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Abstract

In this paper we discuss a theory of normal modes of oscillation of compound liquid drops
and the experiments performed to determine its validity. The modes are characterized by
their frequency, the attendant displacement of fluid boundaries, and the flow pressure
fields within the fluids. The drops consist of three fluids; a core fluid, a fluid shell
surrounding the core, and a host fluid surrounding the shell. These fluids are assumed to
be inviscid and incompressible, and the core ard the shell to be concentric. The theory is
obtained by linearization of the equations =i fluid motion to the lowest order of nonlinear-
ity that yields the normal modes. Numerical values of mode frequencies and the associated
relative displacements of the fluid boundaries are presented for several specific systems,
and the results compared with our observations. The core-centering phenomenon whereby the
oscillations of the systen tend to drive the shell and the core to be concentric was
observed in the experimerts and will be fully analyzed in a sequel.

Introduction

This is the first in a series of reports on the studv of compound liquid drop systems.
The systems consist of three fluids: a host fluid infinite in extent, that surrounds a
second fluid in the form of a shell, which in turn surrounds a thi:d fluid that forms the
core. In particular we will investigate the several normal modes of compound drops on the
assumptions: (i) the density of the fluids and the interfacial tensions are arbitrary,
(ii) the fluids are incompressible, (iii) they are inviscid, (iv) the equations of fluid
motion are linearized to the lowest order of nonlinearity that yields the class of normal
modes being studied, and (v) the two fluid interfaces are nearly spherical and concentric.
In ensuing reports we relax conditions (iii) through (v).

The primary aim of the entire study 1s to gain sufficient understanding of the behavior
of compound drops to plan and interpret experiments in the laboratories, in the weightless
environment provided by flight on the KC-135 aircraft and the Space Shuttle.

Aside from its interest as a fundamental study of compound drops, the work can be applied
to the fabrication of fusion target pellets, development of containerless materials pro-
cessing techniques both terrestrial and extra-terrestrial, and development of techniques for
liquid drop control that can be used for fundamental studies in other scientific disciplines
such as superfluid drop dynamics.

Equations of motion

We consider a system of several inviscid, incompressible fluids that are in contact with
one another at the fluid boundaries each of which 1s characterized by an interfacial ten-
sion. The eguations of motion fo. the system are well known and in spherical coordinates
are given as:

vl =0 1)
iR

§%=(s- ;)-m (2)

= o . Ay = 2

G-S e n = - . [g) s-t—'f' P -0 (Vv) ] (3)

The first equation for the velocity potential in each fluid follows from the assumption
of incompressibility. The sccond equation is also kinematic and states that the fluid
boundary moves with the fluids; the equation of a boundary being given as r = R(9,s,t). In
eq. (2), t denotes the unit vector along r, the vector from the origin to R(8,¢), and Tg
denotes the surface gradient operator given by
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Equation (3) is a dynamical equation indicating that the stress across an interface
depends solely on its interfacial tension, o. The left side of eq. (3) is the stress at a
point on the boundary. fi is the surface normal at the point, and Vg denotes the surface
divergence operator. The right side of this equation is simply the pressure difrerence sup-
ported by the boundary stress, and P denotes the pressure in the resting fluid.

These nonlinear equations are rendered linear by assuming that the motion of the system
produces small deviations of a boundary from the siape it had when the system was at rest,
For a compound drop the boundaries are spherical, and the pressure difference across a
boundary of radius R and interfacial tension, o, is

AP = - 29, (5)
R

For this system, retaining only first order terms, eq. (2) can be written as

%5 _ %¥ =0, (2a)
and eq. (3) after suﬁstituting eq. (5), becomes

s (o %)=%"7(2—L2) AR, (3A)

where AR = R - R, and L2

the curvature.

is the surface Laplacian which results from the linearization of

Normal modes of a concentric three fluid systems

We consider a concentric three fluid system as shown in Figure 1, and calculate normal
modes using eqs. (1), (2A), and (3A). The solution of the equations involves finding flow
potential, v , in the three fluids. Since ¥ is nonsecular solution of Laplace equation, it
can be expressed in the following forms in each region of the system:

v = Y Aot +Bemor Py 0,0 (shell) 6)
L,m
L
HED = D A w0 (1) z—==z—=z—-——=s— oo
oo R
e =T
volr,t) = Z B (2,m;t)r Yon(8:8) o (8) = =; x___lo:
2,m (host) == p— —:
If the condition that the normal component of — — = o = =:
velocity across each br.indary is continuous is -— —Io RUID(p) T -
imposed, we obtain. - eyt c=C
LA L Lt - (2241) — === —— =<
A=A tlyg g 0 = = =+
em . 1 (21+1)
Bo B TFT ﬁ; (10)

Therefore, only the flow potential in the shell
remains to be determined.

Figure 1. A concentric three fluid
system used in the theory.
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We now express the boundary functions in the following way:

R (8,0:t) =R ., + 4R (8,¢:t) =R + &R (2, mit)Y, (8,¢) . (11)
BT Ty B g e

(o) [») (o] £,m (o]

If we substitute these expressions into eqs. (2A) and (3A), we show that the equations can
be iiguced to an eigenvalue equation which is essentially same as a coupled harmonic
oscillator:
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W= Y B VR (17
[RoRs]

where v = JRy/Ry. Note that the only dimensional quantity is W which has the dimension of
frequency squared.

From eq. (12), the eigenvalues are given by

2
3 3
1 9% Mot \/T"‘“i Mot
K"z(j:r*o tJa\T3 ) L (18)

so that the normal mode frequencies mi, are given by

"

&~ K A}
wy -Jw (19)

From (11) and (17), we obtain the corresponding eigenvectors as

1 (6Ro) (Ao) 1
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It follows from the orthogonality of eigenvectors
that

SR sR_\"1
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It is important to note that the positive square
root in (20) corresponds to the positive square
root in (18). Consequently for the normal mode
with the higher frequency, the boundary oscilla-
tions are in-phase. We call this high frequency,
"+", mode the '"bubble" mode and the lower fre-
quency, "-", mode the "sloshing'" mode. From
relation (22), the relative boundary displace-
ment of the sloshing mode is out of phase. The
relative boundary displacement of these two modes
as they were observed in the neutral buoyanc

tank is shown in Figure 2. The top figure sgows
"bubble" mode in which the two boundaries oscil-
late in-phase, and the bottom figure shows
"sloshing" mode in which the two boundaries move
out of phase. In this compound drop the core and
the host were silicon oil, and the shell was
water.

Velocity potential

We now obtain expressions of velocity poten-
tials ,i{, vg and .o for the flow fi.'ds in the
core, shell and the host respectively in terms
of the interfacial displacements. From eqs. (6)
through (11), the expressions for yji and ig
are obtained as

Figure 2. '"Bubble" mode (top) and
"sloshing' mode (bottom) oscilla-
tions of an oil-water-oil compound

. drop.
a s =1 1 i
( L};m . (s) Yum 'RL
; (23)
i+l
- g g%l gg ;
Cog) ¢ ST ° ) Y., sk,
where

g - \'I:RDRI'. and 1 = IIROIR]. - (2{.)
The result for .., interesting enough, can be expressed as
o 1€ 'H
('s)fm ) (’s).m g (‘s);m (25)

where .2 is the shell velocity potential when the core is rigid and .2 is for the case when
the host is rigid. When explicitly expressed, they are

2 . i i L+1 ;
R e {f‘ Pt @) ¢ 0T (g }".m'Ro 26)
-2 -t { t+1 .
(A= - T 0 fer 0 @) ¢ ot @7 gt @n
where D = (2itl ;'(2'+1). Of course, conditions

(,C /s M
(;_5) ~0 and '\;L) = 0 were imposed to obtain (26) and (27).
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1llustrative examples

Using eqs. (13) to (19), numerical values of
the eigenfrequercies for various physical param-
eters can be readily obtained. Furthermore,
simple expressions of several limiting cases as
shown below can be d2duced in a straightforward

way.

(i) SLmEIe Drop: We tested the present theory 1
- (o]

by deriving the well-known simple drop case
With Rj=0 and following the procedure derived //

in the previous section, we get

- g+ 1) - 1)(E 4+ 2)
LT Ltog + (1 + 1) o]

2
which is identical to Lamb's result.

immersed in a neutrally buoyant oil bath was

axisymmetrically excited by a plunger which was 10
in turn connected to a sinusoidally excited loud
speaker. With 1.5cc of drop volume, the

fre- /
rd

using eq. (28) for ¢ 2. The higher mode
quencies obtained using eq. (J8) is shown in
Figure 4 (solid line) and it was compared with
agree-

the actual measurements (circles). The
ment is excellent.

(ii) Ripgid Host: When the compound drop was
formed in the rigid host (i.e., e = ), n

_ =10 and

I

Figure 3. Various modes of a water drop
oscillations in the silicon oil bath.
The drop was mechanically excited.

Figure 3 ///
shows various modes of a simple drop correspond-
ing to the different values of (. A water drop //

inter-
facial tension, 11.2 dynes/cm, was obtained

OR,P.”“! PAAE ?n

OF POo; w.i;; o

2 // _
(28)
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Figure 4. Frequency vs ¢ of a water
drop in «ilicon oil. Drop volume was
1.5¢c, and o ~ 11.2 dynes/cm as mea-
sured for ¢ = 2 case. Under these
conditions, the solid line was
obtained using ec. (28), and the
circles were as measured by the
mechanically excited oscillations.

L =19
g ket ¢ sty o7 o 2R
i R3{|.-,.+(.-+1).- T PR PN I b
i i i (255

If we normalize this with respect to . of a
simple drop which is made out of shell fluid
immersed in the core fluid, then Ng=../.p for
t=2 and »{=p is as shown in thure 5. Here Vg
is the total volume (i.e., Vo=Vghell+Veore).

N, rises from zero at VT/V =i then it
approaches to infinity as the core shrinks. As
the core shrinks with respect to Vp, the core
motion becomes essentially decoupled from the
host and approaches to the simple drop fre-
quency. This can be readily observed from

eq. (29) as

= F /R, » =
(iii) Rigid Core: 1f the conpound drop has
rigid core (i.e., o -~), then . +0, and

Ji¢1_1'(2(+1)]

ra

‘0(:-1) ¢ (t+1)Y(ee) (1
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Of course, when R{+0, this reduces to eq. (28) for the simple drop. 1If we let w] be this
simple drop frequency, then the normalized frequency, Ne=w+/ul, for t=2 and pg=p, i3 as
shown in Figure 6. Starting from a very thin shell (i.e., Vp/Vo:1), No rises sharply to its
maximum, then gradually approaches to the single drop frequency as Vp/V¢ increases. The
agreement with the experimental points is fairly good.

(iv) Thin Shell: When the shell is very thin (i.e., v » 1), then w_ = o, and

9 (o  + 0;) (2~ 1) ¢ (2 +1) (2 +2) 31)
w*" 3
bt [ep, + (1+1) o4]

Note that this is the same expression as that of a simple drop if its interfacial surface
tension is replaced by oo+ oi. This particular result was also confirmed experimentally in
the neutral buoyvancy tank

W+ ! ‘ ! T ‘ (v) Thick Shell: When the shell is very
thick (i.e., v + =), then we get

2 hwoi(l -1 e (+ 1)(2 + 2)

W &>

+ 3VC [ep + (¢ + 1) pi]

(32)

and

bnoo (2 - 1) ¢ (L + )2 + 2)
b >

(33)
- 3Vs [lpo + (v + 1) p]

where V. and Vg are the core and the shell
volumes respectively. These expressions tell
us that in this limit the "bubble" and
"sloshing' modes are no longer coupled since
each mode represents simple drop oscillation.

{vi) For pij=po and oy=0cy: When the core and
the host fluids are the same and the two
interfacial tensions are same the expressions
for w? cannot be made much simpler than
eq. (19). However, the numerical results of
these frequencies are shown ia Figure 7,
where Vr=Vc+Vg, and Ng=wi/wy where w] is the
Y 2 3 . s o 7 frequency of a simple drop which is made out
Viive of the same compound drop when the core was
reduced to zero. In this figure the upper
Figure 5. Normalized Frequency, Ngo vs five curves represent ‘'bubble" modes for the
Vp/Vc when the hose is rigid. specified values of pi/p when pi=pg, and the
lower three curves represent corresgsponding
"sloshing" modes. Experimental points taken
in a neutral buoyancy tank (pj/e=pg/0=1)
e show good aqreement with the theoretical
T T ""W curves. The results for the relative bound-

0 H H . i 1 J
B

ary displacements are shown in Figure 8 for
an air-water-air type and an oil-water-oil
type of compound drop systems. We see that
our preliminary experimental results obtained
in an neutral buoyancy tank also agree well
with the theory.

I3

0.3 -
Remarks on core centeting

02 -
An interestinns core centering phenomenon
was observed in our neutral buoyancy experi-
ments, Initially, a static compound drop
was prepared so that the inner and the outer
T boundary surfaces were nonconcentric due to
ViV the slight density mismatch. However, as
re the drop began to oscillate in one of its
normal mode freauencies (for i=2), the two
Figure 6. Normalized frequency, N¢, vs boundarizs became concentric within the

V1/Vc when the core is rigid. accuracy of our observation. Though this

12
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Figure 7. Normalized frequency, Ni. vs V1/V¢ curve is for an air-water-air type
five

when ni=p, and oi=0g. The upper curves
are for the "bubble" modes and the lower
three curves are for the '"Sloshing'' modes.

of compound drop. The experimental
points are from the neutral buoy-
ancy experiment.

centering phenomenon takes place within a few cycles of oscillation, the centering force
seems to depend, among others, on the oscillation amplitude and the shell thickness. Within
the approximations used in this paper, the positions of the core anywhere within the drop is
neu:ragly stable. It is necessary tn consider the next order of approximation to find the
restoring forces responsible for the centering of the core and the shell. Work on the
centering phenomenon and its more detailed description will b¢ published elsewhere.

Experimental apparatus and procedure

(A) Neutral Buoyancy Tank: The heart of the experimental apparatus is a neutral buoy-
ancy tank which is a lucite box filled with silicon o0il (Dow Corning 200, lcs). Taking
advantage of the fact that the density of silicon oil was less than water, we created a
vertical density gradient by adding a small amount of freon to the silicon oil until the
water droplet floated in the middle of the tank. Also imbedded within this box were several
electrodes for the purpose of excitation and detection of the drop systems.

(B) Excitation and Detection Procedure: We adopted basically two different detection
procedures: 1) frequency sweep, and 2) the pulsed transient technique. In the continu-
ously driving method, the frequency of an oscillating electric field was swept through
rescnances while monitoring the oscillation amplitude using an optical recording and video
systems (such as fast movie camera or TV video system). This method has the advantage of
quick identification of the characteristic oscillations and provides detailed information
about toundary motion. However, it was found that unless the driving field was kept at a
low level, the resonance frequency measured in this method was eroneous. This is due to
the fact that the large oscillating electric field changes the surface tension dynamically.
The detection method which was used extensively in this experiment was the capacitance
bridge method. The block diagram of this apparatus is shown in Figure 9. This method is
similar in principle to more w-'l-known transient techniques in nuclear magnetic resonance
or optical spectroscopy. The . sic idea of this technique is to record capacitance varia-
tion as the drop evolves freely toward equilibrium state from an initial nonequilibrium
state. Application of an intense short electric pulse excites “he droplet over a wide
range of frequency simultaneously. Therefore, the Fourier transformation of this transient
signal reveals characteristic frequencies simultaneously.

13
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Figure 9. A block diagram of our apparatus

which excites the drop electro-statically Figure 10. Signals obtained by
and detects the ensuing capacitance signal the capacitance bridge and their
caused by the drop deformation. Fourier transformed spectra.

This capacitance bridee system was constructed around a General Radio Capacitance Bridge

Unit, a home-build relay system, an A/D converter, and a data processing miuicomputer.

Once the capacitance bridge was balanced with the relay connected to the bridge, an elec-
tric pulse could be fired by simply controlling the relay switch for the preset time dura-
tion. Upon the termination of the pulse, the electrodes were switched back to the bridge
and the ensuing signal was detected and processed. In order to protect the amplifier dur-
in§ the pulse and to shorten the recovery time following the pulse, an amplifier blocking
elay switch was inserted at the input of the amplifier.

Figure 10 shows a set of typical data obtained in this method. For the simple droep
case, the signal is a damped monotonic oscillation which corresponds to a single .eak in
the frequency domain. Of course, the spectral line width is inversely proportionsl to the
damping time constant of the time domain signal. The signal from a comp.und drop looks
more complicated. However, Fourier transformation shows two well-resolved peaks cach of
which corresponds to the bubble mode and the slushing mode respectively. Though the capac-
itance bridge method provides a full spectrum without scanning through resonance frequen-
cies, it does not provide information about boundary motion. For this reason it is more
convenient to adopt both continuous and transient methods which will compliment each other.
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