5 como cinza-claro.

Apesar das unidades 4 e 5 possuírem mesma tonalidade fotográfica, elas apresentam texturas fotográficas diferentes, isto é, a unidade 4 é representada pela textura segmentar homogênea média, denotada pelas cabeceiras de drenagens (riachos Brejo Velho e Serra Dourada, principalmente), enquanto a unidade 5 apresenta-se aproximadamente granulada, homogênea grossa. Já a unidade 7 é caracterizada pela textura uniforme homogênea fina.

Considerando-se as formas de relevo, pode-se dizer que as unidades 5, 6 e 7 apresentam escarpas de erosão; já a unidade 4 apresenta forma de relevo cárstico, característico de rochas calcárias. Forma bem caracterizada de relevo plano é representada pela unidade 8.

Os fatores-guias de drenagem, bem caracterizados, são apresentados na unidade 4, com drenagem arborescente dendrítica e na unidade 5, pelos padrões paralelo e subparalelo.

Topograficamente, a unidade 7 é a mais elevada e a unidade 9 a mais baixa.

Segue-se uma descrição das unidades fotointerpretadas, com suas principais características, verificadas nas imagens do MSS-LANDSAT:
Unidade 1 - Possui distribuição restrita a fundos de vales dos rios Corrente, Correntina, Arrojado e Formoso, na região entre as localidades de Correntina e Coribe. A apresenta-se numa textura aproximadamente segmentar homogênea média, tonalidade cinza-claro (canal 5).

Unidade 2 - Corresponde ao ramo meridional da serra do Boqueirão (extremo NE da área). Sua forma de relevo é de serra quartzítica alongada, salientando-se na planície san franciscana.

Unidade 3 - Apresenta-se com textura aproximadamente pontilhada heterogênea, denotada pelo manto de alteração, presente na rocha subjacente (Grupo Bambuí) e/ou delgada cobertura arenosa têrceo-quaternária, associada à atividade de agronegócias. Sua forma de relevo é quase plana e/ou de encostas (Serra do Ramalho e região da localidade de Santana).

Unidade 4 - Ocorre bordejando as escarpas da Formação Urucuia, caracterizada por um relevo córastico, textura segmentar homogênea média, tonalidade cinza-claro (canal 5) e drenagem arborescente dendritica. Percebe-se a quase total ausência do manto de alteração das rochas carbonáticas, do Grupo Bambuí.

Unidade 5 - Apresenta-se numa textura aproximadamente granulada homogênea grossa, drenagem paralela e subparalela e tonalidade cinza-médio-claro (canal 5).

Unidade 6 - Caracterizada por uma textura lisa, aproximadamente homogênea, tonalidade cinza-médio (canal 5).

Unidade 7 - Destaca sua tonalidade cinza-escuro (canal 5), pela presença de vegetação mais densa, denotando-se uma textura fotográfica lisa, normalmente ocorrendo em planos interfluviais.
Unidade 8 - Relacionada às coberturas tercio-quaternárias, de espessura considerável, que capeia principalmente rochas carbonáticas do Grupo Bambuí. Apresenta-se numa tonalidade cinza-médio-escuro, textura lisa homogênea.

Unidade 9 - Constitui-se a unidade mais baixa topograficamente, o correndo associada aos leitos de rios principais da região (São Francisco e Corrente). Possui tonalidade cinza-médio-claro (canal 5), mesclada com cinza escuro, pela presença de menor ou maior umidade, também associada à presença de vegetação; sua textura é algo encurvada, denotada pela dinâmica de sedimentação fluvial (rio São Francisco).

6. CONCLUSÕES

Sabe-se que para mapeamentos fotogeológicos, através de imagens do MSS-LANDSAT, são utilizados principalmente os canais ou bandas espectrais 5 6 e 7, respectivamente nos intervalos de comprimentos de onda 0,6-0,7; 0,7-0,8 e 0,8-1,1 micrometros.

Numa consideração geral dessas bandas, verifica-se que o canal 5 é utilizado para analisar as diferenças nas respostas espectrais representadas fotograficamente pelas diferentes tonalidades dos diferentes materiais constituintes no terreno; outras características de fácil identificação são os cursos d'água intermitentes, as rodovias e localidades.

Já os canais 6 e 7 identificaram os aspectos morfológicos, cursos d'água permanentes e queimadas de vegetação.

Numa análise sucinta entre os mapas fotointerpretado e geológico, a diferença mais marcante é o englobamento de algumas diferentes unidades fotointerpretadas, as quais pertencem à mesma formação.
ou grupo de rochas. Cita-se o caso do agrupamento das unidades 3 e 4 como sendo pertencentes ao Grupo Bambuí, já que a diferença nessas unidades é devido à tênue cobertura arenosa têrcio-quaternária, apresentada na primeira. Outro agrupamento foi nas unidades 5, 6 e 7, diferenciadas no mapa fotointerpretado, por ser provavelmente níveis caracterizados dentro da Formação Urucuia (K).

A dificuldade encontrada, no mapeamento fotogeológico da área estudada, foi a identificação dos corpos graníticos (unidade 1), existentes na região de Correntina-Coribe; apresentam-se com as mesmas características texturais das rochas calcárias, com relevo càrstico (unidade 4).

Estruturalmente, a área estudada é muito pobre. As referências bibliográficas citam apenas pequenos dobramentos nas rochas calcárias da porção norte da área estudada não representáveis no mapa geológico, devido a sua escala.

O controle estrutural das rochas calcárias do Grupo Bambuí, na região drenada pelos rios paralelos existentes na porção sudoeste da área estudada, é referenciado em Bahia/Secretaria das Minas e Energia (1974); já outros autores, citam esse paralelismo como sendo reflexo de gradientes.

Os resultados obtidos nesse trabalho, através de produtos fotográficos de imagens do MSS-LANDSAT, mostram a sua importante contribuição aos levantamentos cartográficos e geológicos regionais.
REFERENCIAS BIBLIOGRÁFICAS

——. Estudos geológicos na zona central da Bahia. Rio de Janeiro, DNPM. Divisão de Geologia e Mineralogia, 1959. (Boletim, 198)

APÉNDICE A - MAPA PLANIMÉTRICO
MAPA PLANIMÉTRICO

Símbolos utilizados

- Cursos d'água
- Lagos e ilha
- Aeródromo
- Cidade e vila
- Estrada

escola 1:1,000,000
APÉNDICE B - MAPA FOTOINTERPRETADO
MAPA FOTOINTERPRETADO

Símbolos utilizados

Contato foto-interpretado

Curvus d'água

Lagos e ilha

Aeródromo

Cidade e vila

Estrada

U1, U2, U3, ... unidades foto-interpretadas

0Km 30 60
escala 1:1.000.000

FOLDOUT FRAME 2
APÉNDICE C - MAPA GEOFÍSICO
QUATERNÁRIO

Qh Aluviões Holocênico: depósitos cola de rio

TERCIÁRIO-QUATERNÁRIO

TQ Coberturas detrito-lateríticas: argilas, siltes, argilitos e lateritas, fluvial e coluvial

CRETÁCEO

Ku Formação Urucuaia: arenitos e argilitos sílitico-arenosos

PRÉ-CAMBRIANO SUPERIOR

pEB Grupo Bom Jardim: calcários cinzentos laminados ou maciços com intercalações de ardósias e siltitos

pESm Formação São Marcos: predominância de quartzitos finos, laminados, frívele

Gr Rochas ígneas: granitos de granulação grosseira, cinzento

Símbolos utilizados

Contato geológico

Aeródromo

Cursos d'água

Cidade e vila

Lagos e ilha

Estrada

0 Km 30 60

escala 1:1.000.000
APÊNDICE D - MAPA DE OCORRÊNCIAS MINERAIS
MAPA DE OCORRÊNCIAS MINERAIS

Símbolos utilizados

- Cursos d'água
- Lagos e ilha
- Aeródromo
- Cidade e vila
- Estrada
- Ocorrência mineral

AU - ouro
CAL - calcário
CALC - calcalcofita
CRIST - cristais de rocha
CU - cobre
FL - fluorita
PB - chumbo
SAL - salitre
ZN - zinco

escola 1:1.000.000