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1.0 SUMMARY 

As a part of the NASA Langley Research Center program to identi­
fy the important parameters governing sound transmission into 

airplane interiors, and to determine noise control methods, an 
aircraft interior noise prediction model is being developed by 
Bolt Beranek and Newman Inc. (BBN) of Los Angeles. The work 
includes analytical modeling and integration of information and 
technologies needed to understand sound transmission through a 
fuselage wall into an aircraft cabin. A three phase program has 
been defined for accomplishing the goal. 

In the first phase (now concluded), the basic analytical 

modeling of the transmission problem (interaction of the 
structure with the exterior and interior acoustic fields) was 
undertaken and preliminary validation studies were conducted 
using an unpressurized, unstiffened cylinder as a test article. 

Results of that work were presented in Reference [1]. 

The second phase of work, reported in this document, includes 
the development of the general aircraft interior noise model and 
the laying out of the basic master computer program. Validation 
studies are considered using more advanced test articles (one 
being a stiffened cylinder with a floor partition and interior 
trim, i.e., insulation and lining). 

The third phase, now underway, involves completion of the 

analytical models (including propeller excitation) and software 
development with application to an actual (or simulated) 
aircraft fuselage, along with validation tests, comparisons, 
refinements, and documentation of the finalized model and 

software. 

As stated, this report presents the results of the Phase II 
studies. The theoretical developments of Phase I that describe 

the interaction of the structure and the interior acoustic field 
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are generalized to inclune the effects of sinew~ll insulation 

and lining (trim). The new analysis leads to a transmission 
coefficient that multiplies the previously derived expression 

for the power inflow to the cavity for the case where the trim 

is absent and an additive term giving an increase in the damp­

ing of the sidewall structure by the trim. Also a more precise 

calculation of the power flow from a structural mode closely 

coupled (in frequency) to an acoustic mode is developed to 

account for the influence of the radiation damping of the struc­
tural mode by the highly receptive acoustic mode. 

A major andition is the generalization of the geoMetry of the 

acoustic space to include a floor (partition). The complex 
cross-section's modal properties are computed using a finite 

difference approach. Appropriate normalizations and use of the 
data for calculating the acoustic/structural coupling terms ann 

t,e cavity loss factors (using predicted wall admittances) are 

also detailed. 

Comparisons of noise reduction predictions with measurements are 

presented for three test articles: 

1) a ring-stringer stiffened cylinder without floor or trim; 

wall thickness of O.000508m (0.020 inches). 

2) a 0.0016m (0.064 in.) thick unstiffened cylinder (the Phase 
I test article) modified with a floor partition ann lined 

with a 0.0127m (0.50 in.) thick layer of PF-105 fiberglass 
that is covered with a O.0000508m (0.002 in.) vinyl 

film. 

3) a 0.00050Rm (0.020 in.) ring-stringer stiffened cylinder 

(same as (1) above) with floor partition lined with a 

simulated trim consisting of a O.0127m (0.50 in.) thick 
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, 

layer of PF-I05 fiberglass covered with a 0.00119m 
(0.047 in.) thick layer of lead vinyl weighing 2.44 kg/m2 

(0.50 lb/ft2)~ with a 0.0127m (0.50 in.) layer of PF-105 
fiberglass on the inside of each end cap and exposed 
directly to the interior. 

To our knowledge no attempt has ever previously been made to 
compute noise reductions for configurations as complex as cases 
(2) and (3) above. 

2.0 IR!RODUCTIOR 

The present study has the specific goal of developing an analyti­
cal model that can be used to predict the sound levels in a ring­
stringer stiffened cylinder that has a partition simulating a 
cabin floor and insulation and lining on the inside of the 
cylinder wall Simulating a basic cabin sidewall trim. 
Theoretical developments for harmonic (tonal) excitation and for 
excitation by a reverberant acoustic field are given. 
Predictions of the noise reduction for three different test 
articles are compared to measurements for purposes of model 
validation. No calculations are presented for tonal excitation 
in this report (some have already been given in [1]). Tone 
prediction capability is to be brought to a practical level in 
Phase III~ when the propeller induced exterior pressure field 
description is to be incorporated into the model and the modal 
forcing functions derived. 
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2.1 Analytical Model 

In Reference 1, a basic discussion of the power flow technique 
adopted for this project is given. To a large extent, the 
concepts used for the predictions of concern here have been 
developed in References [2] and [3]. Rowever, in the Phase I 
report, results from [2] and [3] were specialized to include the 
case of harmonic (tonal) excitation. In this report, the 
concepts previously developed in [1], [2] and [3] are extended, 
mainly by including the trim dynamics. Also, although including 
such information does not represent an advance in the concepts of 
Phase I, much more complex structural and acoustic properties are 
considered. Most notable is the use of finite-difference modal 
data for the cavity. Also the structural (modal) properties of 
the orthotropic cylinder (one stiffened by rings and stringers) 
are utilized. 

2.2 Report Organization 

A brief overview of the organization of this report is included 
here. Basically this report presents results of (1) analytical 
derivations, (2) experimental tests, and (3) validation studies. 

In the analytical development, there is to begin with, one funda­
mental goal, that being to. incorporate the trim dynamics. This 
has to be done for both the low and high frequency models. After 
that has been accomplished, consideration is given to improving 
the precision of calculations of power flow for certain coupled 
acoustic and structural modes by including the effect of radia­
tion damping of a highly resonant structural mode when closely 
coupled to a highly resonant acoustic mode. Generalization of 
the tonal transmission calculation is then considered; however 
the question of exterior field for the propeller excitation 
remains for the Phase III study. After that the question of 
cavity modes for the cabin configuration (i.e., that formed by 
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the cylinder wall and floor partition) is addressed. The 
normalization and use of the finite difference data is then 
considered. Special problems in the volume stiffness controlled 
regions of the test articles are then discussed (this extreme low 
frequency regime will lie below the regions of concern when full 
scale fuselage structures are considered). Finally a brief 
overview of the basic master computer program is given. 

The parts of the report concerned with the experimental work 
describe the tests, hardware, and data acquisition and reduction 
techniques. 

Comparisons of predictions and measurements are presented for the 
noise reductions of the three test articles. The statistical 
analysis of the noise reduction data and comparison technique and 
philosophy are consistent with and identical to that of Ref [lJ. 

2.3 Program Management 

The work was accomplished in joint effort by BBN/Los Angeles and 
NASA Langley Research Center. The experimental work was done at 
NASA Langley by C. M. Willis and W. H. Mayes. Mr. Mayes acted as 
LaRC technical representative of the contracting officer (TRCO). 
L. D. Pope served as BBN program manager. 
this report was provided by C. M. Willis. 

Most of Section 4 of 
A. G. Piersol of BBN 

assisted with the statistical evaluation of the comparison data 
and M. D. Sneddon of BBN mapped the acoustic modal pattern in the 
cylinder with the various floor partitions. 
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3.0 ANALYTICAL MODEL 

The purpose of the first part of this section is to incorporate 
the effects of sidewall trim (insulation and lining) in the 

transmission analysis. In the present case, the interaction of 

the exterior pressure field, fuselage structure, insulation and 

lining, and interior field is of concern. To integrate the trim 

dynamics into the analysis, the basic expressions that describe 
the response, transmission, and absorption characteristics of the 
various components of the sidewall system must be considered. 

3.1 Trim Dynamics 

The trim is assumed to be representable by a transfer matrix: 

or 

where referring to Figure 1, 

WI. is the displacement of the fuselage skin at i 
t': -is the pressure on the inner surface of the skin at X 

WI is the displacement of the trim panel at i 
• 

~i is the pressure on trim inside surface at'i - (cavity side). 

The coefficients are related as follows: 
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The representation above is a simple one that will lead to a 
tractable problem. It is also felt to be a reasonable one 

because of a number of factors. Its simplicity lies in the fact 
that the pressures and displacements occurring at each location 
a~e assumed to be related (across the ~rim) on a point-by-point 
basis. This may seem to be a very restrictive model, but since 
the transmission of acoustic waves is to be considered, the 
pressures and displacements will vary rather slowly with X • 

One could argue that for oblique incidence the pressure at ~ 
point on the incident wave front would be felt by the outer and 
inner surfaces of the insulation at different coordinate posi­
tions, say X and~' as it passes through it and that the wave 
would travel a distance greater than the thickness of the 

insulation blanket as it did. However, the acoustic wave inside 
the blanket propagates in a direction that is much closer to the 

normal than does the wave outside the blanket because the speed 
of sound in the blanket is less than the speed of sound in air 

(Snell's Law). Because of this the blanket does not appear to be 
much thicker for oblique incidence than for normal incidence [4J. 
Thus there is justification for the simple model postulated. It 
is important to note that the transfer matrix representation 

given above applies only across the trim insulation and lining. 
The fuselage skin (sidewall) is not involved. The sidewall 

response obeys a much more complex dynamical relation. 

The response of the sidewall (for harmonic excitation) is 

w. (J<> = J G(j(I~j"') [ ~O(5(') - t~ (~') ] "x', (1) 

where G (l(~;c.a,) is the structure's Green's function, the form of 

which will be presented shortly. rOt;t~ is the exciting exterior 
pressure field. The integral is performed over the excited 
structural area. 
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The interior acoustic field acting on the trim lining is 

(2) 

where Grp('i:\i'j"') is the Green's function for the cavity and r is 
the density in the cabin. 

The exterior field is ( fo= exterior air density) 

fbi (i) + pow'} G; (XI'k;W) w,OOdY; 

r"I(~) + rr-(~/) , 
(3) 

~~(iti.) is the exterior space Green's function, 
pr(~~ is the radiated pressure field on the exterior surface, 

rb,(iS is the blocked pressure field on the exterior surface. 

The three equations (1),(2), and (3) and the trim transfer matrix 
(which consists of two equations) forms a system of five equations 

in five unknowns: r~ , r~ , ~, W,,' and ~r (or ~o ). The blocked 
pressure field is oeterminable once the geometry of the structure 
is fixed. It is now necessary to solve the system of equations to 
determine the effects introduced by the presence of the trim. 
Before doing this, note that if the trim is removed from consi­
deration, t~ = p~' and 'ttl, = WI. reducing Eqs. (1), (2), and (3) to 
the previous set solved in References [2] and [3] • 

. 
To begin, ~~ and ~~are to be eliminated as variables. From the 

transfer matrix 

. . 
F~ = 0(11 p~ + OC 1'LW.,. 

. . = 0(" ~~ +O(.I~ (0.2,1 p~+ Q~'1 WI). 
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Therefore 

. 
f~ == (4) 

where 

c., = • 

Also 

• 

WI = 0(2.1 p: + «~.,. W'2. 
giving 

, 
or 

(5) 

where 

J • 

At this point, it is empha~ized that in Eq.(4) the coefficients 

C, and ~are subscripted and in Eq.(5), the coefficients C' and 
CW are superscripted. These coefficients are found to play 
prominent roles in describing the trim effects. 

Continuing now, Eqs.(4) and (5) are substituted into Eqs. (1) and 
(2), and after using the defining relations for the Dirac delta 
function, i.e., in the forms 

VIII Ci) = f WI ell') S (it~i) c!j I ) 

and 

y! (is = f 'p:li) ~ (i-x\ di ) 
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it is found that Eqs. (1) and (2) become the following 

J [SOt:"i() + C w ~(i'~;"')J W,li') di' 

= J6 (iIX;w) [1"'(;(\:.... c.r r~(i)] dX/. (la) 

J [ Hx-x~ + fW"l.cJ E!f (i lijul)] r~ (i:) c\y; 

= -fW"'CWJ Gtr(X,1'Y-1jul) V'I.l'i) di' · (2a) 

Eqs.(la), (2a), and (3) must be solved simultaneously for the 
modal displacements of the fuselage wall. 

Consider the left hand side of Eq.(la). Let 

'11.(9:) = L '5 "'~i) 7 

S Ii 
where 'sis the modal coordinate and ~Ci) the associated modal 
function of the fuselage wall. Then the left hand side is 

f[ ~(i!..il) -t- C .... G(XIY;;W)] I: ,so/eX)dii7' 
s 

. .. r 

\' S "J \' 'It CX) 1/1(9:> ~ = '-' !s 1/1(:;:.) + C w L., L M '1'rlw) fs lPexS d~/, 
s S to- .. 

where the structure's Green's function has been introduced 

1J! r- 1/1 t- , 
c(- -~ ) _ \' (i) (i) 
'-( ~X)W - L., M Y. (w) 

t ,. .. 
with modal mass 

MI" = f 1'1'1 0/,,;) d;r J 

and receptance 

Y ... (IAl) = W:[cl- ~r) - ~,\"" J ' 
-10-



where~~ is the resonance frequency, ~r the mode's loss factor, 
and tn the surface mass per unit of area. 

Using the property of the orthogonality of the modes, the left 
hand side of Eq.(la) reduces to 

Cw/rn Ys,,,,) is a dimensionless quantity. 

Therefore Eq.(la) becomes 

... 
The above is multiplied through by m l/ICiJ, and integrated with 
respect to i to obtain 

But according to Eq.(3) 
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Therefore 

(6) 

Now consider Eq. (2a). The right hand side becomes 

- rtJ'&Cwf q,(itl~';w) L (s 1/1~~ .Ii(. 
s 

",'" , f-iultiplying Eq. (2a) through by 'I' (X) and integrating gives 

J 1/I~isf [S (i,.-x,') + rCo'"c,P G,(ili',"')J t~(iJ eli el;t' 

- - fc.>"c.wf "'(~)f Gtr(i.li';IAl)L ~s "'~ii.) dx.Ji.' -
s 

- - rc..1'&.c,w L ($ f f GrCXIi.'jw) iiwCi) d.iJ~' 
5 

~ w 't""'" Irs &5 ' = - rw c L, \.. 
S 

where being consistent with previous definitions [2,3J 

The left hand side can be rewritten to yield 

rJ + c.'rw'Z.ff trJiS <1p(ilxj"') r:(i') J9.Jit' 

:= - f"":'CW L Irs ts · 
5 

-12-
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to­
Return now to Eq. (6) and consider rpr ~ 

r; = J 1JI~X) rrU:,cli 

= J t~X{folAl~J 9"r(~ii;"')WI(i') JR'] J; 

-= r·"'''' L e-5 f J ~j. (i,~I; 1Al) 1JtrX) 1JI~i') dit ~ J 

S 

or using the previous definition of Jr·Co) as the integral 

appearing in the expression above [2,3J 

Now substitute Eqs. (7) and (8) into Eq. (6) 

Collecting terms in Cr gives 

{-~ "" [I +~..J +c.>~[P.J"" .,. rcreWIPr]) (to 

+ W'J. L [r .. .:rrs 
-t- fCrcw Irs] !s 

s.,r 
'-

(8) 

+ erc.r rw~ J f lJ!fiS 4"lX,x;..,) r:(X)Jidx'''' -ri\.. (9) 
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Consider the integral in Eq.(9): 

J J o/(x) Gf (1:I~; w) t~ (it, c:l;: d~' , 

with the cavity Green's function being given by 

\" ¢n(i.) cPn (:;:J) G, (~I~';&A) = ~ , 
1\ JJJCP~dQ(X~ -k&) 

where q)~(i) is the acoustic modal function for the nth mode of the 
cavity and ~niS the complex eigenvalue. According to the 
previous normalization [2,3J: 

V 
E" 

The integral therefore becomes 

where 

. 
r~l1:) ::;.L: Tl'".cPwa(R\ , 

In 

with 7rm = normal coordinate for interior pressure (dimensionally 
7Tmis equal to pressure). 

Now the surface integral 

, 

is identically zero in almost all cases when "''Fn . However, the 
surface area over which this integral is evaluated may not extend 
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completely around the periphery of the cavity since that area is 

the transmitting surface. In such a case, for a few acoustic 

modes, the above integral will not be identically zero. However 
it will be small in magnitude relative to 

Therefore, the following approximation is valid 

=L 
n 

where 

€nA f cp:(i.)d~ 
V (X: - k?) 

and A is the transmitting area. 

Substituting into Eq.(9) gives 

-15-
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Now reconsider Eq.(6) which can be put in a similar ~orm 

{-M,.Yr[' + ~J + ~ow~jr,.} er 

+ ro""" B .rrs ts 
S-:l:r 

- Cp L Un A t elll)\-") = - ft.:1 · (11) 
" Note that in the above use has been made o~ the relation 

= L 11' ... A.f (n)r) · 
n 

It is now necessary to eliminate the 1T~ ~rom Eqs.(lO) and (11). 

Let 

Then Eq.(10) becomes 

or 
ar"'-'r + L d"$ ~s + L h ... ", 1Tn = - f!rr ) 

S=lty n 11.. 

[ it J{!} + [ b J(1T} = {- r;'~.} (12) 
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Let 

~ .,..rs -' 
C,....s = row...J , 

d",,,, = - C,f A f 1(t\)r) • 

Then Eq.(ll) becomes 

From (13) 

[ d It c ]{ f} + [ d jt d ]{ 1T } = [ d It-fii.} , 
or 

-I -. 

{1T}=-[dJ[CJ{e}~[dJ (~~.). 
$ubstituting this into Eq.(12) gives 

[ tl ]{!} - [b J1 d 1t CJ{!} - [b ][ d ]{rFbJ = {-rr~,} , 
-I -I 

[[ it ]-[ b J[ei J[ c J]{e} = [[ b J [d ] -[I ]J{Ifw} , 
. 

or 

-I -I -. 

(~}=[[o.J-[bIdJ[cJJ [[bJ[dJ-[IJJ{~,}' 
(14) 

-17-



From this form, it is not obvious as to the influence of the trim 
on the sidewall response. Thus, the terms composing the 
coefficient matrices [a], [b], [c], and Ed] must be examined. 

First consider things that are known. Since coupling of structural 
modes by the acoustics is negligible, generally 

.,-~r 
Also the radiation damping term coming from~ can be included in 
the loss factor\~. Thus it follows that 

C rr ~ -M'Yr [I + . ~Yr J ' 
and 

Cr-.5 ~ O. 

Therefore [c] is a diagonal matrix (very close) = ~c-J. 
Also rrt- and 'Irs are so small that [ a ] is diagonal: l'a.J 

ctrr E!!! - M"Yr [I + 

Clr.s~ o. 

C w J 
m'( ... 

It follows that l"a.J::i! C'c...J (very close). 

Then 

) 

-I -I 

::r[[[rJ-[ bId JJ[Q.JJ [[IJ-[ h J[d J']{-~,} 
-18-



But the inverse of the product of matrices is determined from the 
relation 

This forM is quite similar to the case where trim is excluded. 

Without trim 

c(,. ... = - ____ 1_ 
M,. Yr-

• 

With trim 

where 

cw = • 

The solution is 

't-= -L (16) 

giving i: 

w, Ci) =£L 1/Ic'j) «rot r: ~ (\4» , 
r- i:. r'" 

which since eXt! -0 for t. r reduces to 

= - L vrrii:) o(n° r,:tu)) · (l7) 

... 
-19-



. 
tJ-To get r~(Xl from 

r~(i) = L Trn cPn(X) , 
n 

Eqs. (12) and (13) have to be reconsidered. Either can be used to -
obtain the 7Tn . From Eq.(12) 

[ClJ{e}+[bJ{Tr}={-rp~.} , 
or 

C~JU}+[bJ{u}:={-rr~,} · 
But by Eq. (15) -. 

{{}~~dJfrrb) · 
that is, ~ 

{ e} := CctJ{-r;bl} + { ~() , 

I!;'« I Ocrr r,~I' · 
This gives _. 

~4J[r4J{-~J+{{JJ +[b ]{ U} ={-rr~} , 

where 

or 

[b J(u} :=-- LtLJ{!€ } , 
i.e .. 

{tr) = -[b ltoJ{ eJ · 
Now 

. T T 

r~(~) =L: TrhcPn = { 1f }{ 4> }:= { q, }{ 7T }. 
n 

-20-



,. 

, 

From Eq. (5) , 

Thus 

~ CWW,CK), 

in the limit as acoustical coupling of structural modes is 
neglected, 1. e. , {!J -. O. 
The interpretation is this: while it is necessary to have a 

• 
precise calculation of 7Tn for purposes of determining r~(i), 

the values of 7Tn have little bearing on the calculation 

of ~~,~) and for all practical purposes can be set equal to zero 

for the ~~(X) calculation. 

This now allows a calculation of the power flow into the cabin 
using 

(18) 

Power Radiated into Cabin 

. 
The cross power spectral density of pressure bi at position 1: 

_I r 
with trim lining velocity at ~ is (for a one-sided spectrum) 

-21-



fi~ and ,,~~ are Fourier transrorms or the truncated random 
quantities (* = conjugate). 

Now 

Here the definition of the Fourier transform is 

-00 

Therefore 

But according to Eq.(2), 

Thus 

Sf~"..(xri) u.)) = -i.e"" {.;;_ ~ i.tT W~'i.',U» 

X f <Eir(~I~; w) W..j.<i.:IIJ) dx·} 

= -Lr..jJ f ~r ('4\ t'>[-~:. ... iT Wt,cx;w) WJi;u.»] d;<" -

-22-



-' Now let X'" X. The spectral density of power radiated internally 

is obtained by integrating S~"2.(~,W) over the transmitting 
area. 

This quantity is complex. The real part is the real power (i.e., 
cospectrum of power). 

Therefore 

But according to the previous finding 

Therefore 

-23-



and 

But 

So 

giving, upon introduction of the joint and cross acceptances, J~l(Q1), 

Now 

f'~ -
11'(10)) = ~ ~ (X~ ~~:) · = Re [I,:;il + i-~n':;il 

-24-



Therefore 

= .2pw"A
4 .lcwJ1.'r . fo! AhAn'r ;:.":; .. ) j;(k)' S M) 

V J Ln' , ~~-k~l~ I M ... (Yr .... ~)12 "', · 
It follows that the band-limited power flowing to the acoustic 

space is 

where use has been made of the relations 

and 

-25-



Let 
1# • 1: 

Cw = c.~ + '" C.W , 

Then 

y.+~;:: {w:[ I-~~J+ C; 
+ ~ [e,; - "'I~~::J } 1 

and 

Since in general 
'&, 

w'" » , 

the above reduces to 

1 y. + ~ 1'-~ W4[[I_ uJ'L J2.+ [lew J%._ 2.c!!!!: +'V\J ~ 
,. W\ . r w;- m1.lJJ~ m w;: I~ ) 

Now set 

.. J c~ 12. Z. 1: 
I .. ,...,. 'w ".... +., 1-"")1'\- --- ,... lr - walu>~ m w; 

This leads to the result 

-26-



and Eq. (21) reduces identically to the form of Eq.(3)~ Section 
(1) of Reference [3J except for the presence of IcYl l2 It 
follows that 

r 

where for tl or r- = j 

with 

In-= \t\{ IO+C..,/2)+w4
+bj(1+Cw /Z)'2. uJ'Z.+ Cj I J ' 

., l(l-Cw/2.)'w4+bj (I-C",/Z)"'W'Z. t- Cjl 

Dnr= (c.r-c",)'Z. + (bt\-br)(b"C ... - brcn) 

b" ':::c - 2..w~ i br -= - 2. w; I 

eft -== w~ ( I + rt~) ; Cor-::' W~ ( J +-1~ L) . 

The above is identical to Eq.(5) of the Reference [3J except that 

leVi 12. roul tiplies the result and 1~ replaces YJr-. 

Now closer consideration needs to be given to Cwand CW
• 

-27-



First consider the multiplying factor fcwJc. Suppose the trim 
is a simple model of insulation plus limp mass as shown in 
Figure 1. The transfer matrix for the insulation is [refer to 
transfer matrix derivation in Appendix A] 

where 

C = cosh 1( L 

S = sinh ¥L 

, 

¥= propagation constant of insulation 
'1'1= wave impedance of insulation. 

The inverse of this is 

The transfer matrix for the lining is 

, 

where ~t is the mass per unit of area of lining. 

-28-
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When coupled together, the transfer matrix across the trim is 
found using 

P1 = ~r 
V,. Va 

,,,,,,,-~,, itth. "'ri"" 
out-p.,1" )MUS 

This gives 

. . 
p! - P2 - [I t~Mt]~ ~ -ws] r~ - --. 

Va V" o , -- C ". W 
-4:. .. ;. ""a,S ",\-0 

Also o"tr"" hl~\I'~tiD" 

. 
"'I." - tw W~ ". = -~ ~'\N. . 

J . 

(23) 

The transfer matrix of concern here must be of the form including 
displacement. Thus 

[ ~ Lwwsj p~ 
-~ c. W fA)W I 

(itA) Ws + w'J.m~ C.)] f~ 
c. W, 

• (24) 
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Now according to the definition 

I 

or 

w 
CW -l.wmtS 

CIS and Ware complex. This leads to 

w w* 

- IcfZfwl1.+ w~"'tl S ,1. - LWn1t.(Sc'*W"'* - S'*CW) 
(25) 

A Preliminary Comparison 

At this point it is useful to make a comparison against some 
measured data. Consider a trim such as that of Figure 2 similar 

to that used in the 747 aircraft. In this case, the trim panel 
mass is m\ = 1.76 kg/m2• It covers a 0.102m (4 in.) thick layer 

of Owens-Corning PF-105 fiberglass weighing 9.61 kg/m3 (0.6 
1b/ft3) • 

From Appendix A 

where 

-30-
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~~ is the acoustic wavenumber in the material. The attenuation 

constant is 

r , 
and the wave impedance is 

At high frequencies, 

Also 

The properties of the fiberglass are given in Figure 3. 

The prediction for 1 ewl t is shown in Figure 4. On the basis of 

these results the trim panel vibration isolation needs to be 
examined at high frequencies, otherwise, a reasonable prediction 

is afforded with the model. 

Other trim configurations can be easily generated. Suppose the 
insulation is replaced by an airgap. Then 

. 
} 

-31-



or 

I c'T= I 

{.!.[ I +(c.umt.)2.1 + .!.[cos 2.kL _f.wrrt\\?. c.oS2kLJ ... 
% fc.c~ J 2. \ roco ) 

-(WWli:1 SinlkL}. 
k p.c.o 

At low frequencies) ~o \' 

I 
I + (Wrr1\:/ACo )'-

This is simply the theoretical "weight (mass) law" attenuation 

spoken of in Beranek and Work [5]. 

At certain high frequencies , 

cos 2.kL ~ C) ) $,,, 2k.L -... 1 

I 

t[I+(~J -(~) 
Since wm~/ ~c.o'» I '. 

JCwr· ~ Zl pCo )~) 
\ wrn~ 

which is mass law. This also looks good. 

As has been shown then there is appearing in the theoretical 

resul ts, a trim coefficient which will be called 1'01: = I cW I1., 
I 

• I il,. 12. 

-32-
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This is the "add-on" attenuation of the lining and insulation. It 
should be noted, however, that the multiplier ~~ is not the only 
effect of the trim. There also appears added damping due to 

Ylt ... .,,~, as previously di~cussed. 

There will be occasion to consider the lining dissipative (there 

being some flexure of the lining but with the lining stiffness 

small enough to ignore). Then the trim transfer matrix takes the 

form 

, 

where ~~ is the trim loss factor. 

In terms of displacement, which is required in the present formu­

lation, this becomes 
. 

r~ 
W'L -[~ 

= [:~, • 

-33-



Therefore, for this case: 

a.,1. = W~M-l: C +- i... (wWS + U)-z.1tWl-t. c.) , 

is 
A.a.. = - w'V'l ' 

ll1.1- = C • 

The trim coefficient is always determined from the coefficient (lli. 
ew is determined from the remaining three coefficients. 

Band Limited Power Absorbed on Cabin Wall (with trim) 

This result is taken directly from the previously cited reference 
[3]. The required expression is from the appendix of that paper, 
Eq.(A5). First the conductance, , ' looking into the trim is 
considered to be independent of K (do not confuse the conductance 
~ with the modal coordinate of the structure, i.e., ft'"). 

where < ~: >s,t is the space-time mean square modal pressure. 

Thus 

WAiJ$= /c. r>n<'f'~>s,tLcP~ J~ • 
n X 

when the normalization of the qbn is taken into account. 
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In the case where e is a function of X , 

WJi"'" ~Co L €,,< r;>s,~J (i)cf>~(iI.)d-'J (27) 

n ~ 

Where~ is always evaluated over the absorbing surface area. 

The conductance can also be related to the imaginary part of the 
eigenvalue of the acoustic mode, or, alternately to the loss 
factor of the acoustic mode. From [3], if , is independent of X 

If not, 

In terms of loss factor 

(28) 

Thus substituting Eq. (28) into (·27) gives 

V L 
WI W1. · ,It t\ < b1. > . rc: t'\ oJ I" S,t 

(29) 
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In this report Win is always used in the form of Eq.(22) and 

Wdiss in the form of (29). The relation needed to deter-
mine the effects of the trim in terms of the absorption froM the 
space will be Eq.(28). In other words, the acoustic loss factor 

of Eq.(28) will be calculated once ,(X) is determined. Alternate­
ly the loss factor can be measured. For the bare cylinder case 

(or a bare fuselage) measurements will usually be required. But 

for cases where trim is present the analytical determination of ~" 
is desired. Therefore, the calculation of the conductance ! of 
the sidewall is needed. 

By definition, the conductance is the real part of the admittancet1. 

(= Re (B) = R~ ( , - ACT ) 

{3 :-1 = [t(fc:)rl 

- rcov / P , (30) 

where V and p are the trim velocity and the pressure on the inside 

(interior side) of the trim. 

This can be written 

where ~ is the trim displacement. 

Suppose 

v = Ve-t"-'t 

r = f e.-t (IAI{:-~) • 
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Then v/p= VIP e-i..f where Y and P are real amplitudes. If 

¢ =0, /1= real =, = f>Co (VIP). When r is maximum V is maximum in 
the direction of power flow. Be definition, V~ is positive 
inward toward the interior (as is WI,) - refer to Figure 1. 

However the conductance desired is that looking into the panel. 
Therefore v=- V2, (~r w--Wz. ). Thus {J is determined with the 

relation (using ~ = r: ) 

Now 
. 

p~ 
and . 

W2.. :: atl p; t- G.%.2. WI · 

Define the impedance looking into the structure at ~ as 
. 
~ 

~I =_J2.... ", =---- -- . 
l.WW. 

(31 ) 

(32) 

Again the sign change is necessary to define an outward velocity. 

Then 

lWfC.[ 

• ] c. 

{3 - 0.'2.1 p, + 0.1.:, .• W, - . 
(A. 'I r~ + ~'1.. 'N, 

eco [ 

'1. • ] . (33) 

- -(,tJ Q.'LI~' + l W 1l.'1.'%. - • \..w a." 2. + (LIt. 

This is the general result desired. 
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Before continuing, a check for correctness is needed. , 
impedance a be calculated, where 

!!:JL I _ s-' _ Lw 'ttl 2!:, + ~\'L 
~ - pCo -I '&.. -w Q.2..I:. + LW~1'L 

For the initial trim model it was found that 

Therefore 

"2:;'= 

0." = C - ~WW\t S 
'N 

al1. = l.U) \N S + £A)"J,.M~ C. 

Q2.\ = _is 
wW 

Q,2.2.. =. c.. 

"i!. (tw S/W) 4- Lw C 

Let the 

• 

Dividing through by t~ (numerator and denominator) gives 

. 
: I = i!, (c - tW"'i: S/w) + (WS -"-"'Mot: Co) 

:, (S/w) + C 

"i!, ( c.- LuJmt> S/W) + ('/I/S - i.. u)mt; Co) J. 
Z!.,S+Wc. J 
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From this, it is seen that the impedance looking into the trim is 

of the correct form. For instance, if m*: .... 0 1 

~' = w [ c~, + ws] , 
SCI +Wc. 

which is the correct form for the insulation alone [6J. 

Now return to Eq.(33), repeated below 

(33) 

e,= r~/LwW.= impedance looking into structure. 

In general ~,= "Z,ti.)= local, and therefore 

Now 

But since ~ is sought, one can for the present consider 

i.e., only the radiated pressure on the backside (outside) of the 
skin is of concern. 
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Recalling that 

and noting that the radiated pressure effect can be included in G 
as increased damping since the reactance of the air is negligible 

compared to that of the structure, for the present purposes 

bl -' d-' , I' (~) ~ 

= - \' Vt~it) J rl.{":;/) "'SC-I. d-' i-..J "A V I ,... '1' X) X . 
S IllS IS (W) 

This leads to an approximation 

. 
~l(~) = P~(~) 
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, , 

One model is obtained by letting the pressure be uniform 
(constant) 

leading to 

,I,S j",s, -l 
'f" eX) 'f" (Xl cl X ] • 

MsYscw) 

. . 
Si f i i t i d b\., follows r~ it i nce or a g ven n er or mo e, I ~ , s also 

possible to write 

, 

p~t~) = Ct\ CPn(i) , 

where c." is a constant. For such an approximation, another 
structure impedance model is found: 

(34) 

(35) 

and the backing impedance depends not only on the structure, but 
on the prominent responding acoustic mode as well. Thus a precise 

calculation of t1 is a complex matter. 
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As will be seen, ir the trim is fairly limp and absorptive, c r 
need not be very accurately determined to obtain ti. In fact, in 

the present work, a simple model 

has been used. 

Noise Reduction Calculation 

This is obtained by setting Win =Wdiss from Eqs.(22) and 
(29), solving for the mean square modal pressures < r~ > Sit 

one-by-one, and adding according to 

< Pl~i; = L < r~>s.-t; 
. t'l 

The result is round to be 

< ~t>S.t = g At. {rnA)2. 1': I cWl% cz. w3 
< rA >s,t Cc.u U) VI. \" 4 '-L 0 

· L "" L j;t.:li~ f'(!.", {f. Cr-
C

,") In .. 
n r M ... Onr \ 4 

+ t 2.ct'a (b .. - b .. ) - b" (c .. - eft)) L_ 
A_ t Cl~-mnn (36) 
-rrt*'w" 

+~c,,- Cr) I + (2.C~ (b,,- b,.) - bl"' (c",-Cr ) 1 A L } 
.A "'.. & ~ 1. ~rC"[;.An.. ' 
, Il}r'-"r 

where the space average mean square pressure <. ~~>s,~ is (for 
the reverberant rield) related to the mean squa~e blocked pressure 
by 

< r:>S,t. = < ~~,>/2. · 

-42-
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IcWI= trim addition transmission coefficient. 

lJ~ = modified structural loss factor. 

The noise reduction is 

p~ < i...>'6t NR = - 10 lo~ J. 

< r~>Slt 
High Freguencies 

Without trim, from the Phase I work 

A't, + 8 A't p \' [ '1. hv .. l2.J 'l.. 
4p '-0 1t m' Co '-.J J~ (w)J < ~t >s,t: . (3 7 ) 

\ r<Aw 

In the above expression, the second term 
through the panel (structu~e) outwardly. 
is A. 

represents a power flow 
The transmitting area 

In the case of an added trim, there are three areas of concern: 
1) the transmitting area with trim, which will be called At, 
2) the absorbing surface area S, and 3) the transmitting area 
without trim A'. The total transmitting area is 

and the inflowing power takes the form 
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(38) 

,~ is the sum of the average external radiation loss factor, 

1.e. 'l'J~~ ,and the average structural loss factor ,~. 1'-t is 
the trim transmission coefficient, and ~R is the resonance 
transmission coefficient for the diffuse field case. 

In this expression n~ is the modal density of the fuselage 

structure (modes/rad/sec). 

-44-
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The radiation loss factors for a diffuse field are given by 

2DWA ., = ro <j (W» 1l' M Co '( t" 

, 

.1. 
where <J r>t- is the jOint acceptance averaged over the structural 
modes resonant in the band. 

Let 1rf = field incidence transmission coefficient for mass 
controlled panels 

1 as defined in Phase I. Then Eq. (38) becomes 

- 1'x + 14J < F~ >5,-1::' (39) 

1 
Eq.(16), Ref.[l], p. 20 is incorrectly typed. A should not 
be squared. 
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The power absorbed is 

(40) 

~includes the area A covered with trim and any other absorbing 

surface area. Equating Wi" to Wcliss gives the desired high 
frequency result 

Letting 1) +~R = 1-' gives 

~s +[~f +1'R(!it-/1']~~)JA' 
1"t 1'" At + l' A' 

(41 ) 

This is the fundamental result with trim present. Note that if 
all transmitting surface is covered with trim, 1\'= 0, and 

1. < pe>.s,i:. 

< rt>s.-t: 
----_. = -----

On the other hand, if trim does not exist, 1""t= I , At. = 0, and 

i:(S + [1'"f +1'R(Yir/~~)JA, , 
'1A 
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which is the Phase I result without trim. 

Finally,~ is estimated with the relation 

4wv 
C.S 

(42) 

If ~~ is calculated (say with trim only absorbing), Eq.(28) is 
applicable. 

3.2 Influence of the Internal Radiation Damping 

It has been found previously that, in the relation for the 
band-limited power flow to the cavity, there appears an integral 

w~Jw 

In Ref.[l], this was evaluated after redefining ~Y to be the sum 
of the structure's dissipative and external radiation loss factors 
and by neglecting the internal radiation losses. This allowed the 

term in the integral with Jrr~to be incorporated into Yr and the 
term with l:~to be neglected. When this was done, the above was 
reduced to 

where 

and 
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with 

The integral becomes 

c". J "" d.e.) 
M;:~",: A~ {[I- ~;r+ '1~){ [1- :iJ\ Y);} , 

which appears in Eq.(3) of Reference [3]. It has just been shown 
in Section 3.1 that when trim is present the loss factor "r above , 
is replaced by 'r}r where 

% 
Yl' -,"" -

I 
2. Cw 

m 
L 

+ '1'" · 

Now for increased precision, the question must be asked: what if 

r ",r 
the term involving CW) is not neglected? In this case, 

consider 

2-'" I po) I rr /'Z. Mr Y ... (w) - M,. (LA», 

where 

-48-
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Consider a case where w., E: /jfIJ and close to Wr ; then consider a 

single acoustic mode, say mode n • 

This becomes 

Now it can be shown that the non-dimensional form 

• 

For instance, for the stiffened 0.020" cylinder of this study, for 

the two modes 

n =( I ,2., ,); yo ::(2,2..) in '30 Hi. band 

Eh = E I,'!., , = 2..'.5''' 
.f'cn,r) = o. I 02.~ 
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Wn = '77.... X 2. tr j Wr = '(DO X '2.11' 

P = J.'2.0~ k~/m3 
w= ''30 x "2...~± Aw/2. ; At\,)= CCo\)W 

M,..= mA/4; rn= 4.2ct k3/Wl'2. 
c.o -= 343 n'lj sec. 

A = 1.89 m~ (Sur~c.~b..f. c:"yl,~cier) 
y = 0.2:43.,,3 

y= 0.01' . 

As W ranges across the band, the reactance term 

[I-~J y Wn , 

[( 1-~r+rt~J 
takes the following values: 

[ W"LJ2. 1-
If W<W.,; '1- W"l. ;:$>~h and 

y 
~ -::------. 

[l-w/W~J 

If W ~ Wn (very close) 

~ ~" ~O. 
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Thus the reactance term is always small (in air). This gives the 
approximate result as 

Now the structural mode appears to be damped more heavily, by an 
/I 

amount 1r- given by 

" ~r = (43) 

For any given spectral component at frequency ~ , we see that 

'Ylr" since 1r- and I are small 

pw'L 
Yr- - My 

rl"'r-, 

is dominated by the reactance term I -W/UJ;, unless to is very 

close to w... When W is close to Wr- , the resistance term 

becomes important. Moreover, if simultaneously ~~ lies close by, 

" ~~ can be significantly large. Thus, a frequency independent 
form of the resistance can be used and the following approximation 
is assumed to apply 
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where 

1/ '1 .... = 

When trim is present 
I 1l" ........ "1r · 

3.3 Transmission of a Tone 

In the case where trim is present, assuming hereafter, that a 

floor will always be considered, the tone transmission calculation 
of Ref.[l] can be generalized to obtain the solution for the 

inflowing power to the cabin, i.e., 

(44) 
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I AVO 
~r andl~ are used to include the trim. The above result is 
consistent with Eq.(33)of Ref.[l]. To review ~o is the frequency 
of the tone. In the case of propeller noise, this equation will 
hold for the blade passage frequency and also for each of its 
harmonics. The correlation function CPb1 (i'C;;') describes the 

blocked pressure field over the fuselage (cylinder) and is defined 
using the following relations: 

where Rfbl ('j\i,',;1") is the average cross correlation of the 
pressure over the blocked (immobile) fuselage. 

(48) 
A major task for Phase III is to develop a suitable representation 

of Cpb\(~'Y:) for propeller excitation. 

The power inflow to the cabin wall from the interior is as before 

w .. =L~ 
G'~ rc z.L.., .. n 

(49) 
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Equating Eqs. (44) and (49) gives the interior space average mean 
square pressure attributable to the nth acoustic mode. 

The interior space-average mean square pressure is given (again) 

as the sum of the space average mean square modal pressures: 

( 50) 

The average interior pressure ultimately must be related to a 
significant exterior level, say the maximum occurring nearest the 

propeller plane. 

Note, since 

< b"-> = < r:> J 4>2. dv- , 
I n Stc- V ., 

'a. 
Where<pK~is the mean square modal amplitude, the modal ampli-
tude is determinable from 

and theoretically, the mean square pressure at every interior 
point can be obtained with 

(51) 

It is emphasized here that a good point-by-point prediction may 
require better input data than can ever be generated, but the 
point-by-point prediction might be quite informative 

nevertheless. 
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3.4 Modal Properties of the Cabin Space (Cylinder with Floor) 

In Ref.[l], the acoustic modal characteristics of an "ideal 
cylindrical cavity were presented and various quantities were 
calculated with the modal data for use in making the interior 
sound level predictions. The modal data consisted of the mode 

shapes C:Pn<l>, ~ being an interior point, resonance frequencies W", 
and the mode normalization given by the constant ~". In the 
present case, consideration must be given to the determination of 
the same quantities for the case of a cylinder with a floor parti­
tion defined by the angle &0 as shown in Figure 5. 

In the ideal cylinder configuration the modal properties can be 
determined in closed form by an analytical solution of the wave 

equation, subject to the appropriate boundary conditions. This is 
possible because the wave equation is separable in cylindrical 
coordinates and the boundary conditions can be expressed in these 
coordinates. When the floor is present, it is no longer possible 

to derive the mode shapes analytically since the boundary condi­
tions are irregular. Thus it is necessry to resort to numerical 
methods. There are two possibilities, either finite differences 
or finite elements. Since in the present case, the modal charac­
teristics in the axial direction are known, a two-dimensional 
problem remains, and thus the finite difference technique, which 
is the simpler of the two is chosen. In two dimensions, the 
finite difference calculations are fairly efficient (fast). 

To begin, the two-dimensional problem is solved. Then the axial 
modal information is factored in. Next the normalization of the 
data is defined. Finally, use of the data in the calculation of 
the various quantities required by Eq.(36) is considered. 
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Finite Difference in Two Dimensions 

In the cavity (cabin), the Helmholtz equation applies. In the 
two-dimensional problem, this is 

where 

The central differences for the grid shown in Figure 6 are: 

~¢mrt_ 
~y -

dl.plrln _ 
~X" ~ 

P",*t," - P"'-I,n 
2-AX 

P"",n .... - Pt'Y\, n-I 

2.AY 

P""+I,t\- 2. PM," + p",.. •• ., 
(A)()7-

PM.ft+J ~ Z Pm,n + Pm,Y\-1 
(AY)'&. 

where P and cp are taken to be synonymous. Let 

AX=I::l.Y=h. 

Then the Helmholtz equation becomes 
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Eq.(52) applies for all points defined as interior (I) or boundary 
(B) • 

For boundary point B, exterior points E are required to write the 
finite difference equation. The total-'number of unknowns is the 
sum of all I + B + E points (Figure 6b). The number of boundary 

conditions that must be used is equal to the number necessary to 
eliminate all EI S • The resulting matrix for determining the 
eigenvalues and vectors is 

, 

where 

Given the eigenvalue A, the associated resonance frequency is 

obtained with 

=X , 

or 

, 

and thus 

• 
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This is the resonance frequency for \=0 , ~ = axial index, 
i.e. , 

kJ = \1t/L. 
The resonance frequencies for the cavity are obtained with 

leading to 

Boundary Conditions 

Co 
211' 

The boundary condition is that the outward normal gradient is zero 
(the wall admittance tjiS assumed to be sufficiently small to 
allow this assumption). Thus, referring to Figure 7 

where 

This gives 

• , 
or' 
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Now tn,n are the X,Y indices: increasing m implies increasing X ; 
increasing n implies increasingV. From Figure 7 

J 

This gives the boundary condition as 

where 

coS e = 64> S\n e , ax 

li _ P"'tM' - P"",n-I 
ay - 2h 

~ _ PM+f1n - P...,-I,,,,, -d)\ 2h 

Therefore, the boundary condition in the region eo < e" 2.11'-eo is 

In the region - 60 L e 4:.. eo , the boundary condition above can be 

applied by simply setting GttmCl 0 whenever e",~ ~ eo. 

-59-



Details or Calculation 

The origin of the rectangular coordinate system is at the floor 
centerline (capital X and Y in Figure 7) and the cavity is symme­
tric about X = 0, so only half of the cylinder is considered. The 
approximate grid spacing chosen is a/7. The exact grid spacing 

is 

This gives 
top of the 
at spacing 

and 

where 

and 

h=Ga.. 

an integral 
cylinder. 

h for 

number of grid points between the floor and 
The location of the grid points is (NX, NY) 

NX = -NS t.o +NS ~ 

N'( = o to NK 1 

N.T = L.te,r .. 1 r .... t [ ~ + I J · 
The centerline of the fuselage has the coordinates (0, "CDS eo). 

To select the grid points representing the curved surface of the 
cylinder, for a given value of Y = N'foqA, the 2 grid points are 

identified which lie just inside the cylinder and just outside the 
cylinder in the following way: 
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The intersection of the circle with the line '{ = NY'G«lis given 
by 

The last point inside the cylinder is (N~I,W{), where 

The first point outside the cylinder is (N~!.+l, NY). The 

distance of point (N~)NY) from the boundary of the cylinder is 

A test is performed on the 2 points (NX1:, N'i) and (NY-!+\ , ~~) to 

see which point is closest to the cylinder boundary. If the 

outside point is closest, then it must be included as part of the 

cylinder. 

This procedure is repeated for successive values of NY for N'{::.O 
to "VaHK. 

This will not identify all the boundary points and adjacent 

exterior points, and a similar procedure is performed for 

successive values of N~. 

The line )(.=-N~·GQ can intersect the cylinder boundary in 2 

places, depending upon whether 

"ly.c:. < COS &0 o\" NY·G> C.os ad' 

If 

NY . ~ < c.o 5 eo 1 
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at the floor for 

the boundary points are given by NY =. o. If 

and 

the intersection of the circle with X,'C N~·G~ is given by 

Vb= a.{ c.os at> - [I - (N~' 6)'l.JIh.) · 
The first point outside the cylinder is (N~, NYI-t) , where 

~'(.t.-, = 1:..+<, ..... , V .. rt {t [CoS 9.-( I-(K')(oe:.n lk]) 

The first point inside the cylinder is (NX)NYl:). 

Again the distance from these 2 pOints to the cylinder boundary is 

compared, and the point closest to the boundary is included as 

part of the cylinder. 

Now in the case 

NY·G> coS 9()) 

the intersection of the circle with X= N~·G4is 

The last pOint inside the cylinder is (N'X. ,NYr) \'1here 

N YI = r .. -\-,,'1 ..... 1 B ... t { t-[c OS a" + ( 1-( Nl<oG j)"J ) ° 
The first point outside the cylinder is (NX) NVI: .... 1) . 

Again the distance to the cylinder boundary is used to select the 

closest point •. 
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In this manner, the following grid pOints are therefore 
identified:-

1) Cylinder interior and boundary pOints (total = t1~ ) 

2) Cylinder boundary pOints (total = r\l» 

3) External points adjacent to boundary pOints 

(total = rle= n b+ 2. ) . 
These represent only half the cylinder, since the cavity is 
symmetric about X = O. Therefore the total number of cylinder 

points is 

2l'l\. - (N K + , ) , 

where 

The total number of boundary points is 

Let 

{ ~) = pressure at cylinder points (interior + boundary) 

n\.~ , 

{ Pe} = pressure at exterior points, adjacent to cylinder 
r\elf.\ points only. 
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Using the recurrence relationship for all pOintsI, 1.e., Eq.(52), 
gives 

[RI J {PI:} + [RE J{PE} = A{Pr} • 

(ni x. "t) (""tI) ("t'll. ".) ("tXI) (n,,-..I) 

For symmetric modes, symmetric about X = 0, when m = 0, 

~I n - P .,n · 
) 

For antisymmetric modes, antisymmetric about X = 0 

e.,n = -PI,,,,, · 

The matrices [Rl] and [REJ will be different for symmetric and 

antisymmetric modes. 

The number of points forming the boundary of the cylinder is equal 
to the number of exterior pOints adjacent to the cylinder minus 2, 

i. e. J 

For each point (m,n) on the boundary of the cylinder the boundary 
condi tion for aWl n"> 9 0 is 

and for e .. ,,'(' 6 6 J the above with e",W\Q o. 
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These boundary conditions give hh equations, and 2 more equations 
are required to solve for the ~e exterior pressures {~}. 

Two boundary points are selected, close to e '&011'"/4 and 6=-31t/+. 
such that each of these boundary points is adjacent to exterior 

points in both the X - direction and the Y - direc~ion. 

At both of these boundary pOints,(rn,n) , it is assumed that 

i.e., the gradient in the X - direction is zero (the gradient 
normal to the surface has already been equated to zero). 

This gives a total of ne = n" + 2. equations, giving 

[sr Jerx} + [BE J{r.} - o. 
(t\e x n,,,) (ML 1(') ("~ 1C ~) (t\elC t) 

The matrix [BEJ is non-singular and 

-I 

{p~} =-[BE J[sr J{fi}· 

Substituting this gives 

(55) 

(56) 

The eigenvalues and eigenvectors are calculated for symmetric and 
antisymmetric modes, separately. 
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The nodes,"L ' represent only half the cylinder (i.e., X > 0) and 
the generalized mass must be calculated for the whole cylinder. 

The generalized mass for mode l is 

t'\t 

4> G (4) = L 4> ~ (j) h Z )( C <j ) , 
j:., 

where h =Ga. is the distance between grid points. 

CCj) is a factor, either 1 or 2, 

1 for all locations on the centerline, i.e., X = 0 

1 for all locations on the cylinder boundary 

2 for all other locations. 

The boundary values of the eigenvectors are extracted from the 

L eigenvectors, and are defined for X ~ 0 only. The boundary 
pOints must be consecutive along the circumference of the cylinder 
from the floor centerline (0,0) to the top centerline (O,Hk). 

The boundary eigenvectors will differ for symmetric and anti­

symmetric modes for X < O. For symmetric modes 

CP(X,y)= CP(-X,V). 

For antisymmetric modes 

Each mode must therefore be identified as symmetric or antisymme­
tric when the boundary eigenvectors are used. 
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Apart from the boundary eigenvectors, there is no need to distin­
guish between symmetric and antisymmetric modes in the cylinder 
response program. The modes are therefore combined, and ranked in 
ascending order of frequency and the first 20 modes only are 

used. 

The first symmetric mode is a translation mode, with zero 
frequency and corresponds to the cylinder (0,0,1) mode. 

The eigenvalues, J\i' are used to calculate the resonance fr~quen­
cies for the (three dimensional) cabin with 

r _ f . - ~[fl!..)2 ~J 1/2.-
J"t\ - ttl. - 'Z.1t \" L. + h'Z. , 

(58) 

where h is the grid spacing = Ga, L and a are the cylinder length 
and radius, respectively. 
The frequencies output by the program are 

1. e., the frequency for \= 0 modes and a.-: ''''', i. e., for unit 
radius. The generalized mass is also output for a cylinder of 

unit radius, i.e., 

whe re Cl. ::. I "" . 
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Normalization 

The acoustic modes 4'nfor the three dimensional cabin are 

where q)t(~JV) is the eigenvector for the two-dimensional mode 
ranked L (t -::r."z.o) as calculated with the finite difference 
technique; i.e., ¢i.(X.Y) is a finite dimension column vector, 

which contains the values of Gbi at all coordinate positions 
(N)(, NY) within and on the boundary of the cabin space. 

The normalization of these modes is arbitrary. The maximum value 
achieved at any coordinate position has been chosen to be unity 
and the other values adjusted to retain the computed ratios from 
point-to-point. The normalization is carried into the trans­
mission prediction with the parameter 

v 
Iff cP~Jv 

In the case where the floo~ is present the integral is 

-- L 
2. 

-68-



· where J counts over all interior locations, and 

The program outputs the generalized mass for unit radius, i.e., 

nt 

~6(l);::[ cf>tej) Et"C<'j) 

So 

The volume enclosed is 

giving 

J-=-I 

Z[1r- eo + Cos 6 0 5,,,,80J 
<I? " Ll.) E.1-

3.5 Fuselage Structural Model 

(59) 

In the previous work [1], the basic structural model was for an 
ideal cylindrical shell, i.e., one without stiffeners or floor. 

In the present work, the inclusion of the orthotropic properties 
of the cylindrical shell and the effects caused by the presence 

of the floor are of concern. 
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Altnougn the level of sophistication achieved in the present 

modeling effort is considerable, it is nevertheless to be con­
sidered incomplete and further work will be done on the structural 

reoresentation in Phase III. 

T~e basic analytical technique used to predict the resonance fre­
quencies of the ring-stringer stiffened shell is that of Nikulas 

and f1cElnan [7J. In this calculation, the effect of the stiffen­
ers are considered in terms of a "smeared out" model. This model 

is chosen because it is felt that it gives reasonably good predic­
tions when applied to a stiffened cylinder of typical aircraft 

construction, i.e., one in which the "density" of rings and 

stringers is sufficient to warrant the "sMearing out" or averap;ing 

of the added stiffness and Mass contributions to the shell. The 
~ikulas equation definitely breaks down when the subpanels between 

rings and stringers aSSUMe their own Modal characteristics. 

TIle test articles used in the present work are not ideally suite1 

to use of the Hikulas formulation because of the sparsity of 
stiffeners. Nevertheless, the fornulation is used and considera­
tion given to its inaccuracies when applied to the test hardware. 

The second effect of concern is that of the floor. In Ref.[8J, it 

is shown that the primary influence of a floor partition in a 

cylindrical shell is to force nodes at the floor line, because of 

the high in-plane stiffness of the floor. Uhether the floor is 
attached rigidly or with a pinned connection to the cylinder wall 
is of secondary importance, although SOMe shift in the predicted 

resonance frequencies will occur. Therefore the chosen structural 

model of the fuselage (for Phase II) is a curved, orthotropic 
panel running from floor line-to-floor line (Figure Ba). The 

calculation is made with the Mikulas equation. 

It is emphasized here that this model is of a preliMinary nature. 

A better representation (planned for Phase III) will include the 
restraint offered by the floor itself and the renaining portion of 
the fuselage beneath the floor (see Fig.Bb). Assuming that there 

are two modes which for the configurations of Figs.(8a) and (8b) 
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have the same shape above the floor line, it can be assumed that 
the lower resonance frequency would be that calculated for (8a), 
i.e., without the restraint offered by the floor and fuselage 
below the floor. However, even if the difference in the calcu­
lated frequencies is disregarded, there are other factors in­
volved, namely that in the case where the floor and lower fuselage 
participate in the response, the upper fuselage (cabin wall) will 
not respond as well to the acoustic field exciting it because the 
excitation not only has to move the sidewall, in the latter case, 

it also has to move, simultaneously, the floor and fuselage 
beneath the floor. This "restraint" can be built into the model. 
The modes of the more complex configuration are required to do 
this. For this reason, it seems necessary to have a modal analy­

sis of a configuration at least as complicated as (8b) and this is 
planned for Phase III. One can go another step and add, say, a 

wing. In that case, to shake the cabin wall, the floor, lower 
fuselage and the wing would have to be moved also. A modal analy­

sis of a model including the wing would be required. In the 
latter case, a finite element modal analysis would be necessary. 

Model for a Curved Orthotropic Panel 

The resonance frequencies are calculated from the equation 

M4( 1+f.l')'L + M4 [e:&Is + A"f. Gs:SS + C;rJ"t-) 
r D 1y r \ D ., D..tx 

+ ~4 ErI. ... ] + r o..()c 
12~(1-,A4'1") [ '+~As-+RA,,"+SRA"'$ ] 
1t'" h"l.~ .A. 

(60) 
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where m = total mass/unit area (skin, stringer, and rings smeared out L. 
Errr - ring bending EsIs _ stringer bending 

Dir -O...l" parameter parameter 

- E"A", ring membrane 5 - EsAs_ stringer membrane R= 
EhI.,. parameter - Eh.ty - parameter 

As = I + 1«.2.(fi.s/a,)(@t-~)+ oc.4{~,/o..Y"( l+p'JI. 

Ar- = ,+ 8N1.~r/4) ( I-,u pt) + ((oN4(~r/ a.)L ( 1+ p")2. 

A ( ,+ p'")'I. + 2 f 2. ( , + ~) ("R + "S) 

+ (l-~~) [g+ r4R + 2.~t.RS('+}-\)J 

Ar& = 4N1.oe1. [~~('-f-\~) +2(l+f41] (~/a..)Z. + IG,N4 [l-~'Z. 

+ f. P& (I +,M) ] (?:.t- /tA.)'I. + 8N'I.(l-J'4'") (~s I a.) 

+ gNt.(I-I'-''L)(~r/~) + 32N40-}-t):L(~r/4.)(!s/Q.)+ '-,At'l. 

Ar = cabin pressure - exterior pressure -, 

~~ and a.s are the distance to the centroid from the skin middle 
surface for ring and stringer, respectively 't..tx and 1" are the ring , 
and stringer spacings, E,., E.s; I __ , I5 ; Ar ,As are the elastic modulii, ' 

moments of inertia, and areas of the stiffeners, and h is the skin thiclmrs 

0{ = M'JT'4../L , 
where ~ is the number of axial halfwaves. 

is the skin bending rigidity. 

~ = 2NL/M1t4. , 
-, 

where N is the number of circumferential half wavelengths. 
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It is again emphasized here that the above equation is strictly 
applicable to a full cylinder. It is also approximately appli­
cable to an open cylindrical shell having all shear diaphragm 
supports. This boundary condition is obviously not satisfied at 
the cylinder floor junction. Because of this fact, the theory 

developed by Peterson and Boyd [8J which includes the full cylinder 
with floor, is far superior for present needs and will be inte­
grated into the model in the future. 

3.6 Calculation of the Structure/Acoustic Coupling Term 
f'(n,r) (Cylinder with Floor) 

The circumferential structural mode shape for the curved panel 

(floor-to-floor) is given by 

Sln Ntty , 
Ly 

where N is the number of circumferential half waves and Ly is the 
length of the panel from floor-to-floor, i.e., 

The acoustic mode eigenvector takes on discrete values on the 
boundary (as calculated with the finite difference technique). 
Consider the cylinder boundary point j '=-(M~)N'f). The angle 
is given by 

• 
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The acoustic volume mode eigenvector on the boundary line ej is 

,.I.. .J.. '1t~ 't'S' (e/c) -= ~i. (ej) C.OS L ) 

where 4'i C6j) is the ith eigenvector from the finite difference 

calculation in 2 dimensions at boundary point j =- (N~,N'1') and 

angle ej. 

Let e •. and e~.define the points on the circumference half-way 
J J 

between boundary point (NX, N,() and the adjacent boundary points. 

Assume that the eigenvector 'Pi. (8j) applies over the range e'j to 

62.j. Then 

Now 

L 

= --J COS '!.~~ 
L..ly 0 

Ly 

J s"tn Nvy 
o Lr 

where "'b is the number of cylinder boundary points. 
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Thus, 

where, for the case considered (shell length L = cavity length L,. 

_, _ [ 1- coS (M.,..,)1t + 
'111" M+\ 
o j M=-'I 

If L¢ Lc , fqM is given by Eq. (25) of Reference [1J. 
noting "-y = Lb~ (11'-90), the above reduces to 

rib 

.f(ti.,MN)= ~L cPiej) [cos 
11" • , 

J= 

Finally, 

(61) 

where L is the index assigned to the ordered 2D-acoustic mode 

(s is always equal to unity if the floor is present), and M,N are 
the number of axial and circumferential halfwaves of the 

structural mode. 

3.7 Calculation of the Acoustic Loss Factor 

The calculation of the acoustic loss factor at frequency~ has 
been discussed in Section 3.1 (resulting in Eq.28). This has to 
be formatted properly for the case where the floor is present. 

Also, when the test articles are considered the absorption 
capability of the end caps has to be considered. In both test 

cases where the floor is present, the end cap~ are covered with 
fiberglass that is exposed to the interior. The end cap admit­
tance calculation is as follows (where the subscript e indicates 

their consideration): 
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!3e - [ Lw42.. fCo d u 
], 

'e - Re [.aeJ - , 
an C 

a.~1 = -LS 
wW 

In this simple model, the end caps themselves have been considered 
to have a high impedance. The loss factor for the interior is 

Here 

where n~ is the number of boundary points, and 

where n \. is the number of interior points. 
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Therefore at low frequencies 

(62) 

where the volume mode is r'\:::: (t> r'\, 5) == (~ I L) . 

At high frequencies 

-t'} l'\ = , (63) 

5 and Se,. being the curved surface and end cap areas. 

3.8 Noise Reduction in the Volume Stiffness Controlled Region 

The frequencies of concern here are those confined below the first 
(lowest) resonance frequency of the acoustic modes. Since the 
lengths of the cylinders used in this study exceed their dia­

meters, the frequencies lie below that where the wavelength in the 
air equals twice the length of the cylinder. For the present 

models, Lc.= 1. 219m (48 inches) and the frequencies lie below about 
140 Hz. In this frequency range, the noise reduction depends on 

the net volume displacement of the shell structure, and on the 
compliance of the cavity (as an airspring). If C~ is the compli­
ance of the cavity (confined air volume) i.e., 

(64 ) 
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and Cr is the compliance of the shell, i.e., 

c -r-
flv , (65) 

where ~V is the total volume displaced by the shell structures 
[including end-caps] when exterior pressure to is applied and 
interior pressure pi is realized, then the noise reduction is 
found to be 

-- (66) l 
Section 3.8.2 of Ref.[l] may be consulted for the development of 

"I 
I 

this result. ~ 

There have been numerous studies [9, 10, 11] of the low frequency 
noise reduction of cylinders (both stiffened and unstiffened) 
where it has been found that the measured noise reductions and 
theoretical predictions do not agree in the extreme low frequency 
range. In fact, in the Phase I study [1] significant over­
prediction at low frequencies was found to occur. Without 
exception, the (measured) low frequency noise reduction is less 
than the predicted noise reduction. End cap transmission and 
leaks have been postulated as the culprits, but while end caps can 
be significant transmitters, they do not tell the whole story. 
Neither do leaks, which can be prevented. 

The basic question which remains unanswered is why a cylinder's 

noise reduction, typically, turns out to be only 25 or 30 dB when 
theoretically it should be 50 or 60 dB, or more. 
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Now for purposes of the present study, there are two types of 
shells to be considered (i.e., stiffened and unstiffened). For 
either, the fundamental modal characteristics lead to the occur­

rence of the first mode (in flexure) above the lowest acoustic 
mode. That being the case, the compliance of the cylinders is 

dominated by their stiffness. Since the noise reduction is still 
significant, the cylinder compliance is approximately 

c = AV , 
f t=» 

(67) 

where p= rO 
is the exterior pressure. Thus to calculate Cp' a 

static analysis might simply be considered. The displacement 
VVI~~ over the cylinder surface is computed due to an applied 

pressure~, and integrated over the surface to obtain ~v. 

To begin this study, consider some results for an ideal cylinder. 
The basic partial differential equations for an isotropic cylin­

drical shell element are given by Kraus [12]. His axial coordinate 

isX (this report has previously used = for the axial coordinate). 
The equations of interest are 

(70) 
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The shell is assumed to extend from Xc. 0 to X -- '- • '" ,"i, and VI 

are the displacements in the )C., e, and ~directions, ~ pointing 

outward from the middle surface of the skin, with 

where 

'V"= Vt,(V1.):: V"l.( ~"L + d'L ) , 
~>,-"" ~S" 

5= r9. 

r is taken to be uniform circumferentially and axially, positive 
inward. 

The above can be simplified by neglect~ng the longitudinal and 
circumferential inertia terms, i.e., by setting 

In the case of a perfectly circular shell (r::s. ~), closed on the 

ends, with uniform external pressure, it can be shown [12, p.94J, 
that 

This result also holds true for the case where the radius varies 
slightly. It follows that an approximation can be used 

and Eq. (70) then reduces to 

ltv4 +l(::L+...!-. av) + 1_~2-p d~=_ I-M/2. b • 
11 W t- '" yo a e E \ )t.'Z. E. h r 

(71) 
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This differs only slightly from the result one would get if ~"Ia~ 
had simply been set to zero in Eq.(70); Eq.(71) is a slightly 
better approximation. The axial strain has little influence on 
the result. 

It also follows that Eq.(69) reduces to 

= o· 

Eqs. (71) and (72) are independent of Lt and thus Eq. (68) is no 

longer of concern. 

(72) 

The membrane theor~ solution is obtained by setting ,/:.0 , and 
letting the bending resistance of the shell go to zero (i.e., 
setting the first term in Eq.(71) = 0), yielding 

At sufficiently low frequencies, this reduces to the simple form 

I-P/7.. p, 
e:h 

or 

'-)'A/2. P '2. W -- Cl,.. - E'h 

The membrane stiffness controlled compliance 
approximately (neglecting local bending near 
cylinder) 
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of the cylinder is 
the ends of the 



-- (74) 

For the 0.020" thick stiffened cylinder 

The compliance of the acoustic cavity is 

This gives a noise reduction due to the cylinder wall displacement 
of 

Nf{ ;:: 2.0 I C>~ [ I + ~~~J = SS.4- JB 

As will be seen in Section 4, the actual measurements indicate 

about 30 dB. The noise reduction due to the stiffness compliance 

of the end caps (which will be considered later) varies between 

47 and 49 dB. Adding up the end caps and cylinder membrane 

compliances gives C, in the range -= 3.9 to 4.6 ino/psi or a noise 
reduction of 45.6 - 44.2 dB.~ which is still well above 30 dB. 

It follows that bending deflections of the cylinder wall have to 
be considered. However~ if the radius ~ is constant~ ~ must of 
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necessity be independent ofe and the only bending effects must be 
associated with the axial direction and related to the supporting 
end conditions. The 9 independency of w does not apply when the 
concern is with an orthotropic shell (stiffened with rings and 
stringers). For such a shell, Eq.(71) ·can be generalized somewhat , 
to 

E~ [w I ~v ] rn d~ + l~'" rJ. +? ae + at.2- =-

where W\ is the average surface mass. Eq. (72) remains unchanged. 

Eq.(75) applies for an orthotropic shell in which the rings and 

stringers have been smeared into the shell. The bending rigidi­
ties 0')( and Ds are for the sections perpendicular to the X and e 
(i.e.,S) axes respectively and D~SiS the cross rigidity. 

One solution of Eqs.(72) and (75) is for the case of a free-ended 

cylinder where V is independent of X and 

at every point in the shell. Then 

( 76) 
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In this case, the shell deforms in bending only. The condition 

w- , 

is the Rayleigh criterion for inextensible vibrations of a ring. 

If Eq.(77) holds, the middle surface of the shell (i.e., ring) 
does not stretch. One might hypothesize that a shell's end 

conditions could be such as to allow Eq.(77) to hold approximately 
(not perfect supports) but if that is the case, the subpanel 

transmission (i.e., between rings and stringers) would turn out to 
be so great that the predicted noise reduction would be less than 
that measured. 

For instance for a subpanel of the stiffened cylinder used in this 
study, as shown in Figure 9, Eq.(76) would reduce to 

(78) 

which is independent of the curvature effects. The displacement 
in the first mode which satisfies (78) is 

4 -A 

where 

~ = R.. [(.11: t + (.1Lt ro · Wit 
wY\ 1..x 9.y 

Letting 

'J 
s'n~ l/J (X) s) = Sin 11'>< , 

gives 
J.)( Ry 

JLL 1.1 

w - 1/1(~) '5) ( 79) - 1't'Z. W\ W •• 
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The displaced volume is then 

A'I = ,+ 1- )."1,1'1. , (80) 
11'4 m UJ.r 

yielding (with the data from Fig. 9) 

This leads to a noise reduction 

No - "0 I [I + 7-i~ J -- ~o.r '8 ,,- £. o!J ~ ~ d 

if only one sub-panel is considered. However, there are 30 sub­
panels, so the total compliance is 

Cor = 30( 77) = 2310 in3/psi 

giving a noise reduction of only 

[ 
742. ] N R. = 10 lo~ I + 2310 = 2.4JB. 

If one considers the subpane1s clamped along their edges, the 
compliance is 13.64 in3/psi per subpane1 leading to an overall 

Cr = 30 x 13.6 = 409 i n3/ps i 

and NR= 9 dB. 

Thus throwing out curvature effects leads to an underprediction of 
the noise reduction. Since the inextensibi1ity assumption is 
almost impossible to justify, there are good reasons, as seen 
above, not to invoke it. 

-85-



It follows from all the discussion preceding, that it appears 
membrane stresses are in fact working~ but that the deflection of 
the cylinder wall is not obeying the simple result given by 
Eq.(73). In fact, if the noise reduction is as low as has been 

calculated (less than 10 dB), and the measured is 30 dB, one might 
conclude that membrane stresses have to be present. That being 

the case, it should follow that solutions of the simple equation 

W l-~/2.. _--..;~_b , 
~=- Eh r (81) 

should be examined. It also seems crucial to study the effects of 
out-of-roundness (i.e., non-circularity). 

Suppose non-circularity of the cylinder is considered, say by 

letting the radius of the shell be given by 

Then at first, the solution appears to be 

W-=.- I-~/z. 

Eh 
r fA "1. ( I - Z. E: f t e}) . 

However, this result is not correct because the parameter ~ in 
Eq.(81) is the radius of curvature! 

To distinguish between the radius of curvature and the radius of 
the shell, let the radius of curvature be given by cap R. Then 
Eq.(81) becomes 

• (82) 
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.- , 

Also 

L. '2.1't~ 

(' - ==. J J - 1-14/2... 1(2. d~ d.s , (83) 
-y 0 0 Eh 

(84) 

[Incidentally, ds:# Rc:le, since e is measured from the center of 
the cylinder instead of from the center of curvature (which moves 
about)]. 

Since the radius of curvature of a shell with a slight variation 
in radius can differ greatly from the radius itself, it can be 

seen from Eq.(83), that ifR-oo,C,can become very large relative 
to that of the perfect cylinder (thereby reducing the noise 
reduction). 

In cylindrical coordinates, the radius of curvature is given by 

R= • (85) 

Now if 

( 86) 

where tee) is a smooth positive function normalized such that 
fCB) = I, then 

mA~ 
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d.r rl - = -Q.(:T (9) 
de 

clz'r rll 
d ez. = - CA. Eo T (e) , 

and 

R= 
0..[ 1-6fce) +€7.(fC8) + f(c~»)r/z 

--------~----------=-----~--------~------------, 
{ I + to [f'lea) -Zf(e~ + €~[f\e) -1-'2. f'(a)- f(s)ne)]} _ 

or 

A-D ~ ___ _ 

~ I +6f"(9) 
) (87) 

since ~~&) is considered small. 

Suppose now, the out-of-roundness occurs over an arc length of 

shell As= Gl ~e = Q. a" as shown in the Figure 10. Then if a length 
1.. (axially) is considered, the compliance, Cf for that length is 
according to Eqs.(84) and (87) 

(88) 
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This reduces to 

where 

de 
• ( 90) 

It is obvious from Eq.(89) that whenever the integral ~,exceeds 
the intervale., that portion (shell length,() transmits better 
than the classical membrane theory predicts. The compliance for 

the whole cylinder becomes. 

_ 2:tT (, -A/2.) a,3 L 
E\' 
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J + 1- (®, - e,) ] . 
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If the length of out-or-roundness extends over the entire length 
of the shell, ):-. L, and 

which is consistent with Eq.(89). 

Before considering evaluation of the integral E9" it is also 
useful to consider a solution in which the transverse 

displacement V is not assumed to be zero. From Eq.(7l), the 
membrane result is obtained by setting he. 0 (also (.c):=.O ) • 

.L r w + ~v J = _ 1-""" /z. b 
RZ L' ae] Eh r) 

and from Eq.(72), by writing (since R is a function of 9) 

(93) 

I-,A.\ "d'1v +...L ~ [If.'JV +w)] = O. (94) 
2. ~ X ~ K ae R \ de. 

Then substituting Eq.(93) into Eq.(94) gives 

or 

.1-.L [ l-A!-z.. fKJ 
R ae E" 
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-- L~ [a. ] 
R ~ ) + E-f"(9) 

Using Eq.(87), this becomes 

,-~ d'v ----- -
f'll (I -A/2.) E: (e) ~ 

Eh :z.. aX%. ) + E:f/te) 

or 

--- :2.-/oi P 
I-A Eh 

This can be integrated to yield 

where 

v.(e): - 2-~ L 
I '-t"l E.t" 

~+JI'(e) 

\ + t .f'tS) 

, 

• (95) 

(96) 

and V2., V3 are constants of integration, (which may be functions 

ofe ). 

If at some locations (say at the rings) v(X)e)=o, then V2. and '13 
can be determined. Take 
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Then 

V(o,e) = 0 

'1(1, e) = o. 

V3 = 0 

v. - - '1.1. 
2. - 2...) 

and one can write 

where 

vex) = x'Z. _ ,ex . 
2 2. 

This can be substituted back into Eq.(93) to obtainw, i.e., 

W = - 1-.,../2. b ~'Z. _ ~" 
Eh r ~e 

= _ 1-1'(/2:- b R.'1. _ \/('1..) ~ ". 
Eh ' ~e 

But 

---
II r IV "2. r HI 2-2.-"" J:. (I+~f (6») E:,. (9) - E. T (9) 

\-14 e.h ( , + Ef"(B»)2. 

so an approximate solution (neglecting any flexure) is 

(97) 

, 

'N=- (,t-A) P [g_ E: Vex) (f'V+ E: f"fl"-~r"12)J ' 
Eh( I +ef"(e))1. 2. 1-1'-\ 

(98) 
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This gives over the length )t 

This integral contains in its denominator the same term 

(I -t-E.f'te»t.. as Eq. (90). If efH(e)--I, 1.e., if R'" 00 over 

any interval, the membrane stress (hoop tension) is broken over 
length~. Only the bending resistance remains in the shell in 

this region. This leads to a conclusion that over certain axial 
regions, the cylinder transmission may be totally controlled by 

flexure and over others totally controlled by the hoop tension. 

Now examine the integral ~, for some selected functional forms, 

~(e) [refer to Fig.lO]. Suppose 

Then 

e I 

.f. (8) = ~in 11"5 = Sly\ 11' e 
AS Sf· 

9, - f de 
- 0 (l -eSiVl1T"e/e,)'Z. 

11'" 
~ f ~_cl_O(. ____ 
11' 0 ( , - e si .... O(. )'2. 

where e .. t: 1t Y e-:-. 
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This can be evaluated to yield [13J 

, II'&. 
Since (I -e) is imaginary for e>' , S, does not exist in this 
region. This is interpreted as total relief of the membrane 

stress. 

Suppose one chooses 

f(e) = .2.11" e 
Sin - · 

9, 

This function has zero slope at e~ 0 and 6" which is 
probably a more realistic representation. Then 

9. 

e, = ~ (I + ;~os :/.'W9/&,)"'" ) 

_ '1/. , 
where e =z'61t ( 8. ' giving 

211' 
e - 8. J doc 

• - 2.1T 0 --:(:--, -+-~-c.-o-s.-C(-)~2.-

For e c:.. I , the solution is [13 J 

(100) 
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. -, 

A plot of this function is shown in Figure 11. 

This integral also does not exist (is divergent) for e>, ,thus 
the membrane stress is relieved. 

From the form of these solutions, it is seen that the likelihood 
of ~, growing large relative to 8. may be small since combinations 
of E: (orA) and 9, may not exist which will yield e e: I • But the 
possibility of e>, may be real (i.e., R"'C'O over the 

range A9= 0 .f-o 9, ). 

Let's choose e (rather thane) as a criterion for relief of the 

membrane stress. It can be considered an approximate (as opposed 
to an exact) criterion for R ~co over an interval Ae Co &, • e is 
plotted versus 9, and i:. in Figure 12. When e> I the membrane 
stress is relieved. 

Now consider some example calculations. Suppose a very slight in­

dentation of the skin of the 0.020" thick cylinder existed, say 

A = 0.00' ,in. Then according to Figure 12, if e ,':::: 0.045 rad 

(2.60
), ~>I and the membrane stress is relieved. While 0.001 in. 

may seem small, the amplitude of the membrane displacementYi for 
the ideal cylinder is from Eq.(73) 

w-

which for the 0.508 m (20 in) diameter cylinder gives 

At 100 dB, r is only 2.9x10-4psi, giving W::. 12~"1I\ • In 
comparison A is huge. Unless the pressure is high enough to 
increase W to the same order of magnitude as ~ , the shell would 

not stretch enough to displace its out-of-roundness. This would 
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apparently require a pressure of about 2 psi or more for the 
.001 in. selected. The interpretation is that very slight 
variations in radius over small angular regions (wrinkles) can be 
highly detrimental at acoustic pressures. 

Now experience tells us that putting dents in a cylinder will not 

change its low frequency noise reduction very much. However in 
our experience, we have never worked with a perfect cylinder. 

Suppose for example that there existed a perfect cylinder with 
wall thickness h -= 0.020 in., a radius C\.": 10 in., and length 

L -= 48 in. The noise reduction is as has been calculated before, 
i.e., 55.4 dB. Suppose that over some axial expanse of length ~ , 

there exists around the circumference a region for which e> l . 

For instance, on the stiffened cylinder of this study there is 

about a 2 in. diameter inward depression that is about 0.030 in. 
deep. Setting ~==Z inches and A,: 0.030 in., it is found that 

e -J. -OZ-1--0: - . 

0.003 · 

From Fig.12, e =-1.+8> I and thus the membrane stress is 
relieved. The cylinder moq.el is now one where a length L-..iZ. is 

membrane controlled, the rest (length..t) is flexure controlled. 

Consider now a strip running between stiffeners 2 in. wide, and 
from Figure 9 of 11.59 in. length. The compliance for the membrane 
controlled section is 

c~ 
r 

211' (A3 (L-...t ) 

Eh 
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The compliance for the strip in flexure between stringers is 

= 0,31 S" .. .,..~/ rs'\.., 

Since there are 5 stringers (i.e., 5 strips) 

Also, for the whole cylinder 

and the noise reduction would be 

NR :::: 20 loq [I + 7+2.. J == 4R,(" dB . 
J 2..18 

Thus, this single depression would reduce the noise reduction from 
55.4 dB to 48.6 dB, or about 7 dB, which is a sizable reduction. 

But if the cylinder is not perfect, say without the depression 
its noise reduction is only 35 dB, then its~r would be (overall) 

Cc. _ 74-2 ! - 1'3 A'l.· ~I · 
Ni/2.0 - ~5"/z.o - • .,..~ 1ft rSt.. to - \ 10 -, 

If length ~ was perfectly circular, the portion of the compliance 
above due to it would be 
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With the depression A= 0.03 in. and 9.=.2, over 1ength.(, the 
same length's compliance would become 

Thus with the depression 

This gives a noise reduction of 34.1 dB. For the non-ideal 

cylinder, the same depression thus gives only a 0.9 dB reduction 
in the NR. Thus in the non-ideal cylinder case adding a wrinkle 
or depression will not profoundly effect the (already low) noise 
reduction. 

To generalize all of this, a stiffened cylinder with nsstringers 
will have a compliance given 

where Jl. is length for which e">, . 

Since in general, there may be N regions of length It with ei> , , 
the final expression becomes 

~ 

211'0.:\ (L - r:~t)(I-,JJ./2.) 
1. 

Eh 

N )..' 

[: n( ns )Z ~ 1t )2.1 z.. 
to:', U~ +\ J.L J 

, (101) 
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where ~l =0 if e;.<. \ and inward depressions only are 
considered. 

It should be noted in Eq. (101) that 1arger....l L'S have more signifi­

cant impact. Thus a four inch length in which Er>1 would be far 
more detrimental to the noise reduction than 4 one-inch segments. 

3.9 End Cap Transmission 

The end caps of the test articles are stiffness controlled well 
beyond the fundamental acoustic resonance at 140 Hz. The internal 

pressure due to each end cap's deformation is computed with 

-
where! is an interior point and ~ lies on the end cap. ~p(;r\~) 
is the interior space Green's function as previously defined. The 
displacement of the end cap under uniform pressure pO is [14J 

where D is the bending rigidity. 

Consider the response ~f the first acoustic mode only. Then 

Co 5 11' i!: / L..c. 
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substituting, this gives, for both end caps 

The space average mean square pressure is obtained with 

o~ 
This is averaged over each frequency band of concern, where ~r;>~ 
is assumed to be the mean square exterior pressure in the band with 
an approximately uniform frequency content. Then 

(102) 
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where CAl is the band center frequency and A&,.,=:.C",w is the 
bandwidth. 

lA) -z. - 2.1< 'iAl c.o s ~ + k'l. -= W + In ------=--­
iA)Z+'2.k.~ cos~ +- k'2-

Wi-Au) -~ "Z-

where 

and 

+ -CQ;' "k~CS'I'\t- ~ [2.. (1. 1/41 
k"- (;)'2. • 4 si",~ (\ +.,~)v .. + I +~h) J ' 

k = Wt\ (,+~~)V1 , 

-b.aI\ a( :.., t\ 
I 

w-~ 
'L 

~~ is the measured value of the 1055 factor for the acoustic mode 
(at its resonance (140 Hz)). The noise reduction is obtained 

using 

(103) 
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3.10 Status or the Interior Noise Program (Phase II) 

A brief status report concerning the computer programs that exist 
for the present (Phase II) calculations is warranted. An overview 

oP the software is provided in Figure 13. 

The main program is called FCYLNR and calculates the noise 
reduction of the cylinder with or without floor. If the floor is 

present, it utilizes the output (on tape) from the program CYL2D 

that computes the acoustic modes of the cross section of the 

cylinder with floor. If the floor is not present, subroutines 
CINDEX and OMEGAN are used as they were for the empty cylinder in 
Phase I. CINDEX indexes the cavity (cabin) modes. The structural 
modes are computed using the Mikulas and McElman scheme as 

outlined in Section 3.5. There are two programs - MSTRUC which 
prepares input data in proper form to describe the skin, stringer, 
and frame (ring) properties for the stiffened (orthotropic) 
cylinder, and MINCYL which calculates the modes (resonance 

frequencies). Output is again to a tape read by FCYLNR. 

Various subroutines in FCYLNR compute the structure/acoustic 
coupling factors, joint acceptances, radiation loss factors, and 

all other quantities needed in Eqs.(36) and (41). These sub­

routines are structured to.handle the modal data for the cylinder 
with or without floor. Finally, subroutine TRIM computes the trim 
panel transfer matrix data and the required transmission coeffi­

cients, loss factor'1:' and the surface admittance {3 of the trim. 
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4.0 EXPERIMENTS 

The Phase II study has a two-fold objective: development and 
validation of the analytical models. Section 3 considered the 
de¥elopment; Section 5 will consider the validation. This section 
considers the experimental program that was undertaken to obtain a 

data base to allow comparisons against predictions for a number of 
different parameters needed in the noise reduction calculation. 

Also the noise reductions of three test articles were measured. 

Most of the experimental work was done at NASA Langley 
Research Center. One simple test was performed at BBN/LA 
to obtain data for checking out the quality of the finite­
difference calculations of cabin modes when the floor is 
present. The two main tests were: 

1) Measurements of the structural and acoustic loss 
factors of the test cylinders and cavities 

2) Measurement of the noise reduction of the cylinders, 
i.e., the difference between the exterior and 
interior sound pressure levels given a random, 
diffuse (reverberant) exterior acoustic field. 

Other tests done at Langley involved the acquisition of accelera­

tion response data on the cylinder walls to provide some experi­
mental insight into the modal characteristics of the shell 

structures. 

4.1 NASA Tests 

The cylinders were tested in a 221m3 (7800 ft3) reverberation 
room having dimensions of about 6x9x4m (20x28x14 ft) with a 

reflection coefficient of about 0.95. The principal room mode was 
near 16 Hz. 
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The testing consisted of the measurement of the noise reductions 

of the test articles (cylinders) and the rate of decay of acoustic 
vibrations in the cylinder cavity and structural vibrations of the 
cylinder wall. 

Description of Models 

The cylinders tested were the unstiffened cylinder with floor and 
the stiffened cylinder with and without floor, with the various 

trims outlined in Section 1. The external dimensions were 0.508 m 
(20 in.) diameter by 1.219 m (48 in) long (see Figs. 14 and 15). 
The cylinders were equal in weight with one having an unstiffened 
0.0016 m (0.064 in) thick skin of 2024-T3 aluminum. The other had 
the shell weight equally divided between the skin, stringers and 
ring frames. 

The skin was attached to 0.0127 m (0.50 in.) thick annular end 

rings and the 0.41 m (16 in.) diameter opening in the end rings 

was closed with a 0.46 m (18 in.) dia. 0.0127 m (0.5 in.) thick 
cover plate (end cap). The cylinder was airtight except for the 
0.00018 m (0.007 in.) radial clearance between the mike support 
tube and bushings. The bushings and the end caps were attached by 
bolts, the remainder of the attachments and seams were epoxy 
bonds. Both cylinder seams had a 0.00457 m (0.18 in) wide double 
skin thickness; the unstiffened cylinder had a butt-joint with 
outside strap, the stiffened cylinder had a lap joint. 

The stiffened cylinder had 5 stringers, 0.0254 x 0.0254 x 
0.00318 m (1 x 1 x 0.125 in) angles at 720 spacing and 5 ring 
frames, made from 0.00229 m (.09 in) thick sheet, at 0.203 m (8 
in) spacing. The frames were made in two pieces, a 0.034 m (1.34 
in) wide ring with a butt joint, and an annulus with a 0.555 m 
(21.87 in) outside diameter that slipped over the ring to form a 

0.024 x 0.034 x 0.0023 m (0.937 x 1.34 x .09 in) frame cross 
section. 
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In the tests conducted with a floor and trim added to the basic 
cylinder configuration, as shown for the stiffened cylinder in 
Fig. 16, the floor was made from 0.0008 m (0.032 in) thick 
aluminum sheet. The floor was 1.1938 m (47 in) long with flaps on 

-the ends to close off the compartment below the floor. A bead of 

silicon rubber (RTV) was used to attach the floor to the skin and 
seal the lower compartment. The floor was stiffened by two 0.0158 
x 0.0158 x 0.00158 m (0.625 x 0.625 x 0.062 in) angles underside 
of the floor. The ends of the stiffeners were bolted to two 

0.0254 x 0.0254 x 0.0032 m (1 x 1 x .125 in) angles on the upper 
side of the floor that provided lateral stiffness and were bolted 
to the end rings to locate the floor about 0.163 m (6.46 in) below 
the cylinder centerline (eo = 49°). 

The trim insulation was Owens-Corning PF-l05 Fiberglas supplied 

0.013 m (0.50 in.) thickness. The supplier, Flight Insulation 
Marietta, Georgia, added a 2 mil vinyl facing on one side. A 

vinyl sound barrier weighting 2.44 kg/m2 (0.5 lb/ft2) was used. 
The lead-vinyl had a fiberglas cloth facing on one side with a 
total thickness to about 0.00119 m (0.047 in.). 

Instrumentation & Apparatus 

In the noise reduction tests, six microphones were located inside 
the cylinder as shown in Fig. 14. The microphones were mounted on 
a bar attached to a 0.0254 m (1 in) tube on the cylinder center­
line. The tube could be rotated and translated to position the 
microphone array at the desired measurement location. 
levels were measured by 2 microphones on floor stands. 

Exterior 
The 

noise load was supplied by one or two 100 watt speakers (Fig.17). 

The exterior spectrum was produced by a GenRad noise generator and 

passed through a power amplifier to two Altec "studio monitor" 
speakers. The level was controlled by the volume knob on the 
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noise generator. The amplified microphone output was fed, one 
channel at a time, by a selector switch to an analyzer and digital 
volt meter. Overall levels of all microphones were hand recorded 
from the DVM, one-third octave spectra for selected microphones 
were taped and some NR spectra were plotted. Post test analysis 

and listings of spectra were obtained by recalling the taped 
spectra into the analyzer ~emory and reading the analyzer memory 

through an IEEE computer interface. 

In the reverberation time measurements, structural and acoustic 
modes were excited by a 5 in diameter speaker mounted on the 
microphone bar. A time history of the signal decay of an interior 
microphone or an accelerometer on the skin was captured by the 
"Hold" function of the analyzer. The time history was then 

recorded by the digital plotter. 

In the mode identification tests, a tone was played through the 

small speaker. One axis of the analyzer scope was connected to 
the speaker and the other to a hand held microphone. The frequen­
cy was swept until the microphone response peaked. The microphone 
was then moved over the skin surface and the number of slope 

changes in the display per longitudinal and circumferential cir­
cuit were counted. 

Test Procedure 

The floor and trim were installed in the cylinders. A microphone 
mount short enough to allow the desired rotation was selected, and 

the mikes were installed in the cylinder. The cover plates were 
bolted on the cylinder and the cable access hole sealed with 
modeling clay. The cylinder was suspended from a wood 2 x 4 
"sawhorse" fixture by aircraft bungee cord as shown in Fig. 18. 
The fixture was located off center in the room because the spatial 

gradients in the sound pressure level for the low frequency bands 

were highest near the room center. The exterior microphones were 
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placed about 0.254 m (10 in) from the skin to avoid the increase 
in SPL that occurred for d < 0.178m (7 in). Spectra for the 
exterior microphones at the 4 "corners" of the cylinder were 
monitored and minor adjustments to the location and orientation 

,of~ the cylinder and speakers was made.to obtain approximately 
equal SPL in the 20 and 25 Hz bands. Above these bands the sound 
field was fairly uniform throughout the room. Below these bands 
the interior levels were sometimes lost in the background noise. 

A speaker output level high enough to produce measurable levels on 
the interior microphone nearest the centerline was selected and 
used for all data for the given test configuration. The speaker 
was turned on, OASPL from the DVM was read for all microphones, an 

external spectra was acquired, stored on tape, and transferred to 
analyzer memory "B". An internal spectra was acquired, taped, and 
the difference in current and stored spectra was plotted. After 
comparing the desired microphones the speaker was turned off and 
the microphone array rotated to the next location. 

For reverberation time measurements a 1/3 octave filter, B&K 1614, 
was added between the noise generator and amplifier (Fig.17) and 
between the microphone selector switch and analyzer. The speaker 
output was down 10 dB for the adjacent 1/3 octave bands on either 
side of the selected one, and down about 50 dB for the second band 
on either side. Time histories of vibration decay were captured 

by simultaneously hitting a switch to disconnect the signal to the 
power amplifier and tripping the "Hold" switch on the analyzer. 

If the decay was too irregular to analyze, a tone was substituted 
for the pink noise and the frequency was swept manually until a 

resonance was located. If the decay was smooth the record length 
(time scale factor) and transducer gain was adjusted until the 
decay record filled the CRT screen. The display was checked to 
see that the low-pass filter associated with the time scale knob 
was higher than the frequency of the band being studied, and that 
the decay extended over more time than the 4-cycle time-constant 
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of the filter. The record was then plotted, an arbitrary zero 

time marked on the plot 2 or 3 cycles after the surge due to the 
speaker power switching transient, a curve was hand faired for the 
"average" envelope of the response, and the double amplitude of 
the voltage'scaled off at about 4 selected times, converted to dB , 
and plotted on semilog paper. A straight line was faired through 
the data pOints. The reverberation time, "60 ' i.e. the 60 dB down 
time was calculated from the slope of the faired line. 

Application of trim 

In the stiffened model there was bare metal exposed. The areas 
were the top of the floor, the top of the leg of the stringers, 
and the face of the end rings. The inner side of the cover plate 
had a 0.406 m (16 in.) disk of fiberglass with the facing film 
next to the metal and attached by a few small strips of double­
back tape. The remainder of the interior surface was covered with 

a double blanket 0.0127 m (0.5 in.) thick made by placing the 
facing of the fiberglass layer against the facing of the lead­
vinyl layer. The fiberglass side of the blanket was placed next 
to the skin and the lead-vinyl side was placed next to the under­
side of the floor. The lead-vinyl was cemented to the floor and 
the fiberglass attached by double back tape. For the skin insula­

tion, the two layers of the blanket were not attached. In the 
lower compartment the blanket was held against the skin by 

gravity. In the upper compartment, small bowed retainer strips, 
covered wagon hoop style, held the blanket against the skin by the 
buckling pressure of the retainer ends against the stringers. The 

retainers compressed the blanket to about 35 to 70 percent its 
nominal thickness of about 0.014 m (0.55 in.). This left about 
0.01524 m (0.6 in.) of one leg of the stringers bare. Photo-

graphs showing the exposed stringers are included as Appendix B. 
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4.2 BBN Test 

The sole BBN test consisted of the measurement of the mode shape 
and resonance frequency of an acoustic mode of the cylinder with 
floor. A 0.457 m (18 in.) diameter ce~amic cylinder approximately 
0.304 m (12 in) high was used. A 0.019 m (0.75 in.) thick 

fiberboard cover was fitted to the cylinder. Holes were drilled 
for insertion of a 0.0064 m (0.25 in.) microphone. A 0.0064 m 

(0.25 in.) thick plywood partition simulating the floor was taped 
to the side of the cylinder. Excitation of the acoustic mode was 

with a tone, the input being from a small speaker located at the 
top center of the lid of the cylinder. Partitions simulating 

eo = 0°, 15°, and 30° were tested, for purposes of determining 
the influence of the floor and for comparison to the predictions 

with the finite difference technique. The test considered the 
effect of the floor on the empty cylinder (0,0,2) mode. Results 
and comparisons are presented in the next section. 

4.3 Noise Reduction Data Analysis 

Noise reductions, Nft, defined as the difference between the mean 
exterior sound pressure level and the interior level, at measure­

ment position, i, were calculated and averaged in accordance with 
the relation 

N 
HR = -10 IOjlO [ k-L IO-ItRt!IO J ' 

l::.t 

where N is the number of sampled (equal volume) interior points. 
The results is the cylinder noise reduction, MR. The associated 
standard deviation for the noise reduction measurements was also 
calculated with 

[ 
\ ~ (-MR~/(O -NR/10)~J I/Z. 

5= .~ 10 - '0 · 
~- \ t::'1 
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To quantify the accuracy of the estimates, 99% confidence inter­
vals for the noise reduction estimates were also calculated using 
the relationship 

where tWljc>.OOS is the 0.005 percentage point of the Student "t" 
variable with m = N - 1 degrees-of-freedom. It was assumed that 
the individual noise reduction estimates were statistically 
independent, which is believed to be an acceptable assumption. 
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5.0 RESULTS AID COMPARISONS 

In this section, results from various tests are considered in a 
sequence which allows for a gradual confirmation of some of the 
basic analytical models used in the noise reduction predictions 

prior to the comparisons of the predictions with the measured 
noise reductions themselves. Each test article is considered in 
turn. 

5.1 Cavity Modes (Cabin with Floor) 

To begin this study, it is first interesting to examine some basic 
experimental results that were obtained from the test discussed in 

Section 4.2. A very strongly responding acoustic mode in the 
empty ceramic cylinder was identified as the (t,n,s) = (0,0,2) 
mode. The mode shape is [1, p.22] 

cp (e) = J;, (mol") , 
0,0;1. 

where the root of J': (tf'Vt) = ° is t'nO'1.. = 3.83/0..., where Q... is the 
radius. The theoretical resonance frequency is [1, p. 22] 

r _ Co 0<-

1002.. - ~ M01. -
, , -41, 

3.83 c. 
'l.1fQ.. 

, 

which for the 0.457 m (18 in) diameter cylinder gives 

The measured mode is shown in Figure 19. The resonance frequency 
is almost exactly the theoretical value and the mode shape closely 
matches the theory. 
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In Fig. 20 a small perturbation has been introduced by a 15° floor 

and the same mode has been identified. The resonance frequency 
has shifted upward to 922 Hz and the mode shape shows slight 
bulges appearing at about the 0°, 100° and 260° positions. 

The change in modal pattern is even more pronounced in Fig. 21 
where the results for a 30° floor are shown. The resonance 

frequency has shifted to 930 Hz and the mode shape bears little 
resemblance to that of the no-floor case. 

It was after the results of these experiments were available that 

a decision was made to abandon a perturbation approach to the 
acoustics problem in favor of the finite different technique. 

After the theory of Section 3.4 was developed, predictions were 
compared against these data to assure the proper working of the 
computer program and the sufficiency of the chosen grid spacing. 

Fig. 22 shows the data of Fig. 21 in a more detailed form. The 
measured resonance frequency is (as previously stated) at 930 Hz. 
However this measurement is for a 0.2286 m (9 in) radius cylinder. 
The test articles are 0.254 m (10 in.) radius. Thus this mode 

would have appeared at (9/10) x 930 Hz or 837 Hz if the test had 
been performed in a 0.254 m (10 in) radius cylinder. 

Fig. 23 shows the third symmetric mode for a 0.254 m (10 in) 

radius cylinder calculated with the finite difference technique. 
The computed resonance frequency is 836 Hz. The calculation is 
for a 40° floor. It should have been made for a 30° floor for a 
direct comparison but there was a slight communications problem 

in house. Nevertheless the first twenty symmetric and anti­
symmetric modes were calculated with the finite difference tech­
nique, then a search for a symmetric mode closest to the measured 
frequency (837 Hz) was undertaken, and the mode of Fig. 23 was 

found. Comparisons of Figs. 22 and 23 show that the finite 
difference technique 1s quite accurate, certainly accurate enough 
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for the present purposes. In fact, the acoustic mode shapes and 
frequencies can be considered as perhaps some of the best data 
that is input to the noise prediction scheme. 

Appendix C contains the first 11 modes 'computed for a cabin with 

a &0 = 49° floor per the test articles. The modes are ranked in 
terms of the Al. Mode 5 (symmetric) is the same mode considered 
in Figs. 19 through 23. The computed value of the resonance 
frequency for this mode (for ~ = 1 m) is 213 Hz. This gives, for 
a 0.254 m (10 in) radius cylinder, a resonance frequency of-
838 Hz. 

5.2 Noise Reduction Measurements, Predictions, and Comparisons 

As stated previously, the primary purpose of the present·work is 
to demonstrate the feasibility of the calculation of sound trans­
mission into the interiors of certain complex test articles. The 

noise reduction (in one-third octaves) has been chosen as the 
measure for comparison. The three test articles are: 

1) a bare ring-stringer stiffened cylinder without floor or 
trim; wall thickness of 0.000508 m (0.020 inches). 

2) a 0.0016 m (0.063 in.) thick unstiffened cylinder (the 
Phase I test article) modified with a floor partition, lined 

with a 0.0127 m (0.50 in.) thick layer of PF-105 fiberglass 
that is covered with a 0.0000508 m (0.002 in.) vinyl 

film, with a 0.0127 m (0.50 in.) layer of PF-105 fiberglass 
on the inside of each end cap exposed directly to the 
interior. 

3) a 0.000508 m (0.020 in.) ring-stringer stiffened cylinder 
(same as (1) above) with a floor partition lined with a 

simulated trim consisting of a 0.0127 m (0.50 in.) thick 



layer of PF-105 fiberglass covered with a 0.00119 m 
(0.047 in.) thick layer of lead vinyl weighing 2.44 kg/m2 

(0.50 Ib/ft2), with a 0.0127 m (0.50 in.) layer of PF-105 
fiberglass on the inside of each end cap exposed directly to 
the interior. 

In Cases (2) and (3) above the exposed floor surface in the cavity 
(cabin) is bare metal. In Case (3) the (internal) stringers 
protrude somewhat above the trim exposing a height of about 0.1524 
m (0.6 in.) of bare metal on each of five stringers. 

Noise Reduction Measurements 

Fig. 24 shows the equal volume sampling scheme used when the floor 
was present. The sampling was done at 18 pOSitions on three 
measurement planes representing one-fourth of the cylinder volume. 
Because of the nature of the exterior field and the symmetry 

present, the 54 measurement positions are sufficient to compute 
the space average mean square interior level and the ratio of 
exterior level to average interior level, i.e., the noise reduc­
tion. In reality, this was accomplished by measuring the indivi­
dual noise reductions NR~ at the 54 positions and averaging 
according to the relations given in Section 4.3. The standard 
deviation and the 99% confidence intervals were also based on 
these 54 measurements. In the case of the stiffened cylinder 
without floor, a slightly different measurement procedure was 
followed, with larger sampling volumes, resulting in only 38 
measurement locations. Figs. 25, 26, and 27 show the measured 
noise reductions. 

5.2.1 Predictions for the Bare 0.020 in. Ring-Stringer 
Stiffened Cylinder 

If insulation (or insulation and lining, i.e.,trim) is present, 
the wall conductance can be estimated using Eq.(33) and then the 
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acoustic loss factor can be computed with Eq.(28). Also the added 
structural damping induced by the t!im can be determined (~). 
The structural loss factor (without trim present) must always be 
measured for input to the computer program. In the case of a bare 
cyiinder, the program requires the input of both acoustic and 
structural loss factors. Figs. 28 and 29 show the measured values 
used for the bare ring-stringer stiffened cylinder. 

The acoustic and structural resonance frequencies are also 

required in addition to the loss factors. The acoustic reson-
ance frequencies for the cylinder without floor are computed with 
the relation 

W\", = CO A\I\~ , 

where A,ns is given on page 22 of Ref. [1 ] • The structural 
resonance frequencies come from Eq.(60) of this report. Once the 

Wn's and oJis are known, the constants bIt' b~, C"" c~, On .. 
arctann , arctan~, Inn' and lnr , i.e., everything in the braces 
i 1 in Eq.(36), can be computed. The acoustic mode normalization 
En comes from Eqs. (19) and (20) of Ref. [1 ]; the modal mass M ... from 
Eq.(23) of Ref.[1]. Since trim is not present 1't C IC.w l'2. = 1-

The acoustic/structure coupling term f'(n,Y') is given by Eq. (24) 
or (25) of Ref.[1], the joint acceptance j~ , by Eqs. (26), (27) 
and (28) of that same reference. 

Structural Model 

The stiffened cylinder is made up of a thin skin with 5 external 
rings and 5 internal stringers. It is freely supported at its 
ends, and the mode shapes are assumed to be of the form 

",MN(e ) = · M1t~ (C.OS He} . 
'f' \.~ sin L sin N9 
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Given below is a tabulation of the data used to specify the 
properties of the stiffened cylinder as required by Eq.(60). 

Stiffened Cylinder Properties 
(Dimensions in Meters) 

Cylinder Data 
Length = 1.2192 
Radius = .25375 
Skin Thickness = .508000E-3 
Youngs Modulus = .72400E+11 N/m2 
Poissons ratio = 0.33 
Density = 2700 kg/m3 
Total mass/unit area = 4.27217 kg/m2 

Stringer Data 
Stringer Spacing = .318867 
Cross-Sectional Area = .151209E-03 
Mass per Unit Length = .408265E+OO 
Moment of Inertia About Centroid = .904240E-08 
Distance of Centroid to Skin Middle Surface = -.007768 
Torsional Constant for Stiffener = .465416E-09 
Stringer Element Input Data 

. Width Height 
.0254000 .0031750 
.0031750 .0222250 

Frame Data 

z to Skin Inner surface 
-.0015875 
-.0142875 

Frame Spacing = .203200 
Cross-Sectional Area = .121935E-03 
Mass per Unit Length = .329225E+00 
Moment of Inertia About Centroid = .453716E-08 
Distance of Centroid to Skin Middle Surface = -.005207 
Torsional Constant for Stiffener = .200933E-09 
Frame Element Input Data (Frame Elements) 

Width Height z to Skin Inner Surface 
.0342900 .0022860 +.0016510 
.0022B60 .0190500 +.0123190 

Resonance frequencies calculated for the "smeared-out" stiffened 

cylinder and an unstiffened 0.02 in. cylinder are shown in 
Figure 30. For the stiffened cylinder the membrane stiffness 
term dominates until N) 5. By the time the bending stiffness 

term dominates, the modes have at least one-half wavelength 

circumferentia11y between the stringers. As the axial mode number 
increases to M~ 6, the effects of the rings are reduced and the 
suhpane1 motion hegins to dominate. 
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Hu, Gormley, and Lindholm [15] analyzed a ring stiffened cylinder 
using discrete elements for the rings and shell. Their more exact 
analysis suggests that the Mikulas formulation over-predicts the 
resonance frequencies slightly until the sub-panels break-up, at 
which time the Mikulas theory is not applicable. 

Since the cylinder being analyzed is a thin cylinder (.02 in. 

thick) with relatively heavy stiffeners, the effects of the rings 
dominate for low orders of M and N. The resonance frequencies 
calculated using the 'smeared-out' rings and stringers are 
therefore used when calculating the cylinder noise reduction, 
since the cavity modes at these frequencies couple to the lower 
order values of M and N. 

Referring to Fig. 30, it is seen that the lowest predicted 
frequency is for the (M,N) = (1,2) mode. Examination of the 
response curve of Fig. 31, made with a shaker attached to the 
skin, shows a resonance frequency at 205 Hz. Another resonance 
occurs at 292 Hz. The first resonance is a structural mode, the 
second is apparently the (2,0,1) acoustic mode (see Table 1, 
p. 84, Ref.[1 ]). The next significant response is at 407 Hz which 
could be structural or acoustic. On the basis of this measure­
ment, the (M,N) = (1,2) mode is shifted downward to 205 Hz. The 
(2,2) mode predicted at 660 Hz is shifted to 645 Hz. The (1,3) 
mode is not shifted since it is a more questionable action. 

Noise Reduction Prediction 

Figure 32 gives the calculated noise reduction curve. Also 
plotted are the measured values. Table 1 gives a breakdown of the 
five (5) highest contributing acoustic and structural modal pairs 
in a fashion similar to the manner presented for the unstiffened 
.063 in. cylinder of Phase I. 

-117-



J3a.nd 
Center 
Freq. (Hz) 

50 

63 
80 

100 

125 

160 

200 

TABLE 1 

Iblal Pairs Having Highest Contributions 
to Interior Level 

Acoustic 
Mode 
q,n,s Freq. 

:END CAPS 

END CAPS 

:END CAPS 

END CAPS 

:END CAPS 

1,0,1 141.7 
0,1 ,1 396.1 

2,2,1 715.6 

0,2,1 657.1 
1,0,1 141.7 

END CAPS 

2,1,1 487.1 

4,2,1 867.9 

0,1,1 396.1 
2,2,1 715.6 

0,2,1 657.1 
END CAPS 

Stiffened Cylinder 

structural 
Mode 
M,N Freq. 

4,0 3440.6 
1 ,1 627.4 

1,2 205.0 
1,2 205.0 

2,0 3440.6 

1 ,1 627.4 

1,2 205.0 

1 ,1 627.4 
1,2 205.0 

1,2 205.0 
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.1122E-04 

.1348E-04 

.1949E-04 

.4168E-04 

• 5248E-02 

.1207.E-05 

• 5798E-05 

• 8295E-05 

• 5379E-04 

• 5640E-04 
.1219E-01 

.2127E-05 

.9443E-05 

• 2576E-04 

.5512E-03 

• 3363E-02 

.2512E-05 

Noise 
Reduction 

NR 

.1122E-04 49.5 

.1348E-04 48.7 

.1949E-04 47.1 

.4168E-04 43.8 

• 5248E-02 22.8 

.1231E-01 19.10 

• 3954E-02 24.03 



Band 
Center 
Freq. (Hz) 

250 

315 

400 

TABLE 1 (continued) 

IblaJ. Pairs Having Highest Contributions 
to Interior Isvel 

Acoustic 
Mode 
q,n,s Freq. 

1 ,1 ,1 420.7 
2,1,1 487.1 
2,2,1 715.6 

0,1,1 396.1 
0,2,1 657.1 

2,0,1 283.5 

2,0,1 283.5 

2,1,1 487.1 

0,2,1 657.1 
0,1,1 396.1 

0,1,1 396.1 

0,2,1 657.1 

2,1 ,1 487.1 

1 ,1 ,1 420.7 

0,1,1 396.1 

Stiffened Cylinder 

Structural 
Mode * 
M,N Freq. 

2,1 1305.4 
1 ,1 627.4 

1,2 205.0 

1 ,1 627.4 

1,2 205.0 

3,0 3440.6 
1,0 3440.6 

1 ,1 627.4 
1,2 205.0 

1 ,1 627.4 

3,1 1784.3 

1,2 205.0 

1 ,1 627.4 

2,1 1305.4 

1 ,1 627.4 

Contribution 
<p2> 

i 
<p2> 

e 

.1571:E-05 

.8492E-05 

.3074E-04 

.1271E-03 

.19J2E-03 

• 2268E-04 

• 3606E-04 

.4132E-04 

.9055E-04 

.1265E-Q2 

.2021E-03 

.2079E-03 

• 5979E-03 

.1158E-01 

• 6021 E+OO 

* N = number of circumferential waves. 
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.3619E-03 

• 149JE-02 

Noise 
Reduction 

NR 

34.41 

28.27 

.6148E+OO 2.11 



Band 
Center 
Freq. (Hz) 

500 

630 

TABLE 1 (continued) 

IIodal Pairs Having Highest Contributions 
to Interior Level 

Acoustic 
Mode 
q,n,s Freq. 

0,3,1 903.6 

1,2,1 672.2 

2,1,1 487.1 

0,1,1 396.1 

2,1,1 487.1 

3,2,1 782.7 

0,1,1 396.1 

4,1,1 691.6 

0,2,1 657.1 
1,2,1 672.2 

2,2,1 715.6 

2,3,1 947.2 
2,2,1 715.6 

4,2,1 867.9 
3,2,1 782.7 

Stiffened Cylinder 

Structural 
Mode 
M,N Freq. 

1,3 506.5 
2,2 645.0 

3,1 1784.3 
1 ,1 627.4 

1 ,1 627.4 

2,2 645.0 

1 ,1 627.4 

1 ,1 627.4 
1,2 205.0 
2,2 645.0 

1,2 205.0 

3,3 813.9 

3,2 1038.9 

3,2 1038.9 

2,2 645.0 
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Contribution 
<p2 > 

i 
<p2> 

e 

.72ffTE-03 
• 9537E-03 
.1981E-02 

.4823E-02 

.2987E+OO 

• 1727E-01 

• 2748E-01 

·3063E-01 
.1787E+OO 
.1629E+02 

.1051E-01 

.1986E-01 

.2099E-01 

• 3837E-01 

.9341E-01 

Noise 
Reduction 

NR 

.3003E+OO 5.11 

.1658E+02 -12.20 

.2140E+OO 6.70 



TABLE 1 (continued) 

Ibial Pairs Having Highest Contributions 
to Interior Level 

Stiffened Cylinder 

Band Acoustic Structural Contrfbution Overall Noise 
Center Mode Mode <Pi> <Pi> Reduction 
Freq. (Hz) q,n,s Freq. M,N Freq. <p2> <p2> NR 

e e 

1 (XX) 5,3,1 1148.5 4,3 1085.3 .3201E-01 
6,2,1 1074.7 3,2 1038.9 • 3448E-01 
0,3,1 903.8 3,3 813.9 .3601E-01 
2,3,1 947.2 3,3 813.9 .1004E+OO 
3,3,1 998.8 4,3 1085.3 .1738E+OO .5193E+OO 2.85 

1250 4,4,1 1276.8 5,4 1370.8 .6193E-01 
5,3,1 1148.5 4,3 1085.3 .1198E+OO 
3,4,1 1220.5 4,4 1143.2 .1254E+OO 
1,4,1 1152.7 4,4 1143.2 .2947B+OO 
0,4,1 138).2 1,5 1395.3 .4214E+OO • 1352E+01 -1.31 

At 1600 Hz and above the calculations are made with the high 
frequency result, Eq.(41). 

Discussion of Results 

Referring to Fig. 32, it is noted that below 125 Hz, in the 
volume stiffness controlled region, a good prediction cannot 
be made because the compliance of the cylinder is determined 
by the relief of the membrane stresses as discussed in Section 
3.8. The predicted values shown in Fig. 32 (below 125 Hz) are 
based on the flexure of the end caps (Section 3.9). 
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Now suppose there exists a region for whiche > 1 and the membrane 
stresses are relieved. Then if the length involved is f = 0.05 m 
(2 in), the noise reduction at 50 Hz is predicted to "be 46 dB, 
i.e., based on the compliance of the shell,Cp , given by Eq.(101). 
If the length is 0.076 m (3 in) the noise reduction is predicted 
to be only 35 dB. For ~ = 0.10 m (4 in), the value is only 24 dB. 
However data do not exist that can be used to determine the extent 
of the regions for which e > 1 for the present shell. Thus a 
prediction is really not possible below 125 Hz. 

Above 125 Hz, a fairly good prediction has been made based on the 
NASA measurements of the acoustic and structural loss factors and 
the modal characteristics of the shell. The 630 Hz band is anoma­
lous due to the predicted presence of a highly resonant (2,2) 
structural mode closely coupled in both wavenumber and frequency 
to a resonant acoustic mode, i.e., the (1,2,1) mode. The (2,2) 
mode has a very high joint acceptance because it has acoustically 
fast wavespeeds in both the axial and circumferential directions. 
From the data in Table 1, the contribution of the (2,2) and 
(1,2,1) modes can be seen to significantly dominate the predic­
tion. The noise reduction can easily be computed without their 
par~icipation. The result is the dashed curve in Figure 32 which 
falls much closer to the measurement. If the prediction is viewed 
with the (2,2) mode contribution suppressed, it is seen that the 
prediction follows the measurement with reasonable accuracy from 
125 Hz out. The noise reduction climbs to a maximum in the 250 Hz 
band where there are no resonant acoustic nor structural modes, 
then nose-dives to a value of only 2 dB at 400 Hz. This is 
followed by a plateau where the noise reduction remains below 10 
dB before increasing slightly in the last few bands. 

5.2.2 Predictions for the 0.063 in. Unstiffened Cylinder with 
Floor and Insulation 

As in the previous case, the acoustic and structural loss factors 
are required; also the resonance frequencies, acoustic and 
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structural mode normalizations, coupling factors t(~,y), and joint 
acceptances. Since the floor is present, the finite difference 
acoustic modal data are used and since insulation is included, the 
trim transfer coefficient't~ is needed. 

, -' 

Figure 33 shows the calculated structural loss factor for two 
different values of the polyester film loss factor 1t that appears 
in the calculation of ~ through the parameterCw , given by the 
trim transfer matrix coefficients on p. 34. Also shown is the 
measured value of ~~ that was used in Phase I. The Phase I data 
were available and were used as the bare cylinder input. However, 
since the insulation was present, and the cylinder was so lightly 
damped without it, the value of ~r could have been set to zero 
without affecting the calculated value Of~: significantly. 
Generally there is an overprediction in ,: , however, the fact 
that the predicted and measured values generally lie in the range 
between 0.01 and 0.10 is encouraging, that is, basically the right 
order of magnitude is being predicted. 

The acoustic loss factor measurements and predictions are shown in 
Fig.34. As can be seen the amount of damping afforded by the 
flexure of the 0.00005 m (0.002 in) vinyl film is quite drama­
tic. The calculation for various values of ~ are shown. The 
equations used to calculate ~~ were those of Section 3.7, specifi­
cally Eqs.(62) and (63) where the conductance came from Eq.(33). 
A good comparison was never achieved and as a result, the envelope 
of the measured acoustic loss factor indicated by the horizontal 
line at ~~ = 0.05 and sloping off above 2000 Hz was used as compu­
ter input. As can be seen, the measured acoustic loss factors 
bounce around and identifying the few data points with any speci­
fic acoustic modes was impossible. 
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Figure 35 shows the computed value of the trim transfer 
coefficient (i.e., -10 logft ). Again the influence of the value 
of i~ is apparent. For the present work, a value of l)~ = 0.5 was 
selected to prevent a large negative excursion in the range 
between 1000 and 2000 Hz. 

The acoustic modes were computed with Eq.(58) and the structural 
modes with Eq.(60), where the model was a curved isotropic panel 
running from floor line to floor line. The acoustic mode normal­
ization was determined with Eq.(59) and the coupling factors with 
Eq.(61). The joint acceptances came from Eq.(26) of Ref.[1] 
where j~ is computed with Eq. (26) as is, and j1

N with Eq. (26) 
changed such that N replaces M and Ly replaces L~. As before 

Figure 36 shows the predicted noise reduction and Table 2 presents 
the computations in detail. 
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TABLE 2 

Iblal. Pairs Having Highest Contributions 
to Interior Level 

Unstiffened Cylinder with Floor and Insulation 

Fend Acoustic structural Contribution Overall Noise 
Center Jtbde Mode* <p2> <p2> Reduction 
Freq. q,i {or n)Freq. M,N Freq. i i 

NR <p2> <p2> e e 

50 :END CAPS .1072E-04 .1072E-04 49.7 
63 END CAPS .1288E-04 .1288E-04 48.9 
80 END CAPS .1905E-04 .1905E-04 47.2 

100 END CAPS .4074E-04 .4CJ74E-04 43.9 
125 mD CAPS • 2630E-01 • 2630E-01 15.8 

160 0,5 837.5 1,5 140.9 .5008E-Q4 

0,3 657.5 1,4 187.3 .6510E-04 
2,0 283.5 1,5 140.9 .7123E-04 
0,2 444.9 1,5 140.9 .8867E-04 
0,1 379.6 1,4 1Er7.7 .CJ732E-04 
END CAPS .1049E-02 • 1761E-02 27.5 

200 2,1 473.8 1,4 187.7 .9104E-04 
2,3 716.0 1,4 1Er7.7 .1166E-03 
0,6 937.1 1,4 187.7 • 2262E-03 
0,3 657.5 1,4 1Er7.7 .7076E-03 
0,1 379.6 1,4 187.7 .1163E-Q2 
END CAPS .2511E-04 • 2553E-02 25.9 

* N = number of circumferential half-waves. 
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Band 
Center 
Freq. 

250 

315 

400 

TABLE 2 (continued) 

Iblal. Pairs Having Highest Contributions 
to Interior Level 

Unstiffened Cylinder with Floor and Insulation 

Acoustic Structural Contribution Overall 
letxle letxle <p2> <pi> 1 
q,i (or n)Freq. M,N Freq. <pi> <pi> 

e e 

0,1 379.6 1,2 620.1 • 5523E-04 
0,1 379.6 1,4 187.7 .8284E-04 
2,0 283.5 1,9 245.1 .1133E-03 
0,2 444.9 1,3 309.6 .1549E-03 
2,0 283.5 1,3 309.6 .1709E-02 • 2466E-02 

2,2 527.5 1,3 309.6 .roJ7E-03 
0,1 379.6 1,2 620.1 • 8769E-03 
0,4 703.7 1,3 309.6 • 2269E-02 
0,2 444.9 1,3 309.6 .1094E-01 
2,0 283.5 1,3 309.6 • 3384E-01 .5033E-01 

0,1 379.6 1,4 187.7 • 6424E-03 
3,0 425.2 2,5 434.4 .3012E-02 
1,2 466.9 2,5 434.4 .3064E-02 
0,2 444.9 1,3 309.6 .1165E-01 
0,1 379.6 1,2 620.1 .1576E-01 .3719E-01 
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Noise 
Reduction 

NR 

26.00 

12·96 

14.30 



Band 
Center 
Freq. 

500 

630 

800 

TABLE 2 (continued) 

Ibia1. Pairs Having Highest Contributions 
to Interior Level 

Unstiffened Cylinder with Floor and Insulation 
-----

Acoustic Structural Contribution Overall Noise 
Mode Mode <p2> <p2> Reduction 
q,i (or n)Freq. M,N Freq. 1 1 NR <p2> <p2> 

e e 

2,2 527.5 1,3 309.6 • 1337E-02 
0,1 '519.6 1,2 620.1 .2001E-02 
1,2 466.9 2,5 434.4 • 3485E-02 
2,1 473.8 1,2 620.1 .6951E-02 
0,2 444.9 1,3 309.6 • 9709E-02 .2751E-01 15.60 

3,1 570.0 2,4 622.6 .3651E-02 
2,1 473.8 1,2 620.1 • 3664E-02 
0,1 '519.6 1,2 620.1 • 6530E-02 
1,3 672.6 2,4 622.6 • 5600E-01 

0,3 657.5 1,2 620.1 .7078E-01 .1552E+OO 8.09 

3,3 783.0 2,4 622.6 • 1863E-Q2 
1,4 717.9 2,3 960.2 .2184E-02 

3,4 822.2 2,3 960.2 • 2477E-02 
0,5 ff37.5 3,5 829.4 • 4922E-02 
2,5 834.1 3,5 829.4 .1144E-01 • 3643E-Q1 14.39 
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TABLE 2 (continued) 

Iblal Pairs Having Highest Contributions 
to Interior Isvel 

Unstiffened Cylinder with Floor and Insulation 

Band Acoustic structural Contribution Overall Noise 
Center M:>de Mode <p2> <p2> Reduction 
Freq. q,i (or n)Freq. M,N Freq. i i NR 

<ph <p2> 
e e 

1cxx) 2,7 1001.3 3,5 829.4 .2361E-02 
3,6 1029.0 4,6 971.3 • 2678E-02 
2,6 979.0 3,4 1128.2 .3OO7E-02 
2,5 884.1 3,5 829.4 .3591E-02 
4,6 1095.2 3,4 1128.2 • 6439E-02 • 4339E-01 13·83 

1250 5,9 1322.7 6,7 1351.8 • 2767E-02 

3,9 1195.0 4,5 1228.3 • 3792E-02 
5,7 1193.5 4,5 1228.3 • 5530E-02 
4,6 1095.2 3,4 1128.2 • 5838E-02 
4,10 1329.8 5,6 1297.4 .6185E-02 • 5306E-01 12.75 

Discussion of Results 

In general the results of the predictions are good, the shapes 
of the measured and predicted curves being quite similar. Below 
125 Hz the predictions are based on the end caps. The plateau 
appearing in the measurement between 250 and 1000 Hz has been 
predicted. This is followed by a rise in the noise reduction and 
then a sharp increase between 3150 and 5000 Hz due to the 2 mil 

vinyl film covering the fiberglass on the cylinder wall. 
This conclusion is evident from examination of Fig. 35. In the 
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160 and 200 Hz bands, the measured noise reduction exceeds the 
predicted value, however, the sharp drop at 250 Hz is basically 
predicted once the density of resonant acoustic modes is 
sufficient. Another interesting observation is that the 
pr~diction generally tries to follow the measurement beyond 1000 

Hz, that is rising slightly to a value above 20 dB before the 
effect of the vinyl film is felt. It is emphasized that this 

calculation is made using the complex modal characteristics of the 
cabin space created by the floor partition. To our knowledge no 
sound transmission prediction of comparable complexity has been 
attempted before. 

5.2., Predictions for the 0.02 in Ring-Stringer Stiffened 
Cylinder with Floor and Trim 

The calculation of the acoustic modes was made with Eq.(58). The 
finite difference data were used because of the presence of the 
floor. The structural modes were computed with Eq.(60), where the 
model was that of a curved orthotropic panel running from floor 
line to floor line. The acoustic mode normalization was deter­
mined with Eq.(59) and the coupling factors with Eq.(61). The 
joint acceptances came from Eq.(26) of Ref.[l] and were calcu­
lated in the same manner as they were previously for the 0.063 in 
cylinder with floor (see 5.2.2). 

Acoustic Loss Factors and Trim Transfer Coefficient 

Predictions were made of the acoustic loss factors for various 
values of~t of the lead-vinyl covering the fiberglass on the 
sidewall. These are compared to measurements in Figure 37. If 
there is assumed to be no dissipation in the trim (~~ = 0), the 
predicted acoustic loss factors ~o not match well with the 
measured data. However by assuming the trim panel is dissipative 
and taking a loss factor of 0.5 or greater, fairly good predic­
tions can be achieved. Not only are the wide excursions in the 
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predictions of the acoustic loss factor suppressed, but also those 

present in the trim transfer coefficient as seen in Figure 38. A 
value of ~t = 0.5 was chosen for the noise reduction computation. 

Structural Loss Factors 

Figure 39 shows the measured structural loss factors. Also shown 

are the predicted values of ~~. Since the trim was present when 
the structural loss factor was measured, theoretically ~~ was 
measured. However, the excitation was with a speaker inside the 

cylinder and ideally, to determine ~~, the exterior should be 
excited allowing the trim to react to that response to provide the 
added damping. Although the predicted ~~ is very high at 400 Hz 
and below, it is seen from Fig.38 that this is precisely the 
region over which -10 log 1'~ is negative, that is, when an 
increase in the power flow to the interior due to the presence of 
the trim is predicted (as compared to the no trim case). The 
terms dominating the ~~ are determined by the value of the para­
m~ter Cw which becomes large and acts to reduce the power flow, 
i.e., in opposition to the effects caused by~ being greater than 
unity. At frequencies where~~ is less than unity (i.e., 

- 10 log 1"'~ )0), ,:- drops by at least an order of magnitude. 

Influence of Stringer Exposure 

At high frequencies, when the cavity response is resonant and the 
structure response is also, the exposed stringers (protruding 
above the trim) can be a significant contributor to the interior 
sound level. In fact, if the power flow through the trim itself 
becomes sufficiently low, the stringers can become the primary 
contributing source. In the present case, the power flow through 
the trim is predicted to be very low at high frequencies leading 
to high noise reductions. Since the primary contributing struc­
tural modes are all acoustically fast, the radiation off the 
stringers is simply the ratio of exposed area of the stringers to 
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the transmitting area (with trim). Thus the acoustic power inflow 
due to radiation from the stringers is estimated to be (approxi­
mately) given by the power flow computed to pass through the 
cylinder wall had the trim not been present, multiplied by the 
ratio of the exposed stringer area to the cylinder wall area 
(floor-to-floor), but allowing for the increased structural damp­
ing present (i .e.,~; ) being created by the trim. This leads to 

Asm",ers X 

A 0.,1. ¥fA II 

tti. on 
u.l. ¥taU 
~ ,..", 

The dissipation in the cavity is almost exactly the same in both 
cases, i.e., with or without stringer exposure. Thus the space 
average mean square pressure in the interior due to stringer 
exposure is given by 

or the difference in interior sound pressure levels is 

Thus the interior level with stringers exposed is estimated to be 
greater than the interior level without exposure by an amount in 
dB equal to 

Figure 40 shows the predicted noise reductions and Tables 3 and 4 
present the computations in detail. 
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TABLE , 

Ibia1. Pairs Having Highest Contributions 
to Interior level 

Stiffened Cylinder with Floor and Trim 

Band Acoustic Structural Contribution Overall Noise 
Center Mode Mode * <p2> <p2> Reduction 
Freq. q,i (or n)Freq. M,N Freq. 1 1 NR <p2> <p2> 

e e 

50 :END CAPS .1445E-04 .1445E-04 48.4 

63 END CAPS .1737E-04 .1737E-04 47.6 

80 END CAPS .2512E-04 .2512E-04 46.0 

100 :END CAPS .5370E-04 • 5370E-04 42.7 

125 END CAPS .1698E-Q2 .1698E-02 27.7 

160 2,0 283.5 1 ,1 961.7 • 1854E-05 
1,0 141.7 2,5 676.7 • 3578E-05 
0,1 300.0 1,2 416.5 .1236E-04 

1,0 141.7 2,3 636.6 .3208E-04 
1,0 141.7 2,1 1727.7 .7993E-04 
:END CAPS .1698E-02 .1828E-02 27.3 

200 0,2 445.3 1,3 298.8 .4178E-05 
1,0 141.7 2,1 1727.7 • 5409E-05 
2,1 474.1 1,2 416.5 .6116E-05 
2,0 283.5 1 ,1 961.7 .1117E-04 
0,1 380.0 1,2 416.5 .8178E-04 • 1276E-03 38.94 

* N = mnnber of' c1rctn11ferent:1al half' -waves. 
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Eand 
Center 
Freq. 

250 

315 

400 

TABLE 3 (continued) 

Modal Pairs Having Highest Contributions 
to Interior Level 

Stiffened Cylinder with Floor and Trim 

Acoustic 
Mode 
q,i (or n)Freq. 

0,2 445.3 
2,1 474.1 
2,0 283.5 
2,0 283.5 
0,1 300.0 

0,2 445.3 
2,1 474.1 
2,0 283.5 
2,0 283.5 
0,1 300.0 

1,2 467.3 
1 ,1 405.5 
2,1 474.1 
0,2 445.3 
0,1 300.0 

Structural 
Mode 
M,N Freq. 

1,3 293.8 
1,2 416.5 
1,3 293.8 
1 ,1 961.7 
1,2 416.5 

1,3 293.8 
1,2 416.5 
1 ,1 961.7 
1,3 298.8 
1,2 416.5 

2,3 636.6 
2,2 967.0 
1,2 416.5 
1,3 298.8 
1,2 416.5 
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Contribution 
<p2> 

i 
<p2> 

e 

.2687E-Q4 

.4111E-04 
• 3309E-03 
.7044E-03 
.7146E-03 

• 2222E-03 
.2415E-03 
.1357E-02 
• 1400E-02 
.1161E-01 

.1862E-03 
• 2452E-03 
• 7846E-03 
.1253E-02 
• 7657E-02 

Overall 
<p2> 

i 
<p2> 

e 

.1914E-02 

.1536E-01 

.1081E-01 

Noise 
Reduction 

NR 

27.18 

18.14 

19.66 



Band 
Center 
Freq. 

500 

630 

TABLE , (contirmed) 

Ibla.l. Pairs Having Highest Contributions 
to Interior Level 

Stiffened Cylinder with Floor and Trim 

Acoustic 
Mode 

structural 
Mode 

Contribution 
<p2> 

1 q,i (or n)Freq. M,N Freq. <p2> 
e 

2,2 527.9 1,3 293.0 .2160E-03 
0,1 380.0 1,2 416.5 • 4274E-03 
0,2 445.3 1,3 293.8 • 7272E-03 
1,2 467.3 2,3 636.6 .8114E-03 
2,1 474.1 1,2 416.5 .1321E-02 

0,3 658.1 1,2 416.5 .3011E-03 
0,3 658.1 1,4 397.4 • 3685E-03 
1,3 673.2 2,4 552.4 .6084E-03 
1,4 718.5 2,3 636.6 • 8336E-03 
3,2 615.7 2,3 636.6 .1105E-02 

0,5 838.3 3,5 008.5 .1508E-03 
2,3 716.8 3,4 811.9 • 2682E-03 
2,5 884.9 3,5 008.5 • 3294E-03 
4,3 868.6 3,4 811.9 • 4294E-03 
1,4 718.5 2,3 636.6 • 6685E-03 
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• 4200E-02 

• 4402E-02 

• 2874E-02 

Noise 
Reduction 

NR 

23.77 

23.56 

25.42 



.'. 

Eand 
Center 
Freq. 

1(XX) 

1250 

TABLE , (contirmed) 

Iblal Pairs Having Highest Contributions 
to Interior Uwel 

Stiffened Cylinder with Floor and Trim 

Acoustic 
Mode 

structural 
Mode 

Contribution 
<p2> 

1 q,i (or n)Freq. M,N Freq. <p2> 
e 

4,4 9::>4.2 3,3 1004.2 .5173E-04 
2,6 CJ79.9 3,6 960.1 .6108E-04 
5,5 1097.7 4,5 1032.0 • 6253E-04 
3,6 1029.9 4,4 1108.5 • 8596E-04 
3,7 1051.1 4,5 1032.0 .2210E-03 

4,9 1253.4 3,7 1218., .1426E-04 
3,9 1196.0 2,7 1174.3 .1446E-04 
1,9 1126.8 2,7 1174.3 .2042E-04 
6,7 1263.4 5,5 1309.0 • 2724E-04 
0,9 1117.9 1,7 1165.1 .3816E-04 
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Overall 
<p2> 

1 
<p2> 

e 

.1250E-02 

• 3467E-03 

Noise 
Reduction 

NR 

29.03 

34.60 



TABLE 4 

Effect of stringer Exposure+ 

, .. , \ Computed NR 
Frequency w/o stringer 

(Hz) Exposure 

1CXX> 29.0 20.8 
1250 34.6 25.4 
1600 40.8 29.6 
2CXX> 50.9 33.8 
2500 59.9 37.5 
3150 65.3 40.7 
4CXX> 71.6 43.5 
5000 74.7 45.9 

+ Stringers exposed area = 0.145 rn2 

:EStimate of NR with 
stringer Exposure + 

17.0 
18.0 
20.0 
25.9 
31.2 
33.4 
36·9 
37.6 

Cylinder wall area (trim covered) = 1. 09 rn2 

~o\: = 0.5 

Discussion of Results 

As in the previous cases, the prediction below 125 Hz is based on 
the end caps' transmission. While the prediction below 125 Hz is 
not particularly of concern, it can be seen that the measured 
noise reduction is in closer agreement to the prediction than it 
was for the bare stiffened cylinder. It can be seen from Table 3 
that at 125 and 160 Hz the end caps dominate. This is due to 
their intimate coupling with the (1,0) acoustic mode at 141.7 Hz. 
Incidentally, recall the (1,0) acoustic mode is q = 1, i = 0 
where i is the assigned order of the 2 dimensional modal pattern 
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in the cylinder cross section when the floor is present (mode 0 

of Appendix C). By 200 Hz, the end cap contribution can be 
ignored. The measured and predicted noise reductions rise 
sharply due to the absense of any resonant acoustic modes and 
then fall dramatically as has been observed in the previous two 
comparisons. However the curves rapidly bend upward because the 
trim lining is so heavy (see Fig.3S). The prediction is that 
the noise reduction could rise to over 70 dB by 5000 Hz if the 
stringers were not exposed. Actually, it is a pretty remote 
possibility that it would ever achieve that level even if th~ 
stringers were not exposed because of other shorting paths 
(vibration of the end caps, exposed metal such as the floor, 
etc.) In the present case, the stringers are obviously the 
shorting mechanism (Table 4). The transition between the two 
curves in Figure 40 (stringers exposed versus not exposed) is 
not clear, although it could probably have been determined; it 
did not seem important to do so. It is felt that the present 
interpretation of the results is reasonably accurate, and that 
basically all the structure in the curves has been explained 
with the present model. 

5.3 Statistical Analysis of Prediction Error 

The remaining question to be answered is whether there is a bias 
in the predictions, that is, does the analytical model (with the 
best input data that can be generated) tend to over or under 
predict the noise reduction on the average. 

Table 5 contains the measured and predicted noise reductions for 
the three test articles. It includes the noise reductions for 
frequencies at and above 125 Hz, and excludes the transition 
region data for the stiffened cylinder with floor and trim where 
the stringers' exposure first begins to contribute significantly. 
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Of interest is whether there is a statistically significant 
difference, on the average, between the predictions and the 
measurements for these data, i.e., are the predictions biased? 

TABLE 5 

Predicted versus Measured Noise Reductions 

B!md .02 Stiffened .06 Unstiffened .02 Stiffened 
Center w/o Floor w/Floor w/Floor & Trim 
Freq. Predicted Measured Predicted Measured Predicted Measured 

125 22.8 22.7 29.8 27.9 27.7 30.4 
160 19.1 19.2 27.5 34.9 27.7 31.9 
200 24.0 18.3 25.9 35.1 38.9 36.7 
250 34.4 24.9 26.1 17.6 27.2 ~.9 

315 28.3 11.5 13.0 16.6 18.1 27.0 
400 2.1 2.6 14.3 15.4 19.7 A).O 

500 5.1 5.3 15.6 16.4 23.8 16.9 
630 -12.2 4.2 8.1 17.8 23.6 21.3 
800 6.7 6.3 14.4 16.2 25.4 22.1 

1000 2.8 6.1 13.6 15.0 Transition region 
1250 -1·3 3.9 12.8 21.5 data are not 
1600 4.2 4.1 19.3 23·3 included. 
2000 5.7 4.6 20.7 23·5 25.9 30.4 
2500 7.3 3.8 24.2 24.1 31.2 32.1 

3150 8.2 3.3 24.0 22.1 33.4 31.6 
4000 10.6 8.0 31.1 29.2 36.9 36.7 
5000 12·3 10.0 34.4 36.3 37.6 39.4 
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To determine if there is any bias, the differences~i; i = 1,2, 
••• , n, between the predictions and measurements in each 
one-third octave band are computed and their mean and standard 
deviation determined by pooling all data from the three tests, 
providing a sample size of n = 48. The sample mean and standard 
deviation are 

• , s = 5.4' dB . 

Under the hypothesis that there is no discrepancy on the 
average, that is, 

the sampling distribution of A becomes 

- s 
Il = Vn t,,_, ' 

where i: .... , is the student "t" variable with n-1 = 47 degrees of 
freedom. The acceptance region for the hypothesis above is 
given by 

S l - S --rn ""Ln-',tJ(/2 <;. A ~ -:::r;; t 1'1-1 j o(/~ 

For a two-sided test at the ~ = 0.05 level of Significance, 

i:.41;O.O~S' = 2.01: soA must fall between -1.59 and +1.59 dB. 
Since the sample mean A (= -0.56 dB) falls wi thin the 
acceptance region, there is no reason to question the validity 
of the hypothesis, i.e., there is not a statistically 
significant difference between the predictions and "measurements 
on the average (at the« = 0.05 level of significance). 
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On the other hand, there is a substantial random error in the 
predictions versus measurements as indicated by the standard 
deviation of s = 5.5 dB for the A~ values. This means that one 
can expect a discrepancy of more than 5 or 6 dB for about 
one-third of the predictions. 

In the future, output from the interior noise program should 
include, in addition to the predicted noise level, a measure of 

the quality of the prediction based upon a statistical analysis 
of the comparison data accumulated in the various tests. This 
measure would be the confidence intervals, which might be 

computed for the various frequency bands by scaling-up the test 

articles to the fuselage diameter of concern. It is felt that 
there will continue to be a substantial random error although 
its existence will almost always be associated with input data 
deficiencies. 
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APPENDIX A 

Transfer Matrix 
for Trim Insulation 
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Transfer Matrix for Trim Insulation 

Consider a harmonic pressure wave moving from left to right in 
the insulation of Figure 1 (imagine that the skin and lining are 
not present). When the wave reaches x = L, it is reflected. If 
the pressure amplitude in the incident wave at x = L is p( and 
the pressure amplitude in the reflected wave is pr, then the 
pressure at any point x measured from left to right is (dropping 
the e:-'-"'t dependence) 

(A1) 

where k is the acoustic wavenumber in the insulation and D( is 
the decay constant. Note, that when x = L, 

Let "=-o(-~k. Then 

b( ) - b' lrCI--)() + p -V (L .. -x) 
\ ~ - I\.e It'"e . 

The particle velocity is 

where W is the wave impedance in the material, that is 
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(A3) 



w = p/v, 
where p is the pressure and v is the particle velocity for a 
wave running in the material when the material has unlimited 
extent (W is independent of x). 

Then, when x = L, 

Now let 

VeL) 
r~- Py 

'N 

reo) :: fl 
r (\..) ::; p2-

Al so define the impedance :z!~ as 

Then, 

But 

p. 

-1~5-

v(o) = V, 

Vel-) = V2.. 

• 

(A4 ) 



Therefore 

t.l. c.osh 1(L +WsinhyL 

Also, it is found that 

Let 

'Nv, 
V1.= ------------ · 

rz.Sihk)'L + WcoshyL 

Cosh ~L = C 
s\~h ~L= s. 

(A5) 

(A6) 

Using Eqs. (A4), (A5), and (A6), after some algebra, it is found 
that 

ws 
-----Vi' 
C:}'- Sz. 

and 

Now 
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so 

r~) = 
"2. [

c - ws] 
-s/w c. 

f.} 
VI 

This is the desired transfer matrix in terms of input and output 
pressures and velocities. 
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APPENDIX B 

Photographs of fest Articles 
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APPENDIX C 

Finite Difference Results 
Acoustic Modal Patterns and Resonance Frequencies 

o 
80 =4~ 

~ = I tn 

~=o 
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FIGURE 1. TRIM MODEL - INSULATION AND LINING 
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Glass Fiber Batts 

Trim Panel 
(1. 76 kg/m2) 

Total Thickness: 10.2 cm 
(9.61 kg/m3) 

FIGURE 2. TYPICAL WIDE BODY TRIM INSTALLATION 
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FIGURE 7. GRID COORDINATE SPECIFICATION 
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FIGURE 8. FUSELAGE STRUCTURAL MODELS 
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ly == 0.294m (11.6 in) 

h == 0.0005m (0.02 in) 

FIGURE 9. CYLINDER SUBPANEL DIMENSIONS (SKIN ONLY) 
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FIGURE 13. STATUS OF CYLINDER NOISE REDUCTION PROGRAM (PHASE II) 
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FIGURE 19. MODAL PATTERN FOR THE (0,0,2) MODE 
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FIGURE 20. MODAL PATTERN FOR A 15° FLOOR 
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FIGURE 21. MODAL PATTERN FOR A 30° FLOOR 
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FIGURE 38. TRANSFER COEFFICIENT FOR THE STIFFENED CYLINDER 
WITH FLOOR AND TRIM 
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FIGURE 39. STRUCTURAL LOSS FACTORS FOR THE STIFFENED CYLINDER 
WITH FLOOR AND TRIM 
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