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ABSTRACT
A comparison is made of the radar cross section of rough surfaces calcu-
lated in one case from the conventional definition and obtained in the second
case directly from the radar equation. The objective of the analysis is to
determine how well the conventional definition représents the cross section
appearing in the radar equation. The analysis is executed in the special

case of perfectly conducting, randomly corrugated surfaces in the physical op~

tics limit. The radar equation is obtained by solving for the radiation scattered .

from an arbitrary source back to a co~located antenna. The signal out of

the receiving antenna i3 computed from this solution and the result put into a
form recognizeable as the radar equation. The conventional definition is ob- |
tained by solving a similar problem but for backscatter from an incident plane
wave. It is shown that these two forms for ¢° are the same if the observer is
far enough from the surface; However, the usual far field criteria are not suffi-
cient. For the two cross sections to be the same, the observer must be far from
the surface compared to the radii of curvature of the surface at the reflection
(specular) points. Numerical comparison of the two cross sections has been

made for normally distributed surfaces and the difference can be significant.
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COMPARISON OF ¢° OBTAINED FROM THE
CONVENTIONAL DEFINITION WITH o° APPEARING IN THE
RADAR EQUATION FOR RANDOMLY ROUGH SURFACES

INTRODUCTION

In the conventional definition of radar cross section (Ruck, et al., 1970; Ishimaru, 1978 ; Kerr,

1951) a limit is taken as the observer recedes to infinity:

o(8) = lim 4xR? | S5 %8 (1)
R—>e | T &

where €, is the scattered field and ¥; is the incident electric field. In this limit, all radiation has
approximately plane phase structure. Of course, in an actual radar measurement the distance be-
tween the scattering element and the observer/transmitter is finite and the incident radiation does
not have a truly plane phase structure. The measurement is governed not by Equation 1 but by the
radar equation, and in the radar equation the scatterer/observer geometry and the phase structure of
the incident radiation must be taken into account. The validity of the conventional definition for
radar cross section and any simplifying assumptions such as the use of incident plane waves to calcu-
late the scattered fields lies in their ability to yield the same cross section as appears in the radar

equation.

The objective of this article is to seek insight into conditions under which the conventional
definition yields the same cross section as appears in the radar equation. This will be done by exa-
mining a special case in which both the conventional definition and the radar equation can be ob-
tained analytically under an identical set of assumptions. The special case to be treated is that of a
randomly rough conducting surface in the case of two dimensions (line sources and corrugated sur-
faces). This is an idealized model relevant in a first order to scattering from long crested ocean
waves and perhaps to other rough surfaces such as plowed fields. A solution will be obtained in the

physical optics limit, adopting a Kirchoff (i.e. tangent plane) approximation to obtain the fields on



the surface and then evaluating the Helmholtz integral (Green's theorem) asymptotically in the high
frequency limit. This procedure has proven to be reasonable for microwave scattering frum ocean
surfaces (Bass, et al., 1968 ; Barrick & Peake, 1968). Two problems are to be solved using this ap-
proach (see Figure 1). In the first case, a plane wave will be assumed to be incident on the surface
and the fields scattered to an arbitrarily located observer will be computed. This result will then be
used in the conventional definition to determine the radar cross section for the case of backscatter
(monostatic cross section). In the second problem, the source of the radiation will be an antenna

at an arbitrary position above the surface, The fields scattered from the surface back to a co-located
receiving antenna will be obtained and will be used to compute the available power. It will be
shown thut this expression for power has the form of the radar equation and the term correspond-
ing to radar cross section will be identified. It will be shown that the two forms for radar cross
section are identical if the observer is far from the surface compared to the radii of curvature of the
surface at the points of reflection (stationary points). This restriction is not a far field (e.g. Fraun-
hoffer) requirement. Rather it is a consequence of focusing of the scattered rays (caustics) which
can occur in the physical optics approximation (Le Vine, 1976). This focusing does not appear in

the conventional definition because the observer is at infinity.

To obtain an indication of the significance of the difference between the two cross sections,
numerical examples have been computed for a normally distributed random process. This is an
example surface which has been used in studies of the scattering from fully developed ocean waves
(Barrick, 1968; Seltzer, 1972). The differences between the two cross sections can be significant,

and values for representative situations are presented.




SCATTERED FIELDS

Solutions are desired for the electric field scattered from an irregularly corrugated, perfectly
conducting surface in two cases: 1) The incident radiation is a plane wave; and 2) The incident
radiation is produced by an antenna located at an arbitrary point above the surface. These two
problems are illustrated in Figure 1. The solutions will be specialized to the case in which there are
no variations perpendicular to the plane of the figure (i.e. two dimensions) and resuits will be ob-

tained explicitly for the case of backscatter,

The scattered electric field, ¥4 (r, ), for both problems can be expressed in terms of the Helm-

holtz integral which in the case of perfectly conducting box:ndaries has the following form:

T(T,0) = - _g g 8(T/T)ds o)

surface

where g ( T/ T') is the two-dimensional Green’s function, j/4 Ho(l) (k | T =T'l),and fi is a unit vec-
tor normal to the surface, Z(y). The kernal 3 /0n in this integral will be evaluated for both prob-
lems by making a Kirchoff approximation: That is, the fields at a particular point on the surface
are assumed to be the same as would exist on an infinite plane tangent to the surface at that point.
Assuming perpendicular polarization (Eo = E, %), the Kirchoff approximation yields the following

kernel for incident plane waves (Le Vine, 1976):
5—‘: = 2j(K-MERIK"T (3a)

and in the case of radiation from the finite source the Kirchoff approximation yields the forni

(Le Vine, 1977):

-.-aa—i = %jveu k3 cos(¢p —a) Fit,(l) (kR) F(y, % (3b)

In Equation 3b, the function F(y, ») is the Fourier transform of the source current density J(z,y),

evaluated at spatial frequencies vy = f- sing(y)andp, = -E cos ¢(y). x{y) is the distance from the

source to the surface, a(y) is the slope of the surface, ¢(y) is the angle R(y) makes with the vertical



(z=axis) und k = 2zv:¢. The frequency of the incident radiation isv and ﬁom (kR) & /2 kR -
exp (j (KR = m )] is the asymptotic form tor large KR of the Hankel function of first Kind
(Abramowitz and Stegun. 1972). Equation 3b was obtained by representing the source in
terms of un equivalent current distribution. R Iz, y) (e.g. the equivalent aperature illumination

of the antenna). Then the Kirchoff upproximation was used to find the tields on the surface
taking into account radiation from the image of the source below the tangent plane. This
results in an integral over the equivalent current distribution and its image which huas been
evaluated here using a Fraunhoffer approximation (Le Vine, 1977; Appendix A and B)., This
is an appropriate procedure when the antenna is smail relative to the distance to the surface,
a restriction which is to be distinguished from requiring that the antenna be in the far field
ot the scattering elements (surface), The latter restriction implies limitations on the relative
size of the object while the former implies a restriction on the size of the antenna (for given

distance and wavelength).

Substituting Equations 3 into Equation 2 and performing the integration in the limit kR —> o»
by means of a saddle point approximation (Copson, 1971) yields the physical optics solution for
the scattered fields. Assuming in the plane wave case that the wave is incident at angle @ and that

scattering is to an observer at (y = 0; z = H), one obtains:

-%
T(F, ) = -Eo & '§n :—:’f%:—:;’- (ik® (vp) [1 - c::;“’:o:!“:;‘fz X l:‘(’;:’)] (43)
where ®(yn) = R(yp) +ynsin 0 — Z(yp) cos 6 (4b)
R(y) = VIH -Z(y)]° +y* (4c)
B = Tan"![y/(H - Z(y))) (4d)

and R:c( y) is the radius of curvature of the surface at y. The y, are the stationary points defined by
ad/3y = 0. To obtain the radar cross section for backscatter, Equation 4a will be evaluated in the
limit that the observer recedes to infinity (R(y) = =) along a ray parallel to the direction of inci-

dence, 8, ot the plane wave. In this limit, scattering occurs at points where a =3 =6 and the result
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for very large R(y) is:
BT ™ 4ER ) ,‘/25%3 ek® (yp) )
al yn

These are cylindrical waves propagating from the stationary points back in the direction of the inci-

dent plane waves.

The equivalent result in the case of radiation from the antenna is obtained by substituting
Equation 3b into Equation 2. Assuming a source and observer co-located at ('y = 0;z = H) one ob-

tains the following result for backscatter:

-l
T (T, = -E R Z F(y“'”) ei2kR(yp) [l_ R(yn) ] (63)

2 R( yn Rc (Yn)
ol yn
where
-Vile e-itl4 /K8 F4,v) (6b)
F (yp») = F(yp, »)F(@,») (6¢)

The amplitude in Equation 6a has been normalized so that the electric field radiated by the antenna
in the direction 0, the angle of incidence of the plane wave, is equal to the amplitude of the plane
wave. In this normalization F(y,,, v) is the far field radiation pattern of the antenna. F(8,v) isa
constant; and if F(@, v) is the maximum value of F(y,,, »), then f-‘(yn, v) is the relative field pattern

of the source (Collin and Zucker, 1969).

Prior to using the scattered fields given by Equations 4 and 6 to obtain expressions for radar
cross section, some comments are in order. First, the solutions for e, (T, v) are applicable to sur-
faces which are large co‘npared with the distance R(y), to the observer. In particular, although the
assumptionkR> 1 was used to justify an asymptotic expansion of the Helmholtz integral, it was
not necessary to make a sagittal approximation for R(y) in the evaluation of Equation 2. That is,

it has not been necessary to expand R(y) in a power series in y and Z(y) keeping only terms upto
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first order in y and Z(y). As a result, Equations 4 and 6 are applicable as long as the observation
point is many wavelengths above the surface (kR large) regardless of the size of the surface, This is
in contrast to making a Fraunhoffer approximation in which it is necessary to impose restrictions
on the size of the surface relative to the distance to the observer. (Typically L/R < 1 and kL2/R <
2x where L is a dimension characteristic of the surface,) Secondly, in the limit R(yp,)= backscatter
from the plane wave and finite source (Equations 5 and 6 respectively) become very similar. If the
size of the surface is restricted so that one can also do a binomial expansion of R(y) about R, the
distance from the observer to the center of the illuminated surface, then one can show that

#(y) = 2R(y) - R,
and in this case, the phase factors in Equations § and 6 are equal to within a constant (which is arbi-

trary for the plane wave). Thus, as R(y,)) = = one obtains:

al yo
(T e @ ~1Eo? D ;g&% %‘.&‘(_Yy% ¢ j2kR(yp) (7b)
all y,

Hence, in this far field (Fraunhoffer) approximation, except for the arbitrary phase, the two solu-
tions differ only by the factors F (Yp V)V R(yy,) which are the antenna pattern (?) and the cylin-
drical spreading (1/v/ R(yy)) present in the case of radiation from a finite source. If this ratio is

kept constant as R > e, the two solutions are directly proportional.

As a final comment consider the singular case of a flat surface, Z(y) = 0. In this case there is
only one stationary point in both Equations 4 and 6 and this corresponds to the ray riormally inci-
dent on the surface. Of course R (y,) = = in this case. Setting a = 0 in Equation 4 and letting
R = = yields a reflected plane wave ¥ = -E, X exp (jkR(H)) as expected. In Equation 6 setting
R, = = also yields one solution, which in this case is just radiation from the image of the antenna

below the surface.
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With minor modifications to specialize the resuits to two dimensions, the conventional formula
for radar cross section may be written (Ruck, et al., 1970; Ishimaru, 1978; Kerr, 1951):

T, (T, 0 T2 (T, V)
3(T, ). T2 (T, 0

o(8) = lim 2zR

R=vee

(8)

where T, (T, ») is the scattered field and ¥; (T, v) is the incident electric field. For distributed
targets such as land and ocean surfaces in which there are many randomly located scattering ele-
ments per radar footprint, it is convenient to define a normalized cross section (0°(8)) (Long, 1975;
Skolnik, 1970) as follows:

> 9

(0*(6)) & (o(6))/Length
T (T, 1)« T2 (T,0)
Alternatively, the radar equation itself may also be regarded as the definition of radar cross

Ei(T’ v) 'e'i‘ (T,v)

= -l-flimeR <

where the brackets {) denote an ensemble (statistical) average.

section, In the case of distributed targets, one may write the radar equation for the received power,

P(v), in the following form in two dimensions (Skolnik, 1970):

- 4 Py(s) Gy(s) G(s) o
@ (v) f . (27R)2 (0°(8)) ds (10)

surface
where P, is the transmitted power and G, and G, are the gains of the transmitting and receiving

antennas, respectively.

The objective of this paper is to compare the conventional definition for (0°) (Equation 9) with
the normalized cross section appearing in the radar equation (Equation 10). This will be done in the
special case of rough, corrugated conducting surfaces using the solutions for the scattered fields
obtained in the previous section. To obtain the cross section from the definition, denoted here by

(a°(0))Pw, Equation 4a will be substituted into Equation 9, To obtain the form for the normalized



cross section as it appears in the radar equation, to be denoted here by (a“(&))RE, first, the ex-
pression for the scattered fields (Equations 6) will be used to deternune the power available
from the receiving antenna and then this solution will be cast intc the form of a radar equation
and the terms corresponding to (0°) identified. Finally, to make the required averages tract-
able, it will be assumed that the fields scatter incoherently and that the stationary points (specular
points) are homogeneously distributed over the surface (i.e. spatially staii>nary). These Jatter
assumptions have been used in the past to analyze scattering from rough surfaces (Kodis, 1966;
Barrick, 1968). Ideally (0°(6))py Will be identical to (6°(9))gg. However, as will be shown, this is
only true if the receiving antenna is far from the illuminated surface compared to the radii of curva-

ture of the surface at the stationary points: R(y,) » R (yp).

'To begin, consider the radar cross section obtained from the definition (Equation 9). Substi-
tuting Equation 4a into Equation 9 and assuniitg that the scattered fields, € (T, v) are incoherent,

one obtains:

o - 2r cos? (6 — @) cosa
@ @Oy == E T ch(yn)> (1)
n

In the case of backscatter, the incident and reflected rays are locally normaliy incident on the sur-

face and so a =3 = 0. In this case, Equation 11 simplifies to:

@ @py = T 2, (R (12)
all y,

and when the surface is homogeneous, this result may be written:
@’ = mn(l Rc(yn) I (13)

where n is the number of stationary points per unit length, This is the two dimensional equivalent
of results which have appeared in the literature on scattering from rough surfaces (Barrick, 1968;

Kodis, 1966). It is a well known result which in three dimensions has shown agreement with data



on ocean surfaces, The dependence of this cross section on the radii of curvature of the surface is

a characteristic of the physical optics solution (Ruck, et al., 1970).

To obtain an expression for the radar cross section from the radar equation, it is necessary to
first compute the power available from the receiving antenna {using Equation 6 to express the fiekds
incident on the antenna) and then to put the result in the form of Equation 10, To do this note
that the time average power, P(v) available from the receiving antenna can be written in terms of

the scattered fields, €4 (T, v), incident on the antenna in the form:

4Gp (T,
P) = Ve [T,(T,0) T2 (T, )] -—"-k(-i’ (14)

where 4GR( T, ¥)/k is the equivalent area of the receiving antenna in two dimensions (a line source)
and GR(T, v) is its gain (Friis and Lewis, 1947). Now substituting Equation 6a for € (T,v)and

assuming that the scattered fislds are incoherent, one obtains:

E,2FF* Riyp) | =! 4Gg
PP E TRoy | Relvym k (3
n

Examination of the definition of Eo and F (Equations 6b-c) and comparison with the form taken

by radiation from a two dimensional source in the far field yields (Le Vine, 1977):

IEoFI2 = Vife 2-1,P:Gt (16)

where P, is the transmitted power. Now using Equation 16 and assuming that the stationary points

are homogeneous with density per unit length, n, and replacing the summation in Equation 15§

- ! 4 PtGRGt
(Pr(v)) <x (21rR) ds> (17

Equation 17 is the desired form for the scattered power seen by the observer in the case of

formally by an integral, one obtains:

R(s)

| - R(s)
Rc( s)

backscatter. It is to be compared with the radar equation (Equation 10) to obtain an expression for



the normalized radar cross section. Comparui Equations 17 and 10 one ot tains:

-1
@*(OVgg = ™ <R(0) — > (18)

1 -

10




INTERPRETATION

The solutions obtained in the previous section for the fields scattered from irregular, conduc-
ting, corrugated surfaces have been used to compute the radar cross section of the surface, This was
done using the conventional definition of cross section in one case and by deriving a radar equation
in the other. The results in the case of incoherent scattering and homogeneous surface statistics

are:

Defini

Radar Equation

©0°(0)py = m(IR(O)) (19)
_ R®)

wi
<0°(0)>RE = m™m <R(0) Rc(o) >. (20)

Clearly the two forms of the radar cros; section are not the same. However, when R > R, the de-

nominator in Equation 20 approaches unity and the two results agree. Tha. .., the cross sections
are equivalent if the observer is far from the surface compared to the radii of curvature of the sur-

face at the specular points.

Notice the singularity appearing in Equation 20 (and also in Equations 4a and 6a). This singu-
larity is a manifestation of focusing of the scattered rays which can occur in the physical optics
solution (e.g. Le Vine, 1976). In the physical optics solution the reflected rays emerge from the
surface as if reflected from a small mirror with focal length proportional to the radius of curva-
ture of the surface at that point. If the surface is concave in the direction of the observer, the rays
will converge at a peint above the surface. When the normalized cross section is computed from the
conventional definition, the limit is taken as K =+, Consequently, the observer is removed beyond
any potential caustic (focusing) ard as a result there is no singularity appearing in the solution
(Equation 19). However, when the radar equation is used to determine the cross section, the ob-
server is maintained at a finite distance from the surface, and in this case the influ:ence of focused

rays appears explicitly in the solution (Equation 20). The magnitude and phase of the reflected

11



rays depend on the focal length of the mirror and on the phase of the incident wave which
illuminates the mirror. Thus, for a given mirror, incident plane waves and cylindrical waves are re-
flected differently, This accounts for differences in the radical in Equations 4 and 6. (Because the
stationary points occur where the local angle of incidence equals the angle of reflection, the losa-
tion of the stationary points and therefore the radii of curvaturs are also different in Equations 4
and 6.) When R > R, the observer is removed beyond any possible caustic, and in this case the
incident radiation is nearly a plane wave for surfaces of finite extent in both cases, and the two solu-

tions for the radar cross section are identical.

! The formulas for radar cross section (Equations 19 and 20) have been derived for one special
example — corrugated, statistically homegeneous, conducting surfaces. However, the differences
which appear in the cross sections are the result of features inherent in the method of analysis (the
physical optics approximation) and not to the specific scattering object (surface) chosen. It would
seem reasonable, therefore, to expect such differences in real three dimensional configurations
when the scattering is predominately specular (situations amenable to analysis by physical optics).
An example is scattering at angles near nadir from the ocean surface or from rough soil (Barrick

and Peake, 1968).

Granted differences between the two cross sections, the question remains as to the significance
of these differences, It is possible that R » R, is typical of measurements of real surfaces, in which
case the differences would be of no practical consequence. To obtain an sstimate of the possible
order of magnitude of the difference between (¢°)py and (o°)gg the averages in Equations 19 and
20 have been carried out in the case of a surface, Z(y), which is a Gaussian random process with a
Gaussian correlation function. This is a model which has been used for the ahalysis of scattering
from ocean waves (Barrick, 1968; 1972; Seltzer, 1972) and might apply to plowed fields. Since
R, = [1 +(dZ/dy)2] ¥?/[d2Z/dy?] in two dimensions, the joint densities for Z, dZ/dy and d?Z/dy?

are required to evaluate the averages. The calculations of these densities is straight forward for this

12
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surface (Seltzer, 1972) and one c¢an show that giw"'m:

r 2
f(Z) = /..; u;p ~ -—»«-J (2la)

1«

" 2
(Z(y,) Z(y,) = 0? exn if ;,’..Y.E.).] (21b)

then the joint density function for Z, dZ/dy, and d2Z/dy? ia:

(Z,2',2")y = {(2') (2, Z")

23 (Z')28 1724 48222 + 24(2")2]
b ] _——_— ex - x e
V2@nite: =T Tagr |7 1602

The averages required to evaluate Equations 19 and 20 are still difficult because of the singularities

(22)

at Z'" = 0 and in Equation 20 when R, = R. These problems are avoided here by making the assump-
tion that (I/A) = 1/(A). This is an ad hoc assumption made to simplify the mathematics but at least
in part is consistent with the approximations made in doing an asymptotic evaluation of the Helm-
holtz integral in the physical optics limit (Barrick, 1968). Making this approximation, one obtains

in a straight forward manner:

P g OOw KRR

@@Vgg | IKIT—R/R_D
(23)
= exp(-£2) -7 ¢ erfc(t)
where
22 3\2 ,
E = EE |+ 5;- sec” (8) (24)

and @ is the correlation length of the surface and ¢ is its standard deviation.

13



It is clear from Equations 23 that the ratio of the two cross sections decreases from unity at
& = 0 to zero at § = oo, The behaviour of I'(¢) has been plotted in Figure 2. In addition, values of ¢
are listed in Table I for a range of the parameters £ and R representative of the extremes one might
encounter in observations of natural surfaces. Consider, as an example, a situation representative of
observations from a low, earth orbiting satellite (e.g. R = 1000km), In this case, it is clear from Table
[ that § is very small even for large values of the correlation length, 2: For example, £ = 0.04 when
2= 500 meters. Using £ = 0,04 in Figure 2, one finds I' 2 |. Consequently for observations from
space it is unlikely that thé differences between the cross section calculated from the conventional
definition and that actually measured by a radar will be significant. In the case of observations
from aircralft (e.g. 1km < R < 20km) the situation is Ies§ clear. In this case, one sees from Table |
that ¢ can be large for large values of the correlation length (e.g. £ = 1.7 at R= 1 km and ¢ = 100
meters) in which case differences between (o°>5,W and (¢°)gg could be important, or § can be quite
small (e.g., an observation at R = 10km over plowed fields with € = | meter) in which case I == |,
For tower based observations, on the other hand, R is much smaller and differences between <°°)pw
and <“°>R£ are much more likely. For example, at R = 10 meters and £ = 5 meters, one finds from
Table I that, £ = 0.4. In this case using Figure 2 one finds I"' = 0.45 which is about 6db. Clearly,

significant differences between the two cross sections are to be expected in such cases.

14



CONCLUSIONS

The results of the preceding section, and of this paper in general, are not retlections on measure-
ment techniques, Rather, they are an indication to those concerned with the calculation of radar
cross sections that the classical definition may not apply equally well in all cases. Specifically, in the
case of remote sensing of rough surfaces where the scattering is predominately specular, it would
appear that more specific attention needs to be given to the geometry under which an actual experi-
ment might be ptrformed before routinely using the classical definition to compute radar cross

section.
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TABLE 1

£ as a Function of £ for

! +(33;2 sec? () = 1|
2 (meters)
500 100 50=___: 10 5 1
0.01 4000 170 40 1.7 0.4 0.017
0.1 17 40 0,17 0.04 0.0017
’g 1.0 40 1.7 0.4 0.017 0.004 0.00017
g 10 4.0 0.17 0.04 0.0017 0.0004 -
S 100 0.4 0.017 0.004 0.00017 - -
1000 0.04 0.0017 0.0004 - - -
10,000 || 0.004 | 0.00017 - - - -
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