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Subscripts :
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VALIDATION OF ZERO-ORDER FEEDBACK STRATEGIES FOR MEDIUM-RANGE AIR-TO-AIR

INTERCEPTION IN A HORIZONTAL PLANE

Josef Shinar*

NASA Ames Research Center

SUMMARY

A zero-order feedback solution of a varlable-speed interception game between two

aircraft in the horizontal plane, obtained by using the method of forced singular

perturbations (FSP), is compared with the exact open-loop solution. The comparison
indicates that for initial distances of separation larger than 8 turning radii of

the evader, the accuracy of the feedback approximation is better than 1%. The result

validates the zero-order FSP approximation for medlum-range alr-combat analysis.

This feedback solution is a very attractive candidate for airborne implementation.

I. INTRODUCTION

There is little doubt that the differential game approach is the most realistic

mathematical formulation for alr-to-air combat problems. As pointed out in a recent

review paper by Ardema (ref. i), however, "...thls approach is so complex that results

to date hage been:disappointlng." Some hope for a relative breakthrough in this area

has arisen with the application of slngular-perturbatlon techniques for nonlinear

zero-sum pursult-evasion games (refs. 2-6). This method has created the potential to

generate approximate feedback strategies for an important class of air-combat prob-

lems, namely, for medium-range alr-to-alr interception. (Generally, interception

ranges are characterized by the firing envelope of the respective weapon systems. In
this context "medium range" is a loose term covering a domain of weapon delivery

between 4-20 km, excluding both long-range missiles, such as the AIM-54 Phoenix, and

guns or other short-range weapons.)

The approximate solution obtained by the method of singular perturbations seems

to be a very attractive candidate for airborne implementation. The practical use-

fulness of the approximation has to be evaluated not only by its feasibility, but
more importantly by its accuracy. For accuracy assessment of any approximation the

knowledge of the exact solution is required. In the last decade, several numerical

algorithms were developed to solve the multidimensional, nonlinear, two-point
boundary-value problem formulated by the set of necessary conditions of game opti-

mality (refs. 7-14). Even if it is virtually impossible to prove that the converged
numerical solution of the necessary conditions is indeed optimal, that is, that it

satisfies the sufficiency conditions for saddle-point optimality (ref. 15), the only
available way to assess the accuracy of an approximation is by comparing it with an
outcome of some iterative computing algorithm. Unfortunately, most of the computer

programs (refs. 7-12) are inoperative. The presently active computing algorithms

(refs. 13-14) were also unable to provide the required comparison. Communication

*Senior NRC Associate on sabbatical leave from Technlon, Israel Institute of

Technology, Haifa, Israel.



with the research personnel involved revealed that the algorithms are currently

limited to the solution of fixed-time problems. Moreover, there is a major problem of
convergence for the relatively long duration of a medium-range interception (ref. 16).

Lately, another opportunity has appeared for validating the zero-order feedback

approximation obtained by using singular-perturbation methods. An open-loop solution

of the variable-speed aircraft versus aircraft pursuit-evasion game in a horizontal
plane was published in several recent papers (refs. 17-19). This research effort is

continuing at Ames Research Center. The open-loop solution method allows a relatively

detailed comparison with a feedback approximation of the same problem, using an iden-
tical aero-propulsive model. The comparison has been limited to the already existing
numerical results.

The objective of this paper is to report the outcome of the above described com-

parison and to draw appropriate conclusions. In section 2 the medium-range air-to-

air interception game in a horizontal plane is formulated and the necessary conditions
for saddle-point optimality are summarized. In section 3 the zero-order feedback

solution of the game is developed, using the technique of forced singular perturba-
tion, summarizing the approach detailed in references 2-5. In section 4 the basic

concept of the open-loop solution (refs. 17-19) is described, and in section 5 the

conditions of the comparison and the aerodynamic and propulsion models are detailed.

Results of the comparison are presented and discussed in section 6 and the conclu-
sions are drawn in section 7.

2. FORMULATION OF THE AIR-TO-AIR INTERCEPTION IN THE HORIZONTAL PLANE

2.1 Equations of Motion

The geometry of the relative position of two airplanes in a horizontal plane is

depicted in figure i. In an interception scenario, one airplane (having a superior
weapons system) is the pursuer P, and the other is the evader E. The dynamics of the

relative geometry can be expressed either in polar coordinates,

= -Vp cos(Xp- _) + vE cos(xE - _); R(t0) = R0 (i)

= [-Vp sin(x P - _) + VE sin(x E - _)]/R; _(t0) ="_0 (2)

or in a Cartesian coordinate system,

= VE cosxE - Vp cOSXp ; X(t 0) = X0 (3)

= VE sinxE - Vp sinXp ; Y(t0) = Y0 (4)

by defining

x= (5)

Y = YE - YE (6)



X

= XE - Xp L_ VE

XE ( ×E
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Figure i.- Geometry of horizontal interception.



Aircraft dynamics for trajectory computations can be adequately represented by a

point-mass approximation. In most studies (refs. 3-6, 17-24), constant weight and

thrust aligned with the velocity vector are also assumed. This set of assumptions
leads to

#p = g(T_ D)p = g(Tp - Dp) ; Vp(t0) --Vp0 (7)

_E = g(T_ DiE = g(_E - DE)_ ; VE(t0)• = VE0 (8)
!

= = - ; Xp(t 0) = XP0Xp tg _p WIp

--(@ -- - =XE tg _E (Vi)W)E 0

The normalized propulsive thrust and the aerodynamic lift and drag forces can be

expressed by

T A T _ Lax(h,M) (ii)_-- =

W -- n = q(h,M) CL/ (12)

where _ is the throttle parameter in the range of

0 ! _ ! 1 (14)

where q is the dynamic pressure defined by

1 V2 M2
q(h,M) = _ 0(h) = 0.7 P(h) (15)

and where the relationship between drag and lift is approximated by a parabolic polar

CD(CL ,M) = CD0(M ) + K(M) C_ (16)L

The maximum admissible value of the lift coefficient is limited by aerodynamic

phenomena (e.g., stall, buffetting, or instability):

CL ! CLmax(M ) (17)

The total lift force is also limited because of structural constraints. This

limitation is usually expressed via the aerodynamic load factor,

n < n (18)
-- max



leading, for horizontal flight, to a bound of the aircraft bank angle:

<--_max = c°s-llnl--!--- (19)
( max

By combiningequations(12), (13), (16), and (17), the total drag-to-weight
ratio can be expressed by

= DL + n2 Di (20)

D0 being the zero lift drag and Di the induced drag for level flight (n = l)
divided by aircraft weight:

D. = K(M) /q (22)
l

The nondimensional
quantity (W)/q is the lift coefficient for level flight,

lq = CLI(h,M) (23)

For a horizontal flight, where the speed of sound remains constant, it is convenient

to replace the velocity as a state variable by the Mach number. Accordingly, the set
of equations (i)-(I0) can be rewritten in a nondimensional form, using equations

(18)-(23), as well as a normalized time scale

(at = [t - tO ] (24)

and, ( )', denoting derivations with respect to nondimensional time:

= TE - (D0)E - nE(Di)E : _(0) = ME0 (26)

x_ = (n_ - z)ll21Mp = [x_(Mp)] Up ; Xp(0) = XP0 (27)max

xE (n_ - I)ll21ME [x_(ME)] uE ; XE(0) = XEo (28)max

Here, uD, ue are the normalized controls of the pursuer and the evader respec-
tively, boun_ed by

lUpI < 1 ; lUEI <_
1 (29)

and the maximum turning rates are determined by the physical constraints (17) and
(18). These constraints determine the region of instantaneous maneuverability

5



of the aircraft, as depicted in figure 2. Their intersection determines the so-

called "corner velocity," or Mach number, M :
c

W ]i/2
MC = [nmax(_)/0.7 P(h) CLmax(Mc) (301

and the corresponding maximum instantaneous turning rate. At these flying condi-

tions, the turning radius of the aircraft is minimal and is given by

rc =A Vc/Xc" = ve/g (n2ax_l)I/2c m
(31)

Or using nondimensional variables,

-- A r g/a2 M2c/ 2 _ 1)I/2rc = c = (nma x (32)

Substituting equation (30) into (32) and using equations (15) and (23) yields

_ nma x CLI (M = i)

r = . _ 1)I/2 (33)c (_ax Clmax(Mc)

In figure 2 the line of best sustained turning rates, obtained equating maximum

thrust and drag, is also shown:

Xs (n2s - l)I/2/M (34)

where the sustained load factor is given by

ns = [(Tmax - D0)/Di]I/2 •(35)

Figure 2 also indicates the admissible region of Mach numbers in horizontal flight.
The lower bound is a consequence of equation (17) with n = i, while the maximum Mach

number can be either "placard" limited (because of structural and aerothermodynamical

considerations) or determined by the equilibrium in straight flight:

Mmi n! M ! Mmax

Mmin = [CLI(M = l)/CLmaxl l/2 (36)

Mmax= min IMlimit' M A--maxargM [_max = DL +Di]l. "

The relative trajectory equations can be also rewritten in nondimensional form

in polar coordinates as

R' = -Mp cos(Xe - 4) + ME cos(x E - 4) ; R(0) = R0 (37)



12.5 -

10.0 nMAX = 6

m 7.5 I

"_=,_ CLMAx = 0.7; I '_'_T = D"o

.;_ 5.0 I _,

2.5 I
I

I I I I I I

0 ,2 .4 ,6 ,8M c I 1,2 1,4 1.6
M

Figure 2.- Domain of maneuverability.



m

_' = [-Mp sin(Xp - _) + ME sin(x E - _)]/R ; _(0) = _0 (38)

or in a Cartesian form as

X' = ME cosxE - Mp cOSXp ; X(0) = X0 (39)

_' = ME sinxE - Mp sinxE ; T(0) = T 0 (40)

2.2 Differential Game Formulation

In this subsection an air-to-air interception engagement is formulated, based on

the nondimensional mathematical model described previously, as a zero-sum differential

game. For such a formulation the following elements have to be defined: game space;

game dynamics; admissible control sets; role determination of the players; informa-
tion structure; game termination; and cost function.

For the game dynamics described by equations (37), (38), and by (25)-(28), the

six-dimensional game space (R, _, Mp, ME, Xp, _) is bounded by

0< R<_

(Mmin) < M < (Mmax)p- e- p (41)

(Mmin) E < ME < (Mmin)

The angular state variables (_, Xp, XE) are unbounded, but periodical; that is,

_+2_-_

_p + 2_ = Xp (42)

XE + 2_ -=XE

The control set of the players is (_ , Up) and (_E' UE)' respectively, subject
to the constraints (14) and (29). The roles of the players (pursuer and evader) are

determined at the outset by the superior weapons system of the interceptor airplane.

This role determination remains unchanged during the duration of the game.

The game starts at some initial conditions (R0, _0, MP0, ME0, XP0' XE0) at a
moment (t = 0) when both players become aware of each other. For the duration of the

game, perfect (memoryless) state information is assumed. The game terminates when "
the pursuer succeeds (at the first time) to approach the evader within a distance

equal to the firing range of its weapon system. This condition is expressed by

R(tf) = d (43)

R'(tf) < 0 (44)

8



The terminal values of the other state variables are free. Thus, equation (43)

describes a five-dimensional terminal manifold, and equation (44) determines the

"usable part" of this surface. The time of game termination (or in other words the

"time of capture") is determined, based on equations (43)-(44), as

_f = min arg {R = 7} (45)

t Ro>d

The cost function of the game is this time-of-capture,

J = _f (46)

The objective of the pursuer is to minimize _f; the evader wants (if capture cannot

be avoided) to maximize tf.

The solution of this perfect information zero-sum differential game, for each
set of initial conditions, is a triplet: a pair of optimal strategies p*(.), e*(.)

and the saddle-point value of the cost function J*, satisfying.

(p, e )_ y(p , e )=a y _ j(p , e) (47)

This quantitative game (game of degree) has a meaning only if capture, defined by

equations (43) and (44), can be guaranteed. An obvious requirement for satisfying

equation (44) even for a "tail-chase" configuration is

_(tf) > ME(t f) (48)

Analysis of a simplified constant-speed pursuit-evasion game indicates that cap-

ture can be achieved from any initial condition (ref. 20), even against an evader of

unlimited maneuverability (rE = 0), if the ratio of the "capture ranse," R(tf) =
to the pursuer turning radius r--p exceeds the value [2(1 - sin i)]112; that is,

d/rp > 0.563 (49)

In interceptions where "all-aspect" guided missiles are used, this inequality is

easily satisfied. It can be thus concluded that the medium-range interception engage-
ment described in the Introduction is a suitable example for the above formulated

differential game of degree. Such encounters are also characterized by an initial

distance of separation R0 much larger than the firing range d.

The first phase of the solution of such a differential game is to apply the set

of necessary conditions for an assumed saddle-point optimality, generating a "candi-
date" for the solution. Then it has to be verified that the saddle-point inequality

of equation (47) or some equivalent sufficiency condition (ref. 15) is indeed satis-

fied. For differential games of complex dynamic structure the verification phase is

prohibitive; therefore, most investigations (refs. 7-14, 17-19) result only in
"candidate" solutions.



2.3 Necessary Conditions of Optimality

The necessary conditions of saddle-point optimality for the previously formu-

lated differential game are expressed by

min max ,_(') = 0 (50)

_p, Up _E' UE

The Hamiltonian of the normalized game is

•_ = 1 + %_[-_ cos(Xp - 4) + ME cos(x E - _)]

+ _[-_ sin(Xp - 4) + _ sin(x E - 4)]/R

_ 2 u_)]+ XMp[_p(TLax) P - (D0)p (Di)p( 1 + _(Xmax)e

- _ _ 2 , 2 UE)]+ _ME[_E(Tmax) E (D0)E (Di)E (I + ME(Xmax) E

+ %Xp(X'ax)m Up + %XE(X'ax)Em UE + constraints (51)P

The multipliers _, etc., are the gradient components of the cost function
(assuming that such a gradient does exist) and they have to satisfy the set of adjoint

differential equations:

' D_
= ----- (52)

DR

_KP
_' = - --D_ (53)

, D._
XMp = (54)

DMp

, Dog,'
%ME = - -- (55)

DME

D,J'_' (56)
kXP DXp

, D_ (57) °
kXE = DXE

The end values of the adjoint variables are determined by the transversality condi-

tions applied at the terminal manifold R(tf) = _. Since all the other state vari-
ables are free on this surface,

%*(_f) = %Mp(_f) = %ME(_ f) = %Xp(_f) = IXE(_ f) = 0 (58)

i0



By satisfying equations (50) and (44) at tf, we also obtain

__1

%_(tf) = -I/R (tf) = i/[Mpf cos(Xpf - _f) - MEf cos(XEf - Cf)] > 0 (59)

The optimal control strategies can be obtained, in terms of the state and adjoint

variables, by applying equation (50).

* 1

_p = _[i - sign %Mp] , %Mp _ 0 (60)

_* 1
E = _[i + sign _ME] , _ME # 0 (61)

* (Ul)p]Up = sat [ (62)

where (ul)P is the unconstrained optimal turning strategy of the pursuer given by

= , )
(u_)p _Xp/2 XMp(Di) P _(Xmax P (63)

A similar expression holds for the evader.

f

It can be shown that a singular thrust subarc, requiring lMp= %M --0 or

%M_ = %E -- 0, is a candidate for this time-optimal game, only if -M_ = [Mlimit) P or
MEW= (Mlimit) , respectively. Equation (50) also requires thatE

2
f_

I

[ _ 0 (64)

u;

_2y_ [ , _< 0 (65)
_u_ uE = uE

These conditions imply, for unconstrained controls, that kM < 0 and %M_ > 0;
= P

that is, maximum thrust (_* l).for both aircraft. Consequently, if zeromthrust is
* - +i

optimal (_* = 0) because of %Mp > 0 or %M- < 0, it also requires that Up - _
(or u_ = ±i). Conversely, constrained turnlng rate does not necessarily imply zero
thrust_

To generate a candidate solution from some initial conditions of the game, a

12-dimensional nonlinear two-point boundary-value problem has to be solved. Several

numerical techniques were developed to solve this problem (refs. 7-14), all requiring
an excessive computational effort, impractical for a rapid systematical assessment,

as well as for a real-time implementation. For such purposes an approximate analyti-

cal solution is preferred. Such an approximation can be obtained by the method of
forced singular perturbations, as described in the next section.

ii



3. ZERO-ORDER FEEDBACK SOLUTION

In this section an analytical approximation is outlined in order to provide a

zero-order solution to the original differential game formulated in the preceding

subsection. The approximation is based on applying the method of singular perturba-

tions as described in references 2-6. First, a singularly perturbed dynamic model
has to be defined. Analyzing this model to zero-order leads to a set of low-

dimensional problems solvable analytically. Based on these simplified solutions, a
uniformly valid zero-order approximation can be synthesized in a feedback form.

3.1 Modeling Considerations

The success of the singular-perturbation approach depends on the time-scale

separation of the state variables. In this respect, inspection of the set of differ-

ential equations (37)-(38) and (25)-(28) leads to the following observations:

i. If the normalized separation distance R is sufficiently large, as assumed

for a medium-range interception, the turning rate of the line of sight 4', given by
equation (38), will be very slow compared with the turning rates of the airplanes

given in equations (27) and (28).

2. Longitudinal accelerations of an airplane (see eqs. (25) and (26)) are much

smaller (of the order of ±0.5 g or less) than the lateral accelerations (limited to
6-8 g) used for turning in equations (27) and (28).

3. Equations (32) and (38), describing the relative geometry in polar coordi-

nates, are strongly connected and have to be analyzed on the same time scale.

Based on these observations the following hierarchy of state variables can be

established: R, 4 (slowest),mo_l. _ (faster), and Xp X_ (fastest), leading to asingularly perturbed dynamic Such a model cab be-obtained either by proper

rescaling of the variables, _s in reference 2, or by artificial insertion of the per-
turbation parameter €, as in references 3 and 4. It has been pointed out (ref. 5)

that the second approach, called also a "forced" singular-perturbation technique

(FSPT), leads to a zero-order solution which is identical to the result of scaling
transformation. Because FSPT seems to be much more convenient for multiple time-
scale problems, it is the approach used here.

The FSPT model of the differential game describing a medium-range air-to-air
interception in nondimensional variables can be now formulated:

R' = -_ cos(Xp - 4) + _ cos(x E - 4) R(0) = R0 (66)

4' = [-Mp sin(x P - 4) + _ sin(x E - 4)]/R 4(0) = 40 (67) "

E_ = _p(TLax) P - (D0)P - (Di)P [i + _(Xmax)_U_] _(0) = MP0 (68)

E_ = _E(Lax) E - (D0)E - (D--i)E [i + _E(Xmax )2 u_] _(0) = ME0 (69)E

12



c2X_ ' ) = (70)= (Xmax P Up Xp(0) XP0

62X_, = (Xmax)E XE 0' uE XE(0) = (71)

The cost function _ remains unchanged and the Hamiltonian of this singularly
perturbed dynamic system becomes identical to the original one in equation (51) by

setting for the adjoint variables of the FSPT model, denoted by a superscript "_,"

= = lg = _2 I_E _2 (72)l_p EIMp, %_m E%ME , Xp %Xp' = _XE

This notation leads to the following set of adjoint differential equations, having a

similar singularly perturbed structure as the state equations (66)-(71):

_ )'_ %_(_f) > 0 (73)

I

_Y_ (74)

_ =- _-_- l$(_f) : 0

' = _'_ (_f) = 0 (75)E _Mp _Mp
8Mp

' _ %ME(t f) = 0 (76)
£ %ME = _ME

2IXp' - _XpS'_ %XP (_f) = 0 (77)

_2 ' = _ (_f) = 0 (78)
%XE - 8X--_ %XE

When using this reformulation, the other necessary conditions of optimality --

as equations (60)-(65), which were derived from equation (50) -- remain unchanged.

The zero-order FSPT analysis consist of solving subsequently the following

lower-dimensional problems: (i) a reduced-order game; (2) an outer boundary layer

(velocity dynamics); and (3) an inner boundary layer (turning dynamics).

3.2 The Reduced-Order Game

Setting E = 0 in equations (60)-(71) and denoting the variables by a super-

script "r" results in the following set of equations:

r

r r

(_r)'= [__ sin(Xp_ _r) + _ sin(xE_ _r)]/_ _r(0) = 40 (80)

13



_E(%ax)E = (D%)E + (Di)E (82)

r

= 0 (83)

r

uE = 0 (84)

The Hamiltonian of the reduced game is

= r cos(xE_ _r)]_r 1 + Ir [-_ cosCXp- _r) + MER

r r r sin_xE _r+ _ [-_ slnCXp - _r) + ME _ )]/_r + constraints (85)

The constral.nts include now equations (81)-(84). Setting £ = 0 in equations (73)-
(78) as well, leads to

r

(%R)' = _ = (%_/_r)(,r), ; %r (_f) > 0 (86)R

__r
r' a_ r r

(%_) = 8_r = l_R_r(_r), + (%_/_r)(_r), ; %_ (tf) = 0 (87)

= 0 (88)

0 (89)

_Xp [ sin(Xp- _r) _r cos(Xp- _r)] = 0 (90)

5[
_ _j_--r= _ r _

_XE _ [_rRsln(XE- _r) _r c°s(XE- _r)] = 0 (91)

The last four equations indicate that the "fast" r _ r rvariables , , X , X , havep to
be considered as additional control variables of the players constrained _y equations

(81)-(84). The last two equations lead to

rtg(Xp - _r) = tg(x_ - _r) = tg e = (1 )/1 (92)

14



implying that

r& r r r r
e -- (Xp _ ) = (XE - _ ) i m_ , m = 0, 1 ... (93)

Substituting (92) into (87) yields

r '

(X_) = (-_ -+_)[X R sin_ r - (_r/_r) cos r] = 0 (94)

and conseqdently

r = l_(tf) = 0 (95)

leading to the conclusion that

r
e = ml_ ; m I = 0, i ... (96)

The correct values of the free ambiguity parameters m and mI can be determined

from the saddle-point optimality of the reduced-order Hamiltonian. Substituting
equation (95) into (85) and applying

min max ._r = 0 (97)

r r r r r

_,Xp,_p ME,XE,_ E

leads, when combined with equation (67), to the following results

r r _rXp = XE = = _0 (98)

Further application of equation (97), combined with equations (81) and (82),
yields

= (Max) P (99)

= (Max) E (I00)

_ = [D0 (Mmax)p + Di(Mmax)p]/Lax(Mmax)p (i01)

with a similar expression for the evader. Moreover, substitution of equations (98)-
(i00) into equations (85) and (97) leads to

%r=R IR (_f) = i/(_ - _) (102)

In summarizing all these results, it can be stated that the solution of the

reduced-order game is a tail-chase flown by each airplane at its maximum speed. The

optimal control strategies are given by equations (98)-(101). These strategies are

> (Mmax)E' that is, if %[R > O, as required byplayable (ref. 15) only if (Mmax)P

15



equation (44). Since the reduced-ordersolutiondoes not satisfy the initialcondi-

tions imposedon the fast variables (Mp,ME, Xp, XE) boundary-layersolutionsare
needed.

3.3 Zero-Order Outer Boundary Layer (Velocity Dynamics)

The first (outer) boundary layer is obtained by performing a time-stretching
trans formation

T° = _/€ (103)

on the equations (66)-(78) and setting again € = 0. This operation leads to the

following equations, where the boundary layer variables are denoted by a superscript
"O" :

°
--= o _o: _o (lO4)
d.r °

a_°: o ¢o : ¢o (105)
dT°

d_ - g0)p (_i) ; _(0) (106)dT--7 =_(T--max)P - p : Mpo

d_,_ _E(Tmax ) (D0) (Di) _(0) (107)dr ° E E E = MEO

o

Up : 0 (108)

o

uE : 0 (109)

d_R
--: 0 _ _(T °) : _r : i/(_ - ME) (ii0)
dT° R R

d_: 0 _ X$(T°) : r = 0 (iii)

dX_p 8,a_,o
- _ ; lim %° = XMp(_f) = 0 (112)

dT° 8_ o MpT -+ co

dX_ E 8,.,_, o ), o
-- = ; lim ME : XME(_f) : 0 (113)

dT° 8ME oT ._ ao

16



a_ °
= 0 (114)

a,X_,°
0 (115)

o

aXE

The Hamiltonian of this outer-boundary-layer game is

O

1+l! o ocos(× )1+R [-_ cos(Xp - _0 ) + Mm 0 IMP (Tmax)p

- (D0) P - (Di)p] + t_E [_ (Tmax)E- - (D0) E - (Di)E)] + constraints (116)

Game optimality requires

min max ._o = 0 (117)

O O O O

_p, Xp _E' XE

yielding

o o

Xp = XE = _0 (118)

and

o i o

_p =_[i - sign l_e] IMp # 0 (119)

o 1 o o
_E = _ [i - sign IME] %ME # 0 (120)

It is easily seen that this game can be decoupled into two independent optimiza-

tion problems. It can be also shown that for each airplane there exists an equilib-
O O . .

rium point determined by _ = (Mmax)P or, respectively, _ = (Mmax)E, coincldlng
with the reduced-order solution. To reach these equilibrium points, which automat-

ically satisfy the matching conditions, it is required (assuming MP0 < (Mmax)p,

ME0 < (Mmax)E) that
o O

_P = _E = 1 (121)

• O O
The values of the ad3ointvariables IM= and IM= can be determinedseparately,by
assuming that the opponent has already _eached _quilibrium, from equation (117), in a
state feedbackform:

IMP° = _1[[%R - _]/[(Tmax)p-- - (_0)P - (Di)p] = -AM(_) (122)

X_E = t_.r [_ - Mg]/[(%ax) - (DL)E - (Di) ] = kM(_) (123)R E g

17



It can be verified that equations (122) and (123) always satisfy equation (117)

and that they are also compatible with equations (119)-(121). This outer boundary

layer is therefore an accelerating straight-line "dash" for both airplanes in a tail-
chase; that is, both velocity vectors are aligned with the line of sight. Since this

direction does not satisfy the initial conditions XP0, XE0 an additional boundary
layer is required.

3.4 Zero-Order Inner Boundary Layer (Turning Dynamics)

In this second (inner) boundary layer a new stretching transformation

i _/€2 .o/g (124)

is used and the variables are indexed by a superscript "i." This transformation

results, setting E = 0, in the following:

_i = _o = _r = R0 (125)

_i = _o = _r = $0 (126)

= _(T O = 0) = MP0 (127)

_ = _(T ° = 0) = ME0 (128)

dXp i

-- = [X_ (MP0) ]max Upi ; Xp (0) = XP0 (129)
dr i

i

dXE i

----r= [X_ (ME0)]maxUE i ; XE (0) = XE0 (130)
drI

Ii = I° = I r = 1/[_- M_] (131)R R R

i o = r = 0 (132)

li o (133)
Mp = IMp

i_E = IMEo (134)

i i

dIxp 8_,_ i IXp(_f) = 0 (135)--. = - ----7- ; lim IXp =
1 idTl _Xp T .
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i

= i = (_f) = 0 (136)__d%xE _._i ; lim %XE %XE
i

dT i BX_ T "+ _

where the Hamiltonian of this inner boundary layer is

= (i
._i" i + %_r[_Mp0 cos(Xpi _ _0 ) + ME 0 cos XE - _0 )]

+ %MpI_pi(_max)O P _ (_0)P _ (_i)p [i + _p 0 (Xmax)pUP, 2 i2 I]

+ %ME _Ei (Lax)E - (D0)E - (Di) E [1 + 40 (Xmax)2EuE ]

• , i , i

+ %_p (Xmax)pU_ + %XE (Xmax)EUE + constraints (137)

The necessary conditions of saddle-point optimality require

min max ,;_i = 0 (138)

i i _i u__p, Up E'

leading to

i 1 o o

Sp = _[I - sign %Mp] = 1 %Mp # 0 (139)

i i o
_E = 2[I - sign %°E]_= 1 EME # 0 (140)

i [)pUp = sat[ (u ] (141)

i i

uE = sat[ (ul)E ] (142)

wi th

i o 2

(U[)p = lXp/2lMp MP0 (Di)P (Xmaxlp (143)

= i o M2 (_i) ( ,(uil)E kXE/2kME E0 E Xmax)E (144)

From equations (129), (130), (135), (136), (143), and (144) the separability of

the turning boundary-layer game into two independent optimal control problems can be

concluded. Based on this independence, the inner boundary-layer adjoints can be
eliminated from the Hamiltonian (138) assuming equilibrium of the opponent. Substi-

tuting equations (143) and (144) separately into equation (138), and using equations

(122), (123), and (102) results in the following respective feedback expressions
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(%_p)2 3 2 i

(XXE) E0 - ME0 - = Ax(XE , ME0, 40) (146)

The requirement of a stable solution indicates that the turning has to be oriented to

reduce the angular differences relative to the line of sight. Consequently it fol-
o

lows, observing equations (143) and (144), as well as _Mp < 0 and %_E > O, that

sign _ip =-sign ui = sign (Xp- 4) (147)

i i i

sign %XE = sign uE = -sign (XE - _0 ) (148)

Summarizing equations "(141)-'(148) and introducing the notion of best-sustained

turning rate X', defined in equations (34) and (35) the strategy pair of the turn-s
ing boundary-layer game is

I)i / [Xp( PO)]s MPo[1 - cos(x i - *0 )] 1/2
= -- sign (_0 - Xp)

Up satk[x_(MP0 )]max . _ - MP0

= U(X_, MP0 , _0 ) (149)

/ ]s MEo[1 - cos(x -i
= I sign (_0 - XE)

• u E sat \[x_(ME0)]max _ - ME0

= U(XEi,ME0, ) (150)

3.5 Zero-Order Composite Strategies

Based on the solution of the reduced-order game and the two boundary-layer

games, a uniformly valid zero-order composite strategy pair can be synthesized. This
is done for a multiple time-scale differential game (refs. 2-6) by replacing, in the

control strategies of the fastest (innermost) boundary layer, the initial conditions

of the slower state variables by their actual current value. (This is clearly a

feedback solution, where the current state is considered as a new set of initial con-

ditions.) Such strategies guarantee that as the state approaches the equilibrium

predicted by the reduced-order solution, the controls also become those required to

maintain this equilibrium. Moreover, the state feedback form takes implicitly into

account the eventual (small) variations of the '!slow" variables in the boundary layer.

Comparing equations (139)-(144) with equations (60)-(63) indicates that the

functional form of the control strategies of the exact optimal and the zero-order

FSPT composite solutions is identical. The only difference is that in the FSPT solu-

tion the adjoint variables are approximated by zero-order feedback expressions.
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For the sake of completeness these expressions are summarized here, denoting

the variables of the zero-order composite solution by a superscript "c":

xc = 1 - const (151)

c 0 (152)X_ =

.... r _ AM(_) (153)

XMp _ - ME (Tmax - D0 - Di)p

r

c ME - ME i

%ME - r r " -- = AM(ME) (154)

Mp - ME (Tmax - D0 - Di) E

c i,,2XXp : _ _ _ _ (Di)p [i - cos(Xp - _)] sign (Xp - _)

= -A (_, Xp, 4) (155)X

-,,= r---r (Di)E [i - cos(xE
M_ - ME

= Ax(M E, XE, _) (156)

The uniformly valid zero-order composite control strategies are

1 Mp < (MlimiJp
c = (157)

_P [(D0 + D_)/Lax]p Mp = (Mlimit)p

c { 1 : ME < (Mlimit)E (158)_E : [(50+ 5i)/Tmax]E ME = (Mlimit)E

• ' l _,i_k
Up : t[XP (Mp)]max _ - Mp

= U(Xp, Mp, _) (159)
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' { ]P\

= U(XE, ME, _) (160)

The following qualitative comments can be made about these zero-order strate-

gies.

i. Full thrust (_ = i) is an inherent feature of the FSPT model selected for

the analysis (if the placard-speed limit is not reached). It is a direct consequence

of the assumption that speed variations are slower than turning dynamics. In most
cases this assumption is verified by the solution itself (see section 6.1). However,

"exact" numerical solutions reveal that for some extreme set of initial conditions,

such as combination of very high speed and large angular disadvantage (X - _ _ + _)

zero thrust is optimal. To approximate such situations a different FSPT model,
described in reference 4, is needed.

2. The commanded unconstrained (suboptimal) turning rate can be expressed by

I/2

'(X')C' = x_(M) IM[I- c°s(x- _)]I (161)Mr - M

Relating tbe commanded turning rate to the best sustained turning performance indi-

cates the compromise made in the optimization process between fast turning and
acceleration, both required for successful interception.

3. The function (i - cosB) I/2 depicted in figure 3 is of particular interest.
For small values of B it is almost linear. This indicates that for small devia-

tions from the required heading, the optimal strategy reduces to a proportional con-

trol with a gain of {X_ [M/(Mr - M)]I/2}.

4. The speed-dependent gain factor provides an additional insight. It indi-

cates that if the current speed is near to its maximum value, that is, if there is

little need for acceleration, a harder turn can be made. Conversely, if (Mr - M) is
large, it is better not to lose speed in a sharp turn but to use excess thrust for
acceleration.

5. It can be shown that the gain factor is monotonically increasing in the

vicinity of the maximum speed for level flight, as determined by thrust/drag equilib-
rium, and that it approaches a finite limit at this speed:

lim Xs [MI_- M)] = -IIM)- _0)

I/2

Di I > 0 (162)M

6. If the maximum speed is placard-limited, that is, if

M = < MA arg I- = D0 + Dil (163)
max Mlimit = Tmax
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Figure 3.- The function (1 - cos B) V2.
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the gain becomes infinite. It means that if this limiting speed is reached before

the angular deviation becomes zero, the remaining error has to be corrected using
maximum turning rate. The same phenomenon was observed in the exact numerical
solution of similar problems (refs. 20, 21).

7. The feedback expressions of equations (157)-(160) are easily applicable to

an onboard implementation. They require measurements that are accessible in most

airplanes (as speed, heading, and line of sight direction). No range measurements
or estimation of opponent state variables are needed. Such a feedback chart, super-

posable on figure 2, is depicted in figure 4.

The zero-order composite strategies of equations (157)-(160) were implemented

for a digital simulation on the IBM 360/67 at Ames Research Center, using CSMP III

language.

Results of this digital simulation, using the zero-order FSPT composite strate-

gies, were compared with the set of existing exact open-loop solutions described in
the next section.

4. DESCRIPTION OF THE OPEN-LOOP OPTIMAL SOLUTION

The original horizontal interception game formulated in section 2 is of six
dimensions. It has been well known that since aircraft dynamics is independent of

the horizontal flight direction, the order of the system can be reduced to five by

using relative angular coordinates. In references 17-19 directions are measured
relative to the line of sight, and the final line of sight direction is used as

reference. In this particular coordinate system, the necessary conditions of game

optimality are decoupled into two one-sided optimal control problems, which can be
solved independently. This approach enables one to generate extremal trajectories

for each airplane, independently of its role, Of the position of its opponent, and of

the capture conditions. Such open-loop trajectories are obtained by simultaneous

retrograde integration of the state and adjoint equations with a given set of end
conditions. For a game solution, two respective trajectories can be superposed,

separated by the distance of capture measured along the final line of sight, if the
conditions for capture are satisfied. The construction of an individual extremal

trajectory is essentially identical to the method proposed and explored for the solu-

tion of a time-optimal turn to a point with unspecified final direction (refs. 20,
21).

In order to obtain the open-loopoptimaltrajectoryfor any given initialcondi-
tion, a systematical search has to be carried out in the parameter space of the
terminal conditions (terminal speed, direction, and time). This effort and its fur-

ther implementation is reported in reference 22. Because of the excessive numbers of
computations required to match a given set of initial conditions, it was decided that

only existingextremaltrajectorieswould be used for comparison. Any point along
such an extremal can be considered as an initial point of some engagement.

The open-loopextremalsof reference22 were calculatedin a set of "normalized"
coordinates,differentfrom the one introducedin section2 and used in the sequel to
derive the FSPT approximation. Time was not normalized,but distanceswere divided
by the speed of sound in order to be consistentwith the representationof velocities
by Mach numbers. Moreover,relativegeometrywas computedin Cartesiancoordinates.
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For the sake of convenience in making the comparison, the same variables were used

in the computer program of the digital simulation, implementing the zero-order FSPT

feedback control strategies (see appendix).

The aircraft model used in the simulation (identical to the one used in refer-

ence 22) and the criteria for selecting examples for comparison are discussed in the
next section.

5. AIRCRAFT MODEL AND CONDITIONS OF COMPARISON

In order to be consistent with the limitations of using only existing results,
all computations were performed for an altitude of 20,000 ft, implying a = 316.1m/sec

and 0/00 = 0.5326. For the same reason the same aircraft model (an early version of

the F4-B, used first by Bryson et al. (ref. 23) and later by Bryson and Parson (refs.

20, 21) served both as pursuer and evader. General aircraft information is summarized
in table i, and the aerodynamic and propulsion data at h = 20,000 ft are given in
table 2 for Mach numbers from 0.6-1.6.

TABLE i.- GENERAL AIRCRAFT INFORMATION

Weight W = 25,000 ib (15,875 kg)

Wing area S = 530 ft2 (49.23 m2)

Wing loading (W/S) = 66 ib/ft 2 (322.4 kg/m 2)

Maximum Mach number (at 20,000-ft) Mma x = 1.6

MaXimum load factor nmax = 6.0

Maximum usable lift coefficient CLmax = 0.72

TABLE 2.- AERODYNAMIC AND PROPULSION DATA

Mach number
Parameter

0.6 0.8 1.0 1.2 1.4 1.6

CDo 0.013 O.013 O.014 0.041 O.039 0.036

K 0.157 0.157 0. 180 0.247 0.296 0.343

Tmax/W 0.491 0.566 0.666 0.780 0.903 1.02

Note: Altitude = 20,000 ft; speed of sound = 316.1 m/sec;
density ratio = 0.5326.
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Since the singular-perturbation methods assume a time-scale separation between

trajectory and airplane dynamics, only open-loop extremals of relatively long dura-
tion can be considered as candidates for meaningful comparison. As a reasonable

limit, tf _ 50 sec was selected. Respective points on any two extremals can be
candidates for initial conditions If the capturability condition

_(tf) > ME(t f) (164)

is satisfied. The terminal and initial conditions of the available extremal tra-

jectories are summarized in table 3. For all cases, the optimal throttle setting is
maximal (_* = i), consistent with the FSPT solution described in section 2.

t

TABLE 3.- END CONDITIONS OF EXTREMAL TRAJECTORIES

Trajectory Mf M 0 t_, X0, Xf, _fa ^number sec rad rad yfa

I 1.5 1.238 97.1 1.330 1.7 x10 -7 126.68 13.21

II 1.4 1.174 97.1 3.077 1.7 × 10-7 97.30 16.48

III 1.377 1.2 50.0 9.550 1.2×10 -5 63.78 4.83

IV 1.272 1.2 50.0 2.280 3.5 x 10-5 47.11 14.20

V 1.222 0.9 60.0 2.917 5.2× 10-6 49.05 11.31

aOne unit is 316.1 m.

For the selected initial condition pairs listed in table 4, the best turning

radii of the airplanes are computed. For any pair of initial conditions, the value

of (X0 - Xf), computed from the individual trajectories as

X0 - Xf .= _(tf) - XE(t f) (165)

was kept constant. By varying Xf "(the capture range), a large set of differential
games, with different initial ranges, can be formulated.

For the constant-speed model of reference 2, it was shown that the small param-

eter, characterizing the time-scale separation between trajectory and aircraft

dynamics, is the ratio of the minimum turning radius of the airplane r to the
initial distance of separation

A r/R0 (166)

Though in the variable-speed case the technique of "forced" singular perturbations
(an artificial insertion of a perturbation parameter E = i) was used, such a ratio

still provides a measure of the time-scale separation. The validity of the singular-

perturbation approach depends on the value of this parameter. For each pair of tra-

jectories the distance of capture selected in such a way that Cg be in the range

of 0.I < E g < 0.25. For sake of uniformity the turning radius of the pursuer was
used as reference.
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TABLE 4.- SELECTED INITIAL CONDITIONS FOR COMPARISON

Trajectory
^ a ^ ^ ^a t_,

Example number M ×PO, r NEO ×Eo'
number P0 rad P rEa X0-Rf see

P E rad

i. I II 1.238 1.33 8.35 1.174 3.077 7.51 29.38 97.1

2. III IV 1.20 0.55 7.84 1.20 2.280 7.84 16.67 50.0

3. III V 1.20 0.55 7.84 0.822 0.960 4.43 21.23 50.0

4. II V 1.167 0.03 7.42 0.90 2.917 4.41 28.62 60.0

aone unit = 316.1 m.

In the next section selected results are presented in detail and analyzed.

6. COMPARISON OF RESULTS

6.1 Qualitative Comparison

Analysis of the open-loop extremals allows certain qualitative conclusions to

be drawn. The very nature of the independent extremals exhibits a strong similarity
with the zero-order FSPT solution. As was pointed out in section 3, the forced-

singular-perturbation technique leads to a decoupling of the original differential

game to a "simple pursuit" game and two independent sets of multiple time-scale
control problems optimizing an accelerating turn to the instantaneous line of sight.

The exact open-loop-optimal solution does the same, but relative to the final direc-

tion of the line of sight. If time-scale separation between airplane turning dynam-

ics and variations of the relative geometry is a valid assumption, then the current
direction of the line of sight presents a good approximation to its final direction.

In such a case, it can be expected that the accuracy of the zero-order feedback

approximation would be satisfactory.

The control strategies obtained by the two different methods are vey similar.

Both require full thrust for time-optimal interception if the maximum speed limit is

not attained. (In the examples used, the speed limits were never reached.) The

turning strategies are characterized by a gradually decreasing rate of turn, as the

flight direction asymptotically reaches the required value. The only difference

between the exact and the zero-order solution is the reference direction. The larger
the difference between the instantaneous and final directions of the line of sight,
the worse the accuracy of the FSPT approximation.

These qualitative differences are shown by comparing the time histories of the

control and state variables of the pursuer and the evader for a particular example.
The initial conditions for this example are depicted in figure 5. In order to obtain

observable differences, a relative high value of the geometric perturbation param-
eter, Cg = 0.25, was selected. In figures 6 and 7 the load factor time histories of

the evader and the pursuer are shown. Figures 8 and 9 depict the time histories of

the respective flight directions; the line of sight direction is also shown in these
figures.
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It can be observed from these figures that the initial load-factor time-

histories are very similar. The evader, using the FSPT strategy, reaches the actual

line of sight very nearly at the same time as the open loop optimal trajectory

closely approaches the final (reference) direction. Its FSPT turning strategy can,

therefore, be considered as close to optimal. One cannot say the same about the
pursuer. Since the initial conditions of the pursuer are more favorable than those

• of the evader, the pursuer can reach the line of sight in a shorter time. Because

the evader has not yet completed its turn, the line of sight continues to rotate•

• Consequently, the pursuer, using FSPT control strategy, has made an unnecessary turn
(an overshoot) which has to be corrected later. As a result, it can be expected that

the capture time of the suboptimal FSPT game will be longer than the optimal one.

In figures i0 and ii, Mach number time-histories of the evader and the pursuer

are shown, respectively; in figures 12 and 13 the initial turning geometry of the
airplanes is depicted. It can be observed in figure ii that because of the unnec-

essary turn, the velocity of the pursuer, using FSPT strategy, is slightly lower than
the velocity shown by the results of the optimal solution, as it has been expected.

This is in addition to the geometrical disadvantage shown in figure 13. Indeed, for

this example, the time of capture predicted by the FSPT approximation is about 6.5%

higher than the optimal value of 97.1 sec.

E o

R° _7--_Po

_ X MEo = 1.175 XPo=3.077 rad

XPo= 1.33 tad

,_ • M = 1.238 Yo = 3.27
Xo = 29.38 + Rf

1 UNIT = 316.1 m

Figure 5.- Initial conditions for example No. i.
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Figure 6.- Evader's load factor time-history•
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Figure 7.- Pursuer's load factor time-history.
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Figure 8.- Evader's turning time-history.
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Figure 9.- Pursuer's turning time-history.
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Figure i0.- Evader's Mach number time-history.
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Figure ii.- Pursuer's Mach number time-history.
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Figure 12.- Evader's initial turning geometry.
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6.2 Quantitative Comparison of Payoff Accuracy

The purpose of such quantitative comparison is to determine the range of param-
eters or the domain of initial conditions for which the accuracy of the zero-order

FSPT feedback solution is satisfactory. If this domain contains a region of practi-

cal interest, then the approximation can be considered useful.

The example analyzed in detail in the previous subsection and depicted in

figures 5-13 was recomputed with different initial and terminal ranges, keeping the

relative "dlstance-to-close" constant. In figure 14 the relative payoff accuracy of

the zero-order FSPT feedback approximation, defined as

Atf A tf - tf
= , (167)

tf tf

is plotted versus the inverse of the geometrical perturbation parameter of the pur-

suer, defined by

i R0
--= (1 8)
(gg)p rp (MP0)

as a ratio of the initial range divided by the pursuer's best turning radius at its

initial Mach number, MP0.

In figures 15-17, similar results of three additional examples, generated based
on the available extremal trajectories listed in table 3, are plotted. The initial

game conditions are summarized for comparison in table 4. These examples are char-

acterized.by the fact that the final Mach number of the extremal trajectory is very
different from the maximum value. Consequently, the assumption made in the FSPT

solution that Mr = M is not validated. This discrepancy can result in control

strategies that devia_Xstrongly from the optimal one. In the present examples this
difficulty was overcome by adjusting the value of Mr in the respective control

strategies by a min-max (max-min) parameter optimization technique. The values ofr r

the adjusted parameters M_, ME are noted in the respective figures. All four of
the last figures (figs. 14-17) show that the accuracy level of i_, which is highly

satisfactory for all practical purposes, is satisfied if Eg is of the order of 1/8
or less. Since in all the available examples the pursuer had less of a turning

requirement, its suboptimal strategy deviates from the optimal more than that of the
evader. Consequently, the capture time obtained by the FSPT strategy pair is always

higher than the optimal.
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I EXAMPLE NO. 1
.08- I

\ rp = 8.35

' .06 - *

.o4-

.02 -

I/A t t I I I-_(_"r -- _.--.._,10 4 6 8 10

1/eg = Ro/rP

Figure 14.- Payoff accuracy of the zero-order FSPT

solution: example No. I.

.05 - EXAMPLE NO. 2

rp = r E= 7.84

\
, ,,_ .03 -

.02 -

.01

I i I I I _ i o-----i
0 4 6 8 10

1/_g = Ro/r P

Figure 15.- Payoff accuracy of the zero-order FSPT
solution: example No. 2.
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.05 -
| EXAMPLE NO.3

| rp = 7.84

ME 1.28
.03 t_ 50 sec

.02 -

.01
I
I
I

1 I I I I I I I I
0 4 6 8 10

1/eg= Ro/rP

Figure 16.- Payoff accuracy of the zero-order FSPT

solution: example No. 3.

EXAMPLENO. 4\
t rp = 7.42.10 - \
_) M_)= 1.6

.08- \ M_ = 1.3.

, _- .06 -
€=J

.04 -

.02 -

0 r 4 6 8 10

1/eg= Ro/rP

Figure 17.- Payoff accuracy of the zero-order FSPT

solution: example No. 4 _
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7. CONCLUSIONS

Results of the comparison, presented and discussed in this report, lead to the

conclusion that the method of forced singular perturbation provides a valid mathe-

matical tool for analyzing medium- and longer-range pursuit-evasion engagements. The

p demonstrated accuracy of the FSPT approximation is very encouraging. Taking 1%

accuracy as a measure of practical usefulness, it follows that the method is appli-

cable to medium-range air-to-air combat (as defined in the Introduction).

The turning radius of an airplane at speeds higher than the corner velocity is

determined by equation (31). This expression gives (approximately), for an example
of a 6-g-limit load factor and an altitude of 20,000 ft,

r _ 1.5 M2 (km) (169)

The maximum firing range of advanced air-to-air missiles in a tail-chase situation

(being of the order of 4-8 km, depending on the altitude) is typically larger than
the aircraft turning radius. As a consequence, side-stepping maneuvers, which would

have invalidated the presented FSPT approach, are not optimal. Results of the pres-

ent comparison show that the required accuracy of 1% is guaranteed by Cg ! 0.125
(see figs. 14-17).

The domain of initial ranges for valid zero-order FSPT analysis can be thus

determined by

(M0)2 (km) (170)R° _ 12 p

Such an inequality is definitely compatible with medium-range interceptions of a real
operational scenario.

It should be noted, however, that the validation of the FSPT approximation pre-
sented in this report is by no means comprehensive. Because of inherent limitations,

detailed in section 5, only horizontal engagements were analyzed, only a single air-
plane model was investigated, and the set of initial conditions was limited. More-

over, the necessity for eventual parameter adjustment requires further investigation.

Nevertheless, the accuracy of the FSPT method was demonstrated recently in an

independent study of a closely related problem (ref. 24). In that work, the three-
dimensional medium-range interception, formulated as a one-sided optimal control

problem, was analyzed. Such a demonstration could not have been performed for a dif-

ferential game formulation because of the lack of an operating numerical technique,
as explained in the Introduction. The currently presented comparison, together with

the results of reference 24 provides a sufficient basis to encourage further investi-

gations applying FSPT to air-combat-motivated differential game analysis.

The attractiveness of the FSPT approach is that it provides a feedback control

strategy for onboard applications. Because of the simplicity of the implementation,
it can be incorporated in any future integrated fire and flight control system with
virtually no additional effort or cost.
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