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Abstract  

In  t h i s  paper we d iscuss  a  theory of normal modes of o s c i l l a t i o n  of compound l i q u i d  drops 
and the experiments performed t o  determine i t s  v a l i d i t y .  The modes axe charac ter ized  by 
t h e i r  frequency, the  a t tendant  displacement of f l u i d  boundaries, and the  flow pressure  
f i e l d s  within the f l u i d s .  The drops cons i s t  of t h r ee  f l u i d s ;  a  core f l u i d ,  a  f l u i d  s h e l l  
surrounding the  core ,  and a hos t  f l u i d  surroundins the s h e l l .  These f l u i d s  a r e  assumed t o  
be i nv i sc id  and incompressible, and the  core avd the s h e l l  t o  be concent r ic .  The theory i s  
obtained by l i n e a r i z a t i o n  of the  equat ions c ;  f l u i d  motion t o  t he  lowest order  of nonlinear-  
i t y  t h a t  y i e l d s  the  normal modes. Numerical values of mode frequencies  and the a s soc i a t ed  
r e l a t i v e  displacements of the  f l u i d  boundaries a r e  presented f o r  s eve ra l  spec i f i c  systems, 
and the r e s u l t s  compared with our observa t ions .  The core-center ing phenomtnon whereby the  
o s c i l l a t i o r s  of the sys t ea  tend t o  d r ive  the  s h e l l  and the  core t o  be concent r ic  was 
observed i n  the  experimeccs and w i l l  be f u l l y  analyzed i n  a  sequel .  

Introduct ion 

This i s  the f i r s t  i n  a  s e r i e s  of r epo r t s  on the  study of compound l i q u i d  drop systems. 
The systems cons i s t  of th ree  f l u i d s :  a host  f l u i d  i n f i n i t e  i n  e x t e n t ,  t h a t  surrounds a  
second 3 u i d  i n  the form of a  s h e l l ,  which i n  turn  surrounds a  thi:d f l u i d  t h a t  forms the  
core .  In p a r t i c u l a r  we w i l l  i nves t i ga t e  the severa l  normal modes of compound drops on the  
assumptions: ( i )  the dcns i ty  of the  f l u i d s  and the  i n t e r f a c i a l  t ens ions  a r e  a r b i t r a r y ,  
(ii) the  f l u i d s  a r e  incompressible, (iii) they a r e  i n v i s c i d ,  ( i v )  the  equat ions of f l u i d  
motion a r e  l i nea r i zed  t o  the lowest order  of non l inea r i t y  t h a t  y i e l d s  t he  c l a s s  of normal 
modes being s tudied ,  and (v )  the two f l u i d  i n t e r f aces  a r e  near ly  spher ica l  and concent r ic .  
In ensuing r epo r t s  we r e l ax  condit ions (iii) through ( v ) .  

The primary aim of the  e n t i r e  study 1s t o  gain s u f f i c i e n t  understanding of the behavior 
of compound drops t o  plan and i n t e r p r e t  experiments i c  t he  l abo ra to r i e s ,  i n  t he  weightless  
environmmt provided by f l i g h t  on the  K C - 1 3 5  a i r c r a f t  and the Space Shu t t l e .  

Aside from i t s  i n t e r e s t  a s  a  fundamental study of compound drops,  t he  work can be appl ied  
t o  the f ab r i ca t i on  of fusion t a r g e t  p e l l e t s ,  development of con ta ine r l e s s  ma te r i a l s  pro- 
cess ing  techniques both t e r r e s t r i a l  and e x t r a - t e r r e s t r i a l ,  and development of techniques f o r  
l i qu id  drop cont ro l  t h a t  can be used f o r  fundamental s t ud i z s  i n  o ther  s c i e n t i f i c  d i s c i p l i n e s  
such a s  super f lu id  drop dynamics. 

Equations of motion 

We consider  a system of severa l  i n v i s c i d ,  incompressible f l u i d s  t h a t  a r e  i n  contact  with 
one another a t  the  f l u i d  boundaries each of which is charac ter ized  by an i n t e r f a c i a l  ten- 
s ion .  The equat ions of motion £0. the system a re  well known and In sphe r i ca l  coordinate-s 
a r e  glvcn a s :  

The f i r s t  equation f o r  the  ve loc i ty  po t en t i a l  in  each f l u i d  follows from the assumption 
of incom9ress ib i l i ty .  The second equation i s  a l s o  kinematic and s t a t e s  t ha t  the  f l u i d  
boundary moves with the  f l u i d s ;  the equation of a  boundary be ins  given a s  r = R(u,@,t). In 
eq. ( 2 1 ,  P denotes the  u n i t  vector  alonq ;, the  vector  from the  o r ig in  t o  R ( e , + ) ,  and f s  
denotes the surface gradien t  operator  qiven by 
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Equation (3) i s  a dynamical equation indicat ing tha t  the s t r e s s  across an in ter face  
depends sole ly  on i t s  i n t e r f a c i a l  tension,  a .  The l e f t  s ide  of eq. (3) is  the s t r e s s  a t  a 
point on the boundary. ii i s  the surface normal a t  the point ,  and f s  denotes the  surface 
divergence operator. The r igh t  side of t h i s  equation i s  simply the pressure difference sup- 
ported by the boundary s t r e s s ,  and P denotes the pressure i n  the res t ing  f lu id .  

These nonlinear equations a re  rendered l inea r  b assuming tha t  the motion of the system 
produces small deviations of a boundary from the stape i t  had when the sy. ctem was a t  r e s t .  
For a compound drop the boundaries a r e  spherical ,  and the pressure difference across a 
boundary of radius K and i n t e r f a c i a l  tension,  a ,  i s  

For t h i s  system, re ta in ing only f i r s t  order terms, eq. (2) can be wri t ten  a s  

and eq. (3)  a f t e r  subst i tu t ing eq. ( 5 ) ,  bezomes 

- 2 where AR = R - R ,  and L i s  the surface Laplacian which r e s u l t s  from the l inear iza t ion of 
the curvature. 

Normal modes of a concentric three  f lu id  svstems 

We consider a concentric three  f l u i d  systen: as  shown i n  Figure 1 ,  and calcula te  normal 
sodes using eqs. (11, (2A), and (3A). The solution of the equations involves f inding flow 
p o t e n t i a l , $ ,  in  the three f lu ids .  Since $ is nonsecular solution of Laplace equation, i t  
can be expressed i n  the following forms i n  each region of the system: 

t = [ ~ ( c , r n ; t ) r '  + B(r ,m; t ) r  -(9'+1)1 Y l m ( e  ,O ( she l l )  

1 ,m 

e , m  (core) 

i o ( g . t )  = x ~ ~ ( r  , m ; t ) r - ( L t l ) ~ r m ( e  , $ I  . (8)  

e ,m (host ) 

I f  the condition tha t  the normal component of 
velocity across each brindary i s  continuous i s  
imposed, we obtain.  

Therefore, only the flow potent ia l  i n  the s h e l l  
remains t o  be determined. 

Figure 1. A concentric three f l u i d  
system used i n  the theory. 



We now express the boundary functions i n  the following way: 

I f  we subst i tu te  these expressions in to  eqs. (2A) and (3A), we show tha t  the equations can 
be reduced t o  an eigenvalue equation which i s  e s sen t i a l ly  same as  a coupled harmonic 
osc i l l a to r :  

where 

where T = dw. Note tha t  the only dimensional quantity is  CI which has the dimension of 
frequency squared. 

Fron eq. ( 1 2 ) .  the eigenvalues a re  given by 

2 so  tha t  the normal mode frequencies w*, a r e  given by 

From (11) and (17), we obtain the corresponding eigenvectors as  

where 



I t  follows from the orthogonaltty of ~Fgenvectors 
that 

It is important t o  note that  the positive aquare 
root i n  ( 2 0 )  corresponds t o  the p o s i t i v e  square 
roof in (18). Consequently for  the normel mode 
w i t h  the higher frequency, the boundary o s c i l l a -  
tions are in-phase. We c a l l  this high frequency, 
"++"', mode the 'bubble" mode and the lower fre- 
quency, "-" , mode the "s loshkng" mode. From 
re lat ion 1221 ,  the relative boundary disp lace-  
ment of the aloshing mode i s  out af phase. The 
relative boundary displacement of these cwo modes 
as they were observed in the neutral buoyancy 
tank is shown i n  Figure 2 .  The top figure shows 
"bubble" mode i n  which the two boundaries o s c i l -  
l a t e  in-phase, and the bottom figure shows 
"sloshing" mode in which the two boundaries move 
out of phase. In this compound drop the core and 
the host wcrr sLlicon o i l ,  and the shell was 
water. 

Velocity potential 

We now obtain expressions of veloctty poten- 
tials c i ,  ;s and .o f o r  the flow Z;,'r!a in the 
core, shel l  and the host  respec:ively in tcrms 
of the interfac ia l  dispPacernents. From eqs. ( 6 )  
thraush (TI), c h ~  expressions f o r  :i and b, 

are obtained as 

* 5 +;-I ( i ' i ) im ; t 

where 

TF.e r e s u l t  :or . s ,  in terose ine  enough, can be e ~ p r e s s e d  as 

Figure 2 .  "Bubble" mode ( t o p )  and 
"slashins" mode Ibot tom) o s c i l l a -  
tions of an oil-water-oil compound 
drop. 
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H I where ., is the shell ve loc i ty  potenrial when the core i s  r ig id  and r, is for the case when 
the host  is  r i s i d .  then e x n l i c i t l y  expressed, they are 1 
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= 0 and 0 were imposed to obtain (26) and 1271 ,  1 
i 1 



Illustrative e x a m l e ~  

Using eqs. ( 1 3 )  t o  (191, nunerical values of I I T l l l l l l l l  

the eigcnfrequercies for vartoua phyafcal param- 
etcrs can be t c a d i l y  obtained. Furthermore, 
s i m p l e  expressions of severe1 l imit ing  cases as 30 - 
shown below can be e?duccd in a acral~htforward 
way. 

( i l  Sim le Dro We tested chc present theory --+ by deriving t e well-known simple drop case. 
With Rj-0 and fol l twing the procedure disrivcd 
i n  the previous s c c t i o n ,  we get 

20 - 

/ 
P 

2 -  ( ( t  + l l ( t  - + 2 L  (28)  9 
d L  

%J [ t , l 0  + ( t  + 1) , . I  5 - 
P 

? 
which is idcnt i ca l  tn  lamb ' s  result. ' Figure 3 A - P 
sht~ws vatioue modes r r C  a s i m p l e  drop corsespmd- 
ing  t o  the d i f f e r e n t  vnluss of ;. A water drop 
innneracd in  a neutrally buoyant o i l  bath was 
~xisyrmnvtrlcnlly cxcitcd by M plunger which WAS 10 - 

/'O 

iv turn connrcted to a sinusaidally cxc ktcd Icud 
speaker. WFr% 1 . 5 ~ ~  of dr~rp  vtllumc, r hc i n t ~ r -  
f a c i a l  tcnuichn, 1 1 . 2  Jynt*s/cm, w.1.r obtained 
using eq. ( 2 8 )  for : - 2 .  Tht* h i ~ h c r  mndc frc- 
qucncies obtained using eq. (28! i s  shtrwn iu 
Figure 4 ( s o l i d  l i n e )  ~ n d  i t  was compared v l t h  
thc actual  measurements ( c i r c l e s ) .  'Fhc asrep- 0 

mcnt i s  ~xcel!ent. a I ~ I ~ I I ~ I ~ ~ I  

r/ 
/' 

2 3 4 5 b R P 1 0 1 1 1 2  
( i i )  Ri I d  Host: When rhc c:tmptlund drop was 1 
f o n n r h i g i J  horr i t - .  , , = 1 ,  rhpn 
,. - 0 and 

FLqure 4 .  Frequency vs r of a rater 
drop in i1Scon o i l .  Drop volume was 
1.5cc, and L* = 1 1 . 2  dynesicrn as mea- 
surd  for t - ? case.  Under these 
canditkms.  the solid line was 
obtained using eq. ( 2 8 ) .  and the 
c i r c l e s  were R S  measured by the 
mc.chanically excited ~ i s c i l l a t  ions. 

' i + 1  _ - ( 2 ~ + 1 ) ~  .. i ( c * l J  t ( t :  l > ( t + 2 ) [ : -  2 t 
rn - 

?n+i -'* R I I I + ( r * l )  (..-., 

(291 

F5gure 3. Verioua mdea  of a water drap 
oscillations i n  t h e  siricon o i l  bath. 
The drop was rerzchanicall y exc Ltcd. 

I f  we normalize this w i t h  respect to of a 
simple drop which i s  made out of s h e l l  f l u i d  
i m c r s c d  in t h e  core f h i d ,  rhen Nk,q .sf / .-t f o r  
r-2 and , l i -  F 1s HS shrrm in Figure 5 .  Here VT 
is the total volume ( i . e . .  V.*-Vshell+Vcore)- 
N, r t ~ e s  from zero a t  v ~ / v ~ = ~ ,  thcr~ it 
approaches t o  i n f i n i t y  a s  the corr. shr inks .  As 
the core shrinks wich resprcr t o  VT, t h ~  core 
m o t i o n  becomcs essentially dccouplcd from the 
host and approaches t o  t h e  simple drop f re -  
quency. This can be readl ly obscrvcd from 
e q .  ( 2 9 )  as 

cmipound drop 1 1 ~ ~  
then ,_-t i ,  and 



O f  course, when Ri+o, t h i s  reduces t o  eq. (28) f o r  the  simple drop. I f  we l e t  UL be t h i s  
simple drop frequency, then the  normalized frequency, N c - w + / ~ ~ ,  f o r  Q-2 and p o - ~ ,  i s  a s  
shown i n  Figure 6 .  S t a r t i n g  from a very t h in  s h e l l  ( i . e . ,  V T / V ~ ' ~ ) ,  Nc r i s e s  sharply t o  i t s  
maximum, then gradually approaches t o  the  s ing l e  drop frequency a s  VT/V~ increases .  The 
agreement with the experimental po in ts  i s  f a i r l y  good. 

( i v )  Thin She l l :  When the s h e l l  is  very t h i n  ( i . e . ,  T . l ) ,  then U -  = o ,  and 

Note t ha t  t h i s  is  the  same expreesion a s  t h a t  c f  a simple drop i f  i t s  i n t e r f a c i a l  rur face  
tension i s  replaced by q0+ o i .  This p a r t i c u l a r  r e s u l t  was a l s o  confirmed experimentally i n  
the  neu t r a l  buoyancy tank 

Figure 5. Normalized Frequency, No vs 
VT/VC when the  hose is r i g i d .  

F i ~ u r e  6 .  Normalized frequency, Nc, vs 
VT/VC when the  core i s  r i g i d .  

(v)  Thick S h e l l :  When the s h e l l  i s  very 
t h i ck  ( i . e . ,  T + m ) ,  then we ge: 

and 

where Vc and Vs a r e  t he  core and t h e  s h e l l  
voiumes r e spec t ive ly .  These expressions t e l l  
us  t h a t  i n  t h i s  l i m i t  the  "bubble" and 
"sloshing" modes a r e  no longer coupled s ince  
each mo,lie represents  simple drop o s c i l l a t i o n .  

( v i )  For p i = p O  and o i - o o :  When t h e  core and 
the  hos t  f l u i d s  a r e  the  same and the  two 
i n t e r f a c i a l  t ens ions  a r e  same t h e  expressions 
:or U$ cannot be made much simpler than 
eq. (19) .  However, t he  numerical r e s u l t s  of 
these  f requenc i e s  a r e  shown i n  Figure 7 ,  
where VT=VC+V~, and Ns-w*/w~ where WL i s  t he  
frequency of a simple drop which i s  made out 
of the  same compound drop when the  core  was 
reduced t o  zero.  I n  t h i s  f i gu re  t he  upper 
f i v e  curves represent  "bubble" modes f o r  t he  
spec i f i ed  va lues  of p i l p  when pi-p0, and the  
lower t h r ee  curves represent  corresponding 
"sloshin%" modes. Experimental po in ts  taken 
i n  a n e u t r a l  buoyancy tank ( p i l p = p O l p = l )  
show good agreement with t he  t h e o r e t i c a l  
curves. The r e s u l t s  f o r  t h e  r e l a t i v e  bound- 
a r y  displacements a r e  shown i n  Figure 8 f o r  
an a i r -wa te r - a i r  type and an o i l -wa te r -o i l  
type of compound drop systems. We see  t h a t  
our  prel iminary experimental r e s u l t s  obtained 
i n  an n e u t r a l  buoyancy tank a l s o  afiree wel l  
with t he  theory.  

Remarks on core cen t e r ing  

An I n t e r e s t  in? co re  cen t e r ing  phenomenon 
was observed i n  our n e u t r a l  buoyancy exper i -  
ments. I n i t i a l l y ,  a s t a t i c  compound drop 
wac prepared s o  t h a t  t he  inner  and the  outer  
boundary sur faces  were aonconcentr ic  due t o  
t he  s l i g h t  dens i ty  mismatch. However, a s  
t he  drop began t o  o s c i l l a t e  i n  one of i t s  
normal mode f reauencies  ( f o r  e-2), t he  two 
boundaries became concent r ic  wi th in  t he  
accuracy of our observat ion.  Though t h i s  





Figure 9.  A block diagram of our apparatus 
which e x c i t e s  the drop e l e c t r o - s t a t i c a l l y  Figure 10.  S igna ls  obtained by 
and de t ec t s  the ensuing capaci tance s igna l  t he  capaci tance bridge and t h e i r  
caused by the drop deformation. Four ie r  transformed spec t r a .  

This capacitance bridoe system was constructed around a General Radio Capacitance Bridge 
Unit ,  a home-build r e l ay  system, an AID conver te r ,  and a da ta  processing mitricomputer. 
Once the  capacitance bridge was balanced with the  r e l a y  connected t o  the  br idge ,  an e l ec -  
t r i c  pulse could be f i r e d  by simply con t ro l l i ng  the  r e l ay  switch f o r  the  p re se t  time dura- 
t i o n .  Upon the termination of the  pulse ,  t he  e lec t rodee  were switched back t o  t he  br idge  
and the ensuing s igna l  was de tec ted  and proccssed. In order  t o  p ro t ec t  the  amplifier d m -  
i n  the pulse and t o  shorten the  recovery time following the  pulee ,  an ampl i f ie r  blocking 
r e f ay  switch was i n se r t ed  a t  the  input  of the  ampl i f i e r .  

Figure 10 shows a s e t  of t y p i c a l  da ta  obtained i n  t h i s  method. For the simple drcp 
ca se ,  the s ignal  i s  a damped monotonic o s c i l l a t i o n  wt~ich corresponds t o  a s i n g l e  . eaic i n  
the  frequency domain. Of course ,  the spec t r a l  l i n e  width i s  inverse ly  proport ional  t o  the  
damping time constant  of the  time domain s igna l .  The s i g n a l  from a compJund drop looks 
more complicated. However, Fourier  transformation shows two well-resolved peaks each of 
which corresponds t o  the bubble mode and the  s lush ing  mode r e spec t ive ly .  Though the  capac- 
i tance  bridge method provides a f u l l  spectrum without scanning through resonance frequen- 
c i e s ,  i t  does not provide information about boundary motion. For t h i s  reason i t  i s  more 
convenient t o  adopt both continuous and t r ans i en t  methods which w i l l  compliment each o the r .  
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