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1.0 SUMMARY

As a part of the NASA Langley Research Center program to ldenti-
fy the important parameters governing sound transmissilon into
airplane interiors, and to determine noise control methods, an
aircraft interlor nolise prediction model is being developed by
Bolt Beranek and Newman Inc. (BBN) of Los Angeles. The work
includes analytical modeling and integration of information and
technologies needed to understand sound transmission through a
fuselage wall into an aircraft cabin. A three phase program has
been defined for accomplishing the goal.

In the first phase (now concluded), the basic analytical
modeling of the transmission problem (interaction of the
structure with the exterior and interior acoustic fields) was
undertaken and preliminary valldatlon studles were conducted
using an unpressurized, unstiffened cylinder as a test article.
Results of that work were presented in Reference [1].

The second phase of work, reported in this document, includes
the development of the general aircraft interior noise model and
the laying out of the baslic master computer program. Validation
studies are considered using more advanced test articles (one
being a stiffened cylinder with a floor partition and interilor
trim, i.e., insulation and lining).

The third phase, now underway, involves completion of the
analytical models (including propeller excitation) and software
development with application to an actual (or simulated)
aircraft fuselage, along with validation tests, comparisons,
refinements, and documentation of the finalized model and

software.
As stated, this report presents the results of the Phase II

studies. The theoretical developments of Phase I that descrilbe
the interaction of the structure and the interlor acoustic field
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are generalized to include the effects of sidewall insulatilon
and lining (trim). The new analysis leads to a transmission
coefficient that multiplies the previously derived expression
for the power inflow to the cavity for the case where the trim
is absent and an additive term giving an increase in the damp-
ing of the sidewall structure by the trim. Also a more precise
calculation of the power flow from a structural mode closely
coupled (in frequency) to an acoustic mode is developed to
account for the influence of the radiation damping of the struc-
tural mode by the highly receptive acoustic mode.

A major addition is the generalization of the geometry of the
acoustic space to include a floor (partition). The complex
cross-section's modal properties are computed using a finite
difference approach. Appropriate normalizations and use of the
data for calculating the acoustic/structural coupling terms and
the cavity loss factors (using predicted wall admittances) are
also detailled.

Comparisons of noise reduction predictions wlth measurements are
presented for three test articles:

1) a ring-stringer stiffened cylinder without floor or trim;
wall thickness of 0.000508m (0.020 inches).

2) a 0.0016m (0.06L in.) thick unstiffened cylinder (the Phase
I test article) modified with a floor partition and lined
with a 0.0127m (0.50 in.) thick layer of PF-105 fiberglass
that is covered with a 0.0000508m (0.002 in.) vinyl
film.

3) a 0.000508m (0.020 in.) ring-stringer stiffened cylinder
(same as (1) above) with floor partition lined with a

simulated trim consisting of a 0.0127m (0.50 in.) thick

P



layer of PF-105 fiberglass covered with a 0.00119m
(0.047 in.) thick layer of lead vinyl weighing 2.44 kg/m2
(0.50 lb/ftz), with a 0.0127m (0.50 in.) layer of PF-105
fiberglass on the inside of each end cap and exposed
directly to the interior.
To our knowledge no attempt has ever previously been made to
compute noise reductions for configurations as complex as cases
(2) and (3) above.

2.0 INTRODUCTION

The present study has the specific goal of developing an analyti-
cal model that can be used to predict the sound levels in a ring-
stringer stiffened cylinder that has a partition simulating a
cabin floor and insulation and lining on the inside of the
cylinder wall simulating a basic cabin sidewall trim.

Theoretical developments for harmonic (tonal) excitation and for
excitation by a reverberant acoustic field are given.

Predictlions of the noise reduction for three different test
articles are compared to measurements for purposes of model
validation. No calculations are presented for tonal excitation
in this report (some have already been given in [1]). Tone
prediction capability 1s to be brought to a practical level in
Phase III, when the propeller induced exterior pressure field
description is to be ilncorporated into the model and the modal
forecing functions derived.



2.1 Analytical Model

In Reference 1, a basic discussion of the power flow technique
adopted for this project 1is given. To a large extent, the
concepts used for the predictions of concern here have been
developed in References [2] and [3]. However, in the Phase I
report, results from [2] and [3] were specialized to include the
case of harmonic (tonal) excitation. In this report, the
concepts previously developed in [1], [2] and [3] are extended,
mainly by including the trim dynamics. Also, although including
such information does not represent an advance in the concepts of
Phase I, much more complex structural and acoustic properties are
considered. Most notable is the use of finite-difference modal
data for the cavity. Also the structural (modal) properties of
the orthotropic cylinder (one stiffened by rings and stringers)
are utilized.

2.2 Report Organization

A brilef overview of the organization of this report is included
here. Basically this report presents results of (1) analytical
derivations, (2) experimental tests, and (3) validation studies.

In the analytical development, there 1s to begin with, one funda-
mental goal, that being to.incorporate the trim dynamics. This
has to be done for both the low and high frequency models. After
that has been accomplished, consideration is given to improving
the precision of calculations of power flow for certain coupled
acoustic and structural modes by including the effect of radia-
tion damping of a highly resonant structural mode when closely
coupled to a highly resonant acoustic mode. Generalization of
the tonal transmission calculation is then considered; however
the question of exterior field for the propeller excitation
remains for the Phase III study. After that the question of
cavity modes for the cabin configuration (i.e., that formed by
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the cylinder wall and floor partition) 1s addressed. The
normalization and use of the finite difference data is then
considered. Special problems in the volume stiffness controlled
reglons of the test articles are then discussed (this extreme low
frequency regime will lie below the regions of concern when full
scale fuselage structures are considered). Finally a brief
overview of the basic master computer program is given.

The parts of the report concerned with the experimental work
describe the tests, hardware, and data acquisition and reduction
techniques.

Comparisons of predictions and measurements are presented for the
noise reductions of the three test articles. The statistical
analysis of the nolse reduction data and comparison technique and
philosophy are consistent with and identical to that of Ref [1].

2.3 Program Management

The work was accomplished in Jjoint effort by BBN/Los Angeles and
NASA Langley Research Center. The experimental work was done at
NASA Langley by C. M. Willis and W. H. Mayes. Mr. Mayes acted as
LaRC technical representative of the contracting officer (TRCO).
L. D. Pope served as BBN program manager. Most of Section 4 of
this report was provided by C. M. Willis. A. G. Plersol of BBN
assisted with the statistical evaluation of the comparison data
and M. D. Sneddon of BBN mapped the acoustic modal pattern in the
cylinder with the various floor partitions.



3.0 ANALYTICAL MODEL

The purpose of the first part of this section is to incorporate
the effects of sidewall trim (insulation and lining) in the
transmission analysis. In the present case, the interaction of
the exterlor pressure field, fuselage structure, insulation and
lining, and interior field is of concern. To integrate the trim
dynamics into the analysis, the basic expressions that describe
the response, transmission, and absorption characteristics of the
varlous components of the sidewall system must be considered.

3.1 Trim Dynamics

The trim is assumed to be representable by a transfer matrix:

a o, :
r‘ _ " ] 3 P:' ’
W' “” "z; w$
or
A 4
P& —- Qy "‘u "l y
W, Ay Q| W,

where referring to Figure 1,

W, 1s the displacement of the fuselage skin at %X

A is the pressure on the inner surface of the skin at ')'('

W, 1s the displacement of the trim panel at X

¢ 1s the pressure on trim inside surface at X - (cavity side).

The coefficlents are related as follows:

A= QRag ; Ky =—R)g 5 Xy 2=Qqy ; of32* Ay -



The representation above is a simple one that will lead to a
tractable problem. It is also felt to be a reasonable one
because of a number of factors. Its simplicity lies in the fact
that the pressures and displacements occurring at each location
are assumed to be related (across the trim) on a point-by-point
basis. This may seem to be a very restrictive model, but since
the transmission of acoustic waves 1s to be consldered, the
pressures and displacements will vary rather slowly with X .

One could argue that for oblique incidence the pressure at a
point on the incident wave front would be felt by the outer and
inner surfaces of the insulation at different coordinate posi-
tions, say X and X’ as it passes through 1t and that the wave
would travel a distance greater than the thickness of the
insulation blanket as it did. However, the acoustic wave inside
the blanket propagates in a directlion that is much closer to the
normal than does the wave outside the blanket because the speed
of sound in the blanket 1is less than the speed of sound in air
(Snell's Law). Because of this the blanket does not appear to be
much thicker for oblique incidence than for normal incidence [4].
Thus there is Justification for the simple model postulated. It
is important to note that the transfer matrix representation
given above applies only across the trim insulation and lining.
The fuselage skin (sidewall) is not involved. The sidewall
response obeys a much more complex dynamical relation.

The response of the sidewall (for harmonic excitation) is

W, (K) = f Gciﬁ}m[ ch‘) - f"‘(x',] dx’, (1)

-l
where G(NX;N) is the structure's Green's function, the form of
which willl be presented shortly. Ff(iﬁ is the exciting exterilor
pressure field. The integral is performed over the exclted

structural area.



The interilor acoustic field acting on the trim lining is

Pi(i’) = sz.j G!P ()’(\’i';w) w, (R)18X, (2)

where GP(E\i'jw) is the Green's function for the cavity ande is
the density in the cabin.

The exterior field 1is ( e°= exterior air density)

(<}

PRI = Py )+ pou” _[ G, (KIX0) W, (IR

= Pbl(-i’)_l' Fr(‘i') ) (3)

° __1/
G?(m*\ 1s the exterior space Green's function,

(§3 is the radlated pressure field on the exterior surface,
f%'ﬁi) i1s the blocked pressure field on the exterlor surface.

The three equations (1),(2), and (3) and the trim transfer matrix
(which consists of two equations) forms a system of five equations
: » PEs W, Ws and b (or'P°). The blocked

pressure field 1s determinable once the geometry of the structure

iIn five unknowns:

is fixed. It 1s now necessary to solve the system of equations to
determine the effects introduced by the presence of the trim.
Before doing this, note that if the trim is removed from consi-
deration, ﬁ' = P“ and W,= W, reducing Egqs. (1), (2), and (3) to
the previous set solved in References [2] and [3].

¢

To begin, ( and W, are to be eliminated as varilables. From the

transfer matrix

F: = Xy F:: + oWy

= 0 pi 401y (0, Pl A, W),



Therefore

where
C — Qz:. ) Cw — —a“_ a-‘l‘l.
P 1+Q,,4,, |+Q,aq,,
Also
Wl = dZI F:-*' “3_1,Wz
giving .
— W CinFt
Wy = — — ———
2 = £7%
or ?
where

P Qy | W |
C =— chN = — .
QA / Ay

At this point, it 1s emphasized that in Eq.(4) the coefficients

C? and Cwar'e subscripted and in Eq.(5), the coefficients CP and
CY are superscripted. These coefficients are found to play
prominent roles 1n describing the trim effects.

Continuing now, Eqs.(4) and (5) are substituted into Eqs. (1) and
(2), and after using the defining relations for the Dirac delta
function, i.e., in the forms

-

WK = f w @) Sy dr’
\Di(i3= f bl $(R-Ridx,
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it is found that Eqs. (1) and (2) become the following
f[S(i"i) + Cw G\(i\i',-w)] W, (X) d%’
-t o L,— -
= j G (X1¥;w) [Po(x'\ —Cp F—f_’ (*L')] dx’. (1a)

f [S (F-X) + pw'cf G, (X li";w)] p;‘_ (XY d%
= —ew‘cw f Gr(ib‘&'; W) W, (R) X - (2a)

Eqs.(la), (2a), and (3) must be solved simultaneously for the
modal displacements of the fuselage wall.

Consider the left hand side of Eq.(la). Let

s-‘
W, (K) = > (VD ,
S s
where fsis the modal coordinate and '-l’(i) the assoclilated modal

function of the fuselage wall. Then the left hand side is

f [S(x—x) + Cw G(mﬁw)] R ALES
S

' Vi VxS s
— s Yy 4 -
- Z fsw(i) + Cyw Z[ Z M, Yy (w) gsllj(’”d’g
S S r

where the structure's Green's function has been introduced

_._I qua tpf%ﬁ
QR w) = Z M, ()

with modal mass

hAy—::Jan V’?és dz )
Y- w) = wy [(l" %) - "-Vlr_]

~10-
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where &), 1s the resonance frequency, q, the mode's loss factor,
and my the surface mass per unit of area.

Using the property of the orthogonality of the modes, the left
hand side of Eq.(la) reduces to

L[+,

Cw/mYs(“’) is a dimonsionless quantity.

Therefore Eq.(la) becomes

;[ V2 TVimé= [ ammi] Pt - cp pi )] dx!

r
The above 1s multiplied through by n\¢Qi), and integrated with
respect to X to obtain

[v+ M, =[ mbif "’w‘"‘*’[ "R} — g5 dids
= .i(-[ f P"ci’)V/;iic"i' — cff r}&%\"&s&x’]

:-#:[F;-—cfr:] -

But according to Eq.(3)

.rl'vr r'rw +Th

-11-



Therefore

¢ r N a
'"Y.-[H'-m—:,;] M"fr + r\:r - c?rﬁ” Py 6)

.

Now consider Eq. (2a). The right hand side becomes

e G Y € ¥im dx.
E~
Multiplying Eq.(2a) through by W(X$ and integrating gives
f Ve f [§R-%) + pu’c Gp i) r';m dx dx’
- — fw" cwf‘lf?i')fqr(ili'; w); fs ‘l’?i) dxdx’

I

- (»w"c-"; ¢ f f Gp R1R5w) YW dedz’
- f“fLC?~T§:: :Irsézi >

1

where being consistent with previous definitions [2,3]

Irim =ffﬁr(in’<';uo) il’?i’;‘#'fi) dxdx’.

The left hand side can be rewritten to yield

r

\';,; + c'r w” J- f 125 Glr (RIX;0) Fz‘ Ky dzdx’
= fwzcwg Irsfs ’ (7)

-12-



- r
Return now to Eq. (6) and consider ‘f}; :

r;,'; = j YRy pr ) dX
= [ Vi o] i @ s 4]
= r,co"; ¢, f f G;(iw.';w) Yo Vixhdrdx,

or using the previous definition of Jrsﬁub as the integral
appearing in the expression above [2,3]

rs
- T T,
S
Now substitute Egs. (7) and (8) into Eq. (6)

[re G w4 o DI - e [pre DI ]

g [t Wins Gotrs pio e de’] == 3
Collecting terms in f',. gives

{-MrYr["" ]-!-w [P.J + ecfc""I"']} $r
ey [eoJ""-u- pepe™I™ | &
sw-

o+ C C. fw ff‘l’(xS QP(XIX)“’) rz(i)é"‘“i z-r}bl &
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Consider the integral in Eq.(9):

r Y 3 - — -t
ff V(@5 Gp(RIR)w) pa (B dxdx ,
with the cavity Green's function being given by
- -
G I PnX) P, (X)
p KIX;w) = P——
w I Phde (X, - )
where ¢n(i’) is the acoustic modal function for the nth mode of the

cavity and jknis the complex elgenvalue. According to the
previous normalization [2,3]:

[[J$4e= <

The integral therefore becomes

j j V”E{')Z‘; i’; (?\Q(i‘)::,}(i’) [ Z; TP ® | dxdz’ ,

nr_
where
i _
Pa (50 ;.Z 7, PR,
m

with T, = normal coordinate for interior pressure (dimensionally
Tim1s equal to pressure).

Now the surface integral

j P % P, (Ky &%,

i1s identically zero in almost all cases whenm#n. However, the
surface area over which this integral is evaluated may not extend

14—



completely around the periphery of the cavity since that area 1s
the transmittling surface. In such a case, for a few acoustic
modes, the above integral willl not be identically zero. However
it will be small in magnitude relative to

qu:(z)Ji .

Therefore, the following approximation 1is valid

.U ¥ _ f}‘ é’:{iii")(is D-_; wmcgsm(i)] dzdx
—E e, A [ ®dR

(%, - k*)

'F (n,r) TTH )

where
{ | - -
foan = Tf‘ﬁ"(ﬂ YRydR
and A,is the transmitting area.

Substituting into Eq.(9) gives

{—Mr r[l + er.] + wt [(’.Jﬂ_-\' c,fc“' P I".] }f..
Z [?I + c‘,cwe]:rs_] €s

SYr

- € Af¢:ég Y - _r—'r,(IO)
"'Crcf’(“’ Zﬂ: :/(X’;,-k‘) ey, = =lp,

~15-



Now reconsider Eq.(6) which can be put in a similar form

{—M.-Y [H— + pouwT’ }5

Fpedt)  IE,

S#*r

/ g
— foam = =10 . (11)
PZ”"A »¥) Pu :
n
Note that in the above use has been made of the relation

Y .
FP'; = f 11’?{) f;m dx = JA{/'&)Z 7r,,¢n(‘i)4§
n
=Z: TTnA'c'(ﬂ,") .

It is now necessary to eliminate the 7, from Eqs.(10) and (11).

Let

,,:-=—-M,Y[l+ ]+w[e,f+c eI]

Ops = w"[e,;T's + cfcwer's]

€,A fﬁb:di 'Fl(n,r) .
V{%E—1)

Brn == CPC.Pe w™

Then Eq.(10) becomes

a.rrfr ‘l"Z arsf '1‘2 l),,‘ﬂ‘nz J

O RbEeR) e
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[c]{f} +[d]{’r}_={-‘;“} ' (13)

Ll e+ [l Je = [Ty

{,,} M[ ]{e} [J"(ra,}-
[306) [ s T 0D e T = £
[fe]- el = e =T 1)

y=[[o]-[> LIl [l e J-[x 1R
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From this form, 1t 1s not obvious as to the influence of the trim
on the sidewall response. Thus, the terms composing the
coefficlent matrices [a], [b], [cl], and [d] must be examined.

First consider things that are known. S8ince coupling of structural
modes by the acoustics 1s negligible, generally

rs

o =]

rr
Also the radiation damping term coming from;r. can be included in
the loss factor V\‘_. Thus 1t follows that

Crrg—M'Yf[‘+ :;r-] ’

and

Crs O.

Therefore [c] 1i a diagonal matrix (very close) = [Ccd.
re r.
Also T_ and L ~ are so small that [ a ] 1s dlagonals [~a<d

C:
Qpr 2 MrYr[l t v ] ’
Grs St O.
It follows that [Pad & [ed (very close).

Then

@=(Fed-Te Ta T Ta LT )
>[[TrJ~[o Lo Jed]Trd-[s LTI )

-18-



But the inverse of the product of matrices is determined from the
relation

(aBc) ' = <'8'A™.

Therefore

GE N OIS FINCE
=[eJ{h) = (e J{-T,) o

This form is quite similar to the case where trim 1s excluded.

Without trim

MY

With trim

Ay = — '

ry == >
hh;‘;[:'“+“:v0/'n'*}]

where

Cw — - al?. az.?.
The solution is t+a,,a,,

t
fl"' _Z Xrt 1}:‘(“) ’ (16)

giving t

W, (X) =-Z:Z V% otre r;:(w) 4
r ¢t

which since o(”:so for £+ r reduces to
_ r m
= —Z V(X) Arr Pl - an
r

-19-



Ao
To get ?z(x\ from

A o -
Fz(*) = E Ty, ¢n(x):
n
Egs. (12) and (13) have to be reconsidered. Either can be used to
obtain the JT, . From Eq. (12)

al{g)+[pl{m) =fR) >
fa J{€)+ 1'@} S

But by Eq.(15)

() =Ladir,
Tey=TaJk n} +{&}

P LR

DellleJERI e+l ) =)
[bJ(vr}-—M{fe%
(r} ==L (e}
pa=ng=(rf{s}=(¢}{r}

=20~

where



From Eq.(5),

Wy (X) = CFF;(R.) + wal (x).

W= cf{ ¢ Z{ '”‘4} '*‘JC‘.N{ v }T{ ¢ )
=) L]} + < (vJ(e)

o Cf"ﬁﬁ(ﬂ),

in the 1limit as acoustical coupling of structural modes is

neglected, i.e.,
. {ge}—»o.

The interpretation is this: while it 1is necessary to have a
precise calculation of JTn for purposes of determining Fé(i),
the values of TTn have little bearing on the calculation

of VNi(i) and for all practical purposes can be set equal to zero
for the W,(X) calculation.

Thus

This now allows a calculation of the power flow into the cabin
using

- w -
Wy (X) = ¢ W, (X) - (18)

Power Radiated into Cabin

The cross power spectral density of pressure 2‘_’ at position ;:

wilth trim lining veloclty at'i' is (for a one-sided spectrum)

Sf;:vz(ili'sw) = -:-'-r.n.oo %(#) B_ér(i';w)va_:ﬁ;w) .

-2]-



P"“.\’ and Vz-r are Fourier transforms of the truncated random
quantities (* = conjugate).

Now

Vo (R300) = Lo WIS (K; ).

Here the definition of the Fourier transform is
o0

F)=[ [ yetae,

-0
Therefore

L et lim 2
SP:V:.(K'R).LO) 'Tl':“ T 7..1T (_) ) ( )

But according to Eq.(2),

Thus

X f Gp(KIT ' w) Wy (X, w) Ji'}
—__' 3 o =t | lim —n
--—L(:wfq?(x\x) T T W21('w)W (x,u))]d
. 3 — g ¥ -
= —L(:wfe,f,(xlx;w)sw(x IX5w) clx (19)
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-t
Now let ¥ - X - The spectral density of power radiated internally

is obtained by integrating SP;‘V,."_(,“’) over the transmitting
area.

nt .
Wi ) = ‘[R' Spiv, (K;w) dx .

This quantity is complex. The real part is the real power (i.e.,
cospectrum of power).

Therefore
iﬂ"' . 3 — —t —' J—'A-
Wiag (W) = —A P [ | Gp(RIX;w) Sy, (XX ;w) aX K.
K
But according to the previous finding

Sny W -—
Wz-r(x,w) a c WIT (X,UJ)-
Therefore

' 2 (1 - -
SW,_ (i"?)uj\ = 'll":.?.oo T(’i‘.‘;‘) WzT (X ;w)Wz:-(X)’LO)

lim | w 0w %
= Tie oo ‘ZI" (’ii'r) C W.TCi)(C"’) W, (X)

2
lcwl Sw, (R"l'i',‘w) > (20)

-23-



and

W,'::(w) == Apw ”;1 l Ggr(x\x)u)) Sw.(aqx w)dxdx'.

But

| —_
Wi  (K,w) = —-Z V(%) &y l'"ZM_(rw).

So -

Sw, (R1%;0) =) oer oty ViR w5

r,X
x [[ sy, @R Wiy Wi dzds

giving, upon introduction of the joint and cross acceptances, j";‘_(w),
nt . 3] w|? * -
Wrai ) = =4 M el [ [[ Gy -
ne xx'
e
X ViRV iRy dRdR | jheto) Spear -

= —)\fbo l C.W l A SPMM)ZO(" otuI. (w)J,.llw

Neglecting cross acceptances, this reduces to -

int

Wrag (3 = = 4 puo® l c‘"le‘Sm

Now

Iy = ’*‘Z (j\:’t";;:)’ = Re[I%) +LMIE£)]j

-2l



Therefore

0, [17] ddes
R:[W 4(“’3] = pu’ J ]Sru“*”z |M[(Y gcfw(/v:)l

s 'y En A
= psp| < 20 Lf e fi

Jrwy
{2,
er(Yr"' %%' l

_ZE“’ £(n.") Jr ()
Sy o wnz Moty s St

It follows that the band-limited power flowing to the acoustic
space 1s

X

Wiy = f Re [w,..f, (w)J dos

, (21)
X

envhrp(ﬂﬂﬂ
f I0i- (w/w‘)] e

where use has been made of the relations

Ap = Wn/Co ; An"‘wn"ln/z-‘w >

and

Xln:}‘n"

-25-



Let
cw=ck +acy ,

Then -
CW_ Cw
m+""‘"‘[“"[""@» t
T
2
T4 "J\""‘"\r""':l}a -
and ’ -

(3
R
+
-
1
¥
s

Since in general

the above reduces to
Z
AL [l—ﬁ’;]z+[l°“' _2einr ]
. Wy muip m wp .q' j

Jew[* 2co N —~
oo 2R

Now set

This leads to the result

w:{[;_%l’} z-l-('»'p'-)"} ’ B

-26-



and Eg. (21) reduces identically to the form of Eq.(3), Section
(1) of Reference [3] except for the presence of IC\NP . It

follows that
9
<bpi> * A\* 2
Poi> 2rA (m )Tm Cwl Zen"\n
n
Z J,-M)‘F(n,r) 2 w‘w%[(cr—cn)ln
T Dpy 4 "

Win=Tw v\ 4
N ( 2.¢1 (br=b) = ba(Cr-Cn) ) a,c+ann+(_9_n:£»:_) In,
4o wi 4

+ (?-Cr (bn"bf):' br(Cn-Cr) ) ar'c.+an,.:, } ) (22)
*’]r We

where for nor v =J

oz o [0+ Cura)ud +b; (e 27 o0® tc;_-} >

(= a2+ bj (1= Cof2Vw® ¢

-1 (24 C, Y w - 4} —£qy;| (2"5-...;)1(»1—4@}
s wi ‘hlj wy

orctan J= tan ’

with
Dnr= (cr-cp) +(by=bp)(b,c,—bcp)
b= —2wi ; b,=—2wp ,
Cn= wﬁ(n-l-q:) y Cpr= w,f(l-t—v],’f) .

The above is identical to Eq.(5) of the Reference [3] except that
2
Icwl multiplies the result and ’Vl:_ replaces vb,..

Now closer consideration needs to be given to Cw and Cw.

-27-



First consider the multiplying factor lcf']g . Suppose the trim
1s a simple model of insulatlon plus limp mass as shown 1in
Figure 1. The transfer matrix for the insulation is [refer to
transfer matrix derivation in Appendix A]

Pg - C "WS P‘
A "'SW Clw ,

where

C=cosh ¥L

S = sinh ¥L

¥ = propagation constant of insulation
W= wave impedance of insulation,

The inverse of this is
pl_|C Ws|h
S
vi| . LW €1%

The transfer matrix for the lining 1s

Pl A= l i-(UMt P|

— ,

v, 0 l \'f)

where vnt is the mass per unit of area of lining.

-28-



When coupled together, the transfer matrix across the trim 1s
found using

’ P :P’

Vi Vi
lmh"b‘bl iﬂ*’ "’r‘n
ouvtpot mass
This gives
¢ . - L
P" — P, - l Lomg Cé WS h (23)
V, v, o 1 - C | V
w .
£rim mass . into .
Also outpot insulation

V= —awWW, ; Vom=-LwW,

The transfer matrix of concern here must be of the form lncluding
displacement. Thus

. B .
P:. Q,, Gy P:
W, Ay Qza| W,
[ 2 . H
| w'mg C WS p

o ||& clw

Il

(C-iwm ) (wWS+w*m,C) P’;
—-LS

b ww

(24)

C W,

-29-



Now according to the definition

Cw= —l— )
Qu
or
M = 2\ .
CW -twm,S

C,S andWare complex. This leads to
je? W W
CW -twmeS CW¥4iwm, S™
lw |*

il

.

"~ cFIWP+ wii| s - twme (SC*WF = S"CW)

(25)

A Preliminary Comparison

At this point 1t 1s useful to make a comparison against some
measured data. Consider a trim such as that of Figure 2 similar
to that used in the T47 aircraft. In this case, the trim panel
mass 1s My = 1.76 kg/m2. It covers a 0.102m (4 in.) thick layer
of Owens-Corning PF-105 fiberglass weighing 9.61 kg/m3 (0.6
1b/ft3).

From Appendix A

¥y=ox—-tk,
where

k=20/2An.
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Am is the acoustic wavenumber in the material. The attenuation

constant 1s

oxX(m') = o (dB/m) /8.9,

r
r

and the wave impedance 1is

W = Zo wmks rayls (kj/m"—sec:)-
At high frequenciles,

IWI — @COE 420 ks/m"—Sec. .
Also

. -'e
Wie Zle = %
The properties of the fiberglass are glven in Figure 3.
wl2

The prediction for |C is shown in Figure 4. On the basis of
these results the trim panel vibration isolation needs to be
examined at high frequencies, otherwise, a reasonable prediction

is afforded with the model.

Other trim configurations can be easily generated. Suppose the
insulation is replaced by an airgap. Then

((%coj‘
((a.c. > C |2+ w"mt[ S ]" - wmtﬂcosinuL >

] =

=31~ '



or

2
lcwl:'. ‘

R e

(‘Urt) sinZkL}{.
At low frequencies , k—o (" °

W
lc — 2 .
' + (wmt/ﬂco)
This 1is simply the theoretical "weight (mass) law" attenuation
spoken of in Beranek and Work [5].

At certain high frequencies

b

cos ZkL=—=0 , sin2kL — |

le™|*— _[,_‘,(P&)] -(%) .

Since wmt/@’c°>> l,
IC l - Z(Pco )7-,

vhich 1s mass law. This also looks good.

As has been shown then there is appearing in the theoretical
results, a trim coefficient which will be called 1\{: =] cW z

|
TV= —
© | ay |*

-32-



This 1s the "add-on" attenuation of the lining and insulation. It
should be noted, howevér, that the multiplier ﬁj: is not the only
effect of the trim. There also appears added damping due to
vh_..,-y\;, as previously discussed.

There will be occasion to consider the lining dissipative (there
being some flexure of the lining but with the lining stiffness
small enough to ignore). Then the trim transfer matrix takes the

form
| _ | (wme—newmo || C -WS| B ’
V, 0 \ -2 C|wv

where qt 1s the trim loss factor.

In terms of displacement, which 1s required in the present formu-

lation, this becomes
Fé [ | (ufhur+i-“ﬁﬂtwu) C WS f{

W,_ | O | ww C wl

I

—

Qy Q4 P:

Qe Qa2 W'

e
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Therefore, for this case:

a, = C-l-wmtv‘t% —.met_s\f\-l ,

Q= Wme C +L(WWS +uwipm,C)

S
a.zl"—'-—:,—_'w )

Q,_-,_ = C .

The trim coefficient 1is always determined from the coefficient a".
Cw 1s determined from the remaining three coefficients.

Band Limited Power Absorbed on Cabin Wall (with trim)

Thls result is taken directly from the previously cited reference
[3]. The required expression is from the appendix of that paper,
Eq.(A5). First the conductance, f , looking into the trim 1is
considered to be independent of X (do not confuse the conductance
f with the modal coordinate of the structure, i.e., Er ).

_ ¢V -1
Waiss = E :< S qudi( ¢‘dv) ’ (26)
s f’co n" F" :];n j\;n

2
where <|’" >S,'t is the space-time mean square modal pressure.

Thus f

—

Wi= Fer) L i< Ph>ge [ @0 %
n

when the normalization of the ¢n 1s taken into account.
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In the case where E 1s a function of i R

= 2 o
WJiss = f‘o ¥€n<f§>s¢_£f(¥>¢n(i)dx, (27)

wheri}: is always evaluated over the absorbing surface area.
X

The conductance can also be related to the imaginary part of the
eigenvalue of the acoustic mode, or, alternately to the loss
factor of the acoustic mode. From [3], if f'is independent of X

k € f 2
A == n dx ,
" 2V f;qs"

If not,

~ k E€n - 2 -
A, = AW, Lf(x)cﬁh(i)dx .

In terms of loss factor

wec € oy A -
W= —\7"f§(m¢n(i)dx. (28)
n X
Thus substituting Eq.(28) into (27) gives

Waies = Z -'3-—-<\=>,, St (29)

pe

=35=~



In this report Win is always used in the form of Eq.(22) and

W3iss in the form of (29). The relation needed to deter-

mine the effects of the trim in terms of the absorptlion from the -
space will be Eq.(28). In other words, the acoustic loss factor

of Eq.(28) will be calculated once f(i) is determined. Alternate- -
ly the loss factor can be measured. For the bare cylinder case
(or a bare fuselage) measurements will usually be required. But
for cases where trim 1s present the analytical determination of qn
is desired. Therefore, the calculation of the conductance f' of
the sidewall is needed.

By definition, the conductance is the real part of the admittanmeﬁ?.
£= Re(B)= Re(£-ic) ‘

g=z"= [_f,.(.e_\c:)]“‘ )
= peV/p > (30)

where ¥ and P are the trim velocity and the pressure on the inside
(interior side) of the trim. _

This can be written
B=— Lw(*CoW/P ,
where W 1s the trim displacement.

Suppose
~twt
v=Vet

b= Pe-ilwt-¢)
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—_—~

-

Then v/p: V/Pc""q' where Y and P are real amplitudes. If

¢=O,B= real =f = /occ(V/P) . When F is maximum v is maximum in
the directlion of power flow. Be definition, V¥, 1s positive
inward toward the interior (as is wz) - refer to Figure 1.

However the conductance desired 1s that looking into the panel.
Therefore W¥==—1vV, (or wW=-w, ). Thus ﬁis determined with the
relation (using P-’-‘- P,'_‘ )

= Lwpcow, /pi - (31)
Now

by = Qy F,‘ +Q,W,
and

W = Qg Py + Gy Wy

Define the impedance looking into the structure at X as

¢ L L
— | P' — P’ (32)
El — — ‘—"'"‘ — T—— .
Vi — LW, LW,
Agalin the sign change 1s necessary to define an outward velocity.

Then

a?.l Plt + a1.1.W|

®
1l

Lwpe, -
f Ay t’:’ Ry W,

(33)

i

k 3 .
Pco TR QuFE LWl
lwoa,2, + o,

This 1s the general result desired.



Before continuing, a check for correctness 1s needed. Let the
impedance Z-' be calculated, where

/ -1 (wa, &, +a,
2 = /oc‘,B = ~ h =l —= .
-wallz| + Lwazt

For the initial trim model it was found that
a, = C —Lwwg S,
' W
Q. = LwWS + wm C
- LS
a — | o a—ee
21 wW
Q= C.

Therefore

& = Z, (twC +wWmeS/W) —+ (LwWS + Wmg C)
Z (LwWS/W) +iLtwC

Dividing through by (e« (numerator and denominator) gives

- zl(c—lwm'S/w) 4+ (WS ~twm, C)
Z (s/w) + C

Y 2, (- Lwmg S/W) + (WS —Lwm Q) .
2,S+WC
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From this, 1t is seen that the impedance looking into the trim is
of the correct form. For instance, 1if me-o ’

Cz, +WS
Sz, +WC

which 1s the correct form for the insulation alone [6].

2 =W

Now return to Eq.(33), repeated below

_wza_‘_‘ zl + ‘L' L‘) a’?—?— (33)

B=pe,

Z":: Ft/Lu)Wf impedance looking into structure.

In general Z& = 'Zl('i)= local, and therefore

—w A, 2 (R) 4+ Lwaza
i-wanzl (:Z) + a\?—

Bwr= pe.
Now
w0 = [ 6@ P - pHR) | 4
But since lg 1s sought, one can for the present consider
© [)

i.e., only the radiated pressure on the backside (outside) of the
skin 1s of concern.
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Recalling that

pr (%) = pw* j G‘;. (K1X" W () d¥,

and noting that the radiated pressure effect can be included in G
as increased damping since the reactance of the air is negligible
compared to that of the structure, for the present purposes

W, (X)= -—j G (R1X; w) F:'GES dx
__fz ‘l’?i) \Ij:i’) '\.(_: a_c
- < - MsYs(W) F‘ ) %

5 s
_ VR Vs o, .,
=- ]D,lx)clx
5

Ms Ys (W)
- "" (x)cl
3 MsYs (w) F
This leads to an approximation
Pr )

Z2, (R =

W(X) oot a )i St 1t
sz NLY, w)j F, (X VRS d%
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3

One model 1s obtalned by letting the pressure be uniform
(constant)

PR = Pi&)

leading to

s (g5, -
e[ T

Since for a given interior mode, f’: follows Ft , 1t 1s also
possible to write

PR = € Pn)

where Cw‘is a constant. For such an approximation, another
structure impedance model is found:

2. (%0 = Cop PR .
. - S, -
-—lwz; -—l%i’;—if e P @) ¥ ix9 dx’

r_ ’ -]
= ¢, |-tw)  AYE L0517, e
MY,

and the backing impedance depends not only on the structure, but
on the prominent responding acoustlc mode as well. Thus a precise
calculation of [} is a complex matter.

41



As will be seen, if the trim is fairly limp and absorptive, #,
need not be very accurately determined to obtain [}. In fact, in
the present work, a simple model

has been used.

Noise Reduction Calculation

This is obtained by setting Wi, =Wdigs from Eqs.(22) and
(29), solving for the mean square modal pressures < Fn>st

one-by-one, and adding according to

<P:%,t_= D <Ph>se

n

The result is found to be

<bi>ee __8 K /mA)z
<PE>;.  C,w V| 4

Z }: J,.(w)“:(:r) (c.;-c.,) ln,

T, l c‘”lz crwd

)
2Cn(by~bn) = bn(Cr-Cn
+( "('431.@: & C’)mm,. (36)
s (et t
r r

where the space average mean square pressure < ’é>,'t_ is (for
the reverberant field) related to the mean square blocked pressure
by

<pe>se =< ﬁ|>/2 '
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AN

-~

wilz
IC |= trim addition transmission coefficient.

'n;,= modified structural loss factor.

The noise reduction is

High Frequencies

Without trim, from the Phase I work

- AT 8 Az P LoTev. |2
Win = 4f:° + o™ m C,Z[J:(w)] <Fé>s,-l:

row

I A% 8 AP vz
7]?»."5 4(c°+ ™ mt C,ZA W) | 1<pt>se D
g w

In the above expression, the second term represents a power flow
through the panel (structuge) outwardly. The transmitting area

is A.

In the case of an added trim, there are three areas of concern:
1) the transmitting area with trim, which will be called At’
2) the absorbing surface area S, and 3) the transmitting area
without trim A’. The total transmitting area 1s

A=A.b+Al,

and the inflowing power takes the form
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A T SAA. p rev. 72
C e b R t 2.
. Wi = { 4pes + P ;w[ J:(w)] }1\1'.(]’3 54

A A [155 T<pin,

r<aw

ﬁr‘A,’i\& XAA’ P gt 2
{ eif(qrc) ,ﬂ\m‘z. C '_<A[ (w)] }< YL >5"L. (38)

Ny 1s the sum of the average external radiation loss factor,
Y‘(_ ’Q is

the trim transmisslon coefficlent, and ’Pg is the resonance

1.e.,7l';"“§ , and the average structural loss factor

transmission coefficient for the diffuse field case.
— +
TR= (inr'fr?‘cby‘::d ?ILT; Pw"r) -(4 f’co/A) '

In this expression N, 1s the modal denslty of the fuselage
structure (modes/rad/sec).
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The radiation lass factors for a diffuse fleld are given by

A
where <:\)r:>}_1s the Jolnt acceptance averaged over the structural
modes resonant in the band.

Let 4} = field incildence transmission coefficient for mass
controlled panels

rev.] %
%= L), [

r<AW

as defined in Phase I}' Then Eq. (38) becomes

’

A A 2
Win = [%ﬁ("‘x*"‘}) + ?FE;(T:“‘"#)] <Pe>sie

- [(,1%- T,+T¢) -flo'—c—o ] <pi>ge

- _1 / 2
— -;—P—é:' [Tt(/rg"‘"i\“})At + (TK+1\‘F)A :] < Fe
A e

4pco L M

st

Tg +‘1¥] < FE >5.t' (39)

—
Eq.(16), Ref.[1], p. 20 is incorrectly typed. A should not
be squared.
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The power absorbed 1s

xS

Wiyigs = ?‘o'T,'

2 4o
< PiZsie (40)

Sincludes the area A covered with trim and any other absorbing
surface area. Equating Win to Wdiss gives the desired high
frequency result

<P>qe _ S [y + Ta(m/met) ] A
(st ’[‘t(/;‘_‘._ 4-'[‘&) Ay + (’T‘K*—T_; )A,

Letting ,'\;""1\;1:1& glves

<P _ XS H[Tp +(H/)]A
= PP T A+ TA

(41)

This is the fundamental result with trim present. Note that if
all transmitting surface is covered with trim, A'= 0, and

<E?é>s,£ — 5?5 — &S
< Ft> st Tt'VAt TeTA

On the other hand, if trim does not exist, ']‘_’t'=- {, A‘(‘. = 0, and

<Py _&S+[trm(n/m)]A

< PC>s ™A
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which i1s the Phase I result without trim.

Finally, o is estimated with the relation

- 4(—0V =
X = c.S Nn (42)

Ir ?Liis calculated (say with trim only absorbing), Eq.(28) is
applicable.

3.2 Influence of the Internal Radliation Damping

It has been found previously that, in the relation for the
band-limited power flow to the cavity, there appears an integral

f - wdews .
a0 | M=K MY —pur (TN

In Ref.[1], this was evaluated after redefining qr.to be the sum
of the structure's dissipative and external radiation loss factors
and by neglecting the internal radlation losses. This allowed the
term in the integral with J "' to be incorporated into Yy and the
term wilth ]?*'to be neglected. When thlis was done, the above was
reduced to

f |\ kzl“ MY
where

4

I%-elr= g [(-wmi) i)

|y, Izzw:[( |-y )+ ’F] s
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with
strvchyie 5:

=

The integral becomes

ct j‘
204 w2 A
N1 wn A&J{[:l Ldt] [«-—-——— 111}
which appears in Eq.(3) of Reference [3] It has just been shown
in Section 3.1 that when trim is present the loss factor ’1r above

is replaced by 1}r where

2 I
12 ‘Cwl — 2 Cw Nr +Y],’$

T = Tmwd m wr

Now for increased precision, the question must be asked: what if
rr
the term involving :[ (w) 1s not neglected? In this case,

conslder 2
lhdr\; - fuo}:Irrl
W 2
= M:l Y,(w)--—%— Tyl ,
Y
where

Tn= A T c <)> .

48~



Consider a case where w“ebw and close to W)y ; then consider a
single acoustic mode, say moden .

75 .
Y. - ':4, I

=y — pw"AzencZ' Lomm K‘ B ":%:?-)'*' o "]
T Ve [ -]

This becomes

1 . nck ik, ["—'
{3~ A T ]
[ 4 £ el

L["]r—'l' M,V ewc.;w;'ﬂ ) [(l—n‘i“ +Vl:]]}

Now it can be shown that the non-dimensional form

e w'A "‘(n,r)
MV w: Wy

For instance, for the stiffened 0.020" cylinder of this study, for
the two modes

<< | .

-}/-.....

""( | ,?-,l) y ¥ :(2,2) in 630 Hz band
€= e,’.,',".:'. 29.59
finey= 0.1023
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Wp= 72 X2T ; W,= 6O0XZT
p= 1.204 kg /m3

= 30x2mTAw/2 ; Aw=C w
M= mA/4 ; m=4.24 kg/m*
Co= 343 m/sec

A= 1.8 m? (surface of c.7lu'nd¢r)
V= 0.243 m?

Y= 0.016 .

and

As (1) ranges across the band, the reactance term

l._._.‘f_z_.
Wy

[(1 =T+ 3]

takes the following values:

Y

2
L w' 2
If W<Wy; []_ .a)}. »r]” and
)’

| “]A€><AJé] -
. w* 2 2
ITW>W,; [‘ —_ .u_);{ ] > v‘]n and again
~ Y
L1 = w]
If w = Wy (very close)

~ €
~ nn:>°'

~v
ugp——
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Thus the reactance term is always small (in air). This gives the
approximate result as

Y, — 1::‘3: I = w? (l—-‘:,:rz)-i_[( —7’%){!— - + q,]

Now the ﬁgructural mode appears to be damped more heavily, by an
amount er given by

Vlr——'- E]—%;_)‘.;.yl;;] . (43)

For any given spectral component at frequency & , we see that
slnce Yl,. and 'V];.’ are small

Yr -

pw*

Mr I-I'Y"

<, 2
is dominated by the reactance term |"UJ/&¥, unless & 1s very
close tocur. When @ 1s close to W¢ , the resistance term

T

becomes important. Moreover, 1if simultaneouslytdn lies close by,
q;! can be significantly large. Thus, a frequency independent
form of the resistance can be used and the following approximation
1s assumed to apply
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where

When trim i1s present

q,.—-h-‘v],', .

3.3 Transmission of a Tone

In the case where trim 1s present, assuming hereafter, that a
floor will always be conslidered, the tone transmission calculation
of Ref.[1] can be generalized to obtain the solution for the
inflowing power to the cabin, i.e.,

_2mn (mA } o 2 €aNn
Win= ev(4 ) TG ) E

Z ;W, H Cp,,(xlx)’lf(xﬁlfcx; xdx’

3
Wo

[(=52) ] L(1- sty |

(44)
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A

n; and 11? are used to include the trim. The above result is

consistent with Eq.(33)of Ref.[1]. To review W), 1is the frequency
of the tone. In the case of propeller noise, thls equation will
hold for the blade passage frequency and also for each of 1its
harmonics. The correlation function Cﬁn (i\‘i,") describes the
blocked pressure field over the fuselage (cylinder) and is defined
using the following relations:

Cp, (%) Sw-wpy = Cp RITyw),  49)
S Y | _
Cop ®IK;w) = 2 Cp (RIX;W) j OLw <0, (46)

-Cm(ilifw)= Re ——f Rm(xﬁ( 'r)e, A’l‘]’ (A7)

where va (""\x)f\) is the average cross correlation of the
pressure over the blocked (immobile) fuselage.

Rpy, (XIX; 1) = lim f Re [y 0] Re[ p, &, +m)] dt-

(48)
A major task for Phase III is to develop a sultable representation

o ol
of for propeller excltation.
CPH(MXJ prop

The power inflow to the cablin wall from the interlior is as before

. — V hwnz 2 y
Wi = PC:_E“: —n———wo <pr>se- U9
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Equating Eqs. (44) and (49) gives the interior space average mean
square pressure attributable to the nth acoustic mode.

The interior space-average mean square pressure is given (again)
as the sum of the space average mean square modal pressures:

2 _ 2
<P =) <P oo
n

The average Iinterior pressure ultimately must be related to a
significant exterior level, say the maximum occurring nearest the

propeller plane.

Note, since
2 2
<:|5::>§*_=: 5543522:'[~qbn dv ,

where<<.P::>is the mean square modal amplitude, the modal ampli-
tude 1s determinable from

<|:>:> = e.,<F;>s’t »

and theoretically, the mean square pressure at every interior
point can be obtalned with

<FZ(€’w)>t=Z eu<t’: <" ?. (&) (51)
n

It i1s emphasized here that a good point-by-point prediction may
require better input data than can ever be generated, but the
point-by-point prediction might be quite informative
nevertheless.
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3.4 Modal Properties of the Cabin Space (Cylinder with Floor)

In Ref.[1], the acoustic modal characteristics of an ‘ideal
cylindrical cavity were presented and varilous quantities were
calculated with the modal data for use in making the interior
sound level predictions. The modal data consisted of the mode
shapes ¢n(g)’ gbeing an interior point, resonance frequencies Wy,
and the mode normalization given by the constant é“. In the
present case, consideration must be given to the determination of
the same quantities for the case of a c¢ylinder with a floor parti-
tion deflned by the angle Go as shown in Figure 5.

In the ideal cylinder configuration the modal properties can be
determined 1n closed form by an analytical solutlion of the wave
equation, subject to the appropriate boundary conditions. This 1is
possible because the wave equation 1s separable in cylindrical
coordinates and the boundary conditions can be expressed in these
coordinates. When the floor 1s present, it is no longer possible
to derive the mode shapes analytically since the boundary condi-
tions are irregular. Thus 1t 1s necessry to resort to numerical
methods. There are two possibilities, either finite differences
or finite elements. Since in the present case, the modal charac-
teristics 1in the axial direction are known, a two-dimensional
problem remains, and thus the finite difference technique, which
is the simpler of the two is chosen. In two dimensions, the
finite difference calculations are fairly efficlent (fast).

To begin, the two-dimensional problem is solved. Then the axial
modal information is factored in. Next the normalization of the
data 1s defined. PFlnally, use of the data in the calculation of
the various quantities required by Eq.(36) is considered.



Finite Difference in Two Dimenslons

In the cavity (cabin), the Helmholtz equation applies. In the
two~-dimensional problem, this 1s

V6 +Kk'¢= 0,
where

2 _ 3? ot
V= Y CHRENNT

The central differences for the grid shown in Figure 6 are:

aémn — me,n - Pn-l,n

X 2.AX
34)"“1: pm,"*' — Pm.n-l
oY 248Y
az¢mn — Pm+an— 2 Pm,n + Pm-a n
oxXr (AX)?*
qus.m — jm.n+l .'""ZPm,n + Pm;“"l R
aYz (AY)"
where P and ¢ are taken to be synonymous. Let
DX =AY = h.

Then the Helmholtz equation becomes

12
4 Pm,n min pm-i,n‘_ Pvn,nﬂ~ Pm,n-t—' k h P"',n (52)
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Eq.(52) applies for all points defined as interior (I) or boundary
(B).

For boundary point B, exterior polnts E are required to write the
finlite difference equation. The total- ‘number of unknowns 1s the
sum of all I + B + E points (Figure 6b). The number of boundary
conditions that must be used 1s equal to the number necessary to
eliminate all E's. The resulting matrix for determining the
eilgenvalues and vectors is

[A{E] =t = A5

where

Given the eigenvalue )\, the assoclated resonance frequency 1s
obtained with

wzhl
cx T Ao

or

2nf h‘:-’\/—)\— ,

Co

and thus

fo VM
L=

2th

()\Lis ordered such that )\L_‘ < >\5_ < )\.H_') .



This 1s the resonance frequency for %= o, % = axlal index,

i.e.,
k% = %‘ﬂ“/l_ .
The resonance frequencies for the cavity are obtained with
2 2 >\L
k.,:= ko + s
i ¥ h?
leading to

=i (K]

Boundary Conditions

The boundary condition is that the outward normal gradient 1is zero
(the wall admittance [?15 assumed to be sufficiently small to
allow this assumption). Thus, referring to Figure 7

X

ar)e,<e< 2T-6, o,

where
3R R
This gives
3b 9% _ _ 3¢ dy
dx ar 3y or

RI:N cose'—"--—gi- sSinod.
ox Eﬁj
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Now m,n are the X,Y 1indices: increasingwm implies increasingX ;
Increasing n implles increasing Y From Figure 7

2 _ 3¢ . 29 _ 3¢
dx Y 7 3y Tk

This gives the boundary condition as

3¢ _ ¢ .
Y cos O = 3X sin® »

where

a¢ — Pm.ml"‘ Pm.n-l
Y 2h

3¢ — Pml,n —Pm-o,n
IN 2h

Therefore, the boundary condition in the region 6,4 @< 21—, is

(P"‘»“"“—. En,wq) cos emn = ( Pnu—l,n— Pm-l)'\) sin emn' (53)

In the reglon —@, < © < & , the boundary condition above can be
applied by simply setting emﬂo whenever emv\‘e"'
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Details of Calculation

The origin of the rectangular coordinate system is at the floor
centerline (capital X and Y in Figure 7) and the cavity is symme-
tric about X = 0, so only half of the ¢ylinder is considered. The
approximate grid spacing chosen is a/7. The exact grid spacing

is

(1+ cosB,)

h=Ga = a .
I'\"uinl Par"‘ [7( \+Ces eb)]

This gives an integral number of grid points between the floor and
top of the cylinder. The location of the grid points is (NX,NY)
at spacing F] for

NX = =NJ ¢t +NJI >

and
NY= O to NK ,
where
NK = Inteqral ?nri‘[‘f(H- c.osea)] ’
and

NI = I\‘I"'eqrtﬂ Par‘\'[ é‘ "l'l] .

The centerline of the fuselage has the coordinates (O, Q Cc0S 6,).

To select the grid points representing the curved surface of the
cylinder, for a given value of Y =NY~G|Q, the 2 grid points are
identified which lie Just insilde the cylinder and Just outside the
cylinder in the followlng way:
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The intersection of the circle with the line Y =NY-Ga1is given
by
/2

— 2
A= a..[ | — (c_oseo-N\{.G) ] ]
The last point inside the cylinder is (NXI,NY), where

Z
.

NXI = I\\‘hqr‘\ ?ar*_ [‘é— { { — (Cos éo—N‘(-G)'}V ]

The first point outside the cylinder is (NX‘[-!-I,NY) . The
distance of point (N‘A)NY) from the boundary of the cylinder 1is

a| 1-{(cos @u—nv-6)* (Nx~a)z}l/zl '

A test 1s performed on the 2 points (Nxt, N\{) and {NXI+! yNY) to
see which point is closest to the cylinder boundary. If the
outside point 1s closest, then it must be included as part of the
cylinder.

This procedure is repeated for successive values of NY for NY=0

to NY=aNK.

This will not identify all the boundary points and adjacent
exterior points, and a similar procedure is performed for
successive values of NX.

The line X=NWGa can intersect the cylinder boundary in 2
places, depending upon whether

NY & < cos ©o or NY-G > coSs 6,

Ir
NY- -G < CoS eo ,
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at the floor for
NX-G < sin ©, )
the boundary points are given by NY=¢ . If
NY-G < cose, ,
and

N¥X:@ > sin 6, ,

the intersection of the circle with ¥X=NW¥X-Ga is given by
i
'YL:: ‘L{jC&ﬂ5eao.—'[l —'(’4¥'¢a)i] %}'
The first point outside the cylinder 1s (NX,NYI-1), where
NYL—-y| = Inhc,ml Part {é— [C—os 90—(|—(N)(.G)1)V:J} .

The first point inside the cylinder is (NX,NYI).

Again the distance from these 2 points to the c¢ylinder boundary 1s
compared, and the point closest to the boundary is included as
part of the cylinder.

Now in the case

NY’G‘ > cosS 6° )

the intersection of the circle with X= NX-Ga is

Yb - a.{cos 6,+[ | — (Nx-e.)"] } :
The last point inside the cylinder is (NX,NYI) where
{
NYI = In'l'eqra.l Port {-é"—' [cos 9°+( l—-(NX'G)z),f, } .
The first point outside the cylinder is (NX, NYI+1) .

Again the distance to the cylinder boundary 1s used to select the
closest point..

-52-



In this manner, the following grid points are therefore
identifled:-

1) Cylinder interior and boundary points (total = W)
2) Cylinder boundary points (total = nb)

3) External points adjacent to boundary points
(total = He= Ny+2 ).

These represent only half the cylinder, since the cavity is

symmetric about X = 0. Therefore the total number of cylinder
points 1is

2n, = (NK+1) )
where
NK = Iﬁfeﬂm‘ Fuf[?( 1+ cose(,)] .

The total number of boundary points is

2nh-z .

Let

{Pt} = pressure at cylinder points (interior + boundary)
next

{PE} = pressure at exterior points, adjacent to cylinder
NexXl points only.
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Using the recurrence relationship for all pointsI, i.e., Eq.(52),
gives

- [r]{r) + [Re (R} = 2 (R} -

(nixny) (nixo) (nixne) (Nexi) (nix1)

For symmetric modes, symmetric about X = 0, when m = O,

Pin = T’,,n .

n

For antisymmetric modes, antisymmetric about X = 0O

P-l,n = ._P',h *

The matrices [RIJ and [REJ will be different for symmetric and
antisymmetric modes.

The number of points forming the boundary of the cylinder 1s equal

to the number of exterior points adjacent to the cylinder minus 2,
i.e.,

V\e_:z V\L'ﬂk 2 .

For each point (M,n) on the boundary of the cylinder the boundary
condition for Opmy> B 1is

[Pm,n-t-) - Pmm-l coSBmn = [PM+I,1\~PM-|,-'\] sin emn ’

and for B, < 6, , the above with em,\=0.
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These boundary conditions give hb equations, and 2 more equations
are required to solve for the ne exterior pressures {F’}

Two boundary points are selected, close to © =W/4 and 6=31/4,
such that each of these boundary points 1s adjacent to exterior
points in both the X - direction and the Y - direc@ion.

At both of these boundary points,(nn,n) > 1t 1s assumed that

Pml,'\ - Pm-'.n = o,

i.e., the gradient in the X - direction is zero (the gradlent
normal to the surface has already been equated to zero).

This gives a total of ne = n\,-}-z equations, giving

[BI ]{P:} + [BE]{E} = 0. (55)

(nexny) (nix1) (nex ne) (nex1)

The matrix:DSEJ is non-singular and

{ﬁ; '—"-"[BE _T[BI ]{PI} - (56)

Substituting this gives

][ Jfse s |- 200 - o

Wxn)d  (nixne) Mexne) (Mexn)d (k) (i)

The elgenvalues and elgenvectors are calculated for symmetric and
antisymmetric modes, separately.
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The nodes,!]L , represent only half the cylinder (i.e., X ® 0) and
the generalized mass must be calculated for the whole cylinder.
The generalized mass for mode L 1s

Ne
. — z . .
@G(*)—Z ¢L(J) h? x c() >
J=1
where h =@a 1s the distance between grid points.

C(j) is a factor, either 1 or 23

r

]
o

1 for all locations on the centerline, i.e., X

ij)== 4 1l for all locations on the cylinder boundary

L 2 for all other locations.

The boundary values of the elgenvectors are extracted from the

L elgenvectors, and are defined for X 2 0 only. The boundary
points must be consecutive along the circumference of the cylinder
from the floor centerline (0,0) to the top centerline (6,NK).

The boundary eigenvectors will differ for symmetric and anti-
symmetric modes for X € 0. For symmetric modes

PIX,Y)= P(—=X,¥).

For antisymmetric modes

45()§f():=:"' qb("x,‘()-

Each mode must therefore be identlfied as symmetric or antisymme-
tric when the boundary eigenvectors are used.
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Apart from the boundary eligenvectors, there 1s no need to distin-
gulsh between symmetric and antisymmetric modes in the cylinder
response program. The modes are therefore combined, and ranked in
ascending order of frequency and the first 20 modes only are

used.

The first symmetric mode is a translation mode, with zero
frequency and corresponds to the cylinder (0,051) mode.

The eigenvalues, :\i, are used to calculate the resonance frequen-
cies for the (three dimensional) cabin with

f=fu=%5 (-"1)z+ —%] -, (58)

% |\ L

where }1 is the grid spacing = Ga, L and a are the cylinder length
and radius, respectively.
The frequencles output by the program are

?Lz = ﬂfxi)

20

i.e., the frequency for =0 modes andQ=Im, 1.e., for unit
radius. The generalized mass is also output for a cylinder of
unit radius, i.e.,

ht-—:- 62“3- ’

where A =1Im.
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Normalization

The acoustic modes ¢%‘f0r the three dimensional cabin are

Pu®) = PaltY,2)= Poi(xy,2 = cos3E vy,

where qbl(xij is the elgenvector for the two-dimensional mode
ranked L (i_-zl,zo) as calculated with the flnite difference
technique; i.e., Qbi(x.Yj is a finite dimension column vector,
which contalns the values of @; at all coordinate positlons
(NX,NY) within and on the boundary of the cabln space.

The normalization of these modes is arbitrary. The maximum value
achleved at any coordinate position has been chosen to be unity
and the other values adjusted to retaln the computed ratios from
point-to-point. The normalization is carried into the trans-
mission prediction with the parameter

€n= €4qi

v
[I] #adv

In the case where the floor 1s present the integral 1is

L

fffqb{a(f)cl?: fcos‘%:_'% dz| )" ¢ dAren

Area

e
= —;— é.sz ¢, () h*Cey »
J=!
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whereqj counts over all interior locations, and

€. = z;%=o
1 1 5 9>0 .

The program outputs the generalized mass for unit radius, i.e.,
ng
2 . 2
éﬁem-z b)) G*Cey -
J=1
So

J[[ #0085 = Lret ago-

The volume enclosed 1s

V =azl_ [1[‘—60 + CDSBQ S."\-eD‘])

glving

2[TF~ ©o + Ccos6, siv\eo_]
€,= E:%}_== = .

@q(u €4

(59)

3.5 Fuselage Structural Model

In the previous work [1], the basic structural model was for an

ideal cylindrical shell, i.e., one without stiffeners or floor.

In the present work, the inclusion of the orthotroplc properties
of the cylindrical shell and the effects caused by the presence

of the floor are of concern.
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Altnough the level of sophistication achieved in the present
modeling effort is considerable, 1t 1s nevertheless to be con-
sidered incomplete and further work will be done on the structural
representation in Phase III.

The baslic analytical technique used to predict the resonance fre-
quencies of the ring-stringer stiffened shell is that of Mikulas
and McElman [7]. In this calculation, the effect of the stiffen-
ers are considered in terms of a "smeared out" model. This model
1s chosen because 1t is felt that 1t gives reasonably good predic-
tions when applied to a stiffened cylinder of typical aircraft
construction, l.e., one in which the "density" of rings and
stringers 1s sufficient to warrant the "smearing out" or averaging
of the added stiffness and mass contributions to the shell. The
Mikulas equatlion definitely breaks down when the subpanels between
rings and stringers assume thelr own modal characteristics.

The test articles used in the present work are not ideally suiteAd
to use of the Mikulas formulation because of the sparsity of

stiffeners. Nevertheless, the formulation is used and considera-
tion given to its inaccuracies when applied to the test hardware.

The second effect of concern is that of the floor. In Ref.[8], it
is shown that the primary influence of a floor partition in a
cylindrical shell 1s to force nodes at the floor line, because of
the high in-plane stiffness of the floor. VWhether the floor is
attached rigidly or with a pinned connection to the cylinder wall
is of secondary importance, although some shift in the predicted
resonance frequencies will occur. Therefore the chosen structural
model of the fuselage (for Phase II) is a curved, orthotropic
panel running from floor line-to-floor line (Figure 8a). The
calculation is made with the Mlkulas equation.

It is emphasized here that this model is of a preliminary nature.
A hetter representation (planned for Phase III) will include the
restraint offered by the floor itself and the remaining portion of
the fuselage beneath the floor (see Fig.8b). Assuming that there
are two modes which for the configurations of Figs.(8a) and (8b)
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have the same shape above the floor line, it can be assumed that
the lower resonance frequency would be that calculated for (8a),
i.e., without the restraint offered by the floor and fuselage
below the floor. However, even 1f the difference in the calcu-
lated frequencles 1is disregarded, there are other factors in-
volved, namely that in the case where the floor and lower fuselage
participate in the response, the upper fuselage (cabin wall) will
not respond as well to the acoustic field exciting it because the
excitation not only has to move the sidewall, in the latter case,
1t also has to move, simultaneously, the floor and fuselage
beneath the floor. This "restraint" can be bullt into the model.
The modes of the more complex configuration are requlred to do
this. For this reason, it seems necessary to have a modal analy-
sis of a configuration at least as complicated as (8b) and this is
planned for Phase III. One can go another step and add, say, a
wing. In that case, to shake the cabin wall, the floor, lower
fuselage and the wing would have to be moved also. A modal analy-
sis of a model including the wing would be required. In the
latter case, a finite element modal analysis would be necessary.

Model for a Curved Orthotropic Panel

The resonance frequencies are calculated from the equation

ujxnlf
4D

= Mg +M"[:-%=;=-+(3( Qads +G"T")

Ll

+ gt ELe] 4 1214 (%) [ 1+ BA +RA+SRA, o

Dlx ,“.Qh?.a} -A-
Qa 5&2(3 2
+ Ap Z ﬂ,D(H'ZF ) > (60)
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where m = total mass/unit area (skin, stringer, and rings smeared out).

EyX. __ ring vending EsTs __  stringer bending
DA,  Dparameter D£7 T parameter _

"R‘__ E\-Ar —_ ring membrane -s- — E.‘z Ag — Stringer membrane
~ Eh&,  parameter Eh£7 " parameter =
Ay = 1+ 26ME/D(f-m)+ o (Z /Y (1+p2)" ~
A= V- BNE/a) (- + 1eNY(Z /)" (14 %) _

A= (1+(;‘)'-+zp"(;+/«4)(i{+§) -
, + (1) [ 5+ PR+ 2p"RE(1+m)] |

Ars= 4Nt [ B2(1-pl) +2(14p]] (2, /2)* + 16N* [ 14
+ 285 (14 | (B, /aY + BN*(1-p) (Zg /a)
+ ONY(1p2) (Z /) + 32NKI~M ) (B, Ja)(Z /@) + V-2

AF =— cabin pressure - exterior pressure

i,. and %s are the distance to the centroid from the skin middle
surface for ring and stringer, respectively, Xy and.Q are the ring

and stringer spacings,E,.,E.s I,,,Is,Ar,As are the elastic moduliil,
moments of inertia, and areas of the stiffeners, and h is the skin thickne s

& = Mwa /L.,

where M is the number of axial halfwaves. _

D= Ek¥/12(1-pm*) » _

is the skin bending rigidity.

@ =2ZNL /MTra ,
where N 1s the number of circumferential half wavelengths.
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It 1s again emphasized here that the above equation 1is strictly
applicable to a full cylinder. It is also approximately appli-
cable to an open cylindrical shell having all shear diaphragm
supports. Thils boundary condition is obviously not satisfied at
the cylinder floor Junctlion. Because of this fact, the theory

developed by Peterson and Boyd [8] which includes the full cylinder

with floor, is far superior for present needs and will be inte-
grated into the model in the future.

3.6 Calculation of the Structure/Acoustic Coupling Term
£'(n,r) (Cylinder with Floor)

The celrcumferential structural mode shape for the curved panel
(floor-to-floor) 1s given by

Yoy = sinmle-ed _ o; Nmy |
2(1t~0,) Ly

wherelq i1s the number of circumferential half waves and L7 Is the
length of the panel from floor-to-floor, i.e.,

Ly= 2a (m-86,).

The acoustic mode eigenvector takes on discrete values on the
boundary (as calculated with the finite difference technique).
Consider the cylinder boundary point j=(N}(,NY). The angle
is given by

tan 6. = NX-G .
J cos 0, —NY-G
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The acoustic volume mode elgenvector on the boundary line ej is

w

¢3¢. (6,2)= da (6;) cos %L

where ¢i(ej) 1s the ith eigenvector from the finite difference
calculation in 2 dimensions at boundary point J= (NX.NY) and

angle 63 .

Let e'i and Qz_.define the points on the cilrcumference half-way
between boundary point (NX, N\{) and the adjacent boundary points.
Assume that the elgenvector ¢e(9.'u) applies over the range G,J. to

. « Th
GzJ en

Sty = § '(%ns, MN) = § '(CLL,MN)

| % LY

| 9Tz . mez f Nw
————LLr A Cos u sm———dzo sm——qu (y)dy

Now

Y &;
. Ny — Nn(e-6,)
jo sin L, ¢, (y)dy ..Z a_'];. sin 2‘( qSL( 6;) do

Ny
=Y a¢ (a-)[ cos Nm(81i-8) _ o Nm(6;-00) [2em-60)
g\:' L 2(-8,) %200 J N

where nb is the number of cylinder boundary points.
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Thus,

7, . — a(ﬂ-ea) Nn (8, 1 au) Nﬂ(@u 03
“%L’MN) § M L, (NT) 24) (e5) [cc’s 2@-6) O T 266-8,)

where, for the case considered (shell length L,= cavity 1ength|_c.
{ | — cos(M+¢)TT -~ cos(M=-q)TT ] .
f--'m[ T a‘)]’M#%
%M - % $

o M'-'-'-q,

1r L# L, ,'PZM is given by Eq.(25) of Reference [1]. Finally,
o.(M-6,) , the above reduces to

noting LY =

Tai S . : NT(8i;~8e) _ nog NE(02;-6,)
f (1)\-, MN) - NT Z: ¢L(J) [COS 3_~e 25~ Uo
5=

(- eo) 2 (r- eo)
(61)

where L 1s the index assigned to the ordered 2D-acoustic mode

(s 1s always equal to unity if the floor is present), and M,N are
the number of axial and circumferential halfwaves of the
structural mode.

3.7 Calculation of the Acoustic Loss PFactor

The calculation of the acoustic loss factor at frequencyw has
been discussed in Section 3.1 (resulting in Eq.28). This has to
be formatted properly for the case where the floor 1is present.
Also, when the test articles are considered the absorption
capability of the end caps has to be considered. In both test
cases where the floor 1s present, the end caps are covered wilth
fiberglass that is exposed to the interlor. The end cap admit-
tance calculation is as follows (where the subscript € indicates
their consideration):
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d{*\
I
A
0

all —_— C )
a,, “iv

In this simple model, the end caps themselves have been considered
to have a high impedance. The loss factor for the interior is

,\n___wc., €n [g[qﬁ Ax+zfj¢ Jx] :

curved end
Surdace cap
Here
qu Jx_—e Q_ZqS(J)[ez ,:l,
corved J J
sordace

where hx’is the number of boundary points, and

n
qu%x =) ¢, AAM-Z SR CGY »

Area J=!

where N 1s the number of interior points.
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Therefore at low frequencies

Ny
o €n .
Mn="er o (€542 ‘P?‘J’[%“eu]
J:.l
+ 2§, a‘@c‘(t)} ’ (62)

where the volume mode is N= (%,Y\, S)—E(%’L) .

At high frequencies

M= —F— 8C° [ES Z¢ S] (63)

S and Se, being the curved surface and end cap areas.

3.8 Noise Reduction in the Volume Stiffness Controlled Region

The frequenclies of concern here are those confined below the first
(lowest) resonance frequency of the acoustic modes. Since the
lengths of the cylinders used in this study exceed their dia-
meters, the frequencles lie below that where the wavelength in the
air equals twice the length of the cylinder. For the present
models,\_c==1.219m (48 inches) and the frequencies lie below about
140 Hz. In this frequency range, the noise reduction depends on
the net volume displacement of the shell structure, and on the
compliance of the cavity (as an airspring). If Cc.is the compli-
ance of the cavity (confined air volume) i.e.,

\4

foCo

C.= ’ (64)
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and CF i1s the compliance of the shell, i.e.,

Av
—_— ]
3
P ‘; -pe
where AV is the total volume displaced by the shell structures

[including end-caps] when exterior pressure ® s applied and
interlor pressure Pl is realized, then the noise reduction 1s

C (65)

found to be
NR = 20le [l-!"—g—‘—]' (66)
3 Cp

Section 3.8.2 of Ref.[1] may be consulted for the development of
this result.

There have been numerous studies [9, 10, 11] of the low frequency
noise reduction of cylinders (both stiffened and unstiffened)
where 1t has been found that the measured nolse reductions and
theoretical predictions do not agree in the extreme low frequency
range. In fact, in the Phase I study [1] significant over-
prediction at low frequenclies was found to occur. Without
exception, the (measured) iow frequency noise reduction is 1less
than the predicted noise reduction. End cap transmission and
leaks have been postulated as the culprits, but while end caps can
be significant transmitters, they do not tell the whole story.
Neither do leaks, which can be prevented.

The baslc question which remains unanswered is why a cylinder's

noise reduction, typically, turns out to be only 25 or 30 dB when
theoretically it should be 50 or 60 dB, or more.

~78~
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Now for purposes of the present study, there are two types of
shells to be consldered (i.e., stiffened and unstiffened). For
either, the fundamental modal characteristics lead to the occur-
rence of the first mode (in flexure) above the lowest acoustic
mode. That being the case, the compliance of the cylinders 1s
dominated by their stiffness. Since the nolse reduction is still
significant, the cylinder compliance 1is approximately

Co =LY (67)
Fn

where P=F° is tﬁe exterior pressure. Thus to calculate CF’ a

static analysis might simply be considered. The displacement

W, =W over the cylinder surface 1s computed due to an applied

pressure‘:, and integrated over the surface to obtain Av.

To begin this study, consider some results for an ideal cylinder.
The basic partial differential equations for an isotropic cylin-
drical shell element are given by Kraus [12]. His axial coordinate
1s x (this report has previously used & for the axial coordinate).
The equations of interest are

+m v
2Zr oxdb

du =m0 %

M IwW
3x"+ 2r* J6*

¥y ox

ol N2
+ + e f’;atl =0 (68)

M % =AY 4 L3 ) Qw J-aty v _ 0

2F Ix30 | 2 3x* ' rrlpt ! rrap E e'ét" (69)

1 dv u ] + =A%, W _~(-AY) P
X E \d  Eh )
. (70)
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The shell is assumed to extend fromxeQ tox=L . wU,y, andw
are the displacements in the X, &, and 2directions, & pointing
outward from the middle surface of the skin, with

2. 2.
vi= Vt(Vz)':. Vz( 3 -+ 3 ) ’

ox- os*
where

s=1r0,

i1s taken to be uniform circumferentlially and axlally, positive
inward.

The above can be simplified by neglecting the longitudinal and
circumferential inertia terms, i.e., by setting

Yu v
Pe=rxe=

In the case of a perfectly circular shell (r-_-.a_), closed on the
ends, with uniform external pressure, it can be shown [12, p.94],

=L )

This result also holds true for the case where the radius varies
slightly. It follows that an approximation can be used

du ._.___E:.(_'_._ )

and Eq. (70) then reduces to

Lt A NP I .
12 E fat“ Eh

1 (w | 3v)+ 1~ ')‘w__ 1—A/2
r\r Y 38
(71)
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This differs only slightly from the result one would get if Ju/3I«x
had simply been set to zero in Eq.(70); Eq.(71) is a slightly
better approximation. The axial strain has little influence on
the result.

It also follows that Eq.(69) reduces to

=M v L ' dw
z i v T e O 72

Eqs.(71) and (72) are independent of 4 and thus Eq.(68) is no
longer of concern.

The membrane theory solution 1s obtalned by setting ¥=0 , and
letting the bending resistance of the shell go to zero (i.e.,
setting the first term in Eq.(71) = 0), yielding

W dw _ _ 1=Ml2
r‘*+ £ f’ae‘ en [

At sufficiently low frequencles, this reduces to the simple form

y_) = — A=y,
re rsa Eh

or

\—M/2 a2 (73)
T e ee— a. .
W = P

The membrane stiffness controlled compliance of the cylinder 1s
approximately (neglecting local bending near the ends of the
cylinder)
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L zﬂ“iL
CP:['L -ETU-M/z)adedx

2aa®
Eh

L (1=m/2) - (74)

For the 0.020" thick stiffened cylinder
Co= .26 ins/rsi,-
P

The compliance of the acoustic cavity is

v
pee”

Ce= = 742 w/psi.

This glves a noise reduction due to the cylinder wall displacement
of
742

NR = 20I03[ l+_l.—7.5 = 6S5.4 JdR

As will be seen in Section 4, the actual measurements indicate
about 30 dB. The nolse reduction due to the stiffness compliance
of the end caps (which will be considered later) varies between
47 and 49 dB. Adding up the end caps and cylinder membrane
compliances gives C, in the range -= 3.9 to 4.6 in¥psi or a noise
reduction of 45.6 - 44.2 dB., which is still well above 30 dB.

It follows that bending deflections of the cylinder wall have to
be considered. However, if the radius ¥ 1s constant, sw must of
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necessity be independent of § and the only bending effects must be
associated with the axial direction and related to the supporting
end conditions. The & independency of w does not apply when the
concern is with an orthotropic shell (stiffened with rings and
styingers). For such a shell, Eq.(71) .can be generalized somewhat
to

34
Dx Ox 4+2st;*;*+Ds 354

£l [w 'l_i v

W W . (I—M/z)
3 i yroul g

ot

rz.

(75)
where My 1s the average surface mass. Eq.(72) remains unchanged.

Eq.(75) applies for an orthotropic shell in which the rings and

stringers have been smeared into the shell. The bending rigidi-
tles Dx and DS are for the sections perpendicular to the X and
(i.e.,8 ) axes respectively and D&sis the cross rigidity.

One solution of Eqs.(72) and (75) is for the case of a free-ended
cylinder where ¥ 1s independent of X and

R 2

00

at every point in the shell. Then

dw pY 'w
D, W +2D,, Y ::65‘ + Dy S5t

i _ _ (1~ms2)

vl (76)
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In this case, the shell deforms in bending only. The condition

PV
. 4:]

W = — ) (17

is the Rayleigh criterion for inextensible vibrations of a ring.
If Eq.(77) holds, the middle surface of the shell (i.e., ring)
does not stretch. One might hypothesize that a shell's end
conditions could be such as to allow Eq.(77) to hold approximately
(not perfect supports) but if that is the case, the subpanel
transmission (i.e., between rings and stringers) would turn out to
be so great that the predicted nolse reduction would be less than
that measured.

For instance for a subpanel of the stiffened cylinder used in this
study, as shown in Figure 9, Eq.(76) would reduce to

Dvw+m ——/—z)P (78)

3t

which 1s independent of the curvature effects. The displacement
in the first mode which satisfies (78) 1is

4 b VT T
~ X,S) AN BN
W= A m w2 fo 14 (x,s’)dx'ds’ »
where

(L%‘ ::f';;— [(;i; 'F(}ﬁ;) ‘] .
Letting

W(X,S) Sm"f2 sin TS )
gives x 27
i
W = ‘1_‘;7_ 5 o V(x,s) . (79)
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The displaced volume 1s then

6t P Ak
v = 1 (80)
A ™ m w2 ?

yielding (with the data from Fig. 9)

~ 01 .
CP"’ 77 m/rsu.
This leads to a nolse reduction

NR= 201oq [I + —7-71.%— = 20.Sd4B

if only one sub-panel is considered. However, there are 30 sub-
panels, so the total complliance is

C.‘, = 30(77) = 2310 in3/psi

glving a nolse reduction of only

NR = 20 log[ 1 + 55| = 2.448.

If one considers the subpanels clamped along their edges, the
compliance is 13.64 1n3/psi per subpanel leading to an overall

C\°= 30 x 13.6 = 409 in3/psi
and NR= 9 dB.
Thus throwing out curvature effects leads to an underprediction of
the nolse reduction. Since the inextensibility assumption 1s

almost impossible to Justify, there are good reasons, as seen
above, not to invoke it.



It follows from all the discussion preceding, that 1t appears
membrane stresses are 1n fact working, but that the deflection of
the cylinder wall is not obeying the simple result given by
Eq.(73). In fact, if the noise reduction is as low as has been
calculated (less than 10 dB), and the measured 1s 30 dB, one might
conclude that membrane stresses have to be present. That belng
the case, 1t should follow that solutions of the simple equation

W 1Az P ’ (81)

Yz Eh
should be examined. It also seems cruclal to study the effects of
out-of-roundness (i.e., non-circularity).

Suppose non-circularity of the cylinder is consldered, say by
letting the radius of the shell be given by

r= a(1-~ef®) ; ex |

Then at first, the solution appears to be

W= — "‘é:/" fm’( 1-2efc@).

However, this result is not correct because the parameter ¥ in
Eq.(81) 1s the radius of curvature!

To distingulsh between the radius of curvature and the radius of
the shell, let the radius of curvature be given by cap R Then
Eq.(81) becomes

W \'ﬁ*4/7-l, .

R* Eh 02)
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Also

L _fta

c‘,——f f —-—L'——”-‘-/i R clxds , (83)

~ LO=m/2) =T 2
-~ = . R*ade - (84)

[Incidentally, ds# Rd6, since O is measured from the center of
the cylinder instead of from the center of curvature (which moves
about)].

Since the radius of curvature of a shell with a slight variation
in radius can differ greatly from the radius itself, it can be
seen from Eq.(83), that if R"’OO, Crcan become very large relative
to that of the perfect cylinder (thereby reduclng the noise
reduction).

In cylindrical coordinates, the radlus of curvature is given by

[+ 1"

R= (85)
LY 1.2 LA
Y +2(de) ¥ de
Now if
= 0cl({l—€& 12}
r ( ), (86)

where ;(9) is a smooth positive function normalized such that
'F(o) = 1, then
max
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dr_
46

df' 2__ 2.2 12
() = et

= —aefo®

d*r

= —ae?'fe) ’
de*

and

- a-[ | —ef(o +€z(£‘(&e)+§wé))]3/z
- {1+e[$10-250] + €[ Frar2f - fof o] )

R

or

a
R = l-{-é-?”(e) ) (87)

!
since :9'(9) is considered small.

Suppose now, the out-of-roundness occurs over an arc length of
shell As=a A8 = aG‘ , as shown in the Figure 10. Then if a length
,( (axially) is considered, the compliance, Cf{ for that length is
according to Eqs.(84) and (87)

o = X(\-—M/L)f[fe' do

P Eh o (1+ef4e)”

2n
+j de | - (88)
6,
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This reduces to

_ Ali-mp)a® [(zw_e')+ @l]

Co Eh

— /@(\—gh/z) a3[ 210 +(®, __9')] y  (89)

where

e
® :j l de .
{ o (‘ +€:9”(9))2' (90)

It is obvious from Eq.(89) that whenever the integral (),exceeds
the interval &,, that portion (shell length.{) transmits better
than the classlcal membrane theory predicts. The compliance for
the whole cylinder becomes,

= 28 (LR (-m/z)a3 K(1-m/2)a®

Cp = 2 = [m+(@,—e,)]

_ 2nli-m/2) AL L (@-6)
- Eh [ |+ L 2m ] )



If the length of out-of-roundness extends over the entire length
of the shell, £=L., and

_ 3
CP —_ (' ﬂé’-}‘)‘a L [2.,17""'(\@"" e,)] 3 (92)

which is consistent with Eq.(89).

Before considering evaluation of the 1ntegra1.()‘, it is also
useful to consider a solution in which the transverse
displacement y is not assumed to be zero. From Eq.(71l), the
membrane result is obtained by setting =0 (alsowd=0 ).

—M/Z

= [W+%'5'J =T En

and from Eq.(72), by writing (since K is a function of 6)

1—m P 12 [J_..EDL_ =
2 3 T R 3% K(ae +w):| O. (91)

Then substituting Eq.(93) into Eq.(94) gives

1-m ¥ 13 [J —{(\—M/2) 2\ |
2 TR R( Eh PR)]'“O’

or

=AM W 3 1—AM/2 bR
2 3x°'—K89[ Ek ?]

— l=m/z P IR
Ehw R 236
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J—m/2 Fa[ a
Eh R 36

I+ e£"(8)

Using Eq.(87), this becomes

=M _  epmef™e P
2 Ix* l+ef%e) Eh

or

P o z2-m P e£"te)

oxz 1= Eh  V\+e£%0) .

This can be integrated to yield

V(X,8) = '%"l'vzx + Vs >

where

| —M/2 _F_“ —aef"e)
Eh R [ (1 +ef"e)

Vo= — 224 P _effte)
' \-M El 1 +ef%e)

2] -

(95)

(96)

and V&,\g are constants of integration, (which may be functions

of@).

If at some locations (say at the rings) v(x)e)zo, then Vz and V3

can be determined. Take
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v(o,8) = O

v(x,6) =
Then
\[3 = O
_ 4
Vz — 2 b
and one can write
V(X,e):‘—' \/l(e)V(X) (97)
where
2
_ x5 Ax
V(x) = > 3
This can be substituted back into Eq.(93) to obtainyw, i.e.,
_ '-/H/Z. EL _
W= P ae
— l"'/‘(/Z PK — V(%) }avel
But
N __2mM P (I+ef (e))e,f(e)-e £%6 ,
26 1= Eh (1+ef"e))*

so an approximate solution (neglecting any flexure) 1is

= — (2-M) P a? _ V(x)( v “ew ///2) .
W Eh(|+e§"(e))"[ 2 € - ‘f +e€f € ]

(98)



This gives over the length JL

This integral contains in its denominator the same term

(1 +ef£e)*as Ea.(90). 1t €§7(e)~~1, 1.e., 1t R=> o0 over
any interval, the membrane stress (hoop tension) is broken over
length.ﬂ. Only the bending resistance remains in the shell in
this region. This leads to a conclusion that over certain axial
regions, the cylinder transmission may be totally controlled by
flexure and over others totally controlled by the hoop tensilon.

Now examine the integral E% for some selected functional forms,
-?(9) [refer to Fig.10]. Suppose

fe)= sinIS — s'm-ﬂ\—e .
AS B,

Then
6,

do
®, =
' '[,- (1 —esinTo/e,)?

aT

o

GL jﬁ cloc
T ( |-es'mo<)""

where @ = €1/ o, ’



This can be evaluated to yield [13]

6= 1!‘(\-6‘) o ,)w[ (Q'i,).,,)]—r ?.e} . (99

24/2
Since (1-€) is imaginary for e>1 , @| does not exlist in this
region. This is interpreted as total relief of the membrane
stress.

Suppose one chooses

-S:(e» Sin -——-E)

This function has zero slope at O = 0O and 6,, which is
probably a more realistic representation. Then

_ f deé
' Jo (14 & cos 2we/e)”

- 2
where € -—'261\'/6: , giving

2m

e = Gsf dx .
Yoemd (1 + Zcosex)*

For €« | , the solution is [13]

— &
@ =—22 .
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A plot of this function 1s shown in Figure 11.

This integral also does not exist (is divergent) for € >1{ , thus
the membrane stress 1is relieved.

From the form of these solutions, it is seen that the likelihood
of C% growing large relative to 9, may be small since combinations
of € (erA) and @, may not exist which will yield €= 1 . But the
possibility of €>| may be real (i.e., R-* oo over the

range AB=040 6,).

Let's choose € (rather thane) as a criterion for relief of the
membrane stress. It can be considered an approximate (as opposed
to an exact) criterion for K-Deo over an lnterval AO‘G’. . & 1is
plotted versus 9, and € in Figure 12. When €> 1| the membrane
stress 1s relieved.

Now conslder some example calculations. Suppose a very slight in-
dentation of the skin of the 0.020" thick cylinder existed, say

A =000\ in. Then according to Figure 12, if §, & 0.045 rad
(2.6°),E§>| and the membrane stress is relieved. While 0.001 in.
may seem small, the amplitude of the membrane displacement w for
the ideal cylinder is from Eq.(73)

l—
wW _& Pa )
which for the 0.508 m (20 in) diameter cylinder gives

W = 4=zx|o"*f y

At 100 dB, b 1s only 2.9x10-4ps1, giving W=1Zam . In
comparison A is huge. Unless the pressure is high enough to
increase w to the same order of magnitude as & , the shell would
not stretch enough to displace its out-of-roundness. This would



apparently require a pressure of about 2 psi or more for the

.001 in. selected. The interpretation is that very slight
variations in radius over small angular regions (wrinkles) can be
highly detrimental at acoustic pressures.

Now experience tells us that putting dents in a cylinder will not
change 1ts low frequency noise reduction very much. However in
our experience, we have never worked with a perfect cylinder.
Suppose for example that there exlisted a perfect cylinder with
wall thickness h= 0.020 in., a radius q= 10 in., and length

L.= 48 in. The noise reduction is as has been calculated before,
i.e., 55.4 dB. Suppose that over some axlal expanse of length R,
there exists around the circumference a region for which € >\ .
For instance, on the stiffened cylinder of this study there is
about a 2 in. dlameter inward depression that is about 0.030 in.
deep. Setting A=2 1inches and A=0.030 in., it is found that

From Fig.12, e =148 > | and thus the membrane stress 1s
relieved. The cylinder model is now one where a length L~ 1is
membrane controlled, the rest (lengthd) is flexure controlled.

Consider now a strip running between stiffeners 2 in. wide, and
from Figure 9 of 11.59 in.lengths The compliance for the membrane
controlled section 1is

3

I

121w’ /psc -
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The compliance for the strip in flexure between stringers is

oS = &4 12A0—pM)
T
= 0.31S in /fo.

Since there are 5 stringers (i.e., 5 strips)
£ __ — -3 .
Cp = 5(0315)= 1.§7iw fpsi
Also, for the whole cylinder
—_ ™ £ _ . 3 .
C_P— C',+ C‘, = 278 n /FSL,

and the nolse reduction would be

NR = 20leq [1 " Z‘;é] — 4%.6 dB -

Thus, this single depression would reduce the noise reduction from
55.4 dB to 48.6 4B, or about 7 dB, which is a sizable reduction.

But if the cylinder is not perfect, say without the depression
its noise reduction 1s only 35 dB, then 1tsCP would be (overall)

C _ 742 _ Cag .
loncé/zo_\ = 1P, = 13.43%'1n /rs:. .

Ce=

If length l was perfectly circular, the portion of the compliance
above due to 1t would be

o = _2Ta 2L (=m0
P Eh

= 0-053'\\?/p.si '



With the depression A= 0.03 1n. and 6.-'-'-.2, over length £, the
same length's compliance would become

cf;, =157 [psi.

Thus with the depression

Cp= 1343 = 0.0S3 +1.57 = |4.97 w/psi.

This gives a noise reduction of 34.1 dB. For the non-ideal
cylinder, the same depresslon thus gives only a 0.9 dB reduction
in the NR. Thus 1in the non-ideal cylinder case adding a wrinkle
or depression will not profoundly effect the (already low) noise
reduction.

To generalize all of this, a stiffened cylinder with|qsstringers
will have a compliance given

2100 (L=2) (1-m/2) 4 28al
& e

where £ 1s length for which € >

)

Cp=

Since in general, there may beN regions of length 1'\ with €>1{ ,
the final expression becomes

2ma® (L — i:ﬁt)(l —pM/2)

L=
P Eh

’ (101)



where ’e't. =0 1if é}(\ and inward depresslions only are
considered.

It should be noted in Eq.(101) that largeru/(ik have more signifi-
cant impact. Thus a four inch length in which €3> would be far
more detrimental to the noise reduction than 4 one-inch segments.

3.9 End Cap Transmission

The end caps of the test articles are stiffness controlled well
beyond the fundamental acoustic resonance at 140 Hz. The internal
pressure due to each end cap's deformation is computed with

b (£) =——-lo,w”“f Gp (KI€) W%y dx,

where f 1s an interior point and X lies on the end cap. G (i\{)
is the interior space Green's functlon as previously defined. The
displacement of the end cap under uniform pressure t> is [14]

W(X) =w,(r,6 Z=0)=W(r)= [ 4 5*” +zazr“_§.ﬂ _.r.‘i] )

64D e

whereD 1s the bending rigidity.

Consider the response of the first acoustic mode only. Then

G‘P T(l'f-)-::. 2¢ca CosSTZ/Le
Wy~ es™ —i.'v’,‘u_),:'
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Substituting, this gives, for both end caps

P ==} 49:;0 [640 (é?ﬁ))]

2
N w

W= w" = AN Wy"

COSTE /L -

The space average mean square pressure 1s obtained with

< poae= | R piE) I

02 o *
=<y 08 B E ) o Feror

N
This 1s averaged over each frequency band of concern, where < a;>t
is assumed to be the mean square exterior pressure in the band with
an approximately uniform frequency content. Then

W+l
<PESst _ 2 [2RCH [ ( <+ ]} f Ttds
<P T bawl Vo LD\ 343m cw.\ > )‘+11:;w‘*

(102)
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where® 1s the band center frequency and Aw'—‘cuw is the
bandwidth.

Integration gives

wi &2
sids — W2k cosk +k?
i +miod = Ot In————2
o AR  wy B* 42k cos% + K
r A

Wn 2
8‘:‘—t>s°-.‘: [(l+7]:\o/4 - (|+-y]:)v+:]

wt+iw
b 1
-1 2kBSing W, [ 2. ]
+ oty % . » V4
paaror-cat el Er=r Gy S |
w-4w
<
where
k = w,\(|+v)‘,;)'/" ,
’t‘-V\ 4 —-’)y\ )
and

Wy = AT X 40 He

" 18 the measured value of the loss factor for the acoustic mode
(at 1ts resonance (140 Hz)). The noise reduction 1s obtained

using
2

NR=— |°.|°EjfEJZLiE:§g§ .

< ID:‘>'E. (103)
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3.10 Status of the Interior Noise Program (Phase II)

A brief status report concerning the computer programs that exist
for the present (Phase II) calculations is warranted. An overview

of the software is provided in Figure 13.

The main program is called FCYLNR and calculates the nolse
reduction of the cylinder with or without floor. If the floor is
present, 1t utilizes the output (on tape) from the program CYL2D
that computes the acoustic modes of the cross sectlon of the
cylinder with floor. If the floor 1s not present, subroutines
CINDEX and OMEGAN are used as they were for the empty cylinder in
Phase I. CINDEX indexes the cavity (cabin) modes. The structural
modes are computed using the Mikulas and McElman scheme as
outlined in Section 3.5. There are two programs - MSTRUC which
prepares input data in proper form to describe the skin, stringer,
and frame (ring) properties for the stiffened (orthotropic)
cylinder, and MINCYL which calculates the modes (resonance
frequencies). Output is again to a tape read by FCYLNR.

Various subroutines in FCYLNR compute the structure/acoustic
coupling factors, Jolnt acceptances, radiation loss factors, and
all other quantities needed in Eqs.(36) and (41). These sub-
routines are structured to handle the modal data for the cylinder
with or without floor. Finally, subroutine TRIM computes the trim
ranel transfer matrix data and the requlred transmission coeffi-
cients, loss factor,v){,, and the surface admittance B of the trim.
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4.0 EXPERIMENTS

The Phase II study has a two-fold objective: development and
validation of the analytical models. Section 3 considered the
dewvelopment; Section 5 will consider the validation. This section
considers the experimental program that was undertaken to obtain a

data base to allow comparisons agalnst predictions for a number of
different parameters needed in the nolse reduction calculation.
Also the noise reductions of three test articles were measured.

Most of the experimental work was done at NASA Langley
Research Center. One simple test was performed at BBN/LA
to obtain data for checking out the quality of the finite-
difference calculations of cabin modes when the floor 1s
present. The two maln tests were:

1) Measurements of the structural and acoustic loss
factors of the test cylinders and cavities

2) Measurement of the noise reduction of the cylinders,
l.e., the difference between the exterior and
interior sound pressure levels gliven a random,
diffuse (reverbgrant) exterior acoustic field.

Other tests done at Langley involved the acquisition of accelera-
tion response data on the cylinder walls to provide some experi-
mental insight into the modal characteristics of the shell
structures.

4,1 NASA Tests

The cylinders were tested in a 221m3 (7800 ft3) reverberation
room having dimensions of about 6x9xim (20x28x14 ft) with a
reflection coefficient of about 0.95. The principal room mode was
near 16 Hz.
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The testing consisted of the measurement of the noise reductions
of the test articles (cylinders) and the rate of decay of acoustic
vibrations in the cylinder cavity and structural vibrations of the
cylinder wall.

r

Description of Models

The cylinders tested were the unstiffened c¢ylinder with floor and
the stiffened cylinder with and without floor, with the various
trims outlined in Section 1. The external dimensions were 0.508 m
(20 in.) diameter by 1.219 m (48 in) long (see Figs. 14 and 15).
The cylinders were equal in weight with one having an unstiffened
0.0016 m (0.064 1n) thick skin of 2024-T3 aluminum. The other had
the shell welght equally divided between the skin, stringers and
ring frames.

The skin was attached to 0.0127 m (0.50 in.) thick annular end
rings and the 0.41 m (16 in.) diameter opening in the end rings
was closed with a 0.46 m (18 in.) dia. 0.0127 m (0.5 in.) thick
cover plate (end cap). The cylinder was airtight except for the
0.00018 m (0.007 in.) radial clearance between the mike support
tube and bushings. The bushings and the end caps were attached by
bolts, the remainder of the attachments and seams were epoxy
bonds. Both cylinder seams had a 0.00457 m (0.18 in) wide double
skin thickness; the unstiffened cylinder had a butt-joint with
outside strap, the stiffened cylinder had a lap Jjoint.

The stiffened cylinder had 5 stringers, 0.0254 x 0.0254 x

0.00318 m (1 x 1 x 0.125 in) angles at 72° spacing and 5 ring
frames, made from 0.00229 m (.09 in) thick sheet, at 0.203 m (8
in) spacing. The frames were made in two pileces, a 0.034 m (1.34
in) wide ring with a butt Jjoint, and an annulus with a 0.555 m
(21.87 in) outside diameter that slipped over the ring to form a
0.024 x 0.034 x 0.0023 m (0.937 x 1.34 x .09 in) frame cross
section.

-104-



In the tests conducted with a floor and trim added to the basic
cylinder configuration, as shown for the stiffened cylinder in
Fig. 16, the floor was made from 0.0008 m (0.032 in) thick
aluminum sheet. The floor was 1.1938 m (47 in) long with flaps on

-the ends to close off the compartment below the floor. A bead of

silicon rubber (RTV) was used to attach the floor to the skin and
seal the lower compartment. The floor was stiffened by two 0.0158
x 0.0158 x 0.00158 m (0.625 x 0.625 x 0.062 in) angles underside
of the floor. The ends of the stiffeners were bolted to two
0.0254 x 0.0254 x 0.0032 m (1 x 1 x .125 in) angles on the upper
slde of the floor that provided lateral stiffness and were bolted
to the end rings to locate the floor about 0.163 m (6.46 in) below
the cylinder centerline ( €5= 4go),

The trim insulation was Owens-Corning PF-105 Fiberglas supplied
0.013 m (0.50 in.) thickness. The supplier, Flight Insulation
Marietta, Georgia, added a 2 mil vinyl facing on one side. A
vinyl sound barrier weighting 2.44 kg/m2 (0.5 1b/ft2) was used.
The lead-vinyl had a fiberglas cloth facing on one side with a
total thickness to about 0.00119 m (0.047 in.).

Instrumentation & Apparatus

In the nolse reduction tests, six microphones were located inslde
the cylinder as shown in Fig. 14. The microphones were mounted on
a bar attached to a 0.0254 m (1 in) tube on the cylinder center-
line. The tube could be rotated and translated to position the
microphone array at the desired measurement location. Exterior
levels were measured by 2 microphones on floor stands. The

noise load was supplied by one or two 100 watt speakers (Fig.1l7).

The exterior spectrum was produced by a GenRad nolse generator and
passed through a power amplifier to two Altec "studio monitor"
speakers. The level was controlled by the volume knob on the
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nolse generator. The amplifled microphone output was fed, one
channel at a time, by a selector switch to an analyzer and digital
volt meter. Overall levels of all microphones were hand recorded
from the DVM, one-third octave spectra for selected microphones
were taped and some NR spectra were plotted. Post test analysis
and listings of spectra were obtalned by recalling the taped
spectra into the analyzer memory and reading the analyzer memory
through an IEEE computer interface.

In the reverberation time measurements, structural and acoustic
modes wWere exclted by a 5 in diameter speaker mounted on the
microphone bar. A time history of the signal decay of an interior
microphone or an accelerometer on the skin was captured by the
"Hold" function of the analyzer. The time history was then
recorded by the digital plotter.

In the mode identification tests, a tone was played through the
small speaker. One axis of the analyzer scope was connected to
the speaker and the other to a hand held microphone. The frequen-
cy was swept until the microphone response peaked. The microphone
was then moved over the skin surface and the number of slope
changes in the display per longitudinal and circumferential cir-
cuit were counted.

Test Procedure

The floor and trim were installed in the cylinders. A microphone
mount short enough to allow the desired rotation was selected, and
the mlkes were installed in the cylinder. The cover plates were
bolted on the cylinder and the cable access hole sealed with
modeling clay. The cylinder was suspended from a wood 2 x 4
"sawhorse" fixture by aircraft bungee cord as shown in Fig. 18.
The fixture was located off center in the room because the spatial
gradients in the sound pressure level for the low frequency bands
were highest near the room center. The exterior microphones were
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placed about 0.254 m (10 in) from the skin to avoid the increase
in SPL that occurred for d < 0.178m (7 in). Spectra for the
exterior microphones at the 4 "corners" of the cylinder were
monitored and minor adjJustments to the location and orientation
of: the cylinder and speakers was made.to obtain approximately
equal SPL in the 20 and 25 Hz bands. Above these bands the sound
field was fairly uniform throughout the room. Below these bands
the interior levels were sometimes lost in the background noise.

A speaker output level high enough to produce measurable levels on
the interior microphone nearest the centerline was selected and
used for all data for the given test configuration. The speaker
was turned on, OASPL from the DVM was read for all microphones, an
external spectra was acqulred, stored on tape, and transferred to
analyzer memory "B". An internal spectra was acquired, taped, and
the difference in current and stored spectra was plotted. After
comparing the deslred microphones the speaker was turned off and
the microphone array rotated to the next location.

For reverberation time measurements a 1/3 octave filter, B&K 1614,
was added between the noise generator and amplifier (Fig.1l7) and
between the microphone selector switch and analyzer. The speaker
output was down 10 dB for the adjacent 1/3 octave bands on either
side of the selected one, and down about 50 dB for the second band
on elther side. Time histories of vibration decay were captured
by simultaneously hitting a switch to disconnect the signal to the
power amplifier and tripping the "Hold" switch on the analyzer.

If the decay was too irregular to analyze, a tone was substituted
for the pink noise and the frequency was swept manually until a
resonance was located. If the decay was smooth the record length
(time scale factor) and transducer gain was adJjusted until the
decay record filled the CRT screen. The display was checked to
see that the low-pass filter associated with the time scale knob
was higher than the frequency of the band being studied, and that
the decay extended over more time than the lU-cycle time-constant
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of the filter. The record was then plotted, an arbitrary zero
time marked on the plot 2 or 3 cycles after the surge due to the
speaker power switching transient, a curve was hand faired for the
"average" envelope of the response, and the double amplitude of
the voltage scaled off at about U selected times, converted to dB
and plotted on semllog paper. A stralght line was falred through
the data points. The reverberation time,'r , 1.e. the 60 dB down
time was calculated from the slope of the faired line.

Application of trim

In the stiffened model there was bare metal exposed. The areas
were the top of the floor, the top of the leg of the stringers,
and the face of the end rings. The inner side of the cover plate
had a 0.406 m (16 in.) disk of fiberglass with the facing film
next to the metal and attached by a few small strips of double-
back tape. The remalinder of the interior surface was covered with
a double blanket 0.0127 m (0.5 in.) thick made by placing the
facing of the fiberglass layer against the facling of the lead-
vinyl layer. The fiberglass slde of the blanket was placed next
to the skin and the lead-vinyl silde was placed next to the under-
side of the floor. The lead-vinyl was cemented to the floor and
the fiberglass attached by double back tape. For the skin insula-
tion, the two layers of the blanket were not attached. In the
lower compartment the blanket was held agalnst the skin by
gravity. In the upper compartment, small bowed retalner strips,
covered wagon hoop style, held the blanket against the skin by the
buckling pressure of the retainer ends against the stringers. The

retainers compressed the blanket to aboﬁ£_3§ to 70 percent 1its
nominal thickness of about 0.014 m (0.55 in.). This left about
0.01524 m (0.6 iIn.) of one leg of the stringers bare. Photo-

graphs showing the exposed stringers are included as Appendix B.
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4.2 BBN Test

The sole BBN test consisted of the measurement of the mode shape
and resonance frequency of an acoustic mode of the cylinder with
floor. A 0.457 m (18 in.) diameter ceramic cylinder approximately
0.304 m (12 in) high was used. A 0.019 m (0.75 in.) thick
fiberboard cover was fitted to the cylinder. Holes were drilled
for insertion of a 0.0064 m (0.25 in.) microphone. A 0.0064 m
(0.25 in.) thick plywood partition simulating the floor was taped
to the side of the cylinder. Excitation of the acoustic mode was
with a tone, the input being from a small speaker located at the
top center of the 1id of the c¢ylinder. Partitions simulating

6s = 0°, 15°, and 30° were tested, for purposes of determining
the influence of the floor and for comparison to the predictlons
with the finite difference technique. The test consldered the
effect of the floor on the empty cylinder (0,0,2) mode. Results
and comparisons are presented in the next section.

4.3 Noise Reduction Data Analysis

Noise reductions,)qﬁl, defined as the difference between the mean
exterlor sound pressure level and the interior level, at measure-
ment position, 1, were calculated and averaged in accordance with
the relation

N

*

L=t
where N 1s the number of sampled (equal volume) interior points.
The results 1s the cylinder noise reduction, NR. The assoclated
standard deviation for the nolse reduction measurements was also
calculated with -

N —NR: - 2 V2
< = [ N\\ (IO NRi O NR/IO) ] .

’
k3
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To quantify the accuracy of the estimates, 99% confidence inter-
vals for the nolse reduction estimates were also calculated using
the relationship

- —NR /10
NRqq = — 10 log [ lo * —v% tm,’o'oos:l >

where't”voﬁos is the 0.005 percentage point of the Student "t"
variable with m = N - 1 degrees-of-freedom. It was assumed that
the individual noise reduction estimates were statistically
independent, which 1s believed to be an acceptable assumption.
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5.0 RESULTS AND COMPARISONS

In this section, results from various tests are considered in a
sequence which allows for a gradual confirmation of some of the
basic analytical models used in the noise reduction predictions
prior to the comparisons of the predictions with the measured
noise reductions themselves. ZEach test article is considered in
turn.

5.1 Cavity Modes (Cabin with Floor)

To begin this study, it is first interesting to examine some basic
experimental results that were obtained from the test discussed in
Section 4.2. A very strongly responding acoustic mode in the
empty ceramic cylinder was identified as the (z,n,s) = (0,0,2)
mode. The mode shape is [1, p.22]

qEéé?)'z: ;J;(jﬂ°£{>!

!
where the root of J; (M.%)= 0 is m,, = 3.83/@ , where @ is the
radius. The theoretical resonance frequency is [1, p. 22]

£ =Lo, . B¢
002 2T * aTa

which for the 0.457 m (18 in) diameter cylinder gives

‘F,‘m_-": 915 Ha.

The measured mode is shown in Figure 19. The resonance frequency
is almost exactly the theoretical value and the mode shape closely
matches the theory.
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In Fig. 20 a small perturbation has been introduced by a 15° floor
and the same mode has been identified. The resonance frequency
has shifted upward to 922 Hz and the mode shape shows slight
bulges appearing at about the 0°, 100° and 260° positions.

The change in modal pattern is even more pronounced in Fig. 21
where the results for a 30° floor are shown. The resonance
frequency has shifted to 930 Hz and the mode shape bears little
resemblance to that of the no-floor case.

It was after the results of these experiments were available that
a decision was made to abandon a perturbation approach to the
acoustics problem in favor of the finite different technique.
After the theory of Section 3.4 was developed, predictions were
compared against these data to assure the proper working of the
computer program and the sufficiency of the chosen grid spacing.

FPig. 22 shows the data of Fig. 21 in a more detailed form. The
neasured resonance frequency is (as previously stated) at 930 Hz.
However this measurement is for a 0.2286 m (9 in) radius cylinder.
The test articles are 0.254 m (10 in.) radius. Thus this mode
would have appeared at (9/10) x 930 Hz or 837 Hz if the test had
been performed in a 0.254 m (10 in) radius cylinder.

Fig. 23 shows the third symmetric mode for a 0.254 m (10 in)
radius cylinder calculated with the finite difference technique.
The computed resonance frequency is 836 Hz. The calculation is
for a 40° floor. It should have been made for a 30° floor for a
direct comparison but there was a slight communications problem
in house. Nevertheless the first twenty symmetric and anti-
symmetric modes were calculated with the finite difference tech-
nique, then a search for a symmetric mode closest to the measured
frequency (837 Hz) was undertaken, and the mode of Fig. 23 was
found. Comparisons of Figs. 22 and 23 show that the finite
difference technique is quite accurate, certainly accurate enough
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for the present purposes. In fact, the acoustic mode shapes and
frequencies can be considered as perhaps some of the best data
that is input to the noise prediction scheme.

Appendix C contains the first 11 modes ‘computed for a cabin with
a @4 = 49° floor per the test articles. The modes are ranked in
terms of the‘lt. Mode 5 (symmetric) is the same mode considered
in Figs. 19 through 23. The computed value of the resonance
frequency for this mode (for @ = 1 m) is 213 Hz. This gives, for
a 0.254 m (10 in) radius cylinder, a resonance frequency of -

838 Hz.

5.2 Noise Reduction Measurements, Predictions, and Comparisons

As stated previously, the primary purpose of the present-work is
to demonstrate the feasibility of the calculation of sound trans-
mission into the interiors of certain complex test articles. The
noise reduction (in one-third octaves) has been chosen as the
measure for comparison. The three test articles are:

1) a bare ring-stringer stiffened cylinder without floor or
trim; wall thickness of 0.000508 m (0.020 inches).

2) a 0.0016 m (0.063 in.) thick unstiffened cylinder (the
Phase I test article) modified with a floor partition, lined
with a 0.0127 m (0.50 in.) thick layer of PF-105 fiberglass
that is covered with a 0.0000508 m (0.002 in.) vinyl
film, with a 0.0127 m (0.50 in.) layer of PF-105 fiberglass
on the inside of each end cap exposed directly to the
interior.

3) a 0.000508 m (0.020 in.) ring-stringer stiffened cylinder

(same as (1) above) with a floor partition lined with a
simulated trim consisting of a 0.0127 m (0.50 in.) thick
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layer of PF-105 fiberglass covered with a 0.00119 m
(0.047 in.) thick layer of lead vinyl weighing 2.44 kg/m?
(0.50 1b/ft2), with a 0.0127 m (0.50 in.) layer of PF-105
fiberglass on the inside of each end cap exposed directly to
the interior.
In Cases (2) and (3) above the exposed floor surface in the cavity
(cabin) is bare metal. 1In Case (3) the (internal) stringers
protrude somewhat above the trim exposing a height of about 0.1524
m (0.6 in.) of bare metal on each of five stringers.

Noise Reduction Measurements

Fig. 24 shows the equal volume sampling scheme used when the floor
was present. The sampling was done at 18 positions on three
measurement planes representing one-fourth of the cylinder volume.
Because of the nature of the exterior field and the symmetry
present, the 54 measurement positions are sufficient to compute
the space average mean square interior level and the ratio of
exterior level to average interior level, i.e., the noise reduc-
tion. In reality, this was accomplished by measuring the indivi-
dual noise reductions NR{ at the 54 positions and averaging
according to the relations given in Section 4.3. The standard
deviation and the 99% confidence intervals were also based on
these 54 measurements. In the case of the stiffened cylinder
without floor, a slightly different measurement procedure was
followed, with larger sampling volumes, resulting in only 38
measurement locations. Figs. 25, 26, and 27 show the measured
noise reductions.

5.2.1 Predictions for the Bare 0.020 in. Ring-Stringer
Stiffened Cylinder

If insulation (or insulation and lining, i.e.,trim) is present,
the wall conductance can be estimated using Eq.(33) and then the
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acoustic loss factor can be computed with Eq.(28). Also the added
structural damping induced by the trim can be determined (w!).

The structural loss factor (without.trim present) must always be
measured for input to the computer program. In the case of a bare
cylinder, the program requires the input of both acoustic and
structural loss factors. Figs. 28 and 29 show the measured values
used for the bare ring-stringer stiffened cylinder.

The acoustic and structural resonance frequencies are also
required in addition to the loss factors. The acoustic reson-
ance frequencies for the cylinder without floor are computed with
the relation

Wens = G >\%ns >
where xnmsis given on page 22 of Ref.[1]. The structural
resonance frequencies come from Eq.(60) of this report. Once the
w“‘s and u)r‘s are known, the constants L", b,,, Cn» Cp» Dm.
arctan,, arctan,, 1nn, and 1n., i.e., everything in the braces
{ } in Eq.(36), can be computed. The acoustic mode normalization
€, comes from Egs.(19) and (20) of Ref.[1]; the modal mass M, from
Eq.(23) of Ref.[1]. Since trim is not present Ty=|C™|* = 1.
The acoustic/structure coupling term ‘F'(n,\—) is given by Eq.(24)
or (25) of Ref.[1], the joint acceptance\ji , by Eqs. (26), (27)
and (28) of that same reference.

Structural Model

The stiffened cylinder is made up of a thin skin with 5 external
rings and 5 internal stringers. It is freely supported at its
ends, and the mode shapes are assumed to be of the form

MN . Mtz cos NO©
— Sin
v (e,a) L sin N©
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Given below is a tabulation of the data used to specify the
properties of the stiffened cylinder as required by Eq.(60).

Stiffened Cylinder Properties
(Dimensions in Meters)

Cylinder Data
Length = 1.2192
Radius = .25375
Skin Thickness = .508000E-3
Youngs Modulus = .72400E+11 N/m?2
Poissons ratio = 0.33
Density = 2700 kg/m3
Total mass/unit area = 4.27217 kg/m2
Stringer Data
Stringer Spacing = .318867
Cross-Sectional Area = .151209E-03
Mass per Unit Length = .408265E+00
Moment of Inertia About Centroid = .904240E-08
Distance of Centroid to Skin Middle Surface = -.007768
Torsional Constant for Stiffener = .465416E-09
Stringer Element Input Data

. Width Height z to Skin Inner surface
.0254000 .0031750 -.0015875
.0031750 .0222250 -.0142875

Frame Data
Frame Spacing = .203200
Cross-Sectlonal Area = .121935E-03
Mass per Unit Length = .329225E+00
Moment of Inertia About Centroid = .453716E-08
Distance of Centroid to Skin Middle Surface = -.005207
Torsional Constant for Stiffener = .200933E-09
Frame Element Input Data (Frame Elements)

Width Height z to Skin Inner Surface
.0342900 .0022860 +.0016510
.0022860 .0190500 +.0123190

Resonance frequencies calculated for the "smeared-out" stiffened
cylinder and an unstiffened 0.02 in. cylinder are shown in
Figure 30. Tor the stiffened cylinder the membrane stiffness
term dominates until N2 5. By the time the bending stiffness
term dominates, the modes have at least one-half wavelength

circumferentially between the stringers. As the axial mode number
increases to M& 6, the effects of the rings are reduced and the
subpanel motion begins to dominate.
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Hu, Gormley, and Lindholm [15] analyzed a ring stiffened cylinder
using discrete elements for the rings and shell. Their more exact
analysis suggests that the Mikulas formulation over-predicts the
resonance frequencies slightly until the sub-panels break-up, at
which time the Mikulas theory is not applicable.

Since the cylinder being analyzed is a thin cylinder (.02 in.
thick) with relatively heavy stiffeners, the effects of the rings
dominate for low orders of M and N. The resonance fregquencies
calculated using the 'smeared-out' rings and stringers are
therefore used when calculating the cylinder noise reduction,
since the cavity modes at these frequencies couple to the lower
order values of M and N.

Referring to Fig. 30, it is seen that the lowest predicted
frequency is for the (M,N) = (1,2) mode. Examination of the
response curve of Fig. 31, made with a shaker attached to the
skin, shows a resonance frequency at 205 Hz. Another resonance
occurs at 292 Hz. The first resonance is a structural mode, the
second is apparently the (2,0,1) acoustic mode (see Table 1,

p. 84, Ref.[1]). The next significant response is at 407 Hz which
could be structural or acoustic. On the basis of this measure-
ment, the (M,N) = (1,2) mode is shifted downward to 205 Hz. The
(2,2) mode predicted at 660 Hz is shifted to 645 Hz. The (1,3)
mode is not shifted since it is a more questionable action.

Noise Reduction Prediction

Figure 32 gives the calculated noise reduction curve. Also
plotted are the measured values. Table 1 gives a breakdown of the
five (5) highest contributing acoustic and structural modal pairs
in a fashion similar to the manner presented for the unstiffened
.063 in. cylinder of Phase I.

-117-



Modal Pairs Having Highest Contributions

TABLE 1

to Interior Level
Stiffened Cylinder

Band Acoustic Structural Contribution Overall Noise
Center Mode Mode <p{> <p}> Reduction
Freq. (Hz) q,n,s Freq. M,N Freq. <—p-é; 5 MR
50 END CAPS 1122E-04 1122804 49.5
63 END CAPS «1348E-04 1348604 48.7
80 END CAPS « 1 49E-04 AHIE-04 47.1
100 END CAPS 416804 J4168E-04 43.8
125 END CAPS «5248E-02 .5248E-02 22.8
160 1,0,1  141.7 4,0 3440.6 - 1207E-05
0,1,1 396.1 1,1 627.4 +5T98E-05
2,2,1 T15.6 1,2 205.0 «8295E-05
0,2,1 657.1 1,2 205.0 «5379E-04
1,0,1 141.7 2,0 3440.6 -5640E-04
END CAPS .1219E-01 1231E-01 19.10
200 2,1,1  487.1 1,1 627.4 L212TE-05
4,2,1 867.9 1,2 205.0  .9443E-05
0,1,1 396.1 1,1 627.4 25T6E-04
2,2,1 Ti5.6 1,2 205.0 5512E-03
0,2,1 657.1 1,2 205.0 «3363E-02
END CAPS «2512E-05 «3954E-02 24.03
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Modal Pairs Having Highest Contributions

TABLE 1 (continued)

to Interior level
Stiffened Cylinder

Band Acoustic Structural Contribution Overall Noise
Center Mode Mode* <p}> <p>  Reduction
Freq. (Hz) q,n,8 Freq. M,N Freq. 21—3? ?F%; MR
250 1,1,1  420.7 2,1 1305.4 LA5TIE-05
2,1,1  487.1 1,1 627.4 -8492E-05
2,2,1 T15.6 1,2 205.0 «30T4E-04
0,1,1 396.1 1,1 627.4 LA2T1E-03
0,2,1 657.1 1,2 205.0 . 1902E-03 3619E-03 34.41
315 2,0,1 283.5 3,0 3440.6 «2268E-04
2,0, 283.5 1,0 3440.6  .3606E-04
2,1,1 487.1 1,1 627.4 J4132E-04
0,2,1 657.1 1,2 205.0 .9055E-04
0,1,1 296.1 1,1 627.4 .1265E-02 .1490E-02 28.27
400 0,1,1  396.1 3,1 1784.3 . 2021E-03
0,2,1 657.1 1,2 205.0 «2079E-03
2,1,1 487.1 1,1 627.4 5979E-03
1,1,1  420.7 2,1 1305.4 . 115801
0,1,1 396.1 1,1 627.4 .6021E+00 6148E+00 2.1

¥ N = number of circumferential waves.
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Modal Pairs Having Highest Contributions

TABLE 1 (continued)

to Interior lLevel
Stiffened Cylinder

Band Acoustic Structural Contribution Overall Noise
Center Mode Mode <p? > <p2> Reduction
Freq. (Hz) q,n,8 Freg. M,N Freq. 73%; <p2> R
500 0,3,1 903.6 1,3 506.5 - T28TE-03

1,2,1 672.2 2,2 645.0 .9537E-03

2,1,1  487.1 3,1 1784.3  .1981E-02

o,1,1 396.1 1,1 627.4 +4823E-02

2,1,1  487.1 1,1 627.4 «298TE+O0 J3083E+00 5.1
630 3,2,1 T82.7 2,2 645.0 AT27E-01

0,1,1 396.1 1,1 627.4 2748E-01

4,1,1 691.6 1,1 627.4 «3063E-01

0,2,1 657.1 1,2 205.0 <178TE+00

1,2,1 672.2 2,2 645.0 «1629E+02 .1658E+02 -12.20
800 2,2,1 Ti15.6 1,2 205.0 1051E-01

2,3,1 947.2 3,3 813.9 -1986E-01

2,2,1 T15.6 3,2 1038.9 «2099E-01

4,2, 867.9 3,2 1038.9 «3837E-O1

3,2,1  T8.7 2,2 645.0 <9341E-01 2140E+00  6.70

-120-



TABLE 1 (continued)

Modal Pairs Having Highest Contributions

to Interior lLevel
Stiffened Cylinder

Band Acoustic Structural Contr}bution Ove;all Noise
Center Mode Mode <Py” <P;> Reduction
Freq. (Hz) q,n,8 Freq. M,N  TFreq. 5 35 R
e e

1000 53,1 1148.5 4,5 1085.3 «3201E-01

6,2,1 1074.7 3,2 1038.9 «3448E-01

0,3,1 903.8 3,3 813.9 «3601E-01

2,3,1 947.2 3,3 813.9 - 1004E+00

3,3,1 998.8 4,3 1085.3 1 738E+00 SI19PE+H00 2.85
1250 4,4,1 1276.8 54 1370.8 .6198E-01

5,3,1 1148.5 4,3 1085.3 «1198E+00

3,4,1 1220.5 4,4 1143.2 «1254E+00

1,4,1 1152.7 4,4 1143.2 294 TE+O0

0,4,1 1380.2 1,5 1395.3 4214E+00 JA352E+01  -1.31

At 1600 Hz and above the calculations are made with the high

frequency result, Eq.(41).

Discussion of Results

Referring to Fig. 32, it is noted that below 125 Hz, in the
volume stiffness controlled region, a good prediction cannot

be made because the compliance of the cylinder is determined
by the relief of the membrane stresses as discussed in Section

3.8. The predicted values shown in Fig. 32 (below 125 Hz) are

based on the flexure of the end caps (Section 3.9).
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Now suppose there exists a region for which & » 1 and the membrane
stresses are relieved. Then if the length involved is £ = 0.05 m
(2 in), the noise reduction at 50 Hz is predicted to be 46 dB,
i.e., based on the compliance of the shell,(:P, given by Eq.(101).
If the length is 0.076 m (3 in) the noise.reduction is predicted
to be only 35 dB. For R = 0.10 m (4 in), the value is only 24 4B.
However data do not exist that can be used to determine the extent
of the regions for which & » 1 for the present shell. Thus a
prediction is really not possible below 125 Hz.

Above 125 Hz, a fairly good prediction has been made based on the
NASA measurements of the acoustic and structural loss factors and
the modal characteristics of the shell. The 630 Hz band is anoma-
lous due to the predicted presence of a highly resonant (2,2)
structural mode closely coupled in both wavenumber and frequency
to a resonant acoustic mode, i.e., the (1,2,1) mode. The (2,2)
mode has a very high joint acceptance because it has acoustically
fast wavespeeds in both the axial and circumferential directions.
From the data in Table 1, the contribution of the (2,2) and
(1,2,1) modes can be seen to significantly dominate the predic-
tion. The noise reduction can easily be computed without their
participation. The result is the dashed curve in Figure 32 which
falls much closer to the measurement. If the prediction is viewed
with the (2,2) mode contribution suppressed, it is seen that the
prediction follows the measurement with reasonable accuracy from
125 Hz out. The noise reduction climbs to a maximum in the 250 Hz
band where there are no resonant acoustic nor structural modes,
then nose-dives to a value of only 2 4B at 400 Hz. This is
followed by a plateau where the noise reduction remains below 10
dB before increasing slightly in the last few bands.

5.2.2 Predictions for the 0.063 in. Unstiffened Cylinder with
Floor and Insulation

As in the previous case, the acoustic and structural loss factors
are required; also the resonance frequencies, acoustic and
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structural mode normalizations, coupling factors ;inﬂo, and joint
acceptances. Since the floor is present, the finite difference
acoustic modal data are used and since insulation is'included, the
trim transfer coefficient‘T% is needed.

Figure 33 shows the calculated structural loss factor for two
different values of the polyester film loss factor'qt that appears
in the calculation of ﬁr through the parameter C,, given by the
trim transfer matrix coefficients on p. 34. Also shown is the
measured value of Y| that was used in Phase I. The Phase I data
were available and were used as the bare cylinder input. However,
since the insulation was present, and the cylinder was so lightly
damped without it, the value of v, could have been set to zero
without affecting the calculated value of'q{ significantly.
Generally there is an overprediction in n} , however, the fact
that the predicted and measured values generally lie in the range
between 0.01 and 0.10 is encouraging, that is, basically the right

order of magnitude is being predicted.

The acoustic loss factor measurements and predictions are shown in
Fig.34. As can be seen the amount of damping afforded by the
flexure of the 0.00005 m (0.002 in) vinyl film is quite drama-
tic. The calculation for various values of'qt are shown. The
equations used to calculatery\ were those of Section 3.7, specifi-
cally Egs.(62) and (63) where the conductance came from Eq.(33).

A good comparison was never achieved and as a result, the envelope
of the measured acoustic loss factor indicated by the horizontal
line at q“ = 0.05 and sloping off above 2000 Hz was used as compu-
ter input. As can be seen, the measured acoustic loss factors
bounce around and identifying the few data points with any speci-
fic acoustic modes was impossible.
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Figure 35 shows the computed value of the trim transfer
coefficient (i.e., =10 log1l). Again the influence of the value
of Vh,_ is apparent. For the present work, a value of Ne = 0.5 was
selected to prevent a large negative excursion in the range
between 1000 and 2000 Hz.

The acoustic modes were computed with Eq.(58) and the structural
modes with Eq.(60), where the model was a curved isotropic panel
running from floor line to floor line. The acoustic mode normal-
ization was determined with Eq.(59) and the coupling factors with
Eq.(61). The joint acceptances came from Eq.(26) of Ref.[1]
where sz is computed with Eq.(26) as is, and J?;‘ with Eq.(26)
changed such that N replaces M and L7 replaces Lx . As before

.2___ «2 — 2 2
Jr=Jdmn= MmN

Figure 36 shows the predicted noise reduction and Table 2 presents
the computations in detail.
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TABLE 2

Modal Pairs Having Highest Contributions
to Interior level

Unstiffened Cylinder with Floor and Insulation

Band Acoustic Structural Contribution Overall Noise
Center Mode Mode* <p2> <p3>  Reduction
Freg. q,i (or n)Freqg. M,N Freq. ?533; 2—53; NR
50 END CAPS JA072E-04 -1072E-04 49.7
63 END CAPS .1288E-04 .1288E-04 48.9
80 END CAPS .1905E-04 JA905E-04 47.2
100 END CAPS +40T4E-04 4074804 43.9
125 END CAPS «2630E-01 .2630E-01 15.8
160 0,5 837.5 1,5 140.9 .5008E-04
0,3 657.5 1,4 187.3  .6510E-04
2,0 283.5 1,5 140.9 .T123E-04
0,2 444.9 1,5 140.9 886 TE-04
0,1 379.6 1,4 187.7 9732E-04
END CAPS 1049E-02 JAT61E-02 27.5
200 2,1 473.8 1,4 187.7 .9104E-04
2,3 716.0 1,4 187.7 «1166E-03
0,6 937.1 1,4 187.7 «2262E-03
0,3 657.5 1,4 187.7 .TOT6E-03
0,1 379.6 1,4 187.7 1163E-02
END CAPS 2511E-04 .2553E-02 25.9

¥ N = number of circumferential half-waves.
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TABLE 2 (continued)

Modal Pairs Having Highest Contributions
to Interior lLevel

Unstiffened Cylinder with Floor and Insulation

S

Band Acoustic Structural Contribution Overall Noise

Center Mode Mode <pj> <p{>  Reduction
Freq. a,i (or n)Freq. M,N TFreq. 35 35 NR

e €
250 0,1 379.6 1,2 620.1  .5523E-04

0,1 379.6 1,4 187.7  .8284E-04
2,0 283.5 1,9 245.1  .1133%E-03
0,2 444.9 1,3  309.6  .1549E-03
2,0 283.5 1,3 309.6  .1709E-02 2466E-02 26.08

315 2,2 527.5 1,3 309.6 .8007E-03
0,1 379.6 1,2 620.1  .8769E-03
0,4 703.7 1,3 309.6 «2269E-02
0,2 444.9 1,3 309.6  .1094E-Of1
2,0 283.5 1,3  309.6  .3384E-Of .5033E-01 12.98

400 0,1 379.6 1,4 187.7 .6424E-03
3,0 425.2 2,5 434.4 301 2E-02
1,2 466.9 2,5 434.4 «3064E-02
0,2 444.9 1,3 309.6 -1165E-01
0,1 379.6 1,2 620.1 -1576E-01 ST19E-01 14.30
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TABIE 2 (continued)

Modal Pairs Having Highest Contributions

to Interior Level
Unstiffened Cylinder with Floor and Insulation

Band

Acoustic Structural Contribution Overall Noise
Center Mode Mode <p§> <p52L> Reduction
Freq. q,i (or n)Freq. M,N Freq. ?13§>' @; R
500 2,2 527.5 1,3 309.6 133TE-02

0,1 379.6 1,2  620.1 2001E-02

1,2 466.9 2,5 434.4 «3485E-02

2,1 475.8 1,2 620.1 .6951E-02

0,2 444.9 1,3 309.6 «9709E-02 2751E-01 15.60
630 391 570.0 2,4 622.6 «3651E-02

2,1 473.8 1,2  620.1 «3664E-02

0,1 379.6 1,2  620.1 «6530E~02

1,3 672.6 2,4 622.6 «5600E-01

0,3 657.5 1,2 620.1 .TOT8E-O1 4552E+00 8.09
800 3,3 783.0 2,4 622.6 «1863E-02

1,4 T7.9 2,3  960.2 .2184E-02

3,4 822.2 2,3 960.2 24TTE-02

0,5 837.5 3,5 829.4 <4922E-02

2,5 834.1 3,5 829.4 «1144E-01 <3643E-01 14.39
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TAELE 2 (continued)

Modal Pairs Having Highest Contributions
to Interior level

Unstiffened Cylinder with Floor and Insulation

Band Acoustic Structural Contribution Overall Noise
Center Mode Mode <p}> <pi> Reduction

Freq. q,i (or n)Preq. M,N PFreq. G S NR
1000 2,7 1001.3 3,5 829.4 +2361E-02

3,6 1029.0 4,6 9M.3 «2678E-02
2,6 979.0 3,4 1128.2 -3087E-02
2,5 884.1 3,5 829.4 «3591E-02
4,6 1095.2 3,4 1128.2 «6439E-02 A339E-01 13.83

1250 5,9 1322.7 6,7 1351.8 .276TE-02
3,9 1195.0 4,5 1228.3 .3792ZE-02
5,7 1193.5 4,5 1228.3 .5530E-02
4,6 1095.2 3,4 1128.2  .5838E-02
4,10 1329.8 5,6 1297.4 .6185E-02 .5306E-01 12.75

Discussion of Results

In general the results of the predictions are good, the shapes

of the measured and predicted curves being quite similar. Below
125 Hz the predictions are based on the end caps. The plateau
appearing in the measurement between 250 and 1000 Hz has been
predicted. This is followed by a rise in the noise reduction and
then a sharp increase between 3150 and 5000 Hz due to the 2 mil

vinyl film covering the fiberglass on the cylinder wall.
This econclusion is evident from examination of Fig. 35. In the
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160 and 200 Hz bands, the measured noise reduction exceeds the
predicted value, however, the sharp drop at 250 Hz is basically
predicted once the density of resonant acoustic modes is
sufficient. Another interesting observation is that the
prediction generally tries to follow the measurement beyond 1000
Hz, that is rising slightly to a value above 20 dB before the
effect of the vinyl film is felt. It is emphasized that this
calculation is made using the complex modal characteristics of the
cabin space created by the floor partition. To our knowledge no
sound transmission prediction of comparable complexity has been
attempted before.

5.2.3 Predictions for the 0.02 in Ring-Stringer Stiffened
Cylinder with Floor and Trim

The calculation of the acoustic modes was made with Eq.(58). The
finite difference data were used because of the presence of the
floor. The structural modes were computed with Eq.(60), where the
model was that of a curved orthotropic panel running from floor
line to floor line. The acoustic mode normalization was deter-
mined with Eq.(59) and the coupling factors with Eq.(61). The
joint acceptances came from Eq.(26) of Ref.[1] and were calcu-
lated in the same manner as they were previously for the 0.063 in
cylinder with floor (see 5.2.2).

Acoustic Loss Factors and Trim Transfer Coefficient

Predictions were made of the acoustic loss factors for various
values ofth of the lead-vinyl covering the fiberglass on the
sidewall. These are compared to measurements in Figure 37. If
there is assumed to be no dissipation in the trim (“t = 0), the
predicted acoustic loss factors do not match well with the
measured data. However by assuming the trim panel is dissipative
and taking a loss factor of 0.5 or greater, fairly good predic-
tions can be achieved. Not only are the wide excursions in the
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predictions of the acoustic loss factor suppressed, but also those
present in the trim transfer coefficient as seen in Figure 38. A
value °f'1t = 0.5 was chosen for the noise reduction computation.

Structural Loss Factors

Figure 39 shows the measured structural loss factors. Also shown
are the predicted values of n;. Since the trim was present when
the structural loss factor was measured, theoretically n; was
measured. However, the excitation was with a speaker inside the
cylinder and ideally, to determine qé, the exterior should be
excited allowing the trim to react to that response to provide the
added damping. Although the predicted n; is very high at 400 Hz
and below, it is seen from Fig.38 that this is precisely the
region over which -10 log Tl is negative, that is, when an
increase in the power flow to the interior due to the presence of
the trim is predicted (as compared to the no trim case). The
terms dominating the q; are determined by the value of the para-
meter C,, which becomes large and acts to reduce the power flow,
i.e., in opposition to the effects caused by‘TL being greater than
unity. At frequencies where‘T% is less than unity (i.e.,

- 10 log‘tt >O),‘q;,drops by at least an order of magnitude.

Influence of Stringer Exposure

At high frequencies, when the cavity response is resonant and the
structure response is also, the exposed stringers (protruding
above the trim) can be a significant contributor to the interior
sound level. 1In fact, if the power flow through the trim itself
becomes sufficiently low, the stringers can become the primary
contributing source. In the present case, the power flow through
the trim is predicted to be very low at high frequencies leading
to high noise reductions. Since the primary contributing struc-
tural modes are all acoustically fast, the radiation off the
stringers is simply the ratio of exposed area of the stringers to
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the transmitting area (with trim). Thus the acoustic power inflow
due to radiation from the stringers is estimated to be (approxi-
mately) given by the power flow computed to pass through the
cylinder wall had the trim not been present, multiplied by the
ratio of the exposed stringer area to the cylinder wall area
(floor-to-floor), but allowing for the increased structural damp-
ing present (i.e.,‘n; ) being created by the trim. This leads to

stringers €trim on
W;:’ poved _ Astringers Win ¥t
Ac.ll.wall ‘ erl

The dissipation in the cavity is almost exactly the same in both
cases, i.e., with or without stringer exposure. Thus the space
average mean square pressure in the interior due to stringer
exposure is given by

,_i?*‘:j straqers
S

<p >k . Wiorresed
T2 - o exposdre T n
<Fz >S.,t t in m‘“‘

or the difference in interior sound pressure levels is

sUre oi€ .
SPLT T T spL TS 10 104 Astrimers _ g log |2
Acﬂ \ﬂdll

Thus the interior level with stringers exposed is estimated to be
greater than the interior level without exposure by an amount in
dB equal to

TLt"i‘ 10109 M .

Acy\- wall

Figure 40 shows the predicted noise reductions and Tables 3 and 4
present the computations in detail.
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TAELE 3

Modal Pairs Having Highest Contributions
to Interior level

Stiffened Cylinder with Floor and Trim

Band Acoustic Structural Contribution Overall Noise
Center Mode Mode*® <p3> <p3>  Reduction
Freq. q,i (or n)Freq. M,N Fregq. <_p§ 52; NR
50 END CAPS «1445E-04 -1445E-04 48.4
63 END CAPS AT3TE-04 AT3TE-04 47.6
80 END CAPS .2512E-04 25128-04 46.0
100 END CAPS 5370E-04 .5370E-04 42.7
125 END CAPS .1698E-02 .1698E-02 27.7
160 2,0 283.5 1,1 91.7  .1854E-05
1,0 141.7 2,5 676.7  .3578E-05
0,1 380.0 1,2 416.5  .1236E-04
1,0 141.7 2,3 636.6  .3208E-04
1,0 141.7 2,1 1727.7  .7993E-04
END CAPS .1698E-02 A828E-02 27.3
200 0,2 445.3 1,3 298.8  .4178B-05
1,0 141.7 2,1 1727.7  .5409E-05
2,1 474 .1 1,2 416.5 «6116E-05
2,0 283.5 1,1 91.7  JANTE-04
0,1 380.0 1,2 416.5  .B1T78E-04 J1276E-03 38.94

¥ N = number of ecircumferential half-waves.
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TABLE 3 (continued)

Modal Pairs Having Highest Contributions
to Interior Ievel

Stiffened Cylinder with Floor and Trim

Band Acoustic Structural Contribution Overall Noise

Center Mode Mode <p§> <p_3L> Reduction
Freq. q,i (or n)Freq. M,N Freq. z-p—?' zﬁg; NR
250 0,2 445.3% 1,5 298.8 «268TE-04

2,1 474 1 1,2  416.5 4111E-04
2,0 283.5 1,3 298.8 +3309E-03
2,0 283.5 1,1 961.7 «TO44E-03
0,1 380.0 1,2  416.5 . T146E-03 1914802 27.18

315 0,2 445.3 1,3 298.8 +2222E-03
2,1 4741 1,2  416.5 «2415E-03
2,0 283.5 1,1 9%1.7 <1357E-02
2,0 283.5 1,5 298.8 +1400E-02
0,1 380.0 1,2 416.5 1161E-01 1536E-01 18.14

400 1,2 467.3 2,3 636.6 - 1862E-03
1,1 405.5 2,2 967.0 «2452E-03
2,1 474 1 1,2  416.5 < T846E-03
0,2 445.3 1,3 298.8 .1253E-02
0,1 380.0 1,2 416.5 .T65TE-02 J081E-01 19.66

-133-



TABLE 3 (contimued)

Modal Pairs Having Highest Contributions
to Interior Level

Stiffened Cylinder with Floor and Trim

—

Band Acoustic Structural Contribution Overall Noise

Center Mode Mode <p> <p}> Reduction

Freq. q,i (or n)Freq. M,N Freq. e STE NR
500 2,2 527.9 1,3 298.0 .2160E-03

0,1 380.0 1,2 416.5  .4274B-03
0,2  445.3 1,3 298.8  .7272E-03
1,2 467.3 2,5 636.6 .8114E-03
2,1 474.1 1,2 416.5  .1321E-02 J4200B-02  23.77

630 0,3 658.1 1,2 416.5  .3011E-03
0,3 658.1 1,4 397.4  .3685E-03

1,3 673.2 2,4 552.4 .6084E-03
1,4 718.5 2,3 636.6 8336E-03

3,2 615.7 2,3 636.6 «1105E-02 A402E-02 23.56

800 0,5 838.3 3,5 808.5 -1508E-03
2,3 T16.8 3,4 811.9 «2682E-03
2,5 884.9 3,5 &808.5 «3294E-03
4,3 868.6 3,4 811.9 «4294E-03
1,4 718.5 2,3 636.6 «6685E-03 .2874E-02 25.42

-134~



Modal Pairs Having Highest Contributions

Stiffened Cylinder with Floor and Trim

TABLE 3 (continued)

to Interior lLevel

Contribution

Band Acoustic Structural Overall Noise
Center Mode Mode <p3> <p}>  Reduction
Freq. q,i (or n)Freq. M,N Freq. Z_p’é; Zﬁ? R
1000 4,4 904.2 3,3 1004.2 S1T3E-04
2,6  979.9 3,6 960.1  .6108E-O04
55 1097.7 4,5 1032.0 .6253E-04
3,6 1029.9 4,4 1108.5 .8596E-04
3,7 1051.1 4,5 1032.0 «.2210E-03 L1250E-02 29.03
1250 4,9 1253.4 3,7 1218.7 +1426E-04
3,9 1196.0 2,7 1174.3 «1446E-04
1,9 1126.8 2,7 1174.3 «2042E-04
6,7 1263.4 5,5 13039.0 L2T24E-04
0,9 1117.9 1,7 1165.1 «3816E-04 «346TE-03 34.60
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TARLE 4
Effect of Stringer Exposuret

e '* Computed NR ; -

Frequency w/o Stringer  -10 log|C"|°  Estimate of IR with
(Hz) Exposure Stringer Exposure*
1000 29.0 20.8 17.0
1250 34.6 25.4 18.0
1600 40.8 29.6 20.0
2000 50.9 33.8 25.9
2500 59.9 37.5 31.2
3150 65.3 ho.7 33.4
4000 7.6 43.5 36.9
5000 74.7 45.9 31.6

+ Stringers exposed area = 0.145 m?

Cylinder wall area (trim covered) = 1.09 m?
V\t = 0-5

Discussion of Results

As in the previous cases, the prediction below 125 Hz is based on
the end caps' transmission. While the prediction below 125 Hz is
not particularly of concern, it can be seen that the measured
noise reduction is in closer agreement to the prediction than it
was for the bare stiffened cylinder. It can be seen from Table 3
that at 125 and 160 Hz the end caps dominate. This is due to
their intimate coupling with the (1,0) acoustic mode at 141.7 Hz.
Incidentally, recall the (1,0) acoustic mode is g =1, i =0
where i is the assigned order of the 2 dimensional modal pattern
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in the cylinder cross section when the floor is present (mode O
of Appendix C). By 200 Hz, the end cap contribution can be
ignored. The measured and predicted noise reductions rise
sharply due to the absense of any resonant acoustic modes and
thén fall dramatically as has been observed in the previous two
comparisons. However the curves rapidly bend upward because the
trim lining is so heavy (see Fig.38). The prediction is that
the noise reduction could rise to over 70 dB by 5000 Hz if the
stringers were not exposed. Actually, it is a pretty remote
possibility that it would ever achieve that level even if the
gtringers were not exposed because of other shorting paths
(vibration of the end caps, exposed metal such as the floor,
etc.) In the present case, the stringers are obviously the
shorting mechanism (Table 4). The transition between the two
curves in Figure 40 (stringers exposed versus not exposed) is
not clear, although it could probably have been determined; it
did not seem important to do so. It is felt that the present
interpretation of the results is reasonably accurate, and that
basically all the structure in the curves has been explained
with the present model.

5.3 BStatistical Analysis of Prediction Error

The remaining question to be answered is whether there is a bias
in the predictions, that is, does the analytical model (with the
best input data that can be generated) tend to over or under
predict the noise reduction on the average.

Table 5 contains the measured and predicted noise reductions for
the three test articles. It includes the noise reductions for
frequencies at and above 125 Hz, and excludes the transition
region data for the stiffened cylinder with floor and trim where
the stringers' exposure first begins to contribute significantly.
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Of interest is whether there is a statistically significant

difference, on the average, between the predictions and the

measurements for these data, i.e., are the predictions biased?

TABLE 5
Predicted versus Measured Noise Reductions

Band .02 Stiffened .06 Unstiffened .02 Stiffened
Center w/o Floor w/Floor w/Floor & Trim
Freq. Predicted Measured Predicted Measured Predicted Measured
125 22.8 22.7 29.8 27.9 27.7 30.4
160 19.1 19.2 27.5 34.9 27.7 31.9
200 24.0 18.3 25.9 351 38.9 36.7
250 34.4 24.9 26.1 17.6 27.2 %0.9
315 28.3 11.5 13.0 16.6 18.1 27.0
400 2.1 2.6 14.3 15.4 19.7 2.0
500 5.1 5.3 15.6 16.4 23.8 16.9
630 -12.2 4.2 8.1 17.8 23.6 21.3
800 6.7 6.3 14.4 16.2 25.4 22.1
1000 2.8 6.1 : 13.6 15.0 Transition region
1250 -1.3 3.9 12.8 21.5 data are not
1600 4.2 4.1 19.3 23.3 included.
2000 5.7 4.6 20.7 23.5 25.9 30.4
2500 7.3 3.8 24.2 24.1 3.2 321
3150 8.2 3.3 24.0 22.1 33.4 31.6
4000 10.6 8.0 3.1 29.2 %6.9 %6.7
5000 12.3 10.0 34.4 36.3 37.6 39.4
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To determine if there is any bias, the differencesA;; 1 = 1,2,
«esy, n, between the predictions and measurements in each
one-third octave band are computed and their mean and standard
deviation determined by pooling all data from the three tests,
providing a sample size of n = 48. The sample mean and standard
deviation are

A=-056d8 ; s=546dB.

Under the hypothesis that there is no discrepancy on the
average, that is,

140 *Ma= 0,

the sampling distribution of E becomes

where'kn_‘ is the student "t" variable with n-1 = 47 degrees of
freedom. The acceptance region for the hypothesis above is
given by

S = S
~ Tt < B S St

For a two-sided test at the & = 0.05 level of significance,
tQ‘I;0.0ZS = 2.01: soE must fall between -1.59 and +1.59 dB.
Since the sample mean A (=-0.56 dB) falls within the
acceptance region, there is no reason to question the validity
of the hypothesis, i.e., there is not a statistically
significant difference between the predictions and measurements
on the average (at the & = 0.05 level of significance).
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On the other hand, there is a substantial random error in the
predictions versus measurements as indicated by the standard
deviation of 8 = 5.5 dB for the A values. This means that one
can expect a discrepancy of more than 5 or 6 dB for about
one-third of the predictions.

In the future, output from the interior noise program should
include, in addition to the predicted noise level, a measure of
the quality of the prediction based upon a statistical analysis
of the comparison data accumulated in the various tests. This
measure would be the confidence intervals, which might be
computed for the various frequency bands by scaling-up the test
articles to the fuselage diameter of concern. It is felt that
there will continue to be a substantial random error although

its existence will almost always be associated with input data
deficiencies.
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Transfer Matrix for Trim Insulation

Consider a harmonic pressure wave moving from left to right in
the insulation of Pigure 1 (imagine that the skin and lining are
not present). When the wave reaches x = L, it is reflected. If
the pressure amplitude in the incident wave at x = L is P( and
the pressure amplitude in the reflected wave is , then the
pressure at any point x measured from left to right is (dropping

the efu”t dependence)

bo0= Fiet(kﬂ«)(x—L) 4 \D’ e-i-(ka-\«)(X“L), (A1)

where k is the acoustic wavenumber in the insulation and &« is
the decay constant. Note, that when x = L,

‘:(L) = P+ Pr -

Let Y=o¢t—tk . Then

¥ (L~X) ~¥ (L~
poO= pre” Ot pre T (n2)
The particle velocity is
V(X) = P ¥ P e ¥ ()

W

where W is the wave impedance in the material, that is
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W = f’/\/ )

where p is the pressure and v is the particle velocity for a
wave running in the material when the material has unlimited
extent (W is independent of x).

Then, when x = L,

v(Lv =

Now let

Also define the impedance Z&, as
r— Va. ¢
Z,= P/ Va (a4)

Then,

. Z.—W
F"‘F"(szi-w)'

But

P
F‘ = T YL, Zi-W %L
A ——— e
e’= < Z 7w
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Therefore

Z. P

'Fz = . (A5)
Z; coshyL +WsinhvL
Also, it is found that
Wv
V.= ' ’ (A6)

Z, Sinh¥L + WcoshyL

Let

cosh¥L.= C
sinh¥L= S.

Using Eqs. (A4), (AS5), and (A6), after some algebra, it is found
that

— WS
Salirrar ol Chalies w0

and
C S/wW
vz' cz—sg_ V| Cﬂ_ st F.
Now
(:E__S;z== l
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SO

t"*__C—wsF

V2 -S/W C ]V

I

This is the desired transfer matrix in terms of input and output
pressures and velocities.
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APPERDIX B

Photographs of Test Articles
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APPENDIX C

Finite Difference Results
Acoustic Modal Patterns and Resonance Frequencies
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FIGURE 7. GRID COORDINATE SPECIFICATION

=172~



FIGURE 8.

FUSELAGE STRUCTURAL MODELS
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SUBPANEL
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FIGURE 9. CYLINDER SUBPANEL DIMENSIONS (SKIN ONLY)
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FIGURE 10.

CYLINDER IMPERFECTION MODEL
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FIGURE 13. STATUS OF CYLINDER NOISE REDUCTION PROGRAM (PHASE II)
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FIGURE 17. NOISE REDUCTION TEST INSTRUMENTATION
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930 Hz

FIGURE 21. MODAL PATTERN FOR A 30° FLOOR
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FIGURE 22. DETAILS OF THE 30° FLOOR MEASUREMENT
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SYMMETRIC MODE NO.

FIGURE 23.

FINITE DIFFERENCE CALCULATION (40° FLOOR)
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FIGURE 40. COMPARISON OF PREDICTED AND MEASURED NOISE
REDUCTIONS, 0.020 IN. STIFFENED CYLINDER
WITH FLOOR AND TRIM (STRINGERS EXPOSED)
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