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Abstract

A procedure for the finite-difference numerical solution of the

lifting potential flow about any number of arbitrarily shaped bodies is

given. The solution is based on a technique of automatic numerical gener-

ation of a curvilinear coordi:ate system having coordinate lines coinci-

dent with the contours of all bodies in the field, regardless of their

shapes and number. The effects of all numerical parameters involved are

analyzed and appropriate values are recommended. Comparisons with analytic

solutions for single Karman-Trefftz airfoils and a circular cylinder pair

show excellent agreement. The paper serve^ also to illustrate the technique

of application of the boundary-fitted coordinate systems to the numerical

solution of partial differential equations.
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I. INTRODUCTION

Numerical incompressible potential flow solutions for bodies of arbi-

trary shape have generally fallen into three categories:

(1) Integral equation methods, whereby various singular solutions of

Laplace's equation are superposed to construct a solution satisfying the

boundary conditions of the particular problem of interest. This type of

approach is represented by the work in references 1-8. In these methods

singular solutions of Laplace's equation are distributed on the body sur-

face, and perhaps also in its interior, with the body surface represented

by quadralateral or triangular panels. The strengths of the singularities

are then determined such that the superposition of the onset velocity

field and that induced by the totality of the singularities satisfies the

condition of vanishing normal velocity at the body surface at certain points.

This approach has been carried to a high degree of refinement

and is presently capable of treating the flow about multiple bodies of

arbitrary shape. This procedure obviates calculation in the entire flow

field and involves instead the solution of a matrix equation of order

equal to the number of points of application of the boundary condition on

the bodies. The primary output is the surface pressure distribution on the

bodics'and the resulting aerodynamic coefficients. The velocity field can

also be obtained, but this requires the evaluation of the velocity at each

point: in the field from a summation over all the singularities involved--a

time consuming process. The determination of streamlines, or equivalently
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(2) Finite element merhods, as represented by references 9-11. Here

the calculation is carried out in the entire flow field, the field being

divided into finite elements. The flow solution is obtained by applying

an integral variational principle, or other integral relations, over the

aggregate of elements, which leads to a matrix solution of order equal to

the total number of elements in the field. The solution is thus obtained

in the entire flow field. However, not all derivatives can be made con-

tinuous across the boundaries between the various elements.

(3) Conformal transformation, whereby the field is transformed to one

of simple geometry on which the solution is known (two-dimensional flow

only). The classic Theodorsen method (121 is one of this type. A compara-

tive discussion of earlier applications of this and other procedures is given

in [1]. Recently Ives (13) has extended this approach to multiple '.,oodes.

Finite difference solutions have been severely hindered in the pas':

by the problem of fitting curved boundaries into the computational grid.

The use of interpolation between grid points to represent boundary condi-

tions on a curved boundary passing through a rectangular grid may lead to

poor application of the boundary conditions. Since finite difference

solutions depend on continuity of derivatives, the distribution of points

at will in the field leads to difference expressions involving large num-

bers of points, loss of repeat patterns over the field, and hence unreason-

ably complex computer codes.

However, if a curvilinear coordinate system with coordinate lines

:.	 coincident with the field boundaries can be found, these problems vanish,

r'	 and the finite difference approach can give very smooth solutions that do
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not lack continuity of derivatives. The potential flow solution reported

herein is based on just such an approach.

The present finite-difference potential flow solution utilizes a

method of automatic numerical generation of a general boundary-fitted

curvilinear coordinate system having coordinate lines coincident with all

boundaries of a general multi-connected region containing any number of

arbitrarily shaped bodies, whici has been re ported earlier (Ref. 14-16).

The curvilinear coordinates are generated as the solutions of an

elliptic partial differential system with Dirichlet boundary conditions,

one coordinate being specified to be constant on each of tT,e boundaries,

and a distribution of the other being specified along the boundaries. No

restrictions are placed on the shape of the boundaries, which may even be

time-dependent, and the method is not restricted to single bodies or, in

principle, to two dimensions. Coordinate lines may be concentrated as

desired along the boundaries. Procedures have also been developed to

control the coordinate line spacing in the field by varying the generating

elliptic system.

Regardless of the number or shapes of the bodies and regardless of

the spacing of the curvilinear coordinate lines, all numerical computations,

both tb generate the coordinate system and to subsequently solve the Lap-

lace equation for the stream function are done on a rectangular grid with

a square mesh, i.e., in the transformed plane. Although not necessary in

the present application, it is also possible to cause the boundary-fitted

coordinate system to change in time however desired and still have all

computation done on the fixed rectangular grid with square mesh [17).

This allows the curvilinear coordinate system in the physical plane to

.v



deform with a deformin& body, free surface, or any other boundary, keeping

a coordinate line always coincident with the boundary at all times. The

physical coordinate system has been, in effect, eliminated from the prob-

lem, at the expense of adding two elliptic equations to the original system.

Since the curvilinear coordinate system has coordinate lines coin-

cident with 'he surface contours of all bodies present, all boundary

conditions may be expressed at grid points, and normal derivatives on the

bodies may be represented using caly finite differences between grid points

on coordinate lines, without need of any interpolation, even though the

coordinate system is not orthogonal at the boundary. With this method of

boundary-fitted coordinate system generation, the treatment of fields with

complex boundaries and any number of bodies is not inherently more difficult

than problems with simple geometry.

This use of numerically-generated boundary-fitted coordinate systems

is not peculiar to the present application to potential flow, but rather

is applicable to the numerical solution of any partial differential system.

Other applications presently under consideration include viscous incompres-

sible and compressible flow, free surface flows, turbulent flows, and

solid mechanics problems. Some examples of such applications are given

in Ref. 11-20. Documentation of the coordinate system generation procedure

and computer program are given in Ref. 18 and 19. The procedure is briefly

summarized in the next section. The present paper serves also to illustrate

the technique of application of the boundary-fitted coordinate systems in the

numerical solution of Partial differential equations.

II. BOUNDARY-FITTED CURVILINEAR COORDINATE SYSTEM

A. mathematical Construction

Let it be desired to transform the two-dimensional, doubly-connected

region, D, bounded by two closed contours of arbitrary shape into a rectang-

ular region, De , as shown in Fig. 1. The general transformation from



the physical plane (x.y) to the transformed plane (C,n) is given by

E - C(x,y), n a n(x.y). Since the basic idea of the transformation is to

generate transformation functions such that all boundaries are coincident

with coordinate lines, the curvilinear coordinates (&, n) are taken as

solutions of some suitable elliptic boundary value problem with one of

these coordinates constant on the boundaries. The choice of a.suitable

elliptic system is restricted somewhat by the need for certain maximum

principles as discussed in Ref. 18. The system given below allows con-

siderable control to be exercized over the spacing of the curvilinear

coordinate lines in the field:

Exx + Cyy 
W PU,n)	 (la)

nxx '+ nyy a Q(E.n)	 (lb).

with Dirichlet boundary conditions, n a constant = n  on t l , n - constant

n 2 on P2 ; &(x,y) P multiple valued solution with a branch or 4(x,y)

specified (but not constant) on P 1 and t 2 . The curve 
r
  on the physical

plane transforms-to the lower boundary, Pi, of the transformed plane.

Similarly, t 2 transforms to I'2, etc. The right and left, boundaries of the

rectangular transformed plane, r3 and r*, are coincident in the physical

plane. The curve which transforms to these boundaries connects r  and

t 2 and determines a branch cut for the multiple valued function &(x,y).

Thus the functions and all derivatives are continuous across this cut.

The inhomogeneous functions P(C,n) and Q(&,n) are sums of decaying

exponentials that allow coordinate lines to be attracted to specified

lines and/or points in the field or on the boundaries as discussed in more

derail in Ref. 17-19. These functions, along with the derivative transfor-

mation relations are given in the apoendix.

Now since it is desired to do all numerical computation in the rec-

tangular transformed plane, it is necessary to interchange the dependent and

independent variables in (1). Thus using the relations from the appendix



(2a)

(2b)

F

where

Ox t& - 28x 4n
+ Yxnn ' - 

J 2 (x E P(&.n) + xnQ(C.n))

my th - 26y 4n + Yynn ' - 
J 2 (y &P(E.n) + ynQ(^.n))

CI ft xn 2 4. yn2	 Y . X C 2 + y&2

8 - 
x & x n + YEyn
	

J - XVn - xny&

with the transformed boundary conditions, x 	 f l	nl) on ri, y - g,(E.nl)

on C1 x	 f 2 (^,n2 ) on r1, y - g2 (E.n 2 ) on	 (I n the present application,

x and y are nondimensionalized with respect to the airfoil chord.)

The curvilinear coordinate system so generated has a constant n-line

coincident with each boundary in the physical plane. The C-lines may be

spaced in any manner desired around the boundaries by specification of the

C boundary conditions, or equivalently by specification of (x,y) at the

equi-spaced E-points on the n  and n2 lines of the transformed plane.

Control of the spacing of the n-lines may be exercised by varying the

attraction parameters in the functions P(&,n) and Q(E,n) of Eq. (2) as

discussed in Ref. 18 and 19.

The same pracedure for boundary-fitted coordinate generation may be

applied to regions that are more than doubly connected, i.e., have more

than two closed boundaries or, equivalently, more than one body or hole

within a single outer boundary. One possible transformation to the

rectangular field for any number of bodies is illustrated in Fig. 2. Here

the n-coordinate is required to be equal to the same constant on all the

interior boundaries, i.e., on all bod:as in the field. Let all the bodies

be connected by arbitrary cuts and, similarly, one body be connected to

the outer boundary by an arbitrary cut. Since the n-coordinate is equal
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to the same constant on all the bodies, it is, of course, equal to that

constant on the cuts between the bodies also. By contrast, the 4-coordinate

is taken constant on the cut between one body a:..: the outer boundary.

Since the locations of these cuts are not specified, the specification

of n or E as constant on a cut does not overspecify the elliptic problem.

Note that all bodies except one are split into two segments. Each

cut appears twice on the transformed field ')oundary of course, the two

segments corresponding to the two "sides" of the cut in the physical plane

and thus being re-entrant boundaries with the functions of all derivatives

continuous thereon. Thus, x and y are specified on the portions of the

lower boundary of the transformed field that corresponds to the bodies,

and also on the entire upper boundary, corresponding to the outer boundary

in the physical field. The ! vain.ng portions of the lower boundary and

the entire side boundaries are re-entrant boundaries, and thus neither

require nor allow specification of (x,-,► ) thereon. Other arrangements

are also possible as discussed in detail in Ref. 1 8 and 19, two of which

are used below.

Again the elliptic Dirichlet problem (2) is solved to generate the

boundary-fitted coordinates (&,n). All computation, both to generate the

coordinates and subsequently to solve the partial differential system of

interest, are again done on the rectangular field with square mesh in the

transformed plane.

B. Numerical Implementation

The transformed field for a single airfoil. is illustrated in Fig. 3a.

The physical coordinates of I points describing the body surface, (x,y),

provide the boundary conditions along the j - 1 line ., and'those of I

points on the physical remote boundary, usually a circle of radius ten or	 t



11

swore chords, supply the boundary conditions along the j - J line of the

transformed field. Since the side boundaries of the transformed field are

re-entrant, corresponding to the cut in the physical plane, we have f l.j -

f l,j and 
fl+l'j' f 20 

for all J. Note that the values of x and y are not

specified on these ,ide boundaries. All derivatives in (2) are approxi-

mated by second-order central difference expressions ( p & and an are both

unity by construction, the actual values of E and n being immaterial since

cancellation occurs after substitution in the transformed equations.):

(fE)ij 
i 
2 (f i+l,j	 f i-1,j )	(3a)

(tn )
ij 

a 2 (fi,j+l	 f i ^ j-1)	 (3b)

(f Cc ) ij a 
fi+l,j - 2f ij

 + fi-1,j	
(30

(f nn ) ij a f i'j+1 
- 2f ij

 + fi.j-1.	
(3d)

(f&n)ij 
s 
4 (f i+l, j+l	 f i+l, j -1	 f i-I,J +l + fi-l,j-l)	 (3e)

The resulting set of 210-1) nonlinear difference equations, two for each

point (i,j) for i - 1, 2, --, I-1 and J - 2, 3, --, J-1, are solved by

accelerated Gauss-Seidel (SOR) iteration using overrelaxation. The

iteration is considered to have converged when the maximum -absolute change

on the field between iterates is less than a specified value. A range of

acceleration parameters was examined, and a value of 1.85 was nearly opti-

mum for the airfoils considered. After convergence of the solution of (2),

the values of the coefficients ac, 8, y, J, at each point of the field

are stored for use in the solution of the stream function equation.

W

The transformed field for two airfoils is illustrated in Fig. 3b.

he physical coordinates of body #2 at points i - 1 --- I1, •those of body 111

t points i - 12---I3, and finally the remaining points i - I4---I on body
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3	 {

/2 are input as boundary conditions on the j - 1 line in the transformed

plane. The remaining points, i - (I1 + 1)---(I2 - 1) and i n (I3 + 1)---

(I4 - 1), on the j n 1 line are re-entrant points corresponding to the cut

between the bodies in the physical plane. Therefore values at these

points are not specified, but rather the relations f
11 + k , l a f 1 - k,l and

f 11 + k 0 " f
14 - k,2 for k - 1---(12 - I1 - 1) hold. The rest of the

procedure is unchanged from the case of a single airfoil, except that t^wu

difference equations at each of the points (i,l) for i - (I1 + 1)---(12 -

1) are added to the system, so that the to%al number of equations is now

2I(J-1) + 2(12 - I1 - 1).

w



Luation is solved by accelerated Gauss-Seidel (SOR) iteration on the

^ular transformed field.
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III. POTENTIAL FLAW SOLUTION

A. Laplace Equation

The two-dimensional irrotational flow about any number of bodies may

be described by the Laplace equation for the stream function, ^:

xx + 0 
YY - 

0	 (4)

with boundary conditions

V(x,y) - constant on each body	 (5a)

*(x,y) - y cos@ - x a'ne at infinity 	 (5b)

where a is the angle of attack of the free streiim relative to the positive

x-axis. Here the stream function is nondimensionalized relative to the

airfoil chord and the free stream velocity. When transformed to the

curvilinear coordinate system this equation becomes (see appendix)

a*	 - 28^	 + y o	 + J2 [Q(^, n )^	 + P(&,n),P 
Yu 

0	 (6)
0	 nn

where a, 9, y, and J are given above, and the transformed boundary

conditions are, for a single body,

W,n) - ^ o on n - n, (i.e., on T
	

(7a)

W,n) - y(t, n 2 ) cosO - x(&, n 2 ) sin@ on n - n 2 (i.e., on r2)	 (7b)

The uniqueness is implied by requiring that the solution be periodic in

-m < & < a* , nl < n < n2 . a, 6, y, and J are calculated during the genera-

tion of the coordinate system. Equation (6) is approximated using second-

order, central differences for all derivatives, and the resulting differ-
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The solution of (6) on the transformed field is constructed in the

same manner that has been previously described for the solut n of (2).

The single equation (6) replaces the two equations (2a) and (2b), and the

boundary conditions are given by (7). The total number of difference

equations thus is I(J-1) for a single airfoil and I(J-1) + (I2 - Il - 1)

for two airfoils.

B. Velocity

The velocity components are calculated from the equations u 	 y,

V	 x, which in the transformed plane become, from the appendix,

	

U = 
(x4^n - 

xnW )/J	 (8a)

	

V = (y& 
Pn - 

y n V^ & )/J 	(8b)

Velocities in the interior of the field may be obtained from these rela-

tions using second-order, central difference expressions for all deriva-

tives as given by Eq. (3).

On the body surface, ^^	 0, so that these expressions reduce to

u a x&^ njJ and v - y^ n/J. Also, the unit tangent vector the the body sur-

face is given by (see appendix)

	

T = (ix^ + jy&) /vry-

	
(9)

Then the velocity component tangential to the surface is given by

	

vt = v • T - (ux^ + vy^)!^ 	 = J n	 (10)

On the surface, the E-derivatives are approximated by the second-order,

central difference expressions of Eq. (3a), as in the interior of the

field, at all points except those on the cut, i = 1 and i = I, where

second order, one-sided expressions are used. Thus
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(f^)1^1	
Z 

(-f 3 ^ 1 + 4f2 ^ 1 - 3f 1 ^ 1 )	 (lla)

(f & ) I,1 - 2 (f
	 4f - 4f I-1,1 + 3f

l'l )	 (ilb)

The n-derivatives on the surface are approximated at all points by one-

sided expressions. First, second, and third order expressions as follows

were evaluated as discussed in the next section:

(f n ) i,l 0 f 1,2	 fi,l	
(first order)	 (12a)

(f ►1 ) i,l	 2 (-fi,3 + 4f1,2 - 3f
i'1 )	 (second order)	 (12b)

(fn ) i,i	 6 
(2f

1 9
4	 9f1,3 + 18f

1,2
 - llfi'l )	 (third order)	 (12c)

C. Kutta Condition

The value of the boundary value of ^ on the body, t 0 , is determined

by imposing the Kutta condition that the flow leave 'the sharp trailing

edge of an airfoil smoothly. For a cusped trailing edge (zero included

angle) this condition requires only that the velocity epproach the same

value at the trailing edge on the upper and lower surfaces of the airfoil.

For a trailing edge with finite included angle it is required that the

trailing edge be a stagnation point. It was found, however, that the

requirement that the same limit be approached at the trailing edge on the

upper and lower surfaces was superior numerically with both types of

trailing edges. This limit condition was also applied by Giesing (1J

as the Kutta condition with a finite trailing edge in the potential flow

solution using superposj.tion of singularities.

In the present solution the Kutta condition thus was applied by

requiring that the value of the velocity component tangential to the body

surface extrapolated at the trailing edge from neighboring points on the
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upper surface be equal to that extrapolated from neighboring points on the

lower surface. One, two, and three point extrapolations were evaluated,

as well as the simple requirement that the velocity vanish at the trailing

edge, These applicatio ►.o of the Kutta condition are as follows (Here

superscript o refers to the trailing edge, and the other superscripts to

successively distant neighboring points on the body surface as illustrated

in Fig. 4. These points are, of course, equi-spaced ir the transformed

plane.):

vil+)	 v to) = v( l- )	(first order)(13a)

2v(1+) - v(2+)	
v (o) = 2v (1-) - v (.2-)	 (second order)(13b)

t	 t	 t	 t	 t

3v (l+) - 3v (2+) + v (3+) = v (o) = 3v t1-) - 3v (2-) + v (3-) (third order)(13c)t	 t	 t	 t	 t	 t	 t
D. Superposition of Solutions

Since the system to be solved is linear in 4), the solution for a single

airfoil at any angle of attack may be obtained by superposing three compo-

nent solutions: (1) a solution at 0° angle of attack with no circulation,

(2)-a sulution at 90° angle of attack with no circulation, and (3) a

solution with circulation but zero free stream velocity as'done by Giesing

[1). These three component solutions, written iy(i)(^,n), i = 1. 2, 3,

each satisfy Eq. (6), with the respective boundary conditions

dil l	 0 ,i - 1---I

*i1) = y
i J' i = 1---I

•

(14a)

(14b)

^(2) = 0 ' 1 - 1---I
	

(15a)

--.C►



Cp • 1 -	 * 2n
J

:rivative evaluated by one of the difference expressions of (12).

)ndimensional force on the body is given by

F - - jCp nds
	

(20)

(19)

-	
17

^(2)• xi,J ' i • 1---I	 (15b)
i'j

0(3) 	
1 ,i	 1---I	 1	 (16a)

013) • 0 , i - 1--- I	 (16b)

The complete solution with a rbitrary circul..tion then is

*Mnca) - * M (t,n) cosh + ^ (2) (E,n) sine- X^ (3) (t,n)	 (17)

The Kutta condition is then satisfied by choosing the coefficient A such

that the one of Eq. (13a) - (13c) being applied is satisfied, the

tangential velocities being given by Eq. (10) with * from Eq. (17), using a

one—sided difference expression analogous to Eq. (11) for the n-derivative.

Thus it is only necessary to solve the system of difference equations

three times for a given airfoil. The solution at any angle of attack may

then be obtained without re-solving the difference system.

E. Surface Pressure and Force Coefficients

The pressure coefficient at any point in the field may be obtained

from the velocities via the Bernoulli equation, which in the present non-

dimensional variables is

cp - 1 -IV12	 (18)

On the body surface this becomes, from (10),
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where n is the unit outward normal to the surface, and ds is an increment

of arc length along the surface. Since nds - k x dr, where r is the

position vector of points on the surface and k is the unit normal to the

two-dimensional plane, this becomes (see appendix)

dr
F - qr Cp (k x —. )d	 Cp (jx t - iy4)d&

41 4

The unit vector in the direction of the free stream is a - i cos8 + j sine,

and that normal to the free stream is k x a = j cos8 - i sine, so that

^-he lift and drag coefficients are

CL - a • F - i Cp (-x^cose - y& sin8)d&
	

(21 a)

C D = (k x a) • F = Cp Ncose - x sin8)d&	 (21b)

These integrals can be evaluated by numerical quadrature using either

the trapezoidal rule or Simpson's rule, both of ;hich were evaluated during

the course of the investigation. For the former we have

I-1
f dt - 2 (f l ^ l + f l ^ l ) + E f i ^ 1	(first order)	 (22a)

i-2

while for the latter, with I odd,

f d& = 3 (f l,l + f I,l ) + 3 (f 2,1 + fI-1,1) + 3

I-2
f i ^ 1	(second order)	 (22b)i E 3

F. Multiple Airfoils

With two airfoils, the boundary condition of Eq. (5a) becomes

O(x,y) _ ^ 1 on the surface of body #1	 (23a)

*(x,y) = ^ 2 on the surface of body #2	 (23b)

With reference to Fig. 3b and the discussion in the previous section on



the coordinate system solution, these boundary conditions become, it the

transformed field,

O i,l - ^ l	i - I2---13	 (24a)

0i,l - 02	 1 = 1---I1 and i - I4---I	 (24b)

As in the case of the coordina t e system solution,the remaining portions

of the j - 1 line are re-entrant boundaries, sn that points thereon are

treated as field points rather than boundary points. The ^-derivatives

at th,e surface points, I1, 12, I3, and I4, on the cuts between the bodies

are also evaluated using the one-sided expressions of Eq. (11) in the

calculation of the velocity on the surface.

The Kutta condition must be applied on each body. Therefore, a

fourth component solution is added, and the four component solutions each

satisfy Eq. (6), with the respective boundary conditions

(1) - 0	
i - 1---I1, I2---I3, I4---I 	 (25a)

V►i 1J - Yi ^ J	i - 1---I	 (25b)

�(2) - 0	 1 - 1---I1, I2---I3, I4---I 	 (26a)

^i2J - -x i ^ J	 i - 1---I	 (26b)

�(3) - 0	 1	 1---I1, I4---I	 (27a)

^ (3)	 1	 1	 I2---I3	 (27b)
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^(3)	
0
	

(27c)

0 (4 i 	 1	 i = 1---I1, I4---I
	

(28a)

x(41	
0	 1	 I2---I3
	

(28b)

V► (4) = 0	 i = 1---I	 (28c)

The complete solution with arbitrary circulation about each body is

W,n; A 1 , x 2 )	 (1)(E'n)cose + (2) (^,Osine + A 1 (3)(to)

+ a2^(4)(^,n)	 (29)

The Kutta condition is then satisfied by choosing the coefficients al

and A 2 such that the one of Eq. (13a) - (13c) being applied is satisfied

on each body. This requires only the simultaneous solution of two

linear algebraic equations. Generalizing to N bodies, it is necessary to

solve the difference equation system N + 2 times for a given multYple

airfoil system. The solution at any orientation of the free stream may

then be obtained without re-solving the difference system.
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IV. EFFECT OF NUMERICAL PARAMETERS

An extensive study was made to determine the effects of the various

parameters involved on the accuracy of the numerical solution, Numerical

results for the lift and drag coefficients, the surface pressure distribu-

tion, and the stream function contours for two Karman-Trefftz airfoils were

compared with the analytic solutions (Ref. 11) using several values for

each of the parameters that must be chosen in the numerical solution.

The numerical parameters involved in the solution are the following:

Coordinate System Parameters

I - number of points on the airfoil (number of ^-lines).

J - number o:' lines surrounding the airfoil (number of n-lines).

r. - radius of outer boundary.

eCS	
convergence criterion for iteration error norms. (Iteration is

terminated when the maximum absolute change in x and y over the

field between iterations becomes less than eCS)

Pctential Flow Solution Parameters

EPF - convergence criterion for iteration error norms. (See note

with e CS above)

QE - order of extrapolation used in satisfaction of Kutta condition.

(See Eq. 13)

QVK order of approximation in calculation of surface velocity used

in satisfaction of Kutta condition. (See Eq. 12)

Q
VP - order of approximation in calculation of surface velocity used in

surface pressure calculation. (See Eq. 12)

Q I - order of approximation of pressure integration used in calcula-

tion of force coefficients. (See Eq. 22)

21



The comparison of the numerical results with the analytic solutions
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is presented in terms of the following quantities:

AC  - lift coefficient error (numerical minus analytic).

AC  - drag coefficient error (analytic is zero).

N - maximum norm of stream function error (maximum absolute differ-

ence between numerical and analytic values over entire field).

N2 - Euclidean norm of relative stream function error (root-mean-

square over entire field of difference between numerical and

analytic values relative to analytic value).

Finally, results for these two airfoils at the zero-lift angle and a few

other angles are also compared with the analytic solutions.

The parameter comparison cases and the values of the numerical para-

meters used therein are listed in Table 1, while the comparison of results

is given in Tables 2 and 3. The number of iterations and the computer time

required (UNIVAC 1106) are given correspondingly in Tables 4 and 5. The

zero-lift angle results and results at other angles are given in Tables

6 and 7. The airfoil contours are shown in Figs. 5 and 6, and the

points on the contours and the Karman-Trefftz parameters are given in

Tables 8-10. Typical coordinate systems are shown in Fig. 7. Only

a portion of the field is shown in each instance.) In addition, selected

plots of the surface pressure distribution and the stream function contours

in comparison with the analytic solution are presented in P.. 8-17.

In each figure the line is the analytic solution and Lhe symbols are the

numerical results. Finally, the numerical results for a Liebeck laminar

airfoil are given in Figs. 18-21, in comparison with experimental data (Ref. 22).

A. Effect of Point Distribution on Airfoil Contour

As expected, the results generally ilnprove as the number of points on

the airfoil contour is increased. There are, h fever, some exception,

A
i
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and the point distribution is important as well. The cases cited below

with a number of points ending in 1 7' have points spaced at equal angles

on the circle in the complex plane from which the airfoil was generated,

wirh three additional points or half, quarter, and eighth spacing added

above and below the trailing edge.

The pressure distribution for Airfoil N1 with 37 points on the con-

tour agrees fairly well with the analytic solution but with some small

deviation near the slope break on the upper surface (Fig. 8a). With 67 points

the agreement is excellent (Fig. 8b). An increase to 127 points gives no real

improvement and, in fact, a single low point appears at the slope break. The

streamlines also show some slight deviation from the analytic curves with

37 points on the airfoil, particularly below the airfoil, but near perfect

agreement is obtained with 67 points (Fig. 9). The lift and drag coefficient

errors both decrease progressively as the number of points on the airfoil

increases from 37 to 67 to 127 points for Airfoil #1 (Table 2). However, the

Euclidean error norm of the stream function increases slightly for 127 points

after decreasing for 67 points. These trends are the same with Airfoil #2,

except that the case of 127 points is not quite as good as that with 67 points

in any respect except CD (Table 3).

The accuracy deteriorated significantly for both airfoils when the above-

mentioned additional points near the trailing edge weie removed. Thus the

case of 61 points, having only equi-angular spaced points (in the complex

plane), does not give as good agreement in the pressure distribution, the

streamlines, or the force coefficients (Table 2) as does the case with the

additional points (67 points). In fact, the force coefficients show an

order of magnitude improvement for Airfoil ill with the addition of these

points near the trailing edge.
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A similar addition of points between the equi-angular points near the

leading edge, however, does not necessarily improve the solution. Fig. 64 and

10 show that for Airfoil p l the pressure distribution with 43 points has a

pressure dip near the leading edge that does not occur with 37 points or in

the analytical curve. This effect becomes even more pronounced as more

points near the leading edge are added (47 points). The streamlines also

show some deviation from the analytical solution in the vicinity of the

leading edge. The leading edge pressure peak is, however, better repre-

sented with the additional points, as is the small pressure dip that occurs

at the slope break on the upper surface. The overall agreement for the

pressure distribution is somewhat better with the addition of the six

leading edge points to 37 point contour, and this is reflected in an

improvement in the force coefficients (order-of-magnitude improvement in

drag). The second addition of points (43 to 47) was deleterious in all

respects. The addition of points near the leading edge of a contour with

67 points (total of 73 points), however, did not improve the force coeffi-

cients, and the pressure coefficient agreement deteriorated somewhat on the

upper surface near the leading edge and near the slope break (Fig. 8b & c).

With Airfoil 0-^, the addition of the points between the equi-angular

points near the leading edge (73 points total) deepened the low pressure

spike near the leading edge beyond the analytical curve by a large amount,

with a resultant adverse effect on the force coefficients (Fig. 15b & c). Althcugh

the lift did improve somewhat in one case (increase from 43 to 47), it appears

that a more regular spacing of points is appropriate on the smooth por-

tions of the contour. If the spacing is to be decreased near the leading

edge, the variation should be smooth and gradual, especially with leading

edges having large curvature placed at large angles of attack. More closely
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spaced points should be added near the trailing edge, however. It should

be noted that the equi-angular spacing in the complex plane gives an auto-

matic concentration of points near the leading edge, but this concentra-

tion is smooth and gradual.

B. Effect of Number of Lines Surrounding the Body

Both the force coefficients improved somewhat with both airfoils as

the number of lines surrounding the airfoil (n-lines) was increased, the

trend being more marked with the thicker profile of Airfoil f/1. However,

the pressure dip at the slope break on the upper surface of Airfoil O1 was

deepened beyond the analytical, and more of a dip appeared at the trailing edge

(Fig. llb b c). With Airfoil #2 there was little noticeable effect of the decreased

number of lines cn the pressure distribution or the streamlines. Thirty

lines is clearly adequate for l% accuracy in lift with the outer boundary

located at 10 chords.

C. Effect of Location of Outer Boundary

Since the boundary conditions applied on the outer boundary are

those appropriate at infinity, the outer boundary must be sufficiently

distant from the body for accuracy. This effect was analyzed by changing

both the outer boundary radius and the number of lines surrounding the

body, so that the average mesh spacing would be -inchanged. As expected,

the force coefficients do improve as the outer boundary recedes. However,

10 chords was adequate for l% accuracy in lift. A decrease in the outer

boundary radius to S chords produced deterioration in both force coeffi-

cients. The use of a more distant outer boundary definitely requires an

increase in the number of lines surrounding the body.

The effect of an increase in the outer boundary radius from 10 to 20

chords was not discernable in the pressure distribution and streamlines
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for Airfoil 02. The effects with Airfoil N1 (Fig. 11) were similar to those

of an increase in the number of lines surrounding the body. This results from

the natural tendency of the coordinate system to expand outward from the body,

so that a simultaneous increase in the outer boundary radius And the number

of lines surrounding the body results in a closer line spacing near the body,

even thougk the average spacing is unchanged.

D. Effect of Order of Extrapolation Used in Kutta Condition

The use of two or one point extrapolation of the velocity to the trailing

edge in application of the Kutta condition resulted in a progressively deeper

tow pressure spike at the trailing edge with Airfoil #1 (cf Fig. 8c b 13b).

This spike is removed with three-point extrapolation. This effect was less

pronounced with Airfoil N2 since the trailing edge was less sharp. The use

of the requirement that the trailing edge be a stagnation point gave about

as good results as the use of the extrapolation to the trailing edge with the

less sharp trailing edge of Airfoil 112 (cf Fig. 8c b 13a). Three-point extra-

polation is the most appropriate condition, as is indicated by the AC  values

for Airfoil #1 in Table 2.

E. Effect of Order of Velocity Difference Expression Used in Kutta Condition

A first-order expression for the velocity is not sufficiently accurate

and produced a low pressure spike at the trailing edge with Airfoil 111. This

spike was removed by the use of a second-order expression (Fig. 8c). Further

increase in order gave no improvement (Fig. 13d). Again these effects are

less evident with the less sharp trailing edge of Airfoil 112.

F. Effect of Oro.r of Velocity Difference Expression Used in Pressure Calculation
Calculation

Here again a first-order expression does not give an accurate pressure

distribution with Airfoil #1 (Fig. 14a). A second-order expression, however,
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is quite accurate, (Fig. 8r.) and little further improvement occured with an

increase to third-order (Fig. 14b).

G. Effect of Order of Pressure Integration

Perhaps surprisingly, Sim son's rule (second-order) did not give as

accurate a pressure integration as did the first-order trapezoidal rule.

This probably is a result of the fact that although the points on the

contour are equally spaced in the transformed plane, so that Simpson's

rule can be applied, they are not equally spaced in the physical plane.

Therefore, the truncation error term of the Simpson integration will be

dependent on the rate-of-change of the physical coordinate spacing, so

that, although the order is second, the coefficient may be high with a

result;.nc loss in overall accuracy in regions of rapidly varying spacing.

H. Recommended Values

In view of the present results, 1°16 accuracy in lift can be achieved

with the following values for the numerical parameters:

(a) 37 points on the airfoil contour, spaced with smooth and gradual

concentration near the leading edge and with a few more closely

spaces: points added near the trailing edge.

(b) 30 lines surrounding the airfoil.

(c) Outer boundary at `0 chords.

(d) Coordinate system convergence criter{a of 10-4.

(e) Stream function convergence criteria. of 10 -4.

(f) Three-point extrapolation to trailing edge in satisfaction of

Kutta condition.

(g) Second-order difference expression for velocity.

(h) Trapezoidal pressure integration.

sW
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These values are the minimum considered adequate for 1% accuracy in

lift. The changes in force coefficients encountered with more stringent

values are summarized in Table It for Airfoil O1.

Items (f) - (h) are adequate for even higher accuracy. However, items

(a) - ( c ) must be increased, and items (d) - (e) decreased for higher

accuracy. A change of the convergence criteria to 10-5 is-relatively

inexpensive in computer time. However, computer time varies approximately

linearly with the number of points on the airfoil and quadratic:ally with

the number of lines surrounding the airfoil. More points on the contour

will obviously be required with more irregularly shaped bodies. The

computer time is not significantly affected by the shape with the same

number of points.
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k	 V• MULTIPLE-BODY SOLUTIONSx

In the present study, the numerical results for potential flow about

two circular cylinders, aligned such that a line connecting the circle

centers is normal to the uniform free stream velocity, are compared with

the analytic solution for the pressure distribution on the cylinder

surfaces (Ref. 23). The cylinder axes were separated by three radii in

all cases. The outer boundary was located at 20 cylinder diameters from

the mid-point between the cylinders in all, cases, and there were 40 n-lines

surrounding tie bodies, except as noted.

As noted above, there are a number of different possible arrangements

in which the boundaries in a multiple-body field may be distributed around

the rectangular boundary of the transformed field. Many of these arrange-

ments are illustrated in Ref. 18-19. Three such arrangements were considered

in the present study (Fig. 22).

If the generating partial differential system for the curvilinear

coordinates is simply the pair of Laplace equations (P - Q Q 0 in (2)), then

the coordinate lines have a tendency to be attracted, as it were, to convex

portions of the boundary and repelled from concave portions. This presents

a problem with the two-body segment arrangement shown in Fig. 22a, for,

with the n-coordinate having the same value on both bodies, the cut

connecting the bodies must also be a line of the same n-value. Conse-

quently, a concave region develops at the intersections of this cut with

the bodies. The resulting coordinate system is shown in Fig. 23a, and the

results for Lhe surface pressure distribution in Fig. 23b are grossly in

error because of the large truncation error that occurs with the widely

spaced coordinate lines in the regions of the cut intersections.

29



small an angle between coordinate lines increases the local

30

However, coordinate system control, as discussed above, can be used

to attract the coordinate lines into these concave regions. As noted above,

it is possible to attract the coordinate lines to specified lines and/or

points on the boundary and in the field. Various different combinations

of line and point attractions were considered and representative results

are shown in Figs. 24 and 25.

In Fig.. 24a-e, the coordinate systems and pressure distributions

are shown for five amplitudes of point attraction of the n-lines (sur-

rounding the bodies) to the cut intersections. The attraction decay factor

(see appendix ) was 0.5 in all cases given. Too large a decay factor is

ineffective, while too small a factor extends the attraction beyond the

local region of interest. The pressure distribution changes drastically

from that from that obtained without attraction (Fig. 23) as the attraction

amplitude is initially increased. The changes become progressively smaller

as the amplitude increases farther, with very little change from an

amplitude of 500 to one of 2000. (Although the best .fit to the analytic

solution occurs with an amplitude of 250, this is only a fortuitous

circumstance,since the results are still changing with attraction amplitude

at that point.) This progressively diminishing effect of increasing

attraction amplitude is also evident in the force coefficiencs normal to the

free stream given in Table 12.

Comparison of Figs. 24d and 24f shows the effect of decreasing the

number of E-lines passing between the bodies. The solution is not greatly

affected by the decrease in the number of lines except in the region of

the cut intersections, where the angle between the C-line emanating from

the cut intersection and the n-line between the bodies is smaller. Too
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error, so that it is necessary to avoid having the C-line emanating from

the cut intersection deviate greatly from 45°. This means that the point

spacing on the cut between the bodies should be nearly the same as that on

the body contours in the neighborhood of the cut intersections. Table 12

shows that an addition of four lines between the bodies, by contrast,

had little effect.'

This need for relatively equal point spacing on the body contours and

the cut between is further illustrated in Figs. 25b and 25d, where, with

fewer points on the bodies, the smaller number of lines between the bodies

gives better results. The force coefficients results in Table 12 show a

further deterioration as still more lines are added between the bodies.

This figure also shows that, with this smaller number of points on the

bodies, the increasing attraction produces little change from an ampli-

tude of 500 to one of 1000, but a larger change then occurs at a larger

amplitude. Comparison of the force coefficients in Table 12 also shows

that 31 points on each body is not enough for accuracy.

That the addition of more points on the body contour in the neigh-

borhood of the cut intersection is inferior to uniformly spaced points is

illustrated in Figure 26a. Here the additional closely spaced points on

the contour have caused the &-line angles on the contour near the cut

intersections to become too small. Some control over these angles can be

exercised by attracting the &-lines, as well as the n-line to the cut

intersections, the results of which are illustrated in Figure 26b. How-

ever, the curvature of the &-lines in the fieli near the cut is now quite

large, and truncation error results therefrom. Other combinations of

attractions were also considered, and some results therefor are given in

Table '•2.
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Table 12 also gives the force coefficients for some cases with closer

and more distant outer boundaries and cases with fewer n-lines surrounding

the bodies. These results show only small differences with 61 points on

the bodies.

Two other coordinate system configurations are shown in Figs. 27 and

28. That of Fig. 28 is similar to a bi-polar coordinate system and pro-

duces a near-perfect comparison with the analytic results on one cylinder

with 61 points on each body. With 31 points, however, the accuracy is not

quite as good. Since this configuration has different coordinate values

on the two bod As, cut intersections of the type discussed above do not

occur, and the coordinate system is much more regular near the bodies.

However, in contrast to the previous configuration, the results on the

other cylinder are not quite identical. This appeared to be a bi-stable

situation, with excellent comparison occuring on the other cylinder in

some cases, a result, perhaps, of the SOR iteration sweeping the field in

one direction. The force coefficient of the previously considered config-

uration #1 with 61 points on the contour (0.6534) iz within 3% of the essentially

exact value (0.6331) obtained from Fig. 28b. *The results of the configuration of

Fig. 27 could be improved by coordinate system control as used above.

Finally, Figs. 29 and 30 show the coordinate system and potential

solution for a multiple airfoil consisting of two Karman-Trefftz airfoils,

one being positioned as a separated flap. Coordinate system control has

been used to attract the coordinate lines to the airfoils and to the cut

between.

A
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VI. CONCLUSION

The use of body-fitted curvilinear coordinate systems allows numerical

potential flow solutions for fields containing any number of bodies of

arbitrary shape to be produced by finite-difference methods essentially as

easily as that about single simple bodies. The ccmputer code is not

dependent on either the number or the shapes of the bodies, so that

different bodies can be treated by simple changes in the input. Further

investigation of the control of the coordinate system is presently in

progress with the purpose of improving the coordinate configuration in

concave regions created by cut intersections with members of multiple-

body combinations. Multiple-body viscous solutions are also under

development.

I



APPENDIX

DERIVATIVES AND VECTORS IN THE TRANSFOMED PLANE

Derivative Transformations

f  w (ax ) Y,t ' (Y n f^ - Y f n ) / J	 (A.1)

fY 
• (af)x,t	
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- xn f^)/i	 (A.2)
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2 + Qf n + Pf d 	(A.4)

aY2

Unit Vectors in the Transformed Plane

Let n n be the unit vector normal to a line of constant n and T n be

the unit vector tangent to an n-line. Utilizing, similar definitions for unit

normals and tangents to &=constant lines, there results

vn
n n = 

I- I - 
(—Y^i + xW/ry
	 (A. 5)

vE

nI 
V^ 

I a (Y n i - xn ^ ) / ►^a	 (A. 6)
ftE
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tE = n
C
 x k --(x n i + y nj) / 3a	 (A.8

where i, j,. and k are the unit vectors parallel to the conventional cartesian

coordinates x, y, and z, respectively. Vector components along the tangents

and normals to lines of constant C and n are obtained by dotting the desired

vector with one of the above. For example, if F - F1  + F 2j, then the

compon€nt tangent to an n-line, F T	 is given by
.n

FT - F - T  = (x &Fl + y &F2 )/ r	 (A. 9)

.n

Similarly, directional derivatives of a scalar function f in the above

directions can be obtained from the inner product of the gradient of f, of,

and the appropriate unit vector. For example, the directional derivative

normal to an n-line is

af

an . nn- 	 of - (Y f n —
 

Of )/J ►^
n

Integral Transformation

Let S be the closed cylindrical surface of unit depth whosf

is specified by the contour r  in the physical plane (Fig. 1), and wt

outward unit normal at any point is n(x,y). (Note that this is the i

to the n-line coincident with r l .). Then,

where n  is the value of n on rip Fmin and [max are the minimum and r

values of &, and x & and y, are evaluated along nl.

&max

r	 I = 1f(x,Y)n(x,y)dS - ff ( x(&,nl),Y(&,nl)l(x^j - y&i)d&

^_	 r	
S	

&min



36

Coordinate System Control

The effecL __ changing the functions P(&,n) and Q(&,n) on the coordi-

nate system is discussed in some detail in Ref. 18 and 19. One particularly

effective procedure is to choose P and Q as exponential tc n,.s, so that the

coordinates are generated as the solutions of

_ n

xx + ^yy	
iEl 

a i sgn(E - E i )exp(-c i l& - fii)

M

- E bj sgn (& - ^j )exp (-d^ (E - ^ j ) + (n - nj ) )
j-i

P(&,n)

	

	 (A.12)

n

nxx + n	 • - E a  sgn(n - n i )exp(- c { In - ni l)
yy	 iMl

m
- E bj sgn(n - n j )exp(-d j (	 (n

J•1

r

Q(E.n)
	

(A.13)

where the positive amplitudes and decay factors are not necessarily the same

in the two equations. Here the first terms have the effect of attracting ^-lines to

the & - &i lines in Eq. (A.12), and attracting n-lines to the r, = n  lines in

(A.13). The second terms cause ^-lines to be attracted to the points (Fj,nj)

in (A.12), and n-lines to be attracted to the points (y n j ) in (A.13).

Several examples of the use of coordinate system control are given in Ref.

18 and 19.
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TABLE 2

Comparison with Analytic Solution - Airfoil N1

Case AC  4&CD N„

Points on Body

37 16 -0.0087 0.0102 3.35-01
43 2 0.0059 -0.0008 3.29-01
47 3 0.0120 -0.0212 3.29-01
61 6 -0.0577 -0.0325 3.28-01
67 20 -0.0019 0.0040 3.37-01
73 5 0.0019 -0.0046 3.29-01

127 1 0.0006 0.0017 3.40-01

Points to w at 10

30 32 -0.0080 0.0038 3.37-01
60 7 0.0032 -0.0026 3.78-01

Points to W , - at 20

30 12 -0.0169 0.0078 3.65-01
60 8 -0.0057 0.0010 3.64-01

Location of m , Step Size 10/60 avg.

5 11 0.0296 -0.0067 3.08-01
10 7 0.0032 -0.0026 3.78-01

Location of m , Step Size 20/60 avg.

10 32 -0.0080 0.0038 3.37-01
20 8 -0.0057 0.0010 3.64-01

Location of m , Step Size 40/60 avg.

20 12 -0.0169 0.0078 3.65-01
40 9 -0.0100 0.0028 3.86-01

Location of -, 30 Points to m

5 11 0.0300 -0.0067 3.08-01
10 32 -0.0080 3.0038 3.37-01
20 12 -0.0169 0.0078 3.65-01

N2

2.06-03
3.98-03
4.31-03
4.44-03
1.31-03
2.07-03
9.96-03

1.21-03
1.38-03

5.65-03
7.89-04

2.10-03
1.38-03

1.21-03
7.89-04

5.65-03
4.85-04

2.10-03
1.21-03
5.65-03



TABLE 2 (CONTINUED)

Case AC 
L

&C D Nee N2

Location of -, 60 Points to
41

10 7 0.0032 -0.0026 3.78-01 1.38-03
20 8 -0.0057 0.0010 3.64-01 7.89-04
40 9 -0.0100 0.0028 3.86-01 4.85-04
80 10 -0.0120 0.0041 3.56-01 1.11-03

Coordinate System Convergence Criteria,	 37 Points on Body
,A

10-2 13 -0.1691 0.0049 3.42-01 3.80-03
10-3 14 -0.0118 0.0108 3.36-01 3.14-03
10-4 15 -0.0108 0.0103 3.35-01 2.09-03
10-5 16 -0.0087 0.0103 3.35-01 2.06-03

Coordinate System Convergence Criteria, 67 Points on Bodv

10-3 18 -0.0345 0.0035 3.38-01 1.28-03
10-4 19 -0.005i 0.0040 3.37-01 1.24-03
10-5 20 -0.001.5 0.0040 3.37-01 1.31-03

Stream Function Convergence Criteria

10-2 21 -0.0687 -0.1066 3.32-01 2.14-02
10-3 22. 0.0548 -0.0084 3.37-01 1.22-03
10-4 23 -0.0096 0.0047 3.37-01 1.26-03
10-5 20 -0.0019 0.0040 3.37-01 1.31-03

Order of Extrapolation for Kutta Condition

24 -0.0044 -0.0046 3.29-01 1.16-02
2 25 0.0027 -0.0046 3.29-01 1.93-03
3 5 0.0019 -0.0046 3.29-01 2.07-03

Stagnation
Point 26 0.0581 -0.0050 3.30-01 1.18-02

Ordei of Velocity for Kutta Condition

1 27 -0.0814 -0.0041 3.28-01 6.61-03
2 5 0.0019 -0.0046 3.29-01 2.07-03
3 28 0.0083 -0.0047 3.29-01 3.08-03

Order of Velocity for Pressure Calculation

1 29 0.0722 0.0109 3.29-01 2.07-03
2 5 0.0019 -0.0046 3.29-01 2.07-03
3 30 0.0084 -0.0015 3.29-01 2.07-03

Order of Pressure Integration

1 5 0.0019 -0.0046 3.29-01 2.07-03
2 -71

.0 0.0040 -0.0087 3.29-01 2.07-03
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TABLE 2 (CONCLUDED)

Note: Case numbers correspond to those of Table 1.

Legend:

The comparison of the numerical results with the analytic
solutions is presented in terms of the following quantities:

AC 	 - lift coefficient error (numerical minus analytic)

ACn - drag coefficient error (analytic is zero)

Nr=	 - maximum norm of stream function error (maximum absolute
difference between numerical and analytic values over
entire field)

N2	- Euclidean norm of relative stream function error (root-
mean-square over entire field of difference between
numerical and analytic values relative to analytic
value)

r
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TABLE 3

Comparison with Analytic Solution - Airfoil #2

Case	 AC 	 AC 	 NM

Points on Body

43 2 -0.0633 0.2135 1.11-01
47 3 0.0023 0.2487 1.10-01
53 4 0.0086 0.2580 1.09-01
61 6 -0.0741 -0.0211 1.57-01
67 20 0.0475 -0.0250 3.13-02
73 5 0.0890 0.0990 1.11-01

127 1 0.0973 -0.0197 1.11-01

Points to a , m at 10

30 32 0.0433 -0.0253 3.93-02
60 7 0.0307 -0.0217 4.11-02

Points to - at 20

30 12 0.0412 -0.0280 4.67-02
60 8 0.0171 -0.0159 4.47-02

Location of Step Size 10/60 Avg.

5 11 0.0929 -0.0423 4.68-02
10 7 0.0307 -0.0217 4.11-02

Location of m , Step Size 20/60 Avg.

10 32 0.0433 -0.0253 3.93-02
20 8 0.0171 -0.0159 4.47-02

Location of -, Step Size 40/60 Avg.

20. 12 0.0412 -0.0280 4.67-02
40 9 0.0156 -0.0146 5.45--02

Location of m , 30 Points to °°

5 11 0.0929 -0.0423 4.68-02
10 32 0.0433 -0.0253 3.93-02
20 12 0.0412 -0.0280 4.67-02

Location of m , 60 Points to

10 7 0.0307 -0.0217 4.11-02
20 8 0.0171 -0.0159 4.47-02
40 9 0.0156 -0.0146 5.45-02
80 10 0.0176 -0.0151 6.86-02

t7

N2	
t

2.96-02
2.31-02
7.21-03
6.68-03
1.04-03
2.05-02
1.71-02

2.63-03
2.02-03

1.48-03
2.25-03

6.86-03
2.02-03

2.63-03
2.25-03

1.48-03
2.23-03

6.86-03
2.63-03
1.48-03

2.02-03
2.25-03
2.23-03
5.22-03



TABLE 3 (CONTINUED)

Case	
Ac 
	 AC 
	 NCO

Coordinate System Convergence Criteria

10-2 17 -0.4180 -0.0204 4.81-02 6.40-03
10-3 18 -0.0619 -0.0245 3.09-02 1.37-03

10-4 19 0.0430 -0.0249 3.13-02 8.89-04
10-5 20 0.0475 -0.0250 3.13-02 1.04-03

Stream Function Convergence Criteria

10-2 21 0.6407 -0.2199 4,01-01 3.62-02
10-3 22 0.1192 =0.0620 9.32-02 4.18-03

10-4 23 0.0487 -0.0255 3.92-02 2.20-03

10-5 20 0.0475 -0.0250 3.13-02 1.04-03

Order of Extrapolation for Kutta Condition
1 24 0.0857 0.0989 1.11-01 2.05-02

2 25 0.0902 0.0991 1.11-01 2.05-02

3 5 0.0890 0.0990 1.11-01 2.05-02
Stagnation

Point 26 0.0881 0.0990 1.11-01 2.05-02

Order of Velocity for Kutta Condition

1 27 0.1150 0.0997 1.18-01 3.62-03
2 5 0.0890 0.0990 ?.11-01 2.05-02

3 28 0.1057 0.0995 1.15-01 3.11-03

Order of Velocity for Pressure Calculation

1 29 0.02401 0.1397 1.11-01 2.05-02
2 5 0.0890 0.0990 1.11-01 2.05-02

3 30 0.0744 0.0917 1.11-01 2.05-02

Order of Pressure Integration

1 5 0.0890 0.0990 1.11-01 2.05-02
2 31 -0.2298 0.0879 1.11-01 2.05-02

Note: Cose numbers correspond to those of Table 1.

Legend:

The comparison of the numerical results with the analytic
solutions is presented in terms of the following quantities:

t
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TABLE 3 (CONCLUDED)

Ac  - lift coefficient error (numerical minus analytic)

AC  - drag coefficient error (analytic is zero)

Na - maximum norm of stream function (maximum absolute difference
between numerical and analytic values over entire field)

N2 - Euclidean norm of relative stream function error ( root-mean-
square over entire field of difference between numerical
and analytic values relative to analytic value )

a
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TABLE 4

Iterations and Computer Time - Airfoil O1

Case IT CS IT IT 90 ITCIR

Points on Body

37 16 95 60 77 78

43 2 105 62 81 84
47 3 106 65 83 92
61 6 132 79 95 124
67 20 151 83 114 121
73 5 172 96 100 156

127 1 401 197 195 348

Points at m at 10

30 32 116 53 73 101
60 7 227 73 79 188

Points to m , m at 20

30 12 165 58 80 125
60 8 290 74 82 208

Location of m , Step Size 10/60 avg.

5 11 123 47 69 79
10 7 227 73 79 188

Location of -, Step Size 20/60 avg.

10 32 116 53 73 101
20 8 290 74 82 208

Location of m , Step Size 40/60 avg.

20 12 165 58 80 125
40 9 360 75 86 232

Location of d, 30 Points to

5 11 123 47 69 79
10 32 116 53 73 101
20 12 165 58 80 125

1:58 1:39
7:21 4:06

2:44 1:49
10:13 5:44

2:06 1:27
7:21 4:06

1:58 1:39
10:13 5:44

2:44 1:49
11:34 5:54

2:06 1:27
1:58 1:39
2:44 1:49

_.r

CT, S

0:57
1:14
1:19
2:04
2:28
3:10

11:57

CTPSI

0:56
1:09
1:11
1:52
1:59
2:35
7 :46



TABLE 4 (CONCLUDED)

Case	 ITS	 ITO	
IT90	 ITCIR	 CTCS	 CTPSI

Location of m , 60 (Points to

10 7 227 73 79 188 7:21 4:06
20 8 290 74 82 208 10:31 5:44
40 9 360 75 86 232 11:34 5:54
80 10 446 78 91 258 1'4:13 5:01

Coordinate System Convergence Criteria, 37 Points on Body

10-2 13 38 59 78 78 0:30 0:57
10-3 14 54 60 77 78 0:39 0:57
10-4 15 75 60 77 78 0:49 1:16
10-5 16 95 60 77 78 0:57 0:56

Coordinate System Convergence Criteria, 67 Points on Body

10-3 18 83 114 121 1:59
10-4 19 116 83 114 121 1:58 1:59
10-5 20 151 83 114 121 2:28 1:59

Stream Function Convergence Criteria

10-2 21 151 6 25 30 2:28 0:40
10-3 22 151 21 54 60 2:28 1:02
10-4 23 151 51 87 90 2:28 1:30
10-5 20 151 83 114 121 2:28 1:59

Note #1: Case numbers correspond to those of Table 1.

Note #2: CPU time is given in MINUTES:SECONDS. These times are
subject to some variation depending on the operating
conditions at the time of the run.

Legend:

IT CS	 -	 Iterations for coordinate system

IT 	
Iterations for 0° potential flow solution

IT 90-
	

Iterations for 90° potential flow solution

ITCIR
	 Iterations for circulation potential flow solution

CT CS	 CPU time for coordinate system

CT PSI
	 CPU time for complete potential flow solution
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TABLE 5

i
Iterations and Computer Time - Airfoil #2

r Case ITCS ITO IT90 ITCIR C6 CTPSI

t
Points on Body

t
432 95 53 72 82 1:27 1:10
37 3 104 57 77 92 1:17 1:09
53 4 118 59 81 106 1:38 1:21
61 6 144 65 88 124 2:84 2:09

i	 67 20 162 68 92 141 2:40 2:11
73 3 182 75 100 157 3:25 2:28

127 1 419 131 170 350 12:56 1:01•

Points to
I

m , m at 10

i	 30 32 125 36 61 101 2:11 2:01
60 7 239 42 75 188 7:54 3:45

Points to m , m at 20

30 12 225 37 64 125 4:01 2:04
60 8 299 39 71 208 9:58 3:54

Location of m , Step Size 10/60 Avg.

5 11 86 34 57 79 1:33 1:19
10 7 239 42 75 188 7:54 3:45

Location of m , Step Size 20/60 Avg.

10 32 125 36 61 101 2:11 2:01
20 8 299 39 71 208 9:58 3:54

i
Location of m , Step Size 40/60 Avg.

20 12 225 37 64 125 4:01 2:04
40 9 374 37 69 231 11:60 3:57

r	 Location of m , 30 Points to

5 11 86 34 57 79 1:33 1:19
10 32 125 36 61 101 2:11 2:01
20 12 225 37 64 125 4:01 2:04
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TABLE 5 (CONCLUDED)

Caae IT CS IT IT 90

Location of v, 60 Points to m

10 7 239 42 75
20 8 299 39 71
40 9 374 37 69
80 10 463 36 68

Coordinate System Convergence Criteria

17 52 85 97
10-3 18 88 71 92
10-4 19 125 69 92
10-5 20 162 68 92

Stream Function Convergence Criteria

10-2 21 162 3 12
10-3 22 162 10 31
10-4 23 162 35 61
10-5 20 162 68 92

ITCIR
CT 

CS CT PSI

188 7:54 3:45
208 9:58 3:54
231 11:60 3:57
257 15:34 4:14

140 1:02 2:04
141 1:32 1:55
141 2:11 1:54
141 2:40 2:11

22 2:40 0:35
61 2:40 0:53

101 2:40 1:31
141 2:40 2:11

Note N1: Case numbers correspond to those of Table 1.

Note 02: CPU time is given in MINUTES:SECONDS. These times are
subject to some variation depending on the operating
conditions at the time of the run.

Legend:

IT CS - Iterations for coordinate system

IT 	 - Iterations for 0° potential flow solution

IT 90 - Iterations for 90 0 potential flow solution

ITCIR - Iterations for circulation potential flow solution

CT CS - CPU time for coordinate system

CT 
PSI- 

CPU time for complete potential flow solution



TABLE 6

Comparison with Analytic Solution - Zero Lift and Other Angles

Case

a • -20.8596 (zero lift)	 33
a • - 1.6746 (zero lift)	 34
a	 - 1.65	 35

a •	 2.66	 36

AC  AC  N• N2

-0.0440 -0.0?14 2.01-01 8.89-03
0.0000 0.0020 6.38-03 5.98-04
0.0000 -0.0037 6.1Z-03 2.98-03

0.0128 -0.0358 1.09-02 6.87-04

Legend: See Table 2 or 3. Case 33 is Airfoil lil y and the others are Airfoil
p2.

r 'n_- r ^.: i.^a,Si^Lwlu^lHeumu :l::+livm.^ ^ 	 _	 ••	 p. ^'4	 ...::.^ySt :"w.=.w.ry^.:.. 'Y^yWICrt:._ "	 .sS Y...+2^ atis^=..%kxl.



CT PSI

TABLE 7

Iterations and Computer Time - Zero Lift and Other Angles

Case IT	 ITITO 17	 IT,,	 c CS

7:36
6:43
7:38
1:38

n - -20.8596 (zero lift)
a - - 1.6746 (zero lift)
a - - 1.65
Cl -	 2.66

33 401 197 195 348 11:57
34 419 131 170 350 12:56

35 377 237 172 332 11:10
36 377 237 172 332 11:10

Legend: See Table 4 or 5. Case 33 is Airfoil #1, and the others are
Airfoil #2.
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TABLE 10

Karman-Trefftz Transformation Parameters (Ref. 1)

Amk

	

Transformation: Zk mkLk	 zk-1 -P	
k - 1, 2, --, N

	

Zk 
Il1k k	 k-1	 k

-
	 L )

mk t - n

This transforms a circle in the Z  plane into the airfoil in the Z  plane
through N successive transformations.

N - 3

R1 - 0.737277 + 10.6755902

L1-0+i0
^1 - 160°

R2 - 0.39875 - 10.91706

L2-0+i0
{2 s 200'

R3 = 0.93667 - 10.35021

L 3 = -0.843 - 10.315866

; 3	 12°

Circle center = 0 + 10

Circle radius = 1.0

Airfoil Chord = 3.4647

Airfoil 112

N - 1

Rl - 1.0 + i0

Ll - -1.0 + i0

^l = 90

Circle Center: -0.04405 + 10.03

Circle Radius: 1.04448

Airfoil Chord: 3.9081497



TABLE 11	 JF POOR QUALITY

Changes in Force Coefficients with Increase from Adequate
Parameter Values - Airfoil #1

Parameter Change CL CD

Number of Points on Airfoil 37 to 67 0.009 to 0.002 0.01 to 0.004

Number of Lines Around Airfoil 30 to 60 0.008 to 0.003 0.004 to 0.003

Radius of Outer Boundary 10 to 20 0.008 to 0.006 0.004 to 0.001

Coordinate Convergence Criteria 10-4 to 10-5 0.005 to 0.002 no change

Stream function Convergence Criteria 10- 4 to 10-5 0.01 to 0.002 0.005 to 0.004

Kutta Extrapolation Order 2 to 3 0.003 to 0.002 no change

Kutta Velocity Order 2 to 3 worse worse

Velocity Order 2 to 3 worse 0.005 to 0.002

Pressure Integration Order 1 to 2 worse worse
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Figure 1. Field Transformation - Single Body
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Figure 2. Field Tronstv:mation - Multiple bodies
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Figure 4

Extrapolation Points for Application of Kutta Condition



Figure 5. Karman-Trefft z Airfoil 111 Contours
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