

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

UNIVERSITY OF ILLINOIS
URBA'11 :1

d

A 1R 11D%-01-\NOMY ul. EPO1LS ll
NO. 97

IMPLEMENTATION OF CONTEXT INDEPENDENT

V CODE ON A NEW ARRAY PROCESSOR

THE SUPER-65

by	 \1234S
R O. Colbert 	 O	 Sj

S. A. Bowhill 	 ^^"	 c^ti

kkw,	
c

CIO

June 1, 1981	 !^n)cl o ►

Library of Congress ISSN 0568-0581

TA-As-A-C	 /5 /l 	 i ti- L r,,l-hiA^lli,N uk 1 .L,1'itKi	 it
1NUEkLbut. 1\T C00k CN A NEW PnhAY PFUCESSnn:
1HE :iUE'ti^ — b5 (t,J.inc:l^ uUiv.)	 1U4 F
HC AOu/Ae A01	 CSLL U)iS	 U'IcI'l5	 i

h.J /oJ	 1	 .?s

Acronomy i.anoratory

Department of Electrical Engineering

Supported by	 University of Illinois

National Science Foundation 	 Urbana, Illinois

UILU-M-81 2503

AERONOMY	 R E P O R T

N 0. 97

IMPLEMENTATION OF CONTEXT INDEPENDENT CODE ON A

NEW ARRAY PROCESSOR: THE SUPER-65

by

R. 0. Colbert
S. A. Bowhill

August 1, 1981

Supported by	 Aeronomy Laboratory
National Aeronautics
	

Department of Electrical Engineering
and Space Administration
	

University of Illinois
Grant NSC 7506
	

Urbana, Illinois

r NECEDING PAGE BLANK NOT FRAW	 iii

ABSTRACT

This work explores the feasibility of rewriting standard uniprocessor

programs into code which contains no context-dependent branches. That is,

t his type of code (context independent code) would contain no branches that

might require different processing elements to branch different ways.

In order to investigate the possibilities and restrictions of CIC,

several programs were recoded into CIC and a four-element array processor

was built. This processor (the Super-65) consisted of three 6502 microproc-

essors and the Apple II microcomputer. The results obtained were somewhat

dependent upon the specific architecture of the Super-65 but within bounds,

the throughput of the array processor was found to increase linearly with

the number of processing elements MO. The slope of throughput versus PEs

is highly dependent on the program and varied from 0.33 to 1.00 for the

sample programs.

i	 ?

TABLE OF CONTOB

Page

	ABSTRACT. o 	 iii

	TABLE OF CONTENTS 	to	 iv

LISTOF FIGURES . vi

	

1. INTRODUCTION* . 	 1

	1.1 What is an Array Processor? 	 2

	

1.2 Motivation for Array Prooessore 	 6

	

1.3 Issues and Objectives of This Study.	 7

	

1.3.1 Processor-memory interconnection	 7

	

1.3.2 Interprocessor communication 	 7

!	 1.3.3 So f kmr+e requirements	 8
i
	1.3.4 Expandability of system	 9

	! 	1.3.5 Fault tolerance of system	 10

?	 2. APPROACH TO A NEW ARRAY PROCESSOR 	 11

2.1 Effect of Context-Dependent Branches on System Throughput. . . . 11

i

	 2.2 Software Consideration: Independent and Dependent Data 	 j

	Handling . 	 17

	

E

	

	 2.3 Context Independent Code and Its Implementation. 	 19

2.4 Input/Output Concepts . 22

	

i

	

	 2.5 General Hardware Considerations	 23

2.6 Selecting the Microprocessor for a Wti-Mim oproosesor System . 27

	

3. HARDWARE ASPECTS OF THE SUPER-65 MULTI-MICROPROCESSOR SYSTEM. 	.	 30

3.1 Attributes of the 6502 Microprocessor 30

3.2 The Apple II Microprocessor System 36

3.3 Architecture of the Overall System 45

3.4 Design of the Individual Processor Card 51

V

4.	 EXAMPLES OF INDBPENDENT DATA HANMING 57:+5,
tt., .

4.1 Introduction . 57

`V
r'

4.2 8-Bit AkWnitude of Thos-Complement Number. 57

4 .3 8 x 8-Bit ftltipZication 58

4.4 2818-Bit Binary Division 59

4.5 32-Bit Awumulation. 61

4.6 32 x 32-Bit Binary Multiplication. 62

4.7 Comparison of CIC Pmpms With Uniprooessor Programs. 64

5.	 EXAMPLES OF DEPENDENT DAT1+ HANDLING 69
F'

5.1 introduction 69

5.2 Carry-Propagation Problem 69

5 .3 Stored-Carry Solution 70

5.4 32-Bit Accumulation 71

5.5 32 x 32-Bit MuZtipZication 73

5.6 Comparison of CIC Programs With Uniprooessor Prograr»s. 81

6.	 SUN@ M AND SUGGESTIONS FOR FURTHER RESEARCH 83

6.1 Swmrary . 83

6.2 The Ideal Microprocessor for an Array of Microprocessors 86

6.3 Extending the Microprocessor Army 90

6.4 Suggestions for Further Research 92

	

REFERENCES. 	 94

APPENDIX I IMPLEMENTATION OF THE 8-BIT MULTIPLICATION ROUTINE. 96

V1

LIST OF FIGMS

Figure Page

1.1 Single-processor computers	 3

1.2 Conventional array computers	 4

2.1 Program containing a single context-dependent branch of

length L/3		 12

2.2 Program containing 20 context-dependent branches, each of

length L/200	 14

2.3 Program containing 3 level nested context -dependent branching. . .	 16

2.4 Graph of array throughput versus level of nested context-

dependent branching.		 18

3.1 6502 timing signals.	 37

3.2 6502 microprocessor pinout designation (courtesy MOB Technology) .	 38

3.3 Peripheral connector pinout.	 40

3.4 Peripheral connector descriptions.	 41

3.5 Super-65 system block diagram.	 46

3.6 Apple II schematic diagram	 49

3.7 Processor card schematic diagram	 53

3.8 Processor card layouts		 56

5.1a 32 x 32-bit multiplication diagram	 75

5.1b 32 x 32-bit multiplication diagram	 76

t

_	 -

^/ 3 lax]

`J'	
3

I
1.

The needs if soot computer users are constantly changing. These

needs tend to demand faster and mare powerful computers as the user puts

the computer to more extensive use. Faster computers may be obtained

either by improving the raw sped of the circuits and components or by

using the same circuits in a more efficient architecture. Unlimited im-

provements in circuit speed cannot be expected due to fundamental physical

constants * the most notable of these being the speed of light. Therefore,

new approaches to computer organization must be found if projected demands

of computer users are to be met, particularly in the area of large scien-

tific problems.

in recent years e such attention has been given to unconventional

organizations and various super-computers utilizing new concepts have been

built GSlotnick, 19673. An endless amount of questions and discussions is

possible when the capabilities and handicaps of different organizations are

compared. One can often find a specific application for which a given

architecture excels as well as instances in which the some approach is

ineffective. it is not the purpose of this work to make exhaustive compar-

isons of the capabilities and handicaps of different architectures. Only

one particular organisation will be dealt with: the array processor.

The array processor has been widely accepted by the computer community

as a cost-effective approach in a particular but rather important set of

applications Vhurber and Wald, 19757. In this form of processor * high

throughput is achieved by introducing parallelism. that is to say e several

processors performing nearly identical operations, in this work * the array

architecture is examined and a new approach to the design of an array

processor is proposed in order to take advantage of the recent advent of

t1 .

i

2

W

low-cost, high-performance microprocessors.

1.1 What ie an Array Prooessor?

Illiac IV will be taken here u the conventional array processor.

This section is not meant to be a complete description of Illiac IV and

some familiarity with the work of Barnes et at. [19683 and of &ok [19683

is assumed. Only a few basic concepts are considered here in order to set

the stage for the discussion that follows.

Figure 1.1 shows the functional diagram of a single-processor compu-

ter. It consists of: (1) a memory to hold operands and instructons. (2) a

control unit that fetches instructions from the memorye decodes them and

issues control signals to (3) an arithmetic unit that performs the opera-

tions on operands taken from the memory. The most radical approach to

parallelism would obviously be to replicate the elements shown in Figure

1.1 a number (n) times providing adequate interconnections between the

elements. This is the multiprocessor approach [FZyrn, 19723. Although

powerful, this organization leads to several implementation problems and as

yet appears impractical for large n.

The expense of a multiprocessor architecture is primarily a result of

the cost of the interface connecting each of the processors to each of the

memories and the economic burden caused by the multiplicity of control

units. This burden can be substantial as in a sophisticated classical

machines the control unit typically accounts for more than half of the

total gate count (Alaahado, 19723.

These considerations lead one to the conventional array computer

approach whose functional diagram is shown in Figure 1.2. Only the

arithmetic units and memories are replicated and one single control unit

(CU) drives the array of arithmetic units. Thus, an array processor is

1

i^

I

f

INSTRUCTIO

Yy

•	 1

1

Ml

Figure 1.1 Single-processor computer.

H!

w
V

8

M
M
W

VI
o^
V

N
..w

6v

4

s

characterised by the fact that a single instruction strew is enacted

simultaneously by any or all of the arithmetic units. For certain

M,

	

	
arithmetic unitse the operation may have to be modified or suspended based

on the contents of a gate or wak register in each processor. for this

reasone the entire control unit cannot be made central as certain control

decisions are operand-dependent. Thereforee a minimum amount of control is

kept local and each arithmetic unit plus its local control is called a

processing slssest 02). The term processing unit (PO) is used to desig-

nate a Pg with its processing elessat memory (PIiM). instructions can be

stored either across the PIZMs or in a special instruction mamory.

One interpretation of the array-processor concept is that every M

performs precisely the Gone instruction on the same addresses in its own

PEM. This constraint can be relaxed somewhat with the introduction of

extra hardware to allow local indexings mode control and routing. These

concepts as they are commonly applied to an array processor (such as illiac 	 i

IV) will uow be briefly described.

Local Indaxina. The CO broadcasts an address to each PE. This ad-

dress may be modified by each Pg. In Illiac I®9 for instancee an index

register and address adder are provided with each P g. A central index

register is also provided in the CO. The final operand address ai for Pg

is the sum of the base address specified in the instruction• the contents

of the central index register in the CO. and the contents of the local

index register of the PE .

Hod@ Control. Although the goal of the array-processor structure is

to be able to control the processing of a ==bar of data streass with a

single instruction stresse it is sometimes necessary to exclude some data

stress or to process then differently. This is accomplished by allowing

6

eacb instruction to be locally modified by the Use The simplest foss of

mode control is to decide Dally if central instruction I will be locally

executed as I or as a no-opt i.e. each Pi can be turned on or off. This is

the only type of mode control available in Mice IT. Complete mode-

control capability Mould obviously result in a multiprocessor approach.

Rostinj. Routing is defined as the method by Mbieb Pi j may obtain an

operand which is stored in Pall UN). This used arises in many applica-
tions and therefore some way of routing operands from one Pa to another is

necessary. The simplest type of routing is to link Pa p to pig
1

and
P241

This is called neighbor routing. Non-neighbor routing is thus obtained by

a "queues of neighbor routings. Illisc IT uses = advanced form of

neighbor routing. This form is the four-nearest-neighbor routing. Each Pa

is able to cosmunicate with the four pas adjacent in the four directions

(conventionally described as noetbe soothe east and vast).

1.2 Poti.vation for Array Prooessom

There are many reasons for using single- instruction- streom-multipls-

data-strco (SINAI) architectures. Thurber and Wald [1975) contend that

SINAI architecture is useful for large problems such as weather analysis and

prediction, seismic data processinge phased-array-radar processing and

picture processing. They also contend that problems with inherent data

structure and parallelism such as solving systems of linear equations*

Fourier transforms and systems of partial differential equations can be

successfully executed on a SING machine. They further divide the advan-

tages into the following catepries.

1. Nardware

a. Setter use of hardware on highly parallel problems.

b. Cost effectiveness due to the advent of LSI skcroprocessors.

I

7

c. Ovenroosing the speed of umiprocasars.

d. Ealiability and gracsful degradation of "atm.

	

1	 2. Software

	j	 a. Simpler than for multiprocessor (HIM).

	

i

	 b. Easier Lo construct large systems.

c. Las strict executive-function requirements.

These advantages are obtained at a prices sucb machines tend to be

special-purpose e and any attempt to apply to inappropriate problems wi11
I

	

-^	 likely be in vain.

1.3 Iesues and Objeotives of This Stag

Assuming that the array processor is to be used in the proper

environmente there still remain several issues to be resolved, such as

processor-Memory interconnection • interprocessor ocamunication e software

requirements (major modifications of uniprocessor program requirede how

context-dependent branches are bandied)e expandability of the system and

fault tolerance of system.

1.3.1 Prooeeeor-mowrb interoonnection. This study exa,iaes the

limitations imposed by allowing communication from each of the processor

elements to the shared memory (SM) only by way of a single address bus and

a single data bus. This structure is attractive both economically and from

the standpoint of system complexitye it is, in fact the simplest intercou-

section between several processors and a shared nemory. As one can imag-

ine, this simplicity imposes certain limitations. This study will seek to

determine if the limitations imposed by this architecture are acceptable.

1.3.2 ;1:tarprooeesor ocrnn niOatfone. As described earliere most array

processors bare some form of interpsocessor communication. A typical

arrangement is to have a single bit channel of communication to eacb n

8

immediately to the north * south• east and west. This research wiplores the

problems which result when the only form of comemaication between two PCs

is through the shared memory. This arrangement requires such less special

hardware to be added to the basic processing unit but instead requires a

VRITC to and a BCAD from the shared memory. On the other hande the fact

that only one processor can write to the shared memory at a time may ad-

versely affect system throughput.

1.3.3 Software requirements. Because all processors share the some

address bus in an array processor * each processor must execute the same

instruction at the same time. If the programs to be executed were strictly

linear with no branching. this would not be a restriction; however. most

programs contain several branches and loops. Thus the uniprocessor program

is not directly executable on the array processor. In Illiac IV Darns et

at., 1968= Kuck, 19683. as in most array machines. the programs reside in

the shared memory and are specially compiled for the array by a host proc-

essor. The instruction strew seen by the individual P8 is essentially u-

niprocessor code containing loops and branches. The Illiac IV allows local

control to determine if the branch that the array is taking should be exe-

cuted by that Pg . If not. the PB executes no-ops until the array returns

to execute the other branch. For code containing short context-dependent

branches * the overall system throughput is not seriously degraded. How-

ever * if nested branches and long context-dependent branches are allowed.

fever and fewer PBs execute until all PCs are halted= the array then allows

the waiting PCs to execute the next portion of code. Flynn [19723 has

suggested that Minsky's Conjecture (that system throughput increases as

1092n where n equals the number of PBs) 9 may be accurate if, on the

average, half of the remaining PBs continue to execute after a given

R1

9
µ	 ,

i

i

branch.	 As in the case of Illiac IY. the problems which the array

:..^ processor is designed to solve do not force it into large nested branches

often enough to produce such congestion.

'- One alternative. which removes the need to halt any PC, is to rewrite

the original code so that it contains no context-dependent branches.	 That

^x is * all context-dependent branches are recoiled to allo y the PE to execute

the sane instructions, but the data on which the instructions operate de-

termine what operations are performed. 	 This is not self-modifying code in

the sense that the program resides in SM and is never altered. 	 The present

work investigates the feasibility of rewriting standard uniprocessor pro-

grams into code which contains no context -dependent branches * hereafter

called Context Independent Code (CIC). 	 This investigation also considers

i
the limitations such recoiling may have upon general usefulness of the

system and on system throughput.

1.3.4	 Expandability of system. 	 Another aspect to be considered is

j that of expandability of the system.	 Many array systems are completely

fixed as to the number of processors contained in the system. 	 If a user

desires to expand this system e the only solution is to add mother complete

system.	 An appealing aspect of the CIC software is that it allows the

system to be expanded one processor at a time without requiring the system

software to be completely rewritten.	 This is especially true if the number

of processors is contaned as a variable within the program so that one

' simply increments the variable when a PE is added to the system. 	 Also one

is guaranteed that the system throughput increases linearly with n. This

ously contradicts Minsky's Conjectures which advocates of array proces-

have been attempting to disprove for some time.

;o
;l .

is
	

10

1.3.5 Fautt tolerance of eyetem, One final issue is that is fault-

tolerance of the system. If one faulty processor causes the entire array

to failo the array will have a such higher failure rate than any one of the

PCs. This sears that if the system contains 1000 PBs. each with a failure

rate of approximately .01xq the system has an unacceptable failure rate of

102. Howevers if one is able to decouple the Me to the extent that no one

PC directly affects any other PC * then the failure rate is drastically re-

duced. More important than fault tolerance is fault detection. That is,

one must be able to determine if the results the array is generating are

valid. The concept of SIMD processing combined with CIC has the special

feature that the address lines of all PCs must be the same at all times

(other than when local indexing occurs)i any departure by one PC is a

certain indication of error.

The major objective of this thesis is to demonstrate that CIC recoding

is feasible and attractive for some applications. In order to pursue this

objective * a four-processor array computer was is built and utilized.

Consequences of the parallel architecture are distinguished from those of

the CIC recoding of the uniprocessor programs.

11I
i

r`.	 2. ApnoiCB TO A M ARRAY PROCIBBOR

2.1 Effect of Context-Dependent Brawhes on System Throughput

Context-dependent branches reduce an array system's throughput signif-

icantly. Mith no context-dependent branches (assuming little or no memory

contention), the throughput of N processors is N time that of the single-

processor system. To illustrate why context-dependent branches reduce

system throughput * consider an array of 32 processors. Allow this array to

operate a program containing a single context-dependent branch with the

length of the branch being 1/3 of the entire program (Figure 2.1). The

entire array executes the first 1/3 of the programs then the array divides

into two groups. One group desires to execute the left branch and the

other group needs to execute the right branch. Obviously, the array can

only execute one branch at a time and so one group of the array executes

its branch while the other group is either disabled or performs no-ops.

Then the groups reverse roles while the other branch is executed. Finallys

the entire array executes the last 1/3 of the program. The time required

for the 32 processors to execute this program is thus 4/3 the time required

for a single PE. Hence• the throughput of the system for this program is

3/4 the throughput of the array when no context-dependent branches are

encountered. Howevere the throughput achieved by this 32-PE array is 24

times the throughput of the single-processor system. One realises from

this example that long contest-dependent branches will reduce the array+

performance such more than short context-dependent branches. One should

note that a program containing several short context-dependent branches is

R!	 usually preferred over a program containing fever branches but with each

branch having a significant length. An example might be a program with 20

context-dependent branches with each branch constituting .Sx of the entire

12

P

Figure 2.1 Program containing a single context-dependent branch
of length L/3.

13

program (Figure 2.2). The tine required for an array machine to execute

this props, would be 1.1 time the time required for a single Pa. Hencep

the array processor would be more than 909 efficient on this proprm and an

array of 32 Me would be able to process 32(1/1.1) or 29 time the amount

of data in the sue time as a single PE.

One final example is the prograo which contains nested context-

dependent branches. Consider a progras which contains N-level nested

context-dependent branching. The array proceeds down one side of each

decision until it reaches the innermost decision. It executes first one

and then the other branch of the innermost decision until it has executed

every possible branch of the tree. By comparisonp the uniprocessor pro-

ceeds down the appropriate side of each decision• executing only those

branches that are necessary.

Let us def ine SNA to be the number of branches executed by an array

processor for a progrm containing N-level nested contest-dependent branch-

ing. One can see that for N = 1. S1A = 49 for N s 29 S2A a 10o and for

N = 3. S3A = 22 (Figure 2.3). That is.
SNA

is the total number of branches

contained in a program with N-level nested context-dependent branching. If

one exmines the flow diagrams carefully * one notes that
SNA

exhibits the

recursion

SNA - 2 + 2S (N-OA

It is now asserted thats

SNA -2N+1+2N-2

Clearly. S1A a 22 + 2 1 - 2 = 4, so we have a basis for induction.

ituting S(N 1)A • 2N + 2N 1 - 2 into the recursion formula for SNA

ti

i-	 _

.L
L/200

L

14

Figure 2.2 Program containing 20 context-dependent branches,
each of length L/200.

yields the t

SA

SNA -
G T L	 T L -%

or	 SNA -
2N+1 + 2N - 2

Thereforeg by induction * the assertion for SNA has been proven.

Let us now define SNU to be the branches executed by a uniprocessor

for a program containing N -level nested context-dependent breaching. From

Figure 2.3• one notes that
SNU

follows the recursion

SNU - 2 +
S(N-1)U

It is now asserted that

SNU - 2N + 1

and	
S(N-1)U -

2(101) + 1

Substituting
S(N-1)U

into the recursion formula for
SNU•

one obtains the

results

SNU - 2 + [2(N-1) + 11

SNU-2+2N-2+1

SNU-2N+1

Therefore by induction* the assertion for SNU has been proven.

if every branch of the program is assumed to be of equal lengthe the

array processor will take S
NA ISNU

u long as the uniprocessort this is

because the array must execute all
SNA

branches of the program instead of

Just SNU branches as the single PE would. It is obvious that nested

context-dependent branches can drastically reduce system throughput as

or

3

31

16

17

becomes large. The nnober of Me required to allow the array processor to

obtain the same throughput as the single processor for a program containing

levels of nested context-dependent branching is:

n - 2N+1 + 2N - 2
2N+ 1

Of coursee this relationship assumes all branches to be of equal

length and in a souse may b4 considered a worst case. Nowevere one should

still note that even for a reasonable level of nestinge an example of N s S

the required number of PEs is greater than 8 (Figure 2.4). Vencee one

should avoid nested context-dependent branches if at all possible.

2.2 Software Coneiderat{on: Independent and Dependent Data 1landZing

There are two principal methods of employing an array processor. The

first method is to assume each processing element (PE) has its own source

of data. That is * each processing unit is processing data which are inde-

pendent of any other PE's data. Thise in a sense is parallelism of the

highest degree and is usually the simplest to implement as there need be

little or no interprocessor communication. There are many applications for

such array configurations.

The second method of using the array processor is to smpioy each Phi on

a subset of a larger problem. That is, the data given to each PE use re-

lated in some manner to the data gives to the other no. An example might

be that each PE is given a row of a large matrix and is given the job of

multiplying that row of elements with each column of another matrix. in

this way matrix multiplication say be performed rapidly.

Due to the complexity of array processorso array processor software

is typically very difficult to seal. Many tinese the software will contain

a substantial amount of special purpose instructions that are very machins-

17

Id

13

v^

II

N
W
U
O

9

sr ?

w S
C

3

N. LEVEL OF NESTED DATA CONDITIONAL BRANCHING

Figure 2.6 Graph of array throughput versus level of nested
context-dependent branching.

rt

a<
	

is

	

...i	 19

E.

	

i

	 dependent, in facts designers of array machines have often decided to have

the array processor execute only its own laspmaq. This lanpmage is is"-

ally optimised to a high dopes for the particular array architecture.

This obviously allows faster execution of programs written in and desigued

for that lanpmage. 8owevers it forces any progres written in another lam-

	

'	 guage to undergo a translation. These translations are seldom optimised

and hence such translated programs are usually considerably less efficient.

Renee s if approaching a now array processor e one should carefally
i

consider the compatibility of the new design with conventional languages.

	

1
	 Also one should redut ; ,, the number of special instructions and other ecces-

tricities to a ainiaum. This will serve to make the software acre under-

standable and if one were to decide to use a different microprocessor. the

conversion would be a much simpler task.

An array processor should ideally be designed for either separate

independent data paths to each PE or a collection of dependent data. The

principal difference between these two situations is that independent data

paths typically require such less sophisticated interprocessor communica-

tinas. Thus * it one knows that a great majority of the applications of

this array processor will have independent data paths * the interprocessor

communication channels say be simplified or eliminated.

2.3 Context Independent Cede and Its Imptementatfon

A new concept in the generation of array processors will be introduced

here. This is the concept of Context independent Code (CIC). The princi-

ple behind CIC is the elimination of context-dependent branches. One

should note that CIC eliminates all context-dependent branches e not all

conditional branches from the progras. One cannot remove all conditional

	

K
	

branches * since they allow a programmer to execute different segments of

r^

4,

20

i

cods depending upon different couditimm being present. Coetm-dot
is

braadas are dross conditional braacbes for mbieb the data at ooaditieo my

be different for different leis. is partioolar• conditional brawbee wbieb
r

are need to caws the program to loop a certain m Ober of time an not

content-dependente as all Rs will brewb the smas way every tins. That
t

is* the condition mbich the brancb is based upon will be the same for all

Us. The conditional brmdm for whicb ebe condition will be different in

I
different Pis wet be recoded so that the program appears not to braacb at

all. For instancee the usual algoritbn for Multiplication shifts the wi-

I	 tipliewd and tests snob bit of the multiplier. If the multiplier bit is

1• the multiplicand is add" to the partial products if the bit is 0e the

program skips tbs add instruction. For the conventional array processor.

all PEe whose bit was 1 Mould execute the add instruction wbiie the rest of

the Pas were turned off.

This progres written in CIC would cones all of the Ptts to @must@ the

add iustructioue the difference being that those Me whose bit was 1 would

add the m1tiplier to the partial product wbils arose Us whose bit was 0

would add no to do partial product.

This can be achieved in various ways• but of oonres one wisbas to use

the most efficient mesas possible. The Most efficient Method appears to be

that of sbifting esch b»t into the carry/borrow position amd them m6tvact-

ing that bit from the acemolator wbieb bas previously boon set to zero.

This results in either FF or 00 depending on wbetber the bit was i or 0.

If one tben AM the multiplicand with the previous result the outcome is

eitber the Multiplicand or son. Those if ous always adds the result of

the iteration just described to the partial product• quo will be adding the

21

multiplicand (if the bit was 1) 9 or sere of the bit was 0) to the partial

product.

One milt argue that forcing a PE whoa multiplier bit is 0 to add the

quantity 0 is so better than having it perform me-ops or turn itself offs

wrom the standpoint of performing wortboUle taskso this is true. howevere

this approacb accwaplishes two things wbicb the previous approaches have

not dons.

1. All the Pte are constantly synchronised in a lock stop made.

This does not require the prograsmsr to sesse wbicb Pte are active

and which are not. The procedure for determining the status of

all the Pts
can
	 somewhat time-consuming and may require con-

siderable hardware.

2. The software is tailored to suit the array processor rather than

tailoring an array processor to suit sequential software. This is

more of a philosophical question at this time software that is

designed to run on parallel array machines should prove to be more

efficient than conventional aaiprocessor software. Howevere it

will probably take some time for programmers to adjust to array

software and such software may be initially resisted. The need

for array processors should overcome this initial resistance.

The implementation of Context Independent Code is almost totally free

of restrictions. The single re s traint is that all Pls most execute the

sass instructions at the same time This means that the operands of the

instruction determine which branch the PI is actually executing. This re-

striction eliminates the possibility of different Me executing completely

different branches at the some time with all the PIS doing worthwhile tasks

all the time

22

Implementation of CIC is very straiOttorwrd in %bat so spacial

techniques are required. The programer of the array is totally respon-

sible for salting certain the programs are succes:ively written in Context

Independent Code. At this time the architecture does not have the capa-

bility to detect non-CIC programs and will attempt to execute any program

that it is given. A sore sophisticated architecture migat have a compiler

that would flag non-CIC programs. but this is beyond the scope of this

research. Examples of CIC programs will be included in a later chapter

along with an explanation of the method one night use in receding different

programs into Context Independent Code,

2.4 Input/Output Concepts

Most array processors contain a boat processor which controls input/

output. Typically the host processor receives the input data and distrib-

utes it among the PEs. The boat processor then requests the array to act

on the input data and when the array has finished execution* the host

processor then gathers the output data. The output data is then sent to a

peripheral such as a tape, disc or video screen.

By using complete microprocessors as the no * one can allow the

input data to come directly to each PE via a private input port. Also. if

each PE generates sufficient output data * one may have each PE write to

its own output port. That ise one night allow all no to receive their

inputs sinulteneouslys perform the desired functions on the input and

output the individual results, all in parallel. Thies of courses is the

best use of hardware and provides the highest possible throughput for the

array*

If the input data are such that the outputs generated will be quite

modest in number. a separate peripheral is n:t dedicated to each PEs but

23

instead the outputs are sent to shared memory share the eestrolling PC

1	
outputs then to a single peripheral.

The case my be that one cannot of ford a separate peripheral for each

PCe but one desires arester throughput than an array with a singleSy	 ^ Per-

1	
ipberal can provide. In this case& one may consider some special hardware

that allows each PS to output to its own port. This special hardware can

j	 gather the outputs from several of the PCs to be stored in a given periph-

oral. As an exesple o assume that the system contains sixteen PCs with only

four disc systems. The hardware transfers the outputs from four of the PCs

to each of the disc systems. Various input /output arrangements are

possible and the system designer can select the one most suitable for the

type of application for which the array is intended.
z

2.5 General Hardkwe Considerations
r
s

	

	 In designing a new array processor * one must consider what techno-

logical advances are available. Of course q this is true in the case of

classical computer design as well. However e an array processor has such a

multiplicity of components that the opportunity fors
i

1. improved overall speed

2. reduced component cost

3. reduced power consumption

4. reduced chip count

is such greater than for a single processor computer.

Until recently the design of an array processor was restricted to very

simple PEs EMavhado, 19723 which typically had no local control except the

ability to decide whether or not to execute a given instruction. All other

controls resided in a single control unit (CU).

With the advent of inexpensive o single-chip micropr^cessors. one can

,	 Fi

24	 1

consider an array processor consisting of several micropsoesssms. Eaob

microprocessor represents a single processing almost (8e). Eaab micro-

processor bas a wall private memory or processing almost memory (PEM).

The PEs all abase a large memory called shared memory (ON). The

instruction Strom comes from We As each of the microprocessors has all

of the control logic necessary to operate as a separate computer * it is

redundant to build a separate control unit (CU). Hence s one may designate

one of the microprocessors as the controlling processor (CP) and eliminate

the control unit. This approach also allows the possible implementation of

a certain degree of fault tolerance since any of the PEs can became the CP

if the original CP fails.

The decision to use microprocessors as the Me restricts the word size

of each PE to the word size of the microprocessor. However o most micro-

processors allow for multiprecision arithmetic which allows one to achieve

the degree of precision required for a given application. Of coursee once

one bas decided to use microprocessors as Pls. a specific microprocessor

must be selected. A discussion of bow one may select the microprocessor is

presented in a later section.

The next decision in the design of an array processor is the form of

address and data bus system to be employed. One has the choice of a single

bus systs with both addresses and data multiplexed on the same bus or a

two-bus systs with separate data and address buses. The latter seems to

be the swot popular with microprocessor designers, basically because it

simplifies the overall system.

Hence * one should recognize that a two bus system is simpler to use

and easier to build into an array system. Next * one must consider the PE

to shared memory (SH) connection. There are essentially two types of

^.s

a

25

Connectional

I. Shared Address/Shared Bata Sus

2. Multiple Address/Multipis Bata Us

The first type is the easiest to implement but imposes a possible

bottleneck when the array contains more and sore PEs. One should note that

for the array processors, since every PE executes the same instruction. a

READ from SM can be executed simultaneously. It is only the write to SM

that must be executed sequentially. This is because one can only write one

value to a specific address at a given time. Extra hardware might be used

to place each PE 9 a data word into a queue when a MITE to SM is performed.

The large number of WRITES to SM could then be executed in parallel with

the PEs executing instructions which require access only to private semory.

This would improve the effective transfer rate from the array to SM consid-

erably. One requirement for this arrangement is that the values written to

SM not be needed by any PE for a certain minimum,time after the WRITE to SM

was performed.

The second type of connection is considerably more difficult to imple-

ment completely. This type of connection requires SM to have the capabili-

ty of communicating with several pairs of address and data bases. Memories

of this type are commonly called true multiport memories. Multiport opti-

cal memories are now being researched [BamwZZ et at., 19781, but a true

multiport as yet has not been placed on the market. One can simulate a

memory with several ports by using extremely fast memory which is eight to

ten times faster than standard memory chips. Rowever, this does not solve

the problem, when the member of Me becomes greater than eight or ten.

Because the technology for multiport memory is not available st this

one is forced to consider a shared bus system with perhaps some type

rS'

26

of queue to make the NRITE to SM appear to the individual PE to tdoe about

as long as a NRITE to its PEN. Certainly one would not Kant the NUTS to

SM to take longer and longer as the umber of PEs grow. Rowevers the

present work does not address the queue problem. Thus, in order to allow

different Us to write to SM* the architecture adopted requires each PE to

become the CP in order to write to SM. This architecture has the unfortu-

nate property that a NRITE to SM takes longer and longer as the number of

PEs grows. This would not be significant if the PEs wrote only to SM to

transfer final results at the end of every program.

One must consider what type of interprocessor communication is desired

ffor the array processor. As previously noted* most array processors have

i
nearest-neighbor connections. The most common form of communication is

that of a single word. However. in order to provide a reasonable limit to

this thesis. the design implemented allows no interprocessor communication

other than through SM.

One final consideration is what method to use in transferring control

from one PE to another. One can write the number of the PE desired to be

CP to a specific address in memory. Alternatively one can use an unimple-

mented opcode of the microprocessor as a special instruction whose operand

designates which PE is to become the CP. Finally * one can address a

particular memory location (a so-called 'soft switch') in order to cause a

particular PE to become the CP. The memory address is decoded to determine

which PE is to be the CP. The first method uses a single memory locations

but requires substantial hardware to latch the data word and decode which

PE is desired. The second method uses no memory location but requires an

unimplsmented opcode. This could lead to difficulties if the chosen opcode

were to be used in a later edition of the microprocessor. Also. most

27	 I

microprocessor manufacturers will not guarantee what a microprocessor will

do when it attempts to execute an unimplwented opcode. The third methods

that of addressing a particular location in order to determine which PE is

to be the CP is selected for use in the array processor design. The

details of the array processor architecture are fully described in a later

section.

2.6 Selecting the Microprocessor for a Matti-Microprocessor System

Selecting the microprocessor for a multi-microprocessor system in-

volves many of the some considerations necessary when one wishes to design

a single-microprocessor system.

One of the main considerations is whether or not a given microproc-

essor will be readily available, either for expanding the array or in case

of component failure. Sarin [19771 provides a relatively complete list of

available microprocessors.

Another important factor is compatibility. That is, whether or not

the microprocessor is designed to be easily interfaced both with peripheral

chips and with other microprocessors of the same type. With the variety

of microprocessors available today. an extensive comparison of all of the

possible choices would be quite lengthy. However, one can reduce the sel-

ection considerably if one is interested only in general-purpose microproc-

essors that are reasonably inexpensive. This removes special-purpose

microprocessors from consideration. Also, as yet. 16-bit microprocessors

are relatively expensive and are not used extensively enough for them to be

readily available. Thus, one should not attempt to use 16-bit microproces-

sors in a multi-microprocessor environment until they are more readily

available and their unit price is reduced somewhat as will inevitably

occur. One might consider a possible modificaton of the architecture at a

28

later time to allow ass of 16-bit microprocessors rather than the standard

S-bit microprocessors which are in widespread an today.

Now one would like to reduce the overall obip count for the entire

array. Single-chip 8-bit microprocessors are now readily available and it

soma appropriate to select a single-chip processor if at all possible.

Another factor to be considered in narrowing the selection of a micro-

processor is that of versatility. Does the processor allow straightforward

implementation of multi-byte arithmetic? This capability is extremely

important in an array processor since many applications of array processors

require processing 16- and 32-bit data. Similarly. one should consider the

architecture of the proposed microprocessor. Now many registers are

available to the programmer? Now many different addressing modes does the

processor support? Does the processor have the capability of implementing

a stack? What address range is the microprocessor capable of addressing?

What type of interrupt capability does the microprocessor have? Is the

programmer able to halt the microprocessor? What are the consequences of

halting the microprocessor? Does the microprocessor allow for direct

memory access (DMA) by other devices?

One important area that should be analysed carefully is the instruc-

tion set of the microprocessor. Does the instruction set contain all the

essential instructions required to perform arithmetic,, logical and program

control functions? Now efficient is the PE vitL respect to the number of

machine cycles required per instruction? Does the microprocessor require

several machine cycles in order to execute even the simplest instructions?

If this is soo the microprocessor may be actually such slower than another

microprocessor that has a slower clock rate but requires fewer machine

cycles per instruction.

29

One should also consider what development aids are available for a

given microprocessor. For instance * are there entire systme based on a

4.

	

given microprocessor such that one could use an assembler, editor. and

other diagnostic aids! Also * the ability to use a commercial syst m with

keyboards video and monitor already in working order is invaluable.

in su=ary then. the optimum microprocessor for a multi-microprocessor

system would:

1. be a single-chip. 8-bit microprocessor

2. be readily available

3. be easily interfaced with various peripherals as well as other

microprocessors of the same family

4. allow multiple precision arithmetic

5. have as many registers as possible

6. have many modes of addressing

7. be capable of addressing as large an address range as possible

8. support sufficient interrupt levels

9. have the ability to implement a stack and thus allow subroutines

to be used effectively

10, normally require few machine cycles in order to execute a given

instruction

11. contain a relatively powerful instruction set that allows the PE

to be very versatile

12. operate at a clock rate that is competitive with other possible

choices.

N i

	

i	 3. 1tA MUZ ASftM OF =9 BUM-65 MOLTZ-MIOROIROCi M MUM
r

391 Attributee of the 8608 lSior^eeeor

In the

	

.,.	 previous sectione the bat choice of the miasoprocessor was

reduced to readily available• single-chip. 8-bit, general purpose micro-

processors. It was also noted that all microprocessors considered should

operate at a competitive clock rate and be capable of addressing a large

address range. These restrictions reduce the selection of suitable micro-

processors to essentially three. They area

(1) Enos Z-60

(2) Motorola 1106800

(3) MOS Technology 6502

Each of these microprocessors is a general purpose * single chip. 8-bit

microprocessor. Each requires a single +5-volt supply and is TTL compati-

ble. These microprocessors may operate at various clock rates and in order

to compare them fairlye one must consider instruction execution time at

the same clock rate. A standard clock rate is one MHz.

The minimum instruction execution time is one type of comparison which

provides the system designer with a clearer understanding of the relative

performance of different microprocessors. With a clock rate of 1 MRa. the

Z-80 has a sinisum instruction execution time of 4 microseconds [Garland,

19793. The MC-6800s, and the 6502 both have a minisusm instruction execution

time of 2 microseconds with a clock rate of 1 MRs [Artwiok, 19803.

The Z-80 has 158 instruction opoodes. two 16-bit index registers. a

16-bit stack pointer and 14 general-purpose 8-bit registers [8ordan, 19783.

The Z-80 has the following addressing modest

(1) Implied Addressing
	

(6) Extended or Absolute Addressing

(2) I►wadiate Addressing
	

(7) Modified Page Zero Addressing

i

30

f•	
(3) Extended Immediate Addressing 	 .(8) Relative addressing

	
31

(4) Register Addressing	 (9) Indexed Addressing

(S) Register Indirect Addressing 	 (10) Sit Addressing

However. the Modified Page Zero Addressing made is used only for one
I

instructions the Restart Page Zero instruction. Also the 8£t Addressing;,

mode is used solely to sets clear or test bits in a given word. Finally,

j the Extended Immediate Addressing mode simply indicates that the immediate

operand is 16 bits rather than 8 bits. Thus, the Z-80 actually has only 7

different addressing modes. Another point to consider is that many of the
i
r
j	 Z-80 instructions are due to the large number of registers available and do

not give one a greater variety of instructions as one might be tempted to

think.

The MC 6800 has 72 instructions. one 16-bit index register. a 16-bit

stack pointer and two 8-bit accumulators. The MC 6800 has the following

addressing modest

(1) Implied Addressing	 (4) Absolute Addressing

(2) Immediate Addressing	 (S) Relative Addressing

(3) Zero Page Addressing	 (6) Zero Page Indexed Addressing

A major deficiency of the 6800 is its lack of an indirect addressing mode.

One also notes that indexing can only be done in the zero-page mode.

At this points a historical perspective helps in understanding the

evolution of these three microprocessors. Swanton [1980] relates that in

1973s Intel Corporation introduced a second generation 8-bit microprocessor

called the 8080. The 8080 was designed with a calculator-like archite:ture

with eight scratch-pad registerss an internal stack register and special

input and output instructions.

Motorola Inc. saw the tremendous microprocessor market potential
J

32

evolvinge and decided to udw o otry of !heir ors. " bad trs oboiees,

They could chailop total Oorporation on Moir Pound by PM&M ag a asw

and improved version of the 8060• a Was tea. did is 1976 with the 9-0.

The other choice was to design a more advanced microprocessor. Realising

the difficulty of the first approseb. Mootorola decided to challenge total

corporation with a superior product.

For the 6800 microprocessor• Motorola abandoned the calculator-like

register-oriented architecture of the 8080o and adopted a classic sinicos-

puter-like memory-oriented architeatores As a motto the 6600 has facer

(and easier to understood) instroctions• with sore addressing options than

the 8080.

The preceding brief overview is necessary in order to set the stage

for introducing our chosen sicroprocessor. the 6502. the 6502 device was

designed by ex-esployess of Motorola who saw that advances in processes*

coupled with a few architectural and software changes, could result in a

potentially highly marketable 6800-like microprocessor. They joined a

calculator-chip company called MW Technology.

The HOS technology design ten had two objectives in mind for their

next generation microprocessor--low cost and high performance. They re-

duced the complexity of the basic 6800 design as much as possible to

increase chip yield. Design cbanga included eliminating one of the two

accumulators in the 6800 and its tristate address output buffers. They re-

placed the 16-bit index register of the 6800 with two separate 8-bit index

registers and discarded some of the laser-used instructions of the 6800.

Ht

	

	 The elimination of these instructions opened op some instruction-

decode space and permitted the designers to provide the 6502 microprocessor

with 13 addressing modes. 7 more sod" than the 6810. These modes give the

i

33

6502 capabilities that we ^117 femtd only io lame menesters. Me

addressing capability is osspiasent.d by the eatrsaly last spends-at vbicb

the 6502 can ex sate instruction segnessu. This speed is primarily dos to

the fact that the 6502 is designed with a pipsliaing technique in whicb the

oicroprocessor fetches the sees instruction before it is dons psooessins

the current instruction. Additionally * the design tea added a decisrl

mode select instruction and control bit that allure the 6502 to operate use

either binary or decimal data. This news that the progra nssr does not

have to sesmaber to write in a 'docisal adjust" instruction after every

addition or subtractios. Also the naves depletion-load technology me

soployed e which gives the 6502 cleaner switching characteristics and lower

power dissipation. The 6502 typically dissipates 250 wV versus 500 sN typ-

ical for the 6800. This technology also results in better noise imsaaity.

The addressing sodes for the 6502 as e s

(1)Implied Addressing

(2)Isaodiate Addressing

(3)Leto Page Addressing

(4)Zeso Page Iadexod (=rem) Addressing

(5)Zero Page Indexed (Treg) Addressing

(6) Absolute Addressing

(7) Absolute Indexed (erg) Addressing

(6) Absolute Indexed (Tres) Addressing

(9)Relative Addressing

(10)Indirect Indexed (Tres) Addressing

(11)Indexed Indirect Mres) Addressing

(12) Indirect Addressing

(13)Accumulator Addressing

34	 l

The 6302 bas 36 different type of instructions• with 151 different

instruction speed" U.e.• 151 different instructions). One readily sea

that the 6502 obviously bas the Host pow. at addressing capability of the

three microprocessors. The 6502 instruction set is almost equal in sine

with that of the Z-60. One key advantage of the 6502 own the 9-0 is that
	 N

for the same clock rates the 6502 is at teat twice as fast as the Z-600

As microprocessors are built to run faster and faster * the determining

factor is not bow fast an instruction is executed in absolute time but bow

many machine cycles are required * in this respecte the pipelining dow 141

the 6502 makes the 6502 instruction execution time with respect to machine

cycles very efficient.

The Zero Page Addressing capability allows the 6502 to use all 236 lo-

cations in page zero of memory as though they were registers. This ail;ws

extreme versatility in programming the 6502. In fact * if the programmer

uses this feature of the 6502 properly * it is possible to realize up to a

nother factor of two increase in speed over the other microprocessors. The

page zero of memory can be utilized by the 6502 as more powerful computers

use cache memories. This feature alone makes the 6502 an excellent choice

for an array processor. When one considers the minimal power requirements

of the 65029 the superior addressing capability, and the higher throughput

due to pipelininge there is absolutely no better choice.

Although the decision of the microprocessor has already been madee one

should point out that the 6502 does indeed satisfy and in some cases. ex-

coeds the requirements set forth in the preceding section. The 6502 is the

most efficient of the three microprocessors both in terms of speed and

power. It bas the most powerful addressing capability of the three. It

bas no strictly general purpose internal registers but more than makes up

35

l

for this by the abiity to a" the entire sere page of semosy as registers

and by having not ow but two index registers. It ha stack capabilities

so that am say utilise both subroutines and interrupt matinee. It boa

the standard two level interrupt capability. That is t it bas both makable

and non-makable interrupts. It ha on-board clock circuitry which reduces

the cosponouts 200009817 for a sisiml microcomputer s7stea (Camp et aZ.,

1979). Its instruction sat provides the programmer with all the essential

resources for programming the most diverse programs. The 6502 is extremely

way to interface both with other 6502 microprocessors and with other 6500

series components such as input/output chips. The address bas of the 6502

always has a valid memory address. This allows for such easier ayacbroni-

sation of several sicroprocessors. The 6502 boa two control lines called

'READ?' and I SZMCI which allow the possibility of single stepping through a

progras. If the READ! line is pulled low during phase one of a SYNC high

cycle & single-step operation of the 6502 can be achieved. The 6502

provides a vectored reset operation that allows one to prograa a unique

initialisation routine to fit ones own needs. The 6502 has bad widespread

use. not just as a microprocessor in user-designed systems but in may

commercial microcomputers such as the Apple. AIM-659 $IN * RIM. PET and may

others. Thus the 6502 is easily available and is compati*le with many

commercial microcomputers.

Obviously * the final decision of which microprocessor to use is some-

at *objectives but it is interesting to note that the latest 16-bit

croprocessor from Zilog. Ioc., the Z-80009 boa a memory-orisated arebi-

eture (such as the 6502) which represents a solid break with the 8080/

60 architectural design concept of register-orie2ted microprocessors.

too this sight indicate that a design with the 6502 microprocessor would

- — numm i

36

be more easily converted to the newer 16-kit microprocessors ahoold one

ever decide to modify the array processor.

3.2 The Apple II Wor000mputer System

The Apple II microcomputer system is a versatile microcomputer that

employs the 6502 as its microprocessor. The Apple II has the capability of

the full 64K of mmorys, using dynamic BAN to reduce cost and power consump-

tion. Toe Apple II provides the 6502 with a 1.023 MHz clock signal which

is supplied to the phase zero (#0) input of the 6502. The microprocessor

uses its address and data buses only when phase zero is high. when phase

zero is lowe the microprocessor is doing internal operations and does not

need the data and address buses. The Apple II designers allow the memory

to be refreshed at a 3.5 MHz rate, when phase zero (6 0) is low. In this

way. memory refresh is entirely transparent to the 6502. Espinosa [19793

explains the system timing entirely and provides a schematic of the Apple

II that is invaluable to the system designer.

The 16-bit address bus lines are buffered by tristate buffers. The

address lines are held open only during a DMA cycle and are active at all

other times. A DMA cycle also halts the 6502. The address on the address

bus becomes valid about 300 nsec after phase one (complement of phase zero)

goes high and remains valid through all of phase zero (see Figure 3.1).

The 8-bit data bus lines are buffered by bi-directional tristate

buffers. Data from the microprocessor is put onto the data but about

300 asec after phase one (0 1) and READARITE both drop to sero. At all

other times, the microprocessor is either listening to or ignoring the data

bus.
HI

The RDY, RES. IRQ and NNI lines to the microprocessor are all held

high by 3.3k Obm resistors to +5V (see Figure 3.2). These lines also

37

..'ter

ae I	 - I

1
l

I
1
1I

I 1
1

01-j
^
t

1

lo.

300	 I

nsec	 i

1

6502 Address	 II
300

nsec

Data from 6591 (read) 	 t
I

100 nsec

Data to 6592 (write) 	 t
I

Figure 3.1 6502 timing signals.

See 6592 Hardware
manuals for details.

_	 1
p'

r-,,.

F.

VSS

ROY

01 OUT

IR

N.C.

NI^Y I1

SYNC

VCC

A8O

A81

A02

A83

A84

ASS

ASS

A07

ASS

ASS

A810

A811

If

38

k ^^

1	 p

U
3

^^► 	 4	 S7

s	 r

—► s	 s

34

s	 r

s	 r

10	 31

860Q
11	 of

It	 s
u	 r

14	 r

16	 ^

17	 26

is	 r

1s	 r
i

m	 r

^-- S.O.

so IN

N.C.

N.C.

—► RAM

DIPS

D81

D82

083

D94

DIPS

D88

087

A81S

A014

A813

A912

VSS

N.C. 0 No connection

Figure 3 . 2 6502 microprocessor pinout designation (courtesy
MOS Technology).

H!
^I

39

appear on the peripheral connectors (see Figure 3.3 and 3.4). The Set

overflow line to the microprocessor is pertinently tied to ground.

All timing signals are derived from a 14.318 MHz master oscillator

output. The 7.159 Ma intermediate timing signal and the 1.023 MHz signals

phase zero and phase one are the only timing signals employed in the design

of the Super -65 array processor.

The Apple can support up to six 2R x 8 mask programmed READ-Only

memory chips. One of the six ROMS is enabled whenever the microprocessor's

address bus holds an address between $1000 and $FFFF. Thus* the address

range $D000-$FFFF is reserved for ROM.

The Apple supports up to 48K x 8 Random Access Memory (RAM) or

READ/WRITE memory. As previously mentioned. this RAM is dynamic and is

refreshed automatically during every phase one (^ 1) cycle. The Apple sup-

ports a sophisticated video system * but this need not be discussed in

detail here.

The Apple provides two female miniature phone jacks that allow one to

connect the Apple to a normal cassette tape recorder. In this way, one can

store user programs permanently on tape without incurring the expense of a

complete tape system.

The Apple provides users with eight peripheral connectors along the

back of the Apple's main board. These slots are designed to allow the user

more sophisticated resources such as disk drives, the ability to program in

i

high level languages directly. etc. Also. the Apple designers give the

user the option of plugging in proto -boards containing user -designed

circuits.

The Apple designers intend slot zero as a special purpose slot so that

many of the options available to the other seven slots are unavailable to

+5V
DMA OUT
WT OUT
w

s
N.a
ROW
A15
A14
A13
Al2
All
A10
A9
A5
AY
AS
AS
At
A3
A2
AAl

Iii

OW 25
DMA IN 27

wT IN 28
as
30

0531
IM 32

-12V 33
-5V '"
N.C. 35

7M 35
GO 37
01 36

USER 1 3O
00 40

41

07 42
DS 43
DS 44
D4 45
D3 40
D2 47
D1 40
DO 40

• 12V 50

1st,

 a

F.,
	

pf pow Q

1.

40

Fib-i.e 3.3 Peripheral connector pinout.

41

w

a

1.

fit?

Fin:	 Nam

1	 U0 SEWICT
DEMM:
This line. norwAy high. will became low whas
the adsraproommta^reneas Poe I1Ce. tthhero
a Is the individual slot mtmber. This s*W
becomes active Chni ft N and cam drive IA
LSTTL loads''. This signal is not present on
peripheral connector a

2-17	 AMTS The buttered addrea btu. 	 The address on
thews Uses becomes valid dud" 01 and
Malariavalid through 40.	 Theca lines will
sub drive S LST L4o&W.

l8	 R/W Buffered R	 signal.	 This becomes
valid at the soma time the address bus does.
and goes bigt: daring a read cycle and low dur-
ing a write. This line an drive up to 2 LSTTL
loads•.

19	 SYNC On peripheral connector 7 wh&, this pin is con-
nected to the video timing generator's SYNC
signal.

20	 Da ffM This litre goes low during 44 when the address
bus contains an address between SM sad
SCFFF. This line will drive 4 LSM loads•.

21	 RDY The 6S92's RDY input. 	 Pulling this line low
during 01 will halt the microprocessor. with the
address bus holding the address of the current

location being fetched.

22	 MU Pulling this line low disables the 6502's address
bus and halts the microprocessor. This line is
held high by a 3K(1 resistor to +Sv.

23	 INT OUT Daisy-chained interrupt output to lower priority
devices. This pin is usually connected to pin 28
UNT IN).

24	 DMA OUT Daisy-chsined DMA output to lower priority
devices. This pin is usually connected to pin 22
(DMA IN).

25	 +Sv +S volt power supply.	 SOOmA ct..-rent is avail-
able for op peripheral cards.

26	 GND System electrical ground.

27 DMA IN Daisy-chained DMA input from higher priority
devices. Usually connected to pin 24 (DMA
OUT).

j 26 INT IN Daisy-chained interrupt input Fran higher
priority devices. Usually connected to pin 23
UNT OUT).

29 IM Non-Maskable Interrupt. When this line is
pulled low the Apple begins an interrupt cycle
and jumps to the interrupt handling routine at
locat ion S3FB.

.r
	

Figure 3.4 Peripheral connector descriptions.
t

40	 M Micraprocesar's phase uro dodo. This line
will drive 2 LSTTL loads'.

41	 DIM This line becomes active (low) on each ped-
0=7 ph" connaaor when the address bus is hold-

M{ an address between SCdad and WOPF.
where ff is the slot number plus St. This line
will drive 10 LSM loads'.

42.19	 MD7 btdlered bidirectional date bus.	 The dots on
Otis fine becotnss valid 30onS into M on a
write cycle. and should be stable no less
100 a berore the end or M on a rood cycle.
Each date line can drive one LSTTL load.

SO	 +12V + 12 volt power supply. This can supply up to
230mA tout ror all peripheral cards.

Figure 3.4 (cont.) Peripheral connector descriptions.

42 f

30	 IM Interrupt ReQuac When this Use is P"
low the Apple beMm as interrupt cycle only p
the 6M s 1 (Interrupt diable) an is not set.
If a. the 6562 will jump to the interrupt han-
dling abrmttine whose address Is stored in
Iocatim S3FE and OFF.

31	 No When this Urte is pulled low the microprocessor
betins a RESET cycle (see pate 36).

32	 M When this Has is pulled low. all ROMs on the
Apple board are disWW. This Has is held high
by a 3Kfl redsw to +Sv.

33	 — 12v —12 volt power supply. Maxmurn current is
200MA for all peripheral bards.

34	 —Sv —S volt power supply. Maximum currant is
200MA for all peripheral bards.

3S	 COLOR REF On peripheral cotmenor 7 ond, this pin is me-
neaed to the 3.SMH: COLOR REFerence sy-
nal of the video generator.

36	 7M 7MH: clock.	 This line will drive 2 LSTTL
loads•.

37	 Q3 2MM asymmetrical dock. This line will drive
2 LSTTL toads'.

31	 •1 Microprocessor's phase one dock. 	 This line
will drive 2 LSTTL loads•.

39	 USER 1 This line. when pulled low, disables an internal
110 address decoding•'

a:
	 43

slot sero. Each slot is given sixteen locations beginning at $MO for

general input and output purposes. For slot seroe these sixteen locations

are $COSO-$CO$rs for slot one they are $0090-009F. etc. Menever the ad-

dress on the address bus is in a given slot's allocated range. pin 41

(called Device Select) goes low. This alerts the particular card that the

address is somewhere in that peripheral card's 16-byte allocation.

Each peripheral slot also has reserved for it one 256-byte page of

memory. This page is usually used to house 256 bytes of ROMe which con-

tains driving programs or subroutines for the peripheral card. The page of

4	
memory reserved for each peripheral slot has the page number $Cne where

is the slot number. The signal on pin 1 (called I/O Select) of each per-

ipheral slot becomes active (drop to ground) when the microprocessor is

addressing an address within that slot's reserved page.

The 2R memory range from location $CS00 to $CFFF is reserved for a 2R

ROM or PROM on a peripheral cards to hold large programs. etc. The expan-

sion ROM space also has the advantage of being absolutely located in the

Apple's memory map, which gives one more freedom in writing interface pro-

grams. This PROM space is available to all peripheral slots and more than

one card can have an expansion ROM. However, only one expansion ROM can be

active at one time. The expansion ROM typically requires 2 enable inputs.

A suggested method is to use pin 1 (I/0 Select) as one enable and pin 20

(called I/O Strobe) as the other. The I/O Strobe line goes low (active)

when the address bus contains an address within the expansion ROM space

(i.e.. betweeo location $CS00 and location $CFFF).

Thus, each peripheral card has available the buffered address bus.

buffered data bus. buffered READMITH line. the READY line. the Pon-

Maskable Interrupt line. the Interrupt Request (IRQ) line. and the Reset

^:,	 44

1
'.	 line. Other leads available includes 1) the W line which disables the

6502's address bus and halts the microprocessors 2) the 110 Select 116s,

which goes low (active) on the peripheral card when the address bus can-

kr

	

	 an address within page $Cno when n is the particular slot numbers

3) the Device Select line which goes active (low) on peripheral connector

when the address bus is holding an address between $COnO and $COnFo where

is the particular slot member plus eight and 4) the 170 Strobe line which

becomes active (low) on all connectors. when the address on the address bus

--	 is between $0800 and $CFFF. Of courses all of the peripheral connectors

have phase zero (00) 9 phase Dame (9 1)s and the 7 Ws clock signals available

for synchronization of the cards with the 6502.

The Apple System monitor acts as a supervisor of the systs. From the

monitor one may look at one. some. or all memory locationsi one can write

programs in Machine and Assembly languages to be executed directly by the

Apple's microprocessors one cram save data and progress onto cassette tape

or a floppy disk and read them back in again; one can move and compare sev-

eral bytes of memory with a single commands and one can leave the monitor

and enter any other program or language available on the Apple.

There is a program within the monitor which allows one to type pro-

grass into the Apple in assembly level language. This program is called

the Apple Mini-Assembler. It is a 'mini'-assembler because is cannot

understand symbolic labels. something that a full assembler must do. For

details in using the Apple Mini-Assembler one should refer to the Apple II

Reference Manual (pp. 49-51).

The Apple II Monitor provides facilities for stepping through programs

both in single step and trace mode. Also * one is able to examine the con-

tents of the 6502's internal registers after each instruction is executed.

4►5
4 ..

This allows one to properly debug difficult programs in a very straight-

forward manner.

One can see from the above descriptiono that the Apple II gives the

user a very powerful microcomputer with all the necessary facilities to

writes assembles debug and execute programs varying from machine-level to

high-level languages. It also provides more than adequate means for exten-

sive use of peripherals. Thus * the Apple II is an excellent choice for

.,

	

	 implementing an array processor as it is not only versatile but economical

as well.

3.3 Arohiteature of the OveraZZ System

The previous two sections provided the necessary information for the

two major building blocks of the Super-65 Systems the 6502 microprocessor

and the Apple II microcomputer. One can now proceed to the description of

the Super-65 System.

The Super-65 Multi-Microprocessor System consists of four 6502 micro-

processors. one being the Apple II 6502a with three others. Each 6502 is

given a private random access memory of dimension 19 by 8 bits. This

memory resides in the lowest portion of the 6502's memory map. The rest of

the 6502's memory (the upper 63x) resides in the Apple Ii. This will be

both RAM and the Apple II Monitor ROM. The combined RAM and ROM are joint-

ly designated as Shared Memory (SM). One can see from the block diagram

(Figure 3.5)s that the architecture of the Super-65 is relatively simple.

Each processor is able to access its private memory at any time but only

one processor is able to access the Shared Memory Address Bus at a time.

All processors may access the SM Data Bus on a READ. However, for obvious

reasons• only one processor may access the SM Data Bus during a WRITE oper-

ation. One notes that the architecture allows for both shared input/output

ci

of
w

e0

W
a

J

i

ORIGINAL P! 7 F%dl

OF POOR QuAll Y

h

t

;w

46

1

`p

V

V
O

.0

r^
Vu
00

m

f
Fr
d
a

v^

47

and private input/output. This allow the system to be used in a my dif-

91

	

	
ferent envirom"tse e.g.. single source and single destinations single

source and multiple destinations multiple source and single destinations or

multiple source and multiple destination.

There is so provision for interprocessor OR " ications other than

through shared Memory. Bach processor with its private memorys private

input/output and its portion of the hardware Arbitrator is mounted on a

single prototype board which can be plugged directly into one of the seven

a-'

	

	 available peripheral slots on the back of the Apple ii. The 8ardware

Arbitrator consists of tristateable buffers on the Address. Data and

Control buses of each of the processors with the required logic and flip-

flops to enable the appropriate buffers.

One of the processors (typically the Apple II 6502) is designated as

the Controlling Processor (CP). The CP has control over all shared to-

sources. The CP has sole access to both the Shared Address and Control

(Buses. The CP allows all of the processors access to the Shared Date Bus

during a Read from SM. At all other timers the CP has sole access to the

Shared Data Bus.

One interesting feature of this architecture is that it requires al-

most no modification of the Apple I1. The reason is that the Apple II 6502

is physically removed from its socket and placed onto a peripheral board.

However. a 40-pin conductor connecting the removed 6502 to the empty socket

allows the Apple to operate as if the 6502 were actually still in the

original socket. The Apple II 6502 then is equivalent to any of the other

processors. This allows for a very modular design. That is. every proces-

sor board is identical to any other processor board. This simplifies

the debugging process a great deal.

jam;(

One desirable characteristic mentioned previously we that of any

as

fault detection. A simple type of fault-detection was implemented on the

Super-65. This consists of comparing the address on the Sbsred Address Bus

with the current address on each of the processor address bus. If they are

not identicale a red LED is lit on the erroneous processor board. Nothing

further is dons.' It is assumed that the operator will observe the problem

soon after it occurs and take the proper steps to prevent the faulty proc-

essor from contaminating the entire system.

As mentioned earlier. the Apple II uses dynamic RAM and as this memory

is divided into 16[by 1 bit chips * it is impossible to treat the Wow lK

of RAN on the Apple differently than the next lowest 15x of RAM. Hence•

the Apple II 6502 was placed on a protoboard just like the other proces-

sors. In this way all of the processors appear to be peripherals to the

Apple Ii. Because the processors appear as peripheral* * whenever one of

them becomes the CPe it initiates the equivalent of a DMA. If one examines

the schematic diagram of the Apple ii (ligare 3.09 one notes that the line

DU disables the buffers attached to the Apple II 6502's address bus. 'M
also disables the phase zero clock input to the Apple II 6502. this fact

forces one to make one trivial modification to the Apple II in order to

allow the Apple It 6502 to operate when it is net the CP. This modifica-

tion is to disconnect the phase zero input from the AND gate with which WA

is able to disable the Abase zero input and connect the phase zero (00) to

the phase zero 00) input on the peripheral connector.

The Apple II 6502 is in control when the Apple II is powered upe

just as it would normally be. In order to designate another of the proces-

sors as the CPe one simply adds+sses the ma!ory ran&* 3Cnxx. where n equals

the processor number (l. 2 9 3 9 or 7). Seven is the number given to the

49

ORMW PAOR 4
OF POOR QUALITY

Figure 3.6 Apple 11 acbewtic diagram.

jj!

	

f `	 so

	i
	 Apple II 6502. Nbsn one accuses Cruz (s : don't care). the Apple II auto-

matically activates the line IM Select on the nth peripheral slot. This

signal is then used to give the processor on the board in slot n control of

	

'	 the shared buses.

For many applications. it is desirable to load the same location in

i
each processors private memory with different values. For examples one way

.' use that location as an indirect pointers in which case each processor has

a different pointer. There are at least three different ways of achieving

different values for different processors. One way is to have a hard-wired

-~	 location in each processor's private memory. This location meat have

different hard-wired values for each of the processorse One can then

manipulate the different values to obtain the desired differences between

processors. Another method is to have each of the private memories mapped

into the Apple's memory so that the Apple can load different values direct-

ly into each of the private memories.

The third method has all of the processors store the value for

processor 01 into the location * then disable processor #1 * store the value

for processor #2 into the same location (writing over the old value), then
I

disable processor #2e and so on until all of the processors have the 'appro-

priate pointers. one can then restart all of the processors and proceed

with execution of the programs After substantial consideration. it was de-

cided that this method provides sufficient versatility while not requiring

as many additional components and board space. Realising that what was

required was one signal that would selectively designate a particular

processor for disabling and another signal for restarting all the proces-

sors simultaneously. and not wanting to burden the already saturated board

with more decoding components, it was decided to use already decoded

51

signals provided by the Apple ii. One recalls that each of the peripheral

slots contains three unusual signals= I/O Selects Device Select and I/O

Strobe. I/O Select is used to designate which processor is the CP. As

described earlier, Device Select goes low (active) when the address on the

Shared Address Bus is in the range $COHO-$CO11F9 where N equals n + 8 (n =

processor number). This signal then is well-suited for disabling a partic-

ular processor. I 0 Stro a is contained on all of the peripheral slot

connectors and goes low (active) on all of the slots simultaneously, if the

address on the Shared Address Bus is in the range $0800-$CFFF. Thus. I/O

Strobe may be used to restart all the processors simultaneously after the

initialization routine.

The design of the Super-65 allows one to expand up to a total of seven

processors without any additional hardware being added to the basic system.

Furthermore * each processor board is a replica of the previous boards. In

this ways one can realistically modify any Apple II to provide it with the

capability of a seven processor array without extensive hardware alteration

of the Apple II itself. The architecture itself does not limit the number

of processors to seven. The Apple II only provides seven available slots

with the necessary decoding for the special signals used in this design.

If one desired to implement a larger array, one simply needs to provide the

extra decoding circuitry and peripheral slots external to the Apple II.

3.4 uesign of the IndividuaZ Proeeesor Card

One recalls from the previous section (Figure 3.5) that the Super-65

architecture provides for Shared Memory (SM), a Hardware Arbitrator, four

processors each with its own private memory and input/outp- ,."L capability.

As mentioned earlier, the Shared Memory resides on the Apple II main board.

The Hardware Arbitrator is distributed across each of the processor cards.

i

rl

52

Each processor card contains:

CO A 6502 microprocessor

V.	

(2) A 1K x 8 bit RAM U,e., 2-2114 memory chips)

(3) Two input /output ports (i.e., 1-6522 VIA)

^l
	

(4) A tristate buffer for the 6502's address lines (i.e., 2-74LS245)

4

	 (5) A tristate buffer for the 6502's data lines

(6) A tristate buffer for certain control signals

^7) Decoding circuitry (i.e., 2-74LS155)

(8) Required logic for implementation of special features (i.e.,

74LS00, 74LSO4, 74LS059 74LS30, 74LS74, 74LS76, 74LS85 and

74LS121) (see Figure 3.7).

The power -up procedure resets the 6502, and causes it to jump to a

reset vector location. This location is in SM. The enable to the data bus

buffer will be active for only two cases: one. during a READ from Shared

Memory (this allows all processors to READ simultaneously) and two o during

a WRITE operation when the particular processor is the controlling proces-

sor (CP). At all other times, the data bus of the 6502 is disconnected

from the Shared Data Bus. The enable to the address bus buffers and the

READ/WRITE line and DMA line buffers is active only when the specific proc-

essor has been designated as the CP. This, then allows a given processor

to control the Shared Address Bus. R/W and DMA lines only when that proces-

sor is the CP.

As described previously. I/O Select goes low (active) on peripheral

connector n when the address on the Shared Address Bus is in the range

R	 $Cn00-$CnFF (n = processor number). This signal is used to set a flip-flop

f

	

	 on the 74LS76 designated as the CP flip-flop. The 'NAND' of the I/O Select

signals from all the other peripheral connectors is used to reset the CP

t

53
ORIGINAL PAGE 13
OF POOR QUALITY

r I	 Vol 14

!	 la
40A Vat 14

:7404
T	 •

4

V139

► Rid
Z	

12

9 Ik	
7400 6	 10 4 r	 u

3
t

,

w

2
t	 9 10

7	 • •
1404 r b

10 7 6N0	 •
12

U 12 •
cn

•
7 04 Vee 4 7400

4
2	

p »oe	
HV

3 , I ONO	 40 I t
T 2 ROY	 02 39 714 740e

3	 4

S	 $

n

; 3 el	 sa]e
4 M	 S?

2
Ve•

20 12
II	 740• j1

x	 n

s	 u

17

TO SNARED	 y : a

ADDRESS BUS	 i3
7	 14

s 13

12

OONO II

vu 16
z	 u

c	 3	 14

• n 13

3	 12
e	 n
t	 10
6 ORD 9

I	 Va 16
z	 u
y	 14

4 „ 13

3	 12

6	 11

7 It

t *N0 9

b
3 NC	 NC 36

6 W NC 39

7 SYNC	 Rill 34

e V••	 D• 33

9 A•	 01 32

10 Al N OR 31

IIA2 a 03 30

12A3 + 04 29

13A4	 DS 29

14A6	 06 27
13A6	 07 tt
16A7	 A1323

17Ae	 A14 24

I•A9	 A1323

19A 10	 Al222

14

Is

14

N 13

12

II

ONO It

17

1

^ IS

N 14

13
2	 19

y	 le

• „ IT

s : a	 TO SNARED

7	 w	
DATA BUS

e	 13
9	 12

10 ONO	 I I

VCC20
2	 19

7	 Is

4	 17

3	 16
NTO SNAREDe	

14	
ADDRESS BUS

IN	 13

9	 12

^OONO 11	 Vec

Figure 3.7 Processor card schematic diagram.

it

4

54

flip-flop. Thus, when one of the other processors is designated as CP, the

signal which sets its CP flip-flop will simultaneously reset all other CP

flip-flops. Since the I/O Select signal remains active for only one-half

of a machine cycle, it was necessary to use the 7 MHz signal available on

the peripheral connector as the clock input to the CP flip-f lop.

The other flip-flop on the 74LS76 is designated as the Disable flip-

flop and is used to disable the phase zero (0 0) clock input to the 6502.

As described in the preceding section, Device Select is used to disable the

desired processor and I/O Strobe is used to restart all the processors

simultaneously. Thus, Device Select is used to set the Disable flip-flop

and I/O Strobe is used to reset the Disable flip-flop. As the Disable

flip-flop output is simply used as a control input to on and gate with the

phase zero clock as the other input, resetting the Disable flip-flop would

immediately allow the phase zero clock to be applied to the 6502 clock

input. Since there is no assurance what the 6502 will do when its clock is

removed, the most reliable method of restarting all the processors. is to

perform a hardware reset. That is, to pull the Reset line of all the

processors low (active) simultaneously. Since the 6502 requires the Reset

line remain low for several machine cycles in order to execute a valid

reset, it was necessary to have the I/O Strobe line fire a monostable

multivibrator (i.e.. 74121), that was designed to hold the Reset line low

for at least several machine cycles. In order to have sufficient time for

all the processors to become synchronized, the monostable was configured to

allow a delay of approximately one second. This delay is more than suffi-

cient and could likely be reduced to one millisecond without causing any

t
complications.

r
Two 74LS155s decode the address lines of the 6502 to determine which

A

55	
1

4	 .^
r

1K of memory the address is making reference to. If the address is in the

lowest IK of memory. the private memory is enabled * else the inverse of the

private memory enable is used to designate that a Shared Memory access is

^t	
requested.

Four 74LS85 (4-bit comparators) are used to compare the address lines

of the 6502 with the address lines of the Shared Address Bus. As noted in

the Apple II Reference Manual, the address on the address bus becomes valid

about 300 nanoseconds after phase one goes high and remains valid through

all of phase. Since phase one is the complement of phase zero, when phase

zero goes high, phase one goes low. Also, since the address is valid when

phase zero goes high and the 74LS74 contains two negative -edge triggered

flip-flops, the design compares the upper and lower bytes of the address

separately and clocks in the result of the comparators on the falling edge

of phase one. Thus, one is able to determine which, if any of the proces-

sors is out of step with the others and which byte or bytes of the address

is different from that of the CP.

Finally, provision has been made for the inclusion of a 6522 Versatile

Interface Adaptor (see Figure 3.8) which contains two 8 -bit parallel por*_s,

on each of the processor boards. Implementation of the 6522 will simply be

a matter of deciding what address one would like for the I/O ports and

various other control words of the 6522 to reside and then providing the

necessary decoding circuitry for the 6522. While this is not trivial, it

is straightforward and as the main thrust of this work is not actually the

hardware implementation, the configuration of the 6522 is left for future

research.
e

i

A

ORIGINAL PAGE 13

OF POOR QUALrrf

co

ti

to

rE
C\j

0
0
rZ

co
ti A C\j

0
v
fll-OD

cv
v

Ul
co

O
Ul
v
cq

ti

(D
cv

ti

OD

en

C\j
N

O

0
ftl

ti

cn

44
44

I

57

4, EXAMPLES OF INDEPENDENT DATA HANDLING

4.1 Introduction

As described in Section 2.2a independent data handling allows each

processor its own source of data. By definition. the data sources are

independent of each other. Of course, there are many applications in which

the data are not completely independent. howevers a less precise but more

practical way of differentiating between independent and dependent data

handling methods. is to differentiate between applications for which the

array is processing a separate problem for eacl processor (independent data

handling) and applications where the array is processing different segments

of the same problem for each processor (dependent data handling).

This chapter deals with several examples of independent data programs

that are written in Context Independent Code. One will note that independ-

ent data programs are usually simpler and more efficient than dependent

data programs that perform the same function. This is because independent

data programs take advantage of more inherent parallelism and require less

overhead of interprocessor communication than dependent data programs.

4.2 8-'it Magnitude of Twos-Complement Number

The following program calculates the magnitude of an 8-bit Twos-

Complement Number. This program assumes that each of the processors has

its own 8-bit number stored in a location in page zero of private memory

designated by the symbolic name. number. The magnitude of the twos

complement number stored in location NUMBER is placed in location MAGN at

the end of the program.

MAGNITUDE OF TWOS COMPLEMENT NUMBWCONTEXT INDEPENDENT CODE

LABEL MNEMONIC OPERAND CYCLES	 COMMENT

BEGIN: LDA-Z	 NUMBER	 3;	 GET NUMBER

LABEL XNZ= IC OPERAND CYCLES

AND 080 31 MASK OFF ALL BUT SIGN BIT
CIC 21
ROL ACC 21 MOVE SIGN BIT INTO LSD POSITION
ROL ACC 21
STA-Z TEMP 31 STORE SIGN BIT (FOR END AROUND CARRY)
LDA 00 21
SEC 21
BBC TEMP 31 IF S=O. ACC=01 S=1. ACC=FF
FOR NUMBER 31 IF S=0, ACC=NUMBER. Sale ACC=NUMBER
CIC 21
ADC TEMP 31 ADD END AROUND CARRY

END:	 STA-Z MAGN 31
f. 331 TOTAL MACHINE CYCLES

--	 To determine the magnitude of a twos complement number. one must de- 	 j

tide first if the number is positive or negative.	 Of courses if the number

is positive. one does nothing to it.	 If the number is negatives one calcu-

lates the twos complement inverse of it by complementing it and then adding

one to it. The Context Independent Code program stores the sign bit to be

used as the end around carrye then subtracts the sign bit from zero to get

either 00 or FF. The program then uses the fact that a value exclusive-

ored with all zeros is that number (e.g. value = positive) and a value

exclusive-ored with all ones is the complement of that value (e.g. value =

negative). Finally * the program adds the sign bit (S=0. if positives Sale

if negative) to obtain the magnitude of the original twos complement

number.

4.3 8 x 8-Bit Multiplication

The following program multiplies one 8-bit number by another 8-bit

number to obtain a 16-bit product. This program assumes that one value is

already residing in a location called MPCND and the other value is already

present in a location called MPLR. both of which are in page zero of pri-

vate memory. The product is returned in two locations. PROD-L and PROD-H

both of which are in page zero.

59

8 x 8-BIT MULTIPLICATION/C011TEET 15 021 81	 CODE

LABEL N 1XNO1HC OPERAND CYCLES

BEGIN:	 LHA t00 21 LOAD IlOEDIATE ZERO
STA-Z PROD-L 31 CLEAR PRODUCT LOW BYTE
STA-Z PROD-8 31 CLEAR PRODUCT ME BYTE
LDK t08 21 SET BIT COUNT s 8 BITE

LOOPS	 ASL PAWL 51 SHIFT LEFT PRODUCT LOW BYTE
ROL PROD-8 Si ROTATE LEFT PRODUCT BIGR BYTE
AOL MPLR St SHIFT LEFT HULTIPLIER
LDA too 21 SUBTRACT CARRY BIT FROM ZERO TO OBTAIN
SBC t00 21 EITHER 00 (Cal) OR FF (CEO)
FOR tFF 21 CWLEMEWT PREVIOUS RESULT
AND NPCND 31 AND EITHER 00 (CARRY*O) OR FF (CARRY81)

STA-Z Tom 31 viii MULTIPLICAND
CIC 2i TEMP a EITHER 00 OR MULTIPLICAND
ADC PROD-L 31 ADD EITHER ZERO OR MULTIPLICAND TO

STA-Z PROD-L U SHIFTED PARTIAL PRODUCT LOW BYTE
LDA-Z PROD-8 31
ADC t0 21 ADD POSSIBLE CARRY TO PRODUCT HIGH. BYTE

STA-Z PROD-8 U
DER 21 DECRIBMT SIT COOK
BN8 LOOP 21 DONE?	 IF NOT$ LOOP

END:	 RT8 61
3921 TOTAL MACHINE CYCLES REQUIRED

This prograi uses the algorithm of shifting the partial product left

oncep then adding the multiplicand to the partial product if the tested bit

of the multiplier is set. If the tested bit of the multiplier is zero * the

original algorithm would branch around the add instruction and loop back to

test the next bit of the multiplier. Because this prograo is written in

Context Independent Code which does not allow conditional branches for

which the condition may be different for different processors. instead of

branching around the add instructione this program adds zero when the

tested bit of the multiplier is zero.

4.4 1818-Bit Binary Division

The following program is the reverse of the multiplication algorithm.

That is. this program takes a 16-bit dividend in two locations called

DVND-L and DY01" and divides then by an 8-bit value stored in a location

60

called DVSR. All memory locations are assumed to be in page zero of each

processors private memory. The 8-bit quotient is returned in a memory

location called QNT and the 8-bit remainder is returned in location RMDR.

16/8-BIT DIVISION/CONTEXT INDEPENDENT CODE

LABEL MNEMONIC OPERAND CYCLES	 COMMENT

BEGIN:	 LDX 4108 2;
LDA-Z DVND-L 3;
STA-Z QF, 3;
LDA-Z DVND-H 3;
STA-Z TEMP 3;

DIVID:	 ASL-Z QNT S;
ROL-Z TEMP S;
CMP-Z DVSR 3;
LDA #00 2;
ROL ACC 2;
STA-Z SFLAG 3;
FOR 4101 2;

ADC-Z QNT 3;

STA-Z QNT 3;
LDiA-Z SFLAG 3;
ROR ACC 2;

SBC 4100 2;
AND-Z DVSR 3;
STA-Z SFLAG 3;
SEC 2;

LDA-Z TEMP 3;
SBC-Z SFLAG 3;

DEX
	

2;
BNE
	

DIVID
	

2;
STA-Z
	

RMDR
	

3;
END:	 RTS
	

6;
447;

NUMBER OF BITS IN DIVISOR = 8
GET LSB DIVIDEND
STORE LSB DIVIDENT IN QUOTIENT
GET MSB DIVIDEND

SHIFT DIVIDEND-QUOTIENT
LEFT ONE BIT
CAN DIVISOR BE SUBTRACTED?

GET CARRY BIT INTO LSB OF ACCUMULATOR
STORE SUBTRACT FLAG BIT
COMPLEMENT FLAG BIT. (O=SUBTRACT ZERO

1=SUBTRACT DIVISOR)
INCREMENT QUOTIENT IF DIVISOR COULD BE
SUBTRACTED

STORE NEW QUOTIENT
GET SUBTRACT FLAG
ROTATE SUBTRACT FLAG BIT TO BORROW

POSITION

ACCUMULATOR = (00 IF B=1 9 FF IF B=0)
ADD DIVISOR WITH EITHER FF OR 00
STORE EITHER 00 OR DIVISOR

SUBTRACT EITHER 00 OR DIVISOR FROM
DIVIDEND

LOOP UNTIL ALL 8 BITS ARE PROCESSED

STORE REMAINDER

TOTAL MACHINE CYCLES REQUIRED

This program uses the algorithm of shifting the dividend lift once,

then executing a trial subtracting of the divisor. If the subtraction is

s
i	 possible* the quotient is incremented and the actual subtraction executed.

As in the multiply programs this program does not use a conditional branch

to determine if the subtraction should be done. Instead * the subtract flag

determines whether one is subtracting zero or the divisor and whether zero

r

61	
j

or one is added to the quotient.

4.5 32-Bit Aaau mulatian

The following program accumulates the sum of 255 wards. each 32 bits

long. The progrm assume the data resides in the upper 1020 bytes of the

first 1R of smory. The data are stored in four sections with base ad-

dresses. EASE-0. RASE-1. RASE-2 9 and SASE-3. Thuse one is able to access

all 255 words by indexed addressing. The five byte result is returned is

the first five bytes of page zero called symbolically ACM-09 ACM-1 9 ACK-2.

'	 ACM-3. and ACM-4.

32-BIT ACCUMU1ATOR/CONTEXT INDEPENDENT CODE

LABEL HUMIC OPERAND CYCLES	 CONNUT

	

BEGINS LDA	 #00	 21	 CLEAR ACCUMULATOR SPACES
STA-Z	 ACM-0	 U
STA-Z	 ACM-1	 31
8TA-Z	 ACM-2	 U
STA-Z	 ACM-3	 U
STA-Z	 ACM-4	 31

	

LDX	 #FF	 21	 !UMBER OF WORDS s 255
LOOP:	 DEI	 21

	

LDA	 BASE-0@1 41	 GET LSB

	

ADC	 ACM-0	 31	 ADD TO ACCUMULATOR ZERO
STA-Z	 ACM-0	 31

	

LDA	 BASE-1.X 0	 GET NEXT MOST SIGNIFICANT BYTE

	

ADC	 ACM-1	 31	 ADD TO ACCUMULATOR ONE
8TA-Z	 ACM-1 	 3s

	

LDA	 BASE-2.X 41	 GET NEXT MOST SIGNIFICANT BYTE

	

ADC	 ACM-2	 31	 ADD TO ACCOMULATOR TWO
STA-Z	 A%M-2	 3i

	

LDA	 BASE-39X 41	 GET MSB

	

ADC	 ACM-3	 31	 ADD TO ACCUMULATOR TBREE

	

LDA	 #00	 21

	

AN	 ACM-4	 31	 ADD POSSIBLE CARRY TO ACCUMULATOR FOUR
STA-Z	 ACM-4	 31

	

CPX	 #00	 21

	

BME	 LOOP	 2i	 ALL 255 MOORS ADDED?

	

RTS	 61
r	 1698571	 TOTAL XUB ME CYCLES REQUIRED
s

This progr• is very close to a standard 6502 32-bit accumulation pro-

gras. The only possible change would be to only add the carry to ACM-4

62

when is was set. That is * to branch around the add instruction when the	 !

carry was zero. Nowevers later this program with indepeadeat data will be	 j

compared to the same application with dependent data. That is• instead of

performing a different 32-bit accumulation for each of four processors * one

perform a single 32-bit accumulation using all of the four processors.

4.6 32 x 32-Bit Binary MdZtipZioation

The following program multiplies one 32-bit number by another 32-bit

number to obtain a 64-bit product. The program assumes that the multipli-

cand alr"Ay resides in four bytes called symbolically WCD-0. MPCD-1.

MPCD-2 and MPCD-3. The program also assumes that the multiplier already

resides in four bytes called symbolically WLA -09 MPLR-1. MPLR-2 and

MPLR-3. The 64-bit product is returned in eight bytes called symbolically

PRD-0. PAD-1, PAD-2. PRD-3. PRD-4, PRD-S. PRD-6 and PRD-7. All memcry

locations are assumed to be in pate zero.

32 x 32-BIT MULTIPLICATION/CONTEXT INDEPENDENT CODE

LABEL KNIM0l1IC OPERAND CYCLES

BEGIN:	 LDA 100 2t
STA-Z PRD-0 3t
STA-Z PRD-1 U
STA-Z PRD-2 U
STA-Z PRD-3 U
STA-Z PRD-4 U
STA- Z PRD- S 3 i
STA-Z PRD-6 U
STA-Z PRD-7 U
LDS 120 2i

SHIFT:	 ASL PRD-0 Si
ROL PRD-1 51
ROL PRD-2 53
ROL PRD-3 Si
ROL PRD-4 Si
ROL PRD-S Si
ROL PRD-6 Si
ROL PRD-7 Si
ASL MPLR-0 Si
ROL MPLR-1 St
ROL MPLR-2 Si

CLEAR PRODUCT BYTES 0-7

32 SITS IN MULTIPLIER
SHIFT PRODUCT BYTES 0-7 LEFT ONE BIT

SHIFT NEXT BIT OF MULTIPLIER INTO CARRY
POSITION

i

i
a

A

63

LABEL MM MMONIC OPERAND CYCLES

E

ROL MU-3 St
LVA too 21
SBC /00 2t
LOR #77 21 It Cn0 * ACCUW009 It Col. ACCUWFF

SV' _z KKK 3; STORE MASK
AND NPCD-0 31 ip Cn0 MAASK Of iQTLTIPLICAnD BYTE 0
STA-Z 7MP-0 3t STORE EITSER NPCD-0 OR 00

LDA-Z MASK 3i
AND MIPCD-1 3t
Su-Z TMP-1 U STORE EITHER NPCD-1 OR 00
SPA-Z N"K 3 i
AND NPCD-2 U
STA-Z 70-2 U STORE EITHER NPCD-2 OR 00
LVA-Z MASK 3i
AND NPCD-3 31
STA-Z TKP-3 U STORE EITHER MPCD-3 OR 00
CIC 21

LDA-Z PRD-0 3M
ADC 20-0 31 ADD EITHER 00 OR MPDC-0 TO PRODUCT
STA-Z PRD-0 U
LA►-Z PRD-1 3M
ADC TMP-1 3= ADD EITHER 00 OR MPCD-1 TO PRODUCT
STA-Z PRD-1 3=
LDIA-Z PRD-2 U
ADC TMP-2 3; ADD EITHER 00 OR MPCD-2 TO PRODUCT
STA-Z PRD-2 U
LDA-Z PRD-3 3=
ADC TMP-3 U ADD 917KER 00 OR MPCD-3 TO PRODUCT
STA-Z MD-3 U
LAA-Z PRD-4 U
ADC too 2t ADD POSSIBLE CARRY

STA-Z PRD-b U
LDIA-Z PR+"r 51 3 s
ADC Soo ': ADD POSSIBLE CARRY
STA-Z PRD-S U
LDA-Z MD-6 3M

ADC 000 21 ADD POSSIBLE CARRY
SL-Z PRD-6 3;
LDA-Z PRD-7 3:
ADC #00 2t ADD POSSIBLE CARRY
STA-Z PRD-7 3;
DEx 2M ALL 32 BITS PROCESSED?
BNE SHITT 21

END:	 RTS 61
5806t TOTAL MACHIn CYCLES REQUIRED

This program simply expands the single byte multiplication program in

Context Independent Code to that of a tour byte multiplication. This re-

quires shitting of a product which is eight bytes rather than two. and

%I

ii

64

requires such more temporary storage but is a straightforward extension of

the simpler program.	 }

4.7 Comparison of CIC Programs With Unirroeessor Programs

The following program calculates the magnitude of an 8-bit twos com-

plement number. This is a standard uniprocessor program and hence is not

in CIC.

8-BIT MAGNITUDS/IINIPROCESSOR CODE

LABEL MNEMONIC OPERAND CYCLES	 COMMENT

BEGIN:	 LDA-Z NUMBER 3; GET Nunn
BPL END 2; IF POSITIVE. DONE
NOR #FF 2; INVERT NEGATIVE NUMBER

CIC 2;
ADC #01 2; ADD END AROUND CARRY

DONE:	 STA-Z NAGN 3;
14; CYCLES IF NEGATIVE
8; CYCLES IF POSITIVE

The uniprocessor program requires approximately 11 machine cycles on

the average to obtain the magnitude of an $-bit twos complement number.

The CIC programs on the other hand, always requires 33 machine cycles to do

the same job. Thus * one must use 3 processors to obtain the same through-

put as the original processor for this task. If one were to represent the

throughput of the array as Kn times the single processor throughput where

n = number of processors and K is the 'recoding factor's the recoding fac-

tor for the 8-bit twos complement magnitude program is 0.33. This simply

means that for this task, the number of processors used should always be

greater than three for effective use of CIC programing.

The following is the uniprocessor program from Leuantha Z [1979] that

calculates the 16-bit product of two $-bit numberrs.

a

t
t

65

8 x 8 MULTIPLICATION/UNIPROCESSOR

LABEL MNEMONIC OPERAND CYCLES	 COMMENT

BEGIN:	 LDA 00 2; LSB OF PRODUCT = ZERO
STA-Z PRD-H 3; MSB OF PRODUCT = ZERO
LDX 08 2; 8 BITS IN MULTIPLIER

SHIFT:	 ASL ACC 2; SHIFT PRODUCT LEFT ONE BIT
ROL PRD-H 5;
ASL MPLR 5; SHIFT MULTIPLIER LEFT ONE BIT
BCC NO ADD 2; NO ADDITION IF NEXT BIT IS ZERO
CIC 2;
ADC MPCD 3; ADD MULTIPLICAND TO PARTIAL PRODUCT
BCC NO ADD 2;
INC PRD-H 5; ADD CARRY TO MSB IF PRODUCT

NO ADD:	 DEX 2;
BNE SHIFT 2; LOOP UNTIL 8 BITS ARE MULTIPLIED

STA-Z PRD-L 3; STORE LSBS OF PRODUCT
RTS 6;

208; MACHINE CYCLES TYPICALLY REQUIRED

Since the CIC program requires 392 machine cycles. the recoding factor

for this program is 0.53. Effective use of CIC programming requires that

one employ a number of processors that is greater than two. One sbould

note that the uniprocessor program requires only one accumulator for effi-

cient processing. For example. the uniprocessor does not initially clear

the LSB of the product * nor does it store the result of the addition within

the loop. Also. the LSB of the product is left in the accumulator. which

allows it to be shifted much more quickly than if it were in page zero.

All these facts allow the uniprocessor program to be executed much quicker

than the CIC program. If one were to have another accumulator available

(as in the 6800). the difference would be reduced to replacing the BCC

instruction with LDl1 009 SBC 00, FOR FF. and MPCND and STA-Z TEMP. The

t	 additional execution time would then be approximately 80 machine cycles or

about thirty-eight percent longer. As one can sees the effectiveness of

CIC programming depends as much on the expertise of the programmer as any
t

other single factor.

I

t

66

The following is a uniprocessor 16/8-bit division progras.

16/8-BIT DIVISION/UNIPROCESSOR

LABEL DEMONIC OPERAND CYCLES 	 COMMENT

BEGIN: LDX #08 2; DIVISION BITS = 8
LDA-Z DVND-L 3; GET LSB DIVIDEND
STA-Z QNT 3;
LDA-Z DVND-H 3; GET 1038 DIVIDEND

DIVID: ASL-Z QNT 5; SHIFT DIVIDEND-QUOTIENT LEFT ONE BIT
Rte. ACC 2;

CMP-Z DVSR 3; CAN DIVISOR BE SUBTRACTED?
BCC NO SUB 2; N0, GO TO NEAT STEP
SBC DVSR 3; YES, SUBTRACT DIVISOR AND INCREMENT
INC QNT 5; QUOTIENT LOOP UNTIL. ALL 8 BITS ARE

NO SUB: DIX 2; DIVIDED
BNE DIVID 2;

STA-Z RMDR 3; STORE REMAINDER
END: RTS 6;

200; TYPICAL MACHINE CYCLES REQUIRED

The CIC program requires 447 machine cycles and thus the recoiling fac-

tor for this program is 0.45. In this case, three processors are required

to obtain a throughput greater than the throughput of a single processor

executing uniprocessor code.

The uniprocessor 32-bit accumulation program is identical to the CIC

program except that instead of adding a possible carry to the fifth byte,

one inserts a BCC instruction which causes one not to execute the add if

the carry is not set. This will reduce the execution time by 2.5 machine

cycles on the average. For all practical considerations the CIC program

executes as fast as the uniprocessor program and hence K = 1.0.

The following is a uniprocessor 32 x 32-bit multiplication program.

32 X 32-BIT MULTIPLIC&TION/UNIPROCESSOR

LABEL DEMONIC OPERAND CYCLES 	 COMMENT

BEGIN:	 LDA #00 2;
STA-Z PRD-O 3;
STA-Z PRD-1 3;
STA-Z PRD-2 3;
STA-Z PRD-3 3;

CLEAR PRODUCT BYTES 0-7

sr

^I
4	 '

F
1

L

LABEL MNEMONIC OPERAND CYCLES

STA—Z PRD-4 3;
STA—Z PRD-5 3;
STA—Z PRD-6 3;
STA—Z PRD-7 3;
LDX #20 2;

SHIFT:	 ASL PRD-0 5;
ROL PRD-1 5;
ROL PRD-2 5;
ROL PRD-3 5;
ROL PRD-4 5;
ROL PRD-5 5;
ROL PRD-6 5;
ROL PRD-7 5;
ASL MPLR-0 5;
ROL MPLR-1 5;
ROL MPLR-2 5;
ROL MPLR-3 5;
BCC NO ADD 2;
CIC 2;

LDA— Z PRD-0 3;
ADC MPCD-0 3;
STA—Z PRD-0 3;
LDA— Z PRD-1 3;
ADC MPCD-1 3;
STA— Z PRD-1 3;
LDA— Z PRD-2 3;
ADC MPDC-2 3;
STA— Z PRD-2 3;
LDA—Z PRD-3 3;
ADC MPCD-3 3;
STA—Z PRD-3 3;
BCC NO ADD 2;

LAA— Z PRD-4 3;
ADC 1100 2;

STA—Z PRD-4 3;
LDA—Z PRD-5 3;

ADC 1100 2;
STA—Z PRD-5 3;
LDA— Z PRD-6 3;

ADC 1100 2;

STA—Z PRD-6 3;
LDA— Z PRD-7 3;

ADC 1100 2;

STA— Z PRD-7 3;
NO ADD	 DEX 2;

BNE SHIFT 2;
END:	 RTS 6;

4450;
2032;

67

COMMENT

32—BITS IN MULTIPLIER
SHIFT PRODUCT BYTES 0-7 LEFT 1 BIT

SHIFT NEXT BIT OF MULTIPLIER INTO CARRY
POSITION

NO ADDITION IF NEXT BIT IS ZERO

CARRY SET, ADD MULTIPLICAND TO PARTIAL
PRODUCT

ALL 32 BITS MULTIPLIED

TOTAL CYCLES FOR ALL BITS SET
TOTAL CYCLES FOR ALL BITS CLEARED

68

On the average. the required machine cycles might be near the arith-

metic average of the two extremes or approximately 3266. Since the CIC

program requires 5506 machine cycles for execution. The recoding factor

for this program is approximately 0.59. Thus, two processors executing the

CIC program would yield a greater throughput than a single processor exe-

cuting the uniprocessor program.

To summarize, the 8-bit magnitude CIC program has K = 0.33. The 8 x 8-

bit multiplication program written in CIC has K = 0.53. The 16/8-bit

division program in CIC has K = 0.45. The 32-bit accumulator program in

CIC has K = 1.0 and finally the 32 x 32-bit multiplicatic- program has

ri = 0.59. The important thing to remember is that once the price has been

paid by writing the program in CIC * one can gain throughput linearly with

additional processors. The experimental evidence here shows that the

recoding factor. k:, varies from a maximum of 1.0 (32-bit accumulation) to a

minimum of approximately 0.45 (16/8-bit division). Thus, if an array of

processors were to execute these sample programs, one would see a through-

put somewhere between 0.45n and n times, the throughput of a single

processor. This indicates that each PE has an efficiency of at least 45%

for these sample programs.

a.

69

5. EXANPLES OF DEPENDENT DATA HANDLING

5.1 Introduction

This chapter exhibits different examples of dependent data handling.

Applications of dependent data handling must have sufficient inherent par-

allelism within them to allow each of the processors to process a different

segment of the entire problem. For this reason, dependent data problems

are typcially larger and more complex than independent data problems. It

is quite possible that a dependent data problem will have independent data

r	
subroutines used within it. This is because the calculation for which the

subroutine is used does not require knowledge that the data for each of the

processors is related in some way. There are two different methods of de-

pendent data handling. The first method employs each of the 8-bit proces-

sors to process 8-bit data and communicate to some of the other processors

certain results of its processing. The other method uses all of the n

processors to process 8n-bit data spread across all of the processors.

This method needs a higher degree of communication between the processors

than the other method as the processors are being used to simulate a single

more powerful processor with a word size of 8n-bits.

5.2 Carry-Propagation Prcblem

As suggested in the preceding section, when one teams up several

processors to simulate a larger processor several obstacles appear. One of

the most difficult to resolve is that of a carry being propagated from one

processor to another. In multiple precision arithmetic, a carry out of the

most significant bit position is placed into what is called the carry bit.

This bit is then added to the least significant bit of the next word. This

works well when one is using a single processor. Howevers when one is

using several processors. the carry from the most significant bit of one

70

processor should be added to the least significant bit of the next proces-

sor. One problem is that the carry-out is not available on an external pin

(except bit-slice microprocessors) and there exists no carry in pin so that

one could join general-purpose microprocessors together in much the same

manner as digital systems designers have previously joined several adders

together to form a large adder. Even if the pins did exist * one would

encounter a carry propagation problem similar to that encountered by digi-

tal designers. The solution in that case was to use carry look ahead adder

cells. Another solution to this carry propagation problem is discussed in

the following section.

5.3 Stored-Carry Solution

The preceding section described the carry propagation problem and

examined a possible hardware solution to the problem other than redesign of

the microprocessor. One solution is to transfer the carry from each of the

processors to the SM and then transfer the proper carry to the next proces-

sor. This solution is inefficient because every addition requires at least

one WRITE to SM and one READ from SM.

The original solution of transferring each carry through SM is modi-

fied so that it is necessary to transfer one word containing several car-

ries to the next processor only after 255 additions. This 'Stored Carry'

method assumes that a large number of values are to be added. Each proces-

sor performs double precision arithmetic in adding 255 values together.

The upper byte then contains the carries from the last 255 additions (a

maximum of 255). One then transfers the stored carry word to the next

processor through SM and adds it to that processor's accumulated value.

This method requires only one WRITE to and READ from SM for 255 additions

and is therefore much more efficient than the other method.

71

5.4	 32-Bit Accumutation

The following program calculates the sum of 255 thirty-two-bit words.
k

The program assumes that six locations in page zero have been previously

initialized to the following values.

PROCESSOR PROCESSOR PROCESSOR PROCESSOR
LOCATION 0 1	 2 3

FA 00 01	 02 03
FB 00 00	 00 00
FC 00 00	 00 00

r' FD B0 B1	 B2 B3
FE 00 00	 00 00

'	 ,• FF C7 Cl	 C2 C3

32-BIT ACCUMULATION /CIC (DEPENDENT DATA)

LABEL	 MNEMONIC OPERAND CYCLES COMMENT

BEGIN:	 LDA 4100 2;
STA-Z SUM 3; CLEAR SUM LOCATION
STA-Z CARRY 3; CLEAR STORED CARRY BYTE
LDX JIFF 2;

LOOP:	 DEX 2;
LDA BASE.X 4; GET NEXT VALUE TO BE ADDED TO SUM
CIC 2;
ADC SUM 3;
STA-Z SUM 3;
LDA 4100 2;
ADC CARRY 3;
STA-Z CARRY 3;
CPX 4100 2; ALL 255 VALUES SUMMED?
BNE LOOP 2; IF NOT, LOOP

LDA-Z CARRY 3; LOAD ALL STORED CARRY WORDS
STA (FC).X 6; STORE CARRY WORD FROM CPU-0
INX 2;
STA $C1O0 4; SET CP=1
STA (FC)•X 6; STORE CARRY WORD FROM CPU-1
INX 2;
STA $0200 4; SET CP=2
STA (FC).X 6; STORE CARRY WORD FROM CPU-2
LDA $3000 4; GET CARRY WORD FROM CPU-0

' STA-Z $0001 3; STORE CARRY FOR CPU-1
LDA $8100 4; GET CARRY WORD FROM CPU-1
STA-Z $0002 3; STORE CARRY FOR CPU-2

I LDA $B200 4; GET CARRY WORD FROM CPU-2
STA-Z $0003 3; STORE CARRY FOR CPU-3
STA $C700 4; SET CP=O
LDX 4100 2;
STX $0000 3; CLEAR CARRY WORD FOR CPU-0

LABEL MNEMONIC OPERAND CYCLES COMMENT

f
f

72

LDA
CIC
ADC

STA- Z
STA
STA
STA
STA
STA
STA
STA

LDA-Z
ADC
INX
STA

(FA).X	 6;
21

SUM	 3;
SUM	 3;

(FC).X	 6;
80100	 4;
(FC).X	 6;
$C200	 4;
(FC).X	 61
8C300	 4;
(FC).X	 6;
CARRY	 3;
#00	 2;

5;
(FC).X	 6;

7034;

LOAD ALL CARRIES SIMULTANEOUSLY

ADD CARRIES TO SUM
STORE RESULT
TRANSFER SUM BYTE FROM CPU-0
CP=1
TRANSFER SUM BYTE FROM CPU-1
CP=2
TRANSFER SUM BYTE FROM CPU-2
CP=3
TRANSFER SUM BYTE FROM CPU-3

ADD POSSIBLE CARRY TO CPU-3s CARRY WORD

STORE MSB OF ACCUMULATION
TOTAL MACHINE CYCLES REQUIRED

The preceding program performs 16-bit addition in accumulating 255

eight-bit words for each processor. Each processor then has a sum byte and

a carry byte. The carry bytes are then transferred through the SM to the

next processor. The carry word from the previous processor is then added

to the sum byte of the current processor. Finally * each of the sum bytes

is transferred to the SM with CPU-3 transferring both the sum byte and the

carry byte in order to complete the 5 bytes necessary to accumulate 255

thirty-two-bit numbers. One notes that it is necessary to perform four

WRITEb to and READS from SM in order to transfer the carry word from each

processor to the next processor. This is due to the architecture chosen

which allows interprocessor communication only through SM. The process of

transferring carry words to each of the processors and transferring the

results to SM takes 139 machine cycles. If the architecture permitted the

transfers to be done in one pass instead of four. the transfers would only

have taken 35 machine cycles. This represents a savings of 104 of a total

of 7034 machine cycles required for the accumulation. only 1.5 percent.

However, one should not lose sight of the potential problem when the number

of processors becomes large. If one does not want the amount of time

required for transferring data between processors to take more than 10

percent of the entire programe one cannot use this architecture for more

than approximately twenty processors. That is because the transfer re-

quires 35n machine cycles and the entire program takes approximately 7000

machine cycles. Thus * for n greater than twenty, the transfer alone will

require more than 10 percent of the array's time. However * this result

assumes than n-byte arithmetic is used and is is unlikely that one would

ever require 20-byte precision.

5.5 32 x &,I-Bit Multiplication

This program multiplies one 32-bit number by another 32-bit number to

obtain a 64-bit product. The multiplicand is assumed to be located in four

bytes called DO. D1, D2 and D3 situated in page zero for all of the proces-

s
4	 sors. The four bytes of the multiplier are distributed among each of the

processors. That is, CPU-0 has R0, CPU-1 has RI. CPU-2 has R2 and CPU-3

has R3. When the program refers to R, it is referring to the respective

i
byte of the multiplier which each processor has. The program has each

processor multiply its multiplier byte by the low byte of the multiplicand.

This product is placed into two locations called SO and S1. The multiplier

byte is then multiplied by the second byte of the multiplicand. The low

byte of this 16-bit product is added to Sl and the high byte is placed in

S2. The third byte of the multiplicand is multiplied by the multiplier

byte. The low byte of this product is added to S2 and the high byte is

placed in S3. The fourth byte of the multiplicand is multiplied by the

multiplier byte. The low byte of this product is added to S3 and the high

byte of the product is placed in S4. Each processor then transfers its

SO-S4 words to SM. The partial sums SO-S4 are stored in a shifted manner

74

to indicate their weightings (Figures S.la and S.lb). All the partial sums

are read into each processor's page zero. Then the X index register of

each processor is initialized to a different value so that each processor

indexes to different partial auoa for accumulation. For example. CPU-0

adds its 80 to zero and stores the result in Lo-Accum. It then adds its S1

to CPU-1' 31 with carry and stores this in Mid-Accum. CPU-0 adds zero to

Lo-Accum and to Mid-Accum twice more to get the final result of Lo-Accum

and Mid-Accum. In order to account for possible carries from one processor

to another, zero is added with carry to a null location called Hi-Accum.

Of course. while CPU-0 is doing this * the other processors are accumulating

their own Lo-Accum. Mid-Accum and Hi-Accum from their own indexed data.

The only thing left to do is to transfer the stored carry Hi-Accum byte to

the next processor and add it in to obtain the final 64-bit product. This

program assumes the same initialization as the 32-bit accumulator program.

32 x 32-BIT MULTIPLY/CIC (DEPENDENT DATA)

LABEL MNEMONIC OPERAND CYCLES
	

COMMENT

i

BEGIN:	 LDX #7 2;
LDA #ZERO 2;
STA-Z ES 3;
LDA #ONE 2;
STA-Z EA 3;
LDA #TWO 2;
STA-Z EC 3;
LDA #THREE 2;
STA-Z EE 3;
LDA 1100 2;

STA (ES).X 6;
STA (EA).X 6;
STA (EC)9X 6;
DEX 2;
STA (ES).X 6;
STA (EA).X 6;
DEX 2;
STA (ES).X 6;
LDX 112 2;

STA (EE).X 6;
DEX 2;

INITIALIZE BASE POINTER ZERO

INITIALIZE BASE POINTER ONE

INITLALIZE BASE POINTER TWO

INITIALIZE BASE POINTER THREE

CLEAR NULL LOCATIONS

75

BR33 !
)2 1

j:Rj:ffi
MULTIPLICAND
MULTIPLIER

RO x 00 1l
ROx DI

RO x 02	 i	 i PEp
ROx D3	 !	 !

S4 S3 1 S2 I SI	 SO

I	 j	 RIxDO
RI X Dl

RIxD2	 PEA
RIxD3	

S2	
i	 !

S4 S3	 SI S0

!	 i	 R2 x DO
!	 R2 x DI

R2 x D2	 '	 PE2
R2 x D3	 !	 !

S4 S3 S2 S SO

I	 I	 R3 x DO
Rix DI	 !

R3 x D2	 PE3
R3 x D3	 !	 !

S4 I S3 I S2 IS I 	 SO

Figure 5.1a 32 x 32-bit Multiplication diagram.

t

n

z' z'
z

7
r+ u

u
f'1 C J .^ O 4c
C/J VJ Co) W I.Q

7
u

•^ M N .. Q

V
-^ u
•-^ ^T M rJ ^

Z 'C

E

r+ .^+ V f'1 r^

z x I
0

E
7
v

r^

M

1

Jr

P ^: LJ c^

8 E E E
C G

CO 't7 I N I	 I O I	 I a+ I	 I^^i	 I	 I	 I	 I	 I	 I"

i
M
OD
t0
vl
'O

V
W
V

a

N

1
N
M

>K

N
M

N	 .O
^ li7
Q	 LM

OC
+.ri+r

1f

ORIGINAL PAGE IS
OR POOR QUALITY

I
u

r7.

77

LABEL MIENWIC OPERAND CYCLES

t

STA (EE)A 61
8TA (EC).X 61
DER Zi
8TA (EE).R 61
STA (EC) .X 61
8TA (EA) .X 6;

; .DA-Z R 3; GET MULTIPLIER BYTE
S`A-Z MPLR 3; PASS PARAM. TO 8-BIT MULTIPLY SUBROUTINE
L'A-Z DO 3; GET LOW BYTE OF MULTIPLICAND
STA-Z MPCD 3; PASS FARAM, TO 8-BIT MULTIPLY SUBROUTINE
JSR I-SIT 3981 DO $-BIT MULTIPLY OF R AND DO

MULTIPLY
LDA-Z PRD-L 31
STA-Z SO 3; PLACE LOW BYTE OF PRODUCT INTO 80
LDA-Z PRD-K 31
STA-Z 81 3; PLACE RICK BYTE OF PRODUCT INTO 81
LAA-Z D1 3; GET in BYTE OF MULTIPLICAND
STA-Z MPCD 3; PASS PARAM. TO 8-SIT MULTIPLY SUBROUTINE
JSR $-SIT 3981 DO $-SIT MULTIPLY OF R AND D1

MULTIPLY
CIC 21

LDA-Z PRD-L 3;
ADC 81 3; ADD LOW BYTE OF R X D1 TO 81
STA-Z 81 3;
LDA d00 2;
ROR ACC. 2;
STA-Z CARRY 31 STORE POSSIBLE CARRY
LDA-Z PRD-K 3;
STA-Z 82 31
LDA-Z D2 3; GET 3RD BYTE OF MULTIPLICAND
STA-Z MPCD 3; PASS PARAM. TO 8-BIT MULTIPLY SUBROUTINE
JSR 8-SIT 3981 DO 8-BIT MULTIPLY OF R AND D2

MULTIPLY
LDA-Z CARRY 3;
ASL ACC. 2: PLACE POSSIBLE CARRY BACK
LDA-Z PRD-L 3; GET LOW BYTE OF PRODUCT R X D2
ADC 82 3;
STA-Z 82 3; ADD LOW BYTE OF R X D2 WITH CARRY T^ 82
LDA #00 21
ROR ACC. 21
STA-Z CARRY 3; STORE POSSIBLE CARRY
LA►-Z PRD-R 3;
STA-Z 83 3; STORE KIGK BYTE OF R X D2 IS 83
LDA-Z D3 3; CET 67M BYTE OF MULTIPLICAND
STA-Z MPCD 3; PASS PARAM. TO $-SIT MULTIPLY SUBROUTINE
JSR 8-SIT 398; DO $-SIT MULTIPLY OF R AND D3

MULTIPLY
LDA-Z CARRY 3;
ASL ACC. 21 RETURN CARRY FROM LAST ADD
LDA-Z PRD-L 3;

ADC 83 39 ADD LOW BYTE OF R X D3 TO S3

i

f

7

78

M	 MNEMONIC OPERAND CYCLES COMMENT

STA-Z S3 3; STORE FINAL S3
LDA-Z PRD-B 3;
ADC #00 2; ADD IN POSSIBLE CARRY
STA-Z S4 3; STORE FINAL S4
LDX #04 2;
STA (FC),X 6; TRANSFER S4 FROM CPU-0
DEX 2;

LDA-Z S3 3;
STA (FC),X 6; TRANSFER S3 FROM CPU-0
DEX 2;

LDA-Z S2 3;
STA (FC),X 6; TRANSFER S2 FROM CPU-0
DEX 2;

L.OA-Z S1 3;
STA (FC),X 6; TRANSFER S1 FROM CPU-0
DEX 2;

LDA-Z SO 3;
STA (FC),X 6; TRANSFER SO FROM CPU-0
STA $C100 4; SET CP=1
LDX #05 2;

LDA-Z S4 3;
STA (FC),X 6; TRANSFER S4 FROM CPU-1
DEX 2;

LDA-Z S3 3;
STA (FC),X 6; TRANSFER S3 FROM CPU-1
DEX 2;

LDA-Z S2 3;
STA (FC),X 6; TRANSFER S2 FROM CPU-1
DEX 2;

LDA-Z S1 3;
STA (FC),X 6; TRANSFER S1 FROM CPU-1
DEX 2;

LDA-Z SO 3;
STA (FC),X 6; TRAXSFER SO FROM CPU-1
STA $C200 4; SET CP=2
LDX #06 2;

LDA-Z S4 3;
STA (FC),X 6; TRANSFER S4 FROM CPU-2
DEX 2;

LDA-Z S3 3;
STA (FC),X 6; TRANSFER S3 FROM CPU-2
DER 2

LUA-,'y. S2 3;
STA (FC),X 6; TRANSFER S2 FROM CPU-2
DEX 2;

LDA-Z S1 3;
STA (FC),X 6; TRANSFER S1 FROM CPU-2
DEX 2;

LDA-Z SO 3;
STA (FC),X 6; TRANSFER SO FROM CPU-2
STA $C300 4; SET CP=3

79

COMMENTLABEL MNEMONIC OPERAND CYCLES

LDX #07 2;
LDA-Z S4 3;
STA (FC).X 6;
DEX 2;

:.DA-Z S3 3;
STA (FC).X 6;
DEX 2;

LDA-Z S2 3;
STA (FC).X 6;
DEX 2;

LDA-Z S1 3;

STA (FC).X 6;
DEX 2;

LDA-Z SO 3;
STA (FC),X 6;
STA $C700 4;
LDX #05 2;

QLOOP: DER 2;
LDA (FC),X 6;
STA (E8),X 6;
CPX #00 2;
BNE QLOOP 2;
STA $C100 4;
LDX x;06 2;

RLOOP: DEX 2;
LDA (io).X 6;
STA (EA),X 6;
CPX i^01 2;

BNE RLOOP 2;
STA $C200 4;
LDX #07 2;

TLOOP: DER 2;
LDA (FC),X 6;
STA (EC),X 6;
CPX #02 2;
BNE TLOOP 2;
STA $C300 4;
LDX #08 2;

ULOOP: DEX 2;
LDA (FC),X 6;
STA (EE).X 6;
CPX #03 2;
BNE ULOOP 2;

LDA-Z $FA 3;
ASL ACC. 2;
STX 2;
LDA (E8).X 6;
CIC 2;

ADC (EA).X 6;
STA-Z LO-ACCUM 3;
INX 2;

r

Y

I.`

f

TRANSFER S4 FROM CPU-3

TRANSFER S3 FROM CPU-3

TRANSFER S2 FROM CPU-3

TRANSFER S1 FROM CPU-3

TRANSFER SO FROM CPU-3
SET CP=O

GET SO-S4 FROM CPU-0 FOR ALL CPUs

SET CP=1

TRANSFER SO-S4 FROM CPU-1 TO ALL CPUs

SET CP= 2

TRANSFER SO-S4 FROM CPU-2 TO ALL CPUs

SET CP=3

TRANSFER SO-S4 FROM CPU-3 TO ALL CPUs

GET INDEX REG X=0 FOR CPU-0, 2 FOR CPU-1
4 FOR CPU-2, 6 FOR CPU-3

ACCUMULATE 3 BYTES FOR EACH CPU, THAT IS,
LO-ACCUM, MID-ACCUM AND HI-ACCUM

HI-ACCUM = STORED CARRIES

-.- __A

a

80
	

f .j

LABEL MNEMONIC OPERAND CYCLES
	

COMMENT	
I

t

to

LDA (E8).B 6;
ADC (EA).B 6;
STA—Z MID—ACCUM 3;
LDA #00 2;
ADC U00 2;
STA—Z HI—ACCUM 3;
CIC 2;

LDA—Z LO—ACCUM 3;
DEB 2;
ADC (EC).B 6;
STA—Z LO—ACCUM 3;
INB 2;

LDA—Z MID—ACCUM 3;
ADC (EC).B 6;
STA—Z MID—ACCUM 3;
LDA—Z HI—ACCUM 3;
ADC #00 2;
STA—Z HI—ACCUM 3;
CIC 2;

LDA— Z LO—ACCUM 3;
DEB 2;
ADC (EE).B 6;
STA—Z LO—ACCUM 3;
INB 2;

LDA—Z MID—ACCUM 3;
ADC (EE)OX 6;
STA— Z MID—ACCUM 3;
LDA— Z HI—ACCUM 3;
ADC X100 2;
STA— Z HI—ACCUM 3;
DEB 2;
LDY #00 2;
STA (FC).Y 6;
STA $C100 4;
STA (FC).Y 6;
STA $C200 4;
STA (FC).Y 6;
STA $C700 4;
LDA #00 2;
STA (E8).Y 6;
LDA (FC).Y 6;
LDY #02 2;

STA (E8).Y 6;
STA $0100 4;
LDY #00 2;
LDA (FC).Y 6;
LDY #04 2;
STA (E8).Y 6;
STA $C200 4;
LDY #00 2;

LDA (FC).Y 6;

FINISH ACCUMULATION OF 3 BYTE SUMS

TRANSFER STORED CARRIES FROM CPU-0
SET CP=1
TRANSFER STORED CARRIES FROM CPU-1
SET CP=2
TRANSFER STORED CARRIES FROM CPU-2
SET CP=O

CLEAR STORED CARRY WORD FOR CPU-0
GET STORED CARRY WORD FOR CPU-1

GIVE S.C. WORD FROM CPU-0 TO ALL CPUs
SET CP=1

GET STORED CARRY WORD FROM CPU-1

GIVE S.C. WORD FROM CPU-1 TO ALL CPUs
SET CP=2

GET S.C. WORD FROM CPU-2

81

LABEL MNEMONIC OPERAND CYCLES
	

COMMENT

LDY X106 2;
STA (38),Y 6;
CIC 2;

LDA-Z LO-ACCUM 3;
ADC (E8),% 6;

STA-Z LO-ACCUM 3;
LDA-Z MID-ACCUM 3;
ADC #00 2;
STA MID-A000M 3;

2685;

GIVE S.C. WORD FROM CPO-2 TO ALL CPO$

ADD IN STORED CARRIES

TOTAL MACHINE CYCLES REQUIRED

sm s

From the above program, one can easily see how various independent

data programs may be placed within a larger and more complex dependent data

program. One example is the 8-bit multiply independent data subroutine

which is used in the 32 x 32-bit multiply dependent data program below.

5.6 Comparison of CIC Programs With Uniprocessor Programs

The 32-bit accumulation (dependent data) program requires all four

processors, but is able to execute an accumulation of 255 thirty-two bit

numbcrs in 7034 machine cycles whereas the uniprocessor program requires

16,857 machine cycles to do the same job. Thus, the four-processor array

can perform the 32-bit accumulation is 2.4 times aP fast as the single

processor. This represents a recoding factor of 0.60. These results would

certainly encourage one to pursue array processing. An important fact to

point out is that with the architecture used in this study, propagating

carries from one processor to the next for 8n-bit precision arithmetic.

will take a larger and larger amount of time as the number of processors

grows. However. if the architecture were modified to allow all the proces-

sors to propagate their carries in one pass instead of n passes, this would
4

not be the case. For this array of 4 processors, propagating the carries

required less than 2 percent of the execution time.'therefore, the archi-

tecture did not significantly hamper throughput. With K = 0.60, each ofg	 y

i

y

I

I
i
I

82	 ti

the microprocessors is about 60 percent efficient. So long as carry-

propagation delay is not significants, one could expect a throughput of 0.6r

for an array of n processors executing this program.

The 32 x 32-bit multiply (dependent data) program requires all four
t

processors but is able to perform a 32 x 32-bit multiply in 2685 machine	 j

i

cycle as compared to the average execution time of 3266 for the uniproces-

sox program. Thus * one is able to obtain a speed-up of 1.22 by using four

processors. To determine the recoiling factor for this program * one calcu-

lates the throughput of the array as Kn. In this case, the recoding factor

K is roughly 0.30. If one examines this program closely, it is apparent

that almost 20 percent of tfi a time is spent in transferring values from one

processor through SM to another processor. Thus, the architecture used to

implement the four-processor array is seriously hampering the efficiency of

this program by requiring four times as long to pass parameters between

processors. If one were to implement another architecture which would

allow all the parameters to be passed in a single sweeps the recoding fac-

tors K would reach approximately 0.40. In this cases an array of proces-

sors could be expected to exhibit a throughput of roughly 0.4n.

f	 83

i	 6. SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

6.1 Sw►anary

As stated earlier. the main objective of this work was to assert that

the recoding of standard uniprocessor programs into Context Independent

Code programs is feasible for an important set of applications. This ob-

jective was achieved by implementing a four-processor array and recoding

several programs for it. The programs were divided into two categories,

independent and dependent data handling. The first category allowed each

of the processors to work on a separate set of data such that no processor

required any results from any other processor in order to complete its

task. The second category required each of the processors to work on a

subset ac the entire problem. This meant that the processors needed to

communicate intermediate results with one another at various times in order

to complete their task.

In order to allow easier comprehension of the programs, the design

of the Super-65 array processor was described in detail and alternative

approaches were analyzed. The strengths and weaknesses of the implementa-

tion chosen for the Super-65 were noted. Among tte strengths were: its

simplicity, both in processor-memory interconnection and interprocessor

connections. expandability of the system. no host processor required and

the fault tolerance potential of the design. Among the weaknesses of the

design were: its restriction of interprocessor communications, the fact

that only one processor is able to write to SM at a time and the fact

that all programs executed on the Super-65 had to be written in Context
a

Independent Code. The last weakness does not inhibit this study at all as

the intent of this study is to examine the implementation of Context

Independent Code. The first two weaknesses of the design did not affect

1

84

the independent data programs nearly as much as the dependent data pro-

grams. The effect of the specific architecture on the efficiency of the

CIC programs was noted in the case of the dependent data programs and a

possible alternative architecture was suggested.

The conclusion drawn from the independent data programs was that for

the set of recoded programs. if one were to have an array of n processors*

the throughput of the array would range somewhere between 0.45n and n times

the throughput of a single processor. This means that the recoding factor

of the sample programs ranged from 0.45 to 1.00. This is * of course, quite

impressive and encouraging.

The conclusion drawn from the dependent data programs was that for

the set of recoded programs. if one bad an array of n processors, the

throughput of the array would range between 0.3n and 0.6n times the

throughput of a single processor. As expected, the dependent data programs

were considerably less efficient than the independent data programs with

the recoding factor for the sample programs from 30 to 60 percent (see

Table 6.1).

It is thus apparent that the throughput of the array processor is

highly dependent on the type of programs that it is executing. However * if

one considers that it has been shown by this study to be possible to obtain

a linear relationship between throughput and the number of processors in

the array (so long as carry-propagation delay in minimal)o one must admit

that Context Independent Code may provide the key to arrays of immense

proportions. One may conclude that this study has shown that the implemen-

tation of Context Independent Code is not only feasible for array programs.

but is in fact desirable as it allows the array throughput to be linearly

related to the array size. Limitations to the array size are not due to

85

it

TABLE 6.1 Recoding factors for the sample program

Independent Data	 Dependent Data

8-Bit Magnitude	 0.33

8 x 8-Bit Multiply	 0.53

16/8-Bit Divide	 0.45

32-Bit Accumulator	 1.00	 0.60

32 x 32-Bit Multiply	 0.59	 0.30

i

i

the CIC program but rather are due to the hardware restraints that one

chooses to impose. Of course, if the array were to be infinitely large#

the time delay from one end of the array to the other could become signifi-

cant. Context Independent Code further has the property that the proces-

sors never become unsynchronized once they are initialized because all the

processors are always forced to execute the exact same instruction. That

is, none of the processors is allowed to be turned off during the execution

of a CIC program.

6.2 The Ideal Microprocessor for an Array of Microprocessors

It is not attempted here to define the ideal microprocessor for an ar-

ray of microprocessors. Instead several desirable qualities that are found

lacking in the microprocessor used for the Super-65 are described, as well

as those features of the 6502 microprocessor which are extremely useful

will be noted as well.

The most vital feature of the 6502 is its indirect indexed addressing

mode. This feature allows the processors to execute the same instruction

but locally index the effective address so that the processors actually

access different memory locations at the same time. This property is

essential as it allows one the ability to use pointers to point to the de-

sired data locations. Also it allows one to index though data from a base

location. Since a READ from SM is always executed by all of the processors

values read from SM are stored in the same locations in all processors.

One way to allow different processors to obtain different data while exe-

cuting the same instruction is to use indirect indexed addressing where

1	 either the indirect value or the index value is a local value.

Another important mode of addressing, is Indexed Indirect Addressing 	 !

where one can index through a tab:o of pointers for different data. This

U_ I

87

mode is not quite as useful as the previous mode but still provides the

programmer a much more versatile set of instuctions.

One of the most distinctive features of the 6502 is its Zero-Page

Addressing mode. This mode allows the programmer to access any of the 256

locations of page zero very rapidly and thus allows one to use page zero in

the same manner as a small cache memory. This addressing mode allows for

considerable increase in throughput of the 6502 if used efficiently. How-

ever * for many applications. 256 locations are insufficient to contain all

the necessary data and for three cases. Zero-Page Addressing is not as at-

tractive as it could be. A modified Zero-Page Addressing mode may be much

more useful for larger programs. This modified Zero-Page Addressing mode

can be called Designated Page Addressing. This mode requires an 8-bit page

register that can be set to any of the 256 different pages in the 6502

memory. In this ways one can designate which page of memory is desired to

have fast access. This allows the microprocessor to execute at almost

twice its regular speed as it would seldom be necessary to specify the high

byte of each address. One executes a 'Set Page' instruction at the begin-

ning of the program and then execute the bulk of the instructions from that

page in memory. If it becomes necessary to cross into the next page or

some other page of memory for a considerable number of instructions or

data, one simply sets the page to a different number. Another benefit is

that for stack-oriented code. the designated page may be set to that page

of memory where the stack resides. This could allow one to access the

stack very quickly for non-stack operations. Altogether, this designated

t	 page option is strongly recommended.
NI

One characteristic of the 6502 is that one cannot do memory-to-memory

manipulations. That iso one must always route one of the operands by way

88

of the accumulator. This does not allow one to keep any temporary result

in the accumulator and also forces the programmer to use more instructions

to perform memory-to-memory transfer. For this reason. another accumulator

may be desirable, particularly one which has the full capabilities of the

original accumulator. This accumulator might be transparent to the pro-

grammer such that the microprocessor is capable of memc,ry-to-memory manipu-

lation without passing through an accumulator.

Placing a microprocessor into an array system * especially the Super-65

means extensive use of the index registers. More such registerse prefera-

bly with general-purpose register capabilities of shifting, incrementing. 	 i

decrementing and the like could be used effectively. The addition of at

least one general purpose register with the option of adding the contents

of that register to the accumulator may resolve the temporary storage

problem.

In contrast to the MC6800. the 6502 does not have tristate capability

on the chip. That is. the 6502 does not itself provide DMA capability.

However * the architecture of the Super-65 could not have taken advantage of

this capability had it been available. This is because each processor

should always be able to access its private memory. This would not be the

case if the tristate buffers for the address and data buses were on the

microprocessor chip. If the microprocessor has 512 bytes of RAM on-board

and tristate buffers on-board with control inputs to determine when the

buffers should be tristated, one could reduce chip count on the processor

board significantly. This reduction might not be worth the required addi-

tional complexity of the microprocessor chip. However@ with the onset of

VLSI. the above option might be easily within reach.

Most microprocessors have the capability of being halted for varying

89

amounts of time. This is typically does by either a HALT signal or by dis-

abling the clock input to the microprocessor. When the clock is disabledo

the most reliable procedure is to reset the microprocessors before proceed-

ing. It is desirable to temporarily cause the microprocessor to execute

no-ops with the clock active so that the microprocessor remains synchro-

nised with the other processors of the array. Thus * the capability to

disable instruction decoding within the microprocessor and force execution

of no-ops until the instruction decode disable control input goes inactive

would be quite useful in deselecting certain processors for a few instruc-

tions.

One final property that present microprocessors do not have is the

ability to team the processors easily to do multi-word arithmetic as a

single unit. In particular * there is no method of propagating carries from

one processor to the next without loading the accumulator with zero and

shifting the carry bit into the accumulator. then storing the accumulator

where the next processor can read it. This fact led to implementation of

the stored-carry solution. However * the stored-carry solution works rea-

sonably well when several additions are necessary. When only one addition

is required the stored-carry approach is extremely inefficient and unsatis-

factory. One solution would be to place carry in and carry out pins on

each microprocessor. This solution would lead to lengthy carry-propagation

delays which would be unacceptable. A possible alternative would be to

place carry-propagate and carry-generate inputs and outputs on each

processor. This method would require two additional pins but would allow

the carry propagation delay time to be substantially smaller than the

preceding solution.

A

l^

Z

k

90

6.3 Extending the Mioroprocessor Array

There are several obstacles to extending the microprocessor array to a

very large amber. `these obstacles are due to the hardware implementation

of the Super-65 rather than the implementation of Content Independent Code.

The most serious impairment is that for an array of n processors. n

WRITES to SM and n READS from SM are required to pass information from each

processor to the next. In the four -processor array implementeds this

problem was not conspicuous. One can readily see that for a larger array$

the percentage of time spent simply communicating between processors could

rapidly become unacceptable. Therefore e in order to extend the array sub-

stantially, one should modify the interprocessor communications to allow

each processor to communicate at least to its nearest neighbors by perform-

ing a single WRITE. This can be done perhaps most easily by giving each

processor two special locations within its private memory. Whenever the

processor WRITES to one of these locations. it is giving information to one

of its two nearest neighbors. Whenever the processor READS from one of the

two special locations it is receiving information from one of its two near-

est neighbors. This would relieve the processor communication bottleneck.

A related problem is that the implemented array requires that each

processor wait its turn to store its results in SM. Once againe this

forces the array to perform n times as many writes as the uniprocessor

would normally do. It is true that two processors ca~iziat WRITE onto the

some address and data buses at the same time. A possible solution might be

to have all the processors store their word into a special location in

Private Memory that is part of a special piece of hardware. This hardware

would be designed to accept the address from the controlling processor

and store each processor ' s word in a sequential fashion beginning at the

91	
i

address specified by the CP. This hardware woulde of coursee need to

operate significantly faster than the processors. For very large arrays.

it might be necessary to follow every WRITE to SN with one or two no-ops to

allow the hardware time to complete the transfer of every processor 's word.

This then would reduce the store time to SH from n VRITE instructions to 1

WRITE instruction and possibly 1 or 2 no-op instructions.

The design of the processor board was meant to allow implementation

of an arbitrarily large Array. Except for one detail, this was achieved.

The original design of the processor board includes an 8-input NAND gate

to be attached to the roast input of the control processor flip-flop on

each board. Obviously * this will not allow one to have more than 8 other

processors or a total of 9 processors. In order to remedy this situation*

open-collector buffers are placed on each of the inputs normally tied to

the HAND gate. The wired-AND of these inputs is formed by tying them to-

gether to pin 39 of the peripheral connector. User 1 must be disabled on

the Apple. Finally the NAND of the inputs (equivalent to the previous

design) is achieved by attaching the wired-AND to the input of an inverter.

The output of the inverter is then tied to the reset input through a tri-

stateable buffer whose control input is I/O Select. The buffer prevents

I/O Select from first setting its CP flip-flop and then resetting it

isew.diately afterwards. This modified design does not of itself limit the

array size.

One final restriction is that the Apple II backplane has space for

only 7 processor boards * and in order to simplify the decoding. the Apple

II devotes an entire r.-age to each 1/0 Select line. each Device Select line

and it devotes 8 pages to I/O Strobe. Mince the Apple II provides only 7

slots with I/O Select. Device Select and I/O Strobe, it is not trivially

y	 -

--AIL-

f i92

possible to extend the array size. Nowevers there is a commercially

available card cage with the desired number of slotse required power supply

and required decoding for the size of array desired. One would probably

devote only 1 location to each I/O Selects Device Select and I/O Strobe

control signal. allowing the array size to reach several thousand.

6.4 Suggestions for Further Research

The first suggestion for further research is to correct the imperfec-

tions within the Super-65 design that have been previously noted.

Specifically, one should provide:

(1) more sophisticated interprocessor communication.

(2) some method of storing in SM more rapidly.

(3) necessary decoding circuitry. etc. to allow expansion of the

array.

Then one should pursue the recoiling of many more progress into Context

Independent Code. In particular, one should determine if it is possible to

recode dependent data programs in such a way so as not to spend an unac-

ceptable percentage of the time transferring results from one processor to

another. One should try to more fully determine the restrictions to CIC

programming and if possible develop more well-defined rules for implement-

ing it.

Other areas for extended research include pursuing the desigu of tha

ideal microprocessor for an array environment. One could determine ifs

(1) 512 bytes of on-board BAN

(2) Tri-state address and data buffers on board

(3) Designated page option

(4) Instruction decoding disable control input

(5) Extra accumulator

Cf

:

93

i

(6) Additional ins'	 :sisters

(7) Carry propagate/generate inputs and outputs

are all within the practical reach of today's technology * and if so * what

r	
sacrifices would be necessary in order to achieve all of the above options.

Finally, one might wish to review all the previously mentioned issues

i	 and try to determine what. if any impact the use of a 16-bit microprocessor

would have upon them.

Y

tt}

94	 i 3

RBFMMCBS

Artwick, B. A. [1980], 1►f£er000arputer Interfacing, Prentice-Hall Inc.,

Frglewood Cliffs, CA.

Bare::.., G. H., R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick and R. A.

Stokes, [1968], The ILLIAC IV Computer, I= Trans. on Computers,

C-17(8), 746-757.

Barnwell, T. P., III, S. Gaglio and R. M. Price [1978], A Multi-Micro-

processor Architecture for Digital Signal Processing, Proe. of the

International Conference on Parallel Processing, 115-119.

Borden, W., Jr. [1978], The Z-80 Microcomputer Handbook, Howard W. Sams &

Co. Inc., Indianapolis, IN.

Camp, R. C., T. A. Smay and C. J. Triska [1979], Weroproeeeaor Systems

Engineering, Matrix Publishing Inc.

Espinosa, C. [1979], The Apple II Reference Manual, Apple Computer Inc.,

Cupertino, CA.

Flynn, M. J. [1972], Sore Computer Organizations and Their Effectiveness,

IEEE Trans. on Computers, C-21(9), 948-960.

Garland, H. [1979], Introduction to Microprocessor System Design, McGraw-

Hill, New York, NY.

Kuck, D. J. [1968], ILLIAC IV Software and Application Programming, IEEE

Trans. on Computers C- 17(8), 758-770.

Leventhal, L. A. [1979], 6502 AssembZy Language Programming, Osborne/McGraw-

Hill, Inc., Berkeley, CA.

Machado, N. C. [1972], An Array Processor With a Large Number of Processing

Elements, Ph.D. Thesis, Dept. Computer Science, Univ. of Ill., Urbana-

Champaign, IL.

95^} x

406 m4

Sawin, D. H. [1977], 1► croprooessors and Microcomputer Systems, D. C. Heath,

and Co., Lexington,-Mi.

Scanlon, L. J. [1980], 6502 Software Design, Howard W. Same 6 Co. Inc.,

Indianapolis, IN.

Slotnick, D. L. [1967], Unconventional Systems, Froo. AF.IFS Spring Joint

Computer Conference, 477-481.

Thurber, K. J. and L. D. Wald [1975], Associative and Parallel Processors,

Computing Surveys, 7(4), 215-255.

f

E

96

APPENDIX I

IMPLEMENTATION OF THE S-BIT MULTIPLICATION ROUTINE

This appendix is presented in order to docuosnt the 8 x 8 bit multi-

plication program that was demonstrated on the Super-65. The initializa-

tion routine tak-ta the values stored in locations $1001 and $1002 and

places them in locations $0062 and $0063 respectively, within each PEM.

PE is then disabled and the contents of locations $1003 and $1004 are

transferred to locations $0062 and $0063 within each PEN. PE is then

disabled and the contents of location $1005 and $1006 are transferred to

locations $0062 and $0063 within each PEN. PE is then disabled and the

contents of location $1007 and $1008 are transferred to locations $0062 and

$0063 within PEM . All PEs are then restarted and the array performs a

RESET to synchronize the PEs. This initialization routine places the dif-

ferent multipliers into location $0062 and the different multiplicands into

location $0063 of each PEN. If each PE had its own I/O port, it could read

its own multiplier and multiplicand from that port and the initialization

routine just described would not be required.

8 x 8-BIT MULTIPLICATION INITIALIZATION ROUTINE

OBJECT
LOCATION CODE MNEMONIC OPERAND N COMMENT

3900 AD 01 10 LDA $1001 41 GET MULTIPLIER FOR PE
3903 85 62 STA $	 62 39 STORE IN PENS
3905 AD 02 10 LDA $1002 41 GET MULTIPLICAND FOR PE
3908 85 63 STA $	 63 31 STORE IN PEMs
390A SD 90 CO STA $C090 41 DISABLE PE
390D AD 03 10 LDA $1003 41 GET MULTIPLIER FOR PE
3910 85 62 STA $	 62 3t STORE IN PEMs
3912 AD 04 10 LDA $1004 41 GET MULTIPLICAND FOR PE
3915 85 63 STA $	 63 31 STORE IN PEMs
3917 8D BO CO STA $COBO 41 DISABLE PE
391A AD 05 10 LDA $1005 41 GET MULTIPLIER FOR PE
391D 85 62 STA $	 62 31 STORE IN PENS
391F AD 06 10 LDA $1006 41 GET MULTIPLICAND FOR PE
3922 85 63 STA $	 63 U STORE IN PEN@

97

OBJECT
LOCATION CODE MNEMONIC OPERAND N OOMMENT

3924 8D DO CO STA $CODO 4; DISABLE PE
3927 AD 07 10 IDA $1007 4; GET MULTIPLIER FOR PE
392A 85 62 STA $	 62 3; STORE IN PEN

t	 392C AD 08 10 LDA $1006 4; GET MULTIPLICAND FOR PE
392F 85 63 STA $	 63 3; STORE IN PEN
3931 8D FF CF STA $CFFF 4; RESTART ALL no

72; TOTAL MACHINE CYCLES REQUIRED

The following program assumes that locations $0062 and $0063 have

previously been loaded with the multiplier and multiplicand respectively.

Location $0064 is used as a temporary storage location and locations $0060

and $0061 contain the 16-bit product (low and high bytes respectively),

after execution of the program.

8x8—BIT MULTIPLICATIONANDEPENDENT DATA

s

t

OBJECT
LOCATION CODE MNEMONIC OPERAND N

4000 A9 00 LDA 00 2;
4002 85 60 STA $60 3;
4004 85 61 STA $61 3;
4006 A2 08 LDX 08 2;
4008 06 60 ASL $60 5;
40OA 26 61 ROL $61 5;
4000 06 62 ASL $62 5;
400E A9 00 LDA 00 2;
4010 E9 00 SBC 00 2;

4012 49 FF FOR FF 2;
4014 25 63 AND $63 3;
4016 85 64 STA $64 3;
4018 18 CLC 2;
4019 65 60 ADC $60 3;
4O1B 85 60 STA $60 3;
401D A5 61 LDA $61 3;
401F 69 00 ADC 00 2;
4021 85 61 STA $61 3;
4023 CA DEX 2;
4024 DO E2 W. $4008 2;
4026 60 RTS 6;

392;

COMMENT

LOAD IMMEDIATE ZERO
CLEAR PRODUCT LOW BYTE
CLEAR PRODUCT HIGH BYTE
SET BIT COUNT = 8 BITS
SHIFT LEFT PRODUCT LOW BYTE
ROTATE LEFT PRODUCT HIGH BYTE
SHIFT LEFT MULTIPLIER
SUBTRACT CARRY BIT FROM ZERO TO

OBTAIN EITHER 00 (C=1) OR
FF (Cs0)

COMPLM435T PREVIOUS RESULT
AND EITHER 00 (C=0) OR FF (C=1)

WITH MULTIPLICAND
TEMP = EITHER 00 OR MULTIPLICAND
ADD EITHER ZERO OR MULTIPLICAND TO

SHIFTED PARTIAL PRODUCT LOW BYTE

ADD POSSIBLE CARRY TO PRODUCT HIGH
BYTE

DECREMENT BIT COUNT
DONE? IF NOT, LOOP

TOTAL MACHINE CYCLES REQUIRED

The Transfer of Results Routine does the followings

1. transfers the 16-bit product from PE to locations $1007 and $1008 in SM

,mow-'f^..	 i.. .._.	 __...	 .. ,	T.. ^	 ..-..;. 	 ^:....— y.._.".^T.f'.v.PnPP^wf'•.wm'n^T^'"i.+`^ 'f 	 _	 _y

.....• •^wii

l

98

i
h

2. transfers the 16 -bit product from PE to locations $1001 and $1002 in SM 	 i

3. transfers the 16-bit product from PE to locations $1003 and $1004 in SM

4. transfers the 16 -bit product from PE to locations $1005 and $1006 in

SM.

8 x S-BIT MULTIPLICATION TRANSFER OF RESULTS ROUTINE

OBJECT
LOCATION	 CODE MNEMONIC OPERAND N	 COMMENT

3F00 A5 60 LDA $	 60 3; GET PRODUCT LOW BYTE FROM PE
3FO2 8D 07 10 STA $1007 4; TRANSFER TO SM
3FO5 A5 61 LDA $	 61 3; GET PRODUCT HIGH BYTE FROM PE
3FO7 8D 08 10 STA $1008 4; TRANSFER TO SM
3FOA SD 00 Cl STA $C100 4; SET CP=1
3FOD A5 60 LDA $	 60 3; GET PRODUCT LOW BYTE FROM PE
3FOF SD 01 10 STA $1001 4; TRANSFER TO SM
3F12 A5 61 LDA $	 61 3; GET PRODUCT HIGH BYTE FROM PE
3F14 8D 02 10 STA $1002 4; TRANSFER TO SM
3F17 SD 00 C3 STA $C300 4; SET CP=2
3F1A A5 60 LDA $	 60 3; GET PRODUCT LOW BYTE FROM PE
3F1C 8D 03 10 STA $1003 4; TRANSFER TO SM
3F1F A5 61 LDA $	 61 3; GET PRODUCT HIGH BYTE FROM PE
3F21 8D 04 10 STA $1004 4; TRANSFER TO SM
3F24 8D 00 C5 STA $C500 4; SET CP=3
3F27 A5 60 LDA $	 60 3; GET PRODUCT LOW BYTE FROM PE
3F29 8D 05 10 STA $1005 4; TRANSFER TO SM
3F2C A5 61 LDA $	 61 3; GET PRODUCT HIGH BYTE FROM PE
3F2E 8D 06 10 STA $1006 4; TRANSFER TO SM
3F31 8D 00 C7 STA $C700 4;. SET CP=0
3F34 60 RTS 6; RETURN FROM SUBROUTINE

78; TOTAL MACHINE CYCLES REQUIRED

Since the initialization routine disables all but the CP, it is neces-

sary to know Vn ich PE is the CP before initialization. The initialization

routine presented previously assumes that PE is the CP prior to initiali-

zation and will not work if this is not the case. If one desires that the

CP be a PE other than PE , the software must be modified. The multiplica-

tion and transfer of results routines do not require that PE be the CP.

	1982015020.pdf
	0020A02.JPG
	0020A03.TIF
	0020A04.TIF
	0020A05.TIF
	0020A06.TIF
	0020A07.TIF
	0020A08.TIF
	0020A09.TIF
	0020A10.TIF
	0020A11.TIF
	0020A12.TIF
	0020A13.TIF
	0020A14.TIF
	0020B01.TIF
	0020B02.TIF
	0020B03.TIF
	0020B04.TIF
	0020B05.TIF
	0020B06.TIF
	0020B07.TIF
	0020B08.TIF
	0020B09.TIF
	0020B10.TIF
	0020B11.TIF
	0020B12.TIF
	0020B13.TIF
	0020B14.TIF
	0020C01.TIF
	0020C02.TIF
	0020C03.TIF
	0020C04.TIF
	0020C05.TIF
	0020C06.TIF
	0020C07.TIF
	0020C08.TIF
	0020C09.TIF
	0020C10.TIF
	0020C11.TIF
	0020C12.TIF
	0020C13.TIF
	0020C14.TIF
	0020D01.TIF
	0020D02.TIF
	0020D03.TIF
	0020D04.TIF
	0020D05.TIF
	0020D06.TIF
	0020D07.TIF
	0020D08.TIF
	0020D09.TIF
	0020D10.TIF
	0020D11.TIF
	0020D12.TIF
	0020D13.TIF
	0020D14.TIF
	0020E01.TIF
	0020E02.TIF
	0020E03.JPG
	0020E03.TIF
	0020E04.TIF
	0020E05.TIF
	0020E06.TIF
	0020E07.TIF
	0020E08.TIF
	0020E09.TIF
	0020E10.TIF
	0020E11.TIF
	0020E12.TIF
	0020E13.TIF
	0020E14.TIF
	0020F01.TIF
	0020F02.TIF
	0020F03.TIF
	0020F04.TIF
	0020F05.TIF
	0020F06.TIF
	0020F07.TIF
	0020F08.TIF
	0020F09.TIF
	0020F10.TIF
	0020F11.TIF
	0020F12.TIF
	0020F13.TIF
	0020F14.TIF
	0020G01.TIF
	0020G02.TIF
	0020G03.TIF
	0020G04.TIF
	0020G05.TIF
	0020G06.TIF
	0020G07.TIF
	0020G08.TIF
	0020G09.TIF
	0020G10.TIF
	0020G11.TIF
	0020G12.TIF
	0020G13.TIF
	0020G14.TIF
	0021A02.TIF
	0021A03.TIF
	0021A04.TIF
	0021A05.TIF
	0021A06.TIF
	0021A07.TIF
	0021A08.TIF

