NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

UNIVERSITY OF ILLINOIS
URBAXNA

AERONOMY REPORT
NO. 97

IMPLEMENTATION OF CONTEXT INDEPENDENT
CODE ON A NEW ARRAY PROCESSOR:
THE SUPER-65

by
R. O. Colbert
S. A. Bowhill
June 1, 1981
Library of Congress ISSN 0568-0581
(A K=1ba/5/) LEFLEMLNTIATION Ul CivikeX| NEL-L2894
k £ N k NEW PkhAY PEFOCESSOb:
=0D (Lii41DC1s lniv.) 104
) Ja
1y
Department of Electrical Engineering
Supported by University of Illinois
National Science Foundation

Urbana, Illinois

UILU-BENG-81 2503

AERONOMY REPORT
N O. 97

IMPLEMENTATION OF CONTEXT INDEPENDENT CODE ON A
NEW ARRAY PROCESSOR: THE SUPER-65

by

} R. 0. Colbert
S. A, Bowhill

August 1, 1981

Supported by Aeronomy Laboratory
National Aeronautics Department of Electrical Engineering

and Space Administration University of Illinois
Grant NSG 7506 Urbana, Illinois

~HECEDING PAGE BLANK NOT FILMED 111

ABSTRACT

This work explores the feasibility of rewriting standard uniprocessor
programs into code which contains no context-dependent branches. That is,
this type of code (context independent code) would e_ontain no branches that
might require different processing elements to branch different ways.

In order to investigate the possibilities and r§strictions of CIC,
several programs were recoded into CIC and a four—-element array processor
was built. This processor (the Super-65) consisted of three 6502 microproc~
essors and the Apple II microcomputer. The results obtained were somewhat
dependent upon the specific architecture of the Super-65 but within bounds,
the throughput of the array processor was found to increase linearly with
the number of processing elements (PEs). The slope of throughput versus PEs
is highly dependent on the program and varied from 0.33 to 1.00 for the

sample programs,

ABSTMCT [] L L] L] L[] * L] .

TABLE OF CONTENTS . . .

LIST OF FIGURES

1.

3.

INTRODUCTION. . . .

TABLE OF CONTENTS

L] L] L

1.1 What i8 an Array Processor?. .

1.2 Motivation for Array Proceseors.
1.3 Issues and Objectives of This Study.

1.3.1
1.3.2
1.3.3
1.3.4

1.3.5

Software requirements
Expandability of syetem . . .

Fault tolerance of system . .

APPROACH TO A NEW ARRAY PROCESSOR

2.1
2.2

Software Consideration:

Effect of Context-Dependent Branches
Independent and Dependent Data

Processor-memory interconneotion.

Interprocessor communications . .

*

on System Throughput.

Hmzing . . L] . L] L L] L] . L L] A4 - L] . .

2.3
2.4
2.5
2.6

Context Independent Code and Its Implementation.
Input/Output Coneepts. o« « « « « o o o o o o o o

General Hardware ConsiderationB. « « « « o o o o o o o o o o

Seleoting the Microprocessor for a Multi-Microprocessor System

HARDWARE ASPECTS OF THE SUPER-65 MULTI-MICROPROCESSOR SYSTEM. . . .

3.1
3.2
3.3

3.4

Attributee of the 6502 Microprocessor.
The Apple II Microproceseor System . . . « « .
Architecture of the Overall System
Design of the Individual Processor Card. . . .

. L] L LJ

iv

Page
111

iv

vi

(- I

10
11
11

17
19
22
23
27
30
30
36
45
51

4., EXAMPLES OF INDEPENDENT DATA HANDLING

6 . 1 Inmmm L] L] L] L L] L] L] L] L [] . L] [] . L

4,2 8-Bit Magnitude of Twos-Complement Number.

4.3 8 X 8-Bit Mult?:plida‘b‘tm e o & o o & » o o

4,4 16/8-Bit Binary Division . . « . « « + «

4.5 32-Bit Acouwmulation. « « « o « o« o o o o

4.6 32 x 32-Bit Binary Multiplication.
4.7 Comparison of CIC Programs With Uniprocessor Programs.

5. EXAMPLES OF DEPENDENT DATA HANDLING .
5.1 Introduction . « « « o« ¢« ¢ o o &
5.2 Carry-Propagation Problem. . . .
5.3 Stored-Carry Solution.
5.4 32-Bit Acowmulation. . . . « . .

5.5 32 x 32-Bit Multiplieation . . .

.

-

5.6 Comparison of CIC Programe With Uniprocessor Programs.

6. SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH. + . .

6' 1 Smm. L d L4 . L] L] . L] . . L L . . L * L] L] L LJ L] L] L L L]

6.2 The Ideal Microprocessor for an Array of Microprocessors

6.3 Extending the Microprocessor Array . . « « « o« « « o o

6.4 Suggestions for Further Regearch . « « « « ¢« « « ¢ ¢ o &

REFE mcm . . L] Ld . L] [] [] . [] L) L] * . L] [. L[] . .

APPENDIX I IMPLEMENTATION OF THE 8~-BIT MULTIPLICATION ROUTINE. .

57
57
37
58
59
61
62
64
69
69
69
70
71
73
81
83
83
86
90
92
9%
9

i eAa e e m

Figure
1.1
1.2
2.1

2.2

2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
5.1a
5.1b

LIST OF FIGURES

sinsl“pmce.‘or cmut‘r . . L] L] L] . L] L] [] L] . L] L[] L] [] L] . L] L] L]

conventiml ‘rt‘y computer. L * L] L] .] . L] L] - . L] L] L] L] . L] .

Program containing a single context-dependent branch of

lmgth L/3 . . . L L] L L] *] L] * . * . L L] L] L] L] L] . L] L] . * L] .

Program containing 20 context-dependent branches, each of

1 ength leoo * . * L L] L] * L] L] L L] L * L] L] L] L L L L] L L] L] . . L

Program containing 3 level nested context-dependent branching. .

Graph of array throughput versus level
dependent branching. . . « « ¢« « « ¢ &
6502 timing signals. . « « « ¢« ¢« ¢ . o
6502 microprocessor pinout designation
Peripheral comnector pinout.
Peripheral connector descriptions. . .
Super-65 system block diagram.
Apple II schematic diagram
Processor card schematic dfagram . . .
Processor card layout. . . . « « + .+ &
32 x 32-bit multiplication diagram . .

32 x 32-bit multiplication diagram . .

of nested context-

e & o o o o o
L] . L d L] . . L]

(courtesy MOS

e & & o o o
- L . L] L] .

Technology)

vi

Page
. 3
. &4
. 12
. 14
. 16
. 18
. 37
. 38
. 40
. 41
. 46
. 49
. 53
. 56
« 75
. 76

1. INTRODUCTION

The needs »f most computer users are constantly changing. These
needs tend to demand faster and more powerful computers ss the user puts
the computer to more extensive use. Faster computers msy be obtained
either by improving the raw speed of the circuits end components or by
using the same circuits in a more efficient architecture. Unlimited im-
provements in circuit speed csnnot be expected due to fundamental physical
constants, the most notable of these being the speed of light. Therefore,
new approaches to computer orgsnization must be found if projected demands
of computer users sre to be met, particularly in the ares of large scien-
tific problems.

In recent years, much sttention has been given to unconventional
organizations and various super-computers utilizing new concepts have been
built [Slotnick, 1967). An endless amount of questions and discussions is
possible when the capabilities and handicaps of different orgsmizacions are
compsred. One can often find a specific application for which a given
architecture excels as well as instences in which the same approach is
ineffective. It is not the purpose of this work to make exhaustive compar-
isons of the capabilities and handicaps of different architectures. Only
one particular organization will be deslt with: the array processor.

The array processor has been widely sccepted by the computer community
as a cost-effective approach in s particular but rather important set of
applications [Thurber and Wald, 1975]. In this form of processor, high
throughput is achieved by introducing parallelism, that is to say, several
processors performing nearly identical operations. In this work, the array
architecture is examined and a new spprosch to the design of an array

processor is proposed in order to take advantage of the recent advent of

ST T T Teww e e

et S

Al

low-cost, high-performance microprocessors.
1.1 What i an Array Prooessor?

Illiac IV will be taken here as the conventional array processor.
This section is not meant to be a complete description of Illiac 1V and
some fsmilisrity with the work of Barmes et al. [1968] and of xuok [1968]
is assumed. Only a few basic concepts are considered here in order to set
the stage for the discussion that follows.

Figure 1.] shows the functional diagram of a single-processor compu-
ter. 1t consists of: (1) a memory to hold operands and instructoms, (2) s
control unit that fetches instructions from the memory, decodes them and
issues control signals to (3) sn arithmetic unit that performs the opers-
tions on operands taken from the memory. The most radical approach to
parallelism would obviovsly be to replicate the elements shown in Figure
1.1 a number (n) times providing adequate intercomnections between the
elements. This is the multiprocessor approach [Flymn, 1972]. Although
powerful, this organization leads to several implementation problems and as
yet appears impracticsl for large n.

The expense of a multiprocessor architecture is primarily s result of
the cost of the interface connecting each of the processors to each of the
memories and the economic burden caused by the multiplicity of conmtrol
units. This burden can be substantial as in a sophisticated classical
machine; the control unit typicslly accounts for more than half of the
totsl gste count [Machado, 1972].

These considerstions lead one to the conventional array computer
spproach whose functionsl diagrem is shown in Figure 1.2. Only the
sarithmetic units and memories are replicated and one single control unit

(CU) drives the array of arithmetic units. Thus, an array processor is

———e-

— e

- b

INSTRUCTIONS

_->

CONTROL
UNIT

§

=

DATA

DATA

ARITHMETIC
LOGIC
UNIT

MEMORY

Figure 1.1 Single-processor computer.

ADDRESS

CONTROL

*3aynducd Leize TeuoyIULAU0) 2°1 aar8y13

SS3N0avY
TJONLNOD
. viva H
h g Z\\ \/ q
1) O NN
viva)
I L I L
T0¥LNOD
N) J
S$S3800v 1INA SNOILINNLSNI
TFONLNOD
1ndino
1NdNI
viva AHOW3IW :
NIV]

vivd

B o B S8

characterized by the fact that a single instruction stream is executed
simultanecusly by any or sll of the arithmetic units. PFor certain
srithmetic units, the operation mey have to be modified or suspended based
on the contents of a gate or mesk register in each processor. PFor this
resson, the entire control unit cannot be made central as certsin control
decisions are opersnd-dependent. Therefore, & minimum amount of control is
kept local and each srithmetic unit plus its local control is called a
processing element (PE). The term processing unit (PU) is used to desig-
nate a PE with its processing element memory (PEM). Instructions csn be
stored either across the PEMs or in a specisl instruction memory.

One interpretation of the array-processor concept is that every PE
performs precisely the ssme instruction on the same addresses in its own
PEM. This conetraint can be relaxed somawhat with the introduction of
extra hardware to allow local indexing, mode control and routing. These
concepts as they are commonly applied to an array processor (such as Illiac
IV) will uow be briefly described.

Local Indexing. The CU broadcasts an address to each PE. This ad-
dress may be modified by each PE. 1In Illiac IV, for instemce, an index
register and address adder are provided with each PE. A central index
register is also provided in the CU. The final operand address a; for PE
is the sum of the base address specified in the instruction, the contents
of the central index register in the CU, and the contents of the local
index register of the PE .

Mode Control. Although the gosl of the array-processor structure is
to be able to control the processing of s mumber of dats stremms with o
single instruction stremm, it is sometimes necessary to exclude some dats

strems or to process them differently. This is accomplished by allowing

-

each Instruction to be locally modified by the PRe. The simplest form of
mode control is to decide locally if central instruction I will de locally
executed as I or as a no-opi i.e. esch PE can be turned on or off. This is
the only type of mode control available in Illiac IV. Complete mode-
control capability would obviously result in a multiprocessor approach.

Routing. Routing is defined as the method by which PB, may obtain an
operand which is stored in PIIIJ (i27). This need arises in many applice-
tions and therefore some way of routing opersnds from ome PE to amother is
necessary. The simplest type of routing is to linmk l'li to "i-l and Pl“_l.
This is called neighbor routing. MNca-neighbor routing is thus obtained by
s sequence of neighbor routings. Illiac IV use:z o= 2dvenced form of
neighbor routing. This form is the four-nesrest-neighbor routing. Bach PE
is able to communicate with the four PEs adjacent in the four directiomns
(conventionally described as north, south, esst and west).
1.2 Motivation for Array Proocessors

There are many reasons for using single-instruction-strem-multiple-
data-strcam (SIMD) erchitectures. Thurber and Wald [1975) contend that
SIMD architecture is useful for large problems such as veather anslysis and
prediction, seismic data processing, phased-array-radsr processing and
picture processing. They also contend that prodlems with inherent dats
structure and parallelism such as solving systems of lincsr equations,
Fourier transforms and systems of partial ditferential equations cen be
successfully executed on s SIND machine. They further divide the sdvan-
teges into the following categories.

1. Bardvare

8. Better use of bardware on highly parallel prodlems.

b. Cost effectiveness due to the advent of LSI s.croprocessors.

e

I owd T BT Y AL e e o T e Rl
LI T T Ty Ext

N Y

c. Overcoming the speed of uniprocessors.
d. Reliability and gracsful degradation of system.

2. Softvere

s. Simpler then for multiprocessor (MIWD).
b. Basier to construct large systems.
c. Less strict executive~function requirements.

These advantages are obtained at a price: such machines tend to be
special-purpose, and any attempt to apply to inappropriste problems will
likely be in vain.

1.3 Issuss and Objeotives of This Study

Assuming that the array processor is to be used in the proper
environment, there still remain several issues to be resolved, such as
processor-memory interconnection, interprocessor communication, software
requirements (major modificetions of uniprocessor program required, how
context-dependent branches sre handled), expandability of the system and
fault tolerance of system.

1.3.1 Proocessor-memory iriterconnection. This study exsmines the
limitations imposed by allowing communication from each of the processor
elements to the shared memory (8M) only by way of & single address bus and
s single data bus. This structure is attrsctive both economically and from
the standpoint of syscem complexity. It is, in fact the simplest intercon-
nection between seversl processors and a shared memory. As one csn imag-
ine, this simplicity imposes certain limitations. This study will seek to
determine if the limitations imposed by this srchitecture are acceptable.

1.3.2 Iuterprocessor commmiocations. As described esrlier, most array
processors have some form of interprocessor communication. A typicasl

arrsngement is to have 8 single bit channel of communication to esch PE

S

immediately to the north, south, esst snd west. This research explores the
problems which result when the only !ot; of comaunication between two PEs
is through the shared memory. This arrangement requires much less special
hardvare to be added to the basic processing umnit but insteed requires a
WRITE to and a READ from the shared memory. On the other hand, the fact
that only one processor cam write to the shared memory st a time may ad-
versely affect system throughput.

1.3.3 Software requirements. Because all processors share the same
address bus in an array processor, each processor must execute the same
instruction at the same time. If the programs to be executed were strictly
linear with no branching, this would not be a restriction; however, most
programs contain several branches and loops. Thus the uniprocessor program
is not directly executable on the array processor. In Illiac IV [Barmes et
al., 1968; Kuck, 1968), as in most array machines, the programs reside in
the shared memory and are specially compiled for the array by a host proc-
essor. The instruction stream seen by the individual PE is essentially u-
niprocessor code containing loops and branches. The Illiac IV allows local
control to determine if the branch that the array is taking should be exe-
cuted by that PE, If not, the PE executes no-ops until the array returns
to execute the other branch. For code containing short context-dependent
branches, the overall system throughput is not seriously degraded. How-
ever, if nested branches and long context-dependent branches are allowed,
fever and fewer PEs execute until all PEs are halted} the array them allows
the waiting PEs to execute the mext portion of code. Flynn [1972] has
suggested that Minsky's Conjecture (that system throughput increases as
log,n where n equals the number of PEs), may be accurate if, on the

average, half of the remaining PEs continue to execute after s given

B
:
:
!
]

B L S R

branch. As in the case of Illiac IV, the problems which the array
processor is designed to solve do not force it into large nested branches
often enough to produce such congestion.

One alternative, which removes the need to halt any PE, is to rewrite
the original code so that it contains no context-dependent branches. That
is, all context-dependent branches are recoded to allow the PE to execute
the same instructions, but the data on which the instructions operate de-
termine what operations are performed. This is not self-modifying code in
the sense that the program resides in SM and is never altered. The present
work investigates the feasibility of rewriting standard uniprocessor pro-
grams into code which contains no context-dependent branches, hereafter
called Context Independent Code (CIC). This investigation also considers
the limitations such recoding may have upon general usefulness of the
system and on system throughput.

1.3.4 Expandability of system., Another aspect to be considered is
that of expandability of the system. Many array systems are completely
fixed as to the number of processors contained in the system. If a user
desires to expand this system, the only solution is to add another complete
system. An appealing aspect of the CIC software is that it allows the
system to be expanded one processor at a time without requiring the oyltén
software to be completely rewritten. This is especially true if the number
of processors is contaned as a variable within the program so that ome
simply increments the variable when a PE is added to the system. Also one
is gusrsnteed that the system throughput incresses linearly with n. This
obviously contradicts Minsky's Conjecture, which advocates of array proces-

sing have been attempting to disprove for some time.

10

1.3.5 Fault tolerance of system. One final issue is thet is fault-
tolersnce of the system. If one faulty processor causes the entire array
to fail, the array will have s much higher failure rate than eny one of the
PEs. This mesns that if the system contains 1000 PEs, esch with a failure
rate of spproximately .01%, the system has an unacceptable failure rate of
10X. However, if one is able to decouple the PEs to the extent that no ome
PR directly affects any other PE, then the failure rate is drastically re-
duced. More important than fault tolerance is fault detection. That is,
one must be able to determine if the results the array is generating are
valid., The concept of SIMD processing combined with CIC has the special
feature that the address lines of all PEs must be the same at all times
(other than when local indexing occurs); any departure by one PE is s
certain indication of error.

The major objective of this thesis is to demonstrate that CIC recoding
is feasible and attractive for some applications. In order to pursue this
objective, a four-processor array computer was is built and utiliged.
Consequences of the parallel architecture are distinguished from those of

the CIC recoding of the uniprocessor programs.

LY

B!

i
3
|
!

11

2. APPROACH TO A NEW ARRAY PROCESSOR

2.1 Effect of Context-Dependent Branches on System Throughput

Context-dependent branches reduce sn array system's throughput signif-
icantly. With no context-dependent branches (assuming little or no memory
contention), the throughput of ¥ processors is N times that of the single-
processor system. To illustrate why context-dependent branches reduce
system throughput, consider an array of 32 processors. Allow this array to
operate a program contsining a single context-dependent brasnch with the
length of the branch being 1/3 of the entire program (Figure 2.1). The
entire array executes the first 1/3 of the program, then the array divides
into two groups. One group desires to execute the left branch and the
other group needs to execute the right branch. Obviously, the array can
only execute one branch st a time and so one group of the array executes
its branch while the other group is either disabled or performs no-ops.
Then the groups reverse roles while the other branch is executed. Finally,
the entire array executes the last 1/3 of the program. The time required
for the 32 processors to execute this program is thus 4/3 the time required
for a single PE. Hemnce, the throughput of the system for this program is
3/4 the throughput of the array vhen no context-dependent branches are
encountered. However, the throughput achieved by this 32-PE array is 24
times the throughput of the single-processor system. One reslizes from
this example that long context-dependent branches will reduce the array
performance much more than short context-dependent branches. One should
note that a program containing several short context-dependent branches is
ususlly preferred over s program contsining fewer branches but with each
branch having a significant length. An example might be a program with 20

context-dependent branches with each branch constituting .3% of the entire

R

(BEGIN)

L/3

2

(END)

Figure 2.1 Program containing a single context-dependent branch

of length L/3.

12

U N UNOY

13

program (Figure 2.2). The time required for an array mschine to exscute
this progrem would be 1.1 times the time required for s single PE. Hence,
the array processor would be more than 90X efficient on this progrem and an
array of 32 PEs would be able to process 32(1/1.1) or 29 times the amount
of data in the same time as s single PE.

One final example is the program which contains nested context-
dependent branches. Consider a program which contains #¥-level nested
context-dependent branching. The array proceeds down one side of each
decision until it reaches the innermost decision. It executes first ome
and then the other branch of the innermost decision until it has executed
every possible branch of the tree. By comparison, the uniprocessor pro-
ceeds down the appropriste side of each decision, executing only those
branches that sre nscessary.

Let us define Shu to be the number of branches executed by an array
processor for a program containing N-level nested context-dependent branch-
ing. One can see that for ¥ = 1, 5;, = &, for ¥ = 2, 5,, = 10, and for
N=3, 5;, = 22 (Pigure 2.3). That is, SMA is the total number of branches
contsined in a program with V-level nested context-dependent branching. If
one exanines the flow diagrams csrefully, one notes that Sﬁa exhibits the

recursion

Spu =2+ B g4

It is nov asserted that:

i+l N
SMA 2 +2° -2

2

Clearly, SlA =22 +2l o2 4, 50 ve have a basis for induction.

Substituting S - 2” + 2”'1 ~ 2 into the recursion formuls for SN

(¥-1)4 A

7
:

L/200

4

a'a

(eno)

Figure 2.2 Program containing 20 context-dependent branches,
each of length L/200.

14

15

yields the result
N-1

sm-z+z(z”+z -2)
Ml N
or Sym2+2™ad oy
Ml . N
or SMA - 2 +2 -2

Therefore, by induction, the assertion for Sm has been proven.

Let us now define SNU to be the branches executed by a uniprocessor

for a program containing N-level nested context-dependent branching. From

risdu 2.3, one notes that SNU follows the recursion

Sw =2+ Sy

It is now asserted that

Sy = 2N + 1

N

and = 2(N-1) +1

S-1u

Substituting S into the recursion formula for 5, . one obtains the

(v-1)U NU

result:

S

" 2 + [2(N-1) +1]

S

= -2
U 24+ 28-2 +1

S

U " 2N + 1

Therefore by induction, the assertion for SW has been proven.

If every branch of the program is sssumed to be of equal length, the

array processor will take SNA ISNU as long as the uniprocessor; this is

because the array must execute all SNA branches of the program instead of

just S U

context-dependent branches can drastically reduce system throughput as

branches as the single PE would. It is obvious that nested

e e - e e e oA

. E.

SR

,_ . .

e e e e B —

R

17

becomes large. The number of PBs required to allow the array processor to
obtain the ssme throughput as the single processor for s program containing
levels of nested context-dependent branching is:

LML,
20 + 1

Of course, this relationship assumes all branches to be of equal
length and in a sense may b2 considered a worst case. However, one should
still note that even for a reasonable level of nesting, sn example of ¥ = 5
the required number of PEs is grester than 8 (Figure 2.4). Hence, one
should avoid nested context-dependent branches if at all possible.

2.2 Software Consideration: Independent and Dependent Data Handling

There are two principal methods of employing an array processor. The
first method is to assume each processing element (PE) has its own source
of data. That is, each processing unit is processing data which are inde-
pendent of any other PE's data. This, in a sense is parallelism of the
highest degree and is ususlly the simplest to implement as there need be
little or no interprocessor communication., There are many applications for
such array configurations.

The second method of using the array processor is to employ each PE on
a subset of a larger problem. That is, the data given to each PE are re-
lated in some manner to the data given to the other PEs. An exmmple might
be that each PE is given a row of a large matrix and is given the job of
multiplying that row of elements with each column of snother mstrix. In
this way matrix multiplication may be performed rapidly.

Due to the complexity of array processors, array processor software
is typically very difficult to read. Many times, the software will contain

a substantial amount of special purpose instructions that are very machine-

n, NUMBER OF PROCESSORS

g g

2]

sk N+ |

-
-
L

®
™

-y
v

’
|
|
!
|
|
|
|
|
|
|
|
!
|
|
!
!
!
|
|
|
|
|
|
|
g

?
|
3t |
. |
R | | |
| | |
| ! |

o-—————————-———_—.

e _

2 3 6
N, LEVEL OF NESTED DATA CONDITIONAL BRANCHING

Pigure 2.4 Graph of array throughput versus level of nested
context~dependent branching.

18

et %
B

I

dependent. In fact, designers of arrsy machines have often decided to have
the array processor execute only its own languege. This languege is weu-
ally optimised to s high degree for the particular array srchitecture.

This obviously allows faster exscution of programs written in and designed
for that lsnguage. However, it forces any program written in enother lan-
guage to undergo & translation. These tramslations sre seldom optimized
and hence such translated programs are ususlly considerably less efficient.

Bence, if spproaching a nev array processor, one should carefully
consider the compatibility of the new design with conventional languages.
Also one should redu:;: the number of special imstructions and other eccen-
tricities to & minimum, This will serve to make the software more under-
standable and if one were to decide to use a different microprocessor, the
conversion would be & much simpler task.

An array processor should ideally be designed for either separate
independent data paths to each PE or s collection of dependent data. The
principsl difference between these two situations is that independent dats
psthe typically require much less sophisticated interprocessor communica-
tions. Thus, if one knows that s grest majority of the applications of
this array processor will have independent dats paths, the interprocessor
compunication channels may be simplified or eliminated.

2.3 Context Independent Code and Its Implementation

A nev concept in the generation of srrsy processors will be introduced
here. This is the concept of Context Independent Code (CIC). The princi-
ple behind CIC is the elimination of context-dependent branches. One
should note that CIC eliminutes sll context-dependent branches, not all
conditionsl branches from the program. One cennot remove all conditional

branches, since they allov a programmer to execute different segments of

code depending upon different conditions being present. Context-dapendent
branches are those conditional dramches iu which the data or condition may
be different for different PRe. In particulsr, conditionsl bremnches which
are used to causs the program to loop a certain number of times are not
context-dependent, as all FEs will branch the ssme way every times. That
is, the condition which the branch is based upon will be the same for sll
PEs. The conditional dranches for which the condition will be different ia
differunt PRs must be recoded so that the program sppears mot to branch at
all. Por instance, the usual slgorithm for multiplication shifts the mul-
tiplicend and tests each dit of the multiplier. If the multiplier dit is
lo the sultiplicand is added to the partiasl product; if the bit is 0, the
program okips the add instruction. For the comventionmal array processor,
all PEs whose bit was 1 would execute the add inetruction while the rest of
the PEs were turned off.

This progcmm written in CIC would ceuse sll of the PEs to exscute the
add instruction, the difference deing that those PEs whose bit was 1 would
8dd the multiplier to the partial product while those PEs whose bit was 0
would add sero to the partial product.

Thie can be achieved in various ways, but of course one wishes to use
the most efficient means possidble. The most efficient method appears to be
that of shifting esc): b't into the carry/borrow position end then subtzact-
ing that bit from the accumulator which has previcusly been sst to sero.
This results in either FF or 00 depending on vhether the bit was 1 or 0.
1If one then ANDS the msultiplicend with the previous result the outcome is
either the multiplicand or sero. Thus, if one always adds the result of
the fiteration just described to the partisl product, one will be adding the

o
oy
i
:
!
!

sultiplicand (if the bit was 1), or sero (if the bit wes 0) to the partial

product.

One might argue that forcing a PE whose multiplier bit is 0 to edd the

quantity O is no better then having it pexform no-ops or turn itself off.,
From the standpoint of performing worthwhile tasks, this is true. Bowever,
this approach accomplishes two things which the previous approasches have

not dome.

2.

All the PBs are constantly synchroniszed in & lock stop mode.

This does not require the programmer to sense which PEe are active
sud which are not. The procedure for determining the status of
all the PEs cap be somevhat time-consuming and may require con-
siderable hardware.

The software is tailored to suit the array processor rather than
teiloring an array processor to suit ssqucntial software. This is
more of & philosophical question at this time. Software that is
designed to run on parallel array machines should prove to be more
efficient then comventiona] uniprocessor software. However, it
will probably take some time for programsers to adjust to srray
software and such softvare may be initially resisted. The need

for array processors should overcome this initial resistance.

The implementation of Context Independent Code is slmost totslly free

of restrictions., The single re'traint is that all PEes must exscute the

same instructions at the om time., This means that the operands of the

instruction determine which branch the PE is actually executing. This re-

striction eliminates the possibility of different PEs executing completely

different branches st ths ssme time with all the PEs doing worthwhile tasks

all the time.

e i A e . O ¢ v ma s

YR

22

Inplementsation of CIC is very straightforvard in that no special
techniques are required. The programmer of the array {s totally respon-
sible for making certain the programs sre successively writtem in Context
Independent Code. At this time, the architecture does not have the capa-
bility to detect non-CIC programs and will sttempt to execute sny program
that it is given. A more sophisticated architecture migat have a compiler
that would flag non-CIC programs, but this is beyond the scope of this
research, Examples of CIC programs will be included in a later chapter
along with sn explanation of the method one might use in recoding different
programs into Context Independent Code,

2.4 Input/Output Concepts

Most array processors contain a host processor which controls input/
output. Typically the host processor receives the input data and distrib-
utes it among the PEs. The host processor then requests the array to act
on the input data and when the array has finished execution, the host
processor then gathers the output data. The output data is then sent to a
peripheral such as a tape, disc or video screem.

By using complete microprocessors as the PEs, one can sllow the
ioput data to come directly to each PE via a private input port. Also, if
esch PE generates sufficient output data, one may have each PE write to
its own output port. That is, one might allow all PEs to receive their
inputs simultaneously, perform the desired functions on the input and
output the individual results, all in parallel. This, of course, is the
best use of hardware and provides the highest possible throughput for the
array.

1f the input dats are such that the outputs generated will be quite

modest in number, a separate peripheral is n.t dedicated to each PE, but

23

instead the outputs are sent to shared memory where the controlling PR
outputs them to 8 single peripheral.

The case may be that one cannot sfford a separate peripheral for esch
PE, but one desires a greater throughput then an array with a single per-
ipheral can provide. In this case, one may consider some special hardware
that allows each PE to output to its own port. This special hardware can
gather the ontputs from several of the PEs to be stored in a given periph-
eral. As an exammple, assume that the system contains sixteen PEs with only
four disc systems. The hardware transfers the outputs from four of the PEs
to each of the disc systems. Various input/output arrangements are
possible and the system designer can select the onme most suitable for the
type of application for which the array is intended.

2.5 General Hardware Considerations

In designing a new array processor, one must consider vhat techno-
logical advances are available. Of course, this is true in the case of
classical computer design as well, However, sn array processor has such a
multiplicity of components that the opportumity for:

1. improved overall speed

2. reduced component cost

3. reduced power consumption

4, reduced chip count
is much grester than for a single processor computer.

Until recently the design of an array processor was restricted to very
simple PEs [Machado, 1972) which typically had no local control except the
sbility to decide whether or not to execute a given instruction. All other
controls resided in a single control unit (CU).

With the advent of inexpensive, single-chip micropr~cessors, one can

S oai

e

pe s 0
P S

IR sl s e tindiS

24

consider sn arrsy processor consisting of several microprocessors. Each
microprocessor represents a single processing element (PR). Bach micro-
processor has & small private memory or processing element memory (PENM).

The PEs all share s large memory called shared memory (SM). The
instruction stresm comes from S8M. As each of the microprocessors has all
of the control logic necessary to operate as a separate computer, it is
redundent to build a separate control unit (CU). Hence, one may designate
one of the microprocessors as the controlling processor (CP) and eliminate
the control unit. This spproach also allows the possible implementation of
8 certain degree of fault tolersnce since any of the PEs can become the CP
if the original CP fails.

The decision to uea microprocessors as the PEs restricts the word size
of each PE to the word size of the microprocessor. However, most micro-
processors allow for multiprecision arithmetic which allows one to achieve
the degree of precision required for a given aspplication. Of course, once
one has decided to use microprocessors as PEs, a specific microprocessor
must be selected, A discussion of how one may select the microprocessor is
presented in a later section.

The next decision in the design of an array processor is the form of
address and dats bus system to be employed. One has the choice of a single
bus system vith both addresses and data multiplexed on the same bus or a
tvo-bus system with separate dats and address buses. The latter seems to
be the most popular with microprocessor designers, basically because it
simplifies the overall system.

Hence, one should recognize that a two bus system is simpler to use
and easier to build into an array system., Next, one must consider the PE

to shared memory (SM) connectian. There are essentially two types of

T ——-—-

connections:

1. Shared Addvess/Shared Dats Bus

2. Multiple Address/Multiple Data Bus

The first type is the essiest to implement but imposes a possidle
bottleneck when the array contains more snd more PEs. One should note that
for the afuy processor, since every PE executes the same instruction, a
READ from SM can be executed simultsneously. It is omnly the write to
that must be executed sequentially. This is becsuse one can only write one
value to a specific address at a given time. Extra hardware might be used
to place each PE's data word into a queue when a WRITE to SM is performed.
The large number of WRITES to SM could then be executed in parallel with
the PEs executing instructions which require access only to private memory.
This would improve the effective transfer rate from the array to SM consid-
erably. One requirement for this arrangement is that the values written to
SM not be needed by any PE for a certain minimum time after the WRITE to SM
wvas performed.

The second type of conmection is considerably more difficult to imple-
ment completely. This type of conmection requires SM to have the capabili-
ty of communicating with several pairs of address and data bases. Memories
of this type are commonly called true multiport memories. Multiport opti-
cal memories are now being researched [Barmwell et al., 1978], but a true
multiport as yet has not been placed on the market. One can simulate a
memory with several ports by using extremely fast memory which is eight to
ten times faster than standard memory chipe. However, this does not solve
the problem, when the number of PEs becomes greater tham eight or ten,

Because the technology for multiport memory is mot available at this

time, onc is forced to consider a shared bus system with perhaps some type

ERL AL Sds i ha

of queue to make the WRITE to SM appear to the individual PE to take about
as long as a WRITE to its PEM. Certainly one would not want the WRITE to
SM to take longer snd longer as the number of PEs grows. However, the
present work does not address the queue problem. Thus, in order to allow
different PEs to write to 8M, the architecture adopted requires each PE to
become the CP in order to write to SM. This architecture has the unfortu-
nate property that a WRITE to SM takes longer and longer as the number of
PEs grows. This would not be significant if the PEs wrote only to 8SM to
transfer final results at the end of every program.

One must consider what type of interprocessor communication is desired
for the array processor. As previously noted, most array processors have
nearest-neighbor connections. The most common form of communication is
that of a single word. However, in order to provide a reasomable limit to
this thesis, the design implemented allows no interprocessor communication
other than through SM.

One final consideration is what method to use in transferring control
from one PE to another. One can write the number of the PE desired to be
CP to a specific address in memory. Alternatively one can use an unimple-
mented opcode of the microprocessor as a special imstruction whose operand
designates which PE is to become the CP, Finally, one can address a
particular memory location (a so-called 'soft switch') in order to cause a
particular PE to become the CP., The memory address is decoded to determine
wvhich PE is to be the CP. The first method uses a single memory location,
but requires substantial hardware to latch the data word and decode which
PR is desired. The second method uses no memory location but requires an
mhﬁl-ented opcode. This could lead to difficulties if the chosen opcode

were to be used in a later edition of the microprocessor. Also, most

27

microprocessor manufacturers vill not guarantee what s microprocessor will
do vhen it attempts to execute an unimplemented opcode. The third method,
that of addressing a particular location in order to determine which PE is
to be the CP is selected for use in the array processor design. The
details of the array processor architecture are fully described in a later
section.

2.6 Selecting the Mioroprocessor for a Multi-Microprocessor System

Selecting the microprocessor for a multi-microprocessor system in-
volves many of the same considerations necessary when one wishes to design
a single-microprocessor system.

One of the main considerations is whether or not a given microproc-
essor will be readily available, either for expanding the array or in case
of component failure. Sawin [1977) provides a relatively complete list of
available microprocessors.

Another important factor is compatibility. That is, whether or not
the microptocessor'is designed to be easily interfaced both with peripheral
chips and with other microprocessors of the same type. With the variety
of microprocessors available today, an extensive comparison of all of the
possible choices would be quite lengthy. However, one can reduce the sel-
ection considerably if ome is interested only in general-purpose microproc-
essors that are reasonably inexpensive. This removes special-purpose
microprocessors from consideration. Also, as yet, 16-bit microprocessors
are relatively expensive and are not used extenoivély enough for them to be
readily svailable. Thus, one should not attempt to use l6-bit microproces-
sors in a multi-microprocessor enviromment until they are more readily
available and their unit price is reduced somewhat as will inevitably

occur. One might consider a possible modificaton of the architecture at a

@
IR CIE TS T S

3

later time to sllow use of 16-bit microproceosors rather than the stendard
8-bit microprocessors which are in widespread use today.

Now one would like to zeduce the overall chip count for the entire
array. Single-chip 8-bit microprocessors are now readily availeble and it
seems appropriate to select s single-chip processor if at all possible.

Another factor to be considered in narrowing the selection of a micro-
processor is that of versatility. Does the processor allow straightforward
implementation of multi-byte arithmetic? Thie capability is extremely
important in an array processor since many applications of array processors
require processing 16- and 32-bit data. Similarly, one should consider the
architecture of the proposed microprocessor. How many registers sre
available to the programmer? How many different addressing modes does the
processor support? Does the processor have the capability of implementing
a stack? What address range is the microprocessor capable of sddressing?
What type of interrupt capability does the microprocessor have? Is the
programmer able to halt the microprocessor? What are the consequences of
halting the microprocessor? Does the microprocessor allow for direct
memory access (DMA) by other devices?

One important area that should be snalyzed carefully is the instruc-
tion set of the microprocessor. Does the instruction set contain all the
essential instructions required to perform arithmetic, logicsl and programm
control functions? How efficient is the PE xith respect to the number of
machine cycles required per instruction? Does the microprocessor require
several machine cycles in order to execute even the simplest instructions?
If this is so, the microprocessor may be actually much slower than another
nicroprocessor that has a slower clock rate but requires fewer machine

cycles per instruction.

BRI
RERSsR LS Fax
v

o e

One should also consider what development aids are svailable for a

given microprocessor. For instance, are there entire systems based on a

given microprocessor such that one could use an assembler, editor, and

other diagnostic aids? Also, the ability to use a commercisl system with

keyboard, video and monitor already in working ovder is invaluable.

29

In summary then, the optimum microprocessor for a multi-microprocessor

system would:

|
2.
3.

4.
3.
6.
7.
8.
9.

10.

11.

12,

be a single~-chip, 8-bit microprocessor

be readily available

be easily interfaced with various peripherals as well as other
microprocessors of the ssme family

allow multiple precision arithmetic

have as many registers as possible

have many modes of addressing

be capable of addressing as large an address range as possible
support sufficient interrupt levels

have the ability to implement a stack and thus allow subroutines
to be used effectively

normally require few machine cycles in order to execute a given
instruction

contain a relatively powerful instruction set that allows the PE
to be very versatile

operate at a clock rate that is competitive with other possible

choices.

y
'
i
!
1
1

3. HARIMARE ASPECTS OF THE SUPRR-63 MULTI-MICROPROCESSOR SYSTEM
3.1 Attributee of the 6602 Mioroprocessor

In the previous section, the best choice of the microprocessor was
reduced to readily available, single-chip, 8-bit, genersl purpose micro-
processors. It was also noted that all microprocessors considered should
operate at s competitive clock rate snd be capable of addressing a large
address range. These restrictions reduce the selection of suitable micro-
processors to essentially three. They are:

(1) 2zilog 2-80

(2) Motorola MC6800

(3) M08 Technology 6502

Bach of these microprocessors is a general purpose, single chip, 8-bit
microprocessor. Each requires a single +5-volt supply and is TTL compati-
ble. These microprocessors may operate at various clock rates and in order
to compare them fairly, one must comsider instruction execution times at
the same clock rate. A standard clock rate is one Miz.

The minimum instruction execution time is one type of comparison which
provides the system designer with a clesrer understanding of the relative
performunce of different microprocessors. With a clock rate of 1 Miz, the
2-80 has s minimum instruction execution time of 4 microseconds [Garland,
1979). The MC-6800, and the 6502 both have s minimum instruction execution
time of 2 microseconds with a clock rate of 1 Miz [Artwick, 1980].

The Z-80 has 158 instruction opcodes, two 16-bit index registers, a
16-bit stack pointer and 14 general-purpose 8-bit registers [Borden, 1978).
The 2-80 has the following sddressing modes:

(1) Implied Addressing (6) Extended or Absolute Addressing
(2) Imcediate Addressing (7) Modified Page Zero Addressing

31

(3) Extended Immediate Addresesing . (8) Relative sddressing
(4) Register Addressing (9) Indexed Addressing
(5) Register Indirect Addressing (10) Bit Addressing

However, the Modified Page Zero Addressing mode is used only for one
instruction, the Restart Page Zero instruction. Also the Bit Addressing
mode is used solely to set, clear or test bits in a given word. Finally,
the Extended Immediate Addressing mode simply indicates that the immediate
operand is 16 bits rather than 8 bits. Thus, the Z2-80 actuslly has oaly 7
different addressing modes. Another point to consider is that many of the
2-80 ingtructions are due to the large number of registers available and do
not give one a greater variety of instructions as one might be tempted to
think,

The MC 6800 has 72 instructions, one 16-bit index register, a 16-bit
stack pointer and two 8-bit accumulstors. The MC 6800 has the following

addressing modes?

(1) Implied Addressing (4) Absolute Addressing
(2) Immediate Addressing (5) Relative Addressing
(3) Zero Page Addressing (6) Zero Page Indexed Addressing

A major deficiency of the 6800 is its lack of an indirect addressing mode.
One also notes that indexing can only be done in the zero-page mode.

At this point, s historical perspective helps in understending the
evolution of these three microprocessors. Socanlon [1980] relates that in
1973, Intel Corporation introduced a second generation 8-bit microprocessor
called the 8080. The 8080 was designed with a calculator-like architecture
with eight scratch-pad registers, an internal stack register and special
input and output instructions.

Motorola Inc. saw the tremendous microprocessor market potential

H!i

32

evolving, and decided to make an emtry of their own. They had two choices.
They could challenge Intel Corporstion om their ground by produscing a new
and improved version of the 8080, as Zilog Inc. did in 1976 with the 2-80.
The other choice was to design & more advanced microprocessor. Reslising
the difficulty of the first spproach, Motorola decided to challenge Intel
Corporation with a superior product.

For the 6800 microprocessor, Motorola abandoned the calculator-like
register-oriented architecture of the 8080, snd adopted a classic minicom-
puter-like memory-oriented architecture. As s result, the 6800 has fewer
(and easier to understend) instructions, with more addressing options then
the 8080.

The preceding brief overview is necessary in order to set the stage
for introducing our chosen microprocessor, the 6502. The 6302 device was
designed by ex-employees of Motorols who ssw that advances in processes,
coupled with s few architectural and software changes, could result in s
potentially highly marketable 6800~1ike microprocessor. They joined a
calculator-chip company called MO8 Technology.

The MOS8 Technology design team had two objectives in mind for their
next generation microprocessor--lowv cost and high performsnce. They re-
duced the complexity of the basic 6800 design as much as possible to
increase chip yield. Design changes included eliminating one of the two
sccumulators in the 6800 snd its tristate address output duffers. They re-
placed the 16-bit index register of the 6800 with two separate 8-bit index
registers and discerded some of the lesser-used instructions of the 6800.

The elimination of these instructions opened up some instruction-
decode space and permitted the designers to provide the 6502 microprocessor
vith 13 addressing modes, 7 more modes than the 6800. These modes give the

AR RS

33

6502 capsbilicies that acte normally found only in larger computers. This
addressing capability is complemensed by the extremely fast speeds at which
the 6502 can exscute instruction sequences. This speed is primerily due to
the fact that the 6502 is designed with & pipelining technique in which the
nicroprocessor fetches the next instruction before it is dons processing
the current instruction. Additiomally, the design team added a decimil
mode sslect instruction and control bit that allows the 6502 to operate va
either binary or decimal dsta. This mesns that the programmer does not
have to remsmber to write in & 'decimsl adjust' instruction after every
addition or subtraction. Also the sewer depletion-load technology was
eaployed, which gives the 6502 clemner switching characteristice and lower
power dissipation. The 6502 typically dissipates 230 mW versus 500 mW typ-
ical for the 6800. This technology slso results in better noise immumity.
The addressing modes for the 6502 ate:

(1) Implied Addressing

(2) Ismediate Addressing

(3) Zero Page Addressing

(4) Zexo Page Indexed (Xreg) Addressing

(5) Zero Page Indexed (Yreg) Addressing

(6) Absolute Addressing

(7) Absolute Indexed (Xreg) Addressing

(8) Absolute Indexed (Yreg) Addressing

(9) Relative Addressing

(10) Indirect Indexed (Yreg) Addressing

(11) Indexed Indirect (Xreg) Addressing

(12) Indirect Addressing
(13) Accumulator Addressing

- F A

The 6502 has 56 different types of inmstructions, with 151 different
instruction opcodes (i.e., 151 different instructions). Ome readily sees
that the 6502 obviously has the most powerful addressing capability of the
three microprocessors. The 6502 instruction set is almost equal in size
vith that of the 2-80. One key advantage of the 6502 over the Z-80 is that
for the same clock rate, the 6502 is at least twice as fast as ths 2-80.
As microprocessors are built to run faster and faster, the determining
factor is not how fast sn instruction is executed in absolute time, but how
many machine cycles are required. In this respect, the pipelining done i:
the 6502 makes the 6502 inetruction zxecution time with respect to machine
cycles very efficient.

The Zero Page Addressing capability allows the 6502 to use sll 256 lo-
cations in page sero of memory as though they wvere registers. This alluwse
extreme versatility in programming the 6502. In fact, if the programmer
uses this feature of the 6502 properly, it is possidble to realize up to ¢
nother factor of two incresse in speed over the other microprocessors. The
page zero of memory can be utilized by the 6502 as wore powerful computers
use cache memories. This feature alone makes the 63502 an excellent choice
for an array processor. When one considers the minimsl powsr requirements
of the 6502, the superior addressing capability, and the higher throughput
due to pipelining, there is absolutely no better choice.

Although the decision of the microprocessor has slready been made, one
should point out that the 6502 does indeed satisfy and in some cases, ex-
ceeds the requirements set forth in the preceding section. The 6502 is the
most efficient of the three microprocessors both in terms of speed and
pover. It has the most powerful addressing capability of the three. It

has no strictly general purpose internal registers but more than makes up

_ U et = T e e

33

for this by the ablity to uss the entire sero page of usmory as regioters
and by having not one but two iudex registers. It has stack capsbilities
80 that one may utilise both subroutines and interrupt routines. It has
the staundard two level interrupt capsbility. That is, it has both maskabdle
and non-maskeble interrupts. It has on-board clock circuitry which reduces
the components necessary for & minima) microcomputer system [Camp ¢t al.,
1979]. 1Ite instruction set provides the programmer with all the essential
resources for programming the most diverse programs. The 6502 is extremely
easy to interfece both with other 6502 microprocessors and with other 6500
series components such ss input/output chips. The addcese bus of the 6502
slvays has s vﬂlid memory address. This allows for much sesier synchzoni-
sation of several microprocessors. The 6502 has two control lines called
'READY' and "SYNC' which allow the possidbility of single stepping through a
program. If the READY line is pulled low during phase one of a SYNC high
cycle, single-step operation of the 6502 cen be achieved. The 6502
provides s vectored reset operation that sllows one to program a unique
initislisation routine to fit ones own needs. The 6502 has had widespread
use, not just as s microprocessor in user-designed systems but in many
commercisl microcomputers such as the Apple, AIN-65, SYM, KIM, PET and meny
others. Thus the 6502 is essily availadble and is compatitle with many
commercisl microcomputers.

Obviously, the finsl decision of which microprocessor to use is some-
what subjective, but it is interesting to note that the latest 16-bit
sicroprocessor from Zilog, Inc., the 2-8000, has s memory-orisnted archi-
secture (such as the 6502) vhich represents s solid break with the 8080/
2-80 architectursl design concept of register-oriented microprocessors.
Also, this might indicate that s design with the 6502 microprocessor would

.

36

be more easily converted to the newer 16-bit microprocessors should one
ever decide to modify the array processor.
3.2 The Apple II Microcomputer System

The Apple II microcomputer system is s versatile microcomputer that
employs the 6502 as its microprocessor. The Apple II has the capability of
the full 64K of memory, using dynamic RAM to reduce cost and power consump-
tion. Tue Apple II provides the 6502 with a 1.023 MHz clock signal which
is supplied to the phase zero (¢o) input of the 6502. The microprocessor
uses its address and data buses only wvhen phase gsero is high. When phase
zero is low, the microprocessor is doing internal operations snd does not
need the dats and address buses. The Apple II designers allow the memory
to be refreshed at a 3.5 Miz rate, vhen phase zero (oo) is low. In this
vay, memory refresh is entirely transparent to the 6502. Espinosa [1979]
explsins the system timing entirely and provides a schematic of the Apple
IT that is invaluable to the system designer.

The 16-bit address bus lines are buffered by tristate buffers. The
address lines are held open only during a DMA cycle and are active at all
other times. A DMA cycle also halts the 6502, The addrces on the address
bus becomes valid about 300 nsec after phase one (complement of phase zero)
goes high and remeins valid through all of phase zero (see Figure 3.1).

The 8-bit data bus lines are buffered by bi-directional tristate
buffers. Data from the microprocessor is put onto the data but about
300 nsec after phase one (¢,) and READ/WRITE both drop to szero. At all
other tiwes, the microprocessor is either listening to or ignoring the data
bus.

The RDY, RES, IRQ snd NMI lines to the microprocessor are sll held
high by 3.3k Obm resistors to +5V (see Figure 3.2). These lines also

%‘ ' Sﬁ;mu: 1ﬁiiu: .+
) '
* S |] [~
: i
N !
! !
o 1 T L
: !
! !
03) '
l -2 | |
nsec {
.)
ssazagms D X
200 |
Data from 6502 (read) (DC_ nsl.e;ngals.lzl':'” d::;:
I
100 nsec r—

Data to 6582 (write) XX)
|

Figure 3.1 6502 timing signals.

37

34

vss B~
ROY —p]
0, OUT -
G ——
NC. -
L o =
SYNC <—— [
vee

AB2
AB3
AB4
ABS
ABS
AB?
ABS
AB9
AB10

I

nAO0DNNNOONAONR

-
[]

AB1)

4

10
"
7
3
14
1]
.
"

¢ 8

2 8 8 2 @ 8 % 3 oy oo

uguu

INIRININIRIRINIRIRI]

N.C. = No connection

MOS Technology).

Figure 3.2 6502 microprocessor pinout designation (courtesy

38

kS N
T

R 2R L L VA

et

+ e« o Aot e e bt = A it + e ar e o

39

appear on the periphersl commectors (see Figure 3.3 and 3.4). The Set
Overflow line to the microprocessor is permsnently tied to ground.

All timing signals are derived from a 14.318 MHz master oscillator
output. The 7.159 MHz intermediate timing signal and the 1.023 MHz signals
phase zero and phase one are the only timing signals employed in the design
of the Super-65 array processor.

The Apple can support up to six 2K x 8 wmask programmed READ-Only
memory chips. One of the six ROMS is enabled whemever the microprocessor's
address bus holds an address between D000 and $FFFF. Thus, the address
range $DO00-SFFFF is reserved for ROM.

The Apple supports up to 48K x 8 Random Access Memory (RAM) or
READ/WRITE memory. As previously mentioned, this RAM is dynamic and is
refreshed automatically during every phase ome (¢1) cycle. The Apple sup-
ports a sophisticated video system, but this need not be discussed in
detail here.

The Apple provides two female miniature phome jacks that allow one to
connect the Apple to a normal cassette tape recorder. In this way, one can
store user programs permanently on tape without incurring the expense of a
complete tape system.

The Apple provides users with eight peripheral conmectors along the
back of the Apple's main board. These slots are designed to allow the user
more sophisticated resources such as disk drives, the ability to program in
high level languages directly, etc. Also, the Apple designers give the
user the option of plugging in proto-boards containing user-designed
circuits,

The Apple designers intend slot zero as a special purpose slot so that

many of the options available to the other seven slots are unavailable to

-

.ﬁ

¥ .

40

[

i

2

35
s3cablodiez2Ys e ee329s
RaRNAREELERYANTS

" ADANONBPTMN-

ERARRSARIBESABITITILENEER
mmmmmmmmwmmm mn 5833885838

Fi:sce 3.3 Peripheral connector pinout.

Pia: Name:
T VOSEET
2-17 AG-AlS

18 W

19 SYNC

20 /O STROBE
il RDY

2 DMA

23 INT OUT

M DMA OUT
25 +5v

26 GND

27 DMA IN

26 INTIN

29 ™l

Figure 3.4 Peripheral connector descriptions.

ing a write. This line can drive up to 2 LSTTL
loads®.

On peripheral connector 7 only, this pin is con-
nocted to the video timing generator’s SYNC
signal.

This line goes low during ®@ when the address
bus conlains an address beiween SC2C0 and
SCFFF. This line will drive 4 LSTTL loads®.

The 6582's RDY input. Pulling this line low
during &1 will hait the microprocessor, with the
address bus holding the address of the current
location being fetched.

Pulling this line low disables the 6502°s address
bus and halts the microprocessor. This line is
held high by a JK Q2 resistor to +5v.

Daisy-chained interrupt output to lower priority
devices. This pin is usually connected to pin 28
(INT IN).

Daisy-chained DMA output to lower priosity
devices. This pin is usually connected to pin 22
(DMA IN).

+5 volt power supply. SOOmMA cu:Tent is avail-
able for ol peripheral cards.

System electrical ground.

Daisy-chained DMA input from higher priority
devices. Usually connected to pin 24 (DMA
ouT). ‘

Daisy-chained interrupt input from higher
priority devices. Usually connected to pin 23
(INT OUT).

Non-Maskable Interrupt. When this line is
pulled low the Apple begins an interrupt cycle
and jumps o the interrupt handling routine at
location $3FB.

41

#

3

B 53

- I,
e e

TR e TRV R R

3

32

3

3

XH

36

n

n

39

4

42-49

Figure 3.4 (cont.) Peripheral connector descriptions.

-12v

COLOR REF

™

Q3

¢l

USER 1

D8-D7

+12v

locations $3FE and $3FF.

When this line is pulled low the microprocessor
begins & RESET cycle (see page 36).

When this line is pulled low, alt ROMs on the
Apple board are disabled. This line is held high
by a IK(} resistor to +Sv.

=12 voit power supply. Maxmum current is
200mA for al peripheral boards.

=$ volt power supply. Mazimum current is
200mA for all peripheral boards.

On peripheral connector 7 only, this pin is con-
nected to the 3.5MHz COLOR REFerence sig-
nal of the video generator.

T™Hz clock. This line will drive 2 LSTTL
loads®.

2MH: ssymmetrical clock. This line will drive
2 LSTTL loads®.

Microprocessoe’s phase one clock. This line
will drive 2 LSTTL loads®.

This line, when pulled low, disadles a// internal
1/0 address decoding*®.

Microprocessor's phase zero clock. This line
will drive 2 LSTTL loads®.

This line becomes active (low) on each peri-
phersl connector when the sddress bus is hold-
ing an address between SO0 and $C8-F,
where » is the slot number plus $8. This line
will drive 10 LSTTL loads®.

Buffered bidirectiona! data bus. The dats on
this line decomes valid 300nS into @@ on »
write cycle, and should be stable no less than
100ns befors the end of &8 on a resd cycle.
Each data line can drive one LSTTL load.

+12 volt power supply. This can supply up to
250mA toial for all peripheral cards.

42

43

slot zsero. Each slot is given sixteen locations beginning at $C080 for
general input snd output purposes. For slot zero, these sixteen locations
are $C080-8C08F; for slot one they are $C090-CO9F, etc. Whenever the ad-
dress on the address bus is in a given slot's allocated range, pin 4l
(called Device Select) goes low. This aslerts the psrticular card that the
address is somewhere in that peripheral card®s 16-byte allocation.

Each peripheral slot also has reserved for it ome 256-byte page of
memory. This page is usually used to house 256 bytes of ROM, which con-
tains driving programs or subroutines for the peripheral card. The page of
memory resexved for each peripheral slot has the page number $Cn, where
is the slot number. The signal on pin 1 (called 1/0 Select) of each per-
ipheral slot becomes active (drop to ground) when the microprocessor is
addressing an address within that slot's reserved page.

The 2K memory range from location $C800 to $CFFF is reserved for a 2K
ROM or PROM on a peripheral card, to hold large programs, etc. The expan-
sion ROM space also has the advantage of being absolutely located in the
Apple's memory map, which gives one more freedom in writing interface pro-
grams. This PROM space is available to all peripheral slots and more than
one card can have an expansion ROM. However, only one expansion ROM can be
active at one time. The expansion ROM typically requires 2 enable inputs.
A suggested method is to use pin 1 (I/0 Select) as one enable and pin 20
(called 1/0 Strobe) as the other. The 1/0 Strobe line goes low (active)
vwhen the address bus contains an address within the expansion ROM space
(i.e.o between location $CB800 and location $CFFF).

Thus, each peripheral card has available the buffered address bus,
buffered dats bus, buffered READ/WRITE line, the READY line, the Non-

Maskable Interrupt line, the Interrupt Request (IRQ) line, and the Reset

44

line. Other leads avasilable include: 1) the DHA line which dissbles the
6502's address bus and halts the microprocessor, 2) the T/0 Belect line
vhich goes low (active) on the peripheral card when the sddress bus con-
tains an address within page $Cn, when n is the particular slot number,

3) the Device Select line which goes active (low) on peripheral commector
when the address bus is holding an address between $COn0 and $COnF, where
is the particular slot mumber plus eight end 4) the 1/0 Strobe line which
becomes active (low) on all conmectors, when the address on the address bus
is betwveen $C800 and $CFFF. Of course, all of the peripheral commectors
have phase zero (¢;), phase one (¢,), and the 7 MHz clock signsls availsdle
for synchronization of the cards with the 6502,

The Apple System monitor acts as a supervisor of the system. From the
monitor one may look at omne, some, or sll memory locations; ome can write
programs in Machine snd Assembly languages to be executed directly by the
Apple's microprocessor; one cru save dats and programs onto cassette tape
or a floppy disk and read them back in againi one can move and compare sev-
eral bytes of memory with a single command; and one can leave the monitor
and enter any other program or language available on the Apple.

There is a program within the monitor which allows one to type pro-
grams into the Apple in assembly level language. This program is called
the Apple Mini-Assembler. It is 8 'mini'-sssembler because is cannot
understand symbolic labels, something that s full assembler must do. For
details in using the Apple Mini-Assembler one should refer to the Apple Il
Reference Manual (pp. 49-51).

The Apple 11 Monitor provides facilities for stepping through programs
both in single step and trace mode. Also, one is able to exsmine the con-

tents of the 6502's internal registers after each instruction is executed.

43

This allows ome to properly debug difficult programs in a very straight-
forward manner.

One can see from the above description, that the Apple II gives the
user a very poverful microcomputer with all the necessary facilities to
write, assemble, debug and execute programs varying from machine-level to
high-level languages. It also provides more than adequate means for exten-
sive vse of peripherals. Thus, the Apple II is an excellent choice for
implementing an srray processor as it is not only versatile but economicsl
as well.

3.3 Architecture of the Overall System

The previous two sections provided the necessary information for the
two major building blocks of the Super-65 Systemj the 6502 microprocessor
and the Apple II microcomputer. One can now proceed to the description of
the Super-65 System.

The Super-65 Multi-Microprocessor System consists of four 6502 micro-
processors, one being the Apple II 6502, with three others, Each 6502 is
given a private rsndom access memory of dimension 1K by 8 bits. This
memory resides in the lowest portion of the 6502's memory map. The rest of
the 6502's memory (the upper 63K) resides in the Apple II. This will be
both RAM and the Apple II Monitor ROM. The combined RAM and ROM are joint-
ly designated as Shared Memory (8M). One can see from the block diagram
(Figure 3.5), that the architecture of the Super-65 is relatively simple.
Each processor is able to access its private memory at sny time but omly
one processor is able to sccess the Shared Memory Address Bus at a time.
All processors may access the SM Data Bus on a READ. However, for obvious
reasons, only one processor may sccess the SM Dats Bus during s WRITE oper-

ation. One motes that the architecture allows for both shared input/output

ORIGINAL P31
OF POOR GUALITY

SHARED
m/0uTPUTY

{ 2
g R §§
: '
-~ o«
¥ —§ I3
AYA e
3 — &
§

46

Figure 3.5 Super-65 S8ystem block diagram.

R R N

AR SR R A T D

47

and private input/output. This allows the system to be used in msuny dif-
ferent enviromments, ¢.g.. single source and single destination, single
source and multiple destination, multiple source and single destination, or
aultiple source and multiple destination.

There is no provision for interprocessor communications other than
through Shared Memory. Bach processor with its private memory, privete
input /output and its portion of the Hardware Arbitrator is mounted on &
single prototype board which can be plugged directly into ons of the seven
available peripheral slots on the back of the Apple II, The Hardware
Arbitrator consists of tristatesdble buffers on the Address, Date and
Control buses of each of the processors with the rejquired logic and flip-
flops to enable the appropriate buffers.

One of the processors (typically the Apple II 6502) is designated as
the Controlling Processor (CP). The CP has comtrol over all shared re-
sources. The CP has sole access to both the Shared Address and Control
Buses. The CP allows all of the processors sccess to the Shared Data Bus
duriag a Read from SM. At all other times, the CP has sole access to the
Shared Data Bus.

One interesting festure of this srchitecture is that it requires al-
most no modification of the Apple 1I. The reason is that the Apple II 6502
is physically removed from its socket and placed onto a peripheral board.
However, a 40-pin conductor connecting the removed 6502 to the empty socket
sllows the Apple to operate as if the 6502 were actually still in the
original socket. The Apple II 6502 then is equivalent to any of the other
processors. This allows for a very modulsr design. Thst is, every proces-
sor board is identical to any other processor bosrd. This simplifies
the debugging process s great deal.

PR Aaale L 2.4

B

One desizable characteristic mentioned previously was that of easy
fault datection. A simple type of fault-detection was implemented on the
Super-65. This comsiste of comparing the address on the Shared Address Bus
with the current sddress on each of the processor address bus. If they are
not identical, a ved LED is lit on the erronecus processor bosrd. WNothing
further is done. It is assumed that the operator will observe the prodlem
soon after it occurs and take the proper steps to prevent the fsulty proc-
essor from conteminating the entire system.

As mentioned earlier, the Apple 11 uses dynamic RAM and as this memory
is divided into 16K by] bit chips, it is impossible to treat the lowest 1K
of RAM on the Apple differently than the mext lowest 15K of RAM. Hence,
the Apple 1I 6502 was placed on & protobosrd just like the othar proces-
sors. In this way all of the processors sppesr to be peripherals to the
Apple II. Because the processors sppear as peripherals, vhenever one of
them becomes the CP, it initiates the equivalent of a DMA, If one exmmines
the schematic diagram of the Apple II (FPigure 3.6), one notes that the line
DMA disables the buffers sttached to the Apple II 6502's address bus. TA
also dissbles the phase zero clock input to the Apple II 6502. This fact
forces one to make one trivial modification to the Apple II im order to
allow the Apple II 6502 to opersts when it is not the CP. This wmodifica-
tion is to disconnsct the phase sero input from the AND gate with which THA
is able to dissble the phase zero input and connect the phase zero (00) to
the phase zero (00) input on the peripheral connector.

The Apple 11 6502 is in control when the Apple 1I is povered up,
just as it would normslly be. Imn order to designate another of the proces-
sors as the CP, one simply addresses the mevory range $Cuxx, vhere n equals
the processor number (1, 2, 3, or 7). Seven is the number given to the

49

:

M=

it

FRITIVEEISCY, T35S

Figure 3.6 Apple 1I schematic diagram.

T ST PGP I SR

i

30

Apple II 6502, When one accesses Cnxx (x = dou't care), the Apple II auto-
matically activates the line 170 Select on the nth peripheral slot. This
signal is then used to give the processor on the board in slot n control of
the shared buses.

For msny applications, it is desirable to load the ssme locstion in
each processors private memory with different values. For example, one may
use that location as an indirect pointer, in which case each processor has
s different pointer. There are at least three different ways of achieving
different values for different processors. Omne way is to have a hard-wired
location in each processor's private memory. This location must have
different hard-wired values for each of the processors. One can then
manipulate the different values to obtain the desired differences between
processors. Another method is to have each of the private memories mapped
into the Apple's memory so that the Apple can load different values direct-
ly into each of the private memories.

The third method has all of the processors store the value for
procesgor #1 into the location, then dissble processor #1, store the value
for processor #2 into the ssme location (writing over the old value), then
disable processor #2, and so on until all of the processors have the [’»appto-
priate pointers. One can then restart all of the processors and proceed
with execution of the program. After substantial consideration, it was de-
cided that this method provides sufficient versatility while not requiring
as many additional components and board space. Realizing that what was
required was one signal that would selectively designate a particular
processor for disabling and another signal for restarting all the proces-
sors simultaneously, and not wanting to burden the already saturated board

with more decoding components, it was decided to use already decoded

51

signals provided by the Apple II. One recalls that each of the peripheral

slots contains three unusual signals; 1/0 Select, Device Select and 1/0

Strobe. I1/0 Select is used to designate which processor is the CP. As

described earlier, Device Select goes low (active) when the address on the
Shared Address Bus is in the range $CONO-$CONF, where N equals n + 8 (n =
processor number). This signal then is well-suited for disabling a partic-
ular processor. 1/0 Strobe is contained on all of the peripheral slot
connectors and goes low (active) on all of the slots simultamneously, if the
address on the Shared Address Bus is in the range $C800-$CFFF. Thus, 1/0
§E;3§;'may be used to restart all the processors simultaneously after the
initialization routine.

The design of the Super-65 allows one to expand up to a total of seven
processors without any additional hardware being added to the basic system.
Furthermore, each processor board is a replica of the previous boards. 1In
this way, one can realistically modify any Apple II to provide it with the
capability of a seven processor array without extensive hardware alteration
of the Apple II itself. The architecture itself does not limit the number
of processors to seven. The Apple II only provides seven available slots
with the necessary decoding for the special signals used in this design.

If one desired to implement s larger array, one simply needs to provide the
extra decoding circuitry and peripheral slots external to the Apple II.
3.4 Leaign of the Individual Processor Card

One recalls from the previous section (Figure 3.5) that the Super-65
architecture provides for Sharea Memory (SM), a Hardware Arbitrator, four
processors each with its own private memory and input/outpuc <apability.

As mentioned earlier, the Shared Memory resides on the Apple 1I main board.

The Hardware Arbitrator is distributed across each of the processor cards.

W LGP RN 3rogy. - o . e

52

Each processor card contains:

(1) A 6502 microprocessor

(2) A 1K x 8 bit RAM (i.e., 2-2114 memory chips)

(3) Two input/output ports (i.e., 1-6522 VIA)

(4) A tristate buffer for the 6502's address lines (i.e., 2-74LS245)

(5) A tristate buffer for the 6502's data lines

(6) A tristate buffer for certain control signals

\7) Decoding circuitry (i.e., 2-74LS155)

(8) Required logic for implementation of special features (i.e.,

741800, 74LS04, 74LS05, 74LS30, 74L874, 74LS76, 74LS85 and
74LS121) (see Figure 3.7).

The power-up orocedure resets the 6502, and causes it to jump to a
reset vector location. This location is in SM. The enable to the data bus
buf fer will be active for only two cases: one, during a READ from Shared
Memory (this allows all processors to READ simultaneously) and two, during
a WRITE operation when the particular processor is the controlling proces-
sor (CP). At all other times, the data bus of the 6502 is disconnected
fron the Shared Data Bus. The enable to the address bus buffers and the
READ/WRITE line and DMA line buffers is active only when the specific proc-
essor has been designated as the CP., This, then allows a given processor
to control the Shared Address Bus, R/W and DMA lines only when that proces-
sor is the CP.

As described previously, 1/0 Select goes low (active) on peripheral
connector n when the address on the Shared Address Bus is in the range
$C100-$CnFF (n = processor number). This signal is used to set a flip-flop
on the 74LS76 designated as the CP flip-flop. The 'NAND' of the 1/0 Select

signals from all the other peripheral connectors is used to reset the CP

ORIGINAL PAGE 13 >

OF POOR QUALITY

Voo
w [T %
2 Bl 4o,
e 3 _ 12
noe i Ky L{‘ e
T 0 ~
@D 150 2h A o
sLe | . : 4;<}—u '
. ? .
7404 b [T
TR _—t
1
13) 12 e
cx
-
M —T o] 7400
A I 7
3 Q \ 1408 +8v
160 Tes 40 .
-
P 2roY 8 M N 708 }—rt o
s § 38 so 38 2 12
o« o 37 4 T e 20| U "
Wk 5 % NC 36 2 19
8K i) PR Y e 3 I -
= |1 Vee 20 TSING R/W34 4 o0 17—
-1 L4 8 Vee oe 33 s & w—
—is . 'Y o1 82 PO Y . TgATsAHAaTJEsD
T0 SHARED o 0Al o 023 } 1 “—
SH — 3T a2 2 033 0 13—
i ADDRESS BUS{ _dg g i9 i2a3 * o429 L] 12p—
— M 1344 05 20 I
—s i3 14A8 06 27
-t 12 t5A8 or 26 3 Vee20!
0GND 11 1ea7 A28 2 19
—{i7a A4 24 3 8
T —] 1849 a3 23 4 7
2 Jr.y — e 194 10 AR22 s 2 &
= 3 - 20411 GNO 21 s F s TO SHARED
.2 nE e x ADDRESS BUS
a 13 e 7 (L}
s & M 3
. "
7 10|]
8GND @ - M
) i)
2 17— m
T Vec 16 s N A 4
2 B —a 18 — b4
= 3 I‘q s € s =
e w13 s 3 M x
o 2 U 13
br! r 12 s
&]
T 10| r—t8 1
oon0 » onp 10
b4
L b Ve ! il
T40 T40: 2 17 p—rat T a L)
e 10 3 16 .
z
¢z B T Ve 16 ° 3
74 3 N 4 2 GND - 18)
3V, } i 3-
13 a0k 8 13| X
~
8 7 12 ; Ilz| A 1
. " -
san0 $|-ca
sano 10
2 3
t Yee b
20MD € 1
3V, 14
4ok g 13
s 2?
1
7 o
oND___ 9

Figure 3.7 Processor card schematic diagram.

pe—

s e i o A e St s e

T TR T TR e g @ somuro.

54

flip-flop. Thus, when one of the other processors is designated as CP, the
signal which sets its CP flip-flop will simultaneously reset all other CP
flip-flops. Since the I/0 Select signal remains active for only one-half
of a machine cycle, it was necessary to use the 7 MHz signal available on
the peripheral connector as the clock input to the CP flip-flop.

The other flip-flop on the 74LS76 is designated as the Disable flip-

flop and is used to disable the phase zero (¢0) clock input to the 6502.

As described in the preceding section, Device Select is used to disable the

desired processor and 1/0 Strobe is used to restart all the processors

simultaneously. Thus, Device Select is used to set the Disable flip-flop
and 1/0 Strobe is used to reset the Disable flip-flop. As the Disable
flip-flop output is simply used as a control input to on and gate with the
phase zero clock as the other input, resetting the Disable flip-flop would
immediately allow the phase zero clock to be applied to the 6502 clock
input. Since there is no assurance what the 6502 will do when its clock is
removed, the most reliable method of restarting all the processors, is to

perform a hardware reset. That is, to pull the Reset line of all the

processors low (active) simultaneously. Since the 6502 requires the Reset
line remain low for several machine cycles in order to execute a valid
reset, it was necessary to have the 1/0 Strobe line fire a monostable
multivibrator (i.e., 74121), that was designed to hold the Reset line low
for at least several machine cycles. In order to have sufficient time for
all the processors to become synchronized, the monostable was configured to
allow a delay of approximately one second. This delay is more than suffi-
cient and could likely be reduced to one millisecond without causing any
complications.

Two 74LS155s decode the address lines of the 6502 to determine which

U

55

1K of memory the address is making reference to, If the address is in the
lowest 1K of memory, the private memory is emabled, else the inverse of the
private memory enable is used to designate that a Shared Memory access is
requested.

Four 74LS85 (4-bit comparators) are used to compare the address lines
of the 6502 with the address lines of the Shared Address Bus. As noted in
the Apple 1I Reference Manual, the address on the address bus becomes valid
about 300 nanoseconds after phase one goes high and remains valid through
all of phase. Since phase one is the complement of phase zero, when phase
zero goes high, phase one goes low. Also, since the address is valid when
phase zero goes high and the 74LS74 contains two negative-edge triggered
flip-flops, the design compares the upper snd lower bytes of the address
separately and clocks in the result of the comparators on the falling edge
of phase one. Thus, one is able to determine which, if any of the proces-
sors is out of step with the others and which byte or bytes of the address
is different from that of the CP,

Finally, provision has been made for the inclusion of a 6522 Versatile
Interface Adaptor (see Figure 3.8) which contains two 8-bit parallel ports,
on each of the processor boards. Implementation of the 6522 will simply be
a matter of deciding what address one would like for the I/0 ports and
various other control words of the 6522 to reside and then providing the
uecessary decoding circuitry for the 6522. While this is not trivial, it
is straightforward and as the main thrust of this work is not actually the
hardware implementation, the configuration of the 6522 is left for future

research.

L LS

56

PAGE 1S
QUALITY

OF PCOR

ORIGINAL

*Inofe] pied 10§s3001d g°¢ 2an3y

oove 1727 149 21 Gvevl 9l SOobL oeve
bvlie 1 41r4 2069 22s9
SSIve SSivL G = GbevL — 80¥. o 12I¥2
ﬁ 1900 7N S8vL M4 G8V.L P~ GBbL. J_ 9elvL

)

R L O

Y e < e g o e e

e rmm . s e i -l - -

57

4, EXAMPLES OF INDEPENDENT DATA HANDLING
4,1 Introduction

As described in Section 2.2, independent data handling allows each
processor its own source of data. By definition, the data sources are
independent of each other. Of course, there are many applications in which
the data are not completely independent. HNowever, a less precice but more
practical way of differentiating between independent and dependent data
handling methods, is to differentiate between applications for which the
array is processing a separate problem for eacl processor (independent data
handling) and applications where the array is processing different segments
of the same problem for each processor (dependent data handling).

This chapter deals with several examples of independent data programs
that are written in Context Independent Code. One will note that independ-
ent data programs are usually simpler and more efficient than dependent
data programs that perform the same function. This is because independent
data programs take advantage of more inherent parallelism and require less
overhead of interprocessor communication than dependent data programs.

4.2 8- it Magnitude of Twos-Complement Number

The following program calculates the magnitude of an 8-bit Twos-
Complement Number. This program assumes that each of the processors has
its own 8-bit number stored in a location in page zero of private memory
designated by the symbolic name, number. The magnitude of the twos
complement number stored in location NUMBER is placed in location MAGN at
the end of the program.

MAGNITUDE OF TWOS COMPLEMENT NUMBER/CONTEXT INDEPENDENT CODE
LABEL MNEMONIC OPERAND CYCLES COMMENT

BEGIN: LDA-Z NUMBER 3; GET NUMBER

.
|
i

LABEL MNEMONIC OPERAND CYCLES COMMENT
AND #80 kT MASK OFF ALL BUT SIGN BIT
C1cC 23
ROL ACC 23 MOVE SIGN BIT INTO LSB POSITION
ROL ACC 23
STA-2 TEMP k3 STORE SIGN BIT (FOR END AROUND CARRY)
LDA #0 23
SEC 23
8BC TEMP kT IF 820, ACC=0; 8=1, ACC=FF __
EOR NUMBER 33 IF 8=0, ACC=NUMBER, S=1, ACC=NUMBER
CI1C 23
ADC TEMP 3 ADD EKD AROUND CARRY

END: STA-Z MAGN 3
33; TOTAL MACHINE CYCLES

To determine the magnitude of a twos complement number, one must de-
cide first if the number is positive or negative. Of course, if the number
is positive, one does nothing to it. If the number is negative, one calcu-
lates the twos complement inverse of it by complementing it and then adding
one to it. The Context Independent Code program stores the sign bit to be
used as the end around carry, then subtracts the sign bit from zero to get
either 00 or FF. The program then uses the fact that a value exclusive-
ored with all zeros is that number (e.g. value = positive) and a value
exclusive-ored with all ones is the complement of that value (e.g. value =
negative). Finally, the program adds the sign bit (8=0, if positive; 8=1,
if negative) to obtain the magnitude of the original twos complement
nuaber.

4.3 8 x 8-Bit Multiplication

The following program multiplies one 8-bit number by another 8-bit
number to obtain a 16-bit product. This program assumes that one value is
already residing in a location called MPCND and the other value is already
present in s location called MPLR, both of which are in page zero of pri-
vate memory. The product is returned in two locations, PROD-L and PROD-H

both of which sre in page zero.

soliastiond

59
8 x 8~BIT MULTIPLICATION/CUNTEXT 1MDEPENDENT CODE
COMMENT
BEGIN: LDA #00 23 LOAD IMMEDIATE ZERO
STA-2 PROD-L 33 CLEAR PRODUCT LOW BYTE
STA~Z PROD-B 33 CLEAR PRODUCT HIGH BYIR
LDX #08 2 SET BIT COUNT = 8 BITS
LOOP: ASL PROD-L 53 SHIFT LBFT PRODUCT LOW BYTE
ROL PROD-H 53 ROTATE LEFT PRODUCT HIGR BYTE
ASL MPLR 53 SHIFT LEFT MULTIPLIER
LDA #00 23 SUBTRACT CARRY BIT FROM ZERO TO OBTAIN
8BC #00 2; EITHER 00 (C=1) OR PF (C=0)
EOR #FF 23 COMPLEMENT PREVIOUS RESULT
AND MPCND 33 AND EITHER 00 (CARRY=0) OR FF (CARRY=l)
STA-2 TEMP 33 WITH MULTIPLICAND
(v (A 2; TEMP = BITHER 00 OR MULTIPLICAND
ADC PROD-L 33 ADD EITHER 2ERO OR MULTIPLICAND TO
STA-Z PROD-L 33 SHIFTED PARTIAL PRODUCT LOW BYTE
LDA-Z PROD-H 33
ADC #0 23 ADD POSSIBLE CARRY TO PRODUCT HIGH BYTE
STA-2 PROD-H 33
DEX 23 DECREMENT BIT COUNT
BNE LooP 23 DONE? IF NOT, LOOP
END: RTS 63

392; TOTAL MACHINE CYCLES REQUIRED

This program uses the algorithm of shifting the partial product left
once, then adding the multiplicand to the partial product if the tested bit
of the multiplier is set. If the tested bit of the multiplier is szero, the
original algorithm would branch around the add instruction and loop back to
test the next bit of the multiplier. Becsuse this program is writtem in
Context Independent Code which does not allow conditional branches for
which the condition may be different for different processors, instead of
branching around the add instruction, this program adds zero when the
tested bit of the multiplier is sero,
4,6 16/8-Bit Binary Division

The following program is the reverse of the multiplication algorithm.
That is, this progras takes s 16-bit dividend in two locations called

DVND-L snd DVND-H and divides them by an 8-bit value stored in s location

LY

60

called DVSR, All memory locations are assumed to be in page zero of each
processors private memory. The 8-bit quotient is returned in a memory
location called QNT and the 8-bit remainder is returned in location RMDR.

16/8~BIT DIVISION/CONTEXT INDEPENDENT CODE

LABEL MNEMONIC OPERAND CYCLES COMMENT
BEGIN: LDX 108 2; NUMBER OF BITS IN DIVISOR = 8
LDA-2 DVND-L : GET LSB DIVIDEND
STA-Z QN: 3; STORE LSB DIVIDENT IN QUOTIENT
LDA-2Z DVND-H 3; GET MSB DIVIDEND
STA-2 TEMP 3;
DIVID: ASL-Z QNT 53 SHIFT DIVIDEND-QUOTIENT
ROL-2 TEMP Ss LEFT ONE BIT
CMP-2 DVSR 3 CAN DIVISOR BE SUBTRACTED?
LDA #00 2;
ROL ACC : GET CARRY BIT INTO LSB OF ACCUMULATOR
STA-Z SFLAG 3; STORE SUBTRACT FLAG BIT
EOR #01 2; COMPLEMENT FLAG BIT, (0=SUBTRACT ZERO
1=SUBTRACT DIVISOR)
ADC-2 QNT 3; INCREMENT QUOTIENT IF DIVISOR COULD BE
SUBTRACTED
STA-Z QNT : STORE NEW QUOTIENT
LDA-2Z SFLAG 3; GET SUBTRACT FLAG
ROR ACC 2; ROTATE SUBTRACT FLAG BIT TO BORROW
POSITION
SBC #00 : ACCUMULATOR = (00 IF B=1, FF IF B=0)
AND-2 DVSR 3; ADD DIVISOR WITH EITHER FF OR 00
STA-2 SFLAG 3; STORE EITHER 00 OR DIVISOR
SEC :
LDA-2 TEMP 3;
SBC-2 SFLAG 3 SUBTRACT EITHER 00 OR DIVISOR FROM
DIVIDEND
DEX 2; LOOP UNTIL ALL 8 BITS ARE PROCESSED
BNE DIVID 2;
STA-2 RMDR : STORE REMAINDER
END: RTS :

4473 TOTAL MACHINE CYCLES REQUIRED
This program uses the algorithm of shifting the dividend lift once,
then executing a trial subtracting of the divisor. If the subtraction is
possible, the quotient is incremented and the actual subtraction executed,
As in the multiply program, this program does not use a conditional branch
to determine if the subtraction should be done. Instead, the subtract flag

determines whether one is subtracting zero or the divisor and whether zero

61

or ons is added to the quotient.
4.5 32-Bit Aocwmulation
The following program accumulates the sum of 255 words, each 32 bits
long. The program assumes the data resides in the upper 1020 bytes of the
first 1K of memory. The data are stored in four sections with base ad-
dresses, DASE-0, BASE-1, BASE-2, snd BASE-3. Thus, one is able to access
all 255 words by indexed addressing. The five byte result is returned is
the first five bytes of page zero called symbolically ACM-0, ACM-1, ACM-2,
ACM-3, and ACM-4,
32-BIT ACCUMULATOR/CONTEXT INDEPENDENT CODE
LABEL MNEMONIC OPERAND CYCLES COMMENT
BEGIN: LDA #00 23 CLEAR ACCUMULATOR SPACES
STA-Z ACM-0 tH
8§TA-2 ACM-1 kH
8TA-2 ACM-2 3

STA-2 ACM-3 kH
STA-2 ACM-4 33

LDX #FF 23 NUMBER OF WORDS = 255
LOOP: DEX 2;

LDA BASE-0,X 43 GET LSB

ADC ACM-0 3 ADD TO ACCUMULATOR ZERO

8TA-Z ACM-0 3

LDA BASE-1,X 43 GET NEXT MOST SIGNIFICANT BYTE
ADC ACH-1 3 ADD TO ACCUMULATOR ONE

8TA-2 ACNM-] kH

LDA BASE-2,X 43 GET NEXT MOST SIGNIFICANT BYTE
ADC ACH-2 kH ADD TO ACCUMULATOR TWO

STA-Z AN-2 3

LDA BASE-3,X 43 GET N8B

ADC ACM-3 33 ADD TO ACCUMULATOR THREER

LDA #00 23

ADC ACM-4 k ¥} ADD POSSIBLE CARRY TO ACCUMULATOR FOUR
8TA-2Z ACM-4 3;

crPx 100 23 :

BNE LooP 23 ALL 255 NUMBERS ADDED?

RTS 63

16,8573 TOTAL MACEINE CYCLES REQUIRED
This program is very close to a stendard 6502 32-bit sccumulation pro-

gcam. The only possible change would be to only add the carry to ACM-4

- —

- -

62

when is wvas set. That is, to branch around the add instruction when the
carry was sero. However, later this program with independent data will be
compared to the same application with dependent data. That is, instead of
performing a different 32-bit accumulation for each of four processors, one
performs a single 32-bit sccumulation using all of the four processors.
4.6 32 x 32-Bit Binary Multiplioation
The following program multiplies one 32-bit number by another 32-dbit
number to obtain a 64-bit product. The program assumes that the multipli-
cand slres’y resides in four bytes called symbolically MPCD-0, MPCD-1,
MPCD-2 and MPCD-3. The program also assumes that the multiplier already
resides in four bytes called symbolically MPLR-0, MPILR-1, MPLR-2 and
MPLR-3. The 64-bit product is returned in eight bytes called symbolically
PRD-0, PRD-1, PRD-2, PRD-3, PRD-4, PRD-5, PRD-6 snd PRD-7. All memcry
locations are assumed to be in page zero.
32 x 32-BIT MULTIPLICATION/CONTEXT mmmnm CoDE

LABEL MNEMONIC OPERAND CYCLES COMMENT
BEGIN: 1L1DA #00 23 CLEAR PRODUCT BYTES 0-7

8TA-2 PRD-0 3

STA-2 PRD-1 k H

STA-2 PRD-2 3

8TA-2 PRD-3 33

STA-2 MD-4 33

$TA-2 PRD-3 3

STA-2 PRD-6 k }
S8TA-2 PRD-7 3

LX f20 23 32 BIT8 IN MULTIPLIER
SHIFT: ASL PRD-0 53 SHIFT PRODUCT BYTES 0-7 LEFT ONE BIT
ROL PRD-1 53
ROL PRD-2 33
ROL PRD-3 58
ROL PRD-4 53
ROL PRD-5 53
ROL PRD-6 53
ROL PRD-7 53
ASL WPLR-0 53 SRIFT MEXT BIT OF MULTIPLIER INTO CARRY
ROL MPLR-] 53 POSITION

ROL MPLR-2 58

£
B

LDA 100 F £
83C 100 23
TOR frr 23
5142 NASK 33
AND MPCD-0 3
8TA-2 T™P-0 3
LDA-2Z MASK 3
ARD MPCD-1 kH
STA-2 ™P-1 33
SDA-2 MASK 33
AMD MPCD-2 3
STA-2 ™P-2 3;
LDA-2 MASK kH
AND MPCD-3 3;
STA-2 ™P-) 3
CIC 23
LDA-2 PRD~0 33
ADC ™P-0 33

8TA~Z MRD-0 k ¥
LDA-2 PRD-1 3

ADC ™P-]) 3
S8TA-2 PRD-1 3;
LDA-2 PRD-2 3

ADC ™P-2 3
8TA-2 PRD-2 3;
LDA-2 PRD-3 k 1}

ADC ™P-3 33
8TA-2 PKD-) 3
LDA~-2 PRD-4 k¥

ADC #00 23
8TA-Z PRD-4 k ¥3
LDA-2 R k T3

ADC #00 2
8TA-2 PRD-S5 33
LDA-Z PRD-6 k ¥

ADC 100 2;
STA-Z PRD-6 3;
LDA-2 PRD-7 33

ADC f00 23

8TA-Z PRD-? 33

DEX 23

BNE SRIFT 23

END: RTS 63
55063

63

IF C=0, ACCUM=00, IF C=]1, ACCUM=FF
STORE MASK

IF C=0 MASK OFF MULTIPLICAND BYTE 0
STORE EITRER MPCD-0 OR 00

STORE EITHER MPCD-1 OR 00

STORE EITHER MPCD-2 OR 00

STORE EITHER NPCD-3 OR 00

ADD EITHER 00 OR MPDC-0 TO PRODUCT
ADD EITHER 00 OR MPCD-1 TO PRODUCT
ADD EITHER 00 OR MPCD-2 TO PRODUCT
ADD EITHER 00 OR MPCD-3 TO PRODUCT
ADD POSSIBLE CARRY

ADD POSSIBLE CARRY

ADD POSSIBLE CARRY

ADD POSSIBLE CARRY
ALL 32 BITS PROCESSEID?

TOTAL MACHINE CYCLES REQUIRED

This program simply expands the single byte multiplicstion program in

Context Independent Code to that of s four byte multiplication, This re-

quires shifting of s product which is eight bytes rather than two, and

!
¢
!
¢
¥

64

requires much more temporary storage but is a straightforvard extemsion of
the simpler program.
4,1 Comparison of CIC Programs With Unirrocessor Programs

The following program calculates the magnitude of an 8-bit twos com-

plement number. This is a standard uniprocessor program and hence is not

in CIC.
8-BIT MAGNITUDE/UNIPROCESSOR CODE

LABEL MNEMONIC OPERAND CYCLES COMMENT
BEGIN: LDA-Z NUMBER 33 GET NUMBER

BPL END 2; IF POSITIVE, DORE

EOR #FF 2; IRVERT NEGATIVE NUMBER

CIC 23

ADC #01 23 ADD END AROQUND CARRY
DONE: STA-2 MAGN 3;

14; CYCLES IF NEGATIVE
8: CYCLES IF POSITIVE

The uniprocessor program requires approximately 11 machine cycles on
the average to obtain the magnitude of an 8-bit twos complement number.
The CIC program, on the other hsnd, always requires 33 machine cycles to do
the ssme job. Thus, one must use 3 processors to obtain the same through-
put as the original processor for this task. If one were to represent the
throughput of the array as Xn times the single processor throughput where
n = number of processors and X is the ‘recoding factor', the recoding fac-
tor for the 8-bit twos complement magnitude program is 0.33. This simply
means that for this task, the number of processors used should always be
greater than three for effective use of CIC programming.

The following is the uniprocessor program from levanthal [1979] that

calculates the lo-bit product of two 8-bit numbers.

;

e . g e e ot

oy g

1 AP et < e e -

.

65

8 x 8 MULTIPLICATION/UNIPROCESSOR

LABEL MNEMONIC OPERAND CYCLES COMMENT
BEGIN: LDA 00 2; LSB OF PRODUCT = ZERO
STA-2 PRD-H 3; MSB OF PRODUCT = ZERO
LDX 08 23 8 BITS IN MULTIPLIER
SHIFT: ASL ACC 2; SHIFT PRODUCT LEFT ONE BIT
ROL PRD-H 53
ASL MPLR 53 SHIFT MULTIPLIER LEFT ONE BIT
BCC NO ADD 2; NO ADDITION IF NEXT BIT 1S ZERO
CIC 23
ADC MPCD 3; ADD MULTIPLICAND TO PARTIAL PRODUCT
BCC NO ADD 2;
INC PRD-H 53 ADD CARRY TO MSB IF PRODUCT
NO ADD: DEX 23
BNE SHIFT 23 LOOP UNTIL 8 BITS ARE MULTIPLIED
STA-Z PRD-L 3; STORE LSBS OF PRODUCT
RTS 6;

2083 MACHINE CYCLES TYPICALLY REQUIRED

Since the CIC program requires 392 machine cycles, the recoding factor
for this program is 0.53. Effective use of CIC programming requires that
one employ a number of processors that is greater than two. One should
note that the uniprocessor program requires only one accumulator for effi-
cient processing. For example, the uniprocessor does not initially clear
the LSB of the product, nor does it store the result of the addition within
the loop. Also, the LSB of the product is left in the accumulator, which
allows it to be shifted much more quickly than if it were in page zero.
All these facts allow the uniprocessor program to be executed much quicker
than the CIC program. If one were to have another accumulator available
(as in the 6800), the difference would be reduced to replacing the BCC
instruction with LD, 00, SBC 00, EOR FF, and MPCND and STA-Z TEMP. The
additional execution time would then be approximately 80 machine cycles or
about thirty-eight percent longer. As one can see, the effectiveness of
CIC programming depends as much on the expertise of the programmer as any

other single factor.

S e

B e o e L

66

The following is a uniprocessor 16/8-bit division program.

LABEL MNEMONIC OPERAND CYCLES

16/8-BIT DIVISION/UNIPROCESSOR

COMMENT

BEGIN: LDX #08 23 DIVISION BITS = 8
LDA-2 DVND-L 3 GET LSB DIVIDEND
STA-2 QNT 3;
LDA-2Z DVND-H 3 GET MSB DIVIDEND
DIVID: ASL-Z QNT 53 SHIFT DIVIDEND-QUOTIENT LEFT ONE BIT
ROL ACC 23
CMP-2 DVSR 3; CAN DIVISOR BE SUBTRACTED?
BCC NO SUB 2; NO, GO TO NEXT STEP
SBC DVSR 3; YES, SUBTRACT DIVISOR AND INCREMENT
INC QNT H QUOTIENT LOOP UNTIIL ALL 8 BITS ARE
NO SUB: DERX 2; DIVIDED
BNE DIVID H
STA-Z RMDR 3 STORE REMAINDER
END: RTS 63

200; TYPICAL MACHINE CYCLES REQUIRED
The CIC program requires 447 machine cycles and thus the recoding fac-
tor for this program is 0.45. In this case, three processors are required
to obtain a throughput greater than the throughput of a single processor
executing uniprocessor code.

The uniprocessor 32-bit accumulation program is identical to the CIC
program except that instead of adding a possible carry to the fifth byte,
one inserts a BCC instruction which causes one not to execute the add if
the carry is not set. This will reduce the execution time by 2.5 machine
cycles on the average. For all practical considerations the CIC program

executes as fast as the uniprocessor program and hence X = 1.0.

The following is a uniprocessor 32 x 32-bit multiplication program.

32 X 32-BIT MULTIPLICATION/UNIPROCESSOR

LABEL MNEMONIC OPERAND CYCLES COMMENT
BEGIN: LDA #00 23
STA-2 PRD-0 33 CLEAR PRODUCT BYTES 0-7
STA-2 PRD-1 kH
STA-2 PRD-2 :
STA-Z PRD-3 3;

LABEL MNEMONIC OPERAND CYCLES COMMENT

STA-Z PRD-4 33
8TA-2 PRD-5 3;
8TA-2 PRD-6 kH
STA-2 PRD-7 kH

LDX #20 2; 32-BITS IN MULTIPLIER
SHIFT: ASL PRD-0 5: SHIFT PRODUCT BYTES 0-7 LEFT 1 BIT
ROL PRD-1 b H
ROL PRD-2 53
ROL PRD-3 53
ROL PRD-4 5;
ROL PRD-5 53
ROL PRD-6 5;
ROL PRD-7 53
ASL MPLR-0 53 SHIFT NEXT BIT OF MULTIPLIER INTO CARRY
ROL MPLR-1 5 POSITION
ROL MPLR-2 53
ROL MPLR-3 5;
BCC NO ADD 23 NO ADDITION IF NEXT BIT IS ZERO
CIC 23
LDA-2Z PRD-0 3; CARRY SET, ADD MULTIPLICAND TO PARTIAL
ADC MPCD-0 3 PRODUCT

STA-Z PRD-0 3;
LDA-2 PRD-1 3;

ADC MPCD-1 3;
STA-Z PRD-1 3;
LDA-Z PRD-2 :

ADC MPDC-2 H
STA-2 PRD-2 H
LDA-2Z PRD-3 :

ADC MPCD-3 H
STA-2 PRD-3 H

BCC NO ADD H
LA-2 PRD-4 H

ADC #00 H
STA-2 PRD-4 H
LDA-2 PRD-5 H

ADC #00 H
STA-2 PRD-5 :
LDA-2Z PRD-6 H

ADC #00 :
STA-Z PRD-6 H
LDA-2Z PRD-7 H

ADC #00 H
STA-2Z PRD-7 H

NO ADD DEX H
BNE SHIFT 2; ALL 32 BITS MULTIPLIED
END: RTS :

44503 TOTAL CYCLES FOR ALL BITS SET
2032; TOTAL CYCLES FOR ALL BITS CLEARED

68

On the average, the required machine cycles might be near the arith-
metic average of the two extremes or approximately 3266. Since the CIC
program requires 5506 machine cycles for execution. The recoding factor
for this program is approximately 0.59. Thus, two processors executing the
CIC program would yield a greater throughput than a single processor exe-
cuting the uniprocessor program.

To summarize, the 8-bit magnitude CIC program has X = 0.33, The 8 x 8-
bit multiplication program writtem in CIC has X = 0.53. The 16/8-bit
division program in CIC has X = 0.45; The 32-bit accumulator program in
CIC has X = 1.0 and finally the 32 x 32-bit multiplicatic:. program has
A = 0,59, The important thing to remember is that once the price has been
paid by writing the program in CIC, ore can gain throughput linearly with
additional processors. The experimental evidence here shows that the
recoding factor, X, varies from a maximum of 1.0 (32-bit accumulation) to a
minimum of approximately 0.45 (16/8-bit division). Thus, if an array of
processors were to execute these sample programs, one would see a through-
put somewhere between 0.457 and 7 times the throughput of a single
processor. This indicates that each PE has an efficiency of at least 452

for these sample programs.

69

5. EXAMPLES OF DEPENDENT DATA HANDLING

5.1 Introduction

This chapter exhibits different examples of dependent dats handling.
Applications of dependent data handling must have sufficient inherent par-
allelism within them to allow each of the processors to process a different
segment of the entire problem. For this reason, dependent data problems
are typcially larger and more complex than independent data problems. It
is quite possible that a dependent data problem will have independent data
subroutines used within it. This is because the calculation for which the
subroutine is used does not require knowledge that the data for each of the
processors is related in some way. There are two different methods of de-
pendent data handling. The first method employs each of the 8-bit proces-
sors to process 8-bit data and communicate to some of the other processors
certain results of its processing. The other method uses all of the n
processors to process 8n-bit data spread across all of the processors.
This method needs a higher degree of communication between the processors
than the other method as the processors are being used to simulate a single
more powerful processor with a word size of 8n-bits.
5.2 Carry-Propagation Problem

As suggested in the preceding section, when one teams up several
processors to simulate a larger processor several obstacles appear. One of
the most difficult to resolve is that of a carry being propagated from one
processor to another. In multiple precision arithmetic, a carry out of the
most significant bit position is placed into what is called the carry bit.
This bit is then added to the least significant bit of the next word. This
works well when one is using a single processor. However, when one is

using several processors, the carry from the most significant bit of one

70

processor should be added to the least significant bit of the next proces-
sor. One problem is that the carry-out is not available on an external pin
(except bit-slice microprocessors) and there exists no carry in pin so that
one could join general-purpose microprocessors together in much the same
manner as digital systems designers have previously joined several adders
together to form a large adder. Even if the pins did exist, one would
encounter a carry propagation problem similar to that encountered by digi-
tal designers. The solution in that case was to use carry look ahead adder
cells. Another solution to this carry propagation problem is discussed in
the following section.

5.3 Stored-Carry Solution

The preceding section described the carry propagation problem and
examined § possible hardware solution to the problem other than redesign of
the microprocessor. One solution is to tranefer the carry from each of the
processors to the SM and then transfer the proper carry to the next proces-
sor. This solution is inefficient because every addition requires at least
one WRITE to SM and one READ from SM,.

The original solution of transferring each carry through SM is modi-
fied so that it is necessary to transfer one word containing several car-
ries to the next processor only after 255 additions. This 'Stored Carry'
method assumes that a large number of values are to be added. Each proces-
sor performs double precision arithmetic in adding 255 values together.

The upper byte then contains the carries from the last 255 additions (a
maximum of 255). One then transfers the stored carry word to the next
processor through SM and adds it to that processor's accumulated value.
This method requires only one WRITE to and READ from SM for 255 additions

and is therefore much more efficient than the other method.

© mmrme e s+ b e et et o ¢ = = =&

S.4 32-Bit Accwmulation

The following program calculates the sum of 255 thirty-two-bit words.

The program assumes that six locations in page zero have been previously

initialized to the following values.

LOCATION

FA
FB
FC
FD
FE
FF

LABEL MNEMONIC OPERAND CYCLES

BEGIN:

LOOP:

LDA
STA-Z
STA-2

LDX

DEX

LbA

CIC

ADC
STA-Z

LDA

ADC
STA-2

CcpX

BNE
LDA-2

STA

INX

STA

STA

INX

STA

STA

LDA
STA-2Z

LDA
STA-2

LDA
STA-2

STA

LDX

STX

PROCESSOR
0

00
00
00
BO
00
c?

32-BIT ACCUMULATION/CIC (DEPENDENT DATA)

#00
SUM
CARRY
{#FF

BASE,X

SUM
SUM
#00

CARRY

CARRY
#00
LOOP

CARRY

(FC) X

$C100
(FC) X

$C200
(FC) X
$8000
$0001

$B100
$0002
$B200
$0003
$c70C
#00

$0000

COMMENT

CLEAR SUM LOCATION
CLEAR STORED CARRY BYTE

GET NEXT VALUE TO BE ADDED TO SUM

ALL 255 VALUES SUMMED?

IF NOT, LOOP

LOAD ALL STORED CARRY WORDS
STORE CARRY WORD FROM CPU-0

SET CP=1
STORE CARRY WORD FROM CPU-1

SET CP=2

STORE CARRY WORD FROM CPU-2
GET CARRY WORD FROM CPU-0
STORE CARRY FOR CPU-1

GET CARRY WORD FROM CPU~-1
STORE CARRY FOR CPU-2

GET CARRY WORD FROM CPU-2
STORE CARRY FOR CPU-3

SET CP=0

CLEAR CARRY WORD FOR CPU-0

71

PROCESSOR PROCESSOR PROCESSOR

1 2 3
01 02 03
00 00 00
00 00 00
Bl B2 B3
00 00 00
Cl c2 C3

72

LABEL MNEMONIC OPERAND CYCLES COMMENT

LDA (FA),X 3 LOAD ALL CARRIES SIMULTANEOUSLY
CIC 23

ADC SUM 33 ADD CARRIES TO SUM

STA-2 SUM 3 STORE RESULT

STA (FC),X : TRANSFER SUM BYTE FROM CPU-0
STA $C100 3 Cp=1

STA (FC) WX 63 TRANSFER SUM BYTE FROM CPU-1
STA $C200 3 CP=2

STA (FC).X 63 TRANSFER SUM BYTE FROM CPU-2
STA $€300 : CP=3

STA (FC),X H TRANSFER SUM BYTE FROM CPU-3
LDA-2 CARRY 3

ADC #00 : ADD POSSIBLE CARRY TO CPU-3s CARRY WORD
INX :

STA (FC).X : STORE MSB OF ACCUMULATION

70343 TOTAL MACHINE CYCLES REQUIRED

The preceding program performs 16-bit addition in accumulating 255
eight-bit words for each processor. Each processor then has a sum byte and
a carry byte. The carry bytes are then transferred through the SM to the
next processor. The carry word from the previous processor is then added
to the sum byte of the current processor. Finally, each of the sum bytes
is transferred to the SM with CPU-3 transferring both the sum byte and the
carry byte in order to complete the 5 bytes necessary to accumulate 255
thirty-two-bit numbers. One notes that it is necessary to perform four
WRITEs to and READS from SM in order to transfer the carry word from each
processor to the next processor. This is due to the architecture chosen
which allows interprocessor communication only through SM. The process of
transferring carry words to each of the processors and transferring the
results to SM takes 139 machine cycles. If the architecture permitted the
transfers to be done in one pass instead of four, the transfers would only
have taken 35 machine cycles. This represents a savings of 104 of a total
of 7034 machine cycles required for the accumulation, only 1.5 percent.

However, one should not lose sight of the potential problem when the number

e < e At et e

A o s A s~

- o e e e s

73

of processors becomes large. If one does not want the amount of time
required for transferring data between processors to take more than 10
percent of the entire program, one cannot use this architecture for more
than approximately twenty processors. That is because the transfer re-
quires 357 machine cycles and the entire program takes approximately 7000
machine cycles. Thus, for n greater than twenty, the transfer alone will
require more than 10 percent of the array's time. However, this result
assumes than n-byte arithmetic is used and is is unlikely that one would
ever require 20-byte precision.
5.5 32 x 32-Bit Multiplication

This program multiplies one 32-bit number by another 32-bit number to
obtain a 64-bit product. The multiplicand is assumed to be located in four
bytes called DO, D1, D2 and D3 situated in page zero for all of the proces-
sors. The four bytes of the multiplier are distributed among each of the
processors. That is, CPU-0 has RO, CPU-1 has Rl, CPU-2 has R2 and CPU-3
has R3. When the program refers to R, it is referring to the respective
byte of the multiplier which each processor has. The program has each
processor multiply its multiplier byte by the low byte of the multiplicand.
This product is placed into two locations called SO and Sl1. The multiplier
byte is then multiplied by the second byte of the multiplicand. The low
byte of this 16-bit product is added to Sl and the high byte ie placed in
§2. The third byte of the multiplicand is multiplied by the multiplier
byte. The low byte of this product is added to S2 and the high byte is
placed in 83. The fourth byte of the multiplicand is multiplied by the
multiplier byte., The low byte of this product is added to S3 and the high
byte of the product is placed in S4, Each processor then transfers its

S0-S4 words to SM. The partial sums S0-S4 are stored in a shifted manner

m*"“""‘\‘“—- e

74

to indicate their weightings (Figures 5.l1a and 5.1b). All the partial sums
are read into each processor's page zero. Then the X index register of
each processor is initialized to a different value so that each processor
indexes to different partial sums for accumulation., For example, CPU-0
adds its 80 to zero and stores the result in Lo-Accum. It then adds its Sl
to CPU-1' 81 with carry and stores this in Mid-Accum. CPU-0 adds zero to
Lo-Accum and to Mid-Accum twice more to get the final result of Lo-Accum
and Mid-Accum. In order to account for possible carries from one processor
to another, zero is added with carry to a null location called Hi-Accum.

Of course, while CPU-0 is doing this, the other processors are accumulating
their own Lo-Accum, Mid-Accum and Hi-Accum from their own indexed data.

The only thing left to do is to transfer the stored carry Hi-Accum byte to
the next processor and add it in to obtain the final 64-bit product. This
program assumes the ssme initialization as the 32-bit accumulator program.

32 x 32-BIT MULTIPLY/CIC (DEPENDENT DATA)

LABEL MVEMONIC OPERAND CYCLES COMMENT
BEGIN: LDX # 23
LDA #1ZERO 2;
STA-Z E8 3; INITIALIZE BASE POINTER ZERO
LDA #ONE H
STA-Z EA 33 INITIALIZE BASE POINTER ONE
LDA ##TWO :
STA-Z EC 3; INITIALYZE BASE POINTER TWO
LDA {# THREE 23
STA-Z EE 33 INITIALIZE BASE POINTER THREE
LDA #00 23
STA (E8),X 63 CLEAR NULL LOCATIONS
STA (EA),X :
STA (EC)oX :
DEX :
STA (E8),X :
STA (EA),X :
DEX 23
STA (E8),.X :
LDX ¥ 23
STA (EE).X :
DEX 23

e ——— g — -

75

D3 | 02 | DI | DO |MULTIPLICAND
R3 | R2 | F| | RO |MULTIPLIER
| ' ROX DO
ROx DI !
ROxX D2 . I t PEg
RO D3 L
54 [S3 [s2 [St [sO]
| i RIXDO ||
' RIxDI :
RIxD2 ! 't PE,
RIXD3 [[
sS4 [s3 | s2 [sl [SO |,
i R2xDO
R2x DI !
R2 xD2 ! : b Pfiz
R2 xD3] |
sS4 [s3 [s2 [S: [sO],
| R3xDO ||
} R3x DI !
R3 x D2 | |t PE3
R3 x D3 I I
S4 [S3 |s2 |SI [SO |]

Figure 5.la 32 x 32-bit nultiplication diagram.

76

OF POOR QUALITY

ORIGINAL PAGE IS

‘weadeyp uoyledTTdyITMA I¥Q-Z€ X Z€¢ QIS 3and1g

1
e ad 4P %
wuno) - —
V-0 WNDIOV-PIN wnddOy-01] wnoIV-PIN andOY-0] unIdY-pIK wunOIY-07] WwnoOOY-pIN
sa1y3 TINN TINN
TINN 0S 1S z
S €S %S
om3 1IN TINN 5
0s 18 Zs
£s %S [INN
auo TINN P
0S 1S S £S %S 110N TIWN
013z 0S
1S ZS €S %S 1IN TINN TINN
SSaApPpY .

asegq

la4

044

wolj

woa

woly

woaj

pu, o

-

STA-2

ROR
8TA-2
LDA-2
STA-2
LDA-2
8TA-2Z

JSR

LDA-2
ASL
LDA-2

OPERAND CYCLES

(EB).X 63
(EC)QX 63
2
(EC),X 63
(BA) X 63
R kH
MPLR 3;
D0 3
MPCD 3
€-BIT 398;
MULTIPLY
PRD-L k¥
80 kH
PRD-H 33
81 3
1) kH
MPCD 3
8-BIT 3983
MULTIPLY
23
PRD-L 3
81 3
8l 3
#00 23
ACC, 23
CARRY 3
PRD-H 33
82 33
D2 3
MPCD 3
8-BIT 398;
MULTIPLY
CARRY 3;
ACC, 2,
PRD-L 33
82 33
82 3
400 23
ACC. 23
CARRY kH
PRD-H 3
83 3
)X} 33
MPCD kH
8-BIT 398;
MULTIPLY
CARRY 3
ACC, 28
PRD-L 33

83 kH

77

GET MULTIPLIER BYIER

PASS PARAM, TO 8-BIT MULTIPLY SUBROUTINE
GET LOW BYTE OF MULTIPLICAND

PASS FARAM, TO 8-BIT MULTIPLY SUBROUTINE
DO 8-BIT MULTIPLY OF R AND DO

PLACE LOW BYTE OF PRODUCT INTO 80
PLACE HIGH BYTE OF PRODUCT INTO 81
CET 2ND BYTE OF MULTIPLICAND

PASS PARAM, TO 8-BIT MULTIPLY SUBROUTINE
DO 8-BIT MULTIPLY OF R AND DI

ADD LOW BYTE OF R X D1 TO 81

STORE POSSIBLE CARRY

GET 3RD BYTE OF MULTIPLICAND
PASS PARAM. TO 8-BIT MULTIPLY SUBROUTINE
DO 8-BIT MULTIPLY OF R AND D2

PLACE POSSIBLE CARRY BACK
GET LOW BYTE OF PRODUCT R X D2

ADD LOW BYTE OF R X D2 WITH CARRY T7 82

STORE POSSIBLE CARRY

STORE HIGH BYTE OF R X D2 IS 83

GET 4TH BYTE OF MULTIPLICAND

PASS PARAM. TO 8-BIT MULTIPLY SUBBIUTINE
DO 8-BIT MULTIPLY OF R AND D3

RETURN CARRY FROM LAST ADD

ADD LOW BYTE OF R X D3 TO 83

P“‘**Mxr;m-.« -

LABEL MNEMONIC

STA-2
LDA-2
ADC
STA-Z
LDX
STA
DEX
LDA-Z
STA
DEX
LDA-2Z
STA
DEX
LoA-2
STa
DEX
LDA-2Z
STA
STA
LDX
LDA-2
STA
DEX
LDA-2
STA
DEX
LDA-Z
STA
DEX
LDA-Z
STA
DEX
LDA-2Z
STA
STA
LDX
LDA-2Z
STA
DEX
LDA-2Z
STA
DEX
LDA-Z
STA
DEX
LDA-Z
STA
DEX
LDA-2
STA
STA

OPERAND

3
PRD-H
#00
84
#04
(FC).X

s3
(FC).X

s2
(FC),.X

Sl
(FC),X

SO
(FC),.X
$C100

#05

S4

(FC) X

s3
(FC) X

s2
(FC).X

sl
(FC) X

S0
(FC),X
$C200

#06
s4
(FC) X

s3
(FC) X

s2
(FC) X

s1
(FC),X

S0
(FC) X
$C300

CYCLES

4;

COMMENT

STORE FINAL §3

ADD IN POSSIBLE CARRY
STORE FINAL S4

TRANSFER S4 FROM CPU-C

TRANSFER

TRANSFER

TBRANSFER

TRANSFER
SET CP=1

TRANSFER

TRANSFER

TRANSFER

TRANSFER

TRARSFER
SET CP=2

TRANSFER

TRANSFER

TRANSFER

TRANSFER

TRANSFER
SET CP=3

83

s2

sl

S0

Sh

s3

52

sl

S0

$4

83

S2

sl

S0

FROM CPU-0

FROM CPU-0

FROM CPU-0

FROM CPU-0

FROM CPU-1

FROM CPU-1

FROM CPU-1

FROM CPU-1

FROM CPU-1

FROM CPU-2

FROM CPU-2

FROM CPU-2

FROM CPU-2

FROM CPU-2

78

B

LABEL MNEMONIC OPERAND

QLOOP:

RLOOP:

TLOOP:

ULOOP :

LDX
LDA-2Z
STA
DEX
LDA-2
STA
DEX
LDA-2
STA
DEX
LDA-2Z
STA
DEX
LDA-2
STA
STA
LDX
DEX
LDA
STA
CPX
BNE
STA
LDX
DEX
LDA
STA
CPX
BNE
STA
LDX
DEX
LDA
STA
CPX
BNE
STA
LDX
DEX
LDA
STA
CPX
BNE
LDA-Z
ASL
STX
LDA
CIC
ADC
STA-2Z
INX

#07
sS4
(FC) X

s3
(FC),X

s2
(FC),.X

sl
(FC).X

s0
(FC),.X
$C700
#05

(FC),.X
(E8).X
#00
QLOOP
$C100
#06

(:3).X
(EA),X
01
RLOOP
$C200
#07

(FC)oX
(EC),.X
#02
TLOOP
$C300
#08

(FC) X
(EE).X
#03
uLooe
SFA
ACC.

(E8),.X

(EA).X
LO-ACCUM

79

COMMENT

TRANSFER S4 FROM CPU-3

TRANSFER S3 FROM CPU-3

TRANSFER S2 FROM CPU-3

TRANSFER S1 FROM CPU-3

TRANSFER SO FROM CPU-3
SET CP=0

GET S0-S4 FROM CPU-0 FOR ALL CPUs

SET Cp=1

TRANSFER S0-S4 FROM CPU-1 TO ALL CPUs

SET CP=2

TRANSFER S0-S4 FROM CPU-2 TO ALL CPUs

SET CP=3

TRANSFER S0-S4 FROM CPU-3 TO ALL CPUs

GET INDEX REG X=0 FOR CPU-0, 2 FOR CPU-1
4 FOR CPU-2, 6 FOR CPU-3

ACCUMULATE 3 BYTES FOR EACH CPU, THAT IS,
LO-ACCUM, MID-ACCUM AND HI-ACCUM
HI-ACCUM = STORED CARRIES

v

LABEL MNEMONIC OPERAND CYCLES

LDA
ADC
STA-2
LbA
ADC
STA-2
CIC
LDA-2Z
DEX
ADC
STA-2
INX
LDA-Z
ADC
STA-Z
LDA-Z
ADC
STA-Z
CIC
LDA-Z
DEX
ADC
STA-Z
INX
LDA-2Z
ADC
STA-Z
LDA-2
ADC
STA-Z
DEX
LDY
STA
STA
STA
STA
STA
STA
LDA
STA
LDA
LDY
STA
STA
LDY
LDA
LDY
STA
STA
LDY
LDA

(E8),X
(EA) X
MID-ACCUM
#00
#00
HI-ACCUM

LO-ACCUM

(EC) X
LO-ACCUM

MID-ACCUM
(EC).X
MID-ACCUM
HI-ACCUM
#00
HI-ACCUM

LO-ACCUM

(EE) X
LO-ACCUM

MID-ACCUM
(EE) X
MID-ACCUM
HI-ACCUM
#00
HI-ACCUM

#00
(FC),Y
$c100
(FC),Y
$C200
(FC),Y
$C700
#00
(E8),Y
(rC),Y
#02
(E8),Y
$C100
#00
(FC),Y
04
(E8),Y
$C200
#00
(FC),Y

COMMENT

FINISH ACCUMULATION OF 3 BYTE SUMS

TRANSFER STORED CARRIES FROM CPU-0
SET CP=1
TRANSFER STORED CARRIES FROM CPU-1
SET CP=2
TRANSFER STORED CARRIES FROM CPU-2
SET CP=0

CLEAR STORED CARRY WORD FOR CPU-0
GET STORED CARRY WORD FOR CPU-1

GIVE S,.C. WORD FROM CPU-0 TO ALL CPUs
SET CP=1

GET STORED CARRY WORD FR(M CPU-1

GIVE S.C. WORD FROM CPU-1 TO ALL CPUs
SET CP=2

GET S.C. WORD FROM CPU-2

v L
e e e > e bt

W masgy

81

LABEL MNEMONIC OPERAND CYCLES COMMENT
LDY #06 23
STA (E8),Y 63 GIVE 8.C. WORD FROM CPU-2 TO ALL CPUs
CI1C 23
LDA-2 LO-ACCUM 33
ADC (E8).X 63 ADD IN STORED CARRIES

STA-2 LO-ACCUM 33

LDA-Z MID-ACCUM 33

ADC #00 23

STA MID-ACCUM 3

2685; TOTAL MACHINE CYCLES REQUIRED
From the above program, one can easily see how various independent
data programs may be placed within a larger and more complex dependent data
progran. One example is the 8-bit multiply independent data subroutine
which is used in the 32 x 32-bit multiply dependent data program below.
5.6 Comparison of CIC Programs With Uniprocesgor Programs
The 32-bit accumulation (dependent data) program requires all four

processors, but is able to execute an accumulation of 255 thirty-two bit
numbers in 7034 machine cycles whereas the uniprocessor program requires
16,857 machine cycles to do the same job. Thus, the four-processor array
can perform the 32-bit accumulation is 2.4 times as fast as the single
processor. This represents a recoding factor of 0.60. These results would
certainly encourage one to pursue array processing. An important fact to
point out is that with the architecture used in this study, propagating
carries from one processor to the next for 87-bit precision arithmetic,
will take a larger and larger amount of time as the number of processors
grows. However, if the architecture were modified to allow all the proces-
sors to propagate their carries in ome pass instead of n passes, this would
not be the case. For this array of 4 processors, propagating the carries

required less than 2 percent of the execution time, therefore, the archi-

tecture did not significantly hamper throughput. With X = 0.60, each of

e T——

82

the microprocessors is about 60 percent efficient. So long as carry-
propagation delay is not significant, one could expect a throughput of 0.6
for an array of n processors executing this program.

The 32 x 32-bit multiply (dependent data) program requires all four
processors but is able to perform a 32 x 32-bit multiply in 2685 machine
cycle as compared to the average execution time of 3266 for the uniproces-
sor program. Thus, one is able to obtain a speed-up of 1.22 by using four
processors. To determine the recoding factor for this program, ome calcu-
lates the throughput of the array as X72. In this case, the recoding factor
K is roughly 0.30. If one examines this program closely, it is apparent
that almost 20 percent of the time is spent in transferring values from one
processor through SM to another processor. Thus, the architecture used to
implement the four-processor array is seriously hampering the efficiency of
this program by requiring four times as long to pass parameters between
processors, If one were to implement another architecture which would
allow all the parameters to be passed in a single sweep, the recoding fac-
tor, X would reach approximately 0.40. In this case, an array of proces-

sors could be expected to exhibit a throughput of roughly 0.4n.

e -

R ASL R i

s o—

83

6. SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH
6.1 Swmmary

As stated earlier, the main objective of this work was to assert that
the recoding of standard uniprocessor programs into Context Independent
Code programs is feasible for an important set of applications. This ob-
jective was achieved by implementing a four-processor array and recoding
several programs for it. The programs were divided into two categories,
independent and dependent data handling. The first category allowed each
of the processors to work on a separate set of data such that no processor
required any results from any other processor in order to complete its
task. The second category required each of the processors to work on a
subset of the entire problem. This meant that the processors needed to
communicate intermediate results with one another at various times in order
to complete their task.

In order to allow easier comprehension of the programs, the design
of the Super-65 array processor was described in detail and altermative
approaches were snalyzed. The strengths and weaknesses of the implementa-
tion chosen for the Super-65 were noted. Among tke strengths were: its
simplicity, both in processor-memory interconmection and interprocessor
connections, expandability of the system, no host processor required and
the fault tolerance potential of the design. Among the weaknesses of the
design were: its restriction of interprocessor communications, the fact
that only one processor is able to write to SM at a time and the fact
that all programs executed on the Super-65 had to be written in Context
Independent Code. The last weakness does not imhibit this study at all as
the intent of this study is to examine the implementation of Context

Independent Code. The first two weaknesses of the design did not affect

R L

> e—m——— L.

84

the independent data programs nearly as much as the dependent data pro-
grams, The effect of the specific architecture on the efficiency of the
CIC programs was noted in the case of the dependent data programs and a
possible alternative architecture was suggested.

The conclusion drawn from the independent data programs was that for
the set of recoded programs, if one were to have an array of n processors,
the throughput of the array would range somewhere between 0.45: and n times
the throughput of a single processor. This means that the recoding factor
of the sample programs ranged from 0.45 to 1.00. This is, of course, quite
impressive and encouraging.

The conclugsion drawn from the dependent data programs was that for
the set of recoded programs, if one had an array of »n processors, the
throughput of the array would range between 0.3~ and 0.57 times the
throughput of a single processor. As expected, the dependent data programs
were considerably less efficient than the independent data programs with
the recoding factor for the sample programs from 30 to 60 percent (see
Table 6.1).

It is thus apparent that the throughput of the array processor is
highly dependent on the type of programs that it is executing. However, if
one considers that it has been shown by this study to be possible to obtain
a linear relationship between throughput and the number of processors in
the array (so long as carry-propagation delay in minimal), one must admit
that Context Independent Code may provide the key to arrays of immense
proportions. One may conclude that this study has shown that the implemen-
tation of Context Independent Code is not only feasible for array programs,
but is in fact desirable as it allows the array throughput to be linearly

related to the array size. Limitations to the array size are not due to

TABLE 6.1 Recoding factors for the sample program

8-Bit Magnitude
8 x 8-Bit Multiply
16/8-Bit Divide
32-Bit Accumulator

32 x 32-Bit Multiply

Independent Data
0.33
0.53
0.45
1.00
0.59

Dependent Data

0.60

0.30

85

86

the CIC program but rather are due to the hardware restrainte that ome
chooses to impose. Of course, if the array were to be infinitely large,
the time delay from one end of the array to the other could become signifi-
cant. Context Independent Code further has the property that the proces-
sors never become unsynchronized once they are initialized because all the
processors are always forced to execute the exact same instruction. That
is, none of the processors is allowed to be turned off during the execution
of a CIC program.

6.2 The Ideal Microprocessor for an Array of Microprocessors

It is not attempted here to define the ideal microprocessor for an ar-
ray of microprocessors. Instead several desirable qualities that are found
lacking in the microprocessor used for the Super-65 are described, as well
as those features of the 6502 microprocessor which are extremely useful
will be noted as well.

The most vital feature of the 6502 is its indirect indexed addressing
mode. This feature allows the processors to execute the same instruction
but locally index the effective address so that the processors actually
access different memory locations at the same time. This property is
essential as it allows one the ability to use pointers to point to the de-
sired data locations. Also it allows ome to index th-ough data from a base
location. Since a READ from SM is always executed by all of the processors
values read from SM are stored in the same locations in all processors.

One way to allow different processors to obtain different data while exe-
cuting the same instruction is to use indirect indexed addressing where
either the indirect value or the index value is a local value.

Another important mode of addressing is Indexed Indirect Addressing

where one can index through a tab.c of pointers for different data. This

87

mode is not quite as useful as the previous mode but still provides the
programmer a much more versatile set of instuctions.

One of the most distinctive features of the 6502 is its Zero-Page
Addressing mode. This mode allows the programmer to access any of the 256
locations of page zero very rapidly and thus allows one to use page zero in
the same manner as a small cache memory. This addressing mode allows for
considerable increase in throughput of the 6502 if used efficiently. How-
ever, for many applications, 256 locations are insufficient to contain all
the necessary data and for three cases, Zero-Page Addressing is not as at-
tractive as it could be. A modified Zero-Page Addressing mode may be much
more useful for larger programs. This modified Zero-Page Addressing mode
can be called Designated Page Addressing. This mode requires an 8-bit page
register that can be set to any of the 256 different pages in the 6502
memory. In this way, one can designate which page of memory is desired to
have fast access. This allows the microprocessor to execute at almost
twice its regular speed as it would seldom be necessary to specify the high
byte of each address. One executes a 'Set Page' instruction at the begin~-
ning of the program and then execute the bulk of the imstructions from that
page in memory. If it becomes necessary to cross into the next page or
some other page of memory for a considerable number of instructions or
data, one simply sets the page to a different number. Another benefit is
that for stack-oriented code, the designated page may be set to that page
of memory where the stack resides, This could allow one to access the
stack very quickly for non-stack operations. Altogether, this designated
page option is strongly recommended.

One characteristic of the 6502 is that one cannot do memory-to-memory

manipulations. That is, one must always route one of the operands by way

O

of the accumulator. This does not sllow one to keep sny temporary result
in the accumulator and also forces the programmer to use more instructions
to perform memory-to-memory transfer. For this reason, another accumulator
may be desirable, particularly one which has the f;II capabilities of the
original accumulator. This accumulstor might be transparent to the pro-
grammer such that the microprocessor is capable of memury-to-memory manipu-
lation without passing through sn accumulator.

Placing a microprocessor into an array system, especially the Super-65
means extensive use of the index registers. More such registers, prefera-
bly with general-purpose register capabilities of shifting, incrementing,
decrementing and the like could be used effectively. The addition of at
least one general purpose register with the option of adding the contents
of that register to the accumulator may resolve the temporary storage
problem,

In contrast to the MC6800, the 6502 does not have tristate capability
on the chip. That is, the 6502 does not itself provide DMA capability.
However, the architecture of the Super-65 could not have taken advantage of
this ccpability had it been available., This is because wach processor
should always be able to access its private memory. This would not be the
case if the tristate buffers for the address and data buses were on the
microprocessor chip. If the microprocessor has 512 bytes of RAM on-board
and tristate buffers on-board with control inputs to determine when the
buffers should be tristated, one could reduce chip count on the processor
board significantly. This reduction might no® be worth the required addi-
tional complexit: of the microprocessor chip, However, with the onset of
VLSI, the above option might be easily within reach.

Most microprocessors have the capability of being halted for varying

89

amounts of time. This is typically dome by either a HALT signsl or by dis-
abling the clock input to the microprocessor. When the clock is dieabled,
the most reliable procedure is to reset the microprocessors before proceed-
ing. It is desirable to temporarily cause the microprocessor to execute
no-ops with the clock active so that the microprocessor remsins synchro-
nized with the other processors of the array. Thus, the capubility to
disable instruction decoding within the microprocessor and force execution
of no-ops until the instruction decode disable control input goes inactive
would be quite useful in deselecting certain processors for s few instruc-
tions.

One final property that present microprocessors do not have is the
ability to team the processors easily to do multi-word arithmetic as a
single unit. In particular, there is no method of propagating carries from
one processor to the next without loading the accumulator with zero and
shifting the carry bit into the accumulator, then storing the accumulator
where the next processor can read it. This fact led to implementation of
the stored-carry solution. However, the stored-carry solution works rea-
sonably well vhen several additions are necessary. When only one addition
is required the stored-carry approach is extremely inefficient and unsatis-
factory. One solution would be to place carry in and carry out pins on
each microprocessor. This solution would lead to lengthy carry-propagaion
delays which would be unacceptable. A possible alternative would be to
place carry-propagate and carry-generate inputs and outputs on each
processor. This method would require two additional pins but would allow
the carry propagation delay time to be substantially smaller than the

preceding solucion.

T e Ty T

:

90

6.3 Extending the Mioroprocessor Array

There are several obstacles to extending the microprocessor array to a
very large number. These obstacles are due to the hardware implementation
of the Super-65 rather than the implementation of Context Independent Code.

The most serious impairment is that for an array of n processors, n
WRITES to SM and n READS from SM are required to pass information from each
processor to the next. In the four-processor array implemented, this
problem was not conspicuous. One csn readily see that for a larger array,
the percentage of time spent simply communicating between processors could
rapidly become unacceptable. Therefore, in order to extend the array sudb-
stantially, one should modify the interprocessor communications to allow
each processor to communicate at least to its nearest neighbors by perform-
ing a single WRITE., This csn be done perhaps most easily by giving each
processor two special locations within its privete memory. Whenever the
processor WRITES to one of these locations, it is giving information to one
of its two nearest neighbors. Whenever the processor READS from one of the
two special locations it is receiving informstion from one of its two near-
est neighbors. This would relieve the processor communication bottleneck.

A related prodblem is that the implemented arrsy requires that each
processor wait its turn to store its results in SM. Once again, this
forces the array to perform n times as many vrites as the uniprocessor
would normally do. It is true that two processors cs=:ot WRITE onto the
ssme address and dats buses st the same time. A possible solution might be
to have all the processors store their word into a special location in
Private Memory that is part of s special piece of hardware. This hardware
would be designed to accept the address from the controlling processor

and store each processor’'s word in & sequential fashion beginning at the

WY — ol

91

address specified by the CP. This hardware would, of course, need to
operate significantly faster than the processors. For very large arrays,
it might be necessary to follow every WRITE to SM with one or two no-ops to
allow the hardvare time to complete the transfer of every processor's word.
This then would reduce the store time to S8M from n WRITE instructions to 1
WRITE instruction and possibly 1 or 2 no-op instructions.

The design of the processor board was meant to allow implementastion
of an arbitrarily large array. Except for one detail, this was achieved.
The original design of the processor board includes an 8-input NARD gate
to be attached to the reset input of the comtrol processor flip-flop on
each board. Obviously, this will not allow one to have more than 8 other
processors or a total of 9 processors. Ia order to remedy this situation,
open-collector buffers are placed on each of the inputs normsily tied to
the NAND gate. The wired-AND of these inputs is formed by tying them to-
gether to pin 39 of the peripheral connector. User 1 must be disabled on
the Apple. Finally the NAND of the inputs (equivalent to the previous
design) is achieved by attaching the wired-AND to the input of an inverter.
The output of the inverter is then tiesd to the reset input through a tri-
stateable buffer wvhose control input is I/0 Select. The buffer prevents
1/0 Select from first setting its CP flip-flop and thea resetting it
iomediately aftervards. This modified design does not of itself limit the
array size.

One final restriction is that the Apple II backplane has space for
only 7 processor boards, and in order to simplify the decoding, the Apple
11 devotes an entire rage to each I/0 Select line, each Device Select line
and it devotes 8 pages to 1/0 Strobe. «ince the Apple II provides only 7

slots with 1/0 Select, Device Selcct and 1/0 Strobe, it is not trivially

Al A B

possible to extend the array size. However, there is a commercislly
available card cage with the desired number of slots, required power supply
and required decoding for the size of array desired. éne would probably
devote only 1 location to each I/0 Select, Device Select and 1/0 Strobe
control signal, allowing the array size to reach several thousand.
6.4 Suggestioms for Further Research

The first suggestion for further research is to correct the imperfec-
tions within the Super-65 design that have been previously noted.
Specifically, one should provide:

(1) more sophisticated interprocessor communication,

(2) some method of storing in SM more rapidly,

(3) necessary decoding circuitry, etc. to allow expansion of the

array.

Then one should pursue the recoding of wany more programs into Context
Independent Code. In particular, one should determinme if it is possible to
recode dependent data programs in such a way so as not to spend an unac-
ceptable percentage of the time tramsferring results from one processor to
another. One should try to more fully determine the restrictions to CIC
programming and if possible develop more well-defined rules for implement-
ing it.

Other areas for extended research include pursuing the design of tha
ideal microprocessor for an array environment. One could determine if:

(1) 512 bytes of on-board RAM

(2) Tri-state address and dsta buffers on board

(3) Designated page option

(4) Instruction decoding disable control imput

(5) Extra accumulator

C -

S

- W

P

93

(6) Additional in‘ sgisters
(7) Carry propagate/generate inputs and outputs
are all within the practical reach of today's technology, and if so, what
sacrifices would be necesssary in order to achieve all of the above options.
Finally, one might wish to review all the previously mentioned issues

and try to determine what, if any impact the use of a 16-bit microprocessor

would have upon them,

94

REFERENCES

Artwick, B. A. [1980), Miecrocomputer Interfacing, Prentice-Hall Inc.,
Frglewood Cliffs, CA.

Bart.., G. H., R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick and R. A.
Stokes, [1968], The ILLIAC IV Computer, IEEE Trams. on Computers,
Cc-17(8), 746-1757.

Barnwell, T. P., III, S. Gaglio and R, M. Price ([1978], A Multi-Micro-
processor Architecture for Digital Signal Processing, Proc. of the‘
International Conference on Parallel Processing, 115-119.

Borden, W., Jr. [1978], The 2-80 Microcomputer Handbook, Howard W. Sams &
Co. Inc., Indianapolis, IN.

Camp, R. C., T. A. Smay and C. J. Triska [1979], Microprocessor Systems
Engineering, Matrix Publishing Inc.

Espinosa, C. [1979], The Apple II Reference Manual, Apple Computer Inc.,
Cupertino, CA.

Flynn, M. J. [1972], Some Computer Organizations and Their Effectiveness,
IEEE Trang. on Computers, C-21(8), 948-960.

Garland, H. [1979]), Introduction to Microprocessor System Design, McGraw-
Hill, New York, NY.

Kuck, D. J. [1968], ILLIAC IV Software and Application Programming, IEEE
Trans. on Computers C-17(8), 158-170.

Leventhal, L. A. [1979], 6502 Assembly Language Programming, Osborne/McGraw-
Hill, Inc., Berkeley, CA.

Machado, N. C. [1972], An Array Processor With a Large Number of Processing
Elements, Ph.D. Thesis, Dept. Computer Science, Univ. of Ill., Urbana-

Champaign, IL.

95

Sawin, D. H. [1977], Miaroprocessors and Miorocomputer Systems, D. C. Heath,
and Co., Lexington, MA.

Scanlon, L. J. [1980], 6502 Software Design, Howard W. Sams & Co. Inc.,
Indianapolis, IN.

Slotnick, D. L. [1967], Unconventional Systems, Proc. AFIPS Spring Joint
Computer Conferemce, 477-481.

Thurber, K. J. and L. D. Wald [1975], Associative and Parallel Processors,

Computing Surveys, 7(4), 215-255.

96

APPENDIX I
IMPLEMENTATION OF THE 8-BIT MULTIPLICATION ROUTINE

This appendix is presented in order to document the 8 x 8 bit multi-
plication program that was demonstrated on the Super-65. The initializa-
tion routine talk:s the values stored in locations $1001 end $1002 and
places them in locations $0062 and $0063 respectively, within each PEM.
PE is then disabled and the contents of locations $1003 and $1004 are
transferred to locations $0062 and $0063 within each PEM. PE is then
disabled and the contents of location $1005 and $1006 ere transferred to
locations $0062 and $0063 within each PEM, PE is then disadled and the
contents of location $1007 and $1008 are transferred to locations $0062 and
$0063 within PEM , All PEs are then restarted and the array performs a
RESET to synchronize the PEs. This initialization routine places the dif-
ferent multipliers into location $0062 and the different multiplicands into
location $0063 of each PEM. If each PE had its own 1/0 port, it could read
its own multiplier and multiplicand from that port and the initialization
routine just described would not be required.

8 x 8-BIT MULTIPLICATION INITIALIZATION ROUTINE

OBJECT
LOCATION CODE MNEMONIC OPERAND N COMMENT
3900 AD 01 10 LA $1001 4; GET MULTIPLIER FOR PE
3903 85 62 STA $§ 62 3; STORE IN PEMs
3905 AD 02 10 LDA $1002 4; GET MULTIPLICAND FOR PE
3908 85 A3 STA $ 63 3; STORE IN PEMs

390A 8D 30 CO STA $C090 43 DISABLE PE
390D AD 03 10 LDA $1003 4; GET MULTIPLIER FOR PE

3910 85 62 STA § 62 3; STORE IN PEMs
3912 AD 04 10 LDA $1004 4; GET MULTIPLICAND FOR PE
3915 85 63 STA $ 63 3; STORE IN PEMs

3917 8D B0 CO STA $§COBO 4; DISABLE PE

391A AD 05 10 LDA $1005 4; GET MULTIPLIER FOR PE
391p 85 62 STA $ 62 33 STORE IN PEMs

391F AD 06 10 LA $1006 4; GET MULTIPLICAND FOR PE
3922 85 63 STA $§ 63 33 STORE IN PEMs

T

N,

LOCATION

3924
3927
392a
392¢
392F
3931

O0BJECT
CODE

8D DO CO
AD 07 10
85 62
AD 08 10
85 63
8D FF CF

MNEMONIC OPERAND N

STA
LDA
STA
LDA
STA
STA

$CODO
$1007
$ 62
$1008
$ 63
$CFFF

97

DISABLE PE

GET MULTIPLIER FOR PE

STORE IN PEM

GET MULTIPLICAND FOR PE
STORE IN PEM

RESTART ALL PEs

TOTAL MACHINE CYCLES REQUIRED

The following program assumes that locations $0062 and $0063 have

previously been loaded with the multiplier and multiplicand respectively.

Location $0064 is used as a temporary storage location and locations $0060

and $0061 contain the 16-bit product (low and high bytes respectively),

after execution of the program.

LOCATION

4000
4002
4004
4006
4008
400A
400C
40CE
4010

4012
4014
4016
4018
4019
401B
401D
401r
4021
4023
4024
4026

The Transfer

1. transfers

8x8-BIT MULTIPLICATION/INDEPENDENT DATA

OBJECT

CODE MNEMONIC OPERAND N

49 00
85 60
85 61
A2 08
06 60
26 61
06 62
A9 00

49 FF

LDA
STA
STA
LDX
ASL
ROL
ASL
LDA
8BC

EOR
ARD
STA
CLC
ADC
STA
LDA
ADC
STA
DEX
BNE
RTS

00 2;
$60 3;
$61 :

08 23
$60 53
$61 53
$62 LY
00 23
00 2;
FF 23
$63 3;
864 3;

23
$60 33
$60 3;
$61 3;

00 23

$61 3
23

84008 23
63

392;

of Results Routine does the

the 16-bit product from PE

COMMENT

LOAD IMMEDIATE ZERO

CLEAR PRODUCT LOW BYTE

CLEAR PRODUCT HIGH BYTE

SET BIT COUNT = 8 BITS

SHIFT LEFT PRODUCT LOW BYTE

ROTATE LEFT PRODUCT HIGH BYTE

SHIFT LEFT MULTIPLIER

SUBTRACT CARRY BIT FROM ZERO TO
OBTAIN EITHER 00 (C=1) OR
FF (C=0)

COMPLEMENT PREVIOUS RESULT

AND EITHER 00 (C=0) OR FF (C=1)
WITH MULTIPLICAND

TEMP = EITHER 00 OR MULTIPLICAND

ADD EITHER ZERO OR MULTIPLICAND TO
SHIFTED PARTIAL PRODUCT LOW BYTE

ADD POSSIBLE CARRY TO PRODUCT HIGH
BYTE

DECREMENT BIT COUNT

DONE? IF NOT, LOOP

TOTAL MACHINE CYCLES REQUIRED

following:

to locations $1007 and $1008 in SM

)

eaw>=sss @8 s R

98

2. transfers the 16-bit product from PE to locations $1001 and $1002 in 8M
3. transfers the i6-bit product from PE to locations $1003 snd $1004 in SM

4. transfers the 16-bit product from PE to locations $1005 and $1006 in

SM.
8 x 8-BIT MULTIPLICATION TRANSFER OF RESULTS ROUTINE
OBJECT
LOCATION CODE MNEMONIC OPERAND N COMMENT
3F00 A5 60 LDA $§ 60 33 GET PRODUCT LOW BYTE FROM PE
3F02 8D 07 10 STA $1007 4; TRANSFER TO SM
3F05 A5 61 LDA $§ 61 33 GET PRODUCT HIGH BYTE FROM PE

3F07 8D 08 10 STA $1008 43 TRANSFER TO SM
3F0A 8D 00 C1 STA $C100 &4; SET CP=1

3F0D A5 60 LDA $§ 60 3; GET PRODUCT LOW BYTE FROM PE
3FOF 8D 01 10 STA $1001 s TRANSFER TO SM
3F12 A5 61 LDA $§ 61 3; GET PRODUCT HIGH BYTE FROM PE

3Fl4 8D 02 10 STA §1002 4; TRANSFER TO 8M
3F17 8D 00 C3 STA $C300 4; SET CP=2

3Fl1A A5 60 LDA $ 60 3; GET PRODUCT LOW BYTE FROM PE
3FlC 8D 03 10 STA $1003 4; TRANSFER TO SM
3F1F A5 61 LDA $ 61 3+ GET PRODUCT HIGH BYTE FROM PE

3F21 8D 04 10 STA $1004 3+ TRANSFER TO 8SM
3F24 8D 00 C5 STA $C500 s SET CP=3

3F27 A5 60 LDA $ 60 3 GET PRODUCT LOW BYTE FROM PE
3F29 8D 05 10 STA $1005 ¢ TRANSFER TO SM
3F2C A5 61 LDA $ 61 3; GET PRODUCT HIGH BYTE FROM PE

3F2E 8D 06 10 STA $1006 4; TRANSFER TO SM

3F31 8D 00 C7 STA $C700 4; SET CP=0

3r34 60 RTS 3 RETURN FROM SUBROUTINE

783 TOTAL MACHINE CYCLES REQUIRED
Since the initialization routine disables all but the CP, it is neces-

sary to know which PE is the CP before initialization. The initialization
routine presented previously assumes that PE is the CP prior to initiali-
zation and will not work if this ie not the case. If one desires that the

CP be a PE other than PE , the software must be modified. The multiplica-

tion and transfer of results routines do not require that PE be the CP.

	1982015020.pdf
	0020A02.JPG
	0020A03.TIF
	0020A04.TIF
	0020A05.TIF
	0020A06.TIF
	0020A07.TIF
	0020A08.TIF
	0020A09.TIF
	0020A10.TIF
	0020A11.TIF
	0020A12.TIF
	0020A13.TIF
	0020A14.TIF
	0020B01.TIF
	0020B02.TIF
	0020B03.TIF
	0020B04.TIF
	0020B05.TIF
	0020B06.TIF
	0020B07.TIF
	0020B08.TIF
	0020B09.TIF
	0020B10.TIF
	0020B11.TIF
	0020B12.TIF
	0020B13.TIF
	0020B14.TIF
	0020C01.TIF
	0020C02.TIF
	0020C03.TIF
	0020C04.TIF
	0020C05.TIF
	0020C06.TIF
	0020C07.TIF
	0020C08.TIF
	0020C09.TIF
	0020C10.TIF
	0020C11.TIF
	0020C12.TIF
	0020C13.TIF
	0020C14.TIF
	0020D01.TIF
	0020D02.TIF
	0020D03.TIF
	0020D04.TIF
	0020D05.TIF
	0020D06.TIF
	0020D07.TIF
	0020D08.TIF
	0020D09.TIF
	0020D10.TIF
	0020D11.TIF
	0020D12.TIF
	0020D13.TIF
	0020D14.TIF
	0020E01.TIF
	0020E02.TIF
	0020E03.JPG
	0020E03.TIF
	0020E04.TIF
	0020E05.TIF
	0020E06.TIF
	0020E07.TIF
	0020E08.TIF
	0020E09.TIF
	0020E10.TIF
	0020E11.TIF
	0020E12.TIF
	0020E13.TIF
	0020E14.TIF
	0020F01.TIF
	0020F02.TIF
	0020F03.TIF
	0020F04.TIF
	0020F05.TIF
	0020F06.TIF
	0020F07.TIF
	0020F08.TIF
	0020F09.TIF
	0020F10.TIF
	0020F11.TIF
	0020F12.TIF
	0020F13.TIF
	0020F14.TIF
	0020G01.TIF
	0020G02.TIF
	0020G03.TIF
	0020G04.TIF
	0020G05.TIF
	0020G06.TIF
	0020G07.TIF
	0020G08.TIF
	0020G09.TIF
	0020G10.TIF
	0020G11.TIF
	0020G12.TIF
	0020G13.TIF
	0020G14.TIF
	0021A02.TIF
	0021A03.TIF
	0021A04.TIF
	0021A05.TIF
	0021A06.TIF
	0021A07.TIF
	0021A08.TIF

