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The stability of the axially symmetric pendent drop
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Abstract

We analyze the axially symmetric pendent drop as it occurs in three different physical
settings: Problem A, constant pressure, fixed circular opening (the siphon); Problem B,
constant volume, fixed circular opening (the medicine dropper); Problem C, prescribed
volume, constant angle of contact with a horizontal plate. As examples, the following
results are verified. For Problem B we show that if the opening is small enough to
support a stable pendent drop with a bulge, then as the exposed volume is increased,
stable pendent drops with both a neck and a bulge will be formed. For Problem C we show
that with increasing volume the profile curves for the family of stable pendent drops will
develop an inflection point before instability arises.

Introduction
We first analyze the equilibrium and stability criteria for each of the prcblems.
Problem A

Here the drop is to protrude downward from a fixed circular opening of radius ¥, held
at the level u = 4@ where u is the vertical coordinate with positive direction upward
and u = 0 is the zero pressure level of the fluid. ( see Figure 1). If X is the
exposed body of the fluid and § is the liquid-air interface with A(Q ) its area, the

potential energy of the configuration is

EO(Q ) = cA(R )} +op g//;dv, (1)
X

g is the surface tension of the liquid-air interface, p is the density of the fluid, and
g 1is the gravitational constant. The condition for equilibrium is that the first variation
of the potential energy 68E _(Q,N) = 0 for all normal perturbations N of @ which vanish
on the boundary. The Euler Equations yield

20 = -ku on R, k =p g/0 . (2)

H is the mean curvature of the svrface measured so that it is positive at the drop tip.
By a suitable scaling we may assume that k = 1. The condition for stability is that the
second variation be positive for all non-trivial normal perturbations .

’zED(Q,N) >0 for all N ¥ 0, but N = 0 on §a. (3)

Prcblem B

As in Pvoblem A the fixed circular opening of radius ¥ lies in a horizontal plane, but
now t- exposed volume is prescribed (see Figure 1). Now the condition for equilibrium is
that the first variation of the energy &E5(Q,N) = 0 for all perturbations N, vanishing
on the boundary and for which the first variation of the volume is also zero. By the
method of Lagrange multipliers we obtain

§(Eg+ MV) (Q,N) = 0 for some constant X (4)

and all normal perturbations N vanishing on the boundary. This yieids the condition

2H = -ku + }' , where k= pg/c and 1)' is a constant. (5)

By a vertical translation of coordinates we may take A' to be zero, reducing (5) to the
=

)
condition (2), and with the vertical coordinate of the opening at the level u a.
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The condition for stability is that
§2(Eg+ AV) (2,N) > 0 (6)

for all non-trivial normal perturbations N, which vanish on the boundery and for which the
first variation of the volume is zero.

Problem C
The drop is now pendent from a homogeneous horizontal plate. The potential energy is now
E(R) = Eq(Q) - o8|I| (7)

where B is a physical constant and |I| is the area of contact of the liquid with the plate.
Setting the first wvariation equal to zero for all volume preserving perturbations yields
the conditions

a) 2H = -ku + X for some constant A, k = pg/o (8)
b) cosa =8

Here o is the angle of contact of the liquid-air interface with the horizcntal plate
measured interior to the fluid. Again we may choose k = 1, and by a vertical translation

of coordinates may set X = 0, with the horizontal plate at a level u = 4. Clearly it is
necessary that |8[/< 1 so that 0 g a g 7. There are no possible pendent drops when a = 7

so that we may consider 0§ o < 7 ( -1< 8 € 1). As in Problem B the condition for stability
is that the second variation 62 (E + V) (Q,N) be positive for all non-trivial normal
perturbations for which the first variation of volume is zero. (see Figure 1).

Problgm 3 Problem B Problem C
(the siphon) (the medicine dropper) (drop from ceiling)

-

Figure 1. The various drop configurations.

Description of the Profile curves

Suitably normalized,the differential equation for the profile curve whose surface of
revolution represents the liquid-air interface (satisfying (2) with k = 1) 1is

a) r'(s) = cos U r(0) =0 (9)
b) u'(s) = sin v u(0) = ug
c) y¢'(s) = -(sin y/r) -u v(0) = 0.

The solutions to this system have been carffully studied by many people. In particular,
I should mention the work of D.W. Thomson~ , F.Bashforth and J.C. Adams2, and recently
v. Concus and R. Finn3.

There is a uniqgue solution, {r(s,x),u(s,«x),p(s,c)}, to the system satisfying the initial
conditions, r(0,x) = 0, u(0,x) = up = ~-2«¢, ¥(0,ck) = 0, where « is the mean curvature at
the drop tip. The solution exists for all s and all « and is analytic in both variables.
We note that u ® 0 gives a solution and that reflection of any solution about the r-axis
yields another sclution. Drops with ugy < 0 represent pendent drops and the solutions
corresponding to ug > 0 represent "emerging" bubbles. We now list other important
properties of the family of solutions.

1. For "small" ug, < 0 the solution can be expressed non-parametrically with u as a
function of r over the entire positive r-axis, and u(r) ~ ug Jo(r) where Jg(r) is the
Ressel functicn of order zero.

2. There is a value uf (uf ¥ -2.5678-) such that the profile curve with drop tip at u}
attains a simultaneous vertical tangent and inflection point at (rf,u%) where ri z .91
and u* € -1.1 . For 0 < r < r* the curve is convex while for r g}eater than ri
the cufve may again be expressed n&n-parametrically u = u(r).
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3. For u§ < uy < 0 the solutions may be expressed in non-parametric for..,, u = u(r),

for all r.

e

4. For ug < u3 the profile curves attain a vertical tangent at a point (rl,ul)
where 0 < ry < r* and u, < u* . The curves form a bulge at this point and r
decreases to"a valu& r., a&d for&s a nec- at (r,,u,) where u, < 0, r and ul are
increasing functions of? u, for wu, < ul with Zim t ry = 0 gnd limi% u, = -=" as
U, approaches -« |

5. For ug << u® the profile curves form a sequence of bulges and necks until it
crosses the "r-axis with r'(s) and wu'(s) both positive from which point on the curves

may be expressed non-parametrically u = u(r) out to r = « .,

6.The first inflection point on a profile curve with tip at u, < 0 occurs at a
point (£,3) where 4 < 0. £ and ( are monotonically increasing functions of u
for u, < 0. If u, < u%, so that the profile curve has both a neck and a bulge,
then the first inflection point lies between the first neck and first bulge.

: i ;
P -
T el (2,0 T < !
Ll (ry,up) N ,
fo a— (r),u,)
-4 -4 1 -4y
I 1 .

Figure 2. Possible drop configurations

Analysis of stability

Our method for determining the stable configurations for each of the problems proceeds
as follows. Take a given profile curve {r(s,R),u(s,R),¥(s,k)}and let (F,4) be a point
on the curve, * = r(§,c} and @ = u(%,f). The profile curve from the drop tip to this
point generates a possible pendent drop whose exposed volume V, can be calculated.

V = volume of drop = rr(ru + 2sin ¥) (10)
The volume gives us a fourth function of the parameters s and «k, V = V(s,x). For each
of our three problems two of the four functions are prescribed. This generates a mapping
from the (s,«x)-piane {the parameter space) into a two-dimensional "control" space. The
analysis of this map determines stability for each of the problems.

Stability for problem A

Here the appropriate map is A(s,x) where it is defined by
Af(s,x) = (r(s,), s,)) . (11)
The "control" space for this problem is the (r,u)-plare. It is easily checked that the
derivative of A , DA(s,x) is invertible when s equals zero. Let O be the set of all

points in the (s,«x)-plane where the derivative is invertible.

Definition. O, contained in O ir that component of O in the parameter space which

contains the 1ines s = 0.

Theorem 1. Every point (§,¢) in © determines a stable pendent drop for Problem A.
( i7e. the drop generated by the profile curve (r(s,R),u(s,R))for 0 < s < §). Any point
outside Ué determines an unstable pendent drop for Problem A,

This theorem is essentially classical.
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It follows that the "control set" A(Og), is an open set in the (r,u)-plane. A point
(2,d) determines a stable configuration for problem A if and only if it is a member of
the set A(Og)l. We now wish to describe the regions Og and A(Og). Since A(Og) is
symmetric about the coordinate axes, we may restrict ourselves to the case r 3> 0, u & 0

Theorem 2. Choose R > 0 and consider the profile curve (r(s,<),u(s,k)), s 3 0.
There 1S a smallest positive value &, such that (s.<) is in Og for 0 < 8 < § while
(8,k) 1is on the boundary of Og. On the interval 0 < s g §, we have r'(s) = cos ¥
positive so that 0 < y < (n/2).

Therefore the corresponding profile curve (r(s,K),u(s,k)) 0 < s < § may be expressed
in nonparametric form u = f(r,f), for 0 < r < # where £ = r(8,) and G = f(f,R).
The point (£,4) lies on the boundary of A(Og). It is the conjugate point to the drop
tip along this profile curve.

Since r'(s) 1is positive, we may use r as an independent variable rather than s.
Points (E,ﬁ)mon the boundary of A(Og) §re determined by the condition that the
derivative DA(r,x) be singular where (r.x) = (r, f(r,x)) and u = f(r,x) is the
nonparametric representation of the curve., This occurs when f (r,«c) equals zero. (i.e.
the point (f,u) is on the envelope TIp , of the family of profile curves.

Theorem 3. The first envelope Tp of the family of profile curves u = f(r,«c)for
Kk »0 Zuo < 0) and r positive, is the graph of a smooth (analytic) function u = e(r)
for 0 < r § oo where ua, is the first positive zero of the zero order Bessel function,
Jo(r) . This function has the following properties.

limit e(r) = -~ as r » 0% , limite(r) =0 as r + qp

The derivative e'(r) is positive on the interval 0 < r < ag with e'(ap) = 0 and
limit e'(r) = +» as r approaches zero.

The entire envelope is thus a smooth curve without self-intersections which possesses
a cusp only at (o0g,0). (see Figure 3)

Consequences.

I. The mapping A(s,x) 1is a diffeomorphism of Og onto its image A{Og) .

I. For (¥,d) in A(Og) where P < r¥ , the profile curve for the stable pendent
drop is convex. For r near ag ( P < &, ) and (F,0) in A(Og), the profile curve
will contain an inflection point, and so the stabie pendent drop loses convexity. (Figure 3)

III. There are no "inaccessible" stable pendent drops for Problem A. The vertical
line r=r (  less than a5 ) intersects A(Og) 1in a connected interval. Thus the
stable pendent drop corresponding to the point (?,4) may be reached from the stable

zero pressure solution ( u ¥ 0 ) corresponding to the point (f,3) in A(Og) merely
by increasing the pressure (p = -u) continuously from 0 to -G . (see Figure 3.)
u u

-2 1 The case P < r% 1 T < ay, ¥ near ag
the envelope, Tp ) Stable pandent A stable pendent
u = elr) ¢ drops are all drop which is
-4 1 convex 1 not convex

-6

Figure 3. The enve'ope [, , stable configurations for problem A
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Stability for problem B.

The constraints are now the rac. us of the tube r, and the exposed volume V. Thus the
control space is the (r,V)-plane and we are led to study the mapping B(s,k) from the
parameter space to the control space defined by

B(s,c) = ( r(s,r), V(s,x)) (12)

As in problem A we let 0 be the open set in the (s,x)-plane where the derivative DB(s,x),
is invertible. Hcwever, since B(0,.) = (0,0) the line s = 0 lies outside the set O.

Fix R and consider the curve B(s,K) for positive s. There exists a smallest positive
value sp, such that the derivative DB(s,R) is invertible for 0 < s < sg but singular
when s = sp . Let (rg, uy) be the corresponding point on the profile curve
(r(s,r),u(s,8)), where rg = r(sg,f) and up = ulsp,®). It is a classical result that
if (»,d) 1is a point on the profile curve prior to (rB'“B) then the corresponding
pendent drop generated by the profile curve up to (r,u) 1s "symmetrically" stable for
problem B, while if the profile segment contains the point (rp,ug) then the generated
drop is unstable for problem B.

Definition. We call the point (rpg,up) the "Volume-constrained" conjugate point
on the profile curve relative to the drop tip.

Note. The axisymmetric pendent drop is said to be symmetrically stable if the second
variation ¢°(Eg + AV)(Q,N) is positive for all non-trivial symmetric normal perturbations
N, of { which vanish on the boundary and for which the first variation of volume is zero.
If the profile curve can be expressed ncon-parametrically in the form r = r(u), then
symmetric stability implies stability. In this case we observe that the angle of
inclination ¢, must be non-negative. However, if the angle of inclination becomes
negative on some portion of the piofilc curve ( the corresponding drop is of re-entrant
type), then the drop is unstable for problem B due to a non-symmetric perturbation.

This fact was noted by D.H. Michael and P.G. Williams %. For an alternative discussion
see reference 5.

Definition. Og 1is the subset of O consisting of all points (s,x) where
0 <s <s where sy depends on «x. It follows that (s,x) determines a stable _
configuration if it is in Og and an unstable confiquration if it lies outside of Og-

We now wish to describe Og and its image B(Og) contained in the "control space’,
the (r,V)-plane.

Theorem 4. Og 1is a connected open set in the (s,x)-plane bounded on the left by the
line s = 0, and on the right by an analytic curve y, which is the graph of a positive

analytic function sp = o(x).

Therefore Og 1is - ven set in the parameter space and B(0Os) 1is an open set in the
control space.

Theorem 5. Let (rg,ug) be the volume-constrained conjugate point on the profile curve
(r(s,<J,u(s,x)). At the point (rg,ug) the derivative, r'(s) is positive. The point
(rg,ug) 1is located between the first and second inflection points on the profile curve.

If the profile curve possesses a bulge (and hence a neck) then (rg,ug) 1is located above
the neck. As « approaches zero the point (rg,up) approaches the point (al,O), where
a)] is a root of the equation rig(r) + 2Jo'(r? = 0. (see Figure 4)

u Ua
T /_Nx\ﬁ »T ‘T /"\ »r P I

3
7_‘}/ — 5,
the point (rg.up)

on various profile curves

|oc

Figure 4. Locations of the volume-constrained conjuaate point
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By Theorem 4 the curve y is an analytic arc parameterized by «. 1Its image B(y) is a
parameterized curve in the (r,V)-plane and, as in problem A, it is the envelope, Ty - of
the family of curves (r(s,x),V(s,k}}. Thus Tp may be expressed in the form (r(x),V(x))
where r(x) = r(o(x),«) and V(k) = V(o(k),«) are analytic functions cf «. Furthermore

limit (r(«),v(x)) = (0,0) as «» =, limit (r(x),V{x)) = (ay,0) as « + 0.

B¥ Theorem 5 we know that a given curve B(s,R), touches the envelope at a point where
r'(s) 1is positive. Thus, in a neighborhood of this point , (rp.,Vp), we may express the
curves B(s,x) non-parametrically in the form V = g(r,c). If tge envelope is smooth it
will be tangent to the family of curves V = g(r,«), and itself would have a non-parametric
representation V = G(r). A point on the envelope of the family of curves V = g(r,«),

is determined by the condition g, (r,x) = 0 while the condition for smoothness is that

e (T,x) # 0. Since the envelope Tp = B(y) is a paramaterized analytic curve it will

be smooth except perhaps at isolated points where the derivatives r'(x) and V'(x) both
vanish. At such points the possibility of a cusp arises. One such cusp occurs at (uoy,0).

Conjecture. That part of the envelope Tp which lies in the half-space V > 0 is a
smooth curve which may be expressed non-parametrically in the form V= G(r), 0 < r < qaj,
with G(0) = G(aj) = 0 and G'(al) = 0. There is a single value r* where G'(r*) = 0.

Computer calculations 6 strongly indicate that the conjecture is valid, but a complete
proof of this is lacking at present. (see Figure 5)

v
ZOAr

10

1 2 3 4 5 %y

Figure 5. The curves B(s,x) and the.r envelope, Ip.

If the envelope is a smooth curve, then it follows that the map B(s,k)is a diffeo-
morphism of Og onto its image B(Og). In this case any vertical line r = ¥ in the
control space would intersect B{Og) in a connected interval. The stable pendent drop
corresponding to (®,¥) 1is accessible from the flat drop u = 0, corresponding to the
point (P,0) in the control space, through a smooth one-parameter family of stable
pendent drops of increasing volume and fixed radius for the aperture until_a maximum
volume is reached. This is the proceedure used by E. Pitts in his paper.

If the envelope were not smooth and contained cusps, then the possibility arises that
the mapping B(s,«) is not a one-to-one map of Og onto its image, or that for some B
the intersection of the line r = ¥ with the set . (0Og) is not connected. In either
case there would exist stable pendent drops corresponding to some control value (¥,7)
which could not be connected to (r,0) in the manner described above.

If we follow the "usual" proceedure of trying to describe those drops which are accessible
from the initial drop u = 0 , corresponding to the point (¥,0)then we have the theorem:

Theorem 6. (a) If T < rY then as we increase the volume from zero there will be
produced a one-parameter family of stable pendent drops for Problem B. Through an initial
range of volumes 0 < V < V;(F), the profile curves will be convex and the drops will
develop a bulge. When the exposed volume reaches Vj({(F), the profile curve will develop
an inflection point at the edge of the drop. With increasing volumes the drops lose
convexity, but before the limit of stability is reached pendent drops possessing both a
neck and a bulge will evolve.

(b) For ® > By where Jj(f;) = 0 the "drop” u s 0 is unstable for problem B due to
non-symmetric perturbations,” For ® < B the drop u = 0 is stable and with increasing
volume the profile curves for the family of stable pendent drops will develop an inflection
point before the limit of stability is reached.

(c) For any radius ¥ , drop height increases monotonically with volume throughout the
range of stability.

The result (a) of Theorem 6 was observed in the limiting case of small drop with
narrow necks.by A.K. Chesters ¥,
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Figure 6. Drop formation for Problem B

Stability for problem C.

The control parameters are now the angle of inclination ¥, and the volume V, giving
C(SIK) = (W(S,K) IV(SIK)) (13)

as our mapping from the parameter space to the control space. Again we let O be the set
of all points (s,x)where the derivative DC(s,x), is invertible and we observe that the
line s = 0 does not meet the set O since C(0,x) = (0,0). For each K, there is a
positive value s_. depending on R, such that DC(s,k) is invertible for 0 < s < s, but is
singular at Sc- Let OS be the set of all points in 0O of the form (s,R) where
0 < s < 8.,

C

Theorem 7. O is an open simply-connected set bounded on the left by the line & = 0
and™on the right ﬁy a curve Y. which is the graph of a positive analytic function
SC = OC(K) where limit CC(K) s zero as «x becomes infinite.

Definition. For a given profile curve (r(s,R)u(s,R)) s 3 0, the volume-constrained
focaT POINt for problem C is the point (rc,uc) on the curve with re= r(sC,E), U= u(sc,ﬁ).

If a profile curve is to generate a physically meaningful configuration for problem C,
it is necessary that the angle of inclination Y, be non-negative along the segment of the
profile curve generating the drop. Otherwise the drop would intersect the face. This
eliminates from consideration the re-entrant drops. Therefore we let O! be the set of
those points (8,R) in OS for which the angle of inclination is positiée, 0 <8 < 8§,

Theorem 8. The profile curve segment corresponding to any member of O! generates
a stable configquration for problem C. 1If the point (§,K) lies .outside tNe closure of
the set Oé, then the generated drop is unstablie for problem C.

Remark: This result which was essentially "classical"” for problems A and B, is
somewhat more difficult for problem C.

In other words, let (r.,u.) be the volume-constrained focal point for problem C on
some profile curve. Suppoge Ghat (r.,u.) comes before the point where the angle of
inclination is zero., 1If (F.U) is & pSint on the profile curve prior to (r.,u.) then
the corresponding pendent drop is stable for problem C, while if (¥,{) comes aster (rc,u )
then the resulting drop is unstable. ¢
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Theorem 9. The volume-constrained focal point (r.,u.) for a given profile curve
lies between the first and second inflection points. ¢t Somes ahead of the volume-
constrained conjugate point for problem B, (rB,uB) .

Theorem 10. The set C(0!) is symmetric about the line ¢ = 0. It is bounded on the
left by the Iine y = 0. The“rest of C(Oé) is bounded by C(yc) where Yeo is the curve
described in Theorem 7.

As in problem B, the set C(y.) is the envelope TI_., of the family of curves
(v(s,x),v(s,x)). By Theorem 9 gach curve in the famgly will touch the envelope at a
point where y'(s) is negative. Therefore in a neighborhood of the touching point
each of these curves may be expressed non-parametrically V = h(y,x). The envelope
is determined by the condition h_ (y,x) = 0. It will be a smooth curve if h_ (y,x) # 0.
If the angle ¢ is positive, thefi av/dy = hy(y,k)= V_/¢ is negative,and whére it is
smooth, the envelope will be the graph of a decreasingsfuﬁction.

Conjecture. That part of the envelope T . , which lies in the first quadrant of the
(y,¥)-plane 1s the graph of a smooth functios Vo= V) 0 <y <mn, with V'(0) = 0,
V' (¢) negative for 0 < ¢ <.m , and V'(mr) = 0.

Computer calculations strongly support the conjecture. 6 If the conjecture is true,
then (as in problem B) the map C would be a diffeomorphism of 0! onto its image, and
the intersection of a vertical line v =90 , with C{0l) would Be a connected interval.
This would imply that as we move vertically along the lifle ¥ = § from (7,0} to
(v, v ) in the control space, the corresponding drops would generate the entire
famil?axof stable pendent drops for problem C. If the conjecture were not true, then
as was the case for problem B, the procedure just described would fail to pick up some
stable pendent drops for Problem C. (see figure 7 .)

\'
204

]
N

the envelope T

4

10

2 37

Figure 7. The curves C(s,k) and their envelope FC
The following theorem identifies those stable pendent drops that are accessible from
drops of very small volume.

Theorem 11. (a) For any angle of contact ¥, 0 < § < n, stable drops of small volume
are convex and resemble spherical caps. These drops are generated by profile cvrves whose
tip is at u,, where u, is iarge and negative. At a certain positive volume V,, where
V, depends on ¥, the profile curve generating the drop will develop an inflection point
aé its edge. This drop is stable. As the volume is increased, further stable pendent
drops are formed, and the inflection point on the profile curves will move to the interior.
With increasing volume the limit of stability will be reached before a second inflection
point appears.

(b) If 9 = 0 all profile curves corresgonding to pendent drops of positive volume
contain ap inflection point. Drops of small volume correspond to small values for u
at e drop tip. As u is decreased stable pendent drops of increasing volume are gormed.
The drop generated by tgat prcfile curve whose tip is at Uy = uf = -2,.5678- is unstable,
(Computer results indicate that the stable pendent drop of maximum volume occurs with
Yo = =1,6 with a volume of 18.4 )

(c) For any angle of contact drop height increases monotonically with volume
throughout the range of stability.

Remark. For example, if the angle of contact y = (n/2), it follows that with

increasing volume and before the point of instability i hed d d
both a negk and a bulge w?ll appegr. ns y 18 reached, pendent drops containing
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Figure 8. Drop formation for problem C

Justification of the stability criterion.

As noted earlier, any re-entrant drop (drop for which the angle of inclination
becomes negative) is necessarily unstable. Otherwise a stable symmetric pendent drop
represents a strong local minimum of energy for any of the problems discussed. A nice
proof is based of the method of H.A. Schwarz in his proof of the isoperimetric property
of the sphere. For example, relative to Problem C we can show the following result.

Theorem 12. Let (¥,Q) be a stable pendent drop for problem C with exposed volume V,
and angle of contact §. Consider any other pendent drop (Y,S) whose contained volume is V.
For each horizontal plane p, below the supporting plane, let A(P) be the cross-sectional
area of YNP, and let V(P) be the volume of the drop lying below the plane P. Let r(P)
be the radius of the circle whose area is A(P). Suppose that the pair (r(P),V(P))
determines a stable pendent drop for problem B and for every plane P. Then the energy
E(Q) (see (7)) is less than or equal to E(S), with equality only if (X,2) = (¥,S).

The method of proof is to first symmetrize (Y,S) producing a new drop of less energy
and the same volume, which we then compare to the given stable drop.
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