"N82-22897

NASA Technical Memorandum 84228

‘On the Inversion of Block-
Tridiagonals Without Storage
~ Constraints |

| Marshal L. Merriam

March 1982

4 Nationél'AéronaUtiCs;and -
-Space Administration

NASA Technical Memorandum 84228

On the Inversion of Block-
Tridiagonals Without Storage
Constraints

Mérsha‘l L. Merriam, Amesﬂesea'rch Center, Moffett Field, California

NASNA

. National Aeronauticsand

Space Administration

Ames Res_ea‘rch Center. o
Moftett Field. California 94035

Abgtract. In many programs solving difference equations, problem size
is reétricted by the number of available memory cells. A stra:égy has
been developed to permit trade-offs between the number of floating

point operations required and the storage réquirementsvfor the solution
of certain problems, such as block tridiagonal systems of equations.
This is done by recomputing some intermediate results instead of storing
them. Reducing the storage to the square root of the current req;iré—
ment will roughly doubie the number of computations. Reducing the
storage more than this tends to make the numb;r bf gpmputations prohib-
itively large. In' theory tbqugh, if m is!the‘o;der of eacﬁ sub-matrix
in the block tridiagonal matrix, éne can solve any linear system Qith
only 5m2 + 1 temporary storage cells. In many cases m is a constant
andiquite small. For example, in solving a factored form'of the three~
dimensional Na#ier-SCOkes equations, thé size m of the block tri-
diagonals is 5. In fact, for block'tridiégonals arising from_finite
differencé solutions of_equatiqhs of fluid flow,'m “is'rarely more

than 5. This method iends itself to éfficieﬁt use on compﬁters with
parallel processing or vector processing afchitectﬁres. On these com-
puters the larger.number df floating point operations is more than
~offset by theAdecrease in I/0 and the iﬁcfeased percentage 6f vectér

operations made possible by this algorithm.

1. Introduction

The most widely used algorithm for solving general systems of
)linear equations is Gaussian elimination, Other methods have eppeafed
vhich teke advaﬁtage df tﬁe strdttﬂre of certain problems3 i.e., cyclic
reduction for‘bacded‘deccices witc constant coefficients. Most methods
-tﬁus far devised.have‘had’the objective of reducing-the total number of
floating p01nt operatlons. 'The'mecﬁod described here does not.

' Our basic obJective is to minﬁmize the overall time and cost of
solving a given problem. When computers were slow and problems.we;e
small the vay co do thls was to minimize arithmetic. With the advent
of supercomputers, howEVef, other considerations have become important.

One such consideration is the abili;y to vectorize an algofithm.
For a gith.computer, the speed of the vector hardwete may exceed.chat
‘of the scalar hardware by a factor of cen or more. A common way of
finding long vectors in a tridiagonal solver is to solve many tridiag—
onals at once. The vector length then becomes the number of simultane-
ously solved systems. The scorage requirements of such an approach(
ekceed those of the scalar approach by.a factor of the vector length.

Anothief consideration-is the time spent ln communication with
- secondary ;emory; The speed of the arithmetic units makes it possible
“to solve, ln a reasecable amouﬁt cf time, problems whose storage
requirements'exceed che capecitv Qf_primarv memory. On most computers
it is difficﬁlt'toloverlap tbe transfer time between primary add.second—
ary memory.’ This becomes the dodlnant cost in some cases. In addition,

programs .which use secondary memory are often significantly more complex

than those which do not. Furthermore, data transfers Setween memory
levels are hardware-dependent. Programs which do explicit transfers
between memory levels are not portable for this reason. Realizing

this, we turn our efforts toward an algorithm that requires less memory,
even if it requires more arithmetic.

Recomputation is such an algorithm. It offers the user a trade-off
between the number of arithmetic operations, time spent in scalar com-
putation, and time spent on data transfers to secondary memories. A
FORTRAN subroutine has been writfen which utiliies recomputation in the
solution of block tridiagonal systems. The user can specify, with one
parameter, exactly how much storagé is available in primary memory and
the subroutine will minimize arithmetic_subject to this.constrainé.

If there is enoﬁgh storage.the algorithm reduces to the standard, non-
recomﬁuting case. The minimum allowable space, not;gbunting the solu-
tion vector, is 5 storage blocks, each an m x m matrix, plus one word.
In the'sense that this is independent of N, the number of block

unknowns, we say that there are no storage constraints.
~ 2. Method

The aigorithm described here performs Gaussian elimination to solve
avtridiagonal s}stem of éqﬁations. This is equivaléﬁt'to the Thomas
algorithim [1]._ We wili'deal.only'with scalar tridiagonal matrices, the
extension to block tridiagonal matrices being relatively straightforward.

The notation used is defined by the follawing equations:

After the forward elimination has been completed eq. (1) reduces to:

—
1e!

i+1

ﬂ
X
. C_.
n
n-1 bn

—

-1

i

r- '—
9
a,

n-1

| :Elth}iif.

— .7
9

, _

(1)

(2)

The successive steps which are normally taken to solve this problem

by Gaussian elimination are:

forward elimination

1 o '
b1 . b1 find bl (3a)
' al! = ' '
bl q =1 find qy (3b)
for 1 = 1 to n-1
B! ¢!, =c .
_i i+l ?fl . ~ find Cil (3¢)
' = - ' '
bitl T Pig1 T 3 Sy find by (3d)
' [= - [\"l
Pi+l 9441 T Ti41 T 3 9y find q (3e)
backward sweep
bq =q' find q (43a)

n n : n
for i = n to 2 (backward iteration)
find (4b)

= a' ot
941 941 ~ 3 Y 9.1

The storgge problems with this method stem from the fact that one
must compute all of the elements c¢' and q' before aﬁy of the elements
q can_be computed. The right-hand side.is usually overwritten with the

~solution so that ﬁhe same storage cell is occupied at variousf;imeg by

' wvector and the

ro, qi, and finally q; - Traditionally, both the ¢
‘right-hand side are stored for a total of 2n-1 storage cells (a total

of (n-1)m® + nm for a block tridiagonal).

' ' 1
Notice that to compute ci+1 we oply need bi and Cip1e Also, to
1 1
compute bi+l we need only Civrl and the matrix elements a, and bi+l°

Scheﬁatically,,this is shown in Fig. 1. The dashed boxes contain the
original matrix entries. In many applications these require no sforage,
~since they are either analytically known or can be recovered from other °
information contained in memory. We consider such'épplicétioﬁs here.
The main consequence of this simplification is that if any element of
the decomposition is known (i.e., b' or c¢'), then the forward elimina-
tion can be reinitiated at that point to get any subsquent decomposi-
tion element. This is the basis for the whole scheme. We save a few,
selected, elements c' on the forward~elimina£ion and then execute the
following sequence:

a. Execute tﬁe backward substitution in a:coﬁQentional manner as

far as possible.

b. When an element ci is needed and not available, recompute it

by reinitiating the forward elimination starting with a stored
element c¢'. The best choice is that element whose index is
highest without exceeding i. All elements c¢' with higher

indexes have been used already. These may . be overwritten to

save other indexes of c¢'. If no stored data remains, recom-

1

- When the needed element has been recomputed resume step a.

pute from indexvl. The element: c, 1is zero.

Notice that the forward elimination iﬁ step b is anaiogoﬁs to‘thef
original forward elihiuation.: Thé starting and énding indexes areA
diffefent; as is the amount of‘avéilaglé storége, but tﬁe férm islthe
same; Thus, we may use the éamé selectién process éoAdécidé which ele-
ments to save in steb b‘;hat we did ‘on thé origiﬁél:fafward elimination.
What follows is a descfiption of and rationale for one sﬁch ééiéétion

process.

Before Any compﬁting 1s done the available storage is divided into
 two arrays. Tﬁe first array is for fhe téﬁporaries. It is dimensioned -
C(IVEC,M;M,KMAX). The first gubscript, ;ypically 64, 1is the vector
-length which is also the nugbef qf simultaneously solvea>block tridiag-
onal systems. The next two:subscrip;s are for_refegencing inside each
Block.- The last index is the block number. This is the only subscript
:Qsed by the selection processvsince all the tridiagonals are solved in
parallel. 1In this disdussidn,it is indexea by the variaﬁle K. Since
-on a given call to the selecﬁion routine, some of the array may‘be
occupied, the index KMIN;>is needed. This is the_lowest index of an
unoccupied block. All sforage cells are addressed by C(IVEC,M,M,K)
such that KMIN<K<KMAX 'ﬁay be overwfitten.' |

The second array contains pointers and is dimensioned IH(KMAX),

indexed in the same way as the first érray. The value of IH(K) is

i
c(, , ,K). The inputs té the selection algorithm are:

the integerl I corresponding to the element c¢; - which occubieé.
IL'- The index of the first element c¢' to be recomputed.
IU - The index of the last element c' to bﬁlrecomputed.
KMIN - An index to the pointer array - IH. Lower indexes may
- not be used. |
KMAX - The size and iargést allowaﬁle index of the pointér‘
Array. IH. | o |
‘IH - The pointér array. On output it contains indices ofv
elements to 5avé on the subseqﬁent for&ard elimination.
The mot;vation behind choosing the fbllowing ééiectionvprécess is

to minimize the number of recomputations subject to the storage

consttaints; To this end we remember the cost of qomputing a given
témporary énd avoid overwriting any temporary with one that is cheaper.

First, we naiyély assume that a‘single ccmpg;agién will be. enough.
Thus we set IH(KMIN)?IL,‘IH(KMIﬁ;1)=IL+1, and so on up to TH(KMAX).
If IH(KMAX)zIUA then;our as;umption is correct and the selection
proce#s ﬁerﬁinates.. In tbis'caselthe regomputing algorithm reduces to
tﬁe fhomas aléorithm.u |

If IH(kMAX)<IU .;hén some recomputing is necessary. The tempo-
réries.corresponding to indexes in the poiptef array are all equally
e#pensive to fecompute in.the following sense: they all may be recov-
ered with one computation perwelemenc_by.restarting the forward elimiﬁa-
tion (using the fact that ci = 0). Thus we may overwrite them all.

" This may be noted by_gdding IH(KMAX)-IH(KMIN)+1 to each element in
the pointer array. If';his would yield IH(KMAX)>IU we should add
IU-IH(KMAX) in#tead, so that Iﬁ(KMAX)sIU. Thus, the amount to be
added‘is MIN(IH(KMAX)-TH(KMIN)+1,IU-IH(KMAX)). At this point, if
IH(KMAX)=IU(the selection process is comple;ed.

Otherwise we must overwritg fur;hgr, picking the indexes which are
least expensive to recover. .ThiS~time they are not all equally inex-
pensive t? recomque. RecomP?ting ciH(KMIN)v would require three
cgmputations of ciL. This being the case, we choose noﬁ to overwrite
IH(KMIN) yet. The temporaries corresponding to other elements of the
pointer array can be\coméuted at a total cost of twqﬁcoﬁputations if
ciH(KMINS ?s used as a s;ar;ipg point. ng_define_hgre the variabie
kP, inifially KMIN but now incremented to KMIN+l. The rationale of

the previous paragraph is used to justify adding MI@(IH(KMAX)-IH(KP)+1,

10

Iﬁ;IH(KMAX)) to'ali‘ IH(K) such that KBiKiKMAX.. As befote; if after
this is done IH(KMAX)=IU, then the selection process is completed.

If IH(KMAX)#IU, then we can use the above argument to show that com-
.pu:ing ciH(KP) ~w§uld be reiafively eipensive, implying three computa-
. tiqné fbr- ciH(KP-l)#l‘ We respgnd_by incrementipg KP and repeating
the process uﬁtil either the process is completed (i.e., IH(KMAX)=IU)
~or KP exceedé KMAX.

Tﬁe éecond case étaﬁes that eveﬁ if one is willing to cémpute
>'evefYthing twicé there is not enough storage. The‘temporaries corres-
pbnding'to‘the e;ements in the pointer array would all cost two ccméu—
tations to‘recémpute. >Consequéntly, to édmplete the seiection process
Qe have to be willing to compute some eiemeﬁts three times. In terms
of-the_va¥iables in the selection process, this means resetting KP to
.>KMIN;‘ Otﬁerwise everything is the same. Simply keep adding
fMIﬁ(!H(KMAX)—IH(Kg)fl,IU;Iﬁ(KMAX)) and incrementing or ;esettingv KP
vas}éppfopriate until IH(KMAX)=IU. A simple FORTRAN subroutiﬁe'to

aCédmplish_this algorithm iﬁ less thén 20 execu;able statements is given
‘in th;fappendix. We will ﬁow illﬁscrate'the selection algorithm and

the recbmpu:ing scheme by an example.
Example
Suppose n = 11 éhd_there is only room to store 3 temporaries. The

conventional Thomas algorithm requires 10 temporaries. The selection -

algorithm wou;d proceed as follows:

11

Initially IL=2,IU=11,KMIN=1,KMAX=3

Naively assume that no recomputation is required. Set

TH(1)=2

IH(2)=3 o ’

IH(3)=4

Set KP=KMIN=1l. Then MIN(IH(KMAX)-TH(KP)+l,IU~IH(KMAX))
=MIN(3,7)=3

Adding this to all TIH(K) from K=KP to K=KMAX gives

IH(1)=5

IH(2)=6

| IH(3)=7

Increment KP so that KP=2. NOW MIN(IH(KMAX)-IH(KP)+1,
TU-TH (KMAX)) =MIN(2,4)=2 - |

Adding this to all TIH(K) from K=KP -to K=KMAX 'gives

IH(1)=5

.‘IH(2)=8 :

IH(3)=9 -

Incraneng KP so that KP=3. Now MIN(IH(KMAX)-IH(KP)+1,
IU-IH(KMAX))=MIN(1,2)=2

Adding this to all IH(K) from K=KP to K=KMAX gives’

TH(1)=5 '

IH(2)=8

IH(3)=10

12

6. Increment KP so that KP=4. Since this exceeds KMAX we reset
it so that KP=1l. Now MIN(IH(KMA};)-IH(KP)+1,
IU-TH(KMAX)) =MIN(6, 1)
Adding this to all IH(K) fromb K=KP to K;KMAX gives
IH(1)=6 |
TH(2)=9
TH(3)=11 “
7. Since [IH(KMAX)=IU1 = [IH(3)=11], thé selection process is completed.
| It saysvthat.we shquld save the elements éé, cé, and c! on ﬁhe

- 11

forward elimination.

The recomputing algorithm would proceed as follows:

6’ 11°
2. Backward sweep. Comput 931 and 90" To compute qq We '

1. Initial forward sweep. Save c¢ cé, and ¢

require c!_.

10
3. Since 940 is already computed,'c]'_1 is not needed. Resume
] | 3 1

forward sygep using Cy and overwrite €3 with 0"

4. Continue the backward sweep, using .cio and cé to compute
9 and qg-

5;_ Resume forward sweep with cé, overwriting cé and cio wi;h

1]

cq and cge

' 6. Continue the backward sweep, computing qs; Qs and q.

7. Resume forward sweep from index 1, overwriting cé, c;, and

cé with cé, CZ’ and c%.
8. Continue backward sweep by computing -49s 435 and Q-

13

9. Again resume forward sweep from index 1, overwriting cg with céz

10. Conclude the backward sweep by computing q;-

Each forward sweep except khe'iaét ﬁséd‘ail the storage containing ele-
ments that were no longer needed. Tempoféfieé cg,;é;,‘énd cil were
computed only once. 'Tembo;afy‘ cé ;dé§"c6£ﬁﬁted fﬁree times. All the
rest were computed twice. The total cost was almost,tﬁice‘that of the
conventional Thomas algoritim, yet the requiréd storéée ﬁas less than
the square root of that required by the conventional aigoriﬁhm. In
larger problems it is oféen possibie to reduce'ihe storaée requirements
by a fac£or‘of ten while only douBling.cﬁe hrithmgtié, a'paying propﬁsi—
tion if I/0 is expensive. It is interesting_fb no;e'that‘the minimum
required storage space is five blocks, each ‘an m‘x m, matrix plus one
word. This is extremely expensive, however, the computational effort '
'Being higher than.thetnonrecomputiné case by é factor of“raughly n2/2,
Threé:of thé blocks are needed:for the bléck elémeﬁts: A, B, and é.
" One is needed for the intermediéte B' ~and the laét_is needed for the
temporary 'C'. One additional wdfd'ié needed for thé péinter array IH
to keep track of the one teﬁporary. The flowchart.in‘Fig. 2 illustrates

" how the selection process and the recomputation algoritﬁm fit into the

Thomas algorithm.
3. Discussion
The standard Thomas algorithm has the follo&ing operation count.
Multipiications N(7m3/3 + 3w2 - m/3) - 2&2@n+1)
Additions N(7m3/3 + 3m2/2 - 5m/6) - 2m2(w+l) (5)
Divisions Nm .

14

Here N 1is the number of block unknowns and m is the dimension of
each block. If N >> 1 the second term in the addition and multiplica-
tion counts may be neglected. Using as a measure of relative cpu time

the equivalency formula
1 add = 1 multiply = 1_/4 d‘ividellv | (6)
the tota;}ﬁgﬁpef.of operagioﬁs becomes
N{14m3/3 + 9@2/2 + 17m/6} . (7)

'i'Thé variable T is defined as the total number of operations divided
'.by the quantity in brackets. In this wﬁy the dependence on m of the
results is largely removed. The variable KﬁAX, defined above, is a
measure of the available storage. Finaliy N, also.defined above; is a
measure of the problem size. Figure 3 plots T vs N for vérious values
of the parametef KMAX. This figure describes the common situation in
which a computer has a limited total memory. This occurs when secondary
memory ig much slower than primary memory. Often the se;ondary memory
is a disk or a standard tape drive. In the case of thelcurrent genera-~
tion of mich—computers, it may even be a cassette. In such a case
recomputing may allow the solution of problems thatuétherwise could not
be solved at all. ‘Figure 3 gives, at a glance, the cost of solving
block tridiagonal systems as a function of problem size given a fixed
amount of memory.

Another situation for wﬁich recoﬁputing can be helpful is where a
-program has Been written, the problem size is fixed, and the user wisﬁes
to modify the ﬁrogram in some way that requires,more.ﬁemory than the

computer has. One way to get more memory is to reduce the amount of

15

space allocated for temporaries used in solving block tridiagonals.
Dependiﬁg on the problem fhis may free a significant amount of storage.
In this way the user may avoid a comﬁléfe rewrite\whicﬁ might otherwise
-be neceésary to incorporate iransfers to éegéndary memdfy.' Dependiﬁg
on the accounting algoritim for the computer iﬁ queéti&h, ¥ecomputing
may even be cheaper than transferé Eo‘secondary_m@nory. Experience has
shown, however, that recomputing;rarely pays on a éést/run basis-if any
element c¢' 1is computed more than twice.

A situation sometimes arises in which'the total computer time is
fixed. From fhis constraint one may esgimate the maximup ﬁumber of
times each elemeﬁt ﬁay be computéd. We call this nuﬁber‘ P. inen P
and tﬂe sforage constraint KMAX there.is a limit to the number of
block unknowﬁs we can solve for. We'call this number NMAX. The
question arises: What ié the relationship between P,KMAX, .and NMAX?
Such information could be useful in deciding on a vector length or.
deciding if this algorithm wogld}pay at all. It can be shown tha; the

recursion relation for finding NMAX(P,KMAX) is

NMAX(P, 1) =P + 1 N - (8a)
NMAx(l,mAX)_ = KMAX + 1 | (8b)
NMAX(P,KMAX) = NMAX(P,KMAX-1) + NMAX(P-1,KMAX) (8¢c)

We notice‘immediately that NMAX(P,KMAX)=NMAX(KMAX,P), that is, the
function NMAX is symmetrical about the line P=KMAX. Also, along a
line where P (or KMAX) is a constant, the values of NMAX may be
exactly fitted by a polynomial of degree P (or KMAX). The first few

and the general case are given here. -

16

P=1 NMAX = 1+ KMAX . . (9a)

P=2 NMAX = 1 + 3/2 KMAX + 1/2 KMAX2 "~ (9b)
P=3 NMAX = 1 + 11/6 KMAX + KMAXZ + 1/6 KMAX3 (9¢)
2+1 _
P=z NMAX = E (l(Siii)l*KMAxm-l/z!) . ~(94d)
m=1
In the general case, S(m) are Stirling numbers of thebfirst kihd.

z+1
Thus we see that the highest order term is always KMAxZ/z!.

Equation (96) is given without proof. In principal, however, one could
substitute Eq. (9d) into (8c) to prove ghe equaliﬁy.

The recoﬁputation algorithm is arithmetically the same as the
Thomas aigorithm; hence, it has exactly the same stability propereiés
and gives the same answer. Although the storage overhead iS’ﬁsually
_negligible it does require KMAX scalar temporaries. This should be’
compared with KMAX*m2*IVEC temporaries used in the rest of the compu-
tation or with (N—l)*mz*IVEC temporaries needed for the Thomas algo-
rithm. The computational overhead is equaliy-negligible, idvolving
'1es§‘thah N floating boint'operations. If no recomputation is done,

the recomputation algorithm costs virtually the same to use as a con-

ventional Thomas algorithm.
4, Conclusions

It has proved useful to program the entire block tridiagonal solver
as a subroutine which has, as an argument, the amount of available

space. This substantially reduces the consequences of programming at

the limit of pfimary memory. This alone helps increase productivity

17

through reducing the number éf times programs are rewritten to free
a tiny amount of storage.

Using recomputation, problem size can be substantially increased
on computers where memory size is poorly matched to processor speed_for
this type of problem. Recomputation-can free enough memory to allow
the effective use of vector processing capabilities on machines like
the Cray 1 and the CDC 7600. Furthermore, the extra computation
reqﬁired is largely made up of dqt prqducts, at which these machines
.are verywefficientf. |

~Surpri§ingly, execﬁtion speed can actually be increased through
thg use of rgcomputation. 'Thié can occur when disk latency becomes a
%ubsfantial por;;on of the code's running time. It‘can also occur
when recompgtation‘ig used to .increase vector lengths;' In both cases
césts can be redqqed by doing more arithmetic, keeping the job in core
usiﬁg recomputadion. This algorithm was used on I11liac IV codes at
Ames Research Center from 1977 until the Illiac was replaced in 1981
[2]. The gequiyed vector lgng;h_of 64 aﬁd the small size of primary
memory made recomputation a virtual necessity on the Illiac, allowing
the solution pf problems that otherwise could not have been solved.
Any time a situation arises where it costs more to bring a problem in
and out of core than it does to perform the arithmetic, or where many
problems must be solved_in parallei, recomputation is likely to pay.

Of course, this general approach is not limited to tridiagomnal
matrices; A;t can egsily be extended to cover periodic and pentadiag-
onal matrices. For that matter, it can be used to solve denmse or -wide-

banded matrices. It is not limited to Gaussian elimination but is

18

applicable to any method with a forward and backward sweep that saves
intermediate results. | |

Larger and faster memories may temporarily red;ce the need for
recomputation but cannot renone its advanteges. As loné aS‘there are
substantial differences in speed betneen memor& hierarchies, cdmputers
that don't match memory te processor epeeds, computers with vector
speeds significantly higher than scalar'speedé,’dr prdblenslwhicn are
compntationally>light'relatine to their size;'there will be a need for

recomputation schemes.
. References

1. W. F. Ames, "Mathematics in Science and Englneering," Vol. 18,
-pp. 341-2, Academlc Press, New York N.Y., 1965.

2. J. Kim and P. Moin, "Large Eddy Simulation of Turbulent Channel
Flow — Illiac IV Calculation," Proc. AGARD Symp. on Turbulent
Boundary Layers, Experiment, Theory, and Modelling, the Hague,
The Netherlands, Sept. 24-26 1979; also, NASA TM-78619

Sept. 1979.

19

coonoananadnnonnoanano

aaQ

0o 00 00

Qa0

10

KK=KK+1

Appendix

SUBROUTINE CHOOSE(IL,IU,RMIN,KMAX,IH)

THIS SUBROUTINE IS DESIGNED TO CHOOSE THE OPTIMUM INDICES
AT WHICH TO SAVE DECOMPOSITION ELEMENTS C’.°

ARGUMENT DESCRIPTION

IL INPUT-THE LOWEST INDEX FOR WHICH C’(I) MUST BE COMPUTED.

IU ‘ INPUT-THE HIGHEST INDEX FOR WHICH c’(I) IS NEEDED.

KMIN INPUT-C(KMIN-1) CONTAINS THE DECOMPOSITION ELEMENT
'NEEDED -TO RESTART THE FORWARD SUBSTITUTION. INITIALLY
KMIN=].

KMAX INPUT-THE TOTAL NUMBER OF ELEMENTS C’(I) WHICH CAN BE

STORED. ON THIS CALL TO CHOOSE WE CAN PICK UP TO .
KMAX~KMIN+1 ELEHENTS.

IR OUTPUT-AN ARRAY OF LENGTH KMAX WHICH CONTAINS THE
- INDICES OF THE ELEMENTS C’(I) WE WISH TO STORE,

DIMENSION IH(KMAX)
DO 10 K = KMIN,KMAX
IH(K)=K-KMIM+IL -
CONTINUE
THIS BRANCH IS TAKEN IF THERE IS SUFFICIENT SPACE TO
AVOID RECOMPUTING.
IF (IH(KMAX) .GT. IU) GOTO 6

RKK=KMIN -

IF ((2*IH(KMAX)+1-IH(KK)) .GE. IU) GOTO 4
THIS SECTION IS EXECUTED IF OVERWRITNG ALL THE CHEAP
SPACE IS NOT SUFFICIENT,

RCe IH(KMAX)= TH(KK)+1

DO 3 K = KK,KMAX
IH(K)=IH(K) + KC

CONTINUE

PRINT*, (IH(J),J=1,20)"

WHEN THIS TEST PASSES ANOTHER LEVEL OF RECOMPUTATION IS
REQUIRED.
IF (KK .GT. KMAX) KK=KMIN
GOTO 2
-~ THIS SECTION IS EXECUTED SO THAT IH(KMAX) IS IU. IT -
ALSO ENSURES THAT IF SOME ELEMENTS MUST BE RECOMPUTED |
MORE TIMES THAN OTHERS THEY ARE DONE LAST, WHEN THERE
IS MORE SPACE.
CONTINUE ,
IC=1IU~-IH(KMAX)
DO 5 K = KK,RMAX
IH(K) = IH(K) + IC
CONTINUE

RETURN
END

20

’Figure_Céptions
Fig. 1. ~Da£a dependencies ih a.tridiagonal. '
Fig. 2. The Thomas aigori:ﬁm_with_recomputétion.

Fig. 3. A summary of tradéoffs offe:éd'By:regomputation.

21

Fig. 1

22

COMPUTE MAXK

IF MAXK <1

YES

STOP B

NO

CHOOSE WHICH c’ INDICES
TO SAVE. FiLL THE ARRAY
H WITH THESE CHOICES.

(INSUFFICIEN
SPACE)

YES

IF ¢’ (I) WAS SAVED

GET b (JL) , r (JL)

FORJ=JL+1,JU

NO

GETa(J),b(J) ,c(d),r(d)
COMPUTE ¢’ (J) STORE IN ¢’ (K)

COMPUTE b’ (J) ,q" (J)

IFJ=H(K) THENK=K+1

FIND THE LARGEST ELEMENT IN
H. THIS IS THE INDEX AT WHICH
RECOMPUTING STARTS. CHOOSE
WHICH ¢’ INDICES TO SAVE. THIS
FILLS THE UNUSED ENTRIES

IN H. '

RECOMPUTE ALL MISSING c’s
WITH HIGHER INDICES THAN THE
ONE AT WHICH RECOMPUTING
STARTS. SAVE SELECTED c’s AS
IN THE FORWARD SWEEP. ¢’ (1)

WILL BE SELECTED.

" NEXTJ

FORI=JU JL+1, -

1

‘COMPUTE q (1 - 1)

NEXT |

STOP

Fig. 2

- 23

@
N

- CPU TIME, [T]
-

FOUR UNKNOWN:; PER BLOCK (m=4)
VARIOUS AMOUNTS OF AVAILABLE STORAGE

- T T T ry IIT[LIRS MLy !' 7 ‘
-t 4 £ s o
T ol
- 4 ,,1::
3 5
3 ' -
- ’ # FREE BLOCKS =
t - Maxx) 3
r v . R 3 d
_ > .2
3 -3 s 3
- =I
N & %0 i

©

; 9000 ‘

— _ i At il
1 10 902 165
NUMBER OF BLOCK UMKMOWNS, n 5

1. Repbn No. 2. Government Accession No, 3. Recipient’s Catalog No.

TM-84228

4, Title and Subtitie ' 5. Report Date

: . ;March 1982
ON THE INVERSION OF BLOCK-TRIDIAGONALS WITHOUT S Performing Orgamization Gode
STORAGE CONSTRAINTS

7. Author(s)) 8. Performing Organization Report No.
Marshal L. Merriam A-8848

. . : 10. Work Unit No.

9. Performing Organization Name and Address T-9517
NASA Ames Research Center : 11. Contract or Grant No.

Moffett Field, Calif. 94035

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address ’ _ . Technical Memorandum
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546 ‘ +505-31-11-02-00-21

15. Suppiementary Notes

Point of Contact: Marshal L. Merriam, Ames Research Center, M.S. 202A-1,
Moffett Field, CA, (415) 965-6417 or FTS 448-6417.

16. Abstract
In many programs solving difference equations, problem size is restricted

by the number of available memory cells. A strategy has been developed to
permit trade-offs between the number of floating point operations required and
the storage requirements for the solution of certain problems such as block
tridiagonal systems of equations. This is done by recomputing some interme-~
diate results instead of storing them. Reducing the storage to the square
root of the current requirement will roughly double the number of computations.
Reducing the storage more than this tends to make the number of computations
prohibitively large. In theory though, if m 1is the order of each sub-matrix
in the block tridiagonal matrix, one can solve any linear system with only

Sm2 = 1 temporary storage cells. In many cases m 1is a constant and quite
small. For example, in solving a factored form of the three-dimensional
Navier-Stokes equations, the size m of the block tridiagonals is 5. In
fact, for block tridiagonals arising from finite difference solutions of equa-
tions of fluid flow, m is rarely more than 5. This method lends itself to
efficient use on computers with parallel processing or vector processing
architectures. On these computers the larger number of floating point oper-
ations is more than offset by the decrease in I/0 and the increased percentage
of vector operations made possible by this algorithm.

17. Key Words (Suggested by Author(s}) 18. Distribution Statement
Block Tridgagonals - Unlimited
Storage .
Recompute Subject Category - 61
19. Security Classif. {of this report) 20. Security Classif. (of this page) 21. No. of Pages 22, Price’
Unclassified . Unclassified 27 "A03

*For sale by the National Technical Information Service, Springfietd, Virginia 22161

