
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



.. 

o 

~ 

--4 'j' 
~ Vl 
.:: ,oj 
rl 1 
&.0 .... 

'0 0 . ... 
:::> ,., ... 

-< • .. 
~.... . 

~ "l II 
~ >' :.... 
. Q Q ~ 

) " ~ J .... - ~ 

- --
ERC41054.36FR 

16 CopvNo.L-_ 

HIGH PURITY LOW DISLOCATION 
GaAs ~INGLE CRYSTALS 

FINAL REPORT FOR THE PERIOD 
February 25, 1980 through February 24, 1981 

CONTRACT NO. NASJ-22224 

Prepared for 

NASA- Lewis Research Center 
Cleveland, OH 44135 

R.T. Chen 
Principal Investigator 

JANUARY 1982 

• Approved for public release: distribution unlimited 

Rockwellinternattonal 
Moc;ro.lee t ronlC. AeM.reh 
8nd o.~lopment Center 

CR- 55593 



'\ 

<::) 

----- .. 

ERC41054.36FR 

1.6 Copy NO • .L..._ 

HIGH PURITY LOW DISLOCATION 
GaAs SINGLE CRYSTALS 

FINAL REPORT FOR THE PERIOD 
February 25, 1980 through February 24, 1981 

CONTRACT NO. NAS3-22224 

Prepared for 

NASA-Lewis Research Center 
Cleveland, OH 44135 

R.T. Chen 
Principal Investigator 

JANUARY 1982 

* Approved for public release; distribution unlimited 

Rockwell International 
Microelectronics Research 
and Development Center 

CR-.55593 

, 
\ , 
\ 

~-:- ...... --'"~'-:~~~~~_f~~ ~ ___ ' _~ ~."'i¥. ~~~' ___ -': ... :"":'-;"~.",""W~r.'."'.~I' 
~ ;. ..' • \......... #> • • 

_ ~ .,~!IIt . . ~ ... "'~ -""'""'_Y" 

--



.... ~) . .;, 

1 A~porl No I 2. Government Accession No. 3 AtI'.lplenl', Call109 No 
CR 165593 

-.--',.....-
4. Tille .nd Subtltfe 6 Report Oite 

High Purity, Low Dislocation GaAs Single Crystals Janua ry_ 1982 --6. Performing OrgarUlItlon Code 

7. Author(s) B. Performing Org.llntUIIOn Reporl No 

R.T. ~hen. D.E. Holmes, C.G. Kirkpatrick ERC41054.36FR 

r---~- 10. Work Unit No. 
iI. rferf~rm'f'f qr~anizatlon Nam~.nd Address Oc we ternatlona 

Microelectronics Research & Development Center 11. Contract or Grant No. 
1049 Camino Dos Rios NAS3-22224. Thousand Oaks, CA 91360 

13. Type of Report and Period Covered 
12 Sponsoring Agency Name and Address FINAL - 3/2/81 

Lewis Research Center 2/25/80 - 2/24/81 
Cleveland, Ohio 44135 14. Sponsoring Agency Code 

4231 
15. Supplementary Notes 

16. Abstract 

Recent advances in GaAs bulk crystal growth using the LEC (liquid encapsulated Czochralski) 
technique are described. The dependence of ·the background impurity concentration and the 
dislocation density distribution on the materials synthesis and ?rowtS conditions were 
investigated. Background impurity concentrations as low as 4xlO 5cm- were observed in 
undoped LEC GaAs. The dislocation density in selected regions of individual ingots was 
very low, below the 3000 cm- 2 threshold. Th~ average dislocation density over a large 
annular ring on the 'l'Iafers fell below the 10 cm- 2 level for 3-inch diameter ingots. The 
diameter control during ~rle program advanced to a diameter variation along a 3-inch ingot 
less than 2mm. 

--17. Key Words (Sugge~ted by Author(s)) 
LEC 

lB. Distribution Statement 

GaAs Approved for public roel ease Czochral ski 
dislocation density Distribution unlimited 
high purity 

19. Security Classi!. (of this report) 120. Securitv Classif. (of r.his page) 21. No. of Pages 22. Price' 

Unclassified Unclassifed 41 

• For sale by the National Technical Information Service. Springfield. Virginia 22161 

NASA-C-168 (Rev. 10·75) 



1.0 

2.0 

3.0 

'1' Rockwell International 

TABLE OF CONTENTS 

I NT ROD U CT ION ••••••••••••• (. ~ ••••••••• , ••••••• 1.1 .................. • • • •• • 

MATERIALS SYNTHESIS AND GRJklTH TECHNIqUES ••••••••••••••••••••••. , •••• 
2.1 Growth Configuration ••••••••••••••••••••••••••••••••••••••••••• 
2.2 Growth Process ••••••••••••••••••••••••.•••••••••••••••••••••••• 
2.3 Diameter Control •••••••••••••••••••••••••••••••••••••••••••• • •• 
CHARACTERIZATION :F.CHNIQUES ••••••••••••••••••••••••••••••••••••••••• 
3.1 Crys ,'.illl i ne Perfect ion ••••••••••••••••••••••••••••••••• • • • • • • • • 

1 

6 

6 

6 

8 
13 
13 

3.2 Impurity Characterization ••••••••••••••••••••••••••••••••••••• , 13 
3.3 flectrical Transport Measurements •••••••••••••••••••••••••••••• 17 

4.0 RESULTS AND DISCUSSION •••••••••••••••••••••••••••••••••••••••••••••• 21 
4.1 Impurity Chara~terization •••••••••••••••••••••••••••••••••••••• 21 

4.2 

4.1.1 
4.1.2 
4.1. 3 

SIMS AND LVM Impurity Studies •••••••••••••••••••••• ~ •••• 
Effect of H20 in B203 on S; and B ••••••••••••••••••••••• 
Role of Oxygen ••• Ii •••••• ~ •••••••••••••••••••••••• ,. ...... . 

Lattice Defect Studies •••••••••••••••••• ~ •••••••••••••••••••••• 

21 
24 
26 

26 

4.2.1 Dislocations ••••••• , •••••••••••••••••••••••••••••••••••• 28 
4.2.2 Peripheral Ga Inclusions ................................ 31 
4.2.3 Growth Techniques Affecting the Dislocation 

Density ..........•...•...•.•....••••.••.••.. , •.••....... 32 

5.0 SUMMARY .......... " ••••••••••••• ".~ •••••••••••• II •••••••• ••••••••••••• " 38 

i i 

>, 

J 
f 



'1' Rockwell International 

LIST OF FIGURES 

Fi gure 

1. Large diameter uffuoped U:r GaAs ingot (R38/f1) grown with manual 
diameter control to a tolerance better than 2 mm •••••••••••••••••••••• 4 

2. Cross section of the crucible for the LEC growth system, 
showing the location of the 8203 during growth •••••••••••••••••••••••• 7 

3. Cross section of the LEC crucible before growth showing 
the charge of el emental Ga and As and the preformed B203 di sc ... til.... 9 

4. Photograph of Si3N4 coracle in LEC system ••••••••••••••••••••••••••••• 11 

5. Diagr'am showing the neck, cone, and full-diameter sections 
of an LEe crystal ..................... , .. , ...••. ,. .............. , ....... 12 

6. Typical J.R spectra showing C absorption ••••••••••••••••••••••••••••••• 16 

o 7. PITS spectra for semi-insulating LEC GaA~~ R4/C (Cr-doped) 
and R2/C (undoped) grown from 5i02 crucibles 5 ••••••••••••••••••••••••• 19 

8. Dependence of Si and B impurity levels on H20 concentration 
in 82°3 encapsulant .............................................. ,lfl"," 25 

9. Photoluminescence spectra for undoped LEe GaAs ingots 
(Rl1,R.l6) •••.••. , ••. , .•••••.. e .......................................... 27 

10. Photograph of an ~tch~~ (100) wafer showing fourfold 
symmetry pattern. of dislocations .................................... to. 29 

11. Micrograph of the radial dislocation distribution for a 
3-inch diameter (100) wafer from ingot Rll/M •••••••••••••••••••••••••• 30 

12. Schematic of seed, neck, and top of cone showing variation 
in etch pit density due to seed necking (R16) •••••••••••••••••• oi ••••• 36 

iii 



"1' Rockwell International 

LIST OF TABLES 
Table Page 

I. Summary of Physir:al and Electrical Characteristics of LEC 
GaAs Crystals Grom Under NASA Program ••••••• "' •••••••••••••••••••••• 3 

II. Typical Background Detection Sensitivity of Impurities 
Detected in LEC GaAs ••••••••••••••••••••••••••••••••••••••••••••••••• 15 

III. Summary of Major Traps Obs'erved in LEC Materials by PITS ............. 20 

IV. Base'lline Purity in LEC G5As •••••••••••••••••••••••••••••• ~ ••••.••••••• 23 

V. SIMS Analysis of LEC GaAs •••••••••••••••••••••••••••••••••••••••••••• 23 

VI. Summatry of Etch Pit Results and Impact of Various Growth 
Techniques for LEC Ingot~.~ •••••••••••••••••••••••••••••••••••••••••• 34 

f) 

• .1 

iv 



'1' Rockwell International 

1.0 INTRODUCTION 

The availability of large diameter GaAs substrates is essential for 

the production of low~cost) radiation hard solar cells. In the past, only 

Bridgman-grown GaAs substrates have been available, which are irregular in 

shape and d1men~ion. The distribution of structural defects which can 

adverse'ly effr'!ct the performance of sol ar cell sis al so non-uniform in these 

materials. While non-standard shapes and sizes are adequate for research and 

development of solar cell processing technology, large quantities of uniform 

wafers are necessary for low-cost, high yield production. 

Recent advances in GaAs bulk crystal growth related to the develop­

ment of the Liquid Encapsulated Czochralski (LEC) technique now make it 

possible to grow large diameter 'Ingots. The purpose of the "Preparation of 

High Purity Low Dislocation GaAs Single Crystals" program (NAS3-22224) waS to 

advance the LEC crystal growth technology to produce GaAs substrates for solar 

cell applications. Attention has bee', focused on two basic materials 

properties important to solar cells, background impurity levels and structural 

perfection. The disloc;tion density must be minimized to maintain the high 

minority-carrier diffusion lengths critical to good cell performance and 

radiation hardness. The background impurity concentration must be low to 

achieve semiconductor-quality electrical characteristics. We investigated the 

dependence of the concentration of background impurities and the dens1ty and 

distribution of dislocations on the materials synthesis and growth conditions. 

Seven crystal rrowth experiments were performed at the 

Microelectronics Research and Development Center (MRDC) during the course of 

the program. Problems encountered during the growth of RIg forced termination 

1 
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of the .run before completion. Since six crystals were required to satisfy our 

contract requirements, an extra crystal (R38) was grown as a part of 

program. Information concerning the growth processes, and the physical and 

electrical characteristics are summarized in -able I. The results show that 

considerable progress was made during the program with respect to minimiz~~g 

the concentration of background impurities, controlling the property of h1~h 

resistivity, and min1mizing the dislocation density. In the last three 

crystals grown during the program (R17,18,38), the sheet resistivity and 

dislocation density wer~ higher than lXl09 OlD and less than 1.8xl04 cm-2~ 

respectively. In one of these crystals (Rl7), the background impurities 

concentration (No + NA)' as low as 4xl015 cm-3 was aChieved. The dislocation 

dens ity in se1f:·rted reg; ons of some crystal s was very low, below the ~OOO cm- 2 

threshold. These overall properties are comparable, if not superior to those 

~ of commercial Bridgman material. In addition, the diameter control during the 

program advanced to a point where the diameter variation along a 3-inch ingot 

(R38) was less than 2 millimeters, as shown in Fig 1. 

As a result of the progress attained during the NASA program, high­

purity, undoped, 3-inch-diameter ingots with a diameter tolerance better than 

2 millimeters are presently bei"Q grown. The material has the stable, semi-

insulating characteristics requireJ for GaAs IC's. Furthermore, the average 

dislocation density in the "ring!! region of the substrates falls below the 104 

cm- 2 level at 3-inch diameter. These values are the lowest reported for 3-

inch LEC crystals. 

2 
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Table I 

Summary of Physical and Electrical ~haracteristics of LEe GaAs Crystals 
Grown on Contract /lI\S3-22224 

Rockwell Crucible Method of Orientution Crystal Crysta 1 Crystal No + NA_ cm-3 Sheet 1.0. No. Material Diameter Di ameter. mm Length. em Weight Resistivity. fl/o 
Kg 

"-------------------------------
11 Si02 Manual <100> 63. it9.3 12 2.2 !_ lxl016 <107 
14 Si02 Coracle <III> Sl.O±l.O 23 1.9 7.1xlO16 <107 
16 Si02 Coracle <Ill> Sl.0±1.0 23 2.3 2.8 x 1016 >109 

w 
17 PBN Manual <100> 72.2±3.9 12 2.3 4xlO1S )109 
18 PBN Manual <100) 60.0±8.5 16 1.7 1.5xl016 >109 
19 PBN Manual <100> 

38 PBN Manual <100> SO.Ot!.S If) 2.4 IxlO16 >ltl9 ----------_ .... _-- .. _----

"" 

Dislocation 
Density. at full 
Di ameter _ 011-2 

" x 104 

2.3 x 104 

1.8 x 104 

1.0 x 104 

l.lxl04 
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MROC81- 16660 

Fig. 1 Large diameter undoped LEe GaAs i,got (R38/M) grown wi h manual 
diameter control to a tolerance better han 2 mm. 
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This present capability of producing undoped, large-area, low-disloca. 

tion density material is extremely encouraging for the solar cell 

technology. EVen lower dfslocation densities are anticipated in doped 

materials since many dopants suppress the generation and multiplication of 

dislocations. Therefore it is expected that material can be produced with 

near-theoretical minority carrier diffusion lengths because the spacing 

between di 51 ocati ons will be 1 arge compared with the mean-free-path of 

minority carriers. These high quality, large-area substrates will provide an 

exeell ent foundati on for the prodllcti or. of eff; ci ent, cost-effective sol ar 

cell s. 

In this report, experimental results obtained on the NASA 

"Preparation of High Purity Low Dislocation Density GaAs Single Crystals" 

prograni ar.e presented and discussed. In Section 2.0, the materials synthesis 

and growth techniques are outlined. In Section 3.0 the various techniques 

used to characterize the structural imperfections and chemical impurities are 

discussed. The cause-effect relationships between the crystal growth process 

and material properties are discussed in Section 4.0. The results are 

summarized and evaluated with respect to solar cell applications in the last 

section. 

5 
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2.0 MATERIALS SYNTHESIS AND GROWTH TECHNIQUES 

1n this section, the processes involved in the m~~er1als synthesis 

and growth of LEe GaAs are described. 

2.1 Growth Configurati~n 

All crystals were grown L'; Rockwell International's l~elbourn high­

pressure LEe SySt'"!l1l at the Thollsand Oaks MRDC laboratory, The configuration 

of the LEe system, shC)wn scoemath<.l'ly in Fig. 2, consists of a GaAs melt 

contained in either a high purity quartz (Metals Rpsearch) or pyrolytic boron 

nitride (Uni on Carbide) crue; bl e. The bori e oxi de (B203) encapsulant f1 oat~ 

on the top surface of the melt. In addition, a thin film of 8203 coats the 

entire surface of the crucible due to the high-temperature wetting character­

istics of the materials. The B203 also wets the grO\~ing crystal. Thus, the 

GaAs melt is completely sealed suppressing ~ evaporation and shielding the 

melt against contamination from the crucible and the growth ambient. 

2.2 Growth Process 

The major steps in the crystal growth operation included loading of 

the charge, heat up, syntheSiS, equilibration, seeding; necking, cone growth, 

and p~ling of the full-diameter ingot. The crucible was loaded with approxi­

mately 1400g 6-9's Ga (Ingal International), 15009 6-9's As (Cominco), and a 

500g preformed B203 disk (Puratronic) with a known moisture content, as shown 

6 
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Fig. 2 Cross section of the crucible for the LEe growth system, showing the 
location of the B2D3 during growth. 
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in Fig. 3. Ga, which is sulid to just above room temperature, was loaded on 

top of the As so that the liquid Ga served t~ encapsulate the As~ Starting 

with a chamber pressure of 600 psi, the crucible was heated to between 450 anG 

5000 e J at whi ch poi nt the B20, melted, f1 owed over the charge of Ga and As, 

and sealed at the crucible wall. The synthesis reaction (Galiquid + ASsolid C 

GaAs sol1d) occurred at about aoooc. The presence of the 62°3 and the use of 

high overpressures (v 1000 psi) prevented significant loss of As due to subw 

lildination and evaporation during and subsequent to synthesis. The melt was 

then equil ibrated at the starting temperature and the growth procedure begun. 

Growth WdS i niti ated by di ppi ng the seed, whi ch was hel d on the pull 

shaft, through the B20;t and into the melt. The cr'ystal was grm'ln by gradually 

withdrawing the seed from the me~t. The diameter was gradually and controll­

ably increased to full dimension. The seed and the crucible were rotated in 

the same direction at 6 and 15 rpm, resp~ctively. 

2.3 Di ameter rJ)ntrol 

The diameter Of the crystal was controlled either by manual operation 

or through the use of the coracle shapero Using manual control the crystal 

diameter was monitored through the differential weight Signal. Thi~ signal 

was obtained from the ~load cell," a special weighing device on which the 

crystal and pull shaft are mounted in the LEC system. An increase or decrease 

of the differential weight indicates a corresponding increase or decrease in 

diameter. The crystal diameter was controlled by varying the heater temper­

ature and the cooling rate in response to changes in the differential weight 

signal. 

8 
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Silica Cru!:ible 

Borie Oxide 
1 

Fig. 3 Cross section of the LEC crucible before growth showing the charge of 
elemental Ga and As and the preformed B203 disc. 
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The coracle, shown in Fig. 4, is a Si3N4 die with a roun~ hole in the 

center. The coracle floats on top of the GaA5 melt. A crystal pul'led from 

the melt through the die has exce~dingly good diamet.er control. However, the 

use of the coracle seems to be limited to growth in the (Ill) direction 

because other low index planes, such as (100), show a high susceptibility to 

twinni~g. It is important to note that the LEe system is equipped with a 

Vidicon camera for optical viewing of the growth process. The growth process 

;s monitored continuously 1n this way to ensure stable control. Also, under 

certain circuMstances, the differential weight signal does not accurately 

represent the actual variation of the diameter making visual monitoring 

essential. 

The crystals were grown in three different sections v-lith respect to 

diameter, as illustrated in Fig. 5. After the seed was dipped into the melt 

and pulling had begun, the "neck" was formed by reducing the diameter of the 

crystal below the di ameter of the seed (..., 4 mill imeters) to from 1 to 3 mi 11 i­

meters. Then the diameter was gradually and controllably increased forming 

the "cone." When the diameter of the cone reached the desired dimension, the 

diameter of the crystal was kept constant for the remainder of the growth 

run. The dependence of density and distribution of dislocation on the neck 

diameter, neck length, and cone angle was investigated. 

10 
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CRYSTAL 

BORIC OXIDE 

MELT 

Fig. 4 Photograph of Si3N4 coracle in LEC system. 
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3.0 CHARACTER IZATION TECHNIQUES 

This section briefly revie~s the analytical techniques used to 

characterize the LEC material in terms of crystalline perfection, chemical 

impurities, and electrical and optical properties. 

3.1 Crystalline Perfection 

The crystalline perfection of the LEe crystals was evaluated by 

determining the density and distribution of dislocations. Dislocations act as 

recombination centers and reduce the minority-carrier lifetime. The disloca­

tion densities of (100) wafers were measured by etching polished wafers in KOH 

for 25 min at 400°C. This etch preferentially attacks dislocations that 

intersect the surface of the wafer. A HN03:3H20 etch was used to determine 

dislocation densities for (Ill) wafers. The density of etch pits corresponds 

directly to the density of dislocations. Back reflection x-ray topography 

also aided in analyzing the distribution of dislocati~~s. 

3.2 Impurity Characterization 

The following is a list of brief descriptions of techniques used to 

analyze background impurities in the LEC material. 

Secondary Ion Mass Spectrometry (SIMS) 

SIMS measurements were made at Charles Evans and Associates, San 

Mateo, CA. This is a chemically specific micro-analytical technique 

_ _ _ _ ___ ..1. 
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particularly well suited for tr~nsition metals and shallow donors in GaAs. 

The system is calibrated against ion implanted standards. The typical 

background detection sensitivity (the concentration below which measurements 

are not meaningful) of the impurities analysed during this program are given 

in Table II., Although the detection sens'ltivity is very low for these 

impurities, making SIMS an excellent tool for the characterization of GaAs, 

the measured impurity concentration of an element in LEC GaAs is often close 

to the background sensitivity. Since the background sensitivity can vary from 

day to day (as indicated in the table), the background sensitivity was checked 

against a high purity standard before these analyses were made. 

Local Vibrational Mod~ (LVM) Infrared Absorption 

LVM measurements have been demonstrated to be an effective and 

nondestructive method for identifying low-Z impurities in GaAs, particularly 

for Al, B, C, Li, Si and 02. Measurements of the carbon~i nduced LVr~ band have 

been carried out for samples cut from several undoped LEG ingots. The IR 

absorpt i on for 12C occurs at v = 582 ern-I. A typi cal IR spectra show; ng the C 

absorption is shown in Fig. 6. The technique is well suited d~termining the 

relative concentration of carbon in different samples. However, the absolute 

accuracy ;Jf the technique is uncertain and considerable error can arise in 

measuring low concentrations of C in conducting material. 

14 
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Photoluminescence 

Low temperature (4.2K) photoluminescence measurements have been made 

on MRDC LEC material by Dr. Phil Yu at Wright State University, Dayton, 

Ohio. This is a very sensitive optical technique prticularly well suited for 

analyzing deep levels in GaAs. 

3.3 Electrical Transport Measurements 

Electrical transport measurements have been carried out to charac­

terize the dominant electrical centers in the LEC material and to determine 

the chemi ca 1 ori gi n of these centers by compari ng the resul ts wi th chemi ca 1 

analyses. Hall measurements, capacitance-voltage (C-V) profiling, and Photo­

Induced Transient Current Spectroscopy (PITS), which was developed at Rockwell 

MRDC, have been utilized in these studies. PITS is used to characterize deep 

leve~s in semi-insulating material. In addition, as a part of MRDC's IR&D 

work, Deep-Level T,ansient Spectroscopy (DLTS) was pp.rformed by Dr. Kang Wang 

at the University of California at Los Angeles. DLTS is used to characterize 

deep levels in conducting and ion implanted material, complimenting the PITS 

technique used to characterize semi-insulating materials. 

Over the last several years, sUbstantial development of the PITS 

technique has been undertaken at Rockwell MRDC for the evaluation of trap 

energies and emission rates in semi-insulating materials. The PITS technique 

deals with the rise and decay of photocurrents rather than with capacitance 

transients as in DLTS. Many of the trapping levels detected in earlier work 
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have heen correlated with reports in the literature, substantiated with 

alternate measurement techniques, and confirmed by doping experiments. 

Figure 7 shows, for illustration, a composite PITS spectra from semi-insulat­

ing GaAs samples, a Cr-doped (R4/C) and an un doped (R2/C), which were all 

grown from Si02 crucible. The PITS response is represented as AI/lo' 

normalized to the photo-current 10 vs absolute temperature. The broad 

Ev + 0.R9 eV peak observed in the Cr-doped samples was associated with Cr+2 

acting as a hole trap. The PITS signal at 290K has been associated with a 

hole trap from Fe located at Ev + 0.52 eVe Correlation \'lith 4K photoluminesc­

ence and reports in the literature have revealed that an impure Cr source may 

be responsible for Fe doping. Figure 7 shows an absence of the 0.52 eV level 

in the undoped ingot R2/C. A very common electron trap at 190K (Ev + 0.34 

eV), which is associated with the presence of Cr, is also shown in Fig. 7. 

All undoped GaAs did not show the 0.34 eV level in spectr~, whereas all 

Cr-colllpensated crystals, without exception, eXhibited it. The assignment of 

the 0.34 eV level has not been made directly to a Cr site but the center could 

involve a complex with Cr. Very low PITS signals observed near the lCJW 

absolute temperature range for both samples were also consistent with SIMS 

results in which low shallow-donor impurity (such as Si) levels were observed. 

The 0.65 eV level could be related to the presence of O. Table III summarizes 

all major trap levels observed in MROC LEC material as determined by PITS and 

f)LT S. 
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Table III 

SUMmary of Major Traps Observed in LEC Materials by PITS 

--_. -
-----~---------------------~.---------------~-------.----lRS 0.34 4 x 1O-14 (n) EL7 Cr-Ooped 

274 0.57 6 x 10-13(n) EL3 
2~.j 0.52 1 x 1O-15(p) HL8 (Fe)Cr-Ooped 
335 0.65 R x 10-14(n) (0 ) 
373 O.R3 2 x 1O-13 (p) HLlO Low H2O 
430 0.89 4 x 1O-14(p) HL1 (Cr) 

0.74 EL2 [!ar'~ Cond. DL TS 
------------------------~------*-------------------~---------------------~ 
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4.0 RESULTS AND DISCUSSION 

The results of impurity electrical and crystallographic studies 

undert,tken on LEe GaAs are describeti in this section. 

4.1 Impurity Characterization 

4.1.1 SIMS and LVM Impurity Studies 

The concentrations of background shallow-donor (51, S, Se, and Ta) 

and metal (Mg, Cr, Mn, Fe, and B) impurities as determined by SII1S measure .. 

ments are shown in Table IV. With the exceptions Si, S, and Mg, which will be 

discussed in more detail below, the concentration levels are exceedingly 

low. Many readings are either at or below the typical background sensitivity 

(see Table II) of the SIMS technique, suggesting that LEC material in some 

cases 1s purer element-by-element than the standard used to check the SIMS 

background sensitivity. The relatively high concentrations of Fe in R16 and 

R18 are attributed to high background levels present ~uring those particular 

measurements. In no instance was the measured level greater than the back­

grouno level by more than about a factor of 2. 

LVM measurements of C in the NASA crystals displayed considerable 

variations. The concentration of C in R11 and R17 was less than 5 x 1015 cm~3, 

whereas the C concentration in R14 was about 3 x 1016 cm-3• rhe high concen­

tration of C could be related ~o the presence of the coracle floating on the 

melt; further investigations are underway. In addition, published reports 

21 
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giving the absorption cross-section of C ;~ GaAs are being carefully re­

examined. The dbsorption cross~section determines the calibration of the 

measurehlent. The reported va 1 u e should be confi rmed to ra i sa the carta i nty of 

the measurements. 

TO take full advantage of the impurity analysis performed on the NASA 

co~r.racts, the results obtained from the NASA crystals were averaged with 

those obta 1 ned from crys tal s grovtn on tile t1ROC IR&O progral'!. The combined 

results are shown in Table IV. The impurity analyses for individual NASA 

ingots are shown in Table V. The crystals are categorized in terms of the 

crucible Material and the technique us.ed for diameter control. Results 

obtained from four ~ridgman crystals, which passed internal qualfication tests 

for GaAs IC processing, are provided for comparison. 

Three conclusions were drawn from the results of the combined 

impurity analysis. 

1. The background concentration of the transition metals Cr, Mn, 

and Fe in undoped LEC r,aAs grown from quartz and PBN crucibles 

is generally less than about 2xl015 cm- 3• C, on the ether hand, 

is present at levels varying from about 3xl015 to 3xl016 cm- 3• 

Therefore, C is expected to be one of the dominant acceptors in 

LEC material. The background concentration of the shallow 

donors S, Se, and Te are also typically less than 2Xl015 cm-3• 

2. Mg and C contamination seem to be related to the presence of the 

Si3N4 coracle in the crucible. An impurity analysis on the 

coracle material is underway. 

22. 
C3247A/es 



'1' Rockwellinternatfonal 

Table IV 

Baseline Pur1ty In LEC GaAs 

'J •• .., __ • ________ • __ .... __ ... ___ .. ___ ,._ ................... ~_ •••• _ ...... ••• _ ........... Q .......... _._.,,_ .... _ ............ _ ........... _ •• 

GROWTH 
TECHtBOU£ 

CRUCIALE tlUMflER OF S 
CRYSTALS 
AVERAGEO 

Se Te Mg Cr Mn Fe c 

... - .. _---_._------------.0.-.... _-_ ...... _-.-._ ................ --...... --..... -.----.------.-.. ----
LEC Quartz 

Manual 6 2el5 <1 elS <1 e14 <5el4 <5e14 <Ie 15 <ge l5 ... 3eIS 

Coracle 7 /I 2-1Ce15 /I " /I " 2e16 I LEC PBN 
Manual 3 leI5 7e13 2e13 3e14 leIS Ie IS 2e15 .. 7e15 

Coracle I 2eIS I.SeI4 <le14 4.4E14 a.Se1S 1.5e1S <SelS .. 2e16 

BridgMan ~artz 4 3elS JE14 4E13 4. 'iE14 3.1E16 4.7xlO14 3.1xlO15 Not Iletected 
(Cr-rloped) 

------'.----"'-'"" .. --~-.-------.~-.- .. "'-... ---......... -.-... ---__ .... _I_._ ... _-

Table V 

SIMS Analysis of LEC GaAs 

Impurity Concentration (cm-3) 

Sample No. Si S Se Te Mg Cr Fe B Apptoximat.e 
H20 Concentration 

in B203• p[ml 

Rll F 5. OE 15 1.0ElS <E14 <El4 2. E14 6.0£14 5. OE 14 4. DE 14 9.0E1S 500 
Rll T 4.0E15 2.0E15 <E14 <E14 2.0E14 5.0E14 8.0E14 4.0ElS 1.0E16 /I 

R14 F 3. OE 16 2.0E15 2.0E14 <E14 1.0E16 3.0El4 4. OE 14 2.0E15 2.0E17 200 
R14 T 3.0£16 2.0E1S 1.0E14 <E14 1.0El£1 4.0E14 6.E14 3.0El5 2.0E17 

R16 F 1. DE 15 5.0ElS 2.0E14 1.0E14 2.0ElS 7.0E14 2.0E1S 6.0E1S 7. OE 15 1000 
R16 T 4.0E14 S.OElS l,OE14 <E14 1. OE1S 3.0ElS 2.0E15 2.0E16 6.0El4 

R17 F 2.0E14 S.OEl4 <E14 <E14 <E14 2. OE 14 1.0ElS 8.0E14 2. OE 16 520 
Rl7 T 1.0El4 1. OE1S 3E14 <E14 1.0E14 1. OE14 1. OE15 1. OE1S 1. OE17 

R18 F 3.0E14 3.0ElS 2.0El4 <E14 4. OE 14 7.0E14 1.0E15 S.OE1S 5. OE 16 450 
Rl8 T 3.0E14 1.OElS 1.0E14 <E14 S.OE14 1. OE1S 2.0E15 1. OEl6 S.OEI6 

R3U F 2.0E14 4.0E14 <E14 <£14 4.0E14 6.0E14 8.0E14 5.0E1S Z,. OE 16 500 
R38 T 2.0E14 6.0El4 <E14 <E14 4.0E14 8.0E14 1. OElS S.OE1S 2.0E17 
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3. The important difference between LEC and Bridgman material with 

respect to the impurities in Table V is the presence of C in LEC 

material. This understanding could be important to the 

evaluation of the device performance of LEC material. 

Effect of H20 in 8203 on S1 and B 

The concentration of both Si and B in the NASA crystals (see 

Table VI) were var~able, ranging from lxl014 to 3xl016 cm-3 and 6xl014 to 

2x1017 cm-3, respectively. Since Si ;s a shallow donor, it is particularly 

important to understand how S; becom~s incorporated in the crystal. 

Comparing the impurity analysis of R14 and R16, it was observed that 

the concentration of Si in crystals grown from quartz crucibles, Hld the 

concentration of B in crystals grown from both quartz and PBN crucibles 

increased as the concentration of H20 in the B203 encapsulant decreased. To 

obtain adequate statistics to characterize this behavior, in Fig. 8 the Si and 

B concentration of 13 crystals grown on both the NASA and IR&D programs were 

averaged. 

Fi gu re 8 show sap ronou nced dependence of the Si and B 1 eve 1 s on the 

concentration of H20. The variability of the Si and B in the NASA crystals is 

attributed to this be~av;or. The results show that H20 in the encapsulant 

reduces the transport of Si through the B203 from the quartz crucible to the 

melt. In addition, the presence of H20 reduces the pick-up by the melt of B 

from the B203' B contamination from the PBN crucible appears to be 

insignificant. The exact mechanism associated with the action of H20 is 

presently under investigation. 

• till' t1lt. a t~ J: 
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Fig. 8 Dependence of $i and B impurity levels on H20 cuncentration in B203 encapsulant 
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4.1.3 Ro 1 e of Oxygen 

The characterization of 0 in GaAs has been an area of considerable 

interest and some controversy for several years. The understanding of the 

behavior of 0 is important for the development of microwave devices in 

particular because deep donor centers at 0.65 and 0.75 eV, which cDuld control 

the semi-insulating properties of LEC GaAs, could be related to 0 or a-defect 

complexes. This is an area of great interest at the present time. 

PITS and photoluminescence measurements have been made on LEC 

crystals grown during the NASA and IR&D programs. An important feature of the 

PITS spectra (see Fig. 6) is a peak associated with an electron trap located 

0.65 eV below the conduction band. Photoluminescence spectra of the NASA 

crystals, shown in Fig. 9, contair, a corresponding peak at 0.65 eVe The 

intensity of the peak is highest in material grown vJith "wet" B203. This 

observation suggests the possibility that the concentration of the 0.65 eV 

deep donor is related to 0, and, that the concentration of the center is 

contrJlled by the moisture content of the encapsulant. Further investigations 

are underway. 

4.2 Lattice Oefect Studies 

Structural defects in LEC material were characterized by preferential 

etching, and optical, Infrared (IR), and Transmission Electron (TEM) Microscopy. 

The results show that the material is essentially free of stacking faults, 

precipitates, inclusions, and low-angle grain boundaries. Further, the 

prin~ipal defects were identified as dislocations and peripheral Ga inclusions. 
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4.2.1 Dislocations 

Radial and longitudinal dislocation distributions in LEG ingots 

The crystalline perfection of the LEG crystals was evaluated by 

determining the dislocation density and distribution. Both chemical etching 

techniques and x-ray reflection topography measurements were applied to 

polished LEG wafers. In general, exactly the same patterns were obtained by 

both techniques. Since the chemical etching technique offer the advantages of 

easy sample preparation, speed, and good resolution, the efforts in the 

present study were based on this technique. The detail of :xperimental proce­

dures for this technique have been described in section 3.0. 

The d.istribution of dislocations across KOH-etched wafers exhibited 

symmetry indicative of the crystallographic orientation. A photograph of an 

etched (100) wafer taken from the front of an LEC ingot is shown in Fig. 10. 

The etch pattern has fourfold symmetry. The etch pattern on (111) wafers 

displayed three-fold symmetry. A microscopic view of the dislocation distri­

bution on a 3-1n diameter (100) wafer is shown in Fig. 11. This composite photo­

micrograph clearly illustrates the large variation in the radial distribution of 

dislocations depicted in Fig. 10. The features of the dislocation,distribution 

are: (1) minimum density occurs over a large area between the center and edge 

(Region 1; "ring"); (2) intermediate density occurs in the center (Region 2; 

"center"); (3) maximum density occurs in a 0.2 in. wide area around the edge 

(Region 3; 'Iedge"). In addition, the density at the edge along the <100> 

direction is greater than that along the <110> direction. The observed etch 

patterns reported here are shown to be consistent with recent theoretical 

28 

C3247A/es 

.. 
; , 



A w II In rn 

R gior 2 

Region 1 

Fig. 10 Photograph of an etched (100) wafer showing fourfold s~~etry 
pattern of dislocations. 
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Fig. 11 Micrograph of the radial dislocation distribution for a 3-inch 
diameter (100) wafer from ingot R11/M. 
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predictions* based on a thermoelastic analysis of Czochralski growth, in which 

crystallographic glide induced by the excessive thermal stresses arising 

during the growth process is assumed to be the primary cause for the observed 

dislocation density patterns. 

The longitudinal variation (along the growth direction) of the 

dislocation density and dist.ribution was also studied by comparing the radial 

dislocation density of wafers cut from the front, middle, and tail of the 

crystal. The average dislocation density increases from the front to the tail 

of the crystal. This effect is probably due to both the multiplication of 

dislocations and to an increase in the level of thermally-induced stress in 

the crystal as the growth process continues. 

4.2.2 Peripheral Ga Inclusions 

Small (0.1 - 1 millimeter diameter) Ga droplets were observed around 

the edge of several wafers. The droplets apparently had penetrated the 

surface of the crystals to a depth of up to about 2 millimeters. The droplets 

formed as a result of the preferential evaporation of As from surface of the 

crystal during growth. The penetration was due to the thermal migration of 

the droplets from the cooler surface to the hotter interior. The direction of 

motion wa~ probably downward rather than horizontal. We observed that signi­

ficant penetration occurred only when the diameter of the crystal increased. 

Therefore, good diameter control precludes the penetration of Ga inclusions. 

*A.S. Jordan, R. Caruso and V. R. VOl' Neida, Bell Systems Tech. J. 2.2" 
593 (1980). 
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4.2.3 Growth Parameters Affecting the Dislocation Density 

The effects of the following five growth parameters on the 

dislocation density wer'e studied: 

1. Dash-type seed necking 

2. Seed quality control 

3. Ingot cone shape control 

4. Diameter control 

5. Ingot diameter (2-in. vs. 3-; n. ) 

Table VI summarizes both the variation of these growth parameters from crystal 

to crystal and the results of the dislocation density measurements. The EPD 

is shown for the "center ~ ring," and "edge ll regions of wafers cut from the 

front and tail of the crystals. The results obtained from three crystals 

grown on the MRDC IR&D program, whi ch were producerJ by with comb; nat ions of 

growth conditions not used on the NASA crystals) are also shown for 

information purposes. 

To evaluate the effectiveness of th~ seed quality and Dash-type seed 

necking procedure in reducing the dislocation density, crystals grown with a 

high or low dislocation density seed as well as with or without a thin neck 

were compared. Horizontal Bridyman grown <100) seeds with etch pit densities 

varying from 1.5xl03 to 5.0xl05 cm- 2 were used. Neck diameters as small as 

1.2 millimeters with lengths of up to 20 millimeters were grown. The EPD 

results on the 3-in. diameter front wafers of the crystals grown with 

different seed quality and necking procedures are shown in Table VI. The 

results clearly demonstrate that for the crystals with the cone angle~ between 
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25 and 65°, a dislocdtion density of less than 2.5xl04 cm-2 can be achieved 1n 

both the center and ri ng reg10ns by empl oyi n9 low d1 sl ocat i on seeds with and 

without the necking procedure (RI7, R18, R28, R38), as well as hy employing 

high dislocation seeds in conjunction with the necking procedur~ (R15). It 

will be shown later that no empirical correlation \'Ias found between the cone 

angle and dislocation density for the cone angles between 25 and 65°. One can 

therefore r.onclude that the Dash-type seed necking procudure is effective for 

growing low dislocation density LEC GaAs only when using high dislocation 

density (>104 cm-2 ) seeds. In practical terms, this result shows that seed 

necking can be eliminated from the growth procedures for large-diameter LEC 

crystals by careful selection of high quality seeds. 

In order to explain the above results, dislocation maps of lo~gi­

tudinal cross sections of the different crystal necks were analyzed. For neck 

di ameters 1 ess than 2.5 mi 11 imeters, sl i p traces formed after growth as a 

result of the 1nrge stresses induced by the weight (~ 2.4 Kg) of the crystal. 

For neck diameters greater than 2.5 millimeters, dislocation density maps of 

neck regions, as shown in Fig. 12 (RI6), indicate a si9nificant reduction in 

dislocation density after necking. However, as soon as the crystal starts to 

grow out after necking, the dislocation density increases to approximately 

4xl03 cm-2 , which is comparable to the dislocation density of high quality 

commercial seeds. This finding clearly shOl'/S that the seed necking procedure 

is effective for growing low dislocation density crystals only when using high 

dislocation seeds. 
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Table VI 

Summary of Etch Pit Density (EPD) Measurement on LEC Ingots 
..... 

EPO (cm-2) Remark 
Oi ameter' Seed Front Tail Seed Necking Cone Diameter 

Control 

A. Ingots grown under,~~SA program 
R 111M .., 3 i 

5 x 104 1 4.0 x 1O~ 1 3.5 x 104* No 10° t9.3 mm 
2 1.4 x 105 2 2.0 x 105* 
3 4.0 x 10 -

R 14/C 2 in. 
2 x 105 

1 2.3 x 1O! 1 6.3 x 10~A 
2 4.4 x 105 2 1.3 x 105~ No 50° ±1.0 mot 
3 1. 2 x 10 3 2.2 x 10 

R 171M .., 3 in. 
5.5 x 103 1 1. 8 x 10! 1 8.6 x 10: 

2 2.6 x 104 2 7.7 x 105 Yes 50° t3.0 mm 
3 8.0 x 10 3 2.0 x 10 

-
0 18/1~ --2 1/2 in. 1 1.0 x 104 1 I) C u 104* 
" 6.0 x 103 Co." /\ 4 

2 2.5 x 104 2 3.9 x 104* Yes 40° t8.S mm 
3 5.6 x 104 3 7.6 x 10 * 

R38/M 
1.0x104 1 1.1X10: 1 1. SX10~ 

"3 in. 2 2.0X10S 2 2.SX105 Yes 25° t1.5 mm 
3 1.lx10 3 1. 7xl0 

B. Ingots grown under Rockwell l~&O program 
R S/M ... 3 ; n. 1 7.6 x 10: 5 

5 x 104 1 6.1 x lOS 
2 4.6 x 105 2 6.1 x 106 

No 30° t10.0mm 
3 3.0 x 10 3 1.1 x 10 

R 151M " 3 ; n. 
5 x 105 

1 1. 5 x 10! 1 1. 2 x 110; 
2 3.0 x 105 2 1.4 x 105 Yes 65° t8.5mm 
3 1. 7 x 10 3 2.1 x 10 

R 28/1~ .., 3 in • 3 1 7.3 x 10~ 1 8.1 x 10: 
3.5 x 10 2 1.3 x 105 2 9.0 x 105 No 30° tl.S mm 

3 1. 9 x 10 3 3.0 x 10 

1 : Ring area between center and edge, 2: center, 
t> 3: v 1/5 in. wide edge area. 

*: Cut from" 1/2 ingot length area 
ll: Cut from" 2/3 ingot length area 
M: Manual; (100) grol'/th, C: coracl e; (111) growth. 
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The effect of the cone ang'e on the dislocation density was investi­

gated by comparing crystals grown with cone angles from 10 to 65°. Crystals 

with a cone angle of 10° or less are referred to as IIflat-top" crystals. 

Table VI summarizes our results. Crystals grown from low dislocation density 

seeds or from high dislocation seeds with thin necks were compared t~ Ininfmize 

effects of variation in measured ~PD due to variable seed quolity. The 

results show that low dislocation densities can be achieved by crystals grown 

with 25 to 65° cones; no empirical correlation between the cone angle and 

dislocation density was observed for these crystals in the present study. 

This finding is in disagreement with previous investigations on LEC GaAs and 

GaP crystal growth**, which reported that the dislocation density can be 

substantially reduced using large cone angles (gradual cone). To resolve this 

discrepancy, detailed analyses of longitudinal cross-sections of crystal cones 

are underway to chart the propagation of dislocations as the crystals grew out 

from the neck to full diameter. The results will be presented and discussed 

in the final report of the follow-on program of the present project. Finally, 

th~ IIflat-topll crystal (Rll) showed unusually high dislocation densities. 

These high densities were probably induced by the severe thermal shock 

encountered as the crystal emerged from the B203. Therefore it can be 

concluded that low dislocation densiti~~ can be achieved independent of the 

cone angl e prov; ded that the crystal ; s not fl at-topped. In practi cal terms, 

the achievement of low dislocation growth with shallow cones will provide 

tremendous savings in growth time and materials. 

**P.J. Roksnoer, J.M.P.L. Huijpregts, W.M. Van De Wiggert and A.J.R. De Kock, 
J. Crystal Growth 40, 6(1977). 

35 
C3247A/es 



T
------------

NECK~ 

-15mm 

1 -3mm----.. 

-----,<t _______ _ 

'1' Rockwelllnternatfonal 

4mm 

seeD 

eTCH PIT 
DENSITY (cm~2) 

-;------8300 

i------ 3800 

--f-----------450 

----~--------4000 

Fig. 12 Schematic of seed, neck, and top of cone showing variation in e~rh 
pit density due to seed necking (RI6). 
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Regarding the effect of absol~te diameter on the dislocation density, 

a sufficient number of 2-in diameter crystals have not yet been grown to make 

valid comparison with 3-in crystals. The dislocation density could be 

expected to decrease as the diameter decreases as a result of reduced radial 

temperature gradients in the crystal during growth. However, no dramatic 

effects were observed 1n smaller diameter crystals. For example R14 was grown 

with the coracle and has excellent diameter control. However, the seed was of 

poor quality and no neck was grown. The relatively high dislocation density 

1s therefore attributed to poor seed quality. R18 exhibited good cr~/stalline 

quality in the front of the ingot, but not as good as some of the 3 in. -

diameter crystals. Again, some other parameter, such as the seed quality, 

probably played a more important role. Further work is needed in this area. 

Finally, the effect of diameter control (deviation of diameter from 

the mean) was evaluated by comparing the dislocation densities of the tails of 

the crystals. For example, R15, R17, R28 and R38, were all grown from low­

dislocation-density seeds or high-dislocation-density seeds with thin necks. 

The major differences in growth parameters lay in the cone angle and diameter 

control. From examination of the results, it can be concluded that the cone 

angle had little effect on the formation of dislocations in these crystals. 

However, there is general a correlation between reduced dislocation densities 

and reduced diameter deviations. These results sl.ggest t;iaC, although zero 

diameter deviation is prescribed for maximum effect, good results can be 

obtained under practical crystal growth conditions by maintaining the diameter 

to within ±3 millimeters. 
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5.0 SUMMARY 

Two important milestones have been achieved on the NASA "Preparation 

of High Purity Low Dislocation Density GaAs Single Crystals" program. First, 

it has been shown that the concentration of background impurities in LEC 

material can be reduced to the level of 4 x 1015 cm- 3 through proper control 

of the materials synthesis and growth conditions. This degree of purity is 

compara~le, if not superior to that of commercial Bridgman material. It is 

achieved by using high purity starting materials and crucibles, by using the 

in-situ synthesis technique, and by controlling the amount of moisture in the 

boric oxide encapsulant. 

Second, it was shown that the average dislocation density throughout 

the entire central region (defined by about 85% of the diameter) of 3-inch 

substrates can be controlled to a value below about 2 x 104 cm- 2• The dis­

location density in selected regions can be as low as 3000 cm- 2 (observed at 

2.5 in diameter). These results represent a sUbstantial improvement over 

commercial LEC material, which typically has a dislocation density on the 

order of 105 cm- 2 at 2-inch diameter. Important parameters in the control of 

the dislocation density are diameter control, and seed quality in conjunction 

with the use of Dash-type necking. Furthermore, the dislocation density is 

independent of the cone angle provided that the crystal is not flat-topped. 

Finally, no effect of absolute diameter has been observed for diameters 

greater than 2 inches. 

The capability of producing bulk GaAs with a low background impurity 

concentration has significance for solar cell applications requiring doped 
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wafers depending on the function of the substrate in the device. In devices 

where the substrate is passive, such as in the corwentiona1 "buffered I 

GaAs-GaA1As heterostructure cell, out-diffusion from the substrate to active 

regions of the device of fast-moving metallic impurities such as Fe must be 

minimized. These imp~rities act as carrier traps, reducing the minority 

carrier lifetime, and as compensation centers, changing the effective carrier 

concentration of the region in which diffusion takes place. These factors 

combine to reduce overall cell performance and radiation hardness. Lower 

levels of background impurities will result in fewer impurities reaching the 

active region of the device. Thus, adverse effects from out-diffusion are 

expected to be minimal with LEC GaAs. 

For solar cell structures where the substrate plays an active role in 

the device, low backgrouna contamination will lead to low electrical compensa­

tion provided that the doping level of donors (acceptors) is about a factor of 

5 or more greater than the background concentration of acceptors (donors). 

Low compensation in turn results in high carrier mobility and a high minority 

carrier diffusion length. On the basis of impurity analysis in this program, 

good electrical characteristics can be expected in n- and p-type LEC material 

doped at about 5 x 1016 cm-3 and higher. This doping level is at least one 

order of magnitude lower than that of substrate material in conventional 

(passive) solar cell structures, and similar or lower in magnitude to doping 

levels in devices with active substrates. Therefore, LEC material will be 

applicable to most solar cell applications on the basis of purity and 

electrical properties. 
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Intentionally doped n- and p- type LEG GaAs with low compensation and 

high minority carrier dHfusion lengths can be grown from both quartz and PBN 

crucibles. However, semiconductor-quality p-type material must have a low 

background concentration of Si. Therefore "wet" boric oxide must be used for 

the growth of p-type material from quartz crucibles. PBN can be used for both 

n- and p-type material. 

As a resul~ of MRDC's progress attained during the NASA program in 

understanding the cause-effect relationships between the dislocation density 

and crystal growth conditions, 3-inch diameter crystals were recently grown 

with an average dislocation density in the "ringll region of 7500 cm- 2• The 

dislocation densities throughout the entire central region of the substrate 

(defined by 85% of the crystal diameter) in the front of the crystal was less 

than 2 x 104 cm-2• These densities are the lowest reported in any LEG 

material of comparable diameter. Just as striking is the fact that the 

dislocation density in the "center" and "ring" region of substrates obtained 

from the tail of the crystals are lower than 1 x 105 cm- 2, which is less than 

the density observed in substrates obtained from the front of 2-inch-diameter 

commercial LEG crystals. 

The capability of producing 3-inch-diameter GaAs ingots with dis­

location densitie in the 104 cm-2 range from front to tail is extremely 

important for solar cell applications where radiation hardness as well as 

efficiency is critical. This is because the minority carrier diffusion length 

is not significantly effected by the presence of dislocations until the 

spacing between dislocations is comparable to the diffusion length. The 

inter-dislocation spacing in MRDG 3-inch ingots now ranges from about 32 to 
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115 microns at the tail and front of the ingots, respectively. This distance 

is substantially longer than the mi10rity carrier diffusion length in nand 

p-type material of 1-2 and 5-20 microns, respectively. Therefore, doped LEe 

material with dislocation densities in the 104 cm-2 range is expected to 

exhibit good minority carrier diffusion lengths. 

This investigation into crystal growth methDds for minimizing the 

dislocation density of LEe GaAs will ultimately impact the cost-effectiveness 

of the LEe techniques. For example, it has been shown that cone-growth can be 

vi rtually el imi nated from the crystal growth whi 1 e preservi ng the structural 

quality of the crystal. This capability wiil increase the yield of full 

diameter wafers per crystal, and stcOstantlany rEduce the time required to 

gi"OW each crystal. Both factors wi 11 1 ead to cost reducti ons to the user. 

Finally, it is important to note that the dislocation density of 

intentionally doped GaAs is generally lower than in undoped material under the 

appropriate crystal growth conditions. The mechanism is not yet we1l 

understood. Although the concentration of impurities in the crystals grown to 

date has not been sufficiently high to exert this effect, lower dislocation 

densities are antiCipated in more heavily doped material to be grown in the 

near future. This work, which is being conducted exclusively at MRDC, shoulo 

prove to be criti cal to the development of a 1 arge-area sol ar cell producti on 

capabil ity. 
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