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Bubble shapes in steady axisymmetric flows at intermediate Reynolds number
G. Ryskin and L. G, Leal

Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125

Abstract

Ve consider the shape of a gas bubble which rises through a quiescent incompressible, Newtonian fluid at
intermeliate Reynolds numbers. Exact numerical sclutions for the veiocity and pressure fields, as well as the
bubble shape, are obtained using finite difference techniques and a numerically generated transformation to an
orthogonai, boundary-fitted coordinate system. No restriction is placed on the allowable magnitude of defor-
mation.

Introduction

In spite of intensive investigation for more than 70 years, the theoretical problem of bubble and drep
motion in an unbounded viscous Newtonian liquid, which may either be quiescent or undergcing some prescribed
motion far from the bubble or drop, has remained essentially unsolved. The main difficulty, in additio: to
the usual nonlinearity of the equations of motion at finite Ryenolds number, is that the bubble or drop shape
is unknown and required as part of the solution of the problem. As a consequence, the boundary conditions at
tne bubble or drop surface are nonlinear, and, in addition, the solution depends on the prior history of the
bubble or drop motion and interface shapes, even in the creeping motion limit.

This problem of bubble or drop motion i~ a viscous liquid, with an unknown boundary shape, is an axample

of the general class of so-called ''free t . ¢"* problems of fluid mechanics. Although a number of methods
exist for this type of problem, whict can . 2d to analyze the motion cof bubbles or drops, all but purely
numerical methods inevitably siffer from sone restriction. Included is the asymptotic technique of "‘domain

perturbations'' which has beer. applied, fo. example, for buoyancy-driven motions of a drop at finite Reynolds,l
and for a drop in a general linear "shear'' flow,? but is res.ricted to smail dei rmations from a known (or
guessed) boundary shape. Boundary integral techniques ar. ot restricted in the degree of deformation (and
thus provide a powerful tool to study bubble and drop deformation®~®), but are only applicable in the limits
of either creeping flow, or potential flow, where the governing differential equations are linear. For more
general conditions, this leaves us with numerical methods which are not limited, in principle, either by the
allowable degree of deformation or by lir arity of the governing equations. Such methods have not been
applied directly to the problem of calculating bubble or drop shapes in viscous flow so far as we are aware.
However, in most other applications to free boundary problem in fluid mechanics, the numerical r.thods of
choice have been ased v.on finite element formulations. At least in part, this has been a consequence of the
loss of accuracy which vccurs when finite dirference techniques are applied in domains with boundaries that
are not coincident with coordinate lines or surfaces. Thus, if one considers only the classical orthogonal
coordinates, such as cylindrical, spherical, etc., the use of finite-difference methods is generally unaccept-
able for free boundary problems. The present paper explores the alternative possibility of finite-difference
solutions vased on a numerical method of constructing a system of orthogonal, boundary-fitted coordinates, for
the problem of streaming flow past a bubble. We do not claim or intend to imply 'superiority' in any sense
over other pussible numerical approaches to the same problem. Indeed, the methods described here are not at a
sufficiently advanced stage of development for such comparisons to be meaningful, even if one were philosophi~-
cally inclined to make them!

A detailed description of the methods of orthogonal mapping will soon appear in the Journal o) Computa-
tiemal Fhysies,® and a more detciled description of methods and results for the application to the motion of a
bubble or drop in a viscous fluid is presently in preparation. Here, we simply outline the method of solution
and present two cxamnles of the solution for streaming flow past a bubble at finite Reynolds number as an
illustration of ius application.

QOrthogonal Mapping

The idea which we pursue is thus to obtain orthogonal boundary-fit.ed coordinates for the domain axterior
to a bubble whose she e is unknown, though smooth and generally nonspherical. In the present development,
the .. .nown shape is generated via an iterative procedure starting from some initial guess. At each step,
with the boundary shape spec:fied, mapping functions for the boundary-fitted coordinates are generated numer-
ically, the equations of motion are then solved in the transform (_mnain and the normal stress balance at the
bubble surface is used to generate an improved shape. We restrict ourselves to steady, axisymmetric
configurations and discuss the mapping problem in 2D, with the axisymmetric boundary shape generated by rota-
tion about the axis of syrmetry which is thus required to be a coordinate line for the transform coordinates.

In the remainder of this section, we outline a method of obtaining the desired coordinate transformation.
From a mathematical point of view, we require a pa.r of functions x(£,n) and y(£,n) which map poi ‘ts of the
physicel domain onto a unit square, 0 < £,n < 1, in the *ransform domcir, with lines of constant £ and n
baing orthogonal. For convenience, we designate the bubble surface as £ = 1, and the upstream and downstream
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axes of symmetry as 1 = | and n = 0, respectively, with £ + 0 corresponding to infinity. There has, of course,

been a great deal of recent research aimed at the problem of obtaining numerically generated coordinate map-
oings. Included in this work are methods based on the sulution of a pair of elliptic equations for the mapping
functions,’ conformal mapping,® direct integration of ''Cauchy-Riemann''-type equations as an initial value
problem starting from a boundary"" and other methods of orthogonal mapping which are equivalent to conformal
mapping with less restrictive consiraints on the ratio of the diagonal components of the metric tensor (the
latter are, in fact, most closely related to the present approach).!!~!! Limitations of space prevent a de-
ta!led review of this prior work. However, in general, the resulting coordinate systems are either nonorth-
ogonal,” ill-conditioned in the sense of extreme sensitivity to toundary shape and/or (the possibilitr of)
highly nonuniform spacing of coordinate lines (conformal mapping,® some types of “orthogonal mapping'**!+12) or
only suitable 1 some local subdomain {integrations of Cauchy-Riemann equations 9,10),

The present objective is a numerically generated mapping which is applicable in the whole domain, automat-
ically orthogona! and free of the usual sensitivity problems of conformal mapping. Our basis is conventional
tensor analysis, yielding equations for x(£,n) and y{(£,n) which are coordinate invariant. These equations
foliow almost trivally from the observation that a Cartesian coordinate x {(or y) is a linear scalar function
of position, sn that grad x (or grad y) is constant and

divgrad x = 0 (1)

The latter is nothing more than the covariant Laplace equation for x. When expressed in terms of the desired
(but as yet unspecified) £,n coordinates, it becomes

ij -
9 7% ; c (2)

in which g'J is the ij component of the metric tensor and ';' denotes regular covariant differentiation. Al-
though the solutions of Eq. (1) {and the similar equation for y) will not generally yield orthogonal coordi-
nates, we further specify that

9; = © ‘i idj (3)
and
i 2 2
9 = e 9 = by (4)

with the he.h, being ""scale'' factors for the £,n system. In this case, the equations governing the transfor-
mation gpnng) functions become

5%( Bx) (f Bx) (5a)
with
f(g.n) = hn/hg (6)

and the solution of these equations, subject to appropriate boundary conditions (which we shall discuss in the
next sectior), wiil yield orthogcnal coordinates for any f, which can thus be chosen freely. it may be noted
that confor. mapping corresponds to the restrictive choice f(f,n) = 1, for all £,n.

In general, the ''most appropriate' choice of f depends on the type of mapping required The probiem of
direct mapping with fixed boundary shape and a specified distribution of coordinate nodes along the boundary
is discussed elsewhere.® Here, we consider only the mapping problem in which the boundary shape is unknown
and required as part of the solution of the overall problem., In this case, f{£,n) can be specified directly
as a function of £,n, with the form for f chosen so as to yield desired properties of the transform coordi-
nates (e.g. nonuniform spacing of coordinate lines in some region of the domain).

The fluid dynamics problem — basic formulation

Let us now return to the problem of uniform streaming flow past a bubble. In this case, we adopt the very
simple form for f, f(£,n) = 7€. In addition, we introduce a relatively simple modification of the mapping
procedure outlined above to take care of th. 1act that infinite values of the mapping functions x and y,
corresponding directly to an infinite domain, cannot be generated numerically. To avoid this difficulty, we
simply calculate the mapping fr.m the unit square in the Z,n plane to an auxiliary finite domain, which is
then transformed to the physical domain by a conformal inversicn.

Now, one great advantage of orthogonal coordinates, in wddition to avoiding inaccuracy of numerical
approximation in nonorthogonal coordinates, is that physical components of vectors and tensors can be used
instead of covariant or contravariant ones. The governing Navier-Stokes equations, plus toundary conditions,
can thus be expressed in a8 straightforward manner in terms of the resulting boundary-fitted coordinates
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£.n,$, obtained by rotation of the two-dimensional cc.rdinates given by x(£,n) and o(€,n) (where x is parallel
to the axis of symmetry and g is the distance to this axis along a normal through the point of interest). |If
we introduce the streamfunction y, and use standard expressions for the invariant differential operators in
general orthogonal curvilinear coordinates, the Navier-Stokes equations are

_ 4
Rehy 3'1 3% ¥ (3) - hgh ar, I = (&) - Re L (29 )
2+ = 0 (8)
dov,,
where [ is the vorticity, Re = ral d is the equivalent diameter of the bubble and
B LI

The streamfunction at infinity, for a .1iform streaming flow, takes the form

N (10)

Thus, to avoid dealing with large {or infinite) numbers, we actually solve for
\'J = v - |13 (I‘)

where wa is the potential flow solution for flow past a spherical! bubble with the given form % at infinity,
i.e.

o, = yot0 - &) (12)

Now, Eqs. (4) and (5), rewritten in terms of 4 , are to be solved for ¥, Z and tae bubble shape subject
to the boundary conditions

W* is bounded, § = 0; at infinity (i.e. & = 0) (13)
§y =0, ;= 03 at N=0,Nn=1 (symmetry axis) (14)

and, at the bubble surface,

&

Y = 0 (zero normal velocity) (15)
g+ ZKE&?) 0 (zero tang. stress) at £ =} (16)
- % Cp X =Pyt T, + “ %:?) + 2:?)) = 0 {normal stress balance) ()
The first term in (16) is the hydrostatic pressure; CD is the drag coefficient; Pa is the dynamic pressure
P, = ‘lz - JL j (Gg)h dn (18)
d s 5{ 2
dov,

ug is the surface velocity; T, is the normal component of viscous stress at the surface, We =

{&n) {£¢)

the surface tension, and k( ) and K( ) are normal curvatures in two perpendicular directions.

Numerical scheme

In order to solve Eqs. (7) and (8) of the preceding section, together with Eqs. (5a) and (5b) for the
mapping functio » x(£,n) and 0(E,n), we used a uniform 41x4! grid in the domain, 0 < £,n £ 1. The computa-
tions were carried out using single greclsion arithmetic on a VAX-11 computing system, which has a round-off
error of 0(10°8). Tnus, with an 0(h?) finite-difference scheme, this mesh size represents the practical
limits of resolution in order tF . truncation error be comparable to this rounu off error divided by h? (when
computing second derivatives).

The numerical scheme itself must be fast, highly stable and applicable to elliptic equations of quite
general form. In the work reported here, we adopt the ADI scheme of Peaceman and Rachfcrd and treat all
equations of the problem (i.e. the equations of motion for § and V, and the two mapping equations for x and
0) as '"'quasi-time-dependent'', by writing them in the standard form
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with 3/3t representing a ”fictntuous“ (or artificial) tnme derivative as required by ADI. An optimal value of
the iteration parameter (i.e. time step) was determined'”® to be 0(h).

Boundary conditions for Eqs. (3), (5) and (6) are straightforward [see Eqs. (13)-(16) plus Ref. 6], with
the exception fo conditions at the bubble surface. Here, the necessary boundary values of vorticity are cal-
culated indirectly from the boundary condition {16) on tangentnal stress usnn? a natural extension of the
method for a solid boundary suggested by Dorodnitsyn and Meller'® and israeli'® and utilized previously for a
spherical drop.!” At each new iteration, say n, the new value of the boundary vorticity ;" is determined from
its previous value and the previous value of the tanaential stress, as

- ;n-l . B(‘ZKég?)U:-] R r)n-l) (20)

where the optimal B was found (by trial and error) to be approximately 0.2. When the solution has converged,
of course, the tangential stress will be zero. Boundary conditions for x(&,n) and 0(&,n) at & = 1 must also
be discussed briefly. Both x and 0 cannot be specified directly at & = 1 if the condition 912 = 0 is satis-
fied (i.e. the coordinates are to be orthogonal) as the problems for x and v are then overdetermined, We
would, on the other hand, like to approach the final solution for bubble shape iteratively starting from some
initial guess. This involves incrementing the bubble boundary to create a new shape at each iteration, based
upon the normal stress imbalance at the interface at the preceding iteration. However, in view of the re-
striction on simultaneous specification of x and *, the necessary small displacement of the bubble boundary
must be carried out indirectly rather than specifying increments in x(1,n) and c(1,n) directly. This is ac-
complished by changing the mapping itself {rather than the position of the bubble surface) via incremental
changes in the scale factor h. of the mapping, i.e.

*

, 1/3
h:n+l) - hSn) b . . BG_An (21)
" =1 [e=1 V(voli)
where A" is the normal stress imbalance at iteration n,
.3 . . 4 (in) ( )
3 EC*"Pa* 'nn e (\(n) “(n) (22)
The incremented h l is then used to generate ''equivalent'’ boundary conditionrs for

RS
3 3
> and 2 (23)

g1 te=

ry

The normal stress difference, ), has to be normalized before it is used in (21) for changing the bubble shape
because of the indeterminacy due to incompressibility () contains an integration constant); this indeterminacy
is removed by requiring that the volume of the bubble remain con..ant.

The overall solution algorithm may thus be schematicaliy represented as follows:
(1) Start with an initial guess of the shape. Here we choose a spherical shape, i.e. a circle in a plane
through the axis of symmetry. Hence, with f({,n) = "% as indicated earlier, the mapping is initially x =

Ecos'™ and y = “sin™N, corresponding to polar cocrdinates in the plane through the ax:s of symmetry.

(2} For the given bubble shape and coordinate mapping, compute a new approximation for the dynamic ficlds
(¢ and ~) by advancing the solution of the Navier-Stokes equations one iteration (i.e. one AD! time step).

(3} Calculate the normal stress terms at the bubble surface, and if the condition (17) is not satisfied,

increment the bubble shape by a small amount by incrementing n-(l n) using Eq. (217, and obtaining correspon-
ding boundary conditions for 3x/J: ) and dy/‘,’- '

(4) Calculate a new orthogonal mapping fitting the new bubble shape by solving Egs. (5a,b) with appropri-
ate boundary conditions {in practice we do only one ADI iteration on the mapping equations).

(5) Repeat this process starting with step {2) until convergence is achieved.
Results
We consider two cases here of streaming flow past a bubble.

Case A: Re = 2.47, We = 4.00
fase B: Re = 100., We = 2,00
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The final bubble shape is depicted for Case A in Fig. 1, where we show a portion ot the final coordinate mesh
and the upper half of the bubble boundary in the plane through the axis of symmetry. The flow is from left to
right. The corresoonding streamlines and lines of constant vorticity are shown in Figs. 2 and 3. It may be
noted that the bubble shape is in qualitative agreement with available experimental results.!® Indeed, the
drag coefficient calculated here is 9.17, whereas the measured value at the same Reynolds number but somewhat
larger We was 9.37. It may be noted that the drag coefficient was found experimentally’® to be insensitive to
We for large We. The streamlines and lines of constant vorticity for Case B are shown in Figs. 4 and 5, from
which the bubble shape can aiso be discerned. Again, the flow is from left to right. it (s thus evident that
the bubble is actually flattened to a greater degree in the front and is more rounded at the rear. Shapes of
this general type have been previously observed experimentally for similar values of Re and Ue." although a
shape which is rounded in the front and flattened at the rear, which will occur for larger Reynolds number or

larger Weber number, 1.e. smaller surface tension, is much more common. Each example required about an hour
‘of CPU time on a VAX-11 computer, starting from the irrotational flow pas a sphere as an initial guess in

both cases. The cost is thus on the order of $10.
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Figure 1. Coordinate mesh for Case A.
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Figure 2. Streamlines for Case A.
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Figure 3. Lines of constant vorticity for Case A,

Figure 4. Streamlines for Case B.

Figure 5. Lines of constant vorticity for Case B.
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