
- 22 897

NASA Technical Memorandum 84228

On the Inversion of Block-
Tridiagonals Without Storage
Constraints
Marshal L. Merriam

March 1982

NASA
National Aeronautics and
Space Administration

NASA Technical Memorandum 84228

On the Inversion of Block-
Tridiagonals Without Storage
Constraints
Marshal L Merriam, Ames Research Center, Moffett Field, California

NASA
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field. California 94035

Abstract. In many programs solving difference equations, problem size

is restricted by the number of available memory cells. A strategy has

been developed to permit trade-offs between the number of floating

point operations required and the storage requirements for the solution

of certain problems, such as block tridiagonal systems of equations.

This is done by recomputing some intermediate results instead of storing

them. Reducing the storage to the square root of the current require-

ment will roughly double the number of computations. Reducing the

storage more than this tends to make the number of computations prohib-

itively large. In; theory though, if m is the order of each sub-matrix

in the block tridiagonal matrix, one can solve any linear system with

only 5m2 + 1 temporary storage cells. In many cases m is a constant

and quite small. For example, in solving a factored form of the three-

dimensional Navier-Stokes equations, the size m of the block tri-

diagonals is 5. In fact, for block tridiagonals arising from finite

difference solutions of equations of fluid flow, m is rarely more

than 5. This method lends itself to efficient use on computers with

parallel processing or vector processing architectures. On these com-

puters the larger number of floating point operations is more than

offset by the decrease in I/O and the increased percentage of vector

operations made possible by this algorithm.

1. Introduction

The most widely used algorithm for solving general systems of

linear equations is Gaussian elimination. Other methods have appeared

which take advantage of the structure of certain problems, i.e., cyclic

reduction for banded matrices with constant coefficients. Most methods

thus far devised have had the objective of reducing-the total number of

floating point operations. The method described here does not.

Our basic objective is to minimize the overall time and cost of

solving a given problem. When computers were slow and problems.were

small the way to do this was to minimize arithmetic. With the advent

of supercomputers, however, other considerations have become important.

One such consideration is the ability to vectorize an algorithm.

For a given computer, the speed of the vector hardware may exceed that

of the scalar hardware by a factor of ten or more. A common way of
.-

finding long vectors in a tridiagonal solver is to solve many tridiag-

onals at once. The vector length then becomes the number of simultane-

ously solved systems. The storage requirements of such an approach

exceed those of the scalar approach by a factor of the vector length.

Another consideration is the time spent in communication with

secondary memory. The speed of the arithmetic units makes it possible

to solve, in a reasonable amount of time, problems whose storage

requirements exceed the capacity of primary memory. On most computers

it is difficult 'to overlap the transfer time between primary and second-

ary memory. This becomes the dominant cost in some cases. In addition,

programs which use secondary memory are often significantly more complex

than those which do not. Furthermore, data transfers between memory

levels are hardware-dependent. Programs which do explicit transfers

between memory levels are not portable for this reason. Realizing

this, we turn our efforts toward an algorithm that requires less memory,

even if it requires more arithmetic.

Recomputation is such an algorithm. It offers the user a trade-off

between the number of arithmetic operations, time spent in scalar com-

putation, and time spent on data transfers to secondary memories. A

FORTRAN subroutine has been written which utilizes recomputation in the

solution of block tridiagonal systems. The user can specify, with one

parameter, exactly how much storage is available in primary memory and

the subroutine will minimize arithmetic subject to this constraint.

If there is enough storage the algorithm reduces to the standard, non-

recomputing case. The minimum allowable space, not counting the solu-

tion vector, is 5 storage blocks, each an m x m matrix, plus one word.

In the sense that this is independent of N, the number of block

unknowns, we say that there are no storage constraints.

2. Method

The algorithm described here performs Gaussian elimination to solve

a tridiagonal system of equations. This is equivalent to the Thomas

algorithm [1]. We will deal only with scalar tridiagonal matrices, the

extension to block tridiagonal matrices being relatively straightforward.

The notation used is defined by the following equations:

blC2
al • • ' •

>

. cn

a , bn-1 n

X

ql

q2 -
• i

n

Q '

qn-l

j[n_

a

rl

r2

ri

*i+l

rn-l

rn

(1)

After the forward elimination has been completed eq. (1) reduces to:

1C2

n

X

ql
q2

qi

Vl

=

qi

q2

*

0

*

Q

n

(2)

The successive steps which are normally taken to solve this problem

by Gaussian elimination are:

forward elimination

bi

find

find

for i = 1 to n-1

b' c

- a,, ci i+1

find

find

find qi+1-

(3a)

(3b)

(3c)

(3d)

(3e)

backward sweep

n find qn (4a)

for i = n to 2 (backward iteration)

q. . = q! . - c! find

The storage problems with this method stem from the fact that one

must compute all of the elements c' and q' before any of the elements

q can be computed. The right-hand side is usually overwritten with the

solution so that the same storage cell is occupied at various times by

r., q', and finally q . Traditionally, both the c' vector and the

right-hand side are stored for a total of 2n-l storage cells (a total

of (n-l)m2 + ran for a block tridiagonal).

Notice that to compute c' we only need b! and c. 1. Also, to

compute b! ., we need only c! . and the matrix elements a and b.....

Schematically, this is shown in Fig. 1. The dashed boxes contain the

original matrix entries. In many applications these require no storage,

since they are either analytically known or can be recovered from other

information contained in memory. We consider such applications here.

The main consequence of this simplification is that if any element of

the decomposition is known (i.e., b1 or c'), then the forward elimina-

tion can be reinitiated at that point to get any subsequent decomposi-

tion element. This is the basis for the whole scheme. We save a few,

selected, elements c1 on the forward elimination and then execute the

following sequence:

a. Execute the backward substitution in a conventional manner as

far as possible.

b. When an element c! is needed and not available, recompute it

by reinitiating the forward elimination starting with a stored

element c'. The best choice is that element whose index is

highest without exceeding i. All elements c' with higher

indexes have been used already. These may be overwritten to

save other indexes of c'. If no stored data remains, recom-

pute from index 1. The element c' is zero.

When the needed element has been recomputed resume step a.

Notice that the forward elimination in step b is analogous to the

original forward elimination. The starting and ending indexes are

different, as is the amount of available storage, but the form is the

same. Thus, we may use the same selection process to decide which ele-

ments to save in steb b that we did on the original forward elimination.

What follows is a description of and rationale for one such selection

process.

8

Before any computing is done the available storage is divided into
•j

two arrays. The first array is for the temporaries. It is dimensioned

C(IVEC,M,M,KMAX). The first subscript, typically 64, is the vector

length which is also the number of simultaneously solved block tridiag-

onal systems. The next two subscripts are for referencing inside each

block. The last index is the block number. This is the only subscript

used by the selection process since all the tridiagonals are solved in

parallel. In this discussion it is indexed by the variable K. Since

on a given call to the selection routine, some of the array may be

occupied, the index KMIN" is needed. This is the lowest index of an

unoccupied block. All storage cells are addressed by C(IVEC,M,M,K)

such that KMIN<K<KMAX may be overwritten.

The second array contains pointers and is dimensioned IH(KMAX),

indexed in the same way as the first array. The value of IH(K) is

the integer I corresponding to the element c* which occupies

C(, , ,K). The inputs to the selection algorithm are:

IL - The index of the first element c' to be recomputed.

IU - The index of the last element c' to be. recomputed.

KMIN - An index to the pointer array IH. Lower indexes may

not be used.

KMAX - The size and largest allowable index of the pointer

array IH.

IH - The pointer array. On output it contains indices of

elements to save on the subsequent forward elimination.

The motivation behind choosing the following selection process is

to minimize the number of recomputations subject to the storage

constraints. To this end we remember the cost of computing a given

temporary and avoid overwriting any temporary with one that is cheaper.

First, we naively assume that a single computation will be.enough.

Thus we set IH(KMIN)=IL, IH(KMIN+1)»IL+1, and so on up to IH(KMAX).

If IH(KMAX)XEU then our assumption is correct and the selection

process terminates. In this case the recomputing algorithm reduces to

the Thomas algorithm.

If IH(KMAX)<IU then some recomputing is necessary. The tempo-

raries corresponding to indexes in the pointer array are all equally

expensive to recompute in the following sense: they all may be recov-

ered with one computation per element by restarting the forward elimina-

tion (using the fact that c| = 0). Thus we may overwrite them all.

This may be noted by adding IH(KMAX)-IH(KMIN)+1 to each element in

the pointer array. If this would yield IH(KMAX)>IU we should add

lU-IH(KMAX) instead, so that IH(KMAX)»IU. Thus, the amount to be

added is MIN(IH(KMAX)-IH(KMIN)+1,IU-IH(KMAX)). At this point, if

IH(KMAX)=IU the selection process is completed.

Otherwise we must overwrite further, picking the indexes, which are

least expensive to recover. This time they are not all equally inex-

pensive to recompute. Recomputing cTunfMTi>i1 would require three

computations of c' . This being the case, we choose not to overwrite
, i-Li

IH(KMIN) yet. The temporaries corresponding to other elements of the

pointer array can be computed at a total cost of two .computations if

c' /KMIN\ is used as a starting point. We define here the variable

KP, initially KMIN but now incremented to KMIN+1. The rationale of

the previous paragraph is used to justify adding MIN(IH(KMAX)-IH(KP)+1,

10

lU-IHCKMAX)) to all IH(K) such that KP<K<KMAX. As before, if after

this is done IH(KMAX)=IU, then the selection process is completed.

If IH(KMAX)̂ IU, then we can use the above argument to show that com-

puting c-rti/irp-v would be relatively expensive, implying three computa-

tions for CTH(KP-1)+1* We resP°nd by incrementing KP and repeating

the process until either the process is completed (i.e., IH(KMAX)-=IU)

or KP exceeds KMAX.

The second case states that even if one is willing to compute

everything twice there is not enough storage. The temporaries corres-

ponding to the elements in the pointer array would all cost two compu-

tations to recompute. Consequently, to complete the selection process

we have to be willing to compute some elements three times. In terms

of the variables in the selection process, this means resetting KP to

KMIN. Otherwise everything is the same. Simply keep adding

MIN(IH(KMAX)-IH(KP)+1,IU-IH(KMAX)) and incrementing or resetting KP

as7appropriate until IH(KMAX)=IU. A simple FORTRAN subroutine to

accomplish this algorithm in less than 20 executable statements is given

in the appendix. We will now illustrate the selection algorithm and

the recomputing scheme by an example.

Example

Suppose n = 11 and there is only room to store 3 temporaries. The

conventional Thomas algorithm requires 10 temporaries. The selection

algorithm would proceed as follows:

11

1. Initially IL=2,IU=11,KMIN=1,KMAX=3

2. Naively assume that no recomputation is required. Set

IH(1)=2 :

IH(2)=3 - . ' . • • •

IH(3)=4 .

3. Set KP=KMIN=*1. Then MIN(IH(KMAX)-IH(KP)+r,IU-IH(KMAX))

=MIN(3,7)=3

Adding this to all IH(K) from K=KP to K=KMAX gives

IH.(2)=6

IH(3)=7 - . • " •

4. Increment KP so that KP=2. NOW MIN(IH(KMAX)-IH(KP)+1,

. IU-IH(KMAX))=MIN(2,4)=2 .

Adding this to all IH(K) from K*KP to K=KMAX gives

IH(1)=5

IH(2)=8 . ..

IH(3)=9

.5. Increment KP so that KP=3. Now MIN(IH(KMAX)-IH(KP)+1,

lU-IH(KMAX)) =MIN(1 , 2)=2

Adding this to all IH(K) from K=KP to K=KMAX gives

IH(1)=5

IH(2)=8
.;

IH(3)=10

12

6. Increment KP so that KP=4. Since this exceeds KMAX we reset

it so that KP=1. Now MIN(IH(KMAX)-IH(KP)+1,

IU-IH(KMAX))=MIN(6,1)

Adding this to all IH(K) from K=KP to K=KMAX gives

IH(1)=6

IH(2)=9

IH(3)=11

7. Since [IH(KMAX)=IU] = [IH(3)=11], the selection process is completed.

It says that we should save the elements c', c', and c' on the

forward elimination.

The recomputing algorithm would proceed as follows:

1. Initial forward sweep. Save c', c' and c' .o y ii

2. Backward sweep. Comput q-- and q... To compute q we

require c[0-

3. Since q,n is already computed, c' is not needed. Resume

forward sweep using c' and overwrite c|. with c' .

A. Continue the backward sweep, using c'_ and c' to compute

q9 and q8*

5. Resume forward sweep with c', overwriting c' and c' witho y lu
cj and c^.

6. Continue the backward sweep, computing qc, q,, and q_.
J O /

7. Resume forward sweep from index 1, overwriting c', c', and
o /

cl with c', c^, and c'.

8. Continue backward sweep by computing q«, q«, and q,.

13

9. Again resume forward sweep from index 1, overwriting ci with cl-.

10. Conclude the backward sweep by computing q...

Each forward sweep except the last used all the storage containing ele-

ments that were no longer needed. Temporaries c', c', and c' wereo .,. y .LI
computed only once. Temporary c' was computed three times.. All the

rest were computed twice. The total cost was almost twice that of the

conventional Thomas algorithm, yet the required storage was less than

the square root of that required by the conventional algorithm. In

larger problems it is often possible to reduce the storage requirements

by a factor of ten while only doubling the arithmetic, a paying proposi-

tion if I/O is expensive. It is interesting to note that the minimum

required storage space is five blocks, each an m * m matrix plus one

word. This is extremely expensive, however, the computational effort

being higher than the nonrecomputing case by a factor of roughly n2/2.

Three of the blocks are needed for the block elements A, B, and C.

One is needed for the intermediate B' and the last is needed for the

temporary C1. One additional word is needed for the pointer array IH

to keep track of the one temporary. The flowchart in Fig. 2 illustrates

how the selection process and the recomputation algorithm fit into the

Thomas algorithm.

3. Discussion

The standard Thomas algorithm has the following operation count.

Multiplications N(7m3/3 + 3m2 - m/3) - 2m2(m+l)

Additions N(7m3/3 + 3m2/2 - 5m/6) - 2m2(m+l) (5)
• . . - • • • • . • ' 3 . .

Divisions Km .

14

Here N is the number of block unknowns and m is the dimension of

each block. If N » 1 the second term in the addition and multiplica-

tion counts may be neglected. Using as a measure of relative cpu time

the equivalency formula

1 add - 1 multiply = 1/4 divide (6)

the total number of operations becomes

N{14m3/3 + 9m2/2 + 17m/6} . (7)

The variable T is defined as the total number of operations divided

by the quantity in brackets. In this way the dependence on m of the

results is largely removed, the variable KMAX, defined above, is a

measure of the available storage. Finally N, also..defined above, is a

measure of the problem size. Figure 3 plots T vs N for various values

of the parameter KMAX. This figure describes the common situation in

which a computer has a limited total memory. This occurs when secondary

memory is much slower than primary memory. Often the secondary memory

is a disk or a standard tape drive. In the case of the current genera-

tion of micro-computers, it may even be a cassette. In such a case

recomputing may allow the solution of problems that otherwise could not

be solved at all. Figure 3 gives, at a glance, the cost of solving

block tridiagonal systems as a function of problem size given a fixed

amount of memory.

Another situation for which recomputing can be helpful is where a

program has been written, the problem size is fixed, and the user wishes

to modify the program in some way that requires, more memory than the

computer has. One way to get more memory is to reduce the amount of

15

space allocated for temporaries used in solving block tridiagonals.

Depending on the problem this may free a significant amount of storage.

In this way the user may avoid a complete rewrite which might otherwise

be necessary to incorporate transfers to secondary memory. Depending

on the accounting algorithm for the computer in question, recomputing

may even be cheaper than transfers to secondary memory. Experience has

shown, however, that recomputing, rarely pays on a cost/run basis if any
*

element c' is computed more than twice.

A situation sometimes arises in which the total computer time is

fixed. From this constraint one may estimate the maximum number of

times each element may be computed. We call this number P. Given P

and the storage constraint KMAX there is a limit to the number of

block unknowns we can solve for. We call this number NMAX. The

question arises: What is the relationship between P.KMAX, and NMAX?

Such information could be useful in deciding on a vector length or.

deciding if this algorithm would pay at all. It can be shown that the

recursion relation for finding NMAX(P.KMAX) is

NMAX(P, 1) = P + 1 (8a)

NMAX(1,KMAX) = KMAX + 1 (8b)

NMAX (P,KMAX) = NMAX (P, KMAX-1) + NMAX (P-l, KMAX) (8c)

We notice immediately that NMAX(P,KMAX)=NMAX(KMAX,P), that is, the

function NMAX is symmetrical about the line P=KMAX. Also, along a

line where P (or KMAX) is a constant, the values of NMAX may be

exactly fitted by a polynomial of degree P (or KMAX). The first few

and the general case are given here.

16

P=l NMAX = 1 + KMAX (9a)

P=2 NMAX = 1 + 3/2 KMAX +1/2 KMAX2 (9b)

P=3 NMAX = 1 + 11/6 KMAX + KMAX2 + 1/6 KMAX3 (9c)

z+1

P=z NMAX =2 (|(Ŝ)|*KMAXm~1/z!J . (9d)

m=l

In the general case, S\^ are Stirling numbers of the first kind.

Thus we see that the highest order term is always KMAXZ/zl.

Equation (9d) is given without proof. In principal, however, one could

substitute Eq. (9d) into (8c) to prove the equality.

The recomputation algorithm is arithmetically the same as the

Thomas algorithm; hence, it has exactly the same stability properties

and gives the same answer. Although the storage overhead is usually

negligible it does require KMAX scalar temporaries. This should be

compared with KMAX*m2*IVEC temporaries used in the rest of the compu-

tation or with (N-l)*m2*IVEC temporaries needed for the Thomas algo-

rithm. The computational overhead is equally negligible, involving

less than N floating point operations. If no recomputation is done,

the recomputation algorithm costs virtually the same to use as a con-

ventional Thomas algorithm.

4. Conclusions

It has. proved useful to program the entire block tridiagonal solver

as a subroutine which has, as an argument, the amount of available

space. This substantially reduces the consequences of programming at

the limit of primary memory. This alone helps increase productivity

17

through reducing the number of times programs are rewritten to free

a tiny amount of storage.

Using recomputation, problem size can be substantially increased

on computers where memory size is poorly matched to processor speed for

this type of problem. Recomputation can free enough memory to allow

the effective use of vector processing capabilities on machines like

the Cray 1 and the CDC 7600. Furthermore, the extra computation

required is largely made up of dot products, at which these machines

are very efficient.

Surprisingly, execution speed can actually be increased through

the use of recomputation. This can occur when disk latency becomes a

substantial portion of the code's running time. It can also occur

when recomputation is used to .increase' vector lengths. In both cases

costs can be reduced by doing more arithmetic, keeping the job in core

using recomputation. This algorithm was used on Illiac IV codes at

Ames Research Center from 1977 until the Illiac was replaced in 1981

[2], The required vector length of 64 and the small size of primary

memory made recomputation a virtual necessity on the Illiac, allowing

the solution of problems that otherwise could not have been solved.

Any time a situation arises where it costs more to bring a problem in

and out of core than it does to perform the arithmetic, or where many

problems must be solved in parallel, recomputation is likely to pay.

Of course, this general approach is not limited to tridiagonal

matrices. It can easily be extended to cover periodic and pentadiag-

onal matrices. For that matter, it can be used to solve dense or-wide-

banded matrices. It is not limited to Gaussian elimination but is

18

applicable to any method with a forward and backward sweep that saves

intermediate results.

Larger and faster memories may temporarily reduce the need for

rftcomputation but cannot remove its advantages. As long as there are

substantial differences in speed between memory hierarchies, computers

that don't match memory to processor speeds, computers with vector

speeds significantly higher than scalar speeds, or problems which are

computationally light relative to their size, there will be a need for

recomputation s c h e m e s . • • ' . . ' .

References

1. W. F. Ames, "Mathematics in Science and Engineering," Vol. 18,

pp. 341-2, Academic Press, New York, N.Y., 1965.

2. J. Kim and P. Moin, "Large Eddy Simulation of Turbulent Channel

Flow — Illiac IV Calculation," Proc. AGARD Symp. on Turbulent

Boundary Layers, Experiment, Theory, and Modelling, the Hague,

The Netherlands, Sept. 24-26, 1979; also, NASA TM-78619,

Sept. 1979.

19

Appendix

SUBROUTINE CHOOSE(IL,IU,KMIN,KMAX,IH)
c
c
c
c
c
c
c
c
c
c
c
"c
c
c
c
c
c
c
c
c

THIS SUBROUTINE IS DESIGNED TO CHOOSE THE OPTIMUM INDICES
AT WHICH

ARGUMENT

IL

IU

KMIN

KMAX

IH

TO SAVE DECOMPOSITION ELEMENTS C'.
• •

DESCRIPTION

INPUT-THE LOWEST INDEX FOR WHICH C'(T) MUST BE COMPUTED,

INPUT-THE HIGHEST INDEX FOR WHICH C'(I) IS NEEDED.

INPUT-C(KMIN-l) CONTAINS THE DECOMPOSITION ELEMENT
NEEDED TO RESTART THE FORWARD SUBSTITUTION. INITIALLY
KMIN-1.

INPUT-THE TOTAL NUMBER OF ELEMENTS C'(D WHICH CAN BE
STORED. ON THIS CALL TO CHOOSE WE CAN PICK UP TO
KMAX-KMIN+1 ELEMENTS.

. . , . . , . . .

OUTPUT-AN ARRAT OF LENGTH KMAX WHICH CONTAINS THE
INDICES OF THE ELEMENTS C'(I) WE WISH TO STORE.

DIMENSION IH(KMAX)
DO 10 K - KMIN,KMAX

IH(K)-K-KMIN+IL
10 CONTINUE

C THIS BRANCH IS TAKEN IF THERE IS SUFFICIENT SPACE TO
C AVOID RECOMPUTING.

IF (IH(KMAX) .GT. IU) GOTO 6
C ' , • '
C

KK-KMIN
2 IF ((2*IH(KMAX)+1-IH(KK)) .GE. IU) GOTO 4

C THIS SECTION IS EXECUTED IF OVERWRITNG ALL THE CHEAP
C , SPACE IS NOT SUFFICIENT.

KC-IH(KMAX)-IH(KK)+1
DO 3 K - KK,KMAX
IH(K)-IH(K) + KG

3 CONTINUE
PRINT*,(IH(J),J-1,20)
KK-KK+1

C WHEN THIS TEST PASSES ANOTHER LEVEL OF RECOMPUTATION IS
C REQUIRED.

IF (KK .GT. KMAX) KK-KMIN
GOTO 2

C THIS SECTION IS EXECUTED SO THAT IH(KMAX) IS IU. IT
C ALSO ENSURES THAT IF SOME ELEMENTS MUST BE RECOMPUTED
C MORE TIMES THAN OTHERS THEY ARE DONE LAST, WHEN THERE
C IS MORE SPACE.

4 CONTINUE
IC-IU-IH(KMAX)
DO 5 K - KK.KMAX

IH(K) - IH(K) + 1C
5 CONTINUE

C
6 RETURN
END

20

Figure Captions

Fig. 1. Data dependencies in a tridiagonal.

Fig. 2. The Thomas algorithm with recomputation.

Fig. 3. A summary of tradeoffs offered by recomputation.

21

Fig. 1

22

COMPUTE MAXK

IFMAXK
YES

NO

CHOOSE WHICH c' INDICES
TO SAVE. FILL THE ARRAY
H WITH THESE CHOICES.

GET b (JL) , r (JL)

FOR J = JL +1 . JU

GET a (J) , b (J) . c (J) . r (J)

COMPUTE c' (J) STORE IN c' (K)
COMPUTE b' (J) , q' (J)

IF J = H(K)THENK*K+1

NEXTJ

FOR I - JU , JL + 1 , -1

STOP
(INSUFFICIENT
SPACE)

IFc'(D WAS SAVED
YES

NO

FIND THE LARGEST ELEMENT IN
H. THIS IS THE INDEX AT WHICH
RECOMPUTING STARTS. CHOOSE
WHICH c' INDICES TO SAVE. THIS
FILLS THE UNUSED ENTRIES .
INH.

RECOMPUTE ALL MISSING c's
WITH HIGHER INDICES THAN THE
ONE AT WHICH RECOMPUTING
STARTS. SAVE SELECTED c's AS
IN THE FORWARD SWEEP, c'(I)
WILL BE SELECTED.

COMPUTE q (I - 1)

NEXT I

STOP

Fig. 2

23

FOUR UNKNOWN. J PiR BLOCK (m *
VARIOUS AMOUIV TS OF AVAi LABL'E

NUMBER OF BLOCK

Fig. 3

1. Report No. 2. Government Accession No.

TM-84228
4. Title and Subtitle

ON THE INVERSION OF BLOCK-TRIDIAGONALS WITHOUT
STORAGE CONSTRAINTS

7. Author(s)

Marshal L. Merriam

9. Performing Organization Name and Address

NASA Ames Research Center
Moffett Field, Calif. 94035

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

3. Recipient's Catalog No.

5. Report Date

;XMarch 1982
6. Performing Organization Code

8. Performing Organization Report No.

A-8848
10. Work Unit No.

T-9517

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum
14. Sponsoring Agency Code

> 505-31-11-02-00-21

15. Supplementary Notes

Point of Contact: Marshal L. Merriam, Ames Research Center, M.S. 202A-1,
Moffett Field, CA, (415) 965-6417 or FTS 448-6417.

16. Abstract
In many programs solving difference equations, problem size is restricted

by the number of available memory cells. A strategy has been developed to
permit trade-offs between the number of floating point operations required and
the storage requirements for the solution of certain problems such as block
tridiagonal systems of equations. This is done by recomputing some interme-
diate results instead of storing them. Reducing the storage to the square
root of the current requirement will roughly double the number of computations,
Reducing the storage more than this tends to make the number of computations
prohibitively large. In theory though, if m is the order of each sub-matrix
in the block tridiagonal matrix, one can solve any linear system with only
5m^ = 1 temporary storage cells. In many cases m is a constant and quite
small. For example, in solving a factored form of the three-dimensional
Navier-Stokes equations, the size m of the block tridiagonals is 5. In
fact, for block tridiagonals arising from finite 'difference solutions of equa-
tions of fluid flow, m is rarely more than 5. This method lends itself to
efficient use on computers with parallel processing or vector processing
architectures. On these computers the larger number of floating point oper-
ations is more than offset by the decrease in I/O and the increased percentage
of vector operations made possible by this algorithm.

17. Key Words (Suggested by Author (si)

Block Tridiagonals
Storage
Recompute

19. Security Oassif. (of this report)

Unclassified

18. Distribution Statement

Unlimited

Subject Category -

20. Security Clauif. (of this page) 21. No. o

Unclassified 2

61

f Pages 22. Price'

7 A03

'For sale by the National Technical Information Service, Springfield, Virginia 22161

