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Asymptotic expansions and estimates for the capillary _roblem
Fréderic Paul Brulois

Department of Mathematics, The University of Iowa
Iowa City, Iowa 52242

Abstract

This paper analyzes the asymptotic proverties for small Bond number B of the equilib-
rium capillary interface interior to a circular cylindrical tube vertically dipped in an
infinite reservoir of liquid. (The Bond number B 1is a dimensionless parameter which is
tie ratio of gravitational to capillary forces.) The formal expansion in powers of B of
the solution to the differential equation describing the equilibrium surfar: (as can be ob-
tained by standard perturbation methods) is proved to be truly asymptotic—to all orders
and uniformly in the variable and parameter Yy, the contact angle.

Sequences of general estimates, in closed form, frog above and from below, are also
given for the solution and related functions. The mtll term in these seguences are asymp-
totically exact to order m. An idiosyncrasy of the problem, crucial in obtaining these
estimates, is the absolute monotonicity of the structural function of the system in integral
form.
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Figure 1.
Introduction

Vle consider the classical capillary problem of describinc the equilibrium fluid inter-
face o interior to a circular cylindrical tube vertically dippved into an infinite reser-
voir of liquid (Fig. 1). Let wu(r) be the height (above the level in the outer reservoir)
of the surface o as a function of the distance r to the axis of the tuke. Then ul(r)
is a solution of the following boundary value oroblem

u
%r L = Bu (1)
1+u’” ir
ur(0+) =0 (2)
n
u (1-) = tan(f - ). (3)

In this formulation, the quantities r, u, Yy, and B are dimensionless; Yy is the con-

tact angle of o with the boundary cylinder (0 s ysmn), and B = png/T > 0 is the Bond
number with p the density difference across o, g the gravitational acceleration, R
the radius of the cylinder, and T the surface tension. We refer for background to previ-
ous papers3:4s5/6/10 and, in particular tol!s?, for detailed proofs of most of the theorems.

Boundary value problem (1,2,3) has a unique solution; this soluvtion will be studied indi-
rectly by the shooting method. Set v(r,h,B) to be the unique solution of the following
initial value problem

1 Ve
= = 2h + Bv (4)
J1+v§ r
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v{0,h,B) = 0 (5)
vt(O,h,B) = 0. (6)
v
Set also ¢(r,h,R) = L3 (r,h,8) and s = lin(g-y). (The parameter h is the mean
l+v
r

curvature at the apex of the corresponding surface of revolution and ¢ is the sine of the
slooc angle of v ) Then there exists a unigque h = h(B,s) such that o¢(1,h,B) = g; this
is also the unique h such that the function 2h/B + v(-,h,B) is the solution of (1,2,3).
Consequently, set

u(r,B,8) = BB 4 y(r,niB,8,B). (N

For the above existence and uniqueness results, see, “or example, [6] or [2].

Instead of the initial value problem (4,5,6), we shall use an equivalent integral system
for the pair (o0,v), namely,

r
o(r,h,B) = hr + 2 [ pv(p,h,B)dp (8)
0
r
v(r,h,B) = fo g(o(p,h,B))dp (9)
where the structural function g is given by
« (2D
2n+1
gly) = —L—== I ABLy™ for y| <1. (10)
1-y n=0 2

Note that g is absolutely monotonic on the interval (0,1), i.e., has nonnegative deriva-
tives on all orders on (0,1). This fact is essential in obtaining the estimates below.

The approach will consist in first obuvaining asymptotic results (resp. estimates) for the
solution o(r,h,B), v(r,h,B) of the initial value problem (in integral form), then deriving
from these results similar ones for h(B,s) and then u(r,B,s).

Abgsolute monotonicity and analyticity of ¢ and v

Since (4) is singular at r = 0, we need to show that the pair [(o,v) is locally ana-
lytic at r = 0 and depends analytically on the parameters h and B. This can be done in
a number of ways (cf., for example, Wentell); alternatively!, it can be observed that the
‘one dimensional solution" (&,v) [(i.e., the profile curve of the capillary surface between
two vertical pa:r-llel plates) is a majorant for (o,v). Since (T,V) is soclution of a
regular initial value problem, we conclude, by the method of majorants, that

Proposition 1: For every 1,8 > 0, there exists p > 0 such that the functions
o(r,h,B) and v(r,h,B) are analytic in the dcmain |r] < p, |h| < 1n, |B| < 58 in C°.

Now the absolute monotonicity of g on (0,1) yields that o(r,h,B) and v(¢,h,B) are
absolutelv monotonic in all three variables for positive vaiues of r, h, and B. This can
be checked by power series substitution into system (8,9). Thus the triple power series
expansion of 0 and v at (0,0,0) has nonnegative coefficients. This last fact together
with Pringsheim's Theorem below implies that this expansion is convergent on the maximal
interval 0 <r < p = p(h,B) where o(-,h,B) and v(-,h,B) can be continued &s a solution
of integral system (8,9). Since o(-h,B) and v(:,h,B) are monotonic and bcunded, we ob-
tain convergence up to the boundary of the disc of convergence.

Proposition 2: The power series expansions of o(:-,h,B) and v(',h,B) at r = 0 con-
verge absolutely and uniformly in the closed convex disc |r| = g(h,B}. Moreover
0 <p(h,B) <® and, at r = p(h,Ek), o0(r,h,B) = 1.

Coro)leEx 3: The triple power series exvansions of ¢ and v at (r,h,B) = (0,0,0)
converge solutely and uniformly in the closed domain

D= {(z,h.B) €€ |r] = p(ln],!B]). (11)

Pringsheim's Theorem: Let
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f(z) = L cnzn (12)
n=0

ané R the radius of convergence of power series (12). Suppose S 20, for all n 2 0.
Then 2z = R is a singular point of ¢£.

Asymptotic expansions

Theorem 4: For each m 2 0, the series expansinns in powers of B of the functions
h(p,s), ol(r,h(B,s),B), v(r,h(B,s),B), and u(r,B,s) are asymptotic to order m uniform-
ly in r and s over the entire range 0 < r s1l, -1 <s <1, as B — 0.

Proof (outline): By symmetry, we may restrict ourselves to s 2 0. Recall that h(B,s)
is the unique solution of

o(l,h,B) = s. (13)

Now ¢(1,h,0) =h a-2 o0(1l,-,+) is analytic at each poiant (h,0) where h is in the com-
plex disc lhl < 1. Since ch(l,h,O) = 1, the implicit function theorem implies that

h(B,s) is analytic at each point (0,s) where s is in the complex disc |s] <1. A com-
pactness argument shows that, for each S, with 0 < So < 1, there exists Bo >0 such

that h(B,s) is analytic in |B! s By Is| = s, and

n
h(B,s) = B"E (s) where £ (s) = & 0o, (18)
‘a8

e

n=0

This yields the asymptotic statement for h(B,s) away from s =1, 1i.e., contact angle
Y = 0.

The neighborhood of s =1 requires a special treatment and the use of the parametric
system for the profile curve (parametrized by arclength). The corresponding function
h(B,a) where a = g - Y 1is shown to be analytic in a neighborhood of (O,E) by the im-
plicit function theorem. Thus h(B,s) = h(B,arcsin s}). We conclude, since the function
arcsine is continuous at s = 1.

The other three functions are handled in a similar way. QED.

In particular, §n(l) = {}m §n exists. This settles in the negative the problem of
S -
possible nonuniformity as s»l {(cf. [1]).

In Tables 1, 2, 3, and 4 below, we give the first few coefficient-functions of each ex-
pansion as can be obtained by standard perturbation techniques. Previously Laplace?,
Poisson®, Rayleigh?®, and Concus?® computed formally these asymptotic expansions to various
orders. We should also mention that Siegell® had proved recently the first term of those
expansions to be truly asymptotic.

First we need

g(r,h,B) = ¥ (Br‘) A, (hr) (15)
n=0

v(r,h,B) = r Z {Br°) u. (hr) (16)
n=0

(where the series converge in D) and recurrence formulas for the functions kn and Ho

lo(x) = x an
X
b0 = ey J SRR (18)
L i
1 n
1 X 5, 0 (p) (Xl ---ln ) (&)
u, (x) = g T gf () L ag (19)
n x§n+l {.’ p=0 ‘1:“"1'1:
346



whare the sacond swuwmation in (19) is for & 1
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Table 4. Expansions for the BVP

o(r,h(B,2),B) = sr + B[rzll(sr) - A ts)]

+ BZ[rxl(s)Xi(s) - r3ll(s)li(sr) + r‘xz(sr) - (s8)] + .-

v{r,h(B,s),B) = ruo(sr) + B[r3u1(sr) - rzll(s)ua(sr)]

+ Bz[rzll(S)li(s)pa(sr) - rzlz(s)ua(sr) - % r3li(s)ua(sr)

- r4ll(s)ui(sr) + rspz(sr)] + -

u(r,B,s} =

2h(gas) + v{(r,h(8,s}),B)

Estimates

The coefficient-functions ln and W, are odd, analytic in the unit disc, and abso-

lutely monotonic in the interval (0,1). This yields the following lower estimates by
truncation of the series (15) and (16), for each m 2 0,

m
o(r,h,B) = L (Br?)™A_(nr) (20)
n=0 n

vir,h,B) = r L (Br®)™u_ (hr) (21)
n=0 n
for (r,h,B) € D* = D N [0,%) °.

Using the fact that the right hand s.de of (20) is increasing in h and setting
h=h(B,s) and r =1 1in (20), we get the upper estimate

h(B,3) < ﬁm(a,s) (22)

where ﬁm(B,s) is the unique nonnegative solution of equation

M3

Bnln(h) = s. (23)
0

i

n

Estimates on the other side are obtained by induction on m from integral system (§,9),
using Picard's method of successive approximations and a careful estimation of each iterate.
The proof uses strongly the absolute monotonicity of the function g. For each m 2 0, we
get the upper estimates

m=l 50 2.m :
o(r,h,B) = I (Br9) A (ar) + (Br°)"A (o(r,h,B)) (24)
n=0 b
™l 2 2.m
v(r,h,B) s r L (Br‘) by (hr) +r(Br®)"w (o(xr,h,B)) (25)
n=0 m

for (r,h,B) € D', Using the fact that the right hand side of (24) is increasing in h and
setting h = h(B,s) and r =1 in (24), we get, for m 2 1, the lower estimate

h(B,s) = ﬁm(s,s) (26)
where hm(B,s) is
(i) o, if B™ 2 s/A (s),

tii) the unique nonnegative solution of equation
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g m )
- BA (h) + BT (s) = s, (27}

it ™= s/A (s).

Now, setting h = h(B,s) 1in (20) and (21) and using (2b),

$ 2.n >
o(r,h(B,s),B) > L (Br") X _(rh_(B,s)) (28)
n m
n=0
m 2.n v
v(ir h(B,s),B) = r I (Br°) u_(rh (B,s)). (29)
n=0 r m

Similarly, setting h = h{B,s) in (24) and (25) and using (22),

m-1

o(r,h(B,s),B) = & (BrH)"\ (rf_(B,s)) + (Br)™i (st (30)
n=0 n il m
w1 2,n - 2. m

v{r.,h(B,s},B) = r I (Br°) u (rh (B,s)) + r(Br‘) u_ (sr). (31)
n=0 n m m

Estimates (22,26,28,29,30,31) are valid for m2>1, B
they are all asymptot:ically exact tco order m, as B -

st/

0, 0 x<xs =1, and 0 >r 4 1;
0.

Some of these estimates had been obtained previously by Finn“’S and Siegell’ .
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