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The stress system generated by an electromagnetic field in a suspension of drops
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Abstract

This paper deals with the calculation of the stress generated in a suspension of drops
in the rresence of a uniform electric field and a pure straining motion, ta.:ing into account
that the magnetohydrodynamic effects are dominant. It is found that the stress generated in
the suspension depends on the direction of the ajplied electric field, the dielectric con-
stants, the viscocsity coefficients, the conductivities and the permeabilities of fluids in-
side and outside the dro;s. The expression of the particle stress shows that for fluids which
are dood conductors and poo: dielectrics, especially for larger drops, magnetohydrodynamic
effects tend to reduce the dependence on the direction of the applied electric field.

Introduction

The study of a flow svstem in vhich the electric field and the velocity field effect
each other is called electrohvdrodynamics. The applications of electrohydrodynamics are
numereous: cryogenic fluid management in the zero-gravity environment ot space, formation and
coelecence of solid and liquid particles, electrogasdynamic high voltage and power generation
insulation research, physicochemical hydrodynamic, heat, mass and momentum transfer, electro-
fluid dynamics of biological systems, and atmospheric and cloud plysics.!”® In nature and
industry we are quite often concerned with the properties of a fluid in which small particles
are suspended and carried about by the motion of the ambient fluid. 1f the average distance
betweer the particles is small compared with the characteristic length of the motion cf the
suspension, one cun regard the suspension as a homogeneous fluid. The problem is to determi-~
ne the rheological proverties of this equivalent fluid from the knowledge of the properties
of the ambient fluid. The macroscopic properties of the suspension will be referred to as
bulk properties. When the suspension is dilute, the suspending fluid Newtonian the particles
rigid spheres, and the particle Reynolds number sufficiently small, the suspension can be
described in bulk as a Newtonian fluid with an effective viscosity u*=u (1+2.5 ¢), provided
only that the particles are not subjected to an externally applied force or couple. For the
more general case, the non-isotropic structure of the suspension usually results in a non -
Newtonian form for the bulk stress tensor.® The formulation of the problem of determining
the strecs in a suspension of particles is not straight-forward, partly due to the fact that
the bulk stress in a suspension is not obvious. Bulk stress and other bulk properties are
defined in terms of ensemble averages of the actual quantities. This is shown by Batchelor®
to be equivalent to defining bulk properties in terms of volume averages provided that the
averaging volume is chosen to contain many particles and is such that the statist. mal proper-
ties of the suspcnsion are uniform over it.

In the case of a dilute suspension, which means that the flow near any one particle is
independent of all the other particles, the contributions to the bulk stress from the vari-
ous particles are linearly additive. The contributions may be classified in three groups:
The first is a purely isrtropic contribution, the second is the contribution of the deviato-
ric stress and the third representc the contribution to the bulk stress due to the presence
of the particles. The stress in third type of contribution is termed as "particle stress"
and only the deviatoric part of it is significant.

Non-Newtonian behavior of a suspension can occur in general in the following cases:’ (i)
Non-spherical particles can cause some directional properties.®/8(ii) The effect of weak
Brownian motion.? (iii) The effect of a couple cn a particleisto rotate and to generate an
anticymmetric part of the particle strecs tensor.?s!Y (iv) The effect of the shape of a de-
formable par:icle gives rise to non-linear stress.!!(v) Surface tension at the boundary of
a fluid particle or elasticity of a solid particle can cause time-dependent effects and the
suspension exhibits visco~elastic properties.!!s!2 (vi) In the case of sufficiently large
size, the inertia forces cannot be neglected in the relative motion near one particle and
the particle strecs devends non-linearly on the bulk velocity gradient.!?

In this paper an expression is found for the particle stress tensor of a suspension of
drops in an electric field, It is assumed that the suspension is dilute, suspending fluid
Newtonian, the drops spheres and the particle Reynolds number sufficiently small. The expli-
cit form of the stress tensor depends on the electromagnetic properties of the drops and
their surroundings ; therefore, the flow due to a single drop is needed in determining the
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particle stress of a sufpension. For this reason, congideration is given first to th: €low
due to a drop in the presence of an electric field in a pure straining motion.

Experimentally and theoretically it has been chown by Taylori* ithat a circulation can
occur in a drop and its surrounding in the presence of a uniform electric field. This flow
field set up is due to the surface charge and the tangential electric field stress over the
surface of the drop. The flow field outside the drop given in!* is very similar to a system
in wnich the field carries a uniform current.!5,16 In such a cese the flow field is produced by
the rotational Lorentz force due to the distorted electric current and the associated mag-
netic field. For fluids which are poor conductors the magn-tic effects are negligible; and
for fluids which are good conductors and roor dielectrics, »r for larger drops the magneto-
hydrodyamic effect may be dominant.l’

Following the general arguments given inl® and 19:2Y the pressure and the velocity in
the fluid outside the drop and inside the dror which is embedded in a pure straining motion
are determined. Since the governing equations are linear in terms of velocity and the elec-
tric field, the effects in the cases of a dro; in an electric field in the absence of a pure
straining motion and a drop in a pure straining motion without an electric field can be su-
perimposed.

Since it is assumed that the susrension is dilute, the flow near one drop is indejendent
of other drors and o we may use the resultc obtained for one dro; to evaluate the integral
in the particle stress. The expression of the particle stress has two terms; one with an aop-
lied electric field and the other without electric field, The term which depends on elect.ic
field jresents a directional effect; and this makes the sucspension a non-Newtonian fluid.
This shows that the suspension of drops in an electric field cannot be rerresented by a vis-
cosity that is independent of the rate-of-strain, The viscosity depends on the direction of
the applied electric field.

The first term of the particle stress shiows the effecc in the absence of an applied elec-
tric field, and the second term denotes the additional effect due to the applied electric
field. The second term contains two parts: one is due to the absence of the magnetic effect
in the fluid outside the drop and the other is due to the presence of the magnetic effect.
When the magnetohydrodynamic effect is absent, the expression of the particle stress reduces
to that of given in.?! :

The expression of the bulk stress

In order to establish the relation of the bhulk stress to the velocit and stress distri-
butions in the fluid near individual particles, the expression for the bulk stress in the
susrension as a volume integral is used. The average volume V is chosen to contain many par-
ticles and is such that the statistical prorerties of the suspension are uniform over it.
The hydromechanical bulk stress in the susrension is

2ij= /G Y

since the effect of inertia forces in the relative motion near a jarticle is neglected. The

M§xhelé bulk stress tensor may be defined in a similar manner. The bulk velocity gradient is
given by

Ui 4 7w gv

ax3-V/3"j !
where Cﬁ} and uj are the actual values of the hydromechanical stress and velocity at any
point x in the suspension, whether it be in the ambient fluid or inside a particle. The sur-

face and the volume of a tyrical particle in V will e denoted by A, and V, respectively.

Assuming tha! the ambient fluid is Neutonian with the viscosity,& the hydromechanical
bulk stress may be written as

i _‘_j {_ Bij +( 3L 4 Uy )dV o LT/ Gdv
=), gy PP (35 +3) 1% v fv W (1)
where the cummation is over all the particies in V. The bulk velocity gradient Lecomes
Wi 4 wigv 4 z/’ u; nj dA
'X;. Viiy-3y ¥ xj v A, (2)
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wvhere n 1is an outward unit normal to A,. Neglecting inertia effects, the following can be
written :

6‘“ dV - G;k X; nk dA
fv. /,;. ¢ (3)

With the addition (2) and (3), the exrression (1) becomes

Liy =~ 8""[ pav+ M (3t gt g %)
..\_,.If qu',nk-_p(u‘n}.,uin‘)}dﬁ

The volume v-fVa is wholly occuried by ambient fluid and the volume Vo must be regarded as
including the interfacial layer ; and the surface A, will be regarded as a surface just out-
side of the interfacial laver. The first term in ti.e expression for 243 in (4) is a ourely
isotropic contribution, the second is the deviatoric stress and the third represents the
contribution to the bulk stress due to the presence of the particles. The third term in (4)
is called the "particle stress" and is denoted with zq’ .

It is assumed that the suspension of rarticles is force-free and couple-free. Since the
exertion ¢f a couple on the prarticles by external means generates an antisymmetric contribu-~
tions tu the bulk stress, the bulk stress in the absence of a couple exerted on particles
thus becomes a symmetrical tencor.

(4)

When the ratio of the convection of charge to the conduction current, which is referred
to ac the electric Reynolds number, is much smaller than unity, the influence of the electric
stressec on the fluid ic included in the model, but there is no reciprocal effect of the moti-
on on the fields. A similar situation for the magnetic field can b:c considered with no effect
of the motion on the magnetic field ; and the electric current density is thus given by its
electrostatic form. For this reason, in this parer, in view of the absence of the reciprocal
effect of the motion on the electromagnetic field, the hyvdromechanical bulk stress in the
cuspensior 1is considered alone.

Governing equations

The magnetic induction in the fluid in and out of the drop is not negligible because of
dynamic currents are not small enough. It is assumed that tne influence of the electric stres-
ses on the fluid is included in the model, but there is no reciprocal effect of the moticn on
the fields. Therefore, the approrriate laws of electrodynamics are essentially those of elec-
trostatics for the electric field and the electric current density, except for the magnetic
induction field. Under the conditions considered here, the governing ecuations of electrohy-
drodynamics ars??:

7.E =0, (5)
V-E 0 , (6)
J =GE (7
TxHed (8)
T HeOD (9)
Vp =}AV‘wa.TExH (10)
7-u=0 (11)

where E , is the electric field intensity, J the electric current density, B the magnetic
field, ¢ the electric cenductivity, u the velocity, p the pressure, B the viscosity,Jf
the permeabilit:, Throughout the paper MKS uritf are used. Because of the absence of fluid
motions the term¢XuxMd inh (7) and the term@ X (uxH) x H in (10) are omitted.

The boundary conditions to be applied at the interface of a drop in an electric field are
the following??
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m{ef =0 (12)

‘ n~{cE}.o (13)

n.{u} =0 (14)
2 nx{u).O (15)
. Nx[{Gsteh} =0 (16)
. n-{G+t¢h}¢T(é—‘-’-&-,)nO (17)

- where @ 1is the viscous stress, t and h _are the electric part and magnetic part of the
N Maxwell stress tensor, recpectively; and {A} denotes the jump of A across the interface.
i T is the surface tension, and Rl and Ry, ure the radii of curvature of the surface ;these

; radii are taken as positive when the corresponding center of curvature lies on the side of
the interface to wvhich n points.

Under the conditions considered here, the electric field E and 1 and the velocity
field u can be deterrined independently by eauations (5)-(11) and thea, they can be related
by the boundary condit.ons (12)=(17),

A drop in an electric field

We consider a drop or bubble, assuming that its shape is 8spherical with radius a. The
distance between electrodes and the drop measures to many radii thus causing the electric
field far from the drop to be uniform. An appropriate spherical polar coordinates are defi-
ned with the drigin at the center of the drop and the symmetry axis in the direction of the
applied field. There are four boundary conditions for the electric field intensity : (i) E
s finite inside the drop ; (ii) the tangential component of the electric field is continuous
across the surface of the drop , (iii) there is no surface current ; and (iv) E tends to B
Il tends to infinity,. Subject to these boundary conditions, equations (5)-(7), (12) an8 (13)
give for the electric field outside the drop

1
-x a 1-o¢ a'(Eg X)X 18
ExE, (141 e 1) - 32“‘_01__ (18)
where rz=|Xx| . and for that inside the drop
E - E. (19)
2+

where °"°7“7 . A symbol with a bar is used for the quantities of the medium inside the drop
and a symbol without a bar is used for those of the medium outside the drop. The expression
in equation (19) shows that the electric field inside the drop is uniform.

Since there is no applied magnetic field, ecuations (8) and (9) give for the magnetic
field outside the drop

H=_to(i-2 m_,)xxe (20)

and for that inside the drop

H__ ¢ E (21)
== 2z (X0
The circulation in and round the drop is recponcible for the electric surface force den-
sity and the magnetic force density which are related to the Maxwell stress tensor. Expres-

. sion of t and h over the surface of the drop are needed. The tangential and normal c~mpo-
nent differencesof t across the surface of the drop are

g ﬂx{t}=(a («p-2)(nxEy(n.E) ,

A-ft] s [E(p) e (m) (pestaa)]
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where 9-@/? is the ratio of the permittivities. The tangential and normal component diffe-
rences of h across the surface of the drop are

nx{h}=o ,

n. ih{ L9l (X -X)(nxEy®

8(2+o)?

The flow considercd in this paper 'is governed by equations (10) and (11). The boundary
conditions for the velocity are: (i) u is finite inside the drop and tends to zero as Ixl
tends to infinity ; (ii) u.n = 0 and u.n = 0 at the interface ; (iii) the tangential compo-
nent of the velocity across the drop is continuous ; (iv) tangential electric stress and
tangential magnetic stress an+i tangential viscous stress are in balance at the interface.

Following the general arguments given in!® and!? the pressure and the velocity in the
fluid outside the drop®? can be written as

_PF'_P:- b”R(r)Obk} xkx;Q(r) , (22)
ui = by X'.{(rﬂbq Xy §(rie by xy x4y xy hr) (23)
where

bij=Eu Eoy byj = bji v b= E:Q '

and the exrressic:as for R,Q,f,g and h are given in the appendix. Using the same reasoning as
for outside the drop, the pressure and the velocity inside the drop?? can be written as

L"‘_B. = b” Rir) s bkf} xk’t’,a(r) ,

M (24)

Ui = by % Fr2 + by x; Feed + By xxxihen) )
where the exprecsion for R,Q,f,9 and h are given in the appendix.

The balance of the normal stresses on the interface of the drop is given by equation (17).
Since it is assumed that the interface of the dro; is to be spherical the last term in equa-
tion (17) is rerlaced by ~2T/a. In order to find out whether the drop will become oblate or
prolate under conditions where equation (17) is not quite satisfied, the Tayler technique!"
is employed and it ir assumed that a stress Fwio(=R(E,.n)" /E! ] is arplied normally to the
surface of the drop, which is nececsary to keep it spﬁerical. Replacing T in the modified
form of equation (17) it is found that

= RaU(Ie2Y) 9 E2 (4-p) 27 36"«'5: 96%! € 3
e ey T T it a7 el Trrei AU

Fo:-(-zf: {%[PU-»«)‘-Zo% Q’“)Y‘:“p—‘)

™) S Yl X
where ¥s M/ji ., The exrrescion of Fo has been given in!7 (an arithmetir error in equation (30)
inl7 is corrected, and 44 is rejlaced by 14), The equilibrium geometry dejends on F, , namely

the functional relation which is given by «,8,v,x,7,5 and a, For a detailed discussion the
reader may be referred to.!’

A drop in an electric field in a pure straining motion

€ince the governing enuations are linear in termc of the velocity end electric field, the
effects in the case of a dro; in an electric ficld without a linear velocity at infinity an”
that of a drop embedded in a rure straining motion in the ausence of a uniform electric fi ..
at infinity can be guperimrosed. Folloving the general ardjuments given in the previous pa :
gzrarh the pressure and the velocity in the fluid outzide the drop can be w1 itten as

75



ot

e
L

e s g Ly

%}P’_' bR b xy Qe 8Bt (26)
Ui = b” X {lr) * bu,x-, gery+ bk-, X %3 % hie) +ei3 x‘G(r)oekj X X3 g Hm) (27) :

and inside the drop as

.

p-f - b“ R(r)o bk} xk'j -Q-(rHBGk-’ xkxi ’ (28)

Uie b“ Xi i(r) . b‘} x{j(r). by ‘k"j Xy T\(r)o.q G iy ¥y X3 0 Hiy (29)

where k,Q,f,q,h,R,0,%,9,5,8,6,H,B,f are given in the appendix. Although a similar discussion
to that given in the previous paragraph for the shape of the dror can be done, this is beyond
the scope of this paper. “

The particle stress in a dilute suspension

By the expression dilute suspencion it is meant that the flow near one particle is inde-
rendent of all the other particles, However, a simple modeal‘" illustrates how surprisingly
close the spheres are for concentrations which are numerically quite 3mall. The relacion (4)
shows that for a dilute suspension the different particles in the volume V nf susprension make
linearly additive contributions to the particle stress and the particle stress obtained under
these conditions is correct to the order of ¢ (where ¢ is the concentration of particles by
volume). Thus, the results obtained in the previous section may be used to evaluate the third
term in equation (4). However, some nec-ssary modifications must be made. The velocity, pres~
gure and stress in the fluid will be written as

“tt'tg"r“'t . PaPap , Gum-Bligrape i

[
where B is a constant and u! , p' , ¢ are the disturbance quantities resulting f: om the
presence of the particle, The particle sébess becories

P .
4 . 4 . e, .
ZQ -vj;. {G’gk x'nk-‘}a(wn’ou’_n‘)} dA , (30)

since only the deviatoric part of the particle stress is significant, the term..P‘i‘-' and si-
milar terms are omitted.

Inserting ecuations (26) and (27) in equationc (30) and using the well-known identities
.n; dA cmat ¢
JrindA <S8y
4mat

in which the integration is carriéd over the surface of a sphere of radiuc a, the following
equation is obtained

"
. e[ (2883 2.  R2(-aP) ¥ - fE.L , (31)
24‘ c[—ﬂ]—‘“ €4 + $(2 ¢ox (40)‘)“ At E“C‘,]

in this equation

¥l 1-m)(7e Su) Xetd (LT sl el
¢ sm-«m['}" GsY) ]' A r v M ir Y
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Since only deviatoric part of the particle stress is significant, an isotropic term in the
expreasion for the particle strecs is not cunside ed. If ) goes to zero equation (21) redu-
ces tu that given in.2! The first term of the particle stress, given by equation (31), shows
the -tfect in the absence of an applied electric field, and the second term denotes the addi-
tic..al effect due to the applied electric field. The second term of the particle stress con-
tains two parts : one is due to the abasence of the magretic effect in the fluid ocutside the
drop and the other ig due to the presence of the magnetic effect., Since it is assumed that
the fluid outside the drop is more conductive than inside the drop, the conductivity ratioa
is very much smaller than unity, and the flu!d outside the drop is poor dielectric in compa-
rison to that inside the drop, the dielectric -atio 8 is veryv much smaller than unity, then
>0 and the magnetic effect works to reduce the derendence of the naiticle stress on the
direction of the arplied electric field.
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