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Resonances, Radiation Pressure, and Optical Scattering Phenomena of Drops and Bubbles

P. L. Marston, S. G. Goosby,* D. S. Langley, and S. E. LoPorto-Arione
Department of Physics, Washington State University, Pullman, Washington 69164

Abstract

Acoustic levitation and the response of fluid spheres to spherical harmonic projections
of the radiation pressure are described. Simplified discussions of the £ =1, 2, and 3
projections are given. A relationship between the tangential radiation stress and the
Konstantinov effect is introduced and fundamental streaming patterns for drops are predic-
ted. Experiments on the forced shape oscillation of drops are described and photograpihs of
drop fission are displayed. Photographs of critical angle and glory scattering by bubbles
and rainbow scattering by drops are displayed.

Introduction

This paper summarizes research into resonance, acoustical, and optical properties of
drops and bubbles. In addition to reviewing earlier work, models concerning tangential
stresses, streaming, and the hexapole projection of the radiation pressure are given.

These may be applicable to the enhancement of circulation in containerless conditions. New
experiments are described. The methodology and notation are simplified from that in
earlier papers to manifest the essential results. A review of research into optical pro-
perties of bubbles will be published separatelyl so that research is only briefly sum-
marized (near the end of this paper) in a section which may be read independently of the
others.

Acoustic Levitation

Experiments on a single drop with a stationary (or nearly so) center-of-mass are pos-
sible by counteracting gravitational buoyancy forces with forces due to acoustic radiation
pressure. This technique has been particularly useful for obtaining physical properties of
metastable liquids (for a review of this application see Ref. 2); however, the present
paper is concerned with the mechanics of drops rather than the properties of the constit-
uent fluid. The fluid in the drop %s Tssumed to have a density pj, sound speed cj, and
adiabatic compressibility B; = (p.c%)” It is assumed to be immiscible in the surrounding
host fluid which has correspondiné broperties Cor Pos and 8. The i and o diacritics refer
to the inner and outer fluids, respectively. In th@ diagraﬁs which follow, the z axis is
chosen to be up, antiparallel to the acceleration of gravity. The incident acoustic wave
(neglecting scattering) will usually be taken to have uniaxial flow parallel to the z axis,
The time averaged stresses 8f the incident and scattered w.ves not only levitate the drop,
they also change its shape. These effects are roughly independent for small deformations
and in this section the drop will be assumed to be spherical with a mean radius a with a
center at z = 0.

To obtain sufficient radiation pressure forces to counteract buoyancy, the incident
sound wave approximates a standing wave, which (for the case of uniaxial flow) has the fol-
lowing pressure p(z,t) = p_ cos(kz + kh)sinwt where k = w/c_ = 27/) and z = -h is the loca-
tion »f an adjacent veloci%y node. The average force vecto?aog the fluid sphere due to the
acoustic radiation pressure (which is second-order in ps) is™’

«F> = —2(n/3)a3pzk(Bi—BoD)sinZRh, D = (5q-2)/(2q+l) , (la,b)

where Z is the z axis unit vector, q is p /po, and the effects of the viscosities of the
inner and outer fluids have been neglecte&. The derivation of Eq. (1) assumes that both
X = ka << 1 and X << X where X = aw_/c_ and w_ is the lowest radial (or monopole) reso-
nance frequency of the sphere. Mrhe 18tt8r requTrement is due to the omission of the dynam-
ical effects of resonance; in traveling waves these may be included by taking the appro-
priate case of an expression derived for elastic spheres (see discussion in Ref. 6 of
Eq. 24). {It can be shown that the lowest non-zero root of (l-q)tanX, = X, gives X =
c.X,/c Drops in liquids with [l-q] << 1 have X, = 7/2 and X_ = mey 2c . Drogs il air
hdvd q%> 1, X, = 7 and X_ = mc,/c_. Gas bubblesihave g << 1 ¥nd X 1= (38 _/8,)% << 1.
i m i’ "o m o' i

The cause of the term proportional to B, is illustrated in Fig. 1. Assume that g, >> Bo

and py S P, SO that Bi >> BOD. For 0 < h i A/4, as in Fig. 1, <F> is directed downwlrd

*present address: Naval Undersea Warfare Engineering Station, Keyport, WA 98345.
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Fig. 1. The solid and dashed curves
illustrate p of the incident wave for Fig. 2. Local mean Fig. 3. Streamlines for
wt = 1/2 and 31/2, respectively. stresses on a quad- inviscid low frequency

Quasi-static responses of the sphere rant of the sphere's flow past a sphere and
and the associated instantaneous forces surface. (cashed) the favored
due to Vp :re illustrated on the left. deformation.

since the sphere's volume, V(t) = (4na3/3)[1—B p(0,t)}, is largest during that part of the
cycle when (-Vp) is downward; conversely, <F> }s upward if A/4 < h < A/2, 1In a gravita-
tional field g, there is an equilibrium position where <F> = z4ma3(p -po)g/a provided p. is
sufficiently large. Equilibrium is slightly above a velocity node i® p; < p _ apd slightly
below one if p_ > p,, provided 8 D is negligible. For bubbles, w_ = (3}8 p 92) and if

w > we the phage of "the response is reversed from that shown in Flg. 1. *hg direction of
<F> is reversed so that the bubble is attracted to pressure nodes. There are ordinarily
transverse pressure gradients which make the equilibrium unstable in this case,

For drops of hydrocarbon liquids in water, B, > B D and the equilibrium position is close
to a pressure antinode due to the phenomena illﬁstra?ed in Fig. 1. Levitation apparatus
often have a dependence of,p tragsverse to the z direction which stabilizes the_horizontal
position. Typical designs *7*7 at ultrasonic frequencies require p_ = 2 x 105Pa. The
neglect, implicit ig the dgrivations of Eq.,(1), 08 viscous and thermiil effects requires
that the viscous (5§ and § ) and thermal (&6_ and & ) penetration lengths be << a. These
are given by & = (Y/w)? ald 6_ = (x/w)? whlre, fo} the inner or outer fluid, v is the kine-
matic viscosity and x is the thermal diffusivity. For macroscoeiiodrops the above condi-~
tions are satisfied and there is some experimental confirmation ’ of Eq. (1)11 For micro-
scopic objects, e.g., red blood cells, viscous corrections bzcome significant.

For the levitation of liquid or solid spheres in air, (8, - B D) = -B_ 5/2 and 'Eq. (1)
reduces to the well known expression first derived by King.i2. fhe signoof <F> is reversed
and equilibrium positions are near pressure nodes. Attraction *to the velocity antinodes
occurs because the average reduction in pressure due to the Bernoulli effz2ct is strongest
on that side of the drop. Equation (1) neglects harmonics generated from the nonlineari-

ties of the equi§ions-of-state. Larmonic effects can be significant in gases unless they
are suppressed.

Multipole Projections of the Radiation Pressure

The radiation pressure on the surface of a compressible sphere is distributed nonuai-
formly. To describe the¢ rusponsce cf the sphere, it is convenient to use spherical harmonic
(or "multipole'") projections of the radial stress

R, = 2"d¢ "t o1® )%, (6,¢)sin0de T_(8,0) = 2-1[8<pD = p<v®>] + p<vZ>  (2a,b)
im 0 0 rr rr’ im* "’ ' rr' 7’ p1 p r ’

where 6 is the polar angle illustrated in Fig. 2; ¢ is the azimuthal angle; p,,v, and v
acnote the total (incident + scattered) first-order pregsure, velocity, and radial veloSity;
<> denotes an average over an acoustic period; and the Y are real-valued spherical har-
monic functions described in Ref. 14.** Equation (2b) e¥B1luated for the conditions at the
inner side of the sphere's surface gives the radially outward force/area; evaluated at the

**The notation is simpler than in Ref. 14 and 15 since we first consider unmodulated
incident waves. Correct prescriptions for the Y, with ¢ > |m|#0 are given in footnote 4

of Ref. 14. Due to an error of transcription inlﬂef. 15, the sign of the <vg> term was
printed incorrectly in Eq. (M2).
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outer side, it gives the inward force/area. Hence Eq. (2a)
is the projection of the second-order radially outward
force/area. Derivations of the stress tensor for Eq. (2b)
ure cited in Ref. 15, For incident waves characterized by
uniaxial flows along the z axis, Rg = 0 for m¥ 0 and the
relevant Y are just the ordinary R = 0 spherical har-
monics: Y 9" (4n)-%, Y - 3/4n)§cose, o" (5/16w)§
(3cos26-1)%and ¥59 = (7}961)4(5c0836-3c0563% We retain RIGID

the m subscript to allow for other incident waves. PLATE A

For incident waves with no dependence on ¢ (e.g., the Fig. 4. Reflection of sound
uniaxial case mentioned), the continuity of v_ and p from a rigid plate produces
(both oscillate at frequency w) at the bounda?y give the tangential stresses.

following local radiation stress on the sphere's surfacelb
2
i 0 (BymB5) By dye, g 30 3¢y 2
Tee M - LS A TR 3

where d, = q-1, ¢, is the inner acoustic velocity potential and the derivatives are evalu-
ated wi%h the radial coordinate r = a; Eq. (3) neglects viscous effects. Expressions for

p, at r = a and the ¢, are derived in Ref. 5. If the incident wave is again the standing
w&ve p{z,t) = p cos(ki + kh)sinwt, then Eq. (3) is applicable. From Fig. (2) we expect that
<F> = (4n/3)§a f ; indeed, a laborious computation of R reproduces Eq. (1) for the same
conditions on X ésen though Eq. (1) was originally derivéa by a slightly different method of
averaging.

To obtain those radiation stresses which favor the spheroiggl (or '"quadrupole") deforma-
tion of a compressible sphere, we used £q. (3) and found that

29 .1 42 4 2 2
Rog = Byoll + X521 + L(1-by) + o(xh))sinkn + Rygcos®kn (4)
4
. 2
Ryo = - %P§Bo<5“)*df,z' Ry, = piso(sn)* g%g(%dl_3(2+d3) + 3q - (2+q)b + 0(X2))  (5a,b)

whered, - d,/d,d, =1+2q, d, =2+ 3q, and b = 8 /B = cz/qcz. It is assumed that

X = ka 2251 and that & << Xp: A rémarkable feature of Bq.%(4) ¥s that if q # 1 and the
sphere is not precisely centered on a velocity node, then sinkh ¢ 0 and Rzo does not vanish
as X *+ 0 (that is as A/u + 0). The reason for this is illustrated in Fig. 3. Assume also
that Py 2> @ (as for a drop in air) so that translational motion of the sphere is negli-
gible.” At tRe equator (6 = 90°) the mean pressure is less than at the poles since the poles
are stagnation points. Consequently, there is an outward directed stress on the equator
whicgewill tend to deform a drop into a nearly oblate spheroidal shape as has been obser-
ved. Tgelgquilibrium shape is determined by a balance of R with stresses due to fgrface
tension. ° The pressure distribution of oscillating incomagessible potential flow has
been used to give an independent derivation of Eq. (5a) which does not even require that

Py > h,- This argument has also been extended to traveling waves, where as X »+ O,

R 0 * RY, with p_ equal to the pressure amplitude of the incident wave. The only le which
d& not agcessarl?y vanish as X * 0 have ¢t = 2 or £ = 0O,

Compressible liquid drops (e.g., silicoge 01l or xylene) in water are attracted toward
velocity nodes where the part of R 0= sin“kh is small and R2 is dominated by R"o. For
these drops RY., and hence R, ., arg negative numbers because ?2*q)b dominates th& other
terms in the 62rentheses in E8. (5b). The tendency is again to deform into an oblate spher-
oid but for a different reason than that depicted in Fig. 3, it appears that the attraction
depicted in Fig. 1 of compressible fluids to the velocity node can also deform a drop. If a
drop with 8, > B8_ is somehow constrained (e.g.., with the rgdiation pressure of a secon
wave) to lié neal a pressure node, the term of Eq. (4) « X sin2kh may be dominant if X° is
not too small. Then Ryg is positive and the drop will tend to elongate. This is apparently
due to the repulsion o% highly compressible fluids from pressure nodes by the mechanism
depicted in Fig. 1.

To obtain the hexapole projection, which favors a "pear" shaped deformation of a compres-
sible sphere, we used Eq. (3) and found that Rjg = -pgso(ﬂ/7) X [(3qd;/dadj3) +0(X2))ein2kh.
It is asyumed that X << 1 and that X << X,. The dependences on kh ané X differ from those
of Rzo but the periodicity in h may be argued from elementary considerations.

Equutson (2) and these results for Kyp and Rjg neglect the previously mentioned harmonic
effectsld which are known to alter the <g> exerted on spheres in air when the fundamental
amplitude, pg, is large. Harmonic effects should be negligible when the outer fluid is
liquid or, 1! it is a gas and pg is small.
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Fig. 5. Streaming patterns driven by pro- Fig. 6. An appropriate modulation of
jections of VT with (a) £ = 2, m = 0, and p gives equal oscillating and static
(b) ¢ =1, m=0. terms in the Ryg,.

Tangential Radiation Stresses, the Konstantinov Effect, and Streaming

Let T = éner + $H¢r denote the time-averaged tangential force vector per area of an infin-
itesimal region of surface on a compressible sphere. Here & and ¢ denote the local unit
vectors (at the surface point specified by 6 and ¢) in the direction of increasing polar and
azimuthal angles, respectively. The stress T is taken here to denote the total radiation
stress due to the inner and outer (incident + scattered) acoustic waves. Marston has
shownl® that T vanishes if the first-order (or acoustic) flow is assumed to be adiabatic-
inviscid (or "potential™) flow. Viscous or thermal dissipation near the sphere's surface
produces tangential stresses. The purpose of this section is to comment on these stresses
and on the associated acoustic streaiaing.

The ~onnection between dissipation and tangential stress is illustrated by the '"thought
experiment"” shown in Fig. 4. A sound beam with a mean energy density E and area A' is
reflected off a rigid plate of area A = A'/cosY. The reflected beum has mean energy den-
sity TE where T < 1. The y coordinates at which these energy densities are specified are
much greater than the viscous and thermal penetration lengths for the fluid, §, and 8.
Attenuation due to any absorption in the bulk fluid (which leads in part to "volume' acous-
tic streaming) is neglected here so that T is associated with the losses localized within
the region extending a few penetration iengths from the plate. The incident and reflected
waves have pseudomomentum densitiesl’ of E/c and TE/c where c is the fluid's sound speed.
Time rates-of-change of the incident and reflected pseudomomenia (in their respective direc-
tions of propagation) are EA' and TEA'. The plate feels a tangential radiation force in the
x direction equal to the rate of x-pseudomomentum loss, (1-T)EA'sin¥. Consequently the tan-
gential radiation stress Ny, = E(1-T)(A'/A)sin¥ = (E/2)(1-T)sin2¥. For an inviscid fluid,
T=1and 1 =0 at a rigig plate. An equation similar in form to this expression was
derived by ggrgnisls in a different context. He neglected the possibility of viscous and
thermal boundary layers but attributed (1-T) as due to refracted waves within the (now elas-
tic) reflector in an inviscid fluid. That interpretation would require that the refracted
waves are absorbed within the plate. Also it neglects dissipation external to the plate.

A theory for the dependence of the intensity reflection coefficient T on the angle of
incidence ¥ was given by Konstantinovl? for a rigid plate maintained at a fixed temperature.
For the purpose of estimating the dependence of N,, on ¥ and its maximum value l;,, our
numerical tests show that the following approximat!on (Ref. 20, Eq. 1) to Konstan¥1nov's
T (see Ref. 19, Eq. 53) is applicable

2 ] 2 2 3
2 - 2 lez)/(\l'1 ¥, 4 2 vlvz) (6)
where ¥; = (n/2) - ¥ radians is frequently called the "grazing angle" and ¥, = ¥, + ¥,

where ¥, = k&, and ¥; = (y-1)ké,. Here §, and §; are the penetration lengths of the sur-
rounding fluid as previously deiined and vy is the ;atio of specific heats at constant pres-
sure and volume. There is a minimum T of (2% - 1)3% = 0.176 which occurs for ¥; = ¥,.

Unless the acoustic frequency f = w/2n is quite large (2 1 GHz), most fluids have A >> §,,
and A >> 8. so that the minimum in T usually occurs for ¥ near 80°. For most liquids

¥y, >> ¥; and the thermal boundary condition is not important.

"o 2
I = (Wl + ¥

In the following discussion of T and its influence on liyy, it should be remembered that
for a given fluid, ¥, = /T. Consider the cases of air and water at a temperature of 20°C
and f = 1 MHz: for air, §, = 1.5 um, §; = 1.8 um, and ¥, = 2.4°; for water, &, = 0.4 um,
8;.= 0.15 ym, and ¥; = 0.10°. Numerical computations give n;‘y « ¥, with Mgy = 0.043 E when
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Fig. 8. Far-field scattering for: (a) the rainbow
region nf a xylene drop (a=:00 um) levitated in water,
and (b) the critical region of an air bubble (a=480 um)
in water. In both cases the incident light nad a wave-
length (in water) of 632.8 nm/ng where ng=~1.33. 1In
(a) the scattering angle (denoted by D in Fig. 7)
increases ‘rom left to right; the angular width of the
photograph 7°. The coarse structure (broad vertical
bands) is described by Airy's diffraction integral. In
(b) the scattering angle (¢ in Fig. 11) decreases from
Fig. 7. Rays for a spherical drop left to right (with ¢, near the left edge) and the

of xylene in water which contribute width =14°., The coarse structure in (b) is due to

to rainbow scattering. The dashed critical diffraction and interference. The scattering
profile is when Xgn(t) > 0, ¢ = 2, plane and the incident electric field are perpendicu-
m = 0. lar in (a) and parallel in (b).

¥, = 1°. The sin2¥ factor in Iy, causes M, to occur with ¥; > ¥5. (The ¥; associated with
Ilxy approaches 5° as ¥, = 0; it ¥ncreases wYth increasing ¥; with a slope of roughly 8 until
¥ = 1° and more slowly thereafter.) The maximum in nxy is broad; ﬂxy(? = 45°) = 0.03 E
when ¥ = 1° and N4,(45°) is roughly « ¥,. For ¥ < 70°, Konstantin ™'s T depends somewhat
on ¥,/¥;; however, this dependence is not retained in Eq. (6) and in these estimates.

Herrey21 has measured radiation stresses on a copper plate in water but did not detect
tangential stresses for f = 1 MHz and ¥ < 50°. It may be that for these ¥ the experiment
was not able to discriminate between the lixy and the much larger normal stvess whose magni-
tude = 2Ewhen ¥ = 0. Secong-order acoustic torques on a rigid surfuce caused by tangential
stresses have been observed.

It might appear that the expression for Il y does not allow for the momentum of fluid
streaming near the surface. If the extent of the plate is lengthened, however, so that vis-
cosity transfers the x-momentum of the second-order flow to the plate, the apparent lixy on
the plate is still given by this expression. This may also be shown by considering the
momentum flux across a control surface which encloses both the plate and the confined strea-
ming. One procedure for describing how the first-order velocity v is coupled to the second-
order velocity u is to consider the equation for the second-order vorticity:

-1

d 72y = - B - » x % B - 7 Vx
[ET - wWT)Vxu U(SE+SH+ST}. SR v <Ux(vxUxv)>, § B<y (Pla Vxv)> (7a,b,c)

T

where Sp is Eckart's "volume" source of vorticity?3 which is negligible near the surface in
comparison to the "surface" sources Sy and Sp. This procedure is useful for the description
of streaming near rigid surfaces provided the Reynold's number (for u) is rmall.

An approximation for u which should be useful near the fluid-fluid interface of a drop or
a bubble was introduced by Marston.l4 It is to neglect the source terms in Eq. (7a) and to
solve the resulting homogeneous vorticity equation subject to boundary conditions which
include the tangential (T) and radial (Ryy) radiation stresses on the interface. As
reviewed subsequently, this procedure is particularly useful for describing the response to
oscillating Ry, due to modulated sound. In this section the sound has no modulation and u
is driven only by the T. By inspection of Eq. (7) and extension of the previous momentum
arguments, this procedure should be useful if the spatial extent of the region of signifi-
cant |Vxv| is << a; this will be so if §,, << a which is usually the case of interest. The
resulting u can be written in a series which makes use of multipole projections (V*T)¢p of
the tangential divergence of T [see Eq. (14) and Appendix B of Ref. 14). As noted pre-
1.r1(.n.13113.r,]-'5 for steady flows the coupling coefficients in Ref. 14 were incorrect due to
errors in the assumed toundary conditions (Ref. 14, Eq. C6 and Cl10). These errors have been
corrected in the result given below. For incident acoustic waves with no ¢ dependency
Nar = 0 and Mg, is independent of ¢. This T(®) must be present because of the dissipation
o? sound present at interfaces separating real fluids.29 1Its description may be facilitated
with methods developed for torques.z“

Consider the particular case of llg. = By s8in26 where By is a constant. This llgy has
(V+T)30 = 8(n/5)% Bp/a and all other (V*T);, = 0 as does the torque. The interface is
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Fig. 9. A 2 mm radius drop underpoing forced Fig. 10. A 1.7 mm radius drop splitting
quadrupole oscillations with f = 18 Hz. Here into two drops as a consequence of forced
and in Fig. 10, time increases from leit to quadrupole oscillations with f = 24 Hz.
right and from top to bottom. Here, and in Fig. 9, the z axis is vertical.

assumed to be ideal (free of surface viscosity) and the boundary conditions are continuity
of normal and tangential velocities and the balance of forces. These give the following
velocities inside (i), and outside (o), the sphere: u} = (Gf/25(5§2-3)91n28. ul =
GF(1-F2)(3 cos?6-1), u? = Gr-% sin26 and uQ = Gif=% (1-1r2)(3 cos46-1) where F = r/a, G =
B,a/5(ujy *+ Ug), and y iIs the shear viscosify of the indicated fluid. Resulting streamlines
are illustrated in Fig. 5(a). In addition to acoustic stresses, externally applied electric
fields?% can cause tangential stresses with this dependence on 8. With an appropriate
choice of material parameters, and B, we find that u and the radial stresses caused by u
(described in the next section) agree with those predicted by Taylor's specialized method
after correcting his algebraic errors.2% Thc outer fiuid is unbounded in this computation.

Consider now the case of llg,. = B; sin@ where the only (V*T);n # 0 has . =1 and m = 0.
This stress is predicted to dr{ve the following velocity field: ué = G(2r2-1)sin8, u% =
G(1-F2)cosd, u§ = (G/2)F-3(1+F2)sind, and u® = GF~1(F-2-1)cos8 where G = Bja/3(uy + o).
Interior streamlines are shown in Fig. 5(b); they are the <same as those for smali Reynolds
number flow past a drop calculated by Hadamard and observed by Spells.2® Far outside the
drop, the streamlines are those for a stokeslet, which is the creeping motion generated by a
force concentrated at a point (see Fig. 5 of Ref. 27). This type of tangential stress will
alter the net z directed force on a sphere from that given by Eq. (1).

For a large drop with B; << f, in an incident wave with X >> 1, Eq. (6) and the consider-
ations illustrated in Fig. 4 may be used to obtain the signs of B; and B,. If a traveling
wave is incident from above, it is clear that B; > O due to the Konstantinov effect. In a
standing wave it is to be expected that B, > 0 due to stress concentrations between 8 = 45°
to 85° in opposition with those begween Bg' to 135°; however B; should also depend on h.

In either case, By = pg and B, = pg unless the incident pressure amplitude Pg is large. |[As
with acoustic torques, 22 I r May contain a term=pg when the first order displacement ampli-
tude {p?{Ucw) 2 §,.] The ?otal u will be the superposition of those driven by the individ-
ual (V+T)gm-

Deformations Induced by Steady Radiation Stresses

Radiation stresses induce a mean displacement of the interface of a drop or bubble which
is opposed by surface tension. The mean displacement (averaged over a period of the acous-
tic wave) of the interface from that of a sphere of radius a will be denoted as x(8,¢,1)
and may be described using the following spherical harmonic series:

@ ?
X(8,0,t) = x5(t) + FEI PoXgp + X (V)IY, (6,9) (8)
=]l m=-1
where itm is a time-independent projection and Xtm is an osicillating one. The latter van-
ishes if the wave is not modulated and initial transients are allowed to_decay. It will be
assumed in this section that |x(#,9,t)| << a so that for drops the term! |x0(1)1 is much
smaller than the largest I“Eml' The ¢ = 1 terms represent translations of the sphere's
center which lead to the balance between <F> and buoyancy. The terms representing static
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deformations, the R3, with £ > 1, are proportional to the radiation stresses on a sph re
given by Eq. (2) (thch neglect the deformation) provided the resulting |Xgm| << a. [Cor-
rections to the first-order scattering when X << 1 will be O(xgpn/a) or amaner and will
induce only small changes in the stresses.] A balance of normaT and tangential radiation
stresses at an ideal interface with those due to the surface tension ¢ and the second-order
flow gives

A

Xem

where [ = fu,+(4+1)u;. The magnitude of T can be estimated uaing Eq. (6) and the expres-
sion for fixy. Unless f is so high that &, << ), one expects to have |Ryy|>>|a(V:T)gy| for
% > 1 so that x,;, should be largely determined by the radial stresses. *he deformatigns

X,n may easily éxceed14 the first-order particle displacements (pg/pcw); they are =« p§ pro-
vided lil | << a and (pg/pcw) << 5,. The most noticeable effect of the (V-T),, may be the
second-orser flow descr?bed in the previous section.

= (a%/0(2-1)(242) 1 (R =3a(VT) 1 F /R (4 1) (214 1) (ugtu )], £ > 1, (9

Shape Oscillation Resonances Forced by Modulated Radiation Stresses

Second-order flows and deformations may be greatly enhanced by modulating the incident
acoustic wave at a frequency so as to forge ghape oscillation resonance. The purpose of
this section is to summarize the theory.1 1 There is a slight change of notation from the
previous sections: {, will denote the frequency of the incideut sound in the absence of
modulation (typically f, 2 100 kHz), and f (which is << f,) denotes the frequency of the
shape osciliations. To drive the shape oscillations, the incident wave is a standing wave
of the following form p(z,t) = -2pcsin(wct)cos(}wt)cos(kz+kh) where wo, = 2nf,, k = ws/c,,

w = 2nf, and z = -h is again the location of the adjacent velocity noSe with z = 0 at the
drop's center of mass. The factor (-2) is included only as a matter of convention.l41

That nonlinearities are essential to the generation of the low frequency shape oscillations
is illustrated in Fig. 6. The upper part shows the modulation envelope and the spectrum of
the incident sound which consists of two sidebands, each with an amplitude p,., located at
f.-(f/2) and f.+(f/2). The wave at the carrier frequency f, is suppressed, gue to the modu-
lation. From Eq. (2) it can be shownl3 that the radiation stresses vary in time such that
Rem(t) = Ryml1+cos(wt)] and this has a time dependence and spectrum illustrated in the lower
part of Fig. 6. The radiatiop stress contains a static term and one which osciliates at the
difference frequency of the sidebands. The con:tant ﬁg is given by the Ry, associated with
a steady incident wave of frequency f. and pressure ampTitude Pg * pc/ﬁ. éonsequently

Eq. (4) and the result for Ryq may be used here but with a simp?e substitution. For small
Pcr the tangential stress T w?ll also be proportional to pg[1+cos(mt)].

The theory for the response“'15 is complicated by the nature of the boundary layer dam-
ping. In the present treatment we simplify the results by omitting the small deformation
and flow induced by the oscillating part of (V+T),,. For incident waves with no dependence
on ¢, all projections with m # O vanish. Consequently the subscript m will be omitted. The
oscillating parts of Eq. (8) are given by

x, (1) = X.cos(ut-£), ¥, = %t/ v?ev)t, cang = vy, > 1, (10a,b,c)
W) = foe(2+1)(2-1)(1+2)/2%m1 U0 = w32- a0 2e0? v = a0 Py (llalb,o)

and the static parts, R%,, are given from Eq. (9) by omitting the (V<T). erm. 1In Eq. (lla)
wp is the natural frequéncy (neglecting viscosity) of the ith mode and'T = Lp,+(2+1}ny.
Here o and Y are damping parameters [given by Egqs. (22) and (23) of Ref. :4) which are
functions of &, a, uj, Uy, fj, and py; o is due to the damping of the boundary layer since
it vanishes if either piuy * 0 or polg * 0., For drops surrounded by a liqu:d, y is typi-
cally < aw®® but it is similar in magnitude to a2, It was assumed in the thenry for a and
Yy that the interface was ideal and thus free of surfactants.

From Eq. (10b), ig depends both on the frequency and &th projection of the stress. As
quantified below, when w is slightly less than w}, |xy| is maximized, depending on the
stress distribution, other modes may be driven but at lower (nonresonant) amplitudes. An
example of a pure £ = 2 profile is shown in Fig. 7. It is convenient to omit the £ sub-
script when possible in the following discussion. The phase delay of oscillations £ is 90°
when w is chosen to be the guadrature frequency @&. The prediction is that U(Z) = O which
gives & = w* - (a/2)w*d + o /4. Due to the inertia of the boundary laxgr.l“ 8 ¥ w*, unlike
the case of ordinary damping. The mechanical Q of the ith mode is = w ¢/V(w*) provided uy
and u, are sTall enough to make this ratio somewhat larger than unity. ([Evidently
@ = w*(1-4Q-!) for liquid-liquid systems.] The response amplitude |X| is maximized when
w = B, At this maximum, X = Qx, so the oscillations shculd be enhanced by a factor of Q.
As w/w* + 0, X » X; however, as w/w® + =, X/k + O,

A matrix, Eq. (17) of Ref. 14, makes it possible to compute the oscillating part u. (The
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total u also contains a static part driven by the static part of T.) In this matrix and in
Eqs. (7), (9), (10), and (11), convection of momentum by the second order flow was neglec-
ted. This omission should have a negligible effect on the oscillations provided a Reyrolds
number R = w|X|a/v, and the static part of u are small.

Observations of Forced Shape Oscillations and Rainbow Scattering from Drops

Three groups of experiments on forced resonanss will now be summarized. The reader -
encouraged to refer to the original papers3:8.:9,28 fop details. The first and second . .-  «
made use of properties of scattered light,28 to detect quadrupole (2 = 2) oscillatio» 1in
wkich % was a few um and smaller, A profile of a drop and the relevant light rays a shown
in Fig. 7. Most of the observations were done for drops of benzene and p-xylene in uis-
tilled water. The drops were levitated by a continuous acoustis stunding wave with a typi-
cal frequency of 51 kHz which was << f,. Their radii were in the range 150 um to 1.2 mm and
the corresponding natural frequencies w*/27 were predicted to be 1.1 kHz to 50 Hz.

In the first experiments,3 fo was typically 679 kHz. When X = 0, the interference of
rays labeled 0 and 2 in Fig. 7 produces a fine structure in the scattering visible to the
eye via a telescope. This structure gives the closely spaced vertical fringes in Fig. 8(a).
Conditions on the modulation leading to shape oscillations were mapped by making use of a
blurring of the fringes induced by small X. The conditions on w were consistent with the
forcing of guadrupole resonance. Large X leading to drop breakup were also observed.

The second group of experimentss'28 gave quantitative resonance properties. These made
use of photometric aspects of the coarse structure in the monochromatic rainbow scattering
shown in Fig. 8(a). The "rainbow photometry" technique gave absolute measurements of £ and
relative measurements of X with Ii? < 25 um and 0.5 mm < a < 1.2 mm. Here f, = 217.5 kHz
and p, < 70 kPa. The results are summarized as follows. (i) The dependence of §{ on w is
consistent with Eq. (10c) except that a is larger than calculated and the inferred o is 4%
lower than expected. (ii) With the empirical o and a, the data give a dependence of & on
radius consistent wi&h predictions. (iii) X is maximized when w =~ B. (iv) Provided h is
held constant, X « pc 88 expected. (v) The empirical a gave Q values which were 70% of the
modeled values; however they are consistent with the presence of a film of impurities at the
interface. (It is unfortunate that the drops were xylene8 and benzene.d We have recently
learned that these liquids almost always form nonideal interfaces with water.) (vi) Uncer-
tainty in a conversion factor precluded the absolute measurement of X; however, the estima-
ted |X| are consistent with the Ryo from Eq. (4). (vii) Empirical Q were typically = 7.

In the third group of experiments, Goosby9 and Marston made hi-speed motion-picture
photographs of drops undergoing forced shape oscillations. The drops consisted of a dyed
silicone oil with vy = 2 ¢§ and p; = 0.88 gm/cm3. They were levitated by a 55 kMz wave in a
water-filled resona%or consisting of 50 mm x 75 mm glass microscope slides cemented along
their long sides. A PZT disc (38 mm dia., 13 mm thick) drove both the 55 kHz wave and a
modulated wave with f, = 170 kHz. Drops were levitated and f was adjusted to maximize |X|
for quadrupole oscillations apparent to the unaided eye. Figure 9 is taken from a sequence
in which every third frame was printed giving a time interval between printed frames of
5.7 ms. Timing marks on the film revealed that { = 90° * 9° which agrec: with predictions.
This is noteworthy because here |x|/a = 0.4 and the Reynolds number R = 180. For this mea-
surement kh << 1 and Egs. (4) and (9) predict that & < 0. The photogruphs and timing marks
when combined with Eq. (10b) also give X < O.with £ = 2 and m = O,

As in Ref. 3, it was observed that oscillation amplitudes could be made large enough to
fission the drop. Figure 10 shows the details of the fission process. The time interval
between frames was 1.2 ms. This is a new acoustic technique for splitting drops since it
relies on the modulation of the radiation pressure. Previous acoustic methods tygically
depended on transient cavitation to generate shock wuves which could split drops.?29

The Physical Optics of Light Scattering from Bubbles

Unlike the cas.- of scattering from drop-like objects, the physical optics of scattering
from bubbles (where the refractive index of the scatterer nj is less than that of the sur-
roundings ng) has been explored only recently. This study has emphasized those angular
regions of the scattering where diffraction corrects for divergences predicted by geometric
optics.! Th?se include glory or backscattering,30 forward scattering,l and criticnl angle
scattering.3 +32 The following is only a brief summary, the interested reader should consult
Ref. 30-32 and papers cited therein. In this section, ¢ denotes the scattering angle
(Fig. 11), ) denotes the wavelength of light within the outer fluid, 6, denotes the local
angle of incidence at the bubble's surface for a ray with p internal cRords, and m = nj/n,.
Far-field scattering wiil be described which is that observed by a camera focused on =,

The critical scattering angle, ¢. - 2 arccos(m), is where the surface reflected ray has
an angle of incidence 85 = nrcsin(m‘. Yor ¢ < ¢., geometric optics predicis that reflection
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will be total, however models3l and Mie theory3? show
that is not the case at ¢, due to diffraction. For

¢ < ¢o(=B3° for bubbles in water) there s a coarse
structure to the scattering due to this diffraction
and to the interference with the p = 1 ray. This
structure (visible in Fig. (8b)) hgs an angular
spacing which is typically ¢ (A/a)? rad. Physical
optics models of this structure3? agree with Mie
theory when a 2 4)\. ¥or a bubble and drop of the
same size, each with a >> A, the bubble's coarse
structure is broader than the rainbow's since the
latter's quasi-period can be shown from Eq. 5 of Ref.

tering by bubblesls3l reveal a fine structure due
primarily to the iaterference of p = 0 and 2' rays.
Its spacing is typically £ 0.8 A/a radians. Back-
scattering from bubbles in our model can easily
exceed that irom a perfectly reflecting sphere of the
same size, It has a quasi-periodic structure which
is especially regular for the cross-polarized scat-
tering. Observations of this structure agree well
with theory.3® This structure is evident in Fig. 12

as the concentric rings centered in the ¢ = 180° Fig. 11. Rays for a bubble in water.

direction and spaced at 0.05° intervals.
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