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Abstract

Convolutions on the sphere with corresponding coavolu-
tion theorems are developed for one- and two-dimensional
functions. Some of these results are used in a study of
isotropic smoothing operators or filters. Well known filters
in Pourier spectral ananlysis, such as the rectangular, Gaussian,
and Hanning f[ilters, are adapted for data on a sphere. The
low-pass filter most often used on gravity data is the rec~
tangular (or Pellinen) filter. However, its spectrum has
relatively large sidelobes; and therefore, this filter passcs
a considerable part of the upper end of the gravity spectrum.
The spherical adaptations of the Gaussian and Hanning filters
are more efficient in suppressing the high-frequency compon-
ents of the gravity field since their frequency response
functions are strongly tapered at the high frequencies with
no, or small, sidelobes. Formulas are given for practical
implementation of these "new" filters, including a demon-
stration that the large negative sidelobe of the Pellinen
response can cause 180° ghifts in the smoothed function,
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1. Introduction

To the statistician the word '"mean'" denotes the value
to bhe expected when sampling a given population of values,
Statistically, the expected value is nothing more than one
of several constant parameters that describe the population.
When the geodesist speaks of a mean gravity anomaly (or mean
geoid undulation) he does not consider the entire terrestrial
population of gravity anomalies, and yet it serves as a consit-
uent descriptor of the earth's gravity field. The mean gravity
anomaly is, in the most general terms, defined as the (possibly
weighted) average of a subpopulation of anomalies distributed
over a particular region of the earth's surface, for example,
over a block delimited by pairs of latitude and longitude lines.
The total number of regions of a given size which together
form the earth's surface is finite, but there exists an infin-

ite number of ways to partition the surface into regions

of one size (for example, by simply changing the location

of the zero meridian). Consequently, the set of corresponding
mean anomalies (the '"'moving average') forms a new infinite
population which reflects the characteristics of the total
gravity field to some degree of detail. It describes a field
that, more or less, is a generalization of the actual field,
representing the dominant or essential features and suppressing
unnecessary or unwanted details.

4 The following mathematical treatment sets the stage

for the study of the different weighting schemes that can

be used to define the mean gravity anomaly, thus making the
above lcose statements more rigorous. This can be accomplished
effectively only by representing the gravity anomaly in terms
of its spectrum, which is the set of coeéfficients in its
representation by a series of spherical harmonic functions.
This definition of the spectrum necessitates the approximation
of the earth's surface by a sphere only if the spectra of

the terrestrial anomily and the anomaly on a sphere external

to the earth (e.g. for satellite applications) are to be
consistent. Otherwise, a spectrum is definable for any surface,
approximating the earth, that can be mapped onto the unit
sphere m7ing a one-to-one correspondence. The gravity anomaly
enters the discussion only as an example, since any of the
geodetic quantities, indeed any function that is expandable

in spherical harmonics, would serve equally well.

2. Convolutions on the Sphere

The first part of this paper shows how several concepts
of spectral theory common in electrical engineering and com-
munication theory can be applied and understood in physical
geodesy (see also Robertson, 1978; Kaula, 1959, 1967). The
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subsequent formulas by themselves are not new in geodesy,
however they are viewed from the standpoint of spectral theory
which acts to unitfy several diverse areas of physical geodesy.

Since geodetic data pertaining to the gravity field
are obtained either on the earth's surface (approximately
spherical) or by earth-orbiting satellites (approximately
circular orbits), it becomes computationally expedient to
consider functions in terms of spherical coordinates. Note,
however, that for certain local studies the plane may serve
as a sufficient approximation of the earth's surface, in
which case two-or thres-dimensional Cartesian coordinates
are more appropriate (Moritz, 1966; Rayner, 1971; Breakwell,
1979; see also Jordan (1978) who develops an interesting
synthesis of the global and local situations). The Cartesian
coordinates are particularl!¥ attractive due to the ease with
which the Fourier transforms can be computed.

Let F(9,A) be a function defined on the unit sphere
(the scale of the sphere is immaterial). 6 , A are the
usual spherical coordinates, being respectively the polar
angle (colatitude) and the longitude. In analogy to the
familiar Fourier transform, applicable to functions defined
in rectangular coordinates, we define the two-dimensional
"Legendre transform'" as

Lo[F] = o= [f F(8,1) ¥ (8,)) do = £, (1)
a

where o represents the unit sphere (0<A <27, 0£06< ™),
do = sin6 d)x dx , and where, for n20 ,

osmA m20
Tam(02) = By (cose) {SOR00 0 B 2 0 (2)

These are the (surface) spherical harmonic functions, which
satisfy the following orthogonality property:

1 if

n= 4%
0 if n # 2

In the mathematical literature the ¥nm are sometimes defined
using the exponential of a complex angle; however, the use of
the sinusoidal functions as in (2) is more common in physical
geodesy. The Ppm are the fully normalized associated Legendre
functions:



- n+l)(n-m) |
B, (c0s0) 7/z%;;“riﬁirr“ P n(COS0) (4)

wherem €r=1, €u=4%, m#0 , and where Ppp(cosd) =sinMo.

HT53§67m Pp(cosb), and the P, are the well known Legendre

polynominls., The set of coefficients {fpml , by definition,
constitutes the (spherical Legendre) spectrum of F . As
noted in the introduction, a different spectrum can be defined
by replacing (not a formal change of variable) the geocantric
colatitude by the complement of either the geodetic latitude
or the reduced latitude. Since any function defined on the
sphere is intrinsically periodic in both variables 6 and A
the spectrum is a discrete (but generally infinite) set of
numbers (see Papoulis, 1976, p.70).

The inverse Legendre transform is then defined as

g n

-1 ,
L2 [fpp] = ngo mgln £am Yom(802) = F(8,2) (5)

The last equality follows only if F is continuous, but

the series converges under less stringent conditions (Hobson,
1965, p.342). Equations (1) and (5) express a duality between
a function and its spectrum. Given the function, its spectrum
is unique; and conversely, a given spectrum determines the
function uniquely as long as the series (5) converges. Def-
initions (1) and (5) differ from those of Robertson (1978),

but the symmetry of the above transforms is too strong to
resist. Unfortunately, this requires some sacrifice in symmetry

for the one-dimensional Legendre transform and its inverse
(m=0 in (1) and (5)):

L, [F] = - 2"*1] F(8) P (cos6) sing do = f_ (6)
Lz [£,] = 2 v/20+1 £ P_(cos@) = F(6) (7)

The coefficients ({f,} constitute the specirum ¢f F when

the basis functions are the zero-order fully normalized as-
sociated Legendre functions. Since a one-dimensional function
defined on a circle is more conveniently transformed using

the Fourier transform, the one-dimensional Legendre transform,
per se, will not be considered further. Any function depending
only on 6 is to be regarded here as a function defined
on the sphere and independent of X ; thus if 23F/3A =0
then F(6) = F(06,x) . Its spectrum, as given by (1), is
{fn,} = {fp} .



The spectrum of a function defined on a sphere depends
on the orientation of the coordinate system. Consider the
r¢tation of the coordinate system by the Euler angles o ,
B , Y (see Fig. 1). Diverting momentarily to Cartesian
coordinates x,y,z, the spherical harmonics are homogeneous
polynomials (Kellogg, 1953, p.139), which under linear transfor-
mations, such as rotations, transform into homogeneous poly-
nomials of the same degree. The muximal set of independent
spherical harmonics of degrez n comprises the 2n+l1 harmonics
of degree n and orders k , k=-n ,..., n . Hence the
transformed spherical harmonic ¥pm(¥,E) 4in the new coordinate
system can be expressed as a linear combination of the harmonics
?nk(e,A) » k--n poeey n:

n
Ynm(wie) - k-z,_n q‘km(a’BDY) Ynk(e’A) (8)

where the Cpi, are coefficients depending on the Euler
angles (see also Muller, 1966; and Kaula, 1259). Cushing
(1975, p.596) gives " ne transformation coefticients explic-
itly, but for spherical harmonics defined with the exponential
of complex multiples of the longitude. Adapting this result
to the definition of the spherical harmonics as given by

(2), it is only a matter of careiul manipulation to derive

r<-1>” (-1)*e® 4™ 7, x>0, m20
ol km * Cexm] v K> 0, m2C
(;Ef_)".'c{,‘m , k=0, m20
m
L0 (-1 s® _sP}1, k<0, m20
cnkm-i /3en km km %)

-1k Stm * Sokm , k>0, m<o0

vZ S5 , k=0, m<o0

-(-1)K c“km + op , k<0, m<oO

-4-
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where n

Chim = COSCka + my) dif  (B)
bkm = gin(ka + my) d (B) (10)

=~K-m

A (B = (~0KM g /LI (3 cosh YT (1-cost) T -

and

1 n+m

C = L Py (MK Ly 1™ (1 cosB) M (1 4 coss)”

The sum in (11) incl?ﬁing the _antecedent power of 2 is the
Jacobi polynomial P, -k-m) " (cosf) . Note that both
integers k and m c@n assume positive as well as negative
values and they must be taken literally in the context of

each of the foregoing expressions (e.g. if k, m < 0 , then
-k , -m are positive, and the argument of sin(ka +my) is
negative, ete.). Finally, we note that the binomial coef-
ficients in the u-presskvn for the Jacobi polynomial are
defined such that () » 0, if q>p , so that the summation
extends only over thgse indices £ for which

rmax(0, m+k) < & < min(n+k, n+m) | (12)

-~

for any k, m., If y=0 , then
r

D" 2 coska [-1)¥ag(8) ¥l ()], k>0, m20
m

b om(B) , k=0 , m>0

Vem
k , o

4 (-1)" 218 sin|k|a[(-1)“d% @) +d} (8)], k<O , m20
anm." m

sinkaf(-1)* df (8) -d®, ()] , k>0 , m<0

0 , k=0, m<0

\ coskal-(-1)*a% @) +a} (B)] , k<O , m<O

(13)

-6~




And if a=% , B=8 , y=0, m=0 (see Figure 2), then we
obtain the familiar addition theorem for Legendre polynomials:

Pn(cosg.\}') " -27;!';1 m'g-n Ynm('e'.i) Ynm(ﬁ 'A) (14)

where cosy = cos® cosP + sind sind cos(i -X).

An important concept in signal and time series analysis,
arising also frequently in geodesy, is the concept of con-
volution. For example, the Stokes function convolved with
the gravity anomaly results in the geoid undulation (see
Robertson (1978) for other examples). The convolution of
two one-dimensional functions F , G defined on the real
line is formulated as

-}

H(X) = (G* F) (X) = | G(X-x) F(x) dx (15)

00

The convolution theorem in Fourier analysis is well known
(Bath, 1974, p.79); it states that (aside from a constant
factor) the (Fourier) spectrum of the convolution H is

the product of the (Fourier) spectra of F and G . The
process of convolution in the space domain is thus transformed
into the computational,y simpler process of multiplication

in the frequency domain. A similar result holds for convo-
lutions on a sphere. ’

Churchill and Dolph (19854) defined the convolution
of two one-dimensional functions whose spectra are given
by the Legendre transform. Since functions depending only
on © here are to be regarded as two-dimensional functions
on the unit sphere, but independent of A , the following
definition of convolution differs from theirs:

2r.m
H(G) = (G*F) (B) = 1117 ,r° f° G(y) F(8) sinp do dv  (16)

where cosy = cosf cosf + sinf sind cosv . The variable v
is part of the definition of the convolution and is necessary
to derive a corresponding convolution theorem. Let {f,} ,
{gn} be the (Legendre) spectra of F anda G , respectively.
Then with the addition theorem (14) we have

G(y) - nZO gn P,y (cosy)

bod n
L —Su_ § ¥ (6, v+T) T (F,T) (17)
n=0 /Zn+1l m=-n

-7-




for arbitrary X . In this and all following derivations

the uniform convergence of the inverse transforms is presumed,
so that the summation and integration may be freely inter-
changed. Therefore

o n
H(D) = ~En _ $ (TN
nzo YORF1 mjln nm

1 27
Ynm(e,v'+X) F(A8) sin® d6 dv (18)

aw J’\J"‘O g=0

Substituting (2), the integral on the right side is zero
unless m=0 ; hence with (6)

m 4
HE) = ) Eiin B (cosB) (19)
n=0 /2n+1
The (Legendre) spectrum of H 1is therefore 1 fn g, o

vV2n+1
not exactly the product of the spectra of F and G as
in the case of the Fourier transforms.

The convolution of a longitude-independent function
G with a function F of both variables may be defined as

2n
H(8,%) = (G * F) (3,%) = 4= [ [ G(¥) F(8,4) sino do do
’ (20)
where in this case
cosy = cosd cosB + sind sind cos(r - 1) (21)

The corresponding convolution theorem is established by sub-
stituting (17) with v =X -2 into (20):

oo

- g n 1 s V
H(B,X) = —n ¥ _((E,%) F(O,2) Y. (8,)) do
’ nzo von+1 mgin nm In {! nm
o n
- en fam ¢ (5,1) (22)
n—):'=0 m=2-n /a1

where (1) was used. The spectrum of H is therefore




- 1
hnm m gn fnm

(23)

a result differing considecrably from the one-dimensional
Yourier analogue. The analogy is almost completely lost
because the spectrum of G is actually the set {gpmt ,
which consists only of zonal coefficients, i.e. gnh, =g and
Bom =0 » 1if m#O0 .

In the area of functional analysis, the convolution
integral (20) is viewed as an operator,

PE o IJ 6 ) o (24)

with an associated kernel G . Thus TI'F=H . If the result
of operating on a function is a scaled version of the function
itself, then it is known as an eigenfunction; the scale
factor is called the eigenvalue:

I'F = fF (25)

Recognizing the set {yj;=1 if i=n ana j=m ; y;;=0
if isn or j#m} as ghe spectrum of the spherical ﬁgrmonic

function ¥ny , the spectrum of the convolution TI¥,y, is
(using (23))

1 g, ¥f i=n and j=m
; By V35 = | vent

V2141 . 0 R if i#n or J#m
(26)
(26) is the spwctrum of the function 1 €n Ynm , so that

Y2n+1
G . 1

Y m = T €n Ynm (27)

Therefore, from this slightly different perspective, the
eigenfunctions and corresponding eigenvalues of the operator
(24) are respectively the spherical harronic functions
Ynm(6,1) and coefficients g,/ v2n¥l .cf. Meissl, 1971).

Finally, a similar definition holds for the convolution
of two functions defined on the sphere, each depending on
two variables:

(8,X) = (G*F) (8,T) = o [[ G(y,£) F(8,)) do (28)
g
-0~
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whore ¢ , § are sphorical coordinates, colatitude and
longitude, in a system rotated by the angeles T , ¥ ; sco
Fig. 2. A cowmparatively simple relationship among the spectrn
of two functions F(@ ,\) and G ,\) and their convolution
(equations (28)) does not exist, If we substitute the trang-
formation (8) with the Euler angles o=X , R=D , y =0

into the spectyral represontation of G , then (28) becomes

e e 1,0 % N ‘
HEE,E) = g !d’ Lo m-)' \ Em ¥ n(Wt) FO M) do

o n n
= L Con T XY & [ RN T Q00
n&0 m=n Enm k-én nkm* ? ff ( ke (0 aA e
@ n n _
; - ;
) X Y Bam Tnk Cugn DoN) (29)

n=() m=-n km-n

The following is a fommal dorivation of the equation
for the spoctrum of H , oxcludes a practical method of com=-
puting it, and can be omitited without loss of continuantion.
The final rosult is given by cquations (37) through (41).
Cousidoring (13), we may write

coskY! , k20 and m> 0y or, k<0 and m< 0
(0,N) = km(“3

Chgm -
ik gin|kjX , k <0 and m>0; or, k>0 and m< 0

(30)
where tho definition of (0) can be inforred from {(13). We
note hore only that, mccorgmng as k+m is ¢ither even or _
odd, sﬂ,(o) is an n-th degree polynominl in cosl or sind
timos a bimilur polynomial of degvoo n-1. This is verified
by noting that the exprossion for Il (oquntion (1),
Bo={) ccntain& only factors of Lhe Torm (1~ egs gyn-p, -
(1+cost)P  (m-+Kk aven), or sind (1 - cosd)R-P= (l'FQOsW)p
(m+Xk odd), where p=2—f0ctm) 2 0 (always). The Cupp(d,N)
are thorefore analytic functionsg and can be expanded us berias
of spherical harmonices:

© i
nkm(0 \) = iEO 32L1 Kidnm Yij @,%) (31)

By (1) and (8)

- coskX 5 COS; :
Cijnm J] km<u) (sinlk[?) piljl(QOSﬁ) (%Ln?le) do

(32)
=10~



Invoking the orthogonality of the sinusoids, we have

0 b JERM20), J#E~E(m<O)

“ignm ™ . (33)
-EQS Io sz(ﬁ) pi|k| (cosD)sinlal ; j=k(m20), j=~-k(m<O0)

(34)

Hence, because i cannot be less than |k| , (31) becomes

Chxm(8,X) = ij]klcik*nm LTS (34)

where k* = (sign of m)+ k . Substituting this into (29) yiclds

o0 n n 0

H(D,X) = nzo mgln kuzn igﬁk'gnm fnk L ik*nm Yik*(e’l)

(35)
® n
Now it is easily recognized that, symbolically, } )y =
© o0 n=0 m=-n
=2f g} ; therefore, by first transposing summation signs,
wo have
« n n o ) n o o«
n=0 m==2-n kﬁ?:-»n i=}k| i nz:éo krszwn ir—)Tk| mai-«-n
0 o ® n
) ka}:-w n==X|k| i=}k| m==2—-n
© i o n
i izo kgii na%kl mjln (36)
It can then be verified that
o 1 o0 n
H(E,X) = 120 k=2-i n==zlkl mz)j_n Xiknm Yix(® 1) (37)
where
Xinm = ;gnm fok Sikom * ™20
€hm 1!n,--k “iknm * ™ <0 (38)

-11-




and
m
n
“iknm _%s fo Syem (8 §i| K| (cosl) sind dF (39)
Finally, )
H(E,K) = by ¥y (625) (40)
' 1£o kz}:—i ik “ik °7*
where
I 3 (41)
h,, = y

= X
ik nz}k| me=—p  Hknm

The set {hjk} 1is the spectrum of the convolution (28).
The evaluation of hj)p , given the spectra of F and G,
involves an infinite summation, as well as the computation
of the integrals (39).

Clearly, from the above discussions, the powerful convolu-

tion theorem of Fourier analysis cannot be adapted blindly
to two-dimensicual spherical functions. Although the spectrum
of the spherical convolution also involves the products of

the spectra of the functions being convolved, the relationships

are generally not as straight forward as in the Cartesian
case,

To conclude this section the Dirac delta function is
defined on the unit sphere. In the rectilinear case, this
function, denoted &(x) , is defined to be zero everywhere
on the real line except at a single point x such that for
a continuous function F(x)

-]

[ 8(x-X) F(x) dx = F(X) (42)

-~00

The spherical equivalent of &(x) is defined similarly,
but here we assume that it is also isotropic, i.e. indepen-
dent of the direction between the point of integration and
point where it is nonzero. Denoting it by D(y) , we have
(by definition)

# [/ DY) F(8,1) do = F(5,T) (43)
g

where ¢ is the spherical distance between (8,)A) and (8,%)
(see (21)). The spectrum of D(Y) is (see (1))

-12-




A, = & 1 D) V@ iE) sing o d

0 , m#0 (44)

= |5 {! D(y) B, (cosy) do , m =0
Hence, using (43),

d, = ?no(c050°) = /2n+1i (45)

The operation associated with the delta function is a con-
volution of the type (20). 1In the realm of functional analysis
in Hilbert space, D(y) is an example of a reproducing kernel
(see Krarup, 1969, p.43).

3. The Mean Gravity Anomaly

In this section some of the mathematical tools developed
above are implemented to study the smoothing of the gravity
field. The (point) gravity anomaly, with the standard spherical
approximation already applied, has the following series rep-
resentation (Heiskanen and Morit:, 1967, pp. 89, 108):

0 n
Agl{r,0,)\) = Ynzo (n-1) b%én+2mzo(§hmcosmk-rsnmsinmk)an(cose)
(46)

where r i1is the distance from the center of the earth;

vy =kM/R? is an average value of gravity; kM is the product
of the gravitational constant and the earth's mass; R is the
radius of the sphere that approximates the earth's surface;
and Cpm , Spm are constant, dimensionless coefficients.
Equation (46) may be rewritten in the more compact form as

_ v ¥ R . n+2 <
Ag(r,8,)) = nZO mjln(i;) Anm Yom(89M) (47)

where the coefficients,

Y(n-1) Cpyy , m20
Am = _ (48)
Y(n-1) 8§, , m<0

-13-
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constitute the spectrum of the gravity anomaly on the sphere

of radius R . It is worth noting that the spectrum on a
sphere of radius r=R; >R is given by the set of coefficients

{ (R/R, )nt+2 Apm} .

From the introductory remarks, the mean gravity anomaly
is derived from the point anomaly by subjecting the latter
to an averaging process. Mathematically, we formulate this
by applying an operator (only isotropic operators will be
considered), such as,

i% £I B(W) () do (49)
o

to the gravity anomalies within the region Ao on the earth's
surface, Because the kernel of this operator, B(Y) , is
supposed to depend only on Yy (i.e. the spherical distance
between the point of computation and the point of integration),
the region is necessarily a spherical cap centered at the
point of computation. By defining B(y)=0 outside the

cap we obtain the following more general formulation of the
weighted average:

-

Fe(8.5) = & [ B Ae(e,)) do (50)
o)

The operator thereby becomes a member of the class of oper-
ators (24), and the operation itself is a convolution of
the type (20). For convenience, we may write the kernel

as a normalized weighting function:

- W)
B(y) = ¥ (51)
i [ W) do
g

where
trum, i.e.

O<ys<m . Now let {b,} Dbe its spec-
B(y) = 20 v2n+1 b, P (cosy) (52)
n=

where, according to (6) and (7),

b, = Vz‘”ij B(y) P (cosy) siny dy (53)

The convolution theorem, enunciated by equations (22) and
(23), then directly provides the spectrum of the mean anomaly

-14-
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nm m Anm
= Bn Anm (54)

The constants B, are the eigenvalues of the averaging oper-
ator; or in the jargon of spectral theory, the frequency
response of the filter. In view of (54), |100 8,| is the
percentage of an (n)th-degree harmonic coefficient that is
retained in the process of averaging.

Averaging gravity anomalies over a spherical cap is
not a typical operation in geodetic practice. Rather, mean
anomalies are viewed as averages over spherical blocks (trape-
zoids) delimited by convenient global or local curvilinear
coordinate lines. The average over such blocks is characterized
by operators that are nonisotropic (see Pollack, 1973), and
the averaging process is then a convolution of the general
type (28). The spectrum of such a mean is difficult to obtain
in terms of the point anomaly spectrum (see the previous
section). Gaposchkin (1980) derived and studied a series
expansion of the mean over a trapezoidal block (however,
it is not a spectral representation as defined by (5)). Pollack
(1973) compared the B, corresponding to isotropic operators
with the degre variances of the above mentioned nonisotropic
operators. Recalling (41), it appears uncertain whether
a study of these degree variances is indicative of how the
spectrum of the anomaly is transformed in the averaging process.
When computing mean anomalies from the point anomaly spectrum,
the average over a block is frequently approximated by an
average over a cap having the area of the block (Rapp, 1977).
This approximation degrades with the elongation of the block
(e.g. in the polar regions, where the meridional coordinate
lines converge). Some further study is indicated here, but
is beyond the scope of this paper.

3.1 The Pellinen Mean

The equally weighted average of the gravity anomaly
over a spherical cap is defined as the integral of the anomaly
over the cap divided by the cap's area. For this simple
average (see also Pellinen, 1966), we have, in agreement
with (50) and (51),

wo(§) =
0 , %o <ysm (55)




Yo being the radius (generating angle) of the cap. Substi-
tuting the resulting kernel,

4mn

By(V) =
P on Lf° siny dy (56)

into (53) yields

= v2n+1 fWo
0

Pn(cosW) sin¥ ay
1- cosVo

bpn

- Pp-1(cosye) - Ppiy(cosyo) (57)
v2n+l (1 - cosyy)

for which Sjoberg (1979) has found the following recursion
formula:

ep - PP _ 2n-1 _ n-2
n m n+1l coswo Bpn_l n+i Bpn_z y N2 2
Bpo =1 , Bp, = ¥(1+cosy,) (58)

Fig. 3 depicts wp as a function of ¢ for y,=09564 ,

which corresponds to a cap whose area equals the area of

a 1°x1°block at the equator. The coefficients Bp, are

shown in Fig. 4. Here (as in Fig. 5), for the sake of clarity,
the values of the smoothing factors £, (which are discon-
tinuous functions defined only for integer values of n )

are traced by smooth curves.

The spectrum of the Pellinen mean has an infinity of
components, but the high-degree coefficients are clearly
diminished in magnitude and thus suppress the local structure
of the anomaly field. The first zero in the Fourier spectrum
of the analogous one-dimensional "rectangular" filter occurs
at n=m/Yy =319 for yY,=09546 (Bath, 1974, p.218). This
formula is not applicable in the spherical case as fp,(¥, =
09564) is first negative when n =389 . The major drawback
of this operator, viewed as a 'low-pass'" filter, is the presence
of the large positive and negative '"side lobes" in its spectrum.
That is, the filter admits, or passes, a considerable part
of the upper end of the spectrum, even changing the sign
of some of the coefficients. This "reversal of polarity"
could transform minima of the point function into (false)
maxima of the mean function, and vice versa (Holloway, 1958);
see section 4.
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3.2 The Gaussian Mean

This and the following weighting function are adaptations
of filters commonly found in electrical engineering (Harris,
1978, gives a good summ~ry). The Gaussian mean takes its
name from the bell-shaped normal (Gaussian) probability density
function that its weighting function resembles for small Vo

Wo(¥) = e=2(1-cos¥) | 5> 0, Ocy g (59)
a
8 - 2 v , small Y

The dimensionless parameters "a' (identifiable with the inverse
of the second moment o¢? of the Gaussian distribution) charac-
terizes the smoothing process. Since

Loff w.(p) do = g (1-e-28) (60)
# [] Yo %

the kernel becomes

2ae—a(1—cosw)
2a

Bg(y) = (61)

1-e

and the eigenvalues of the corresponding operator are
1 ae-a(l-Y)

bg
B = —i- = Ll . _-2a.

Pn(y) dy , y~=cosy (62)
Gn m (l-e )

for which the following recursion formula holds:

_ 2n+1 ,
Ben+r =~ "2 Po, * Pay, v P21
-2a
_ _l+e 1
SGO - 1 ’ BGl - '——Tl-e_ a - T (63)

(63) is readily verified by applying the relationship P6+1(y) =
(2n+1) Pp(y) -Pj_q(y) 1in (62) and integrating by parts.

The function (58) is a global weighting function to be convolved
with gravity anomalies over the entire sphere. On the other
hand, restricting the averaging process to a cap,

-17-



[so2a3ap] &

02°T SO°T 06°0 GL°0

£ 3 i H

£T90E8L66°=S (M)"m :AT
$9G50=04 “‘(f)Hm :71II

$2G°18826=8 ‘$9S;0=C"1h .AaVW$ 11T
$90:0=94 ‘()% =1

*suot3ouny 3urjiy3rom

() ucr3zenuriuo) paxemdn pue

‘(H) 3utuueq ‘(D) uerssnen ([eO0T)
¢(d) uaur1I®@d 3o uostXEedwWoo Vy

g 8an3dtyg

- LT1°0

- €€°0

- 0G6°0

- L9°0

- €870

00°T

-18-



u
000T cL8 0SL 29 00S cLE 082 YA
E [ 1 { i 1 1
0°0
"z°0
30
- 9°0
€19068L66°=S g :AI
-
$ocs0=2h "Hg :IIX
pLC-T8826=¢ ‘¥9830="h 0§ :II
*0=90 -ﬁm b4 =
$96;0=04 "dg :I 20

¢ 2xn3tg JO suoTiouny
Surj3ySToM 3yl YITA sxogzeaado 03
Surpuodsarzod sasuodsoa Aousnbaxl 9YlL

:y 2an3td

-19~



llllllllllllllllIllllllllIIlIllIlIllllIﬂlllllllIlllIIlIIllllIllllllllllllllﬂll-llll.'

WG(W) LA A

Wa(y) =
G 0 y Yo < Y £ » (64)

leads to eigenvalues satisfying the following recursion formu-
la (see Appendix A):

a = 2n+1l = ~ @'a(l-yu)

N M 1_e~a(1~yo)[Pn-1<y°)"pn+1(y°)] '
(1-y0) n>0

* ~ —yg @ dLl=Yo

BGo =1, BG1 = Lovoe - = 3 VYo = cosyo (65)

1_e~ﬂ(1-YO) a

"he eigenvalues £g, (equation (62)) are all positive.
To pruve this it is enough to show that

I, = Li ey P(y)dy>0; n20, a>0 (66)

Substituting the uniformly convergent series expansion of

e (o]
the exponential function, ) %ﬁ (ay)k , into the integral
above yields k=0

[} \
- 1 Kk . q4y\ktn Lok
L= L me (D] [Fyf e ay (67)
where we note that by orthogonality

[} ¥ P »dy =0, k=0,..., n-1 (68)

-

and that yXP,(y) is an odd or even function according as
k+n is odd or even. Now, Hobson (1965, p.40) derived

k(k-1)(k-2)...(k=-n+2)

1ok _
& y© P(y) dy = (k+n+1)(k+n-1). .. (k-n+3)

(69)

This is always positive for kxn ; hence all terms of the
sum (67) are nonnegative, thus establishing the inequality
(66), The signs of the harmonic coefficients are consequently
preserved in the process of smoothing.

The same is not true for the weighting function (64)
as demonstrated in Fig. 5. The four cases shown here represent
several possibilities to choose the parameter "a'', With

w20~



Yo =098564 , each of the conditions Wg(yo) =0.5 , Wg(¥g) =
0.1, and 8o= yo (where a=1/0?) produces different fre-
quency responses (cases II, III, IV)., Also shown (case I)
for comparison are the Bg, corresponding to the global
weighting function with the condition w;(0°564) =0.5 . The
weighting functions associated with these smoothing factors
are shown in Fig. 6.

Figures 5 and 6 suggest that as the cap-edge value of
the weighting function wg() approaches zero (it can never
equal zero), the oscillatgons of the corresponding frequency
response decrease in magnitude. Furthermore, the smaller
"a' is, the more the higher-degree harmonics are filtered
from the anomaly. Designing the Gaussian filt.r so as to
have cartain smoothing properties is therefore accomplished
by properly choosing values of "a" and Yo . The selection
of "a'" controls the essential bandwidth of the filter, i.e.
what frequencies should be passed; while the subsequent
choice of Y, controls the magnitude of the oscillations
of the frequency response function. The frequency response
of the Gaussian filter defined for data on the real line
is given by Holloway (1958, p.359) as

2
R L
Bp =€ " 2 (70)

(where, if f denotes frequency, the relationship 2rf =n
was used). The similarity hetween B¢G, (global filter)
and g, is shown in Table 1 and can be invoked to provide
an approximate value of "a" given a desired value of B8p
for some n . For example, if the harmonic at degree 0
is to be suppressed to 100fy% of its original value (less
than 100f,% »>f each subsequent harmonic will be passed),
then

02
a’“'ﬁﬁﬁi7?} (71)

Table 1: Legendre vs. Fourier Gaussian Frequency Responses

a = 128235 N A= 13131
PGy gn BGy 8n
_n_ |(equ.(63)) |(equ.(70) n_|(equ.(63)) |{(equ.(70))
10 . 9996 . 9996 10 .9958 .9962
50 .9901 »9903 50 .9075 « 9092
20 .8549 .8556 75 .8049 .8072
400 .5350 .5359 100 .6807 .6833
600 . 2451 . 2457 125 « 5490 .5516
700 . 1476 .1480 150 .4221 .4245
800 .08220 .08246 200 .2164 .2180
9200 .04235 .04250 250 .09168 . 09256
1000 .02018 .02026 350 .009300 .009424
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3,3 The Hanning Mean

Tho weighting function
&(1-&@05%%}) y, 05U g o

wu(‘b ) =
, Vo sy & (72)

resembles the Hanning filter whose desirable filtering charac-

tovistics (Holloway, 1958; Bath, 1974, p.158) make it popular
\ in the disciplines where it is appliecable. (See also (Wenzel

and Arabelos (1981) where the Hanning "window function" (72)

is used to reduce the integration ('"truncation") error incurred

when porforming an integration of a covariance function ovor

loss than the required interval, O $ ¢ = w1 , The spectrum

of wy defined by them differs esgentially from the definition

adopted here, but the spectral properties are similar.)

The eigenvalues of the corresponding Hanning smoothing
operator are given by

3 . “2 - l])% [ 1
Lun el = Co8Yg)=2y¢ on+l

(Pn_l(cosum)v-Pn+1(cosUm)y+an],

-~

n 21

13 = (73)
whaore o

- (Vo o s L
@, & cosby P (cosy) siny dy , b = T (7a)

A recursion formuta for oy (b#integor) is derived in Appendix
By it is

[(n+1)2 =02 Jo, =[(n=2)% =% Jo || o = (M+1)*Dy=(n=2)7D o +
b(E By p) s p 28 (78)

whero
coshb : ‘ ‘
D, = 'T?.—n—'ﬁ[m [inl(eosl‘,n) ‘*I’n,,,l(ceswu)] , N2 1
En = sinbyo siny, PH(QOSW) , n>1 (76)
and

g = ﬁéiﬁ [1-cosp, cosbyy - bsiny, sinbyo]

Ny = QTK%E?) [2 ~ 2c082yp cosbyg - bsin2y, sinbye] 77
¥
i ty = g?§%577 [3 -~ 3cos3¥e cosblo - bsin3y¥o sinbwe]-a% Ay
? 24 -
i

A A3 T



B I TR R T R R R R IR E"=m—=——==~

The first zero of the Fourier spectrum of the Hanning
filter occurs at n=27/Py =638 , for Yo =0°564 . TFor the
spherical adaptation, BH,(Yo =00564) first changes sign
at n=695 ., Thereafter, the side lobes are comparatively
small. Figures 4 and 3 show respectively the frequency response
By, and the corresponding weighting function wy .

3.4 The Upward Continuation (Poisson) Operator

' Functions harmonic in the space external to a spherec
centered at the coordinate origin attenuate radially according
to r-(n+l) | pAg is such an harmonic function (see equation
(46)), and the gravity anomaly field at satellite altitudes,
for example, is much smoother than at the earth's surface.
Therefore, for a fixed radius, r=R; , the upwarvd continuation
operator acts like a u@moothing operator with eigenvalues
(recall the comment atter (48))

n+2

_ ,R
By, = (™%, (78)

v
o

For the disturbing potential the exponent is n+1 , and for
the geoid undulation it is n-1; in all cases Buo #1 ,

so that, unlike the previcus filters, this smoothing process
does not leave the global average unaltered (unless Ayp =0)
The corresponding smoothing kernel is

]

= L3
B, (V) = nZo (20+1) (=)

n+2 P (cosy) , 0 gy ¢

s*(l-s5%)
[1-2scosy+s2]/

) (79)

where s=R/R; and the familiar generating function for
Legendre polynomials was applied. (79) is nothing but s
times the kernel of Poisson's integral (Heiskanen and Moritu,
1967, p.35). Because the smoothing is biased (the integral

of 4w By(¢) over the unit sphere is not unity), a weighting
function satisfying equation (51) cannot be defined. However,
for purposes of comparison, let :

~ - By U (a-s)?
W) = "ﬁﬁ?ﬁT = Ti=2scos +s9% (50)

Solving for s , we have

- w2 ~ Y ~ 1 1
s = [w, 5 (P) cosp -1+ (2w, PP (L =-cosy) =W B () sin®y)”? 7.

T N TR e eSS

~ 2
i -(wu/3 () -1~ (81)
; ~25-
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Although the entire gravity anomaly field must, in theory,

be convolved with the kernel (79) to yield the smoothed ficld,

n specification such as Wy(yo) = .01 renders the operation
practically a local one. With ¢ =y, x09564 , equation (81)
gives =0.99785%0613 (or if R=6371000m, ther R A384851m.)
W, and Byp with this value of s are shown in Figures 3

and 4.

The upward continuation produces a smoothed field with
A more substantial attenuation of the low-degree harmonies,
but with a fairly weak taper in the high end of the spoctrum,
Therefore, it is essentially different from, and less useful
for smoothing than, the more conventional (weighted) arcal
averages.

3.5 The Ideal Filter

Ideally, the smoothing process should suppress the higher-
degree harmonics completely with poerfect retention of ihe
lower-degree harmonics. This type of smoothing is automatically
implemented whenever a determination of the gravity field
consists of finding, through satellite techniques, the coef-
ficients of its series representation. Obviously, only a
finite number of coefficients can be found and the corresponding
truncated series represents a perfectly filtered field (neg-
lecting aliasiug and measurement errors). The eigonvalues
of the operator that produces such ideal smoothing are

1 y n#"o,nao,ﬁ

B
In O , n>n (82)

where n is the desired degree of truncation--the larger
n 1is, the less smooth is the filtered field. If the operator
is global, the kernel is given by (see (52) and (54))

BI(\p) = (2n+1) Pn(cosw) (83)

fl o331

n=0

(If N & o, By Dbecomes the spherical equivalent of the
Dirac delta function; see (45).)

It is not possible to define a kernel whose convelution
with gravity anomalies in a cap with radius O <yp <w yields
a perfectly filtered field. That is, a kernel with a finite
gpectrum is analytic on the sphere and cannot be zero over
any part of the sphere unless it is zero everywhere.

OB



3.6 Discrete Operators

The averaging process in actual practice deals with
discrete values of the gravity field--integrations such as
(50) are performed numerically often using simple midpoint
formulas:

Ag(D,X) = i B(wj) Ag(aj.xj) Boy (84)

where V., is the geocentric angle between points (§,5) and
(045A3) 5 (04,A4) is the center point of the area element

Aot ,° and M is the total number of Ac; into which the

caﬂ Ue has been partitioned. The above formula can be
rewritten as an integral by utilizing the Dirac delta function
DCP) (see (43)):

M
- = 1\2 A
Kg(8,%) (45)321 B(Y 4) &; D(E ) 8g(0,1) do Ao,

col (jgl BYy) D(p doy) 2gC0.) a0

(7)1 Bw,&) dg(o,)) do (85)
o

where cos@-==cose cosO : + sind sin®y cos(A -A4) and ¢ , £
are the coordinates of ehe point (6,A) in the“spherical coor-
dinate system whose pole is the point (0,X) (see Fig. 7).

In Fig. 7, (05,A5), j=1,..., M are fixed points and
as the variable point”(0,A) moves over thesSphere, its position
with respect to the point of computation (8,)) may be described
by the coordinates y , & , whence the arguments for the
kernel B . Note that B is zero unless (0,)) coincides
with one of the points (¢3,A~). Thus the operator is noniso-
tropic and the convolution i% of the type (28). This implies
that the frequency response of any of the filters discussed
in the previous sections, in practice, is not given by the
corresponding £, . However, if the numerical integration
is sufficiently accurate, the general characteristics of
the response are retained, as seen in the next section.

-2



pole of
(6,1) system

Figure 7: The relationship of (6,1) to (6, Ay)
and (8,X), equation (85) 3’

4. Smoothing a Simulated Gravity Field

In this section the formulas for the various averaging
processes are put into practice, illustrating, by an example,
the differences between the Pellinen, Gaussian, and Hanning
averages in the space domain. For this purpose, a gravity
anomaly field was generated as a series of spherical harmonic
functions with coefficients:

B

B
nm G /C _
n unm 3‘2 ’ n"'lol g o000y 360 (86>

where the up, are random numbers uniformly distributed on
the interval [-0.5, 0.5] and d is their degree variance.
¢y, 1is the degree variance of tge gravity anomaly and is
modeled (Rapp, 1979) by

~28~

[(180,180) solution of Rapp (1978)], n=2,...,

100



n+2 )n+2

n-1 n-1

(mgall® , nx 3 (87)

The (180,180) solution was derived from 1°x 1° mean gravity
anomalies, and the division by Bpn , being the frequency
response of the Pellinen averaging operator with Yo =00564,
effects a relatively smooth transition from the actual (orig-
inally mean) spectrum to the modeled (point) spectrum. The
smoothing of the coefficients by a Gaussian filter (a =14000,

Yo =m) attenuates the upper spectrum to virtually zero at

n =360 (Bgaso =0.01), resulting in a less irregular field

for which the differences in the filters are better illustrated.

The gravity anomaly function defined by (86) was evaluated
on two profiles near the equator*: ¢ =125 , 005 < A < 42705
(see Figures 10 and 11). This function was convolved with
the Pellinen smoothing kernel (Yo, =19692, corresponding to
a cap having the area of a 3°x 3° block at the equator), the
Gaussian kernel (y, = 29459, a =4887.27), and the Hanning
kernel (Yo =29%459)., These latter choices for the cap radius
and the parameter "a'' yield frequency responses that pass
generally the same band of frequencies as the Pellinen average;
see Figure 8. The precise vzlue of the cap radius was estab-
lished by requiring the cap to have the area of a finite
number of 095 x 095 blocks arranged roughly in the shape
of a disk, as in Figure 9. The parameter 'a'" then follows
from the stipulated relationship 30= Yy, (0% =1/a).

The mean gravity anomaly function, computed using the
smoothed coefficients BuApm' are plotted in Figures 10
and 11 (Pellinen vs. Gaussian averages) and Figures 12 and
13 (Pellinen vs. Hanning averages). The essential feature
of these comparison is the 180° phase shift of the Pellinen
average with respect to the point function at a wavelength
of about 2°, as predicted by the frequency response Bp
(in Figure 8, Bp, has a maximum negative value at n==972,
corresponding to a wavelength of about 360/n=2°1). The
Gaussian and Hanning mean functions, on the other hand, repro-
duce more faithfully the peaks and valleys of the point function,
as the corresponding frequency responses have either small
or insignificant negative values.

The averaging process, in the practical situvation, is
performed on discrete values of the point function. Consider
the following discrete smoothing kernels

By (y.) = Ye(Wy) gk =p, G, H (88)
J .

*(where ¢ =90°-106)
-29-
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Figure 9:

>

Spherical caps of radii ¢,=12692 and {,=2°459
defined as having the area of 36 and 76 095 x 095
0°5x0%5 blocks, respectively. TFor the
simulation, the continuous function is averaged
over the caps, and the discrete function is
averaged over the block values.

cosyj = sing sing; + cosg cosgj cos(X - Aj)
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where

M
2, (Vo) = g%-dgl We(vy) Aoy (89)

and Ao is the area of the block containing a known value

of the point function. N(Yo) I8 the discretized integral

of the weighting function over the cap (see (51)); and although,
for the wk(y) considered here, these integrals are evaluable
analytically, their discretization guarantees the unbiasedness
of the averaging process

M
1 .

In order to simulate the process of averaging, the coeff-
ficients (86) were synthesized on a 095 x0%5 grid in the
equatorial region defined by ~3°75 = ¢ ¢ 3975 , and
0925 ¢ A £ 42975. The Pellinen, Gaussian, and Hanning smoothing
kernels were evaluated at ¢j5 , j=1,..., My , where M,
is the number of 095x0?%5 blocks in each of the caps (see
Iigure 9, Mp=36, Mg =My =76). Subsequently, the average
gravity anomaly for each of the weighting functions (P,G,H)
was computed on the profiles ¢ =23195, at 025 intervals,
using equation (84). These "moving averages'' are plotted
against the original point function in Figures 14 and 15
(Pellinen vs. Gaussian averages) and Figures 16 and 17 (Pellinen
vs., Hanning averages). We note that, although the frequency
responses of the (discrete) operators are not precisely those
of Figure 8, the averaging characteristics illustrated in
these figures are essentially identical to those described
for the continuous (isotropic) operators.

Normally, the equally weighted (Pellinen) average, in
the example above, would ke computed on a 3°x 3° grid. The
"polarity reversals " would then not be directly apparent.
Also, if the errors of the original point data were statis-
tically uncorrelated, so would be the errors in the 3° Pellinen
means. The propaged errors in the Gaussian and Hanning averages,
however, will be correlated if the caps are not disjoint.
Figure 18 shows the possible configurations for the above
example if the averages are computed on a 3°x 3° grid. Each
shaded region represents the overlap between two 'caps'" which
is responsible for the correlation. Assuming that all point
data have the same standard error o with zero correlation,
the correlation in the means is given by

LaAB
o? qu(ab Ji) qK(Bp Ji)
P, (A,B) = —3L ~ (90)
dk(A) Uk(B)
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where Lpp is the number of points Jjj common to the two
tcaps", A and B (in Figure 18, Lag=4 , Lpc=20); and

- 2 LNCT LRI A .
(A,j) = B, (V.) Ao, = (91)
Ay yJ Ir Pk ‘P:j 3 Q.Trﬂk(‘i’o)

VA being the central angle between the center of the '"cap"
A gnd the point j ; and where

M
ok(A) = czjzl a, (A, 3) (92)

If Adj and Qg are constant, then

LAB
‘2:1 wi(Wagi) w (WBj4)
Py (A,B) = ——=—p (93)
Y wi (al)
=1 k AJ
With respect to Figure 18 and the above expample
pg(A,B) = 3.0 x 107" pyCA,B) = 2.3 x 107"
(94)

pG(A,C) = 3,2 x 1072 ’ pH(A,C) = 4.6 x 10™?

These are generally not considered significant correlations.

5. Conclusion

From its birthplace in electrical engineering, the appli-
cation of the spectral theory has spread to many unrelated
disciplines, becoming indispensable in the methodical analysis
of large amounts of data. In geodesy, while there is the
complication of having to work on the sphere, many of the
basic concepts of spectral theory are directly applicable,
as in the study of smoothing operators. The effects of the
different methods to smooth the gravity anomaly field can
be properly assessed only by inspecting the spectrum of the
corresponding weighting function. It is shown that the mean
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gravity anomaly acquires new and different connotations when
various weighting schemes ar¢ introduced. By anh example,

we saw that the excursions of the Pellinen frequency response
into the negative can cause 180° phase shifts in the smoothed
function (seeFigures 10-17). Furthermore, from Figures 4, 5
and 8 it is readily evident that both the Hanning and Gaussian
smoothing operators (with a suitable choice of the parameter
"a'") do a better job of filtering the high-degree components
from the total field than the Pellinen operator. Finally,

it is noted that a truncated spherical harmonic series (e.g.
Nmax = 180) cannot justifiably be characterized as a Pellinen,
or other, mean function, unless the coefficients of the series
are multiplied by the corresponding frequency response which,
in addition, must have no significant components beyond degreec

Dmax -
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Appendix A

Let

Yo = f; e™ P (y) dy (A.1)
¢

Substituting the relationship
(2n+1) P (y) = Pp . (y) - P! _,(y) (A.2)

where the primes denote differentiation with respect to y ,
into (A.1) and integrating by parts results in

O, 1) - PLi(ve)) - alypy - Y, )]

(A.3)

Equation (65) follows upon realizing that, with y =cosy ,
Ve = cosy, ,

x b 1 ~a(1-y)
B, = o = [P e Y2 p_(y)dy
Gn  /opeT [ e-a(l-Y)dy Vo n
Yo
-a
= e (A.4)

1 o-2(1-yoJ 'n
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Appendix B

Let '
)
a = I, " cosby P_(cos¥) siny df (B.1)

Substituting (A.2) into (B.1) and integrating by parts yields

% =Dy ¥ 1ﬁ%1(6n-1 = Shea) (B.2)
where

D, = £§§¥§fl [P,_q(cos¥o) = P .. (cosVo)] (B.3)
and

8, = L?° sinby P_(cosy) siny dy (B.4)

Now from (Hobson, 1965, pp. 32-33),

La-yn ey = 2L 0 () - P, (v)) (B.5)

Hence

' Yo
oy (8pg = Span) = J, sinby siny &’;-,, P (cosy)dy (B.6)

Again, integrating by parts, we obtain

n+l _
o+l Sn-1 7 Sne) T
AL,
- é%En + & sinby cosy P (cosy) siny dy + %%

= oy y(B.7)

which, upon substituting (n+l1l) P +1(y) + nPp_4(y) = (2n+1)yP,(y),
as well as (B.2), gives after several manipulations

(n+1)? - b? n’-p? -

el et T TEwT Sno1 T By - PP, (B.8)
where

En = sinbyo siny, Pn(coswo) (B.9)
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Equation (B.8) can be reformulated as

2n+1

Sn-—l - 6n+1 - n!_b!

(5n+1 - B, + bDn) (B.10)
Combining this with (B.2), we have
2 2 = n? -
(n "’b )Otn n Dn + b6n+1 bEn (Bvll)
and

[(n-2)% -b*Ja, 5 = (n=2)2 D _o + BS 4 - bE__, (B.12)

The §.'s are eliminated by subtracting (B.12) from (B.1l1l)
and suBstituting (B.10),. This results in

[(n+1)? = b*Ja, = [(n-2)% -=b*Ja, o, + (n+1)* D - (n-2D o +
"b(En"En_z) (BolS)

thus proving equation (75).
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