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Abstract

A brief review of Stokes' problem for the ellipsoid as
a reference surface is given. Another solution of the problem
using an ellipsoidal kernel, which represents an iterative
form of Stokes' integral, is suggested with a relative error
of the order of the flattening. On studying of Rapp's method
in detail the procedures of improving its convergence are
discussed.
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1. Introduction

The determination of the shape of the global earth is
one of the topics pursued in physical geodesy, while the inves-
tigation of the earth's shape consists essentially in eval-
uating the height anomaly and the deflection of the vertical
by using the gravity anomaly information at every point on
the surface of the earth. Since 1849 Stokes developed a formula,
which states the disturbing potential of the earth can be
derived from gravity anomaly values at the geoid, his famous
formula has been traditionally regarded as a basis to determine
the earth's figure and extensively applied to practice. But
there are two important limitations of its practical appli-
cation in geodesy. That is to say this formula is valid only
for (a) spherical boundary surface, and (b) distribution
of gravity values over the geoid instead of the topographical
surface. With spherical approximation it implied that the
error of the order of f , the flattening of the earth, will be
certainly introduced into the computed	 results. For instance,
the absolute effect of this relative error on the geoid undulation
N reached fN = 0.7 meters when the geoid undulation is 100
meters (Fang Tsun, 1973, p.236). Although this error is usually
permissible for normal purposes, it should be taken into consid-
eration for special investigation like the accurate determination
of the figure and gravity field of the earth. In addition,
the requirement that the gravity values must refere to the
geoid and no masses can lie outside the geoid is so stern
that it is impossible for this requirement to be exactly satisfied
even by using various calculation procedures to reduce gravity
and regularize the surface of the earth's geoid. Therefore,
from both theoretical and practical points of view, we cannot
use the classical equation of Stokes for analysing in detail
the earth's geoid; instead we have to develop modern theories
and techniques. During the last 40 years or so there has
been a great amount of work being done in this field aiming
to improve and develop the classical Stokes' theory. It should
be pointed out that the most important contributions have
been made by Molodensky (1962 N , Zagrebin (1956, 1965), and
Pellinen (1981). They approached the problem in two different
ways. Molodensky gave up the traditional concept of the geoid
of the earth and, instead, introduced an auxiliary geometric
surface, the so-called telluroid, to reduce the problem to
the solution of Laplace boundary value problem of mixed type
on the telluroid, which is called the geodetic boundary value
problem in geodesy. Thus, we can find the height anomaly
and the deflection of the vertical directly by using gravity
anomaly data measured on the actual surface of the earth.
Zagrebin sought a solution of the boundary value problem with
the ellipsoid as a reference surface to carry out the investi-
gation of the gravity field of the regularized earth. Both
these theories establish the most elaborate form of the so-
called model approach to physical geodesy.
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In the present report, we are not going to discuss
Molodensky's problem, which can be found in the authoritative
work ADVANCED PHYSICAL GEODESY (Moritz, 1980); instead we
are just planning to try to given a brief review of the state
of art about the Zagrebin's problem, the problem of Stokes
for the ellipsoid. Further-more, we will place stress on
tb- new techniques which are appropriate for practical appli-
cation, such as those developed by Rapp (1981). In addition,
we also contribute another solution with iterative form for
the problem of Zagrebin using an ellipsoidal kernel, which is
similar to Molodensky's (1962, p.53) and Koch's (1968, p.22).
Moreover, on studying Rapp's method in detail, we put
forward some new designs for improving the convergence of
his method.

2. The Form of the Solution

Since the Zagrebin's solution was published a large number
of authors have been devoted to solving the Stokes' problem
for a reference ellipsoid with a relative error of the order
of the flattening. Looking into all works it should be found
that allavailable approaches, from the mathematical point
of view, could be classified into two groups: the direct
solution - series approach, expanding the anomalous potential
of the earth into a series of harmonics, such as Zagrebin's
(1356, 1965) and Bjerhammar's (1962), and the indirect solution -
ellipsoidal kernel, reducing this problem to the solution
of the F.redholm's integral equation of the 2nd kind by means
of either the third Green's formula or the theory of the poten-
tial of surface layer, such as Molodensky's (1962), Fang Tsun's
(1965), Koch's (1968) and Lelgemann's (1970), etc.

In spite of using any methods in these two groups to
solve the problem of Stokes for an ellipsoid of revolution
the solution finally obtained could be written as the fol-
lowing form:

(1) TE = T + dT

or from the Bruns' formula,

(2) NE = N + dN

where T or N is the principal part of the solution, expressed
by Stokes' equation, which characterizes the fu:)damental pro-
perties of the gravity field of the earth, and dT or dN
is a correction term, which responds to the compression of
the earth.

In case of the direct approaches, the solutions are rep-
resented as an open form, the series of harmonics; otherwise,
a closed form, the Stokes' integral.

-2-



We can see that the series treatments are not only tedious
in derivation, but also very complicated in final form obtained.
For example, for the Zagrebin's solution it is necessary to
carry out not less than nine integrals over the reference
surface in order to obtain NE of one point. Thus it can
be seen that such a kind of solution is not appropriate for
practical application. In view of this situation, another
way, using an elli psoidal kernel, to approach the problem
was suggested by Molodensky, and afterwards developed by Fang
Tsun, and Koch, etc. From the pure mathematical point of
view, the solution of ellipsoidal kernel methods, which is
expressed as a set of iterative integral forms, is graceful
and strict, ^nd convenient for theoretical analysis. However,
unfortunately, it should be troublesome to employ them to
evaluate geoid undulations through potential coefficient infor-
mation. For this reason, it is necessary to improve and develop
the kernel methods so as to suit them to the need of the modern
practice in geodesy, Before discussing this point, we are
going to contribute another solution of the Zagrebin's problem
with the aid of ellipsoidal kernel in the following section.

3. Another Solution of the Problem Using an Ellipsoidal Kernel

Most authors utilize the third Green's theorem to seek
the solution of the Zagrebin's problem; instead we still
start with the theory of the potential of a simple layer as
Koch (1968) did, but a special kind of coordinate transformation
'_i employed, by which the whole procedures of derivation is
significantly simplified. Because of simplification, the approach
developed here should be meaningful. Now, we will show the
derivation as follows.

Assume the eqauation of the reference surface is given
by

(3) a	 X 2
 a`	 + 7 = 1

First of all, let us introduce the coordinate transfor-
mation

A I ( x , y o z ) -► (),P^PX):

(4) x = F cosh u cos cos A

y= E cosh u cos B sin A

z = E Binh u sin

E : (a 2 — C 2 ) i = c e s2

-3-



Obviou ly , the oll ipsoidal coordinate system ( u , S ,a )
is orthogonal; and	 0 and A %rte nothing but the so-called
reduced latitude and longitude respectively. We then have
an element of surface:

(5)	 do - Gs G X 1 0 da - GS 0A 6s

an element of outer normal to o :

( 6 )	 do - G  du

where G. , GS and r, X are called the first Gaussian funda-
mental quantities defined by

(7)	 Gil ti [(-" '̂u ) 2 + (	 ) 2 + ( TZ ) Z ]^ = E[cosh 2 u- c0820]i

Ge	 i(a Y /` +(	 )2 + (a azs ) 2 ] = E[cosh2p_ cos2B]3

G, _ € (-n 2 + ( ) 2 + ( In) 2]1 = E cosh ucose _ LXcos S

It should be very easy to get their values on a :

(10) Gu = GS - c(l+e i2 sins) + o(ei2)

(11) Frx = E coshu = a

Secondly, let us consider the Zagrebin's problem in the
space (u,s,a) rather than (x,y,z). As a starting point we
will take the potential T of the simple layer on o	 With
the action of the operator A the potential T , the outer
limit value of the derivative of T in the direction of the
normal on o , and the boundary condition which the potential
must satisfy becomes respectively:

(12) Tp - j j r GS r 	 PeCv
s

(13) P-p J 1 mom— (r) G S 0^ ds - 2n ^P GuP Peo

(14) ^ - Y , d 	 Dg GP	 Pea
P	 P	 P

where s is a unit sphere, r , the distance from the para-
meter point P to the integral variable point Q , and m
means the density distribution function on the surface, Cu
the space outside the ellipsoid.
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Combining (12) 9 (13) with (14), it follows that the Fredholm
integral equation of the 2nd kind with respect to the function
m will be

(15) 2 n^ = Ag + !! m Y( p,Q)ds
s

where

(16) g ( P rQ)	 I7,a. (r) - rY ^ I Gu t G^
P P

is the kernel of the integral equation. In our circumstance,
it is also called the ellipsoidal kernel, because it is pro-
duced from the boundary surface of the ellipsoid. All quantities
without the subscript P in (16) refer to the integral variable
point Q , but those outside the integral sign in (15) are
always taken at the parameter point P on a .

In order to solve the equation (15), it is necessary
to represent the kernel (16) in more detail. The whole procedure
is described as follows.

It is clear that we have

(17) _ - ^p	 - xp) 1 + (y - yp) 3 + (z - zp) t
^r 2 = OppP sin

e(x 

+ (p - pp )2^
and

(18) p = (x2 + y 2 + z z )* = E(sinh 2 p + c06 2 5 ) i = c(1 + e' "costs)

where * is the angle between the vector radii ^ and gyp.

Since the quantity p- pp is equal to 0(e'2):

(19) p - pp = j e i2 (coo 2 s- c0820p)

the quantity (p- pP )2 could be ignored, and (17) then becomes

(20) r`	 4ppP sin 24

Substituting ( 18) into ( 20), we arrive at

(21) r 2 = 4c 2 sin 2 4 (1 +* e' 2 (cos 2 S + cos2Bp))
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(22) T	 Y----- { 1 - 1 e' 2 ( cosy $ + con 2 ^) }2 c sin+

On the other hand, from ( 17) we have

a  - - ta	 {r2 + p2 _ p2 _ 2(z - z )z }
al^	 r	 p	 Binh 2VP

Using (21), (18), (4-3) and (4-4) it is not difficult to
bring this derivative to the following form:

.
(23) .ar. - rtan	 { 1 + - 922 (sine - ain$ ) 2 }

au p	 4 sin"	 p

Thus, we finally get

(24)--(r) 	 ,far_ . - ^_ .{(1-j e t2 sin 2$p-
p	 p	 4 ac sin "

.
- } e i2 (cos 2 0 + c08 2 $) + — 122 (sin$ - sin$)21p	 4 sine 	 p

We shall next derive the expression for the second term
in the bracket of (16).

The Bruns' formula in our coordinate system 0,8.X) should
be the following form

(25) Y a
Y - -GUp { ( 1 + 1 - Yo^2 }

P P	 P p	 p

By means of the formulas of the radii of curvature in the
meridian and in the prime vertical

(26) N - a l l + e' 2sin20)1

(27)
Y _ c2( 1

+   3 ei2sintN

we immediately obtain

(28) -I - - 
a G

up { 1 + j e' 2 _ e' 2 s in 2 $p + q }
p p
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where

(28)	 q	
YP

Hence, we have

(30) r. 1 . -
a ll	

G
-	 _ ._3i R	 (1- 3 e d ain 2 Sp + 1 e i2 sin 2 B + q)

p	 p	 ac sin

Consequently, with ( 10), (11), ( 24) and ( 30) we find the
expression of the kernal ( 16) as follows

(31) K(F,Q) = Ko(P,Q) + Ki(P,Q)

where

(32) Ko(P,Q) =

	

	
3

4 sin

(33) K i (P,Q) = e'2 Ko {g - 1 sin 28 + 9 sin e s +

	

	 1	 (sin=e -
12 sits

- sin$? + -3Q)

Moreover, with (22) 0 (10) and (11), (12) may be written
as

(34) Ta 1 f O(Ke + k) d s
s

where

	

(35)	 k = ei2 Ke(I -

We are going to
For this purpose, we

For convenience

(36)= BO + ^

where

	

( 37 )	 Ue = Ag

} (cos 2 8 - cos2sp))

determine the disturbing potential T .
first solve the integral equation (15).

(15) is rewritten as the operator form
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and iwp operator B is defined by

(38) B( • ;	 j j NO ) d s
8

Splitting (38) in the order of magnitude of e' 2 without
regard for o(e i2 ) we arrive at the following equations

(39) 0(1):	 me - Be 0e +	 tr

(40) O(e i2 ):0 l - Be 0i +	 R

where

(40 1 )	 Gi s B1 00

and

(41) B i : B i ( • ) 	 K i ( • )d s
s

is called the i -th order operator with respect to e' 2 .

It should be easy to verify the following lemma:

For any function X and G with the same order of
e i2	 t e operator eauat on

(42) X - Be X+ -G

always has a unique solution

(43) 2nX - ^ ^G+G

where	 is the Stokes operator:

(44) $(•) - a If [S(^y) - lJ (•) do
s

Applying this lemma to both equations ( 39) and ( 40) we have

(45) 2w^*	 3 9 Go + Go

-8-



and

( 46 ) 2n ^ 1 ^ S Gi + Gi

Consequently, we get the solution of the equation (36)
as follows

(47) 0 = mo + Oi

Finally, we are going to determine potential T .

The expression ( 34) may be rewritten as

(48) T = -Ta[2nBoO + 2a Gil]

and also split into two parts in the order of ei2:

(49) 0(1):	 To = y a[2nBoOo]

(50) O(e' 2 ): Ti = -T a[2nBo$i + a Gii]

(51) Gil = 7a jJ ^okds
s

With ( 39), (45), ( 40) and ( 46) we get the solution of the
Stokes' problem for the ellipsoid of rotation with a relative
error of the flattening as follows

(52) T = To + T1

with

(53) To = S Go

(54) T 1 = S G 1 + Gil

or

(55) To = P if G o[ S ( y ) - 1] d s , Go = Og
s

-9-
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(56)	 T 1 - fir jJ G1 [S(*) - 1] d s
s

Clearly, if the reduced coon
formed into geocentric coordinate
solution is reduced to the Koch's

+- tea jf ^o k d s , Gl - 1 f  K l 4bd s
s	 s

linate system (S,a) is trans-
system	 then our
solution (Koch, 1968, p.22).

4. Truncation Method of Rapp

As mentioned above, the advantage of ellipsoidal kernel
approaches consist in its closed iterative integral form.
But in practical application, as we know, only numerical
treatments can be carried out for these integrals. Moreover,
they are extended over the global earth, so that the calcu-
lation is fairly tedious and laborious even in order to obtain
the geoid undulation of one point at the earth's surface.
It is needless to say that it is.much more difficult to eval-
uate the geoid undulations of several points. Above.all,
a more important fact is that today people cannot have a
uniform and dense distribution of gravity anomaly data on
the surface of the earth. In this case, it is impossible
to expect to arrive at good results through the procedures
of global numerical integration. It follows that we have
to find the other successful ways to reach our purpose. Even
though the series methods are also complicated for practice,
they bring light to the probability to use the information
of potential coefficients to determine the geoid undulations.
For containing the advantages of both series and ellipsoidal
kernel approaches and overcoming their disadvantages a new
ellipsoidal kernel procedure to compute the geoid undulation
is developed by Lelgemann (1970). The principal part of
his solution is exactly Stokes integral formula, and the
correction term consists of a series of harmonic functions,
unlike the general ellipsoidal kernel methods. Thus, we
can use Lelgemann's formula to compute the ellipsoidal cor-
rection through the potential coefficient information. Later,
a somewhat revised approach to the problem is suggested by
Moritz (1980, p.320).

It should be mentioned a well-known fact that the con-
vergence of series of harmonic functions miry not be very good.
Theoretically, we must use a large number of terms to expect
a rather good computed result. But in fact, the number of
terms in the series of harmonic functions is only finite,
in spite of either using gravity data measured at the earth's
surface or combining these with the information obtained
by the aid of satellites. These coefficients cannot by any
means represent the complicated situations of the gravity
field of the earth. It follows that Lelgemann's solution
only takes into account the long wavelength part of correction
tc. the geoid undulation resulted from the earth's compression.

_iO_
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Aiming at this defect, Rapp ( 1981) developed another new ap-
proach to calculate the ellipsoidal correction. He divided
the solution of the problem into two parts: one is an inte-
gral over a cap whose center is the computation point, which
is evaluated by using gravity data measured at the earth's
surface, and another is a series, calculated by means of
the potential coefficient information. Thus, not only the
effect of flattening on the long wavelength global undulation
is considered, but also on the local undulation. This approach
is preferable up to now from both theoretical and practical
points of view.

Rapp gives two kinds of formulas for the problem. We
now write (Rapp, 1981):

The first kind ( using regular Stokes' function):

(57) NE = Ni + N2 + A Ni + AN

with
R	 ^027T

(58) Ni = TT—ry- jO fOAg S(W) sink, d^ da

(59) N 2 = ^	 Qn A go
n=2
2	 O°

(60) AN, = ^Y 
n- 

(Qn -Xn)Agn

(61) AN = e 2 ( - T sin2ON

where
CO	 Go	 n

(62) Ag o 	1 Ago
n=2	 n	 n=2 m=0	

( Anm cos ma + B 
nm 

sin ma )Pnm (sink )^- 

(63) Agi =
=0 

Agn =	 (Gnm cos ma + Hnm sin MX)P nm (sin^ )
n	 n=0

(64) 0	 , n < 2
X n	 2	 n > 2

In-T

For the meanings of the other symbols see ( Rapp, 1981).

As matter of fact, we can only calculate a finite sum
of series; therefore we now give the truncation error of
NE

-11-
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(65) SNE = SNi + 6N2

where

(66) M = ^ E (Qn - Xn)Agn
n=m+1

CO

(67) 6N2 = R
	

I	 Q Ago2Y n=m+1 n n

According to (Hsu and Zhu, 1979), we have the variance
of the truncation error of geoid undulation as follows:

Go

(68) Q 2 I (m^V^o) _ (	 ) 2	 Qn a 2 (Ago)
SNE	 n=m+1

The second kind of computation ( using the modified
Stokes' function) is as follows:

(69) NE = N i + N2 + ANi + AN

where
^o 2-

(70) N1 =	 fo fo	 A g [ S (*) - S (^O)] sin^d*da

Go

(71) N2 = R I Qn Agn
n=2

z O0
(72) ANi = R	 (Qn - Xn)Agn

n=0

(73) Qn Qn (V^0) + nn-r— (pn-t(cos" ) - cos*O Pn ( cos^o )] , n> 1

The truncation error of N E and its variance are ex-
pressed respectively as:

(74) SNE = 6N l + 6N2

where
2

(75) 6N1	 Rye— I	 (Qn - Xn)Agn
Y n=m+1

Go

(76) 6N 2 = ^R--	
I	

^ AgoY n M+1

-12-
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and
W

(77) a II(m,*O) s ( R )2 1	 $n2 02(Ago)
n-m+l

5. Further Improvement of Convergence of Rapp's Method

Rapp used the truncation theory to "remove" some local
undulation terms from Stokes' series, the correction part
in Lelgemann solution, into the integral over a cap surrounding
the computation point, so that the convergence of the new
series obtained is significantly accelerated, because 'there
are not many local undulation terms in the series any more.

We now suggest two procedures for further improving
the convergence of Rapp's method.

The first kind, using the optimum squares approximation
to Stokes' function, is now described.

We introduce the following approximation function
SmW to Stokes' function S M at interval [Vo,n]

Q° 2n+1(79) Sm (V^) _ I = Kn (m,^y o) Pn (cos^)
n=0

where the coefficients K n (m,^o) satisfy the following
condition:

n

(80) fto [ S(*) - Sm ( ^ )] sin^d^ , = min

From (Fang Tsun, 1973, eq. (8.65)) we have:

(81) Kn (m,W _ @n 
+ m 2s+1

s10 
—^— Xns K

s (m ' V O )

^o

(82) Xns !o Pn (cosO Ps(coW sinV ft

Let us analytically extend the function Sm(*) from
region [ Vc , n ] to the whole region [O , n] . Then, following
(Rapp, 1981, eq. (40)), the solution of the problem can
be expressed as

R	 2n	 i(83) NF =	 fo 
^o 

Jo (4 g - a 2 Ag ) [S(V) - Sm ( *)] sin*dada

i

-13-



21r

+ ^ 10 fo 	(A g - e 2 A6 i )Sm sin*d*da

j2^
+ ^ o o (dg -- e 2 Ag 1 ) f S(^) - sm (*) ]sin^dryda + AN

We write (Rapp, 1981, eq. (23))

(84) Ag = Ag° + e2Agi

From (79) and (84) the second integral in (83) can be writ-
ten as:

2 7r
(85) NI _ 4 R f fo (Og - e 2 Ag i 1Sm (^) sink d^da-

R m_ 27Kn (m,V^o )Agn
n=2

We are going to calculate the integral involving e 20g 1 in
the first term of (84). We can write:

( gg )	Re 2 r^' jo2TrOg i [S(V) - Sm (^)] sin^d^da

- e2 

fn Jo21rQgl [sw - S
m (V^) ] sin^yd*da -

Re 2
TFY f Tr j

o
27r

Ag l [S(^) - Sm (V^) ] sin^yd*da

We have:

(87)	 l^ Jo2 ^^ gl [S(^V) - Sm (^)] sin*d*da

= ^Y fo r02^ Ag 1 S(ry) sin^d^,da -

Pry 0
J 7r jot 

n 
Ag l Sm(^) sin i d^ da

= T
	

(Xn - Qn )'gn - T I Kn (m,1yo 
)Agn

n=0	 Y	 n=0

Reg m
n !o [Xn - Qn - Kn (m,W]Agn+

+ ^ I (Xn Qn)'ena-m+1

-14-



From ( Hsu and Zhu, 1979) we arrive at:

(88) fl—Ty jVT J
o
27T

Ag 1 [ S(^) - Sm ( ^ )]sin*d^da =

2	 00

	

=- - L	 Qn( m ' *O )Agn
Y n=m+1

Hence, (86) becomes:

(89) ^ 
fo 0 f02 IT 

Ag l [ S(^) - Sm (^) ]sin^d^da

ReY nL0 [X - Qn	 n	 Kn (m,V^o)]AB^n +

Re 2
+ =y	 [Xn - Qn - Qn(mI" )]Agn

Y n=m+1

(90) Qn = WO [Sw - SMWI Pn (cos*) sin^d^

Following (Hsu and Zhu, ibid) and (84) the third integral
in (83) can be written as:

2 'R

(91) 6N2 =	 J^ J	 (Ag - e 2 Ag 1 ) [S(^,) - Sm(^)] sin^d^da
Y ^0 0

2 T

RR J;0 fo 	 Ago [S(^) - Sm (^ )] sin^d^da

R	
Go

2-' 1 Vm ' )Ago
Y n=m+1

Therefore, the equation (83) finally becomes the fol-
lowing form:

(92) NE = Ni + NJ + AN! + 6N  + QN

where
27

(93) Ni = ^fo ° Jo Ag [ S (^) - Sm(*)] sin*d^da

m
(85) N2 = R	 Kn(MOW Agnn=2

2

(94) AN 	
ZY	 Yn(m^V^o)ABn

n=0

-15-



	

(95)	 dNE = dNi + dN¢

	(86)	 dNJ	 Rez'^y n+1

	

(91)	 dN¢	 RTy-
n=m+l

	

(97)	 Yn (m,ryu) = Kn(m,

Yn( M O*O )Ogn

Qn("O )Agn

PO)  + Qn - Xn

(98) Yn(m,") - Qn( m ,00) + Qn - Xn

(61)	 AN = e z ( T- --sinz0)N

We have the variance of the truncation error:

Go

(99) a	 (m,^o)= ( A-)Y2 I	 Qn 2 ( M ' VO) Q n(^ °)

	

n+1	 8

From (Hsu and Zhu, ibid, sec. III) we find:

(100) 1Qn(m 1 " )1 < lQn l (and 1Qn1)

Comparing ( 99) with ( 68) and ( 77) respectively, we get

(101) a, ( m.V^o) < aa N I ( m ,W (and a 2 ii ( m'so))
E	 E	 E

It means that the convergence of the series in case of the
optimum approximation is better than that of the series
in the truncation method of Rapp.

The second kind ( using the best squares approximation
with a boundary restraint):

In this circumstance, let the coefficients of approxima-
tion function Sm(^) to the equation ( 79) he determined by
thefollowing minimum criterion ( Hsu and Zhu, ibid, sec. V):

(102) D = 4o [8(^) - S m( ^)f sin^d^da + 2a 1 [ S(^o) - Sm(^O))

	

+ 2a 2 [	 -	 )ds( )	 ds (	 min-- 
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^i

.w. -40

in which, a l and X 2 are undetermined multipliers. Using
Lagrange ' s principle we arrive at approximation coefficients

K .n

(103) K - X-1 Q - ()IX-1 U + X2X-1W)

(104) a - A-1B

where

K - [ K1, K21 . . . Km]
T

X = [ X 1 ► a2]T

Q = IQ1 0 Q2 0 • • • Qm ] T

UTX - 1 U, UTX-1W
A =

WTX - 1 U, WTX-1W

JPo (cos*o )

U = 2r+1Pr (cos^ o )

2mf— m
(cos^yo )

B
UTX-1Q

,	 =
WTX-1Q

0

W	 2 1 r [Pr ( cosi^o) -cosiyoPr (cosV^o) ]

2m
r-m.[Pm(co"o)-coS" pM (coS* O ) ]

7

X oo: X 01. . . . X Om "

X 1oP X 110 . . . Xlm
X =

.	 .	 .	 .	 .	 .	 .	 .	 .	 .

XMO , Xmi , . . . 
Xmm

Xrs = fo Pr (cos^)P6 (cos^ )sin^d*

We finally obtain the similar results to (92) and (99)
but that the coefficients K n (m,^o) and Q' (m,W are now
replaced with Kn and Q , where Qt may ^e calculated
by the following explicit approximate formula ( Hsu and Zhu,
ibid, eq. (50)):
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(102) Qn - n (-sin* C Pnl ( COS* $ ) Z(*O) + O(- 1 )
n"fn

(103) Z(* O ) - 2 + 9cos* O +	 1	 -2S(*O)
3^ (1 - cosh, o) 2

It should be easy to see that 1Q 	 < 1Qn1 . It follows
that the convergence of the series in t is case is faster
than that of the series of Rapp ' s method.

6. Conclusions

(a) All available procedures to approach Stokes' prob-
lem for the ellipsoid as a reference surface could be clas-
sified as two groups: the series solution, and the ellipsoidal
kernel solution.

(b) The ellipsoidal kernel solution represents a closed
iterative form of Stokes' integral. It seems that this
kind of solution is cunvenient for theoretical purposes.

(c) The ellipsoidal kernel method developed by Lelgemann
makes the computation of ellipsoidal correction to the geoid
undulation by using potential coefficient information pos-
sible; however, it can not be directly used for determining
ellipsoidal correction to the geoid undulation through com-
bining gravity anomaly information with potential coefficient
information.

(d) The method of Rapp, containing the advantage in
Lelgemann method and removing its defect, is the best one
of all available methods. It can be effectively used for
determining highly accurate geoids from potential coefficient
information and terrestrial gravity data.

(e) As can be seen from sec. 5, it is better to use
the optimum squares approximation to Stokes' function in
order to further improve the convergence of solution of the
problem.
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