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'	 .ABSTRACT

A comparison is made of the .radar cross section. of rough surfaces calcu-

lated in one cax from the conventional definition and obtained in the acond

case directly from the radar equation. The objective of the analysis is to

determine how well the cornentional definition represents the cross action

appearing in the radar equation. The analysis is executed in the special

cax of perfectly conducting, randomly corrugated surfaces in the physical op}

tics limit. The radar equation is obtained by solving. for the radiation scattered

from an arbitrary source back to a co-located antenna.. The signal out of

the receiving antenna is computed from this solution and the result put into a

form recognizeable as the radar equation. The conventional definition is ob-

rained by solving a similar problem but foY backscatter from an incident plane

wave. It is shown that rhea two forms for o° are the same if the observer is

far enough from the surface; However, the usual far field criteria are . not suffix.

cient. For the two cross sections to be the same, the observer must be far from

the surface compared to the radu of cun +ature of the surface at the reflection

(specular) points. Numerical comparison of the two cross actions has been

madt for normally distributed surfaces and the difference can. be  significant..
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COMPARISON OF v° OBTAINED FROM THE
CONVENTIONAL DEFINITION WITH o° APPEARING IN THE

RADAR EQUATION FOR RANDOMLY ROUGH SURFACES

In the conventional. definition of radar cross section (Ruck, et al., 1970; Ishimaru, 1.978; Kerr,

1951 a limit. is taken as the observer recedes to infinity;

Z^s • '^*
a(8) _ lim 4trR2 ---^-

R -► «	 ^i ^i

where ^s i:the scattered field and a i is the .incident. electric field. In this limit, all radiation has

approximately plane phase structure. Of course, in art actual radar measurement the distance be-

tweenthe scattering element and the obxrver/transmitter is finite and the incident radiation. does

not love a truly pone plisse structure. The measurement is governed not by Equation I but by the

radar equation, and in the radar equation. the scatterer/obxrver Qeometry ar:^ the phax structure of

the incident radiation must be taken into account. The validity of the. conventional definition for

radar cross action and any simplifying assumptions such as the use of incident plane waves to calcu-

late the scattered fields lies in their ability to yield the same cross action as appears in the radar

equation.

The objective of this article is to Meek .insight into conditions under which the conventional

definition yields the same cross action as appears. in the radar equation. This. will be done by exa-

mining a special cax in which both the com►entional definition and the radar equation can be ob-

rained analytically under an identical set of assumptions. The special cax to be treated is that of a

randomly rough conducting surface in the. cax of two dimensions dine sources and corrugated surA

-	 faces).. This. is an :idealized model relevant in a first order to scattering from tong crested ocean

waves and. perhaps to other rough. surfaces such as plowed fields. A solution will be obtained in the

(1)

physics! optics limit, adopting a Kirchoff (.e. tangent plane) approximation to obtain. the fields on



the surface and then evaluating the Helmholtz integral (Green's thaorem) asymptotically in the high

frequency limit. This procedure has proven to be reasonable for microwave scattering from ocean

surfaces (Bau, et al., 1968; Barrick do Peake, 1968). Two problems are to be solved using this ap-

proach (xe Figure l). In the first cax, a plane wave will be assumed to be incident on the surface

and. the fields scattered to ;tn arbitrarily located observer will be computed. This result will then b=

uxd in the conventional. definition to determine the radar cross action for the case of badcscatter

(monostatic cross section). !n the xcond problem, the source of the radiation will be an antenna

at an azbitnuy position above the surface. The fields scattered from the surface bade to a co-located

receiving antenna will be obtained. and will be used to compute the available power. It will be

shown that thi: expression for power has 4he form of the .radar equation and the term correspond-

ing to radar cross section will be identifud. it will be shown that the two form: for radar cross

section aze identical if the obserner is far from the surface compared to the radii of curvature of the

surface at the .points of reflection (stationary points). This restriction is not a fu field (e.g. Fraun-

hoffer) .requirement. Rather it is a consequence of focusing of the scat#e yed rays (caustics) which

can occur in the physical optics. approximation (Le Vine, 1975). This focuws^ does not appear in.

the conventional definition becatux the obxrver is at infinity.

To obtain an indication. of the significance of the difference between the. xwo cross sections,

numerical examples have been computed for a normally distributed random process. This is an

example surface which has been uxd in studies of the scattering from fully developed ocean waves

(Barridc, 1.968; Seltzer, 1972). The differences between the two crow sections can be significant,

and values for representative situations are presented.
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Solutions are desired. for tl ►e electric field scattered from an irregularly corrugated, perfectly

conducting surface in two caxs; 1) The. incident radiation is a plane wave; and ?) The incident

ndiatlorr is produced by an antenna bested at an arbitrary point about the surface. Thex two

problems are illustrated in Figuro 1. The. solution: wil y. be specialized to the csse in which there are

no variations perpendicular to the plane of the figure ( .e. two dimensions) and results will be ob-

tained explicitly for the cax of backscatter

The scattered electric: fief, ^ s (r, v), for both problems can. be expressed in terms of tha Helm-

holtz Integral which in the case of perfectly conducting bo ►.tndaries has thG fallowing form.:

s^rfaoe

where-g (T'/ f') is the two-dimensional Green's function, j/4 Ho 1) (k I ^ —i' I ),and R is a unit vec-

for normal to the surface, Z(y). The kernal a ^/8n in this integral will be evaluated for both prob-

lems by making a Kirchoff approximation: 'That is, the fields at a particular point on the surface	 °

are assumed to be the same as would exist on an infinite plane tangent. to the surface at #hut point. s
Assuming perpendicular polarization (^o ^ Eo ^), the Kirchoff approximation yields the folbwing

kernel for incident plane waves (Le Vine, ! 97G):

8n

and in the case of radiation from the finite source the Kirchoff approximation yields the forn

(Le Vine, 1977):
ae	

h j ^ k^ cos (^ — ac) ^a 1) (kR) F(Y, ^)
an	

(3b)

In Equation 3b, the function F(y, v) is the Fourier transform of the source current . density J(z,y),

evaluated at spatial frequencies v Y = ^ sin ^(y) and vZ v cos ^p(y). ,^y) is the distance from the
c	 c

source to the surface, «(y) is the slope of the surface, ¢,(y) is the angle R(y) makes with the vertical
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( z-axis ► and k = .ar►3c. The frNquency of the incident radiation isv and Hotl) tkR1 sr	 ...'`ark

^xp [j ( kR - ar; ^)1 is the asymptotic .form for large kR of the Hankel function of first lit^d

t.4bramowitz and Stegun. 197?). Equation 3b was obtained by representing the. source in

terms of an equivalent current distribution.. x 1tz, y) te,g. the equivalent speculate illu^ninaton

of the antennsl, Then the Kirchoff approximation was used to find the fields on tha surface

taking into account radiation from the image of the source below the tangent plane. This

results in un integral over th4 eiluivalent c: yrrent ^listci^ution and. its image wlti^h i^as brrn

valuated here using a Fraunhotfer approximation (Le Vine, i977^ Appendix. A and 13). This

is an appropriate procedure when the antenna is small relative to the distance to the surface,

a restriction which is to be distinguished from requiring that the antenna be in the far field

of the scattering elements (surface). The latter restriction implies limitations on the relative

size of the object while the former implies a .restriction on the size of the antenna (for given

distance and. wavelength)..

Substituting Equations 3 into Equation : and performing the integration in the limit kR -}

by means of a saddle point approximation (Copson, 1971) yields the physical optics. solution_for

the scattered fields. Assuming in the plane wave case that the wave is incident. at angle B and that

scattering is to an observer at (y = 0; z = I^, one obtains:

-h
cos (8 - a) k ^, (yn)	 cos(8) + cos(p) _	 R(yn)

^` s (^' v)
	

-E° x ^ cos (— e
j	

1 — con of cos ^ tQ - a) ^ R^^(Yn)	
(4a)

alt y n

where	
_	 + sin 9 — Z(yn) cos 8	 (4b)^(yn) R(yn) yn

and R^(y) is the radius of curvature of the surface at y. The yn .are the stationary points defined by

a^^ay = 0. To obtain the radar cross section. for backscatter, Equation 4a will be evaluated in the

limit that the observer recedes to infinity (R(y) ^ ^) slang s ray parallel to the direction of nci-

dance, 8, of the :plane wavy In this limit, scattering. occurs at pointe, where a = a = B and the result



for very lar,^e R(y) is^

^s ('^, v) ^ ^ Eo z
	

(yn
	 (S)

a1 yn

These are cylindrical waves propaptin^ from the stationary points back in the direction of the inci-

dent plane waves.

The equivalent result in the case of radiation from the antenna is obtained by substituting

Equation. 3b into Equation. 2. Assuming a source and. obsen►er co-located at (y = 0; z = i^ one ob-

ta:n:the following rewlt for backscattert

(Yn^ y)	 R(yn) -^4
^s (F, v) ^ _^o A ^ _) e j 2 kR^yn) 1 — R—)

	
(6a)

al yn

where

The amplitude in Equation 6a has been normalized ^ than the electric field radiated by the antenna

in the direction 8, the angle of .incidence of the plane wave, is equal to the amplitude of the plane

wave. In this normalization. F(yn, v) is the far field radiation pattern of the antenna. F(8, v) is a

constant; and if F(8, v) is the maximum value of F(yn, v), then ^̀ (yn, v) is the relative field pattern.

of the source (Collin and Zucker, 1969).

Prior to using. the scattered fields given by Equations 4 and. 6 to obtain expressions for radar

cross section, soma comments are in order. First, the solutions. fors (_, v) are applicable to sur-

faces which are large compared with the distance R(y), to the observer. In particular, although the

assumption kR> 1 was used to justify an asymptotic. expansion. of the Helmholtz integral, it was

.not. necessary to make. a sagittal approximation for R(y) in the evaluation. of Equation 2. That. is,

it has not been necessary to expand R(y) in a power series in y and Z(y) keepir^ only farms upto

5



first order my and Z (y). As a result, Equations 4 and b ar! :,rpplicable a^ 1on^ as the observation.

point is many wavelengths above the. surface (kR large) regardless of the size of the surface. This is

In eontrast to making a Fraunhoffer approximation in which it is necessary to impose restrictions

on the size. of the surface relative to the distance to the observer. (Typically L/R < 1 and kL2 /R <

2^r where L is a dimension. characteristic of the surface,) Secondly, in the limit R(yn)-+M back:catter

from the plane wave and :finite source (Equations S and 6 respectively) become very similar.. if tht

size of the surface is restricted so that. one can also do a binomial expansion of R(y) about R o, the

distance from the observer to th^i center of the Illuminated surface, then one can show that

^Y) ' 2R(Y) — Ro

and in this case, the phase factors in Equations S and 6 art equal. to within a constant (which is arbi-

teary for the plane wive). Thus, as R(yn) -+ « one obtains:.

^s (^ + ^)1'lta^ Waw ^ - j Eo ^ ^ 2= e j I2kR(y^) —Roe	 (7a)
(Yr^

Yn

^(Yn ►^)	 R yn)

	

^s (^} ^')Soucw ^ -^ ^o ^ r ^ 
2
^ e J 2 k R(yn) 	 (7b)

^ yn	
Yn	 Yn

Hence, in this far field (Fraunhoffer) approximation, except for the arbitrary phase, the two solu-

lions differ only by the factors ^` (yn, v)/^j which are the antenna pattern (^) and the. cylin-

drical spreading. ( 1 / R(yn)) present in the case of radiation .from a finite source.. If this ratio is

kept constant as R -► », the two solutions are directly proportional.

As a final comment consider the singular case of a flat surface, Z(y) = 0, In this case there is

	

only one stationary point in both Equations 4 and f an.i this corresponds to the .ray rionmaUy inci•	 ,

dent on the surface. Of courx R c(yn) -+^» in liras case. Setting o = 0 in Equation 4 and letting

Rc -► • yiekls a reflected plant wave ^ s _ - Eo x exp (jkR(H)) as expected.. In Equation 6 setting

Rc -► •also yields one solution, which in this cox is just. radiation from. the image of the antenna

below the surface.

q
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RADAR CitO^S SECTION.

1^'irith manor modifications to specialize the results to two dimensions, the conventional formula

for radar cro:,::ection may be written (Ruck, et al., 1970; I:himaru1978 Kerr, 1951):

where ^s ( f, v) is the scattered field and ^ i (F, v) is the incident electric field. For distributed

targets such. as land and ocean surfaces in which there aze many randomly orated scattering ete-

ments per radar footprint, it is convenient to define a normalized cross section tv"(9}) (Long,197S;

Skolnik, 1970) as follows:

(0'(8)1 Q (a(g)?/Length

• L 
lim 2srR	

^s 
(T' 

v) 
^ 

^s. 
(T' 

v)	
(9)

where the brackets { ? denote an ensemble (statistical} average.

Alternatively, the ruler equation .itself may also be regarded as the definition of radar cross

section. In the rasa of d iutributed tugets, one may write the radar equation for the received power,

Pr(v), in the follow ;̂ g form in two dimensions (Skotnik, 1970):

4 Pt(s) Gt(s) Gr(s)
tPr(v))	

sur6^e k
	 (2AR)2	

fo (8)) ds	 (10)

where Pt is the transmitted power and G t and Gr are the gains of the transmitting and .receiving

antennas, respectively.

The objective of this paper is to compare the conventional definition for (0°) (Equation 9) with

the normalized cross action appearing. in the radar equation ( :Equation 10). This will be done in the

special case of rough, convgated conducting surfaces using the solutions for the scattered fields

obtained in the previous section. To obtain the cross section from the definition, denoted here by

(o°(B)>pyy, Equation 4a will be substituted into Equation 9. To-obtain the form for the normalized

7
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cross section as it appears in the radar equation, to be denoted here. by Co°(8)) RE , first, the ex-

pression for the scattered fields (Equations 6) will be used to detern^ina Che power available

from the receiving antenna and then this solution. will be cast intt the form of a radar equation

and the terms corresponding to (o°) identified. Finally, to make the required averages. tract-

able, it will be aswmed that the fields scatter incoherently and that the stationary points (specular

points) are homogeneously distributed over the surface (i.e. spatiaUy sta^^anary). These latter

asu►mptions have been used in the past to analyze scattering from rough surfaces (Kodis, 1.966

Garrick, 1968). Ideally la'(8)>pw will be identical to (a^'(8)>RE. However, as will be shown, thi:Is

only true if the receiving antenna is far from. the illuminated surface compared to the radii of curve-

ture of the surface at the stationary points: R(y n) > R^(yn).

'To begin., consider the radar cross section obtained from the definition (Equation 9). Subst-

luting Equation 4a into Equation 9 and assun^«^g that the scattered fields, ^s (^', v) .are incoherent,

one obtains:

2^r	 cod (B — ac) cos o

L ^ yn
	

c^(a) ^ ^stA)

In the case of backscatter, the incident and reflected rays are bcally normalcy incident on the sur-

face and so ar = Q = 8 . In this case, Equation 11 simplifies to:

(a°(9))pW 	 L ^ { I Rc(Yn) I)	 (1 ^)

^ Yn

and. when the surface is homogeneous, this result :may be written:

where n is the number of stationary points per unit length. This is the two dimensional equivalent

of results which have appeared. in the literature on scattering .from.. rough. surfaces (Warrick, 1968;

Kodis, 1966).. It is a well known: result which in three dimensions has shown agreement with. data

8



Yn	
(Yn)

R(Yn) -1 q GR
I—

R
(15)

on ocean surfaces. The dependence of this crass section on the radii of curvature of the surface is

a characteristic of the physical optics solution (Ruck, et al., 1.970).

To obtain an expression for the radar cross section from the radar equation, it is necessary to

first compute the power avaitabk from the receiving antenna 4using Equation 6 to +express the fields

.Incident on the antenna) and then to put the result in the .form of Equation l0. To do this note

that the time average power, Pr(v) available fwm the receiving. antenna can be written in terms of

the scattered .fields, ^s (T', v), Incident on the antenna in the form:

where 4GR( ^, v)/k is the equivalent area of the receiving antenna in two dimensions (a line soun:e)

and. GR(T`, v) is its gain (Eros and Lewis, 1947). Now substituting Equation 6a for ^s (^', v) and

assuming that the scattered f^Ws are incoherent, one obtain::

Examination of the definition of ^ o and F (Equations 6b-c) and comparison with the form taken

by radiation from a two dimensiorul source in the far field yields (Le Vine, I977^:

I ^o F 1 2 	 µ e 2̂  Pt Gt
	

(16)

where Pt is the transmitted power.. Now using Equation 16 and assuming that the stationary points

are homogeneous with density per unit length, n, and replacing the summation in Equation 1 S

formally by an integral, one. obtains;.. _ ^ .. . , ,^, :_^a

4 PtGRGt	^ 1 — R(s)	
R(s) ds	 (17)

^	 K (ZaR^	 Ro(s)

Equation..! is the desired form. for the scattered power seen. by the observer in the case of

backscatter. It is to be compared with. the radar equation (Equation l O) to obtain an expression for

9



the normslfzed radar crowsectbn, Compar, ►^; Equstiona t7 and t4 one oNtaina:

_^

R^6)	 X18)

°§

w^ a
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INTERPta'.ETATION

The solutions obtained in the previous section for the fields scattered from irregular, conduc-

ling, ccarrugated surfaces. have been used to compute the radar cross section. of the surface. This was

done using the conventional definition of cross section in one case and by deriving a radar equation.

in the other. The results in the case of incoherent scattering and homogeneous surface statistic:

are:

fo°(e))pyy	 ^n (I Rc(B) I	 (19)

Ra-9ua—	 ..l

(a°(8)>RE 	un R(9) 1 — 
R
_	 (20)
c()

Clearly the two forms of the radar crest section are not the same. However, when R y Rc, the de-

nominator in Equation 20 approaches usuty and the two results agree. Th9:.,,, the cross sections

are equivalent if the observer is far from the surface compared to the radii of curvature of the sur-

face at the specular points.

Notice the singularity appearing in Equation 20 (and .also in Equations 4a and 6a). This singu-

r'

^.	 T

5

''

i'
^	 ;i

%.

is

larity is a manifestation of focusing of the scattered rays which can occur in the physical optics

solution. (e.g. Le Vine, 1976). In the physical optics solution the reflected rays emerge fmm the

surface as if reflected from: a small mirror with focal length. proportional to the radius of curva-

ture of the surface at that point. If the surface is concave in the direction of the observer, the rays

will converge at a point above the surface. When the normalized cross section is computed from the

cornentional definition, the :mil is taken. as tt - ► a . Consequently, the observer is removed beyond

any potential caustic (focusing) arsd as a result. there is no singularity appearing in the solution

(Equation 19). However,. when the radar equation is used to determine the cross section, the ob-

server is maintained at a finite distance from the surface, and in this case the influence of focused

rays appears explicitly in the. solution. (Equation 20). The magnitude and phase of the reflected

l



toys depend on the focal length of the mirror and on the" phase of the .incident wave which

Uluminates the mirror. Thus, foe a given mirror, Incident plane waves and cylindrical waves are re-

flected differently. This accounts for differonces in the radical In Equations 4 and ^. (because the

stationary points occur where the local. angle of incidence equals the angle ot: reflection s the lo^^a-

tion of the stationary points and therefore the radli of curvatur-, are also different in Equations 4

and. ^.) When R > R c the observer is removed. bCyond any possible caustic, and in this case the

incident radiation is nearly a plane wave for surfaces of finite extent in both cases, and the two solu-

tions for the .radar cross section are identical.

I The formulas for radar cross section (Equations 1 ^ and ?0) have been derived for one special

example — corrugated, statistically homogeneous, conducting surfaces. However, the differences

which appear In the cross sections are the result of features inherent in the method. of analysis (the

physical optics approximation) and not to the specific scattering object (surface) chosen. It would

seem. reasonable, therefore, to expect such differences in real three dimensional contiguratlons

when the scattering is predominately specular (situations amenable to analysis by physical optics),

An example. is scattering at angles near nadir from the ocean surface or from rough soil (Warrick

and Peake, 1968).

Granted differences between the. two cross sections, the question remains as to the significance

of these differences. It is possible that R > R c is typical of measurements. of real surfaces, in which

case the differences would be of no practical consequence. To obtain an estimate of the possible

order of magnitude of the difference between {a°>pvy and {a°)^ the overages in Equations 19 and

20 have been carried out in the case of a surface, Z(y), which is a Gaussian random process v^ith o

Gaussian correlation function. This is a modelwhichhas been used for the analysis of scattering

from. ocean waves (Warrick, 1968;.1972 s Seltzer, 1972) and might apply to plowed fields. Since

gq	 Rc _ [ 1 + (dZ/dy^2] 
^^3/[d2Z/dy2^ in two dimensions, the joint densities for Z dZ/dy and d^ Z/dy2

are required to evaluate the averages. The calculations of these densities is straight forward for this

12
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(24)

where

Y

2

^ _ R	
1 + 20 2 secs (^)

surface (Seltzer, 1^7w) and one can show that ^^^^^^ ► :

*r2

',	 r'^ l̂ '	 h	 ' 1

^ .

then the joint density function for Z, d2/dy, and d^!. /dy e i

(^la)

(_ l b)

(22)
f(Z, Z', Z'") = f(Z') f(Z, Z„)

R3	 (,Z' )^ ^ 	 .y ^^3 + ^fC2ZZ
rr + R4(Zrr^2

s —/-̂ --- exp - _	 xp , . .,..^

V ^(4^r) sl^oi	402	 lGa2

The averages required to evaluate Equations 19 and ?0 are. still difficult because of the singularities

at Z” ^ 0 and in :Equation 20 when Ra = R. These problems are avoided here by making the assump-

tion that (1 /A) = 1 /(tU. This is an ad hoc assumption made to simplify the mathematics but at least.

in part is consistent with the approximations made in doing an asymptotic evaluation of the Helm-

holtz integral in the physical. optics limit (Barrick, t 968). Making this approximation, one obtains

in a straight forward manner:

i, ^ (a°(^ ^ 1 /(iR/RBI?

?3)

= exp (- ^2 ) -^ ^ ^ erfc (^)

and ^ is the correlation length of the surface and o is its standard. deviation.

I3



[t is clear from Equations 23 that the ratio of the two cross sections decreases fcom unity at

^ = 0 to zero at ^ _ ^. The behaviour of I'{^) has been plotted in Figure ^. In addition, values of

arc listed in Table I for a range of the parameters ^ and R representative of the extremes one might

encounter in observations of natucal surfaces.. Consider, as an example, a situation representative of

observations from a tow, earth orbiting satellite (e,g, It = t 000 km), In this case, it is char from Table

I that ^ is very small even for large values of the correlation length, R; For example,. ^ = 0,04 when

^ = 500 meters. Using ^ = 0.04 in Figure ^, one finds. C ar 1. Consequently .for observations from

space it is unlikely that the differences between. the cross section calculated from the conventional

definition and that actually meaaurcd by a radar will be significant. In the case of observations

from aircraft (e,g, 1 km S R S 0 km) the situation is less clear. In this case, one sees froEn Table C

that ^ can be large for large values of the correlation length (e,g. ^ = 1 J at R = 1 km and R = 100

meters) in which case differences between !o°)^ and la°)ltE could be important, or ^ can be quite

small. (e ,g., an observation at R = 1Okm over plowed fields with ^ = 1 meter) in which case I''—' 1,

Foc tower based observations, on the other hand} R is much smaller and differences between (o°)^

and (v°>RE are much more likely. Foraxample, at R = !0 meters and Q = 5 meters, one rinds from

Table I that, ^ = 0.4. In this case using Figure ^ or+e finds T = 0.45 which is about 6db. Clearly,

significant differences between the two cross sections are to be expected in such cases.



CONCLUSIONS

The results of the preceding section, and of this paper in general, are not ret7ections on measure-

merit #echniques. Rather, they are an indication to those concerned with the calculation of radar

cross sections that the classical definition may not apply equally well in aU cases. Specifically, in the

case of remote sensing of rough surfaces where the scattering is predominately specular, it would

appear that more specific attention. needs to be ^i^er. t±^ the Yeometry under which an actual experi-

ment mi^l►t be^p^rformed before routinely using the classical definition to compute radar cross

section.
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TABLE I

^ ^►s a Function df ^ for

1 + 2a 2 sec3 (8)	 1

Q (meters)

500 100 50 10 5 1

0.01 4000 170 40 i .7 0.4 0.017

0.1 400 17 4.0 0,17 0,04 0.401.7

1.0 40 l ,7 0.4 0.017 0.004 0.00017
asr

S...
10 4.0 0.1.7 0.04 0.0417 0.0004 —

^ 100 0.4 0.017 0,004 0.00017 — —

1000 0.04 0.0017 0.0004 — — —

10,000 0.004 0,000.17 — — —
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