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ABSTRACT

This report describes the realization of an energetic particle experiment

using the Z80 family of microcomputer components. Data collected from the

experiment allows fast and efficient postprocessing, yielding both energy-

spectrum and pitch-angle distribution of energetic particles in the D and F

regions. Advanced microprocessor system architecture and software concepts

are used in the design to cope with the large amount of data being processed.

This requires the Z80 system to operate at over 80% of its total capacity.

The microprocessor system was aiicluded in the payloads of three rockets

launched during the Energy Budgot Campaign at ESRANGE, Kiruna, Sweden in

November 1980. Based on a preliminary examinrtion of the data, the performance

of the experiment was satisfactory and good data were obtained an the energy

spectrum and pitch-angle distribution of the particles.
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1. INTRODUCTION

Study of energetic particles in the D and E regions require several

pieces of information, inc+.,ding pa•ticle type, energy spectrum and pitch

angle distribution.

The microprocessor experiment described in this report gives good

spectrum information between the limits of about 14 to 128 keV. Also

available is pitch angle information from four detectors in 32 sectors of

rocket azimuth. The types of particles can he deduced from the comparison

of flux in pairs of detectors.

Section 2.1 domonstrates the importance of energetic particle

information in relation to the SAR are phenomena occurring at middle latitudes.

Da-,,a from the microprocessor experiment not only holds the key to the SAR arc,

but also to auroral events.

Tho first-generation microprocessor experiment was actually launched

into a SAR arc (see Section 2.1.4), while the second-generation system,

described in this report, was launched into auroral activity near Kiruna,

Sweden, and showed very high count rates (see Chapter 6).

The first-generation microprocessor experiment is briefly discussed in

Section 2.2 leading up to a general discussion of the second-generation

system in Section 2.3. A detailed account of the system is provided in

Chapters 3 and 4.

Chapter 5 outlines the u ,,e of various diagnostic tools used in the

development of the microprocessor system.

A discussion of the testing and calibration of the experiment can be

found in Chapter 6 together with preliminary results from Taurus Orion 33.009.

The flight data lead to the conclusion that the experiment was successful in

providing good spectrum and pitch angle information (Chapter 7).

The microprocessor syster can be used in future flights with almost no

changes, however the continuing advancements in VLSI technology and computer

architecture will no doubt result in a third-generation microprocessor system.

Two interesting possibilities are given in Chapter 7.

y
i
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2. ENERGETIC PARTICLES IN THF. D AND E REGIONS

2.1 Introduction

Some of the most magnificent atmospheric displays are the polar auroras

which have been observed for many years, yet just beyond the visual intensity

threshold lies perhaps an ever more spectacular display. The Stable Auroral

Red (SAR) arc or M arc, which occurs at middle latitudes, has an amazing

spectral purity (630 nm), and may persist through an entire night in contrast

with the more transient polar auroras.

The SAR arc was first observed by Barbier in 1956 from Haute Provence in

southern France [Barbier, 1958] and its origin has puzzled scientists; for

many years.

2.1.1 Observed features. SAR arcs generally occur at middle latitudes

and are distinct from their polar counterparts which occur several degrees

of latitude northward [Hoch and CZark, 1970]. Tfeir position corresponds

to geomagnetic L-shell values between 2 and 4.

The arcs are usually stable, homogeneous, and extend several hundred

kilometers in the north-south direction occurring in the region from about

300 to 700 km in height,

Current observations show the arcs extend at least around the night side

of the earth and probably encircle the earth. The OGO 4 satellite showed

that the arc of September 1967 was globe encircling [Reed and BZamont, 1968].

The arcs are almost always accompanied by poleward aurora; however

there is not enough evidence that they always occur together [Hoch and CZark,,,

1970).

The signature of every SAR arc is its characteristic spectral emission

of the atomic oxygen transition 0 I( 3P - 1D 2 ) at 630 nm (see Figure 2.1).

The absence of any other spectral lines, most importantly the 557.7 nm line

of oxygen, implies a low-energy excitation of the oxygen atom since only 1.97

eV are required for the 1D transition. Spectroscopic studies of the March

1970 SAR arc show the 630 nm line by far the dominant radiation with slight

traces of (0I) 557.7 nm and (NI) 520 nm [Hernandez, 1972].

The 630 nm emission rate ranges from barely detectable above the

airglow level to several kilorayleighs with the most intense SAR arc

recorded at 18 kR in August 1972 [Sheppard et aZ., 1976]. The mean

intensity during the last solar cycle was about 6 kR [Roach and
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Roach, 1963], however,, the mean intensity is much lower this cycle.

The fact that SAR arcs are only observed during times of magnetic storms

indicates a strong correlation between SAR arc occurrence, solar activity,

and the solar cycle [Rees and Akaso U, 1963].

SAR arcs generally persist throughout the night and the mean lifetime

has been set at about 10-12 hours (Roach and Roach, 1963].

Concurrent sightings of SAR arcs in both Northern and Southern Hemispheres

at about the same geomagnetic L-values would indicate magnetic conjugacy.

The M bands in Figure 2.2 indicate the regions of occurrence of SAR arcs.

Increased electron temperatures in the F region were found during the

geomagnetic storms of June, August, and September of 1965 using the incoherent

Thomson scatter technique [Evans, 1970]. Satellite measurements have shown

that the electron temperatures inside the arc are enhanced relative to

surrounding regions (see Figure 2.3).

The electron density in the region of the SAR arc, at the F2 peak, is

observed to be considerably reduced compared to densities uutside the arc

[Rees and Roble, 1975].

Ion temperatures within SAR arcs have always been measured lower than

the electron temperatures while neutral temperatures show very little en-

hancement.

An ac electric field was measured by the OGO 6 satellite during the SAR

arc of August 8-9, 3970. The magnitude of the field was about 100 mV m-1

greater within the SAR arc than outside the region of the arc. No do field

enhancements were detected [Nagy et aZ., 1972].

The position and brightness of the March 8-9, 1970 SAR arc were correlated

with changes in the H and D components of the ground-based geomagnetic

field deviations [Okuda et aZ., 1971].

2.1.2 Proposed hypotheses:. Prior to observations of high electron

temperatures in the region of the SAR arc exothermic reactions of oxygen were

thought to be the source of energy driving the arc.

The first hypothesis was put forth by King and Roach [1961] and involved

the pair of reactions:

0++N2-*NO++N

and

NO++ e -sN +O+ 2.72 eV

(2.1)

(2.2)
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The second reaction will leave enough energy to excite oxygen to the 0(1D)

state, but not the 0( 1S) state thus explaining the 630 nm emission line. It

was later pointed out by Datgarno and WaZker [1964] that the second equation

has a very low reaction rate and could not account for the production of the

630 nm wavelength.

The following reactions were also proposed:

0++02
-1. 0`+0
	

(2.3)

0 +e-► 0+0+6.9eV
	

(2.4)

but were rejected since 6.9 eV is sufficient to produce the SS7.7 nm line which

is not observed.

Rees [1961] and others proposed that an electric field acting perpen-

dicular to the geomagnetic field lines would provide energy to the ambient

electrons and ions sufficient to excite the oxygen atoms to the 0( 1D) state.

A field on the order of 100 mV m -1 could excite the arc [Megitt and CaK ton,
1964]. It was later shown that this hypothesis is inconsistent with satellite

and ground observations.

Cote [1965] proposed a heat conduction mechanism in which F-region

electron temperature is maintained by conduction of heat from the magnetosphere

along geomagnetic field lines into the ionosphere. The SAR arc is then excited

by energetic electron impact with atomic oxygen. This hypothesis is somewhat

supported by the observations of Evans [1970].

Coulomb dissipation alone may not be sufficient to supply SAR arc

heating rates and therefore another energy transfer mechanism between energetic

ring current protons and plasmapause electrons is proposed.

During the main phase of a magnetic storm the ring current is enhanced

by protons injected from the magnetospheric tail. During the recove ..y the

plasmapause expands slowly outward eroding the symmetric ring current along

the inner edge.

It has been argued that ring current protons dissipate most of their

energy into ion-cyclotron wave turbulence instead of Coulomb interactions

when ring current instabilities occur [Cornwatt et at., 1971]. Particle

precipitation will also accompany due to pitch-angle scattering.

It has been postulated that the ion-cyclotron wave turbulence is an

important source of heat for the SAR arc electrons.

M



... w..si

8

There are several steps in which the energy is transferred: ring current

protons just inside the plasmapause give energy to ion cy e:totron waves and

some are precipitated by pitch-angle scattering; these waves are then Landau

absorbed by thermal electrons, and the heat is then thermally conducted to

the ionosphere. Proton Coulomb dissipation is still important, however, for

warming plasmaspheric electrons (Cornwall et at., 1971].
Near the boundary of the plasmapause and ring current instabilities

occur and proton Coulomb dissipation begins electron heating. Landau resonant

energy exchange will not become dominant until the electron energy exceeds 0.6

eV [i'o niwall et aZ., 1971]. The electron temperature and heat flux will

continue to increase iintil it is balanced by strong diffusion heat conduction

to the ionosphere.

According to Rees and Roble [1975] elect,)n heating was not needed as a

primer for Landau resonant energy exchange to take place at the plasmapause.

It was argued that proton Coulomb interactions were not a sufficient

source of heat for magnetospheric electrons based on measurements by Smith

and Hoffnan [1973] and Williame et a1. [1973] during the December 17 -19, 1971,
geomagnetic storm and the ion-cyclotron wave hypothesis was further developed

as the principal source of electron heating

It was again pointed out that Coulomb collisions of ring current

particles may be a sufficient heat source after all. Calculations by Rees
and RobZ(,, [1975] estimated heat exchange only for conditions near the
equatorial plane, where as Cole's [1965] estimate was made all along the tube
of force. It is shown that ring current particles exchange energy with back-

ground electrons at a greater rate the further they are from the equatorial

plane, thus increasing the heat available by Coulomb collisions. It was

suggested that if ion-cyclotron radiation be involved, it would be an

additional energy source but not the major transmitter of energy [Cole, 1975].
The main problem with the previous theories of Cole [1975] and Co.rnwaZZ

et al. [1971] is that electrons heated in the equatorial region of the

magnetopause must transfer their heat down to the ionosphere.

Anomalous transport produced by kinetic Alfven wave turbulence was

proposed as a solution to this problem.

A kinetic Alfven wave is a shear Alfven wave which has certain kinetic

properties and meets some special requirements. This shear Alfven wave has

_Y
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a finite perpendicular wavelength on the order of the ion gyroradius and can

cause anomalous transport through Cerenkov resonance [Hasegawa and ChEr:, 1975].

There are two mechanisms available for excitation of kinetic Alfven

waves. It can be excited by i magneto-hydrodynamic surface wave through a

resonant mode conversion process and also by drift wave instability in a

plasma with 8( = 2u0n,} TIB2) larger than the electron-to-ion mass ratio me/M

[Mikhailovskii, 19671.

It is shown that these waves are universally excited and can produce

localized enhancement of electron temperature along with being selective in

L value.

The kinetic Alfven wave has a wavelength comparable to the length of

the geomagnetic field line and is accompanied by a parallel electric field.

Resonant heating of electrons occurs at the plasmapause and the particles

are easily transported down the field lines [Hasegawa and Mima, 1978] thus

explaining SAR are phenomena.

2.1.3 Comparisons of the various hypotheses. Figures 2.4 and 2.5 give

different perspectives of SAR arc formation in relation to ring current

instabilities and illustrate the hypotheses of CbrnwaZZ at at. [1971] and

Rees and Roble [1975).

The similarities and differences between the current hypotheses of

CornwaU et at. [1971], Rees and Roble [1975], Cole [1975] and Hasegawa -ind

Mima [1978] can easily be pointed out using the block diagrams of Figures

2.6, 2.7, and 2.8.

All agree on the necessity of geomagnetic disturbance, electron energies

of approximately 2 eV in the upper F region, collisional excitation of atomic

oxygen to the 0( 1D) state, and 630 nm emis:;inn in the 300 to 700 km

region. Of the four hypotheses Hasegawa's is most different (Figure 2.8).

Figure 2.6 illustrates the hypotheses of both Cole [1975] and Rees and

Roble [1975]. While the figure is basically the same for both, their hypotheses

are quite different. The disagreement occurs over the importance of ion-

cyclotron radiation with Landau damping and Coulomb interaction between ring

current protons and plasmapause electrons. Cole claims that Coulomb inter-

action is by far the dominant heat source for electrons in the plasmapause

while Rees and Roble argue that ion-cyclotron radiation with Landau damping

i

is dominant.
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Figure 2.6 A representation of the hypotheses of Rees anti

Roble [1975] and of Cc.e [1975].
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Cornwall's hypothesis ( :gee Figure 2.7) makes use of Coulomb interaction,

ion-cyclotron radiation, and Landau damping but places different emphasis on

the three phenomena. Coulomb interactions are first n-ieded to heat plasma-

pause electrons to a point where ion-cyclotron waves can be generated. Landau

damping can then occur which further heats the electrons.

The hypotheses illustrated by Figures 2.6 and 2.7 require thermal

conduction of heated elect rons down the magnetic flux tubes to the region

where the SAR arc occurs.

Hasegawa on the other hand proposes an entirely different method of

transporting thermal electrons via kinetic Alfven waves and resonant electron

heating as can be seen in Figure 2.8.

2.1.4 ObservationR supporting the various mechanisms. It has been

observed that during the recovery phase of the December 17, 1971, storm there

was more than enough energy loss from the ring current to drive a SAR arc

[Williams et at., 1976]. Also observed is an injection of ring current

particles following the onset of a magnetic storm along with a drastic reduction

in the size of the plasmasphere. SAR arcs were observed at the L-value

associated with the position of the plasmapause during the recovery phase of

the storm [ChappeZZ et aZ., 1971].

One very .important aspect of these theories that has not been discussed

yet is particle precipitation. The proposals which include Coulomb heating

and ion-cyclotron radiation also predict pitch-angle scattering of ring

current protons which implies that more of these particles will be scattered

into the loss cone and precipitated into the lower to middle F region. This

was in fact observed by HuZtgvist et at. [1976] and Lundbtad and Soraas [1978]

during March 1969 SAR arc observations. On the other hand the kinetic Alfven

wave hypothesis would predict that electrons would be precipitated along the

magnetic lines of force by an electric field parallel to these lines. Enhanced

fluxes of precipitating electrons were observed during the storm of August

1972 in which unusual SAR arcs were observed [Shepherd et at., 1976].

Data from Nike Apache rockets launched from Wallops Island give a

different perspective. Two flights may be compared: one flight was made into

t
	 mildly disturbed conditions while the second is believed to have been

launched into a SAR arc.

The electron-density profile in Figure 2.9 for Nike Apache 14.534 is

i
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typical of mildly disturbed conditions [see also Voss and Smith, 1979];

the electron-density profile for Nike Apache 14.533 is similar in the E region.

More interesting are the electron temperature profiles in Figures

2.10 and 2.11. Figure 2.10 shows a typical measurement while Figure 2.11

shows a tremendous enhancement in electron temperature.

Figure 2.12 shows that there is definitely energetic proton precipitation

along the magnetic field lines. The tendency for the energetic particles to

mirror is indicated by the two peaks close to 90 degrees.

Energetic proton precipitation is predicted by CornwaZZ et a2. [1971]

and is in agreement with rocket data. High electron temperatures in the lower

F region are expected due to thermal conduction and are again verified

by rocket data.

2.1.5 ConeZusion. In view of the facts, it is believed that

Hasegawa's hypothesis plays the major role in the production of SAR arcs,

however, Cole's and Cornwall's hypotheses cannot be completely ignored.

Along with Hasegawa, the arcs are seen as a large-scale resonance

phenomenon of the geomagnetic L-shells during disturbed conditions. It is

interesting that a correlation has been made between D and H components of

the earth's geomagnetic field and SAR arc position and intensity. Additional

work needs to be done in this area. The conclusion by Shepherd et aZ. [1976]

that plasma heating occurs over widely separated regions in the magnetosphere

would again indicate large-scale resonance and an ac electric field enhance-

ment measured within the arc of August 1970 is easily explained by Hasegawa.

Energetic proton precipitation as observed by Nike Apache 14.533 on

January 5, 1978, can be explained by the plasmapause and ring current inter-

actions proposed by Cole [1975] and CornwaZZ et aZ. [1971]. Coulomb interaction

probably plays a larger role in particle precipitation than ion-cyclotron

radiation since there has never been direct verification of the ion-cyclotron

radiation, while we can be fairly certain of Coulomb interactions. However,

as far as their contribution to SAR arc phenomena these two interactions a:ce

probably minor.

Further examination of these hypotheses is possible since there is

such a massive amount of data yet to be analyzed. 	 We need even

more detailed measurements in the future of magnetic and electric field

variations, energetic particle precipitation, electron densities and electron
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temperatures, plus direct evidence of ion-cyclotron waves in the magneto-

pause during magnetic storm recovery.

Barbier discovered the SAR arc over 23 years ago, yet today in spite of

a wealth of data, its origin remains a mystery and a challenge to scientists.

2.2 Experiment Used in the JASPIC Program

The fundamental parts of the JASPIC system are shown in Figure 2.13.

The magnetometer signal digitizer supplies the microprocessor with a

4-bit sector number (16 sectors) indicating the rocket azimuth bin. This

sector number can be monitored by PIO M2 port A.

Six bits of pulse-height and detector-number information are available

at PIO M1 port A. The A/D converter supplies 4 bits of pulse-height in-

formation (16 energy bins) connected with 2 bits of detector information

(4 detectors). This information is input to the PIO as it is available.

Data output synchronization is accomplished with the help of the CTC.

Eech time the CTC channel 1 decrements to zero it generates an interrupt at

which time one byte of data is output through PIO #1 port B. The data is

converted to an analog signal in the range 0 to SV.

Energetic particle data is cataloged and stored in 2K of RAM and the

operating system resides in 2K of EPROM.

A detailed discussion of the original microprocessor system can be

found in Davis et at. [1979].

The experiment described in this report has the same input and output

facilities at its disposal, however the data organization of the microprocessor

system and software are quite different.

The main hardware differences are in the magnetometer signal processing

and the telemetry output. Davies et at. [1979] used a PIO port to monitor

the magnetometer signal in digital form. Another PIO port was used to send

digital output to a D/A converter which was connected to the telemetry out-

put. Only 2K of RAM was used.

The current system eliminates the 2 PIO ports mentioned above and in-

creased the amount of RAM to 8K. The new system added an SIO chip for

communication, replacing the D/A ronveJrter.

The most radical change is in the software: Davies et at. [1979] used the
mode 1 interrupt structure; the new system uses the mode 2 vectored interrupt.

The sector is calculated off board in Mr. Davis' system while the

current version used the i.TC to calculate the sector interval and number.
M

3

i
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Figure 2.13 The microprocessor system of Davies et al. [1979].
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Doubling the number of azimuth bins has increased the memory require-

ment from 2K to U bytes of data.

2.3 General Description of the improved Sb atem

The rocket-borne microprocessor experiment allows real-time processing

of energetic particle data in the lower ionosphere (70 km to 180 km).

The data processed by the microprocessor experiment holds energy-

spectrum (Figure 2.14) and pitch-angle information (Figure 2.15), which is

the particles angle relative to the earth's magnetic field. Further analysis

will allow identification of the kinds of particles (electrons, protons, etc.)

encountered by the detectors.

Figure 2.14 and 2.15 are results of data analyzed from Nike Apache 14.542

which carried the first-generation version of the microprocessor experiment

[Davis et al., 19791. Hardware and software problems with the first

generation experiment demonstrate the need for self-checking features to be

incorporated into the design of later versions of the microprocessor experiment.

The second generation of the microprocessor experiment reflects changes

in architecture due to new VLSI chips on the market and past experience with

the first generation experiment. Better program development support has led

to sophisticated software which more fully exercises the capabilities of

the Z80 microprocessor: in particular the mode 2 vectored interrupt response

feature.

Figure 2.16 shows how the microprocessor fits into tho energetic particle

i
experiment. The solid-state detectors, amplifiers, threshold detectors and

staircase generators are described in Voss and Smith, 1977, and have been

used on several past flights. The other boxes, except for the magneto-

meter, represent new hardware currently under development.

When an energetic particle strikes one c^f the four solid-state particle

detectors a small current pulse is formed due to electron-hole pair generation.

This pulse is amplified and ends up as charge stored on a capacit-)r which is

at the input of an analog-to-digital converter on the pulse-height analyzer

MIA) board. The output of the analog- tc-digital converter (8 bits) is fed into

an EPROM which contains a log look-up table (Table 2.1) which packs the pulse-

k	 ;-eight data into its logarithmic representation (4 bits). At this point the

respective detector code (2 bits for four detectors) is appended to the pulse.-

height information and the resulting 6 bits of information are fed into a w

f
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Table 2.1 Comparison of the energy ranges obtained without and with
logarithmic compression of the pulse-height data. The input
is in units of keV [,Smith. in E'&,ard3, 19791.

OUTPUT DATA INPUT (LINEAR] I INPUT (LOGARITHMIC)
2

0 0 - 14 0 - 14

1 15 - 22 15 - 16

2 23 - 30 17 - 19

3 31 - 38 20 - 22

4 39 - 46 23 - 26

5 47 - 54 27 - 31

6 55-62 32 -36

7 63 - 70 37 - 42

8 71	 - 78 43 - 49

9 79 - 86 50 - 57

10 87 - 94 58 - 67

11 95 - 102 68 - 79

12 103 -	 1.10 80 - 92

13 111 - 118 93 - 108

14 119 - 126 109 - 126

15 127	 co 127 -00

1Without logarithmic compression

2With logarithmic compression

27
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first-in-first-out (FIFO) buffer which is connected to the parallel-input

port of the microprocessor.

As the rocket spins the magnetic aspect sensor (magnetometer) indicates

the rocket position relative to the earth's magnetic field. A typical signal

is shown in Figure* 2.17. One revolution of the rocket corresponds to one

cycle of the sine wave, and at each negative-going crossing of the signal, a

pulse is generated (the pulse-generator box in Figure 2.16) which toggles

the non-maskable interrupt line of the microprocessor. Two counter-timer

channels are used to keep track of which one of 32 sectors the rocket is in.

Channel 0 decrements once every 1.638 ms and by counting the number of

decrements the time per revolution can be determined. Channel 1 decrements

once every 51.2 us which is 32 times faster than Channel 0 and by loading

the time per revolution determined from Channel 0 into Channel 1, there will

be 32 interrupts per revolution from Channel 1 as shown in Figure 2.17.

At this point there is sector, detector, and pulse-height information

ready to be processed. The sector number has been calculated by the CF;; and

when the first-in-first-out buffer indicates detector and pulse-height data

are available the parallel I/O port generates an interrupt. When the data

are fetched they are coi.-atenated with sector information to form a memory

address as shown in Figure 2.18. By setting higher order bits the 2K byte

blocks of data can be placed anywhere in memory space. After the address

is formed, the memory location is ii-remented by one (one particle count).

The memory map is detailed in Figure 2.19. The 2K byte regions

indicated are used for data accumulation and data transmission. While one

region is being used for accumulation the other region is used for trans-

mitting previously accumulated data. After an entire block of data has been

transmitted the two regions are switched according to the sequence shown in

Figure, 2.20.

Since the amount of time *seeded to transmit 2K bytes of data corresponds

to approximately 20 to 25 spins of the rocket, the end of a block will fall

in the middle of a revolution. In order to keep an integral number of

revolutions associated with the 2K bytes of data accumulated, the processor

waits until the beginning of the next revolution before it begins transmitting

the next block of data.
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FROM PROCESSED
,MAGNETOMETER DATA

FROM PULSE HEIGHT
,ANALYZER BOARD

SECTOR	 _IQETECTORI PULSE HEIGHT

S S S S S Q 0 P P P P
10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0 BIT 41*

Figure 2.18 Address calculation.
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2800 H 10 K

RAM

2400H 9K

RAM

2000 H 8 K-
1

RAM

I C 00 H 7K
I

REGION 11

RAM

1800 H 6 K

RAM

1400 H 5 K REGION I

RAM

1000 H 4 K

RAM

OCOO H 3 K

RAM

0800 H 2 K

ROM

0400 H I K

ROM

0000 H 0 K

ADDRESSES IN I k=2 10 BYTES
HEXADECIMAL
Figure 2.19

P

Microprocessor memory map.
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Figure 2.21 shows what happens if the serial data are plotted against

time. Each sequence of 8 bits correspond to a value on the ordinate from 0

to 255 (28 ) and are seen as steps. Each step gives the number of counts at

a given pulse height, for a given detector, in a particular sector all

accumulated over 20 to 25 revolutions during a specific time interval.

Each one of the 16 detector bytes corresponds to a pulse height; however,

pulse-height bin (number) zero always contains noise from the detector which

will, for all practical purposes, be 255 in every case. Figure 2.21 shows an

identification pulse at the beginning of each detector sequence. It was de-

cided that each pulse-height bin 0 should contain the following information:

Detector #	 Information in bin 0

1	 Marker Pulse (255)

2	 Record Number (0-255)

3	 Sector Number (0-31)

4	 Record XOR Sector

The marker pulse in detector 1 flags the beginning of a sector of data.

The record number indicates which block of data is currently being transmitted

and recycles every 256 blocks of data. The sector number indicates which

of the 32 sectors the data was accumulated in and the exclusive OR of the

record and sector is an error check.

The system also features an automatic reset circuit which, if not

addressed at least once every 50 ms, will cause a system reset. A power-

up circuit causes a system reset several milliseconds after power is

applied to the system. The delay allows any transients due to an instant

power-on to have dissipated before the system is reset and begins operation.

The system diagram (Figure 2.22) illustrates the interconnection of

the various components of the microprocessor. The system is built around

the Mostek Z80 family which include the MK3880 CPU, MK3881 PIO, MK3882 CTC,

and the MK3884 SIO. The 8K bytes of RAM is composed of sixteen 1K-by-4-bit

low-power 2114 static RAM chips and the operating system ROM is a 2K byte

2716 EPROM. Other devices pictured include a. 4-to-16 decoder (74LS154), 4-bit

binary counters (74LS393), retriggerable monostable multivibrators (74LS123),

Schmitt-triggered NAND gates (74LS132), inverting buffers (74LSO4), AND gates

(74LS08), a 2.5 MHz clock (Motorola K115A) and a comparator (MC3302P).

.1

33

f



-	 .... * w4 +•%4

34

M

o

tn

N 41 ^ H
a v, a°

W 4

W I
O

W O l
O N

+j	 Cd

o w
M to O
W $4a

W =
c3	

>+	 d
w
W

u y
i0+

y 3 u

a O ^d b A.z
In 0

~ ° > o
C uv0i iOC 00

N ,c rd

^W
iy

n

N	 O N
00 ~ °

z

U	 h O

H
0
z ^H 	

+j
C>11
d 	 ^+1 j C:.

O O 1 U y v
II ..	

a

• H •H T
N NN J .4 b O 0

W
O^

W Wa ^—a J
F ^Z W W

N

V F- O
O E -_j O

2 O N GO

w ^ w
p

W

Q
W
H
WO

MM O
N

a^^wnN

i

_,.,_..^



.•. —M % 4o

OMINAL PACE 13
Of POOR QUALITY

35

ti
ho
t.

b

a^

N
N
N
O
N
N
Ou0
Na0
a
u

NN
N
O
fi
O
b0

w

^.I	 U

s

G

4

€ fF

W
N

H^

Q



... w # w4

S6

The magnetometer pulse generat— is made up of the comparator and mono-

stable (in the upper left of Figure 2.22) and generates a CPU non-maskable

interrupt by toggling the NMI line once during each spin of the rocket.

The automatic reset circuit is made up of the two monostables in the

upper right of the diagram. The reset circuit timing diagram (Figure 2.23)

illustrates how constant retriggering of the monostable using the ARDY line

will prevent signal Q  from triggering Q 2 which will reset the system. The

function of the automatic reset is to prevent the operating system from getting;

hung up. Data must be strobed onto the PIO port and the CPU must respond

within any given 50 ms period.

The mode 2 vectored interrupt response of the Z80 (see Appendix IV),

allows implementation of sophisticated software techniques. The interrupt-vector

table (Figure 2.24) resides at the top of RAM and is set up at initialization

to point to each of the subroutines which service their respective devices.

The ability to alter the table under program control allows the routine

servicing a device to be switched so that any number of routines can service

a single device. This concept was used to service the SIO as it output its

2K byte data blocks. As explained earlier each detector has its respective

bin 0 information, and, instead of using counters to distinguish detectors,

four service routines were written which were linked together through the

interrupt table. When the detector 1 routine had finished outputting its

16 bytes it changed the interrupt table to point to the detector 2 routine

which would link to the detector 3 routine, etc. (Figure 2.25a). Refer to

section 4.2 for more detail.

The general operating system diagram (Figure 2.25b) illustrates how the

regions are switched and how the service routines are linked to the main

program by the interrupt vector table. Each of the region boxes is continually

testing to see if the last byte of a 2K block of data has been transmitted

and if the rocket has finished the revolution in which that byte was trans-

mitted. When the conditions are met the main program jumps to the next

region box, changes the necessary flags and then begins, its owt, testing loop.

The most critical service routine is that of the PIO since data is input

to the FIFO approximately once every 50 us. This implies that the PIO

service routine cannot be longer than 50 us otherwise the FIFO would fill up.

The current execution time of the PIO service routine is about 40 us which
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Figure 2.23 This figure illustrates how the automatic reset
circuit causes a system reset if not addressed
at least once every SO ms. The time scale of the
ARDY signal has been exagerated to illustrate
the functioning of the reset circuit. ARDY should
be active approximately once every SO us.
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Figure 2.24 Interrupt vector table addresses.
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SERVICE
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SERVICE
ROUTINE

.». .44-064

r

39

DETECTOR I
MARKER PULSE

1
t

DETECTOR 19 1	 1 DETECTOR II
SECTOR XOR	 RECORD NUMBER

RECORD

DETECTOR M
SECTOR NUMBER

(o)

START
LOCATION 0

INITIALIZATION
OF DEVICES
AND SET UP

(b)

Figure 2.25 (a) SIO service routine linkage using the interrupt
table; (b) operating system diagram showing the
linkage of the various service routines via the
interrupt structure.
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includes the 19 clock cycles used to service the interrupt. This means that

servicing the PIO accounts for at least 80% of the total processing capability

of the microprocessor system.

If all the other parts of the operating system are included it is clear

that the system is near capacity and that the incoming data rate cannot be

increased without exceeding; the capability of the system.

Chapter 6will discuss why the data rate is important and Chapter 7

will discuss ways to improve the s peed with which the data are processed.



i

41

3. ROCKET-BORNE SYSTEM ARCHITECTURE

3.1 Central Processing Unit (CPU)

The Z80 central processing unit (CPU) is the heart of the rocket-borne

experiment. It is here that the programmed sequence of instructions in memory

are executed and control signals for the peripheral devices originate.

The Z80 CPU is not a stand-alone device, but depends on its connection

to memory and peripheral devices to define its personality and function, making

it very versatile.

The rocket-borne application requires 2K bytes of read-only memory, 8K

bytes of randon-access memory, a serial I/O port, a parallel 1/0 port, a

counter timer circuit, and a magnetometer-interrupt processor. These are

described in the following sections.

The Z80 CPU coordinates the communication between the pulse-height

analyzer board and itself through the parallel I/O port. Once the data are

available, they are organized and accumulated in memory and then transmitted

via the serial I/O port.

The Z80 CPU, powerful as it is, would be quickly rendered ineffective

if it had to concern itself with all the details of timing and communication.

This explains the need for special peripheral devices to handle these func-

tions. These devices are programmed by the Z80 CPU to define various aspects

of thei,, function and, once programmed, run by themselves, interrupting the

Z80 CPU only when necessary to trar g fer data or mark certain events. This

leaves the Z80 CPU free to concentrate on data processing.

3.2 Memory

The microprocessor memory map (Figure 2.19) shows the memory layout in

lK byte blocks.

The lower 2K (address 0 to 07FF11) is read-only memory (ROM), in which the

operating system resides. The ROM was placed here because of the Z80 hardware

reset feature which branches to location 0 when executed. The hardware reset

is used upon power.-up and also if the automatic reset circuit detects a fatal

system error.

Everything from 2K to 10K (address 0800H to 27FFH) is random-access

memory (RAM). For data organization purposes the region 4K to 8K (address

1.00011 to 1FFFH) is divided into region 1 and region 2. The upper 2K (address

2000H to 27FFH) is used for the interrupt-vector table and the stack. The 2K
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to 4K (address 0800H to OFFFH) region is not used„

The ROM resides in an Intel 2716 EPROM which is ..V by 8 bits. The RAM

consists of 16 Hitachi 1IM472114-4 low power memory chips, each chip organized

as 1K 5y 4 bits.

In order to fit 8K of RAM on a 5 inch by 5 inch printeu ,circuit board

(see Figure 3.1) advantage was taken of the similar pinout of the chips which

allowed them to be stacked 2 high. Only the CS (pin 8) was different on the

stacked chips so it was jumpered diectly to the printed circuit board from

the chip on top.

The question immediately arises of th y= heat dissipation qualities of

the 2114 RAM chips in this configuratio;r, lr the chips exceed their heat

specifications (0 - 70°C) they may fail.

A study was made of this problem using a simple circuit ti tr?st the RAM's

while their temperatures were monit7red with thermistors (se;^ . F.pr. ,. YW,,.x 1)

The study concludes that the specifications are not exceeded in several

different environments and subsequent testing and use of the racket-born-v

microprocessor system has also shown reliable operation of the RAM's.

Appendix V.3 shows the organization of the 2114 RAM chips. The data bus

is split into high- and low-order bits since the 211; RAM's are only 4 bits

wide. This means that each pair of 2114 RAM chips constitute 1K by 8 bits of

memory.

The 4 address lines input to the decoder select which 1K block of raemory

is to be enabled during a memory request by the CPU. Only one select line is

active during a memory request enabling only one pair of RAM chips or the

EPROM thus avoiding memory conflicts.

3.3 ParalZeZ Input/Output (PIO)

The parallel input-output port (PIO) is used to input the energetic

particle data from the pulse-height analyzer board. Only 6 of the 8 bits are

actually used and contain the detector inform,,ti:,n (2 bits) and pulse-height

information (4 bits). The remaining 2 bits arc set to zeros.

Only port A is used and it is addressed by the CPU as shown in the PIO

harow-re addressing table (Table 3,1). Port A is used in the input mode which

is set by the operating mode vector shown in the PIO software control table

(Table 3.2). Other options selected by the microprocessor are also indicated.

Communication between the PIO and the PHA board is coordinated by the

ASTR and ARUY handshake lines. The ASTB is pulsed every 50 us and
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Figure 3.1 Microprocessor memory board. Notice the
16 RAM chips stacked 2 high. The EPROM
is on the left and the decoder is on the
right.
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loads the data from the PHA into the port A input register which causes a CPU

interrupt to be generated. As soon as the CPU is able to service the interrupt

and fetch the data from the port, the ARDY line becomes active and the port is

ready for the next data word.

The time it takes the microprocessor to completely service the interrupt

must be less than the incoming data rate of SO us per input byte or the CPU

would be overrun with interrupt requests. The PIO interrupt service routine

(see Table 3.3) shows that the length of time needed to handle PIO input

data is 39.2 us which leaves 10.8 us out of every 50 us for the CPU to service

its other peripherals. Since the PIO is buffered by a first-in-first-nut

(FIFO) memory which contains 40 nine-bit registers the data will stack up if

the CPU is unable to immediately service tho PIO interrupt. As soon as the

CPU is available to service the interrupt request, the FIFO will be quickly

emptied.

3.4 Serial Input/Output (SIO)

The Mostek 3884 serial I/O (SIO) chip is an extremely versatile communica-

tions device with 2 portL and many options which are software selectable.

Channel A is used to transmit all of the microprocessor data and is

completely interrupt driven. The hardware addressing of the SIO is shown in

Table 3.4.

The transmitter contains 2 data buffers: the output shift register and

the transmitter buffer which holds the next data word to be output. When the

transmitter buffer is empty the SIO informs the CPU through an interrupt that

it needs data during which time the shift register is busy shifting out the

former data %,)v?. Since the transmitter buffer is loaded long before a data

word is shifted out the data flow is continuous.

Notice that the CPU never has to poll the SIO to see if it needs data

(as in many other systems). This adds to the overall system efficiency.

The SIO contains 8 control registers (0-7) which select the many options

available. Write register 0 is used for several commands in addition to

pointing to any of the other 7 write registers. For example, if write register

5 is to be set, write register 0 is first output with a value of 5 (points to

write register 5) and then the value of write register 5 is output.

Using this method the interrupt vector is loaded into write register 2.

Write register 4 is used to select the clock rate 016 (the bit rate divided
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Table 3.3 Listing of the approximate execution times of system
subroutines. The most critical routine is PIOINT which
must execute in less than 50 us which is determined by
the incoming data rate.

Approximate
Execution

Name Function Time

NMINT non-maskable interrupt service routine 88.8 us

PIOINT parallel I/O interrupt service routine 39.2 us

SIOMK serial I/O marker byte interrupt service 96.0 us
routine

SIOBK SIO record (block) number byte interrupt 96.0 us
service routine

SIOSR SIO sector number byte interrupt service 96.0 us
routine

S:IOCK SIO error check byte interrupt service 96.0 us
routine

CTCRGl CTC memory region 1 interrupt service routine 54.8 us

CTCRG2 CTC memory region 2 interrupt service routine 54.8 us

REGI141 memory region 1 setup subroutine 58.8 us

REGIN2 memory region 2 setup subroutine 58.8 us

sc.x_,a ucv._rr eu.w3ty—psi ^.Krt^^Y3

0
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by 16, 2 stop bits and disable the parity bit. Write register 5 is used to

select 8 bits per transmitted character and enable the transmitter. Finally

write register 1 is used to enable the transmitter interrupts. See Table 3.5

for the actual settings of the control registers.

Write register 0 is usod by itself to reset channel A and reset trans-

mitter with interrupts pending. The reset channel command is used whanever

the system is initialized before any other commands are sent to the SIO. The

reset transmitter with interrupts pending command is more interesting. This

command disables the SIO from interrupting the CPU until the next data word is

loaded into the transmitter buffer even if the transmitter buffer is empty

which would normally cause an interrupt. This feature is used between the end

of a block of data and the next NMI to avoid generating unnecessary interrupts.

When the next NMI occurs, the SIO is started again, by loading it with the first

byte of the new block of data (a marker byte of 256).

Thus, there are 2 stop bits, 1 start bit and 8 data bits, for a total

of 11 bits for every byte of data transmitted.

The clock frequency at the TxCA input (pin 14) is 78.125 KHz (mxl6) (see

Table 3.6) thus the bit rate is (78.125 KHz)/16 = 4.8828 KHz. Each group of

11 bits is transmitted at a rate of (4.8828 KHz)/ll = 443.89 Hz, or 1 byte of

data every 2.25 ms. Thus one block of 2K (2048) bytes of data will be 4.6137 s

long.

3.5 Counter .Timer Circuit (CTC)

The counter timer circuit (CTC), with the non-maskable interrupt (NMI),

is used to divide the rocket's spin into 32 equal intervals (azimuth bins).

The CTC is addressed as shown in the hardware addressing Table 3.7 and the

characteristics are set as shown in the software control Table 3.8.

An NMI is generated once every time the rocket completes a revolution and

the CTC takes the time between NMI's and divides that time into 32 intervals.

Two of the four CTC channels are used in the counter mode which is pro-

grammed to count on the negative edge of a user-supplied clock signal. Channel

0 is decremented every 1.6384 ms and channel 1 is decremented every 51.2 us

which is 32 times faster than channel 0 (see Table 3.6).

During flight channel 0 is set to 256 counts at the beginning of each

spin and at the end of the spin the channel is interrogated to determine how

many times it was decremented during that spin. The actual algorithm is
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Table 3.6 The time constants for the various devices are
indicated in this table.

Division of 0 Frequency Period Continents

1 2.50 MHz 0.40 us

2 1.25 Miiz 0.80 us

4 625.00 kHz 1.60 us

8 312.50 kHz 3.20 us

16 156.25 kHz 6.40 us

32 78.12 kHz 12.80 us SIO Ch A TxRx (pins 13,	 14)

64 39.06 kHz 25.60 us

128 19.53 kHz 51.20 us CTC Ch 1 (pin 22)

256 9.76 kHz 102.40 us

512 4.88 kHz 204.80 us

1024 2.44 kHz 409.60 us

2048 1.22 kHz 819.20 us

4096 610.35 Hz 1.63 ms CTC Ch 0 (pin 23)

8192 305.17 Hz 3.27 ms

16384 152.58 Hz 6.55 ms

32768 76.29 Hz 13.10 ms

65536 38.14 iiz 26.21 ms
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explained below.

Upon receipt of the NMI signal the CPU reads the contents of the CTC

channel 0 down-count register. During the rocket's spin, this register has

been decremented every 1.6384 ms starting at 256; therefore the spin time is

equal to 256 minus the value of the down-count register multiplied by 1.6384

ms. The counts versus spin rate table (see Table 3.9) shows the range of

allowable spin rates.

A normal spin rate would be 5 or 6 revolutions per second, which is in

range of the CTC. However if the spin rate falls below 2.384 revolutions

per second the rocket would probably have experienced a catastrophic failure.

The data could still be recovered, but with great difficulty. Conversely, if

the spin rate exceeds about 8 revolutions per second, structural damage will

result, namely the booms will break off and 2 of the 4 detectors will be lost.

The data from the remaining 2 detectors can still be used and would be processed

in the normal fashion.

The number of decrements per spin from channel 0 is loaded into the

channel 1 time-constant register which will be automatically loaded into the

down-count register every time the down-count register reaches zero or channel

1 is reset. Since channel 1 is running 32 times faster than channel 0, the

channel 1 down-count register will reach zero and generate interrupts 32 times

per spin using the above scheme.

By counting the number of interrupts on channel 1 the CPU can keep track

of which of the 32 sectors the rocket is in.

As long as the magnetometer signal is generating NMI's channel 0 should

never time out. However, if it does, channel 0 is then used to simulate the

rocket's spin. There are at least two cases where the NMI would not be generated.

The first case would include various types of hardware failures and the second

case is the absence of the rocket's spin before flight.

If this happens, CTC channel 0 takes the place of the NMI and is loaded

with a time constant of 121 counts (which will look like approximately 5

revolutions per second; see Table 3.9). This will continue until another NMI

is received at which time the NMI's will determine the spin rate.

3.6 Alagnetometer Interrupt Processor

The magnetometer interrupt processor is used to generate non-maskable

interrupts (NMI's) each time the rocket completes one revolution (see

-A
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Table 3.9 This table shows the range at allowable spin rates
for the microprocessor system. Spin eates out5ide of
this range would indicate catastrophic vehicle failure.
Normal spin rates for the Taurus Orions are around 5
or 6 rps.

CTC Channel 0
counts vs spin rate

Rocket spin (rps) Period (sec) Number of counts at 1.6384 ms/count

1 1.0000 610.3S

2 O.SOOO 30S.17

2.38 0.4194 2S6.00

3 0.3333 203AS

4 0.2500 152.58

S 0.2000 122.07

6 0.1666 101.72
in

7 0.1428 87.16 range

8 0.1250 76.79 of
CTC

9 0.1111 67.81

10 0.1000 61.03

20 0.0500 30.50

30 0.0333 20.34

40 0.0250 15.26

so 0.0200 12.20

60 0.0166 10.17

70 0.0142 8.72

80 0.0125 7.63

90 0.0111 6.78

100 0.0100 6.10

610.35 0.0016 1.00
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Figure 3.2). As the rocket spins in the earth's magnetic field, the

magnetometer generates a sinu^oidal signal, the frequency of which corresponds

to the spin rate of the rocket.

The magnetometer interrupt processor is used to find the beginning and

end of each spin of the rocket. This means there must be a signal generated

for each cycle of the magnetometer signal.

The negative-going zero-crossing of the magnetometer is used as a refer-

once so that each crossing generates an NMI.

A comparator (MC3302) is used to convert the magnetometer signal to a

square wave of the same frequency (see Appendix V.2). The comparators refer-

ence (+ input) voltage is set at approximately 2.5 V to match the DC offset

of the magnetometer signal. The output of the comparator is fed into a one

shot (112 74LS123) which is triggered on the rising edge of the comparator

signal.

3.7 System 5,:4f-Checking

Certain guarantees that the system is operating correctly are always

desirable.

During testing it was observed that,at times,the PIO port would stop

receiving .'.ata. Everything else functiuned correctly but it was quickly ob-

served that no valid data was being transmuted by the SIO since all the

energy bins showed zero counts.

This error occurred most often when the payload was switched from external

to internal power and vice versa.

In order to correct this problem, a reset inhibit circuit was used. If

the reset inhibit circuit is not addressed by the microprocessor during a

given length of time, a system reset will be activated causing the micro-

processor to reinitialize all the peripherals and start over.

The ARDY signal of PIO port A was chosen to address the reset inhibit

circuit. If the ARDY signal becomes stuck and fails to change over a 50 ms

time period the system will be reset. ARDY is important since it not only

tells if the PIO is receiving data, it also indicates that the microprocessor

is responding to the FIFO. Since data are being received by the microprocessor

every 50 us, the 50 ms requirement of the reset inhibit circuit is easily

satisfied. Figure 2.23 shows the timing diagram and Appendix V.1 shows the

hardware involved.
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3.8 PhgsicaZ Organization

The microprocessor system is physically split into 3 sections (see

Appendix V.1, V.2 and V.3). Each section is contained on a 5"	 S" printed

circuit board all of which are mounted in a special box and con.._,..ed to-

gether via a commo jackplane.

This arrangement was chosen to allow the experiment to be included in

payloads of 6.5" outside diameter (used on Nike Apache and Nike Orion rockets)

as well as in payloads of 12" diameter (for the Taurus Orion rockets). Figure

3.3 shows the microprocessor experiment in the payload of Nike Orion 31.014,

scheduled for launch in the summer of 1981.

For testing purposes the box can be removed from the payload as shown

in Figure 3.4. Special extender cards were made to give easy access to the

circuit under test.

Y
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4. ROCKET-BORNE SYSTEM SOFTWARE

4.1 Introduction

The data processing algorithm is simple in nature. Each energetic

particle is defined by detector number, pulse height, and sector which maps

into a unique memory location. I£ several energetic particles accumulate

in the same memory location during a given period of time, then the count

rate (number of energetic particles per time) of energetic particles with

particular characteristics can be established.

The implementation of the data processing algorithm can be followed

from the program listing (Appendix II.1) with the help of system flowcharts

(Appendix III) and the register layout in Table 4.1,

4.2 Data Processing

While the algorithm is simple in concept the implementation is

difficult.	 Time constraints and interrupt synchronization are major

obstacles.

The Z80 has many powerful software features at the assembly language

level which can be used to great advantage in applications such as this. How-

ever trying to write Z80 code similar in nature to FORTRAN code written for

a mainframe computer will defeat the purpose of the Z80's advanced architecture.

The vectored interrupt mode (see Appendix IV) was used extensively to

link subroutines together with the main program. Normally a subroutine is

called explicitly from a main program, however the Z80 allows subroutines

to be called through actions initiated by an external device. The subroutine

is called only when needed as opposed to the CPU constantly polling the device.

In fact, the CPU never issues an explicit call to any of the peripheral

devices.

For example, assume that the PIO receives one byte of data from the FIFO

on the PHA board. With this data now available for the CPU the PIO issues an

interrupt request. Using the I register and one byte of information from the

PIO, an address pointer is formed which directs the CPU to a memory location

containing the address of the routine which will service the PIO. ',,be CPU

fetches the address and branches to the service routine.

When the routine is finished control can be returned to the main program.

The interrupt vector table (see Figure 2.24) shows that the address of

the PIO vector is 27F6H, therefore, upon initialization of the system, the I

i

._	 _J
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Table 4.1 This table shows which system variables are assigned
to the various Z80 registers.

A	 General purpose

E	 Sector time constant

C	 Bit 1,C: ready for region change, Bit 7,C: may go ahead and change
region

D
Contains region and sector bits

E

H
Combined with DE and P10 data to form data address

L

At
	

General purpose

B'
Same as BC

CO

D' Sector number

E' Record number

H'
Holds address of byte to be output by SIO

L'

IX
	

Interrupt table address

IY
	

Not used

SP
	

Stack pointer
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register is set to 2711 and the PIO interrupt vector pointer is set to F6H

(see Appendix I1.1, lines 29 and 76).

The interrupt vector table is stored at the top of RAM memory which

allows it to be changed at any time. As long as the I register and device

interrupt vector pointer are not changed, the device will point to the same

memory location which means if that memory location is changed to point to

another routine, it is possible to branch to any one of several routines.

Setting the locations 27F4H and 27FSH to the SIOMK routine (line 236,

address 0097H in the flight program listing, Appendix ILL) will cause the

SIO to branch to SIOMK every time it issues an interrupt. If the table is

changed at some point to SIOBK ( line 290, address 00DIH) then the SIO will

branch to SIOBK instead.

The runtime stack is another important feature of the Z80. A stack is

like a last-in-first-out buffer accessed by PUSH and POP instructions which

store and retrieve data from the stack respectively. The address of the top

of the stack is held in the stack pointer register.

The stack is used mainly to store the machine status during interrupt

servicing by PUSHing the AF register pair at the beginning of a subroutine

and POPping the AF pair at the end. This avoids interference of the main

program by interrupting routines. There are many other uses of a stack,

though not needed in this application, such as dynamic memory allocation and

parameter passing among subroutines.

The Z80 has two separate register sets: the primed and unprimed (which

are identical), but only one set can be accessed at any given time. The EXX

and EX AF, AF 1 instructions are used to change between register sets.

The exchange feature is useful for keeping track of system parameters

since most of the information was held in the Z80 machine registers (see

Table 4.1).

Indexed addressing is accomplished using the IX and IY index registers.

Indexed addressing allows easy access to tables %.f information by allowing

a displacement off of the address held in the index register. The instruction

LD(IX + 6), L (see line 434) will load the contents of register L into the

memory location which is 6 bytes after the address in the IX register. This

feature is used to access the interrupt vector table at the top cf memory.

E

4..	 ....-	 —ate ..a^^r.; f., .: ..,: 	 ..;._	 ..	 .. _	 ..	 _., ...	 . _.	 ^	 .._....... .^	 . ,_..,,	 ,.,...„.....,.^-....^..

y
s



..rA40

64

Processor interrupts may be enabled and disabled with the El and DI

instructions respectively, preventing certain critical operations from being

disturbed. Interrupt service routines are entered with interrupts disabled

so that no other interrupt may occur until they are explicitly enabled by the

program. Thus the programmer can force the interrupting devices to wait their

turn while others are being serviced. Interrupts are explicitly disabled

(lines 429 through 446) during the resetting of devices and initialization of

system parameters, fur example.

4.2.1 Aesembler. Several features of the SOB 80 assembler greatly

aided program development.

The most important feature is the ability to define and use symbolic

labels, in fact the first two pages of th em flight program (Appendix II.1)

are used to define each label and comment on its use. If a label is en-

countered in the program code, a glance at the first two pages will explain

its use. The label itself is usually enough of a hint as to its use in the

program thus making the code self documenting.

For example, consider the following code from lines 200 through 203.

LD	 A,CTCENA

OUT	 (CT--O),A

LD	 A,CTC256

OUT	 (CTCO),A

Now consider the identical code without labels.

LD	 A,OC7H

OUT	 (14H),A

LD	 A,256

OUT	 (14H),A

One glance at the labeled code tells that something is happening to CTC

channel 0 and, with a few comments, the code is quickly and easily understood.

Labels also allow easy program modification and consistency. If it is

found that CTCO in the above code should have been a 15H instead of 14H one

change to the label definition would cause the assembler to automatically

change every occurrence throughout the program instead of the programmer

having to hunt every occurrence of 14H.

Comments are used liberally to aid in program development and debugging.

- -.A



65	 r

WA

..4 ms. i

Other features such as address, object code and statement number columns

are standard features of any assembler. Assembler error messages quickly

catch any syntax errors or undefined labels.
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S. LABORATORY SUPPORTING SYSTEMS

5.1 lntroductlion
The operating system of the racket-borne microprocessor, which resides

in the 1A IROM, was developed on the MOSTEK software development board (SUB 80) ,

Figure 5.1. The SUB 80 work station is pictured in Figure 5.2.

The SDB 80 is used to transform the Z80 source code into machine code

which is then transferred to an EPROM to become the operating system of the

rocket-borne system.

The source code is the human readable version of the Z80 instructions

(see Appendix II) which make up a program. An assembler and linking loader

takes this source code and translate it into machine code which is executable

by the Z80 central procersor.

The editor, assembler, and linking loader of the SDB 80 were adequate for

thi:4 application. flowever, the memory requirements of the flight program were

barely satisfied.

5.2 L:PROM Programmer

The EPROM programmer, as described by Davis et al.. [1979], worked reliably

with the exception of the failure of one of its counter chips which was replaced.,

The 2716 EPROM chips with their 2Kx8 bit capacity prove to be more than

enough memory required by the approximately 475 byte flight program.

Of several different brands of EPROMs used, the INTEL 2716 was found to

be the easiest to erase and reburn.

5.3 Cassette Tape Trunsport

The BETA-1 cassette transport (manufactured by MECA) is a valuable tool

in the development of the system.

Prior to the addition of the BETA-1 to the SDB 80, the only means of

storage was paper tape generated on an old teletype machine. Simple programs

would take 30 minutes or more to punch or read which made program development

very tedious. The BETA-1 cut program access to less than 1 minute allowing

^a	longer programs to be easily developed.

The SDB 80 is connected to the BETA-1 through its parallel interface #1.

Port A is used for receiving data from the BETA-1 while port B transmits data.

A copy of a page of the SDB 80 manual shows how socket U16 is strapped to

give the correct polarity to the handshaking signals (Figure 5.3).

The BETA-1 was a bit more difficult to modify since it was designed to be
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Figure S.2 SIM 80 work station. The SD13 80 is housed
in a carol cage to the left of the CRT.	 In
front of the card cage is an IYROM progrwwwr
and eraser. On top of the CRT is a BLTA 1
cassette tape transport used for mass storage.
The teletype 33 on the right is used for
program listings.
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interfaced to any number of parallel I/O configurations.

As can be seen from Figure 5.4, there are many jumper options to choose

from, allowing selection of handshake signal timing and polarity. The 'aptions

s.>lected for the BETA-1 are indicated.

The hardware interface would have been easy had software been supplied

that was functional. However, uncertainty in both areas proved to make the

interfacing difficult.

Once the programs were working, they were buvned into an EPROM so they

could be easily accessed by the SDB 80.

The write program (Appendix I1.2) tas placed in EPROM at location 437011

and the read program at 44COH (Appendix II.3). In order to access these

routines from the text editor location, :00 is set to 43DSII and :SI is set

to 44COIi.

These routines allow manual operation of the BETA-1 in order to oiler.

files and to perform directory operations. These operations are described in

the BETA-1 manual.

When a read ('rR) or write (0) operation is requested ,:rom the BETA-1 the

respective data transfer is done through the special routines.

S.4 Seri.aZ-To-Analog Converter

In order to monitor the output of th,; rocket-borne system, a special

serial-to-analog converter was built. In essence each data word of 8 bits

was converted to a signal between 0 and 10 volts.

The circuit, Appendix V.4, is quite simple but very effective in

debugging the microprocessor system. By observing the analog signal on an

oscilloscope, one can immediately tell if the microprocessor is operating

correctly.

The analog data stream looks exactly like that in Figure 2.21 and allows

observations of each energy bin and the detector delimitors. Oscilloscope

photographs of data from one detector., Figure 5.5, show that a low resolution

energy spectrum can be obtained (since only 16 energy bins are available)

when a radioactive source is held in front of the detector.

e
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6. TESTING AND FLIGHT PERFORMANCE OF THE ROCKET-BORNE EXPERIMENT

6.1 Calibration

Calibration of the microprocessor system is necessary to establish the

energy range (in keV) for each of the 16 bins. The primary reference used

for calibration is a 1 pC radioactive source of Am 241, which has a very

strong emission line at 60 keV. It provides a simpler method than the use

of a particle accellerator, described in Voss and Smith (1974, 1977].

Only half of the -10 to 10 V range of the 8-bit A/D converter is used

in the system, in particular the 128 steps over the -10 to 0 V range. Adjust-

ment of the system's sensitivity is such that each step is nominally 1 keV:

the slope is therefore 0.078 V/ke\'.

Assume initially that there e:cists a linear relationship between the

output of the detector amp:ifiers and the particle energies as shown by the

straight line on Figure 6.1. The ordinate of this graph is the peak detector

(sample-and-hold) voltage at the input t;o the A/D converter.

The 16 energy bins are assigned to various energy ranges as shown by the

ideal values in Table 6.1. The bin assignments are almost identical to these

of Table 2.1: for example, a 43 keV particle would fall into bin 7. The

discrepancy at the higher energies will be explained later.

Since the A/D converter uses an offset binary encoding scheme it outputs

a OOH for -10 V input. Taking this into consideration a memory map, Figure

6.2, is implemented in an EPROM which for a number as input yields the correct

bin number as output. Since the bin number requires 4 bits either the high

or low order 4 bits can be used since they are programmed identically (ex-

plaining the double entries in Figure 6.2). A 43 keV particle, for example,

will appear at the input of the A/D converter as -3.43 V and be converted

to 54H. Location 54H of the EPROM contains 77, thus the bin number is 7 in

agreement with the example of the previous paragraph.

Calibration of the experiment involves making sure that the straight line

on Figure 6.1 matches as closely as possible the experimental results. As

soon as the various amplifier gains prior to the A/D converter input are

adjusted correctly, a picture similar to Figure 6.3 can be obtained.

Once the correct energy bin is obtained a pulse generator (Ortec 448)

can be substituted for the detector at a special input on the preamplifier.

The pulser is calibrated to select bin 10 for a 60 keV input.

Y
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Table 6.1 Mapping of keV into energy bin numbers.	 System non-linearities
cause the actual energy range values to differ from the ideal
energy range values at high energies.

Sample-and-Hold
Ideal Energy Actual Energy Bin Voltage EPROM
Range (keV) Range (ke !Q Number (input to A D) Location

>127 >200 15 -10.00 OOH

109 - 126 117 - 200 14 -8.59 1211

93 - 108 93 - 1.16 13 -7.34 2211

80 -	 92 80 - 92 12 -6.32 2FH

69 -	 79 69 - 79 1.L -5.46 3AH

59 -	 68 59 - 68 10 -4.68 44H

51 -	 58 51 - 58 9 -4.06 4CH

44 -	 50 44 - 50 8 -3.51 S3H

38 -	 43 38 - 43 7 -3.04 59H

33 -	 37 33 - 37 6 -2.65 SEH

28 -	 32 28 - 32 5 -2.26 63H

24 -	 27 24 - 27 4 -1.95 67H

20 -	 23 20 - 23 3 -1.64 6BH

17 -	 19 17 - 19 2 -1.40 6EH

14 -	 16 14 - 16 1 -1.17 71H

0 -	 13 0 - 13 0 0.00 80H

t



... ..4..i
s

76

atl2n1 U 1 Z 3 4 5 6 7 8 9 A E C D E F
tioOO F F LL LL LL LL EE EE LL EE EE LL LL LL LE LL EE
0010 LL LL LL DD UD DL LD LL DD LL DU DD DD DD DD LD
0020 LL DD LL CC CC CC CC CC CC CC cC CC CC CC CC CC
0030 BU bB B8 Bb Bb 1311 UB bb BB Bb L5 AA AA AA AA AA
0040 AA AA AA AA AA 99 99 99 99 99 99 99 99 88 88 88
0050 88 88 88 88 77 77 77 77 77 77 66 66 66 66 66 55
0060 55 55 55 55 44 44 44 44 33 33 33 33 22 22 22 11
0070 11 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0090 00 00 00 00 00 00 00 02 00 00 00 00 00 00 00 00
00A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00bo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000 00 00 09 00 00 00 00 00 00 00 00 00 00 00 00 00
00DO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOLO 00 00 00 00 00 00 00 00 00 00 00 02 00 00 Oc 00
OO FH 00 00 00 00 00 00 00 00 02 00 00 00 00 00 00 00

Figure 6.2 Log EPROM memory map showing the locations of the
16 energy bins. The EPROM past location 72H is
filled with zeros. For example, suppose the input
to the EPROM is 54H then the output will be 7711.
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Once the pulser is calibrated each energy bin can then be selected by

dialing the appropriate keV level on the pulser. A plot of pulser output

(in keV) versus A/D input voltage is shown in Figure 6.1 as crosses. As the

higher keV levels are approached the amplifiers begin to depart from their

linear range as shown by the deviation from the straight line. This means

that the energy ranges of the three highest bins differ from the ideal. Each

detector has its own characteristic curve.

The curve of Figure 6.1 is subject to a slight error due to the calibra-

tion of thu pulser and human erro r in reading the A/D input voltage from the

oscilloscope. This means that the actual energies of Table 6.1 are accurate

to within a few keV.

The peak at 116 keV of a 0.1 UC radioactive source of Co 57 is used to

check the higher energy bins. As can be seen in Figure 6.4 bin 13 is selected

for 116 keV particles matching closely the actual energy range of bin 13

predicted from Table 6.1.

6.2 Particle SampZ^ ng

sampling of the energetic particles encountered by the detectors is

implicit in the experiment and needs to be discussed to interpret some of

the flight data.

6.2.1 SxnpZing procedure. The peak detector (sample-and-hold) circuit
is made up of a capacitor and an analog switch which is used to discharge the

capacitor. The pulse created by an energetic particle striking a detector

causes a charge to be stored on the capacitor.

The sampling sequence is shown in Figure 6.5. A detector is sampled for

approximately 150 Us and, just prior to the end of this time, the voltage on

the capacitor is digitized. The capacitor is then discharged and held at 0 V

until the next sampling period starts 50 us later.

6.2.2 Sampling error. If a particle enters a detector daring the dis-
charge time then it will not be seen at all; only if it strikes during the

sampling period will it be processed by the mica„processor. The first effect

of sampling, then, is that only 750 of the particles are recorded. This is

true for low particle fluxes: at higher fluxes other factors must be con-

sidered and the percentage is reduced below 750 and becomes a function of

energy.

Consider the case where two particles of different energies strike the
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detector during the same 150 us sampling period. If this happens, only the

more energetic of the two particles is seen by the A/D causing a sampling

error.

If the sampling errv- occurs infrequently it will have no noticeable

effect on the particle spectrum. Figure 6.4 is an example of a normal

spectrum. This is the case if the particle flux is no grunter than 1 particle

every 150 us.

As the particle flux exceeds 1 particle per 150 us the sampling error

will reduce the apparent flux of low ei,ergy particles, biasing the spectrum

to the higher energy bins. Hgures 6 . 4 and 6.6 were both produced by a 0.1

PC Co 57 radioactive source except that the source was held closer to the

detector in Figure 6.6 to increase the particle flux. The preference of the

higher energy particles in Figure 6.6 is shown by the higher energy bins

having more counts than the lower energy bins, while the opposite is true in

Figure 6.4.

If the particle flux is much higher than 1 particle every 150 us then

high energy particles may occur in every sampling period and the low energy

bins would be completely empty. A strong radioactive source held away from

the detector produces the display shown in figure 6.7. If the same source

is held close to the detector Figure 6.8 results. Particles in the range of

bins 10 and 11 occur so frequently that they dominate any of the particles

of lower energ!4^s. Energy bins 1 through 5 have zero counts because every

time a particle with energy in this range is sampled a particle of higher

energy has also been detected during the same sampling interval.

6.2.3. >olution to scrmpZing problem. There are two ways in which the

sampling problem can be solved, The first solution is to -ample at a much

faster rate. This presents considerable circuit difficulties and, of course,

is not possible for the flights that have already taken place.

The second solution is to correct for the sampling error in the post-

flight processing of the data. To do this the behavior of the experiment is

carefull y recorded for different n:,rticle fluxes and energies so that this

information can be applied to the actual flight data. This solution reduces

to an exercise in the statistics of particle counting and has not yet been

worked out in detail.
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6.3 Flight Data From :'he Energy Budget Campaign

Figure 6.9 shows data at 134 km from Taurus Orion 33.009 launched at

23:44:30 UT on November 30, 1980. One complete sector of data is marked off

by detector and energy bin numbers. Bin 0 of detector 1 contains the marker

pulse of 255. Bin 0 of detector 2 indicates the block number being output is

51 (refer to section 2.3) and bin 0 of detector 3 indicates the sector is 3.

All the detectors indicate that sampling error is present since the

lower energy bins are not showing as many counts as the higher energy bins.

This is especially evident in detector 1 where the first 9 bins show zero

counts.

The sequence of photographs in Figures 6.10 to 6.25 show data from Taurus

Orion 3.009 fro*.i before launch up to apogee, demonstrating the ability of

the microprocessor system to function under flight conditions.

Figure 6.10 at 10 s before launch shows the noise spectrum of .-ach of

the detectors; only the first 2 or 3 energy bins shc,w any counts. Ten seconds

after launch at 10 km (Figure 6.11) the affects of launch have caused the

A/D to fill the high energy bins with counts. By 15 km (Figure 6.12) the

experiment had recovered and again shows the noise spectrum. At 39 km and

48 km (Fi.-ures 6.13 and 6.14) the booms have not yet extended and the noise

spr^tram is still present, as it should be. At 72 km (Figure 6.15) the booms

have extended and particle counts are beginning to show on detectors 1 and 2.

More counts are appearing on detectors 1 and 2 at 90 km (Figure 6.16) while

detectors 3 and 4 are still quiet. At 99 km (Figure 6.17) detectors 3 and 4

are beginning to show counts in the higher energy bins. At 106 km, only 5 km

later, (Figure 6.18) the flux has increased considerably on detector: 1 and

2 and at 108 km (Figure 6.19) it can be seen that the sampling error has

become dominant on detectors 1 and 2. Detectors 3 and 4 are showing a steady

rise in counts. At 113 km (figure 6.20) the spectrum has shifted even more

toward the high energies. The sampling error has not yet affected detectors

3 and 4. At 119 km (Figure 6.21) all detectors are affected by the sampling

error as the spectrum shifts even more toward the high energies. At 128 km

(Figure 6.22) detectors 2 and 3 show increases in the number of counts in

all their high energy bins. Complete dominance of high energy particles in

bin 15 is shown in Figure 6.23 (137 km) for detector 1. Notice that the

counts in bin 15 are almost at 255 which is the maximum possible number of

Cr ` L
8„r
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counts that can appear to a bin.

If the ntimbe of counts in a bin exceeds 255 the counts will recycle to

0 and continue from there.	 In Figure 6.24 (150 km) bin 15 of detector 1 is

now showing fewer counts than bin 14 and judging from the preceding few

pictures in the sequence it would be safe to say hin 15 has recycled. Notice

that bin 15 of detector : is steadily increasing showing the dominance of

ver y• high energy particles.

Figure b..5 shows data at rocket apogee (171 km).	 1 •he particle flux

has increased substantiall y in detectors 3 and 4 as shown b y the increase of

counts in every energy bin.

The sampling error and bin recycling problem make the post-processing

difficult, however, the data are still recoverable for most of the energy

r.ui1;e.

'the dat.i indicates very high particle fluxes. 	 the post-processing; i.ill

reve ► 1 the actual particle energy spectrum, together with the pitcli-ang lc

distribution

1inaIIy it should he noted that, in addition to the particle data from

the microprocessor-hosed experiment there are other particle data from these

payloads Ito be described in a separate -e;•wrt).	 Pre  i iii inary cx;unination

confirms the high count rate and also indicates a strong pitch-angle variation

for angles near 90 degrees.
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7. CONCLUSIONS AND RUCC I MMAT1ONS FOR FUTURE WORK

The success' 'I flights, in the energy Budget Campaign, of Taurus Orions

33.009, 33.010, and 33.011 demonstrate the ability of the microprocessor

system to function correctly under actual flight conditions.

The particle sampling problem (discussed in Chapter 6) needs further

consideration in future versions of the microprocessor system. The solution

is difficult because of the need to allow for a large range of count rates

and by limitations on the data rate.

The speed of the present system can be increased from 2.5 Ptliz to 4.0 Wz

by changing to the faster Z80 family and memories that can operate at that

speed, This would allow for a slight increase in the data input rate. how-
ever, to handle count rates as great as those experienced during the Energy

Budget Campaign the data input rate must be much greater. This implies an

even more advanced system architecture than is used at present.

Now that single chip microproces4ors are available parallel processing

could be used to increase the data flow. The redundancy would also increases

the system's reliability. Figure 7.1 shows a possible configuration. With

the new high density memories the entire microprocessor system would take

very little space: it would eliminate the SIO, CTC, x'IO and many of the

memory chips currently used.

The Intel 8751, for oxample, contains 4096 bytes of on-chip UPROM, four

8-bit parallel ports, a high speed serial port, two 16-bit counter/timers ant

rather features which make it more powerful by itself than the current system

composed of several printed circuit boards.

Another interesting possibility would be to use an 1/0 processor such as

the Intel 8089 to coordinate the data collection leaving the CPU free to do

the data processing. The complete experiment would then be as shown in

Figure 7.2. The 8089 would coordinate the collection of data from the

detectors and the magnetometer signal and then deliver it directly to the

microprocessor memory for processing. The 8089 would also be programmed to

do some error checking of the various peripheral devices to increase the

system's reliability.

The use of a 16-bit processor such as the Intel 8086 or the Motorola

(MOO would yield more efficient memory usage. The 16-bit processors also

lvivo a ,.oro advance: :architecture and instruction set allowing easier, more
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sophisticated implementation.

The present /stem for on .-board processing of data in the energetic

particle experiment has made effective use of existing microprocessor

technology. The field is developing rapidly and, as new components become

generally available, these will be incorporated in the experiment to improve

its performance.
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APPENDIX 1. Thermal testing of the random access memory

'rhe purpose of this project is to test the 2114 RAM chips undor extreme

conditions of temperature and altitude.

The test .ii.uit is designed to drive the RM1 chips while continuously

checking for errors at each memory location.

The RMt chips are to be used in an unusual configuration. Due to

limited PC board space the chips will be stacked two high and it turns out

that all the pin connections are identical except for the 8 pin (chip select)

when they are mounted on the PC board. This is further reason for testing the

chips. It must be established that these two-chip packages, without heat

sinking, can safely dissipate enolgh heat to stay in their safe operating range.

1.	 7 ,( , B t, ('i rmci t

The test circuit (Figure 1.1) is designed to continuously cycle through

Env.-3; '114'1 ►101W location che4king to see that none of the bits are stuck at one

or stuck at zero. Should an error occur the RMi chips are immediately

disconnected from the circuit raid an LED is illwninated to indicate the error

condition. `rhe RM1 chip isolation is accomplished by means of three octal

tri-state buffers (74LS24 ,!) and a relay switch. The relay switch physically

disconnects the RAM (pin 18) from the 5 V supply to prevent the chips from

overheating and the buffers are put into their high impedance state. If

necessary the circuit may be reset by toggleing the power supply off-on.

The temperature of each two-chip package is monitored by a thermistor

imbedded in the sockets underneath the chips. When the chips are pressed

into the socket the thermistor bead touches the bottom of the epoxy casing.

The 2.5 MHz clock defines eight states, as indicated in Figure 1.21 , for

each memory location. `these eight states thoroughly test each memory location

for bits stuck at one or zero.

The eight states are:

1 Increment address by one position and put zeros on the data lines

11 Write zeros into the memory location specified

III Read the memory location

IV Check to see that there are all zeros on the data lines

V Put ones on the data lines

VI Write ones into the memory location specified
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VII {lead the memory location

VIII Check to see that there are all ones on the data lines

The timing diagram (Figure 1.3) shows the relationship between the clock

pulses and the eight states. Figure 1.4 shows the actual signals. In order

to achieve eight states, three flip flops are needed for this synchronous

sequential machine. They are conveniently provided in the 74LS393 dual 4-bit

binary counter chips. As you look on the circuit diagram (Figure I.1) you

will see the clock pulse .i:; fed into the clock input of one of the 4-bit

counters. The A, B and C outputs then go into some combinational logic for

controlling the circuit. Signals A, B and C are also shown on the timing

diagram (Figure I.3), The WE signal tells V ,̂  RAM chips when to write zeros

or ones into the specified memory location (see Figure I.3) and is active low.

^ is derived from the signals A and B using two NAND gates (see Figure I.1).

The WG signal also controls the data line buffer chip (74LS244) on lower right

and tells it when to place data on the data lines. Signals A and B along

with the output from the 74LS260 and 74LS30 gates check the data read from a

specific memory location. The C line places either zeros or ones on the data

lines and also increments the address by one on its falling edge.

Zeros or ones are detected using the 74LS260 and 74LS30 gates respectively.

If all the data lines are ones the 74LS30 output will be zero and if all are

zeros the 74LS260 outputs will be ones which are fed into a NAND gate whose

output will be zero. This means that if all zeros or all ones are on the

data lines then the outputs of the 74LS30 and 74LSOO NAND gates will be

either one and zero or zero and one. Also notice that if one of the data lines

is stuck high or stuck low that both outputs will be ones at the same time.

These signals coupled with signals A and B are fed into a 74LS20 NANND gate,

and as indicated above, when AB is one, a check is performed. It is now

obvious that the only time the gate will give a zero output is when there is

an error and all four signals are ones. The output signal is then inverted

so now a zero output means no error and a one signals an error condition.

This signal goes to the J input of a clocked JK flip flop (74LS73) whose

K input is held at zero. The flip flop is initialized into the zero state

(Q, Q = 0,1) by its clear line (the initialization is explained later).
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Once initialized and running J and K are 0,0 as long as no errors

encountered and the flip flop will stay in its Q, Q - 0,1 state. Should an

error occur J will become one and Q, Q will change to 1,0. Once the change
has occurred J can be either zero or one in the error state and not affect

the state of the flip flop.

When an error occurs Q changes from zero to one. This signal goes to

the address buffers (74LS244's) and puts them into a high impedance state.

The signal also drives a NAND gate which turns on the LED to visually signal

the error condition. The NAND gate is used as a buffer between the output

of the flip flop and the LED since it was unable to drive the LED plus four

other gates by itself.

Conversely Q changes from one to zero. This signal is fed into a NAND
gate which drives a coil activating a relay switch. The other end of the

coil is held at 5V and works as follows:

Signal Q	 Output of NAND	 Relay position	 Condition

1	 0	 closed	 no error

0	 1	 open	 error

The relay physically disconnects the RAM chips from the 5V power supply

to prevent the chips from overheating.

The Schmitt triggered NAND gates (74LS132) were used to set the JK flip

flop into its zero state when the power is applied to the circuit. The first

NAND gate is triggered by the resistor, capacitor, and diode circuit as

follows.

With power suddenly applied to the circuit (assuming the capacitor is

fully discharged) the diode will be back biased and the capacitor will charge

with a time constant of 680 ms. After about 0.26 s the voltage across the

capacitor will reach 1.6 V which is the triggering level of the NAND gate

so there has been a 0.26 s delay between power on and the setting of the

flip flop. This delay allows the rest of the circuit to be in operation long

before the flip flop is set and makes certain the flip flop is set for normal

operation 0.26 s after power is applied.

The reason for this elaborate initialization scheme is because the

vacuum chamber only allows four lines to be brought out. The four wires

A
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brought out were the P (purple) and C (gray) thermistor leads, the SV supply

and grnund, to which the common thermistor lead was tied. Had the flip flop

clear line been brought out there would have been no way to monitor the

temperature of both RAM chip packages simultaneously.

During operation the ground and common lines of the power supply and of

two V meters were tied together to the ground line of the circuit. The

5 V line of the power supply was applied to the 5 V line of the circuit and

the P and G thermistor leads were connected to each one of the two V-st-meters.

The circuit was tested by .At.her grounding or holding at 5 V any one of

the eight data lines which imm3diately illuminated the LED as expected. Each

signal was monitored and is shown in Figure I.4. The check signal is not

included since it is not actually present as the signal AB, but is ANDed

together with two other signals in the 74LS20.

I.3 IsxperimcntaZ 1?esulta

The first step in the experimental part of this project was to calibrate

the thermistors. This was done by placing the circuit (with no power applied)

in a thermal chamber and watching the change in resistance of each thermistor

with respect to temperature. The results in Figure I.5 and I.6 show that the

two thermistors are not identical and differ greatly at low temperatures.

The first data run was made in the lab at room temperature (23 0C). The

circuit was placed on the lab bench in open surroundings and the power was

applied. Figures I.7 and I.8 are the results showing temperature (resistance)

plotted against time. The RAM chips reach their peak operating temperature

of about 39°C in about 15 minutes and appeared to stay constant for the next

35 minutes. The apparent downward trend in temperature toward the end of

the experiment was perhaps due to the circulation of air in the room from

the cooling system of the building, and it is probably not related to any

physical characteristics of the device.

Figures I.9 and I.10 show that the RAM chips take approximately 20

minutes to return to room temperature, which is about 5 minutes more than it

takes them to heat up.

Figure 1.11 through I.14 were the results of data taken in the thermal

chamber. This special chamber allows the temperature to rise and fall slightly

above and below the desired settings. Also it has a small fan to circulate

the air.
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The jagged graphs shown in Figures I.11 and I.12 would appear to be due

to properties of the thermal chamber and not the RAM chips. It would also

appear that the chamber is acting as a heat sink for the RAM chips since there

is such a small increase in their temperature. Any heat given off by the

chips is quickly carried off by the atmosphere of the chamber which is held

at 0°C.

The high temperature runs shown in Figures I.13 and 1.14 show the same

behavior, in fact they only show a 2.5°C rise in temperature over the tempera-

ture of the chamber, which is exactly the same rise shown in the low tempera-

ture runs (Figures I.11 and I.12).

There are a few problems with Figures I.11 and I.14 however, which need

to be mentioned before any firm conclusions can be drawn. The first problem

is that the R-T curves (Figures 1.5 and 1.6) are very difficult to read if

only a three-degree temperature difference is to be observed. this introduces

human error in the temperature readings of Figures 1.11 through 1.14. The

second problem is noise in the system itself. In other words, how much of

that small change in resistance is due to noise in the electronics of the

olun-meter or the inherent noise of the thermistors. Observe that in Figures

1.13 and 1.14 there is only a 100s., total change in the thermistor readings.

The curves of Figures 1.15 and I.16 are of -roatest interest. The cir-

cuit was placed in a bell jar which was evacuated, e(juivalent to an altitude

of 50 to 60 km. The reason for the altitude variation is because the

heat given off by the circuit forced the altitude down several kilometers,

which is to be expected. When power was applied the curves of Figures 1.15

and I.lb results. Observe that the temperature rise is 35°C but that the

temperature definitely becomes stable after about 25 minutes at high altitudes.

The operating range of the 2114 chips in the epoxy package is from 0 0 to 70°C

so there is still about 10°C leeway at high altitude before their range is

exceeded.

One final problem needs to be mentioned. Figure I.4 shows the actual

signals observed; these are quite noisy. Noise generated by the circuit

affected the readings of the thermistors since the ground of the circuit was

connected to the common lead of the two thermistors. When power was applied

to the circuit the thermistor readings typically jumped several k ohms. This

problem was solved by switching the power supply on and off (after the initial
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data run) at different resistances which gave true readings at each resistance

taken as data.

I.4	 Cart,,luial'o?z

The experiment showed very clearly that the 2114 RAM chips in the epoxy

package will function under extremes of temperature and altitude and will not

overheat or malfunction even if they are stacked on top of each other in pairs.

The test circuit never detected an error and at no time did the RAM chips

exhibit unusual or unpredictable temperature behavior.

I



APPENDIX 11.	 Pr,)gram listings

11.1	 F 14111t 1 11^^ ^;arrx ^^

FLIGHT PROGRAM
ADDH	 OBJECT 51	 o

9002 PSECT	 ASS
9963 $SIO DATA AND CONTROL CHANNELS

), 90eC 9904 SIOCADt LOU	 OCH	 )CHANNEL A DATA
31eeeD 9005 SIOCACt EOU	 9DH	 )CHANNEL A CONTROL
3. 000E 0006 S10CBDt EOU	 OEH	 )CHANNEL B DATA
31 000F 9007 SIOCBC/ EOU	 9FH	 )CHANNEL 8 CONTROL

0006 ;
0009 ;PIO DATA AND CONTROL CHANNELS

3. 0018 0019 PIOPADt LOU	 15H	 ;PORT A DATA
3. 0019 0011 PIOPACt LOU	 19H	 )PORT A CONTROL
>001A 9012 PIOPBDt EDU	 IAN	 )PORT D DATA
),00f8 0013 PIOP3Ct LOU	 ISH	 ;PORT D CONTROL

9014 1
0015 1CTC CHANNELS

3. 0014 0916 CTCOt LOU	 14H	 ;CHANNEL 0
), 0015 0017 CTCIt ECU	 ISH	 ;CNAIINEL	 1
3. 0016 0018 CTC2t LOU	 16H	 )CHANNEL 2
31 0017 0019 CTC3t ECU	 17H	 CHANNEL 3

0000 ;
0021 ;THE FOLLOWING CONTROL VECTORS WILL BE
0022 ;REFERRED TO THROUGHOUT THE. FROGRAM AND
0023 ;ARE LXPLAINED IN DETAIL HERE ONLY
0024 ;
0025 ; PIO CONTROL VECTORS

0026 ; SET UP FOR INPUT MODE
>004F 0027 PIOVIt LOU	 010011118

e026 ; INTERRUPT VECTOR
31 00F6 0029 PIOV2t EOU	 111101108

0030 ; ENABLE INTERRUPTS
2, 0087 0031 PIOV3t Eau	 190001118

0032 ;
0033 ;SIO CONTROL VECTORS
0034 ; WRO*WRI*---,oWR7	 - WRITE	 REG	 0...
0035 ; ...WRITE AEG 7
0036 ; WRO POINTS TO WR2

30 0002 0037 SIOVIt LOU	 000080108
0938 ; 'JR2	 INTERRUPT VECTOR

), 00F4 0039 SIOV2t LOU	 111101008
0040 ; WRO POINTS TO WR4

3.0004 0641 SIOV3t LOU	 009001008
0042 ; WR4 - NO PARITY *	2 STOP BITS.
0043 ; TX CLOCK TIMES 16

3. 004C 0044 SIOV4: LOU	 010011008
0045 ; WRO POINTS TO WA5

), 0005 0046 SIOV5t EOU	 000001018
0047 ; WR5 - 8 BITS PER CHAR.
0048 ; ENABLE TX

31 0068 0049 SIOV6t EGU	 011010008
0050 ; WRO POINTS TO WRI
0051 ; CMDS RESET TX AS IF LAST CHAR
0052 ; OF BLOCK SO NO INTERRUPTS
0053 ; OCCUR UNTIL NEXT CHAR LOADED
0054 ; INTO TX BUFFER

),0001 0055 SIOV7: ECU	 000000018
0056 ; WRI - ENABLE INTERRUPTS

3, 0082 0057 SIOVS: LOU	 100000108
0058 ; CHAN RESET VECTOR

3. 0018 0059 SIOVR: EOU	 000110008

I 21
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FLIGHT PROGRAM
ADDR OBJECT	 ST

3,0028

3, 08F8

>88C7

>88FF

3,0079

3, 0027

3,27F3

07LO 4F
07L1 F6
07E2 87
07E3 18
07E4 02
07E5 F4
07E6 04
07E7 4C
07E8 01
87E9 82
07EA 05
07 ES 68
07EG 28
07LD F8
07EL C7
07LF FF

0060 1	 STOP INTS UNTIL NEXT CHAR
0061 51OHLTt ECU	 801010008
8862 I
8063 ;CTC CONTROL VECTORS
8064 ;	 INTERRUPT VECTOR
0065 CTCVIr EQU	 111110888
0066 ;	 CHANNEL CONTROL. INTERRUPT ON
0667 I	 ZERO. USE COUNTER MODE,
0068 1	 NEXT WORD TIME CONSTANT
0869 CTCENAt LOU	 110081118
0070 ;	 256 COUNTS
0071 CTC256t LOU	 111111118
8872 1	 121 COUNTS n 5 BPS
8873 CTC121t ECU	 121
0074 I
8875 1	 UPPER 6 BITS OF INTERRUPT TABLE
0076 IREG:	 LOU	 27H
0077 f	 STACK OiDRESF
007d STACt	 LOU	 027F3H
0079 J	 RESET ERROR TRAP ADDRESS
0080 ;	 A3 LINE MUST GO HIGH
0081 ;	 NOTE ALL PERIFERALS ARE
0082 ;	 DISABLED SO THERE IS NO
0883 1	 INTERFERANCE
0034 RESET: LOU	 OF'FFFH
0085 ;	 INTERRUPT TABL E ADDRESS
0086 INTBLt ECU	 027F4H
0087 I	 ADDR OF REGION l
0088 RGIADRt LOU	 01000H
0089 1	 ADDR OF REGION 2
0090 RG2ADR: ECU	 01808H
0091 I	 SECTOR INCREMENT CONSTABNT
0092 INCSECt ECU	 09040H
0093 ;	 MARKER CONSTANT
0094 MARKER: LOU	 OFFH
0095 ;	 LOCATION OF VECTORS WHICH WILL
8096 ;	 PROGRAM 'IHE DEVICES
0097 CNTVECt EAU	 007ESH
0098 ;
6099 ;CONTROL VECTORS FOR THE DEVICES
0100	 ORG	 CNTVEC
0101	 DEFB	 PIOVI
0102	 DEFB	 PIOV2
0103	 DEFB	 PIOV3
0104	 DEFB	 SIOVR
0105	 DEFB	 SIOVI
0106	 DEFB	 SIOV2
0107	 DEFB	 SICV3
0108	 DEFB	 SIOV4
0109	 DEFB	 SIOV7
0110	 DEFB	 S10V8
0111	 DEFB	 SIOV5
0112	 DEFB	 SIOV6
0113	 DEFB	 SIOHLT
0114	 DEFB	 CTCVI
0115	 DEFB	 CTCENA
0116	 DEFB	 CTC256
0117

eFFFF

3,27F4

3,1000

3.1600

8,0040

3,0OFF

3, 07 LO

:tai am ^°',l
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FLIGHT PROGRAM
ADDR O6JECT ST

BIl$ ►
0119 )ORGIN 0 IS THE LOCATION OF THE SYSTEM RESET
0120 ORG 0

0000 3EFi 0121 LD A,RESET )MAKE SURE THERE
0002 D3FF 0122 OUT (RESET),A	 1IS TIME TO RESET
0004 ED5E 0123 IM 2	 )VECTORED INT MODE
0006 31F327 0124 LD SP,STAK )STACK STARTS UNDER

0125 )INT TABLE
0009 3E27 0126 LD A,IREG	 )HIGH ORDER INT
0008 ED47 0127 LD I,A	 )TABLE BYTE
0000 DD21F427 0120 LD IX,INTBL	 )INT TBL ADDR

0129 1
0130 )SET UP THE INTERRUPT TABLE

0011 219700 0131 LD HL,SIOMK	 )SIO INT ROUTINE
0014 DD7500 0132 LD (IX+O),L	 )LOW ORDER BYTE
0017 LL7491 0193 LD (IX*I),H	 )HIGII ORDER ENTRY
001A 218000 0134 LD HL,PIOINT	 )PIO INT ROUTINE
f01D DC7502 0135 LD (IX^2),L
0020 DD7463 0136 LD (IX+3),H
0023 214LOI 0137 LD HL,CTCERR	 ► CTC	 0 TIMEOUT
0026 DD7504 0138 LD (IX+4),L	 )THIS 1S SYSEAR
0029 DD7405 0139 LD ;CONDITION 

0140 )
0141 )SET UP THL DEVICES

002C 21LO07 0142 LD HL,CNTVEC	 )LOC OF THE CONT
0143 )VECTOR TABLE

002F OE19 0144 LD C,PIOPAC	 ► PIO PORT A CONT
0031 0603 0145 LD B,3	 )3 VECTORS
0033 ELB3 0146 OTIR )INITIALIZE PIO
0035 OEOD 0147 LD C,SIOCAC	 )RESET CHAN A
0037 EDA3 0148 OUTS
0039 00 0149 NOP )GIVE TIME TO RESET
003A OEOF 0150 LD C,SIOCBC	 )SIO CHAN B CONT
003C EDA3 0151 OUTS
003E EDA3 0152 OUTS )SIO INT VECTOR
001,0 OEOD 0!53 LD C, SI OCAC	 ) SI 0 CHAN !. CONT
0042 0607 0154 LD B,7	 17 VECTORS
0044 EDB3 0155 OTIR ;INITIALIZE 5I0
0046 OL14 0156 LD C,CTCB	 )CTC CHAN 0
0048 0603 0157 LD 8,3	 )3 VECTORS
004A LD83 0158 OTIR )INITIALIZE CTC CHAN 0

0159 ►
0160 )PREPARE TO RUN

004C LB18 0161 IN A,(PIOPAD)	 )PIO SET UP
004E 0679 0162 LD B,CTC121	 )REG B CONTAINS

0163 )CTC CHAN2 TIME CONST
0050 D9 0164 EXX
0051 IEOO 0165 LC E,0	 )RECORD v FOR 510
0053 L9 0166 EXX

0167 )
0168 ;********MAIN PROGRAM***** ********

0054 CD9801 0169 LOOP:	 CALL REGINI
0057 CUB501 0170 CALL REGIN2
005A C35400 0171 JP LOOP

0172 ►
0173 )NON MASKABLE INTERRUPT ROUTINE
0174 ORG 66H
0175 )CARE MUST 8E TAKEN THAT THE PRIMED REGIS7FP.
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FLIGHT PROGRAM
ACDR OBJECT ST •

1176 $SET IS NOT MISTAKEN FOR THE UNPRIMED SET
1177 )THIS CAN HAPPEN IF THE NMI HAPPENS CURING
1178 )AN $10 INTERRUPT-	 TO BE SAFE BC MUST BE
1179 ;COPIED BEFORE AND AFTLR NMI SERVICING

1066 C5 0180 NNINTt	 PUSH	 BC
0067 D9 1181 EXX
0068 CI 0182 POP	 BC	 )BC'	 s. BC

1189 $PROTECT THE AF PEGS ALSO
0069 F5 9154 PUSH	 AF

0165 $IF BIT 1.0 15 SET THEN GO AHEAD AND SIGNAL
8166 )FOR A NEW REGION TO BE OUTPUT. BUT IF IT
0187 )1S NOT SET THE CURRENT REGION I5 STILL
0188 $BEING OUTPUT

006A C849 0189 BIT	 I. C
006C CA7100 0190 JP	 E.SXIPI
006F CBF9 0191 SET	 7.0	 )SIGNAL REGION CHANGE

0192 $CALCULATL THE SPIN PERIOD BY SUBTRACTING THL
0193 )TIME REG VALUE FROM 256

0071 DB14 0194 SXIFI1	 IN	 A.(CTC9)	 )FETCH TIME
0073 D6FF 0195 SUB	 OFFH
0075 ED44 0196 NEG
0077 47 0197 LD	 B•A	 $PLACE SPIN PERIOD

0198 !IN 8 RE^w

0199 )RESET CTC 0 TO 256 COUNTS
0078 3EC7 0200 LD	 A.CTCENA	 $RESET CH 0
097A "u314 0201 OUT	 (CTCO).A
007C 3EFF 0202 LD	 A.CTC236	 )SET FOR 256
007E D314 0203 OUT	 (CTCO).A	 $COUNTS

0204 )RESET CTC	 1
0080 3EC7 0205 LD	 A•CTCENA
0082 0315 0206 OUT	 (CTCI).A
0084 78 0207 LD	 A.B
0085 D315 0208 OUT	 (CTC1).A

0209 $CLEAN UP BEFORE LLAV114G
0087 Fl 0210 POP	 AT
0088 C5 0211 PUSH	 BC	 )PROTECT SIG
0089 D9 0212 EXX
008A C1 0213 POP	 SC
0088 EL45 6214 RETN	 $INT FLAGS IFFI AND IFF2

0215 )AUTOMATICALLY TAKEN
0216 )CARE OF WITHOUT EI
0217 )

0216 )PIO INTERRUPT ROUTINE
0219 ;THE PARTICLE ADOR IS FORMED FROM THE LE
0220 )REGS AND PLACED IN REGS HL
0221 )REG H IS THE SAME DURING ANY GIVEN SECTOR
0222 )SO ONLY L NEEDS TO BE SET UP TO GET THE. ADDR

008D F5 0223 PIOINTt PUSH	 AF
008E DB18 0224 IN	 A.(PIOPAD)	 )FETCH DETECTOP, MID

0225 ;ENERGY SIN DATA
0090 AS 0226 XOR	 E	 )COMBINE E AND A
0091 6F 0227 LD	 L.A	 )FORM ADCR
0092 34 0228 INC	 (HL)	 )ADD 1 COUNT
0093 F1 0229 POP	 AF
0094 FB 0230 El
0095 ED41) 0231 RETI

0232 )
0233 )
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FLIGHT PROGRAM
ADDR OBJECT ST 0

0234 J
0235 JSIO MARKER PULSE ROUTINE

8097 D9 0236 SIOMKs	 EXX ;ALL POINTERS RESIDE
0298 08 9237 EX AF•AF'	 ;IN PRIME BEGS

0238 )FIRST CALL IS CHECKED BY LOOKING AT
9239 ;THE DETECTOR BITS BEFORE INCREMENTING HL
9249 J1F THE BITS ARE STILL	 II	 THEN IT IS THE
0241 ;FIRST CALL AND A MARKER SHOULD BE OUTPUT

0099 CB65 0242 BIT 4,L
0098 23 0243 INC HL	 ;DOES NOT AFFECT

0244 )FLAGSIII
009C CA8400 0245 JP Z*NFCI	 )JUMP IF NOT FIRST

8246 ;CALL
0247 ;IF	 IT	 IS A FIRST CALL CHECK TO SEE IF AT A
0248 ;REGION END INDICATED BY THE SECTOR REG - 32
0249 )(BIT	 5	 •	 1)

009F CB6A 0250 BIT 5.D
00A1 CAAF00 0251 JP Z.NEOBI ;JUMP IF NOT AT END

0252 ;AT END OF REGION SWAP TO UNPRIMED REG SET
6253 ;SET REGIGN CHANGE FLAG (BI;	 1.C) AND	 PORN OFF
0254 JSIO SO IT WONT INTERRUPT AGAIN UNTILL READY TO
0255 ;SEND NEXT REGION OF DATA

00A4 D9 0256 EXX
0OA5 CBC9 0257 SET I.0	 ;REGION CHANGE FLAG
0OA7 3E28 0258 LD A.SIOHLT	 JTURN OFF SIG
0OA9 D30D 0259 OUT (SIOCAC).A
00AB 08 0260 EX AF.AF'
00AC F8 0261 EI JINT TABLE LEFT POINTING
00A` ED4D 0262 RETi )TO SIOMK
00AF 3EFF 0263 NEOBI:	 LD A.MARKER
0081 C3B500 0264 JP ZERHLI
0084 7E 0265 NFCls	 LD A•(HL)	 ;GET DATA AT ADDR HL
0OB5 3600 0266 ZERHL1s LD (HL).0	 ;ZERO HL
0087 D30C 0267 OUT (SIOCAD).A	 ;OUTPUT DATA

?63 ;LOOK FOR THE END OF THE 16 ENERGY BINS
0269 ;OF THIS DETECTOR BY SENSING A	 1111	 IN THE
0270 ;ENERGY BIN BITS
9211 )IF AT THE &Q THEN LINK TO THE NEXT ROJTINE

0069 70 0272 LD A.L
39DA E60F 0273 AN D 00001111H	 ;EXPOSE ENERGY

0274 ;BIN
2088 EEOF 0275 XOR 009011118	 ;CHECK FOR BINIS
00BE C20000 0276 JP NL•FINl	 ;WHICH SETS ZERO FLAG

0277 ;CHANGE LINKAGE
0001 E5 0278 PUSH HL
0002 21D100 0279 LD HLiSIOBK	 ; BLOCK I ROUTINE
0005 DD7500 0280 LD (IX+O).L
0008 DD7401 0281 LD (IX+1).li
0008 E1 0282 POP HL
000C 08 023-) F'NI s	 EX AF.A,F'
000D D9 0284 EXX
000E FB 0285 EI
00CF ED4D 8286 RETI

0287 fSIO BLOCK I ROUTINE
0288 ;THIS ROUTINE IS IDENTICAL TO THE HARKER

8289 ;ROUTINE EXCEPT F9R THE END nF BLOCK CHECK
00D1 D9 0290 SIObK:	 EXX
00D2 08 0291 EX AF,AF'
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FLIGHT PROGRAM
ADDH OBJECT ST

B0D3 CB65 0292 BIT 4,L
00D5 23 0293 INC HL
00D6 C2DD00 0294 JP NZ.NFC2
00D9 713 0295 LD A.E ;BLOCK
OODA C3DE00 0296 JP ZERHL2
OODD 7E 0297 NFC2t	 LD A.(HL)
00DE 3600 0298 ZERHL2t LD (HL).O
00EO D30C 0299 OUT (SIOCAD).A
00E2 '1'D 03^0 LD A.L
OOE3 E60F' 3301 AND 000011115
00E5 £EOF 0302 XOR 000011118
OOE7 C2F500 0303 JP NZ.Flt112
00EA E5 0304 PUSH HL
00EB 21FAOO 0305 LD HL.SIOSR
SOLE DD7500 0206 LD (IX+O).L
OOF1 DD7401 0307 LD (IX+I).H
0OF4 E1 0309 POP HL
0@F! 08 0309 F1N12t	 EX AF.AF'
0OF9 D9 0310 LXX
0OF7 FS 0311 El
O SF8 ED41) 0312 RETI

0313 ;
0314 ;S10 SECTOR r ROUTINE
0315 ;THIS ROUTING IS IDENTICAL TO THE MAPKGR
0316 ;ROUTINE EXCEPT FOR THE END OF BLOCK CHLCK

00FA C9 0317 S10SRt	 EXX
00FB 08 0318 EX AF.AF'
OOFC CB65 0319 BIT 4.L
00FE 23 0320 INC HL
00FF CA0601 0321 JP Z,NFC3
0102 7A 0322 LD A. Lo ;SECTOR r
0103 C30701 0323 JP ZERHL3

0106 7E 0324 NFC3:	 LD A.(HL)
0107 3600 0325 ZLRHL3:	 LD (HL).0
0109 D30C 0326 OUT (SIOCAD),A
0108 7D 0327 LD A.L
010C L60F 0328 ANC 000011118
010E EEOF 0329 XOR 00001111/3
0110 C21EOI 0330 JP NZPFIN13

0113 E5 0331 PUSH HL
0114 212301 0332 LD HL.SIOCK
0117 DD7500 0333 LD (IX+O).L
OIIA DD7401 0334 LD (IX+1).H
0111) El 0335 POP HL
011E 08 0336 FIN13:	 EX AF.AF'
01IF 1)9 0337 EXX
0120 FB 0338 EI
0121 ED41) 0339 RETI

0340 ;
0341 ;SIO	 CHECKER 0 ROUTINE
0342 ;THIS	 ROUTINE IS IDENTICAL TO THE MARXER
0343 ;ROUTINE EXCEPT FOR THE END OF BLOCK CHECK

0123 C9 0344 STOCK:	 EXX
0124 08 0345 EX AF.AF'
0125 CB65 0346 BIT 401.
0127 23 0347 INC HL
0128 :23001 0348 JP NZ,NFC4
012B 7A 0349 LD A.D ;SECTOR
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FLIGHT PROGRAM

d

i

ADDA OBJECT ST •

012C AS 0350 XOR E	 )BLOCK
0351 ;A • E XOR D

012D C33191 0352 JP ZERHL4
0130 7L 0353 NFC41 LD A.(HL)	 1

0131 3600 0354 ZERHL4t LD (HL).0
0133 D30C 0355 OUT (SIOCAD).A
0135 7D 0356 LD A.L
0136 E60F 0357 AND 000011118
0138 ELOF 0358 XOR 00!;011118 
id 13A C24991 0359 JP NZ.FINI4
013D E5 0360 PUSH HL
013E 219700 0361 LD H'L. SI OMK
0141I[ DD7500 0362 LD (IX+O).L	 j
0144 DD7401 0363 LD (IX+1).H
0147 bI 0364 POP HL
0148 14 0365 INC D
0149 08 0366 FIN14t EX AF.AF'
014A D9 0367 m
014E FB 0368 El
014. EL41) 0369 RETI

0370 ;
0371 ;
0372 ;IF CTC CHAN 0 SHOULD EVER INTERRUPT IT
0373 ;MEANS THE MAGNITOMETER HAS NOT RESET CTC 0;

014E F5 0374 CTCERR: PUSH AF	 ;PROTECT AF"
t 0375 ;SET THE SPIN RATE AT ABOUT 5 RPS OR

0376 ;121	 COUNTS ON CHAN 0
014F 3EC7 0377 LD A.-CTCENA	 fRESLT CHAN 0
0151 D314 0378 OUT (CTCO).A
0153 3E79 0379 LD AACTC121	 ;121	 COUNTS
0155 D314 0380 OUT (CTCO).A
0157 47 0381 LD B.A	 ;B REG -	 COUNTS/REV

0382 ;RESET CTC	 I
0158 3EC7 0383 LD A. CTCENA
015A D315 0384 OUT (CTCI).A	 j
015C 78 0385 LD A.B
015D D315 0385 OUT (CTCI).A

0387 ;CHECX FOR END OF REGION JUST AS NNI WOULD
015F CB49 0388 BIT IOC
0161 CA6601 0389 JP Z.SK1P10
0164 CSF9 0390 SET 7.0
0166 F1 0391 SKIP10: POP AF	 ;RESTORE AF
0167 FB 0392 EI
0168 ED4D 0393 RETI

0394 ;
0395 ;REGION 1	 CTC SECTOR INTERRUPT ROUTINE

016A F5 0396 CTCRGIs PUSH AF
0168 214000 0397 LD HL.INCSEC	 ;INCREMENT CONST

1	 016L 19 0398 ADD HL.DE	 ;NEW SECTOR CATA IN HL
016F C135C 0399 BIT 3.H	 ;REGION CHANGE?
0171 CA7701 0400 JP ZINOCHGI	 ;STILL	 IN	 REGI
0174 210010 0401 LD HL.RGIADR
0177 54 0402 NOCHGIs LD Do 	 ;HL AND DE ARE THE
0178 5D 0403 LD E.L	 ;SAME ON EXIT
0179 3EFF 0404 LD A.RESET
017b 03FF 0405 OUT (RESET)PA
017D FI 0406 POP AF

_'	 017E FB 0407 EI SRE.?tEM6'cR THAT THE TIME
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FLIGHT PROGRAM
ADDR OBJECT ST

017F ED4D 0408 RETI ;CONST IS AUTOMATICALLY
0469 ;LOADED IN CTCI
0410 f
0411 )REGION 2 CTC SECTOR INTERRUPY ROUTINE

0161 F5 0412 CTCRG2t PUSH AF
0182 214000 0413 LD HL,INCSEC	 )INCREMENT CONST
0185 19 0414 ADD HL,DE	 ,!iiEW SECTOR DATA IN HL
0186 CB5C 0415 BIT 3,H	 ;RiC,ION CHANGE?
0188 C28E911 0416 JP NZ,NOCHG2	 ;STILL IN nEGI
018E 210018 0417 LD HL,RG2ADR
Oi8E 54 0418 NOCHG2t LD D,H	 JUL AND DE ARE THE
018F 5D 0419 LD E.L	 ;SAME 014 EXIT
0190 3EFF 0420 LD A,RESET
0192 D3FF 0421 OUT (RESET),A
0194 FI 0422 POP AF
0195 FB 0423 El JREME1*i3> R THAT THE TIME
0196 EL41) 0424 RETI ;CUNST 15 AUTOMATICALLY	 1

0425 4;LOADED IN CTCI
0424 a
0427 ;ACCUMULATE DATA I14 REGION 	 l AND TRANSMIT
0428 ;DATA FROM REGION 2

0198 F3 0429 REGINI:	 DI ;INITIALIZE REGION
0199 OE00 0430 LD C,0	 ;CLEAR END OF

0431 ;BLOCK FLAG
019B 216AOI 0432 LD HL,CTCRGI	 ;SET CTC CHAN	 I

0433 )TO REGION	 1
019E DD7506 0434 LD (IX+6),L	 ;INT TABLE
01A1 1,0407 0435 LD (4X+7),H
01A4 110010 0436 LD DE*AGIADR	 ;SET DE WITH

0437 ;REGION	 1 BOUNDRY
BIA7 62 0438 LD H,D	 ;SET UP H FOR THIS SECTOR
01A8 L9 0439 EXX ;SET UP SID CONTROL
01A9 210118 0440 LD HL,RG2ADR+1	 ;REGION 2 AGUR
OIAC 1600 0441 LD D,0	 ;SECTOR 0
01AE IC 0442 INC E	 ;INC TO NEXT RECORD
01AF D9 0443 EXX
01A0 3EFF 0444 LD A.MARKER	 ;TURN ON SIO BY
01B2 D30C 0445 OUT (SIOCAU).A ;SENDING FIRST MARX£R
0184 FB 0446 El

0447 ;CHECK TO SEE IF THE CHANGE REGION
0448 )BIT HAS BEEN SET

0185 CB79 0449 WAITI:	 BIT 7.0
0187 CO 0450 RET NZ
01B6 C3B501 0451 JP WA1T1	 3

0452 ; ]{
0453 ;
0454 ;
0455 ;ACCUMULATE DATA 1;J REGION 2 AND TRANSMIT
0456 ;DATA FP.OM REGION	 I

01BB F3 0457 REGIIJ2:	 DI ;INITIALIZE REGION
OIBC OLOO 0458 LD C,0	 ;CLEAR END OF

0459 ;BLOCK FLAG
GIBE 218101 0460 LL' HL.CTCRG2	 ;SET CTC CHAN	 1

0461 ;TO REGICN 2
0101 DD7506 0462 LD (IX+6).L	 ;INT TABLE
0104 DD7407 0463 LD CIX+7).H
01C7 110018 0464 LD DE.RG2ADR	 ;SET DE WITH

0465 ;REGION 2 2OUNDRY



0466 LD Hot)	 )SET UP H FOR THIS SECTOR
0467 EXX ;SET UP SIO CONTROL
046tr LD HL.RGIADR+I	 )REGION I ADCR
0469 LD D.0	 ;SECTOR 0
0470 INC E	 ) INC TO NEXT RECORD
0471 FXX
0472 '..D A. MARKER	 JTURN ON SIO BY
0473 OUT (SIOCAD).A ;SENDING FIRST MARKER

0475 ;CHECK TO I SEL IF THE CHANGE REGION
0476 ;BIT HAS BEEN SET
0477 WAIT2:	 BIT 70C

0478 RET NZ
0479 JP WAIT2
0480 ;
0481 J
0482 END

01CA 62
01CB 09
01CC 210110
O1CF
	

1600
SID1
	

IC
01D2 D9
01D3 3EFF
01D5 D30C

0iD7 FB

01D8 CB79

OIDA CO
OIDB C3D801

l..`_--

129

FLIGHT PROGRAM
ADDR OBJECT	 ST

FLIGHT PROGRAM
ADDR OBJECT	 ST

CNTVEC 07EO CTCO
CTC2 0016 CTC256
CTCERR 014E CTCRGI
FINI 000C FINI2
INCSEC OP40 INTBL
MARI:ER POFF NEOBI
NFC3 4106 NFC4
NOCHG2 018E PIOINT
PIOPBC 0018 PIOPAD
PIOV3 0087 REGIN 1
RGIADR 1000 RG2ADR
SIOCAD 000C SJOCBC
SIOHLT 0028 SIOMK
SIOV2 00F4 SIOV3
SIOV6 0068 SIOV7
SKIP1 0071 SKIPIO
WAIT2 01D8 ZERHLI
ZERHL4 0131
ERRORS-0000
ERRORS-0000

0014 CTCI 0015 CTC121 0079
OBFF CTC3 0017 CTCENA 0007
016A CTCRG2 0181 CTCVI OOF8
OOFS FINI3 011E FIN ► 4 0149
27F4 IREG 0027 LOOP 0054
00AF NFCI 0084 NFC2 00DD
0130 NMINT 0066 NOCHGI 0177
OOO D PIOPAC 0019 PIOPAD 0018
001A PIOVI 094F PIOV2 00F6
0198 REGIN2 OIBB rESZT FfFF
1800 SIOBK 00D1 SIOCAC GOOD
000F SIOCBD 000E S10CK 0123
0097 SIOSR 00FA SIOVI 0002
0004 SIOV4 004C SIOVS 0005
0001 SIOVB 0082 SIQVR 0018
0166 STAK 27F3 WAITI 0185
OOB5 ZERHL2 OODE ZERHL3 0107
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II.2 Iji'1'A-1 plo)c Program

BETA; PUNCH PROG	 13

ADDR	 OBJECT ST

1 0000 00 0002 BETAls NOP

0 0001 3E00 0003 LD
LD (IX+5),A

0 0003 DD7705 0004
1 0006 IE00 0005 LP: LD E,0

• 0008 CD22E5 0006 CALL RUCHR

'0008 D302 0007 OUT (0D2H),A

1 0001) 76 0008 HALT
LD A,(IX+5)

9 000E DD7E05 0009
'0011 FEFF 0010 OFFH

9 0013 C8 0011 RET

`0014 C30600' 0012 JP LP
0013 1

9 0017 1E00 0014	 1NPIOt LD E,0

'0019 F5 0015 PUSH AF

'001A DBDO 0016 IN A,(0DGH)

9 001C 57 0017 LD D,A

'001D CD27E5 0018 CALL WRCHR

1 0020 CD2A00' 0019 CALL STORE

1 0023 CD3D00' 0020 CALL WRTE

1 0026 Fl 0021 POP AF

1 0027 FB 0022 EI

1 0028 ED4D 0023 RETI
0024 ;
0025 ;STORE SEQUENCE vW	 (CR)

'002A 00 0026 STORE:
0027 ;PUT SLQUEI

NOP
;CE IN CTC CHAN 2 AND 3

0028 ;(NOT USED) LOCATIONS

1 002B D5 0029 PUSH
LD

DE
D,(1X+3)

0 002C DD5603 0030
LD (IX+4),D

1 002F LD7204 0031
LD D,(1X+2)

9 0032 DD5602 0032
LD (IX+3),D

'0035 DD7203 0033
LD (IX+2),A

'0038 DD7702 0034
1 003B Dl 0035 POP DE

1 003C C9 0036 RET
0037 ;

9 003L 00 0038 WRTE: NOP
0039 ;CHECK FOR •W (CR)

I OW3E 3EOD 0040 LD
CP

A,ODH
(IX+2)	 ;A SHOULD HAVE (CR)

'0040 DUEE02 0041
JP NZ,LEAVE

'0043 C26400' 0042
LD A,'W'	 ;LOOK FOR W

1 0046 3E57 0043
CP (IX+3)

1 0048 1)DBE03 0044
JP Z,UPAR

'004B CA5600' 0045
LD A,'R'

9 004E 3E52 0046
CP (IX+3)

0 0050 ZLEE03 0047
JP NZ,LEAVE

1 0053 C26400' 0048
1 0056 00 0049 UPAR: NOP

A' 	 ;LOOK FOR
'0057 3L5E 0050 LL
1 0059 DGBE04 0051 CP (IX+4)

NZ,LEAVE
'0050 C26u00' 0052 JP

LD A,OFFH
'005F 3EF'F 0053

LD (IX+5),A
'0061 IUD7705 0054
1 0064 C9 0055 LEAVES RET

3, E522 0056 RDCHR: EGU OE522H

;-E527 0057 WRCHR: E6U OE527H

3, F-59C 0058	 CRLF: EGU OL59CH

>L3C7 0059 PTXT: EOU OE3C7H
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BETAI PUNCH PROG 13
ADOR OBJECT	 ST

r	 oL597	 0060 ECHOs	 LOU	 OE597H
b E583	 0061 ASBIN( ECU	 OE583H

0062 ;
0063 ;

'0065 00	 0064 PUNCHt NOP
'0066 F3	 0065	 DI	 ;DISABLE EXCH BEGS
0067 08	 0066	 EX	 AF•AF'
0068 CBL3	 0067	 SET	 4.E	 ;SIGNAL REG EXCH
'006A D5	 0068	 PUSH	 DE
'006B D9	 0069	 EXX

`	 •006C DI	 0070	 POP	 DE	 ;DEI— DE
f 1 006D FB	 0071	 El
IIII	 006L CB5B	 0072	 BIT	 30E	 ;INITIALIZED?

• 0070 C49700'	 0073	 CALL	 NZ.SETUP
0074 ;RESET CTC

'0073 3ED7	 0075	 LD	 A.11010111B
`	 '0075 D3DB	 0076	 OUT	 (ODSH).A
I	 '0077 3EFF	 0077	 LD	 A•OFFH

'0079 D3DB	 0078	 OUT	 (ODSH).A
'007H CL8800'	 0079	 CALL	 RTS
' 007L 16	 0280	 HALT
'007F F3	 0P^1	 DI	 ;EXCH BEGS
1 0080 06	 0082	 EX	 AF,AF'
1 0081 CBA3	 0083	 RES	 40E
'9083 D5	 0084	 PUSH	 DE
'0084 D9	 0085	 EXX

`	 '0085 Dl	 0256	 POP	 DE
[	 '0086 FE)	 0087	 L 

'0087 C9	 0088	 RET
0089 ;
0090 ;REALM TO SEND ROUTINE

• 008 11 00	 0091 RTSt	 NOP
• 0089 F3	 0092	 DI
• 008A CB78	 0093	 BIT	 7.B	 ;IF ERROR
' 008C C29300'	 0294	 JP	 NZ*EXI :` ? DUMP CHAP.
'008F 7A	 0095	 LD	 Apt)
'0090 4A	 0096	 LD	 C.D	 ;SAVE CHAR OUTPUT
'0291 03 L2	 0097	 OUT	 (OD2H),A
1 0093 CBBB	 0098 EXITt	 hES	 7,E	 ;IMMED IIET
'0095 FB	 0099	 EI
• 0096 C9	 0100	 RET

0101 ;
0102 ;INITIALIZATION ROUTINE

'0097 00	 0103 SETUPt NOP
'0098 EUSL	 0104	 1M	 2
'009A CB9B	 0105	 RES	 3.E	 ;INIT BIT
'009C 0640	 0106	 LD	 13.010000008 ;RTS BIT SET

1	 •009L OL00	 0107	 LL	 C.0
'00AO CLL600'	 0108	 CALL	 TABLE	 ;TABLE LOC IN IX

0109 ;
0110 ;SET UP PIO

• 00A3 LCES	 0111	 PUSH	 IX
• 00A5 El	 0112	 POP	 HL	 ;HL<= IX
'0OA6 7C	 0113	 LD	 A.L
'00A7 D3D1	 0114	 OUT	 (ODIH),A	 ;D0 IS INPUT
'00A9 3E7F	 0115	 LD	 A.01111111B	 ;INPUT MOLE
'00AB L3D1	 0116	 OUT	 (ODIH),A
'00AD 3f87	 0117	 LD	 A.100001l1L	 let P!0

I

I
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BETAI PUNCH PROG 13
ADDH OBJECT	 ST

'00AF D3D1
'0081 3E00
'0083 D3D3
'0085 3E3F
'0087 D3D3
'0089 3E07
'0088 D3D3

'00BD 7D
'00BE D3D8
'0000 F8

'0001 3EFF
'0003 ED47
'0005 211700'
'0008 DD7500
'0008 DD7401
'OOCE 211801'
1 00D1 DD7506
'19D4 DD7407

'00D7 D5
'00D8 CD0000'

'00D5 DI

'OODC 213401'
'OODF DD7500
'00&2 DD7401
'00E5 C9

'OOE6 00
'00E7 2132FF
'00EA 23
'00EB 7E
'00EC FE80
'006E C2EA00'

'00F1 23
'00F2 CB8 5
'00F4 CB8D
'00F6 C595
'00F8 DD210800
'00FC D5
'00FD 54
'00FE 5D
'00FF DD19

	

'0101
	

D1
'0102 C9

'0103 00
'0104 CB63
'0106 C20DOI'
'0109 08
'010A D5
'0108 D9

6147 1
0148 ;LOCATE INT TABEL ABOVE THE USER
0149 .MNEMONIC TABLE AND BELOW THL STACK
0150 TABLE: NOP
0151	 LD	 HL.0FF32H
0152 LOOK:	 INC	 HL
0153	 LD	 A.(HL)
0154	 CP	 80H	 )TOP OF TABLE
0155	 JP	 NT,.LOOK
0156 ;SET UP INT TABLE ON CORRECT BYTE
0157	 INC	 HL
0158	 RES	 O.L
0159	 RES	 I.L
0160	 RES	 2.L
0161	 LD	 IX.8
0162	 PUSH	 DE
0163	 LD	 LOH
0164	 LD	 E.L
0165	 ADD	 IX.DE
0166	 POP	 DE
0167	 BET
0168
0169 /INT ROUTINE REG EXCHANGE
0170 EXCH 1 : NOP
0171	 BIT	 4.E	 ;REGS EXCH'ED?
0172	 JP	 NZ.SKIP1
0173	 EX	 AF.AF'
0174	 PUSH	 DE
0175	 EXX

0118 OUT (ODIH).A
0119 LD A.0	 ;D2 IS OUTPUT
0120 OUT (0D3H).A ;DUMMY INT VEC
0121 LO A.00111111S )OUTPUT MODE
0122 OUT (OD311).A
0123 LD A.00000111B ;DI	 OUTPUT INTS
0124 OUT (OD3H).A
0125 )SET UP CTC
0126 LD A.L	 )INT VEC
0127 OUT (OD8H).A
0128 El
6129 )SET UP INT TABLE
0130 LD A.OFFH	 )SET UP INT VECTORS
0131 LO I.A
0132 LD HL.INPIO )BETAI	 INPUT
0133 LD (IX+O).L
0134 LD (IX+1).H )PIO INT
0135 LD HL.INTCTC ;GO AHEAD AND
0136 LD (IX+6).L )SET UP CTC
0137 LD CIX+7',H KHAN 3
0138 ;CALL BETAI TO SET UP TAPE MANUALLY
0139 PUSH DE
0140 CALL BETAI
0141 POP DE
0142 )PUNCH INT ROUTINE
0143 LD HL.INTPIO
0144 LD (IX+O).L
0145 LD (1X+1).1{
0146 RET
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BETAI PUNCH PR00 ILt
ADDR OBJECT	 ST

'o10C DI	 9176	 POP	 DE
f^	 '010D 00	 9177 SKIPtt NOP

1 910E C9	 0178	 RET
8179 1

'0I0F 00	 0160 EXCH2t NOP
0 0110 C863	 0181	 BIT	 4.E
9 0112 C21901'	 0182	 JP	 NZ.SKIP2
6 0115 08	 0183	 EX	 AF.AF'
1 0116 D5	 9184	 PUSH	 DE
1 0117 D9	 0185	 EXX
'oils DI	 0186	 POP	 DE	 a
0119 00	 0167 SKIP2t NOP

• 011A C9	 0188	 RET
9189 ;
9199 )CTC INT ROUTINE

• 0118 00	 9191 INTCTCt NOP
'011C CD0301'	 0192	 CALL	 EXCH1
0 011F C878	 0193	 BIT	 7.8	 )ERROR?
9 0121 C22901'	 0194	 JP	 NZ.EXITI
1 0124 3EO3	 0195	 LD	 A.03H	 )ETXT CHAR
0 0126  4F	 0 196	 LD	 C• A	 I SAJE CHh '1 OUT: UT
9 0127 D3D2	 0197	 OUT	 10D2H).A
1 0129 3E38	 0198 EXITit LD	 A.00111011B	 ;DISABLE CTC
1 0128 F3	 0199	 DI

1	 '012C D3DB	 0200	 OUT	 <ODBH).A
4 012E CDOF01'	 0201 EXIT2t CALL	 LXCH2

'	 40131 FB	 0202	 El
l 9 0132 ED4D	 0203	 RETI

0204 )
0205 ;PIO INTERRUPT ROUTINE

6 0134 00	 0206 INTPIOt NOP
6 0135 CDO301'	 0207	 CALL	 LX CHI	 {
1 0138 DBDO	 0208	 IN	 A.(ODOH)
1 013A 89	 0209	 CP	 C	 ISLE IF CHAR RCVD
'0138 CA4101'	 0210	 JP	 Z.SKIPA IIS CHAR SENT
4 013E CBF8	 0211	 SET	 7.8	 ;SET ERROR BIT
1 0140 AF	 0212	 XOR	 A	 ;CLEAR ACC TO AVOID CP
'0141 FE03	 0213 SKIPAt CP	 03H	 ;SEE IF ETXT
1 0143 C24801'	 0214	 J?	 NZ.SKIPB
'0146 D3D2	 0215	 OUT	 (OD2H)#A	 )SLN D ETXT
1 0148 CDOFoI'	 0216 SKIPBt CALL	 LXCH2
0 0148 FB	 9217	 El
1 014C ED41)	 0218	 RETI

0219	 END

BETAI PUNCH PROG 13
ADDR OBJECT	 ST

ASBII4 E583 BETAI 0000 CRLF E59C ECHO E597
LXCHI 0103 LXCH2 OIOF EXIT 0093 EXIT1 0129
EXIT2 012E INPIO 0017 INTCTC 0i1B INTPIO 0134
LEAVE 0064 LOOK 00EA LP 00x16 PTXT E3C7
PUNCH 0065 RDCHR E522 RTS 0088 SETUP 0097
SKIPI 0101) SKIP2 0119 SKIPA 0141 SKIPB 0148
STORE e02A TABLE 00E6 UPAR 0056 'JRCHR E527
VRTE. 003D
ERRORS-0000
ERRORS-0000
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II.3 Bk'7'A-1 Read Prooram

bLTA RLAL PROG 2
AUUR OBJLCT ST •

• 0000 00 0092 READS NOP
0 0601 F3 0003 D1
1 0002 08 0004 LX
1 0003 CbE3 0005 SLY
1 0005 D5 0006 PUSH
1 0006 D9 0007 EXX
'0007 D1 0008 POP
1 0008 Fb 0009 El
1 0009 Cb5b 0919 BIT
1 000b CAIA00' 0211 JP
9 900L DVI.5 0012 PUSH
'0010 E5 0013 PUSH
1 0011 CDC744 0014 CALL
'9914 GU3000' 0015 CALL
1 0017 El 0016 POP
1 0018 DDL I 3017 POP
'001A 0G 0018 NOSETr NOP

0019 JRESET CTC
0 0018 3ED7 0020 LD
1 001D D3DB 0021 OUT
1 001F 3EFF 0022 LD
1 0021 =6 0023 OUT
'0023 io 0024 MAL.
• 0024 CBBB 0025 RES
• 0026 F3 0026 Dl
'0027 08 0027 EX
1 0028 CBA3 0928 RES
'002A G5 0029 PUSH
1 002B D9 0030 L'XX
'002C Li 0031 POP
'002D 7A 0032 LD
9 002E FB 0033 El
1 002F C9 0034 RET

0035 i
1 0030 00 0036 RDVECt NOP
1 0031 214400' 0037 LD
1 0034 DD7506 0038 LD
1 0037 DD7407 0039 LD
9 003A 215500' 0040 LD
'003U UD7500 0041 LD
'0040 DLY401 0042 LL
'0043 C9 0043 RET

0044 J
'0044 00 0045 RUCTCs NOP
1 0045 CD7344 0046 CALL
' 00418 1603 0047 LD
'004A 3838 0048 LD
'004C F3 0049 DI
'004D D3Db 0050 OUT
9 004F CU7F44 0051 CALL
'0052 FB 0052 El
'0053 EU4D 0053 RET1

0054 J
1 0055 00 0055 RDPIOs NOP
'0056 CL7344 0056 CALL
1 0059 DBL'0 0057 1N
'005b 57 0058 LD
'605C CD7F44 0059 CALL

AF. AF'
4.E	 ;SIGNAL EXCH BEGS
DE

DL	 JDE'<.DE

3.E
Z.NOSET
IX
HL
SETUP
RDVEC
HL
IX

A.110101115
(ODBH).A
A.OFFH
(ODBH)aA

;11111T FOR CHARS
7.E	 JIMMLD RET bIT

AF. AF'
4.E
DE

DE
A.D	 JA AND D CONTAIN THE

J CHAP. P.ECEI VED

HL.RDCTC	 JCTC INT VEZ
(1X+6).L
(IX+7)•H
HL.RDPIO	 JPIO INT VEC
(IX+O).L
(IX+I).H

EXCH 1
D.03H	 ;ETXT
A.00111011B	 ;DISABLE CTC

(ODBH).A
EXCH2

EXCH I
A.(ODOH)
D. A
EXCH 2

*;A. ,
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bbTA ILAIJ PROG 2
AUUh OBJECT	 ST

1 005F F6	 0060	 El
'0060 LD41.	 0061	 RETI

0062 J
04473	 2063 F.XCHit LOU	 94473H
0 447E	 9064 LXCH2t LOU	 9447FH
0 4407	 0065 SETUPt LOU	 0440711

E066	 END

BETA READ PROG 2
ADDR OBJECT	 ST

EXCHI	 4473 4XCH2	 447F NOSET	 001A RDCTC	 0044
RL+PIO	 0055 RDVEC	 0030 READ	 0000 SETUP	 4407
LRR0R5 n 2000
E.RROR5^0020
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APPLWUIX II1. Flowcharts for flight programs.

STna l
Reset Location n

set mode 2 interrupt
ict sta%:k pointer
load I register

set up the interrupt tuhle:
Sl0

NO
CTC

Initialize NO
Initialize SIO
Initialize CTC

Start NO
channel 2 time const:

B • CTC 121
set : word .. - 0

Ca11
Region I

Call

Figure I1I.1 Flight program lines 120-171 (Appendix II.l).
Initialize CPU registers, all 1/0 devices,
and start processing.
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OPtu»d	
H

OF POCK {,^^^» »3^

	Reston I	 1	 f	 Reston 11

"twilled Interrupts	 I	 I	 Unable Interrupts

	

ties, end of block flag	 clear end of block flat

	

LO t ,U	 IA, t ,+I

	change Interrupt table to	 Change interrupt table to

point to CT( Region i routine 	 point to CTC Reston 11 routine

UseOE to mark the	 Use 0E to mart the
Region I boundar y 	Reston I1 boundary
set up N register	 set up 11 resister
for this sector	 for this sector

Setup $10 pointers	 get up 510 pointers

It'll • Region 11 sddr	 N'L' • Region 1 sddr

sector 0 , U' + 0	 sector 0: 0' • 0

	

Increment Record a In L'	 lnerem t Record a In E'

Turn on $10 by sending marker I 	 I	 Turn on Slo by sending marker
enable interrupts	 enable Interrupts

Tet

	 Has the
N 	 No	 chance 101101,

 bit he'llset"

 Alt	 t

 Yes

 R91Urn

	

` `I)	 (b)

Fipure 111,2 Flight program lines (a) .127-451; (b) 455-179
(,Appendix 11.1). Regions 1 and 11 initialization
and monitoring routines.
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cro^i R^ . s

OF i

iail

ors tall

Protect primed refs
11 1 0 • IC
protect AF

is 

610still trensdttief	 No	 signal region cAans•
the current block•	 set 7, C
\ sit 1, C

yet

Fetch spin time from M 0
calculate spin period and

store in R resister

Mut "YC o
to 2S6 vwtt

Glean up before leaving:
Restore AF

be • R'C#

REIN

Figure II1.3 Flight program lines 174-216 (Appendix 11.1).
Non-maskahle interrupt :'service routine where
the spin period is calculated and the region
change is monitored.
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OF POCR, 139

F

w

I

PIJI'v+ 	 1	 f	 CTC FAR

Protect AF	 I	 Protect AF
Reset chen 0

set to 121 counts

P

	 LnJ t Na

rog ton"

les

^"rm sddress
,^^ r	 ...au to
U.0 ,Jdrean

Set cnd of region bit

etc ', c

Nr wreAF

r, la tnt errupts	
kretore AF

ennblo tnt rrrupts

NIT:

R1 H

(a)	 (b)

Figure 111.4 (a) Flight program lines 218-231 (Appendix II.1).
This routine crllects data from the PHA board via
the microproce^Fjv PIO port A and accumulates the
counts in ;',a,tr 	 ; (b) Flight program lines 372-393
(Appendi.c 1..1 1 . If the magnetometer fails, this
routine will simulate a spin rate of 5 rps.
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ORIGINAL
PAGE IS

OF POOR QUALITY

Lm ml

Pro—AF
,,,crew, he

Doctor

00 It the
sector chooseµ
ndlcobt roglo

chonp

Yoe

Aafurt the r"ion pointer
to continue

point 1n1 to hgion 1

fist OF and I4L equal
Rector, AF

^n^bl• Inarrupu

RI TI

(a)

Figure 111.5 Flight program lines (a) 395-409; (b) 411-425
(Appendix I1.1). CTC RG1 and CTC RG2 are
responsible for incrementing the sectors from
0 to 31.
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Figure 111.6 Flight program lines 31 .3-339 (Appendix I1.1).
'Phis routine is responsible for transmitting
the detector 3 information whirr includes the
sector number in bin 0.
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ORIGINAL PAGE I5
OF POOR QUALITY

Figure II1.7 Flight program lines 341-369 (Appendix 11.1).
'Phis routine is responsible for transmitting
the detector 4 information which includes
sector XOR block number information in bin 0.
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Figure III.8 Flight program lines 235-286 (Appendix 11.1). This
routine transmits the detector 1 information which
includes a marker pulse of 255 in energy bin 0. At
the end of each block of 2h bytes, this routine turns
off the SIO until the next NMI occurs.
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Figure; III.9 Flight program lines 287-312 (Appendix II.1). This
routine transmits the detector 2 information which
includes the block number in energy bin 0. Each block
of 2K bytes has an unique block number (0-255)
associated with it.
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APPENDIX IV. Z80 vectored interrupt ."escription
:,d0 Tochnicab Manual,, 1977] .

MOUE 2 Interrupt
This mode is the most powerful interrupt response mode. With a single

8 bit byte from the user an indirect call can be made to any memory location.

With this mode the programmer maintains a table of 16 bit starting
addresses for every interrupt service routine. This table may be located any-

where in memory. Whea an interrupt is accepted, a 16 bit pointer must be
formed to obtain the desired interrupt service routine starting address from
the table. The upper 8 bits of this pointer is formed from the contents of
the I register. The I register must have been previously loaded with the

desired value by the programmer, i.e. LD I, A.	 Note that a CPU reset clears

the I register so that it is initialized to zero. The lower eight bits of the
pointer must be supplied by the interrupting device. Actually, only 7 bits

are required front 	 interrupting device as the least significant bit must be

a zero. This	 required since the pointer is used to get two adjacent bytes
to form a complete 16 bit service routine starting address and the addresses

must always start in even locations.

desired starting address
Interrupt	 painted to by:
Service
Routine	 law order	 r7R l:c;	 7 Li115 1 RrJU
Starting	 high order	 CONI[NTS	 PI RIPIIFRAI.
Address
Table

The first byte in the table is the least significant (low order) portion of

the address. The programmer must obviously fill this table in with the desired
addresses before any interrupts are to be accepted.

Note that this table can be changed at any time by the programmer (if it
is stored in Read/Write Memory) to allow different peripherals to be serviced

by different service routines.	 F

Once the interrupting device supplies the lower portion of the pointer,
the CPU automatically pushed the program counter onto the stack, obtaining
the starting address from the table and does a jump to this address. This 	

«!
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mode of response requires 19 clock periods to complete ( 7 to fetch the lower

8 bits from the interrupting device, 6 to save the program counter, and 6 to

obtain the jump address.)

Note that the Z80 peripheral devices all include a daisy chain priority

interrupt structure that automatically supplies the programmed vector to the

CPU during interrupt acknowledge. Refer to the Z80-P1O, Z80-S ,IO and Z80-CTC

;^	 manuals for details.



APPENDIX	 rJD X V. Schematic diagrams	 o
iV	 •.'d

w v	 O r;
{n H _4 41
4.4	 t^.	 U

H 
o 

O O	 v
O C N 4 U H

H U
U a4	 V O •H

Cs	 1-)	 44	 4-
CO	 • 4	 ty

° O	 u)	 i^

° a. c)•+j mto 

O C v N tn V) b C)
H	 rr.,

t7ac ^+

ri	 R!	 .
in U

b {n C ,.a O

Oni

N

N .^+	
0 

N°

= V^iF	 f^•^r^

O	 O •r+	 vi H .4

h E-^	 v^	 w r

° o
o'p O

on
° C..• •^ U

O O la r O
° H r CJ O H

U N	 .-+ Sn
c b +

j
Y b

U
fA	 G .!4 v O r)

H ^ ' 00-40$°, COJ O^0Z,

N H O 
N N 
r

co	 k

0 01'014	 0	 a
.n U	 4J 4,	 1-) ..4

2	 al O• {	 O	 V)

J

-zi41
{)	 = U N O

.9J	 Q3	 0	 .,-4	 1]N i V)	
=r= U 0 •n

J

a 0t.....10 ^u	 a	 cr
G"	 M	

^"J	 'U
No	 E C)	 O .^ iC	 CJ	 0 'O

ti O O '^	 CJ H V)
N

C-- 4	 C)	 S	 ri

C U"r.1 41	 U	 U
- O U	 O ^-{ H

Y,	 w	 --{ .^ .q
N •.^ O U	 U

a ^

° rYN	 i
77Y

•

I ^H

i r

V.1 CRI Board

> a»»»
0 000 0 00 0

a,

0

f ^

^
O
mN

3

c

}

n
e

_	 I
a	 c

C;

O ^

^)

Is
I

^ O
CD

N

Sty e	 S93800 V

>

Z
a^

sne viva

e

147



V.2	 £Z§ Board

op

^
«2
_UJ

I ^^	 d 1^od
^w

^J

Sne viva

I

Iacr
^

e

cli«

«
0a

k
Iwn

li

^

CRlGy^ [ p3G E
OF F-COR Q%QAUTY

g ^«
a

k

^

n

	

,	 0

	

^	 n
n

	

U	 N

^ww

^ $ ^

8
n
^
^
^

0
n ^

^
C14

C
0to

a

>	 |,
A

^ §
•^ n

u \
.0 °

\ƒ. ^

& § Wemu¥

2 k %

ƒ^ K
k "Cl

\ S §
¥ W

(A^/e o

ƒ/^
e m

4 % §

V k
^ w q^4	 n

j'^ k §

//uk /^

/lylS

/ k 0uwtx

2324j\2A2

m^k2

k04j

/

22k
^

3
> _
^n

w

!
	 U.1

0

z0«
2

148



OREG NAL PACE E3
	

1.19

OF POOR QL!A'.#TY

V.3 Morlon, h,'ard

r
Sne c 1moov	 .i	

fiv

R r-	 w h IN] 1 193136

liz

Nil I

111 J,

fU

1	 _	 mor ^ony^n.v

	

M	 Tl! I

	

^ M	 N	 ^	 N	 C^ 1 
-y .:11 	 ,

^	 r	 n	 ^	

R	

,.^._ _.	
^i	 V	 M' ,'1 r	 iI 1.	

^ •...	
m 

T	 m	
k'

J	 ^	 ^ '1 'T	 CJ	 q I r. ._^	 -	

O	
N	

C^

1 

J - v'

^	 I	

h

-	 4	 _	

I 	 {II

J

a	 U^	 M	 .'+^	 ^7	
^.:H ^
	

O^	 !1	 01	
'1	 Q	 rl.__r_ 1	

1^	 71

	

,W TT .,^4	 veY.

^,^	
i^	 ^ 7 ^	 T ° fi n	 ^J r ^i^ i

ro
^t

	

-t._. .1 cs	 v	 ^	 _..J	 f A

l

Sl!	 O	 G	 j^ o	 I
n.,	 e r

- ,	 v a	 N	 o r
U

3	 1

Ix
j

Ir

v	 1

a	 v

a
C)

e ^l +?^] S'ly V.: '

H

co

 4j

'quo
i oa•.a

w 4
j Mtja) •44 ,-4

p O

b O R9
•-1 U U

(4	 0
O 0 C1

r-i

H !n	 N

•P z

v

e 1 ,C r •riu•^u,
4j

C+. LL Q7 '^I

"^ tQ 0

^ •y	
.0

V) CV	 N

cd	 cd td

W > cd
0 10 .4
0 0 4J T
^ td cd O

vJ p. D G

to C_ 4j H

O N 0
H to ^ rl v1

4.J .r1	 O

F+ td^ O
a^ 4.j	 ^+

O b 0 O

O O U

N b ^

t7

Q^

O

LL



VA c7exli.al- try-Awlog Convertor

ISO

J h
Q
z
Q

L0 ISI LD ti Q

w 
w

O

OQN
^^Q

m

J^

^IIr IT ED

M

U) 01 m ^ cp cA	
Ii

MMMMM

0Io1a wcr iN N N o
M_ a.

h0 O
cr in CLQ 2^ Q

NM
NJ
ti

JQh
O
© OQ.
J?Q Q
^ Hw Q
(n 0

O ^
U M
0 Jm^
O
QY N
Q U —

O
O M
^ MCD J
D
Q

O' Y N

N

a;
Y N

a

14	 41w --
•. b

b4 o v

u 41.c
O
N

H O

V) .-1 O
cd .-^

+^.+ cHd

b X
^ Cl

td	 q[
4J (A cd
•4 b
t4 N tA
•^ O •ri

Nco -H ^o

4)00k
x^ N w El

O O N H
b -H O O
U 04

b O
y ^

° b ou
b	 cd

a O	 a4

•rl ^ tom' ^,'
V	 F^

h0.' k F+

0 (L) 4J

,CO U H GGp
H E > E

OFrOb4
w

N
M
NJ
N

..



1— 

7,
151	 i

REFERENCES

Barbier, U. [1958], The auroral activity at low latitudes, Ann. Geophys., 14,

334-355.

Chappell, C. R., K. K. Harris, and G. W. Sharp [1971], OGU 5 measurements of

the plasmasphere during observations of stable auroral red arcs, J.

oeophya. Res., 81, 608.616.

Cole, K. D. [1965], Stable auroral red arcs, sinks for energy of D ST main

phase, J. Geophys. Rea., 70, 1689-1706.

Cole, K. 5. [1975], Coulomb collisions of ring current particles--Indirect

source of heat for the ionosphere, Rep. X-621-75-108, Goddard Space Flight

Center, Greenbelt, MD.

Cornwall, J. M., F. V. Coroniti, and R. M. Thorne [1971], Unified theory of

SAR arc formation at the plasmapause, J. Geophys. Rea., 76, 4428-4445.

Dalgarno, A. and J. C. G. Walker [1964], Red line of atomic oxygen in the day

airglow, .". Atmos.	 21, 463-474.

Davis, L. L., L. G. Smith and II. D. Voss [1979], A rocket=borne data-manipula=

tion experiment using a microprocessor, 	 ,'•1, Aeron. Lab.,

Dep. 1 : 1cc. hng. , On iv. I11. , Urbana-Champaign.

Evans, J. V. [1970], F region heating observed during the main phase of

magnetic storms, J. Geophys. Res., 75, 4815-4823.

Hasegawa, A. and L. Chen [1975], Kinetic process of plasma heating due to

Alfven wave excitation, ilzys. Rev. Lett., 370.

lias_-gawa, A. and K. Mima [1978], Anomalous transport produced by kinetic

Alfven wave turbulence, J. Geophys. Rea., 83, 1117-1123.

Hernandez, G. [1972], Spectroscopic studies of the arc of March 8-9, 1970,

Planet. .)pace Sci., 20, 1309-1321.
Hoch, R. J. and K. C. Clark [1970], Recent occurrences of stable auroral red

arcs, J. C,eopin^a. Rea., 75, 2511-2515.
Ilultgvist, B., W. Riedler and If. Borg [1976], Ring current protons in the

Upper atmosphere within the plasmapause, Planet. Space Sci., 24, 783-797.

King, G. A. M., and F. E. Roach [1961], Relationship between red auroral arcs

and ionospheric recombination, J. Res. Nat. Bur. Stand., "eet. D Cis,

129-135.

Lundblad, J. A., and F. Soraas [1978], Proton observations supporting the ion-

cyclotron wave heating theory of SAR arc formation, Planet. space Sci.,

2E, 245-254.



w
r-

152

Megill, L. R., and N. P. Carleton [1964], Excitation by local electric fields

in the aurora and airglow, J. Gcophbs. Res., 69, 101 -122.

Mikhailovskii, A. B. [1967], Oscillations of an inhomogeneous plasma, in

Itevico of Plasma Physics, 3, 159, edited by M. A. Leontovich, Consultants

Bureau, New York.

MOSTEK Z80 Technical Manual [copyright 1977), MK 3880 Central Processing Unit,

MOSTEK Corp, Texas.

Nagy, A. F,, W. B. Hanson, R. J. (loch, and T. L. Aggson [1972], Satellite and

ground-based observations of a red arc, J. Geophya. Rea., 77, 3613-3617.

Okuda, M., T. Old, and J. S. Kim [1971], Midlatitude auroral arcs of 6300 A

(or) and the concurrent ionospheric current system, Radio Got, 6, 887-891.

Reed, E. I., and J. E. Blamont [1968), OGO 4 observations of the September

1970 M arc, EOS Trans. AGU, 49, 731.

Rues, M. H. [1961], Excitation of high altitude red auroral arcs, Planet. Space

VS.,  8, 59-67.

{tees, M. II., and S. J. Akasofu [1963), On the association between subvisual

red arcs and the not (ll)decrease, Planet. apace Sci., 11, 105-107.

Rees, M. If., and R. G. Roble [1975], Observations and theory of the formation

of stable auroral red arcs, Rev. Geopnys. Space Phya., 13, 201-242.

Roach, P. F.., and J. R. Roach [1963], Stable 6300 A auroral arcs in mid-

latitudes, i'ranct.	 11, 523-545.

Roble, R. G., R. B. Norton, J. A. Findlay, and E. Marovich [1971), Calculated

and observed features of stable auroral red arcs during three geomagnetic

storms, J. Geophys. Rea., 76, 7648-7662.

Shepherd, G. G., L. L. Cogger, and J. R. Burrows [1976], Midi- itude auroras

and SAR arcs observed from the ISIS 2 spacecraft during the August 1972

geomagnetic storm, J. Geophyo. Res., 81, 4597-4602.

Smith, L. G. in Edwards, B., Editor (1979], Research in Aeronomy April 1 -

September 30, 1979, loog. Rcp. No. 79-2, Aeron. Lab., Dep. Elec. Eng. ,

Univ. 111., Urbana-Champaign.

Smith, P. If., and R. A. Hoffman [1973), Ring current particle distributions

during the magnetic storms of December 16-18, 1971, J. Geophys. Res.,

78, 4731-4738.

i

A



w

153

Voss, H. D., and L. G. Smith [1977], Energetic particles and ionization in

the nighttime middle and low latitude ionosphere, Aeron. Rep. No. 78,

Aeron. Lab., Dep. Elec. Eng., Univ. Ill., Urbana-Champaign.

Voss, H. D., and L. G. Smith [1979], Nighttime ionization by energetic particles

at Wallops Island in the altitude region 120 to 200 km, Geophys. Res.

Lett., 6, 93-96.

Voss, ti. D., L. G. Smith, and F. M. Braswell [1979], Rocket measurements of

energetic particles in the midlatitude precipitation zone, Space Res.,

00, 149-152.

Williams, D. J., T. A. Fritz, and A. Konradi [1973], Observation of proton

spectra (1.0 1 Ep f 300 keV) and fluxes at the plasmapause, J. Geophys.

Res., 78, 4751-4755.

Williams, D. J., G. Hernandez, and L. R. Lyons [1976], Simultaneous observations

of the proton ring current and stable auroral red arcs, J. Geophys. Res.,

81, 608-616.

Zimmerman, R. K., Jr., and L. G. Smith [1980], Rocket measurements of election

temperature in the E region, Aeron. Rep. No. 92, Aeron. Lab., Dep. Elec.

Eng., Univ. Ill., Urbana-Champaign.


	1982014953.pdf
	0001A02.jpg
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.jpg
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.jpg
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif
	0001D08.tif
	0001D09.tif
	0001D10.tif
	0001D11.tif
	0001D12.tif
	0001D13.tif
	0001D14.tif
	0001E01.tif
	0001E02.jpg
	0001E03.tif
	0001E04.tif
	0001E05.tif
	0001E06.tif
	0001E07.tif
	0001E08.tif
	0001E09.tif
	0001E10.tif
	0001E11.tif
	0001E12.tif
	0001E13.tif
	0001E14.tif
	0001F01.tif
	0001F02.tif
	0001F03.tif
	0001F04.jpg
	0001F05.jpg
	0001F06.tif
	0001F07.tif
	0001F08.tif
	0001F09.tif
	0001F10.tif
	0001F11.tif
	0001F12.jpg
	0001F13.jpg
	0001F14.tif
	0001G01.tif
	0001G02.tif
	0001G03.jpg
	0001G04.tif
	0001G05.tif
	0001G06.tif
	0001G07.tif
	0001G08.jpg
	0001G09.tif
	0001G10.jpg
	0001G11.tif
	0001G12.tif
	0001G13.jpg
	0001G14.jpg
	0002A02.tif
	0002A03.jpg
	0002A04.jpg
	0002A05.jpg
	0002A06.jpg
	0002A07.jpg
	0002A08.jpg
	0002A09.jpg
	0002A10.jpg
	0002A11.jpg
	0002A12.jpg
	0002A13.tif
	0002A14.tif
	0002B01.tif
	0002B02.tif
	0002B03.tif
	0002B04.tif
	0002B05.tif
	0002B06.tif
	0002B07.tif
	0002B08.tif
	0002B09.tif
	0002B10.tif
	0002B11.tif
	0002B12.tif
	0002B13.tif
	0002B14.tif
	0002C01.tif
	0002C02.tif
	0002C03.tif
	0002C04.tif
	0002C05.tif
	0002C06.tif
	0002C07.tif
	0002C08.tif
	0002C09.tif
	0002C10.tif
	0002C11.tif
	0002C12.tif
	0002C13.tif
	0002C14.tif
	0002D01.tif
	0002D02.tif
	0002D03.tif
	0002D04.tif
	0002D05.tif
	0002D06.tif
	0002D07.tif
	0002D08.tif
	0002D09.tif
	0002D10.tif
	0002D11.tif
	0002D12.tif
	0002D13.tif
	0002D14.tif
	0002E01.tif
	0002E02.tif
	0002E03.tif
	0002E04.tif
	0002E05.tif
	0002E06.tif
	0002E07.tif
	0002E08.tif
	0002E09.tif
	0002E10.tif
	0002E11.tif
	0002E12.tif
	0002E13.tif
	0002E14.tif
	0002F01.tif




