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Gary M. Johnson

National Aeronautics and °pace Administration
Lewis Research Center

Cleveland, Ohio

SUMMARY

A recently-introduced technique for accelerating the convergence of a
one-step Lax-Wendroff method to a steady-state solution is discussed and its
applicability extended to the more general class of two-step Lax-Wendroff
methods. Several two-step methods which lead to quite efficient multiple-grid
algorithms are discussed.

Computational results are presented using the full two-dimensional Euler
equations for both subcritical and shocked, supercritical flows.

Extensions and generalizations are mentioned.

INTRODUCTION

Lax and Wendroff (1960) described a class of difference equations, of
second-order accuracy in both space and time, "for approximating discontinuous
time dependent solutions with prescribed initial data of hyperbolic systems of
nonlinear conservation laws." Subsequently, Lax and Wendroff (1964) adapted
these difference schemes to allow the computation of approximate weak solutions
of multi-dimensional systems of conservation 'laws.

Richtmyer (1962) devised a two-step difference scheme of Lax-Wendroff
type. In this scheme, each step is spatially symmetric. Two-:tep Lax-
Wendroff schemes are in;ierently more efficient than one-step schemes because
they do not require the evaluation of flux-vector Jacobian matrices.

MacCormack (1969) introduced a two-step Lax-Wcndroff difference scheme
in which the individual steps are not spatially symmetric. This method is a
quite efficient member of its class. Its difference molecule contains fewer
points than a spatially-symmetric scheme and it only requires information
stored at grid points coincident with the spatial location of the final
solution.

Lax-Wendroff algorithms have found wide acceptance in fluid mechanics
and are commonly used both for the time-accurate computations of unsteady
flow and for the time-asymptotic solution of steady flow problems. In the



latter case, where accurate resolution of physical transients is not required,
the opportunity exists to exploit this diminished restriction in order to
accelerate convergence to the steady state.

Ni (1981) introduced a multiple-grid technique for use in accelerating
the convergence of a one-step Lax-Wendroff method. The present work discusses
the extension of this technique to the wider class of tw-)-step Lax-Wendroff
algorithms.

Results are presented for an application of this multiple-grid technique
to the solution of the full two-dimensional Euler equations. This is done
mainly for ease of computation and exposition and does not imply any restrictions
inherent Li the technique. In particular, extensions to three dimensions and
to the solution of the Navier-Stokes equations are intended.

BASIC ALGORITHMS

Consider a system of conservation laws

q t = -(fx + g y )
	

(1)

such as the Euler equations describing inviscid flow, where

P	 pu	 pv
pu	 f =	

pu2+p	 puv
q	 pv	 puv	 g	 pv2+p

E J	 (E+p)u	 (E+p)v

Here p, u, v, p and E are respectively density, velocity components in the
x- and y- directions, pressure and total energy per unit volume. Furthermore,
the total energy per unit volume may be expressed as

E = p ( e + 2 (u 2+v2 ) )

where the specific internal energy, e, is related to the pressure and density
by the simple gas law

p = (y-1)pe

with y denoting the ratio of specific heats.

Schemes of Lax-Wendroff type may be arrived at intuitively by using
Taylor's theorem to write the approximation

2
q(t+ot) = q(t) + Atg t + A
	

q tt	 (2)
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One-step Methods

Since we seek solutions to Eqn. (1), time derivatives may be expressed
as space derivatives :

q t = -(fx + g y )

q t t
A(fx + gy ) x + B(f x + gy)

y

where	 A and	 B	 are the Jacobian matrices

A = of/aq	 B = 3g/3q

Substitutions into Eqn. (2) results in :

q(t+ot) = q(t) - At(fx+gy)

(3)

+^2	 A(fx+gy)	 +	 B(f x +gy)
x	 y

Second-order accurate spatial discretization of Eqn. (3) then yields a one-step
Lax-Wendroff method.

For example, we may make the following finite-volume type approximations

(fx+gY )i ,J	 84x	 (fi+1,j+l+2fi+l,j+fi+l,j-1)

(f i-1, j+l,I2f i-1, j +f i-1 1 j-1)

1

+ 8Ay	 (gi-1,j+1+2gi,j+l+gi+l,j+l)

(gi-l,j-l+2gi,j-l+gi+l,j-1)

If we define the "change" in q ar cell centers, such that

Aqi+1 
j+ 1	 2Ax	 (fi+l,j +fi+l,j +l)	 (fi,j+fi,j+l)

2'	 2	 (4)

-_^ t

24y	 (g i,j+l+gi+l,j+1 ) 
_

(gi,j+gi+]_,j)

it then follows that
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1
gy	

=[,,,	 q- At(fx+	
i,j	 4 

	 2' J 2 + A i 2'42

(5)
+ Aqi Z,j 2 + Aql Z,j 2 -

Consistent with the above approximations and definition, we may write the
approximation :

- At(fx
+g) 1	 1 - Aq 	 1

	

y i2,j 2	 i+:2:--' j 2
This motivates the definitions :

q
A 14

' j+^2	 Al 2' ^ 2 A 1 2' j+2

Agi+-2'j+2  	
Bi Z	 ^q, j 

2 
ii 1, j 2

We then make the approximations

-At j LA(f x+gy) j x	 1 = (6a)
ì J{ i,j

1.
2Ax -

Afi+?	 +1 T Af l 1 - Afl 1 1 - Af l 1	
1

2'^	 2 2'j	 2 1-2 —22 2'i	 2

-At B(fx+gy) = (6b)y
i,j

1 
-2A y

Ag	 + Ag[	
i+l	+1

-

i1,j 1

Ag

i I , j - 1

- AF
i ^, j 12'^	 2 2	 2 2 2 2	 2

If we now define the "correction" to q	 at grid nodes

6q = q(t+At) - q(t)
i,j i,j

we may combine Eqns.	 (5)	 and	 (6)	 to yield
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_ 1	 of	 of
6g i9j	 4	 dq + Ax
	 Ay+ AyAg 1	 1

i2, j2
+ 
4

[Aq + QtA f - A
tAg	 1 1Y	

i 2+j2

	

+ 4 Da, - GXnf - Otng	
i+l +-Y	 2'j 2

	

+4 Aq - Ax + 
Ay'^ g	 1 1

12, ] 2
Eqns. (4) and (7) constitute the one-step Lax-Wendroff method used as a basic
integration scheme by Ni (19811. Notice that Ni's scheme may also be thought
of as a two-step scheme with a full time-increment predictor defined by Eqn. (4)
and a corrector defined by Eqn. (7). However, such an interpretation of Ni's
scheme is not totally in accord with the general practice of avoiding the
computation of Jacobian matrices in two-step schemes.

Two-step Methods

Following Richtmyer (1962) many two-step methods which are second-order
accurate approximations of Eqn. (3) have been developed. The two-step Lax-
Wendroff methods of Burstein, MacCormack and Lapidus have been chosen for use
in this study of multiple-grid acceleration both because of their ubiquity
and their varying degrees of similarity to the one-step method used by Ni.

Burstein (1966) used a full time-increment predictor scheme which may
be written as

n	 n	 n	 n_ -At	 _	 _
^q 1
	 1	 2Ax (f i+l,j+l + f i+l,j	 fi,i+l	 fi,j)i2, j 2

-At	 n	 n	 n	 n

20y (gi+l,j+1 + g i,j+1.	 g i+l,j	 gi,j)

_ -At	
n	 n

aq i, j	 44x (f i+l, j	 f i-1.,_j

ti	 Ivti	 ti
+ f 1	 1+ f 1	 1	 f	 1.	 1 -f 1	 1)

i2,j2 i 2 j
2 

i 2 j 2 i2 ,j 2
-At n
	 n

4Ay (g i,j+l - gi.,j-1

+ gi Z^j 2 + g i 2^j 2 
g i 2'j 

2 S'_2 +j —2)

(7)

(8a)

(8b)

i
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where :
n	 n	 n	 n

Aq 1	 1 - q 1	 1	 4 (qi+l,j+l + q i+l, j + qi,j+l + qi, j)i2, j 2	 t 2, j2

6q i'j
	 =	 q(t+ot) - q(t)	

i'j

ti	 %

q	 )fi 

2,j 2	 f i 2'j 2

lu
g 1
	 1	 - g(q 1	 1)

i2, j2	 +=2'j +2

This method centers all quantities at the point (i, j, t + At/2) by means of
the averaging procedure contained in Eqn. (8b).

Notice that Eqn.	 (8a) is identical to Eqn.	 (4).	 Furthermore,	 if we
introduce approximations of the type

n	 1	 n	 n n

f	
+ 2f i2j( f i,j + f 19j-1)i ' j	 4	 +l

n	 1	 n	 n n

gi , j	 4	 (g i+l, j + 2g i, j + g i ._ l, j )

then, for the linearized constant coefficient case,	 Eqn.	 (8b) reduces to Eqn.	 (7).
Thus, under these restrictions, the methods of Burstein and Ni are equivalent
on a step-for-step basis.

MacCormack (1969) introduced a two-step method which may be expressed
as

n	 n-At
	 (f	 - 

fAq i,

n

y (gi,j+lj )

n

g i'j)
(9a) j	 AXi+l, j	 i,

-At n n	 ^ ti
dq	 _ (f	 - f	 )	 +	 (f.	 - f	 )i ,j	 2Ax i +l,j i 'j	 i 'j i -1,j 

-4 t
n

(gi,j

ri	 r,

gi , J ) +	 (gi
1i

%

g i,j - 1 ) (9b)2Ay +l

where :

11,	 n

Agi ' j	 qi'j - qi'j

dqi'j	 =	 q(t+ot) - q(t)	 i,j

6
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ti	 ti

f i)j	 f (qi,j)

gi,j	 = g(gi,j)

Here, the averaging procedure in the corrector step centers the scheme, both
spatially and temporally, at the point (i, j, t + At/2).

Notice that, although the methods of MacCor.zack and Ni are similar, in
that both may be interpreted as full time-increment predictor two-step Lax-
Wendroff schemes, they are not equivalent on a step-for-step basis.

Lapidus (1967) used a half time-increment predictor scheme to achieve
temporal centering without resort to the averaging necessary in the methods of
Burstein and MacCormack. This method may be written as

-fit n	 n	 n	 n
^q 1	 1	 4Ax (f i.+l, j+l + f i+l, j	 f i, j+l - f i, j)i 2, j 2

-At n	 n	 n	 n
4Ay (gi,j+l + gi+l,j+1	 g i,j - gi+l,j)

_ -At n '	 %	 -At ti	 ti
6g i

' j	 Ax (f 
1	 - f 1 ) 

Ay (g
	 1 - g	 1)

i , j	 i ,j	 i,j 2Z	 Z 	 i,j 2

where :

	

1	 n	 n	 n	 n

Aq1+1	 qi+I i 4 
(q i+l,j+l + q i+l,j + qi , j+l + qi,j)

2' j 2	 2'^ 2

6gi,j =	 q(t+At) - q(t)	 i,j

ti	 1 ti	 %

f 1	 -	 2 (f	 + f
i	

i+l,j	 i,j)2,j

8	 1 =	 2 (gi,j+1	
9i,j)i, j 2

f	 =	 f ( q	 )
i,j

g i,j	 9(gi,j)

(l0a)

(10b)
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Observe that the chi. ge as defined by Eqn. (10a) is one-half of that
defined by Eqn. (4) and Lh.L. coneequently, the correction as defined by
Eqn. (10b) is, for the lin_3rized constant coefficient case, twice that
defined by Eqn. (7).

PiULTIPLE-GRID ACCELERATION

Consider the one-step Lay-Wendroff scheme, defined by Eqns. (4) and (7).
Ni (1981) gives the following heux?stic interpretation to these equations :
the first calculates the change in q occurring in a control volume during the
increment At , the second distributes the effects of the changes occurring in
four nearest-neighbor control volumes to their common central nodal point where
they are combined to form the correction to the vector of conservation variables,
as illustrated in F;!- , . 1. phis interpretation leads naturally to Ni's coarse
grid scheme, which is illustrated in Fig. 2.

Coarse G r id S rhelec

We ,j 1 :,L1 tn i se successively coarser grids to propagate the finest-grid
correcti.uns throughout the _omputational domain, thus accelerating convergence
to th ,s steady state while maintaining the accuracy determined by the finest-
grid discretization. Gi.veo. a basic fine grid with the number of points in
each direction expressible as

2 p + 1

for p a natural number, let successively coarser ;rids be defined by successive
deletion of every other point in each coordinate direction. Ni's coarse grid
solution procedure then replaces the computation of coarse grid changes by
Eqn. (4) with a restriction of the latest finest-grid correction. This restrict-
ed finest-grid correction is then distributed according to a coarse-grid version
of Eqn. (7) to obtain a coarse-grid correction which is then, in turn, prolonged
to the finest grid to become the new finest-grid correction. One time-cycle
of Ni's multiple grid scheme is composed of an application of the one-step
Lax-Wendroff scheme on the finest grid followed by an application of the coarse
grid solution procedure to each successively coarser grid.

In the basic integration
its nearest neighbors while i
affects all points up to 2k-1
change is always determined by
propagated by the distribution
is maintained.

scheme, a change at one grid point affects only
z a k-level multiple grid scheme the same change
mesh spacings distant. Furthermore, since the
information from the finest grid and simply
formulae for coarser grids, fine grid accuracy

Application to Tao-Step Methods

As the predictor step of two-step Lax-Wendroff schemes is analogous to
the change as computed in Eqn. (4), a straightforward application of the coarse
grid scheme discussed above may be used to create a simple multiple grid method.

8



As a basic finest-grid integration scheme, we use a two-step Lax-Wendroff
method, such as one of those discussed previously. The distribution of changes
on the coarser grids may then be carried out using Eqn. (7), exactly as de-
scribed for Ni's coarse grid scheme. The price to Lt_ paid for the simplicity
of this approach is, of course, the nc^!essity of computing Jacobian matrices
on the coarser grids. However, because of the vastly reduced density of coarser-
grid points, it is advantageous to pay this price. Substantiation of this claim
will be provided subsequently.

More sophisticated applications to two-step methods might attempt to
eliminate the Jacobian matrix computations by adapting the coarse-grid distribu-
tion equation to model the corrector step of the two-step integration :scheme.
A difficulty which arises when one considers such schemes may be illustrated
as follows.

,y	 In a one-step method, such as Ni's scheme, the implied computation of
f is of the form :

ti	 n
f = f + 4f

n	 n
=f +Anq

nti
= A q	 by Euler's theorem on

homogeneous functions

However, in a two-step method :

v^.
= Aq	 by Euler's theorem on

hrnrogeneous functions

Thus, the corrector step of such a method does not serve to distribute changes
in the sense required for its use in a coarse grid scheme. Note that invocation
of Euler's theorem is not essential to this arguement, but is used for purposes
of clarity.

ti

One possible remedy to this problem would be simply to compute f as
ti	 n,
f = A q

This would mean abandoning the original objective of eliminating all of the
Jacobian matrix computations from the coarse grid scheme. However, for certain
two-step methods the number of matrix operations would still be less than that
required by Ni's coarse grid scheme.

We reserve the construction of alternative coarse grid distribution schemes
for future study and confine ourselves here to examining the use of Ni's coarse
grid scheme for multiple-grid acceleration of the two-step methods of Burstein,
MacCormack and Lapidus.

9



RESULTS

We have computed both subcritical and shocked, supercritical flows in a
straight channel with a 10% half-thick circular arc airfoil mounted on its
lower wall. The physical problem, geometry and computational grid are similar
to those used by Rizzi and Vivi.and (1981), Moretti (1980), and Ni (1981). The
computational domain is illustrated in Fig. 3. The subcritical case has an
isentropic inlet Mach number of 0.5 while that for the supercritical case is
0.675.

Four computer programs were written, implementing multiple-grid versions
of the methods of Ni, Burstein, MacCormack and Lapidus to solve the full two-
dimensional Euler equations as given in Eqn. (1). In each case the initial
state, boundary conditions and (for supercritical flow) the artificial viscosity
treatment were identical for all four programs. A sequence of four grids was
used, as described in Table I.

The coarse grid scheme used was as described previously and is straight-
forward to implement for one-step methods, such as Ni's method, and for two-
step methods using a full time-increment predictor, such as those of Burstein
and MacCormack. Lapidus' method uses a half time-increment predictor which
causes a slight complication, but no essential difficulty.

To explain this complication, we consider Lapidus' method in the one-
dimensional, linearized, constant coefficient case :

n	 n

,Agi+I - 2Ax (f i+1	
i)f	 0 1.a)

2

Jjg i	= (Oq 1 +Aq 1 ) - QX (^f 1 - Af 1 )	 (1 lb)
i+2 	i 

_2
	 i 2

In the coarse grid scheme we wish to replace Eqn. (llb) with

bq i	2 (4q	 1 + Aq. I) - -At-- (Af	 1 - Af	 l)
i 2	 i-2	 1 2	 I -2

In order for the coarse grid Scheme to function properly we then choose as a
restriction operator to replace Eqn. (lla), one with the property :

_ 1

^gcoarse	 2^gfine i
I Lapidus

With such a choice, the coarse grid scheme behaves as :

Agcoarse 0 6gCine
Ni

10



In the case of all the other algorithms, injection was used as a restric-
tion operator. For all four algorithms, the prolonVation operator used was
linear interpolation.

All fo •jr algorithms performed as expected, in both the subcritical and
supercritical test cases, producing essentially identical results. Their
efficiencies were, however, not identical. With efficiency measured by the
computational work required to reduce a standard error measure to a specified
tol_rance, one may conclude that the multiple-grid version of each method is
more effi,7ient thar, its single-grid counterpart. The two-step methods all
have roughly comparable efficiencies and are substantially more efficient than
the one-step method of Ni. This is so in spite of the fact that, on a single
grid, the two-step methods require approximately half the comi,utation time per
grid point ;er timc cycle of the one-step method. This maker. application of
Ni's coarse grid scheme relatively expensive.

Isomach contours for the converged solutions produced by MacCormack's
method on grid sequences of lengths one through four for the subcritical and
supercritical test cases are shown in Figs. 4 and 5, respectively. The
corresponding convergence histories are shown in Figs, 6 and 7. We note that,
for simplicity, the artificial viscosity treatment used in the supercritical
computations with all methods was only applied on the finest grid. }fence,
inadequate shock resolution on the coarser grids mad have slowed the convergence
of these cases relative to their suberitical counterparts.

The work associated with the artificial viscosity treatment on the finest
&! id biases computational comparisons in favor of the multiple-grid version of
each method for the supercritical flow test case. Accordingly, Table 11
summarizes the work required by the multiple-gi id algorithms to produce 
converged subcritical solution on grid sequences of length one through four.
Here convergence is assumed when the average absolute value of the total
correction to pu over a time-c y cle does not exceed 1 x 10-5 . Notice that,
under the conditions of this test, the optimum grit! :sequence length is thr.•e.
We further note that the multiple-grid Ni algorithm requires roughly 50e more
work than the multiple-grid MacCormack alg(irithm.

CONCLUSIONS

The coarse grid correction scheme introduced by Ni (1981) for use with a
one-step Lax-Wendroff method, has been Successfully applied to several represcnt-
ative two-step Lax-Wendroff methods.

Each resulting multiple-grid scheme is more efficient than its single-grid
counterpart.

The multipl---grid one-step method req 	 es approximately 50% more computa-
tional work than the multiple-grid two-stop ,,vtiiods.

The possibility of constructing alternative coarse grid schemes has been

discussed.

i!
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TABLE I. - GRID DESCRIPTIONS

GRID 1 2 3 4

NUMBER OF
65 x 17 33 x 9 17 x 5 9 x 3

POINTS

TABLE II. - WORK REQUIREMENTS FOR

MULTIPLE-GRID ALGORITHMS

LENGTH OF

GRID SEQUENCE

1 2 3 4

MacCcrmack 1.76 1.16 1.00 1.03

Lapidus 1.61 1.22 1.05 1.13

Burstein 1.74 1.24 1.05 1.08

Ni 3.10 1.82 1.50 1.55



i-1,j+l i,j+l

2,j Z q i 2, j 2

dq

Agi2,j ^qi2 2,j 2

i-1,j-1	 i,j-1

FIGURE 1. - Ni's One-Step Lax-Wendroff Scheme
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dq
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I
dq

f
 
—ine

I
dq

Ti—,—

I

i-2,j-2	 i,j-2

FIGURE 2. - Ni's Coarse Grid Scheme
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FIGURE 4. - Isomach Contours for Subcritical Case
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FIGURE 5, - Isomach Contours for Supercriti.:al Case
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