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INTRODUCTION 

Of the many approximate or numerical methods used to solve heat transfer 
problems, the finite difference and finite element approaches have become the 
mosF: widely known and used. The finite difference method (FDM) is the older, 
being introduced in 1928111, and until recently, probably the better known and 
more extensively used for both research and production studies. The finite 
element method (FEM) is newer121 and has not been used for heat transfer 
studies to a comparable degree, although it is the dominant method for 
structural analyses. 

Because the FEM has a short history of use for heat transfer, there is 
considerable confusion about the relative values of the two methods and under 
which conditions one method is to be preferred. Both methods are based upon 
minimizing the weighted error in satisfying the first law of thermodynamics. 
Two common FDM's are: the heat balance FDM (BFDM) [31, based upon minimizing, 
over a nodal volume with unit weight; the mathematical FDM (MFDM) [4,51, based 
upon collocating at discrete points, usually regularly spaced upon coordinate 
lines. The FEM is based on the Galerkin method [63 in which the error is 
minimized over an elemental volume with a weight function equal to the 
temperature. 

The purpose of this paper is to compare the two methods by describing 
their bases and their application to some common heat transfer problems. It 
will be no surprise that neither method is clearly superior or that, In many 
instances, the-choice is quite arbitrary and depends more upon the codes avail- 
able and upon the personal preference of the analyst than upon any well defined 
advantages of one method. 

ANALYTICAL PROCEDURES 

The numerical solution of a heat transfer problem by either FDM or FEM, is 
usually done in the following steps as shown in table 1: 

*This work was supported by NASA grant NAG-l-41 
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TABLE 1 
ORDER OF ANALYSES 

1. Subdivision of the region into nodes or elements 
2. Definition of material properties, initial temperatures and boundary 

conditions 
3. Evaluation of the thermal conductance between nodes and the 

capacitance of each node 
4. Formation of the global conductance and capacitance matrices 
5. Imposition of the boundary conditions 
6. Solution for the nodal point temperatures and heat fluxes 
7. Display of the results 

Both methods tend to use these same steps, although the division between 
the steps may be more or less clearly defined depending upon the method used 
and upon the organization of the computer code. 

A. The Mesh 

The process of subdividing the region into elements or nodal volumes, 
commonly called 'meshing', is usually accomplished by a separate program. 
Although the FDM mesh was generally created by hand, the FEM programs relied, 
almost from their inception, upon numerical mesh generators. This difference 
in approach was probably due to: 

1. FDMs usually utilize nodal points which are oriented along coordinate 
lines. Thus irregular regions are difficult to model automatically 
and use is often made of hand meshing with special imaginary nodal 
points. If the region is susceptible to treatment by a different 
coordinate system, the mathematical problem is usually recast. For 
example, elliptical or oblique coordinate systems are often used. 

2. FEM codes were first used in structural problems where an organized 
nodal point mesh was clearly evident and an arbitrary mesh could not 
be used (e.g., the frame and stringer structures of aircraftL71). By 
the time the FEM was applied to continuum problems, it had been 
observed that the solution of the Laplacian gave rise to an acceptable 
mesh. Because the FEM could be applied to such a wide range of 
geometries and because the number of elements tended to increase 
quickly, a need for automatic mesh generation became obvious. As a 
consequence an emphasis was placed upon automatic mesh generation for 
the FEM. 

Several symposia[8] have been organized soley to discuss sophisticated 
methods for the FEM and for the FDM used in computational fluid dynamics. 
Unfortunately, few of the thermal FDM use other than the simplest mesh 
generators. Lately we find that most codes, whether FDM or FEM tend to use the 
same mesh generators. Since this mesh generation is also used to identify the 
regions occupied by the different materials, to define intial temperatures, as 
well as to prescribe the boundary conditions, the entire mesh generation 
process is usually referred to as 'PRE-PROCESSING'. 
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B. Thermal Conductance 

The primary difference between the FDM and the FEM lies in the methods 
used to construct the thermal conductance between the nodes. 

1. FDM 

In the FDM, the conductance is formed in one of two ways. The simplest 
approach is illustrated in figure 1 and is based upon the heat balance equation 

I pc$dv= /q,da+ 
/ 

q'dv (1) 
v A v 

where the energy conducted through the surface is approximated by the linear 
relationship 

%(i,j> = qij = kij Aij 'Tj -Ti) le. . 
iJ (2) 

The quantity Ai./l.. is a geometric value which, in two dimensions, 
th2 addles of the triangle formed from the nodes[91. 

can be 
related to Equivalently 
it can be found as illustrated in figure 1 by constructing the area Aij which 
is perpendicular to the line joining the nodes and located at the mid point of 
the line. Although this method is difficult to implement, it can be done 
automatically and also provides a technique for determining the set of closest 
nodes which surround a node. Unless the nodes are regularly spaced, in which 
case the BFDM becomes the MFDM, the BFDM is of low accuracy, O( Ax ). 

The second method, the mathematical FUM (MFDM), is based upon expressing 
the differential equation 

by finite differences using a variety of different numerical approximations 
to achieve a desired level of accuracy. The method consists of establishing an 
interpolating function in space, usually a polynomial, and performing the 
needed differentiation. Another method is to express Tj in terms of Ti,through 
a Taylor series expansion. By combining the expressions for the temperatures 
at different nodal points, i.e., establishing different stencils, figure 2, it 
is possible to achieve a very high order of accuracy. For example the 5 point 
stencil is accurate to O(Ax2), while the 9 point is of O(&t4). However, the 13 
point is accurate not only to O(Ax4 ) but ensures that V4T as well as V2T=0 is 
satisfied[lOl. 

For a non-linear problem it is usual to express & %j$ as 
[ I 

3 k aT 
ax I 1 Xax = 

k,zx+$g (4) 

and to evaluate each term separately. Unfortunately this approach does .not 
give a conservative set of equations (in P. D. Lax's sense) and energy is not 
conserved in steady state problems. As a consequence, the non-linear FDM is 
usually confined to the 5 point stencil for regular regions and the heat 
balance method for irregular regions. 
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2. FEM 

The finite element method is based upon the Galerkin approach in which a 
stationary value of the integral 

I = s$[% [g)' + kY [g)2 - PC g2 + 2qNT] dv + pnTda (5) 

v A 
is sought[lll. For steady state problems, the Galerkin and the variational 
approaches are equivalent and the method, in conjunction with the dual 
formulation (i.e., the adjoint problem), can be used to establish bounds upon 
the solution. For transient problems, there is no variational formulation and 
no bounds can be found. 

The procedure consists of approximating the temperature within the element 
by T 

T(x,y) = 
L=l 

nl(x,y)ae = <II> {a) (6) 

where the interpolating functions, n(x,y) can be chosen at will to satisfy any 
desired criteria, subject only to the restriction that there be a sufficient 
number of nodes in the element to determine the coefficients, al . Since each 
element is treated as an entity, it is common to map the element into a simpler 
shape to expedite the integration, figure 3. Consider that a local set of 
coordinates, 5 , r), are defined and that the mapping 

J 
(7) 

is used where the number of terms J need not equal the number OF terms I used 
in the temperature interpolation. We then have 

{T^) = [AlCal , T(x,Y) = <n> [A]-%} = <N> (T^} (W 

(2) = [B]Cb) x= <ii> [ES]-'{;;} = <fi>{;;) (8b) 

Thus for one element the conduction term is of the form 

(9d 

(9b) 

and 

(10) 

where J is the Jacobian of the mapping. 
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Although it is obvious that the spatial interpolation function, i , must 
ensure compatability of elements (i.e., that an edge common to two elements 
must be the same when viewed from either element) it is not necessary that the 
temperatures be compatible. In structural mechanics FEM, incompatible 
formulations are sometimes used, but almost all thermal problems use compatible 
temperature functions. When the same number of functions are used to express 
the mapping and the temperature, the element is termed 'iso-parametric'. 
Although the isoparametric element is the usual, subparametric elements are 
often used for heat source problems or when an unusual temperature distribution 
is desired. 

The most common 2-D elements are the 3 and 6 node triangles and the 4 and 
8 node quadrilaterals, figure 4. Much of the research in the FEM has been 
devoted to developing new interpolating functions (i.e., new elements) and 
identifying their characteristics, particularly with respect to the numerical 
integration required. 

3. Differences 

Probably the most striking difference between the FDM and the FEM is the 
usual lack of continuity of the heat flux in the FEM. Each element is treated 
separately and if only compatibility of temperature is imposed, the heat flux 
at the edge common to two elements is not continuous. By contrast, the FDM has 
a continuous heat flux. Although the effect of lack of continuity of the heat 
flux is usually not important, it can show up in the form of an oscillating 
temperature profile where an overshoot in one node is compensated for by an 
undershoot at a neighboring node in order to minimize the integral over the 
entire region. 

c. Capacitance Matrix 
: 

In the FDM, the capacity term, PC aT/ at is represented by the simple 
lumped term 

(PiciVil aTi 
at (11) 

where Vi is the volume surrounding the node i. In the FEM, the use of the 
interpolating function gives rise to the consistent capacitance matrix 

(12) 
C L C nl""' nn 1 

in which the storage at each node is related to that at every other node in the 
element. This difference in the two capacitance matrices is responsible for 
much of the difference in the solutions to transient problems and is discussed 
further in the EXAMPLE section. For 3 node triangular elements with regular 
node spacing, the FDEI and FEM have identical conductance and capacitance 
matrices. Other FEM elements give different matrices, usually as indicated by 
the sign of the off-diagonal terms. In the FEM the integration is usually 
accomplished through Gaussian integration and the need to evaluate the 
properties and the Jacobian at each point contributes to the longer execution 
times of the FEM. 
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D. Assemblage of the Global Matrix 

1. FDM 

In the FUM, each node is treated in turn, and the conductances are entered 
into the global matrix as they are determined. The process is simple and 
straightforward and requires very little computer time. Unless a.n FEM 
preprocessor mesh is used, FDM codes generally make use of a separate matrix 
which identifies the nodes which interact, the corresponding value of the term 
Aiad~f~J;~f tz;km;;;:iaL numbers to permit rapid determination of the average 

2. FEM 

In the FEM, the element matrix is first evaluated, then assembled into the 
global matrix. If the global matrix cannot be stored in core, it is necessary 
to search through the elements to treat only those containing the nodes whose 
equations are currently in core. This assembly process tends to be reasonably 
time consuming and may contribute to the reduced speed of the FEM. 

3. Comparison 

Table 2 lists some typical execution times for FDM and FEM solutions. In 
general, the FEM assembly costs rise quickly as the number of nodes per element 
is increased. Figure 5[121 shows some comparable results for a structural 
problem and the extra expense of the assembling is easily seen. (The figure 
also shows that for some variables the FDM is superior while for others the FEM 
is. Because of this, it is difficult to define one method as being the best 
for all parameters of a problem.) 

n 

3 
5 
7 
9 

13 
17 
19 
31 
33 
61 
65 

TABLE 2 
RELATIVE EXECUTION TIMES FOR THE TRANSIENT PROBLEM 

Equal Time Step Sizes 

FDM FEM 
L-W Explicit C-N Linear Quadratic Cubic Special 

Cubic 
.8 1 1 1.8 

1.4 1.5 2 5.4 6.5 4.4 
5.5 

3.7 3.5 6 32 36 24 
36 

17 12 24 218 249 183 
125 
540 

107 64 117 1624 1880 1500 
4350 

760 407 1230 12200 14700 
n = number of elements L-W = Lax Wendroff 

C-N = Crank Nicolson 
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E. Boundary Conditions and Irregular Meshes 

Although the greatest fundamental difference between the FDM and the FEM 
lies in the formulation of the conductances and capacitances, the greatest 
practical difference lies in their treatment of boundary conditions and 
irregularly shaped regions. 

1. FDM 

Specified temperature nodes are treated by ignoring the equation for the 
node. Boundary flux conditions are difficult to treat for irregular meshes 
unless one uses the simple heat balance formulation (BFDM) with its low order 
of accuracy. Irregular meshes have been studied for years with emphasis on 
using triangular surface elements[l31. Since many analysts tend to define 
their nodes along coordinate lines, it is most common to make use of imaginary 
nodes, figure 6, special differencing equations to achieve the desired 
accuracytl41, arbitrary grids[l5], or even no nodes, but only cellstl61. In 
general, the advanced mesh generators used in fluid computations and the 
automatic high order boundary gradient differencing methods are not used in 
production FD methods. Consequently they suffer from reduced accuracy at 
irregular boundaries. On the other hand, research FDM's almost always maintain 
high accuracy at all types of boundaries. 

2. FEM 

Irregular regions are handled in the same manner as any other region. The 
accuracy is limited only by the ability of the mesh generator to represent the 
boundaries. This ability is probably the greatest strength of the FEM. 

Specified temperature nodes are handled in two ways. In the first, the 
equation is deleted from the matrix and the right hand sides of all affected 
equations are modified. Another way is to replace the diagonal coefficient by 
a very large number, L, and the right hand side by L*T[17]. Although faster 
and simpler than the first method, the accuracy of the computer may limit the 
effectiveness of this approach. 

Prescribed heat flux boundary conditions are handled better by FDM than by 
FEM. Because in the FEM each element is treated separately, the accuracy is 
limited by the interpolating accuracy of the element shape functions. By 
contrast, the FDM analyst can easily modify a difference equation to achieve 
the desired accuracy. The FEM analyst must call for a boundary element which 
is different from the interior element, figure 4, and may have some difficulty 
in merging this higher order element with the rest of the mesh unless a special 
mesh generator or slide lines are used. 

F. Solving the Equations - Steady State Problems 

Although sparse matrix solvers have become popular recently[l8], most FDM 
and FEM codes use some form of elimination (usually Gauss or Cholesky) and rely 
upon a banded matrix or sky line approach to achieve fast solution times[l91. 
For highly non-linear problems, iterative solutions may be used, especially by 
FDM codes. 
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1. J?DM 

E'DM codes normally use direct reduction or iteration. Because of the way 
in which the global matrix is assembled, iteration is a common procedure and, 
when used, the global matrix is not created. If reduction is used, only enough 
equations to treat the band are kept in core and they are shifted immediately 
after each nodal equation is reduced (the wave front method). Although 
iteration is an appropriate technique, convergence is difficult to determine 
and because iterative acceleration factors are often unknown, many users are 
reluctant to employ iterative techniques. Fortunately most heat transfer 
problems can be treated by using the SOR method and values of the over 
relaxation factor can be quickly approximated. For problems which are not 
symmetric or do not have Young's property AC201, the SSOR techniqueL211 is easy 
to implement and convergence is very rapid. Non-linear problems are ideally 
suited to the iterative method and rarely increase the solution time by an 
appreciable amount. Considerable research is still being conducted into 
improving the rate of convergence and treating highly non-linear problems[221. 

2. E'EM 

Most FEM codes use a reduction process with a subsequent back 
substitution. Even with a skyline procedure, care should be taken to minimize 
the band width. To do this, most FEM codes will use a band width minimizimg 
program after the mesh generation1231, although this may complicate the 
identification of the nodal point positions within the code. Non-linear 
problems are treated in two ways: 

1. The matrices are reformed and solved for each iteration. 

,(n),(n) = ,h> 

2. A residual is found, and an increment, AT determined from 

IS1 (Id = {R) (n)- [K] {T} (n-1) 
AT(“) = [K]-‘{e)(“) 

(134 

(13b) 

It is common to use a mixture of these two methods by applying the 
boundary loads in increments, calculating a new K for each increment, but 
iterating within the increment using a constant K until the residual is 
sufficiently smallL241. Method 1 requires excessive computer time and may not 
converge. Method 2 requires that the original conductance matrix be stored in 
order to calculate the residual. Either method is expensive, and for highly 
non-linear problems, the iterative FDM appears to be preferred. Suendermann 
[251 suggests that the ratio of the execution times for hydrodynamic problems 
is 100 to 27b2/2+18b for implicit methods and 100 to 23bi for explicit methods 
where b=band width and 1 the number of FEM iterations. 

In both methods it is often desireable to know the amount of heat added to 
a constant temperature node. In the F'DM, the calculation of QiiS simply done 
by calculating the conductances and evaluating the heat balance. In the FEM, 
this may be done by using the original K matrix if it is stored. A simpler way 
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is to permit a specified temperature node, Ti to float by connecting it to a 
constant temperature, T, , through a very high conductance, KH , and evaluating 

Qi = 'k CT&> (14) 
Although much simpler, the size of KH required may be so large that some 

computers may not accurately calculate the correct inverse of the global 
conductance matrix. In this case the energy balance will have to be computed 
for the node under question. 

G. Solving the Equations - Transient Problems 

In general, both the FDM and the FEM simply step along in time, 
re-evaluating K and C at each time step, if needed. If the time steps are 
large or the problem is highly non-linear, then iterations may be needed within 
each time step [261. If the non-linearities may be expressed analytically a 
Runge-Kutta technique may be applied to the resulting non-linear equations[271. 
For very non-linear problems, Gear's method may be used [281. Regardless of 
why the matrices must be re-evaluated (i.e., changing boundary conditions or 
non-linear properties) Young's method 1291 can be used to modify the matrix and 
the solution with a minimum increase in time, although the code structure may 
have to be changed considerably. 

H. Graphical Display 

Besides printed output, the most common output is a spatial plot of a 
single variable or contour plots. Such plots oE the temperature are relatively 
easy to generate for either the FDM or the FEM if a mesh generator was used. 
If the FDM was based upon the heat balance approach, then it is necessary to 
create a set of minimum size triangular elements to perform the contour 
plotting [301, especially if contour smoothing is to be used [31]. Table 3 
illustrates the times necessary to compute a set of triangular elements 
connecting 418 nodes. If the region is complete, the element calculation is 
rapid. If there is one or more internal voids, then the establishment of the 
mesh may be very expensive, as indicated by the third table entry. 

TABLE 3 
Contour Plotting Times 

1. Temperature contours 5.6 seconds 
2. Temperature contours-establishing a mesh 30 seconds 
3. Temperature contours-establishing a mesh 

with an internal void 120 seconds 

If the contours are to be based upon other than linear interpolation or if the 
heat fluxes between elements are to be plotted, the FEM is much simpler to use 
since the element interpolation functions may be used, both to give a higher 
order curve fit and to interpolate to establish the values of qx and qy at the 
nodal points. 
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In general the FEM output is much better suited than the FDM output to 
graphical display, particularly for curved surfaces. To permit rapid detection 
of input errors and for rapid analyis, both a plane and an isometric (with 
hidden line capability) contour plotter should be available. 

EXAMPLES 

We present some typical examples of the use of the two methods. 

A. Distributed Heat Sources 

Consider a one dimensional problem, _ _ o<xc 1, with a distributed source 
strength of q'=xm ., The problem was treated with an FDM using two different 
boundary conditions and the FEM source term and the FEM utilizing 4 different 
elements[32]. Figure 7 illustrates the error in the temperature at the 
insulated surface. The solid line is for both the MFDM with a virtual point 

and for the BFDM. The dashed line is for the MFDM using the zero heat flux 
boundary condition and shows the underprediction of the temperature because of 
the lack of a source at the last node. The FEM results are substantially 
better for two reasons. Firstly, the source is not lumped at a single node, 
but is distributed between nodes, thus permitting a better representation of 
the spatially varying heat source (this is clearly shown by the equivalence of 
the results for the FDM using the FEM source term and the FEM.) Secondly, the 
higher accuracy of the FEM temperature interpolation permits consideration of 
temperature variations higher than the linear. The special cubic element of 
Tocher[331 provides for continuity of the temperature and the heat flux at the 
interface between elements. Over a range of source functions, O<m<5, this 
special cubic was not found to be any better than the quadratic or the normal 
cubic element, neither of which ensure continuity of the heat flux. 

B. Transient Temperatures - 1-D 

Consider the one-dimensional slab with an insulated back surface and a 
front surface whose temperature is suddenly reduced to zero. Figure 8 
illustrates the results obtained using several FD methods and several FEM 
elements[32]. In the FEM we write, 

T(x,y,t) = < N(x,y) ' {i(t)) 
(15) 

Tn+l = Tn + [&+'+(l-a)+"]at 

FK + &]r;pl = (I-a)[C]{$jn + c Lt] {t>" + CX{R)~+' 
- 

or 

p + &] mnfl = [- (1-a)K + & {?jn + CX{R)~+' + (l-a){# ] 

(16) 

(17) 
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One may also use a combined space-time interpolant 1341 

T(x,y,t) = 1 Ni(x,y,d i (18) 

but this method does not yet appear to be in regular use for producton codes. 
$n figure 8, the use of equation 16 with T(x,O)=O is referred to as 'without 
T'. If T(x,O) $0 or if equation 17 is used, the solution is referred to as 
'with T'. The relatively poor FEM results are due to the use of the consistent 
capacitance matrix and the impulsive start. Figure 9 compares the FEM with 
consistent matrices and the FDM with the lumped capacitance[35]. Because the 
FEM overpredicts the eigenvalues (i.e., yields an overly stiff system) while 
the FDM underpredicts,. the FEM results show an early time overshoot. This can 
be corrected by lumping the capacitance 'terms [36,37] or by expressing f by 
using a different basis which is orthogonal to the shape functions for 
T[38,39]. The effect of lumping is shown most clearly by examining the element 
eigenvalues for the 8 node quadrilateral as illustrated in figure 10. Lumping 
may also be effected by using a reduced order of integration, which softens the 
transient response, but care must be taken to avoid creating singular 
capacitance matrices[40]. The best results have been found when using the same 
order of integration as for the conductance. For non-linear problems, a one 
point integration has been found to be sucessful[41]. Lumping has the further 
advantage of simplifying the algorithm and reducing the execution time and has 
been extensively used for structural problems[42]. Figure 11 shows the error 
in the effective thermal diffusivity for several different methods. Cubic 
Hermite elements[43] are seen to be the best, in agreement with the results of 
figure 8. 

Another solution is to permit the discontinuous change to take place over 
several time increments, a technique commonly used in hydrodynamic shock 
analyses. Figure 12 shows that while this smooths the results, it does not 
reduce the lag in the response which is due to the excessive dissipation of the 
FDM and lumped FEM solutions. A better way is to evaluate the right hand side 
at the half time intervals or by a consistent time interpolation[44]. As 
illustrated, this gives the best performance. Table 2 lists the execution times 
needed for the different methods for an equal number of time steps. For 
non-linear prob'lems in which the matrices must be reformed and re-solved, the 
FEM is substantially slower than the FDM, particularly when the SSOR method is 
used. 

C. Singular Problems - Standard Methods [32] 

Consider a two-dimensional plate as shown in figure 13. Because of the 
sharp edge of the insulated splitter plate, the heat flux at the tip is 
infinite and of the form 

q = Klfl(8)/& + K2f2(8)& (19) 

This problem was treated by using the MFDM and the FEM. 

61 



II II 

1. FDM 

Figure 13 illustrates the results obtained with different mesh sizes using 
a 5 point stencil. Substantial errors in the temperature and in the heat 
fluxes, figure 14, were found and even a reduction from Ax=Ay=l/4 to Ax=1/20 
did not yield convergence, even for mesh points further than 2Ax from the 
singularity. 

2. FEM 

Figures 13 and 14 also show the comparable results found by using 
different elements and sizes. Of the three elements used, the quadratic is 
seen to give the best results. Table 4 lists the execution times. Although 
the quadraticelement times are long,the times necessary to produce an accuracy 
in the temperature comparable.to that of the linear element or the MFDM are 
approximately equal. On the other hand, the accuracy in evaluating the heat 
flux is much better than that of the FDM, with the result that the comparable 
execution times are much less. 

TABLE 4 
RELATIVE EXECUTION TIMES FOR THE SINGULAR PROBLEM 
2:l RECTANGULAR NODAL GRID, STANDARD PROGRAMMING 

number of Ax(=Ay) 
nodes 

FEM 
linear quadratic cubic 

FDM 
SOR SSOR 

15 l/4 1 1 0.8 1.1 
45 l/8 3.6 10.4 110 4.5 3 
66 l/10 6.0 8.1 4.3 

153 l/16 20.5 121 3097 21 20 
231 l/20 39.1 274 53 31 
361 l/32 172 1531 207 183 

D. Singular Problems - Lagrangian Variables 

As described above, problems with concentrated heat sources or with 
singular heat fluxes can rarely be treated with standard FDM or FEM programs 
since the interpolating functions are incapable of adequately representing the 
singular temperature field. In both methods, the interpolating functions can 
be expanded to include the singular behavior. If the strength of the 
singularity is known, the extra term simply serves as an additional heat 
source. If the strength is unknown, the FDM and FEM must be modified. For the 
mM, let OT be the FD approximation to the field equation and BT be the FD 
approximation to the boundary condition. Then by expressing the temperature as 

T = T(smooth> + KlS 

we find 
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It is thus apparent that the effect of the singularities can be considered by 
adding the pseudo heat source and boundary heat fluxes. 

For the FEM, the appropriate formulation is1451: 

T = < n > {;3 + Kl(S-<N> {s^3) 
(21) 

In this solution the value of Kl is considered to be a Lagrangian variable 
which is determined by differentiating the integral to yield extra equations of 
the form: 

$$3= bd{T^> + Kl(S,-<N,> {s^)){N,) 

aI= (S 
aKl 

,-<N,> {s^>) <N,> {T^3 + (S,-<N,“‘3)2K1 

(224 

(22b) 

Figure 13 illustrates a problem in which the magnitude of the singularity 
is unknown. In the FDM, the value of Kl is found by applying the field 
equation to the closest boundary points, in addition to using the expanded 
boundary conditions. When using the FEM, it is not necessary that all elements 
contain the singular terms, only those near the singularity. However it has 
been found important1461 that a smooth transition between the singular elements 
and the regular elements be provided by establishing transition elements in 
which the temperature is of the form 

T(x,y) = <N&j + f(x,y) Kl (S-<N>(z)) (23) 

in which the function f(x,y) has the value of 1 along edges common with the 
singular elements and 0 along edges common with the regular mesh. As seen from 
figure 15, relatively coarse meshes for both the FHM and the FEM are sufficient 
to determine q,with good accuracy if the singular term is included, but even 
increasing the number of elements by a factor of 16 is insufficient if it is 
omitted. 

Table 5 gives a comparison of the values of the temperature at point P as 
determined by several different FDM and FEM solutions and the equivalence of 
the two singular methods is apparent. Table 6 lists the values of the singular 
strengths, Kl and K2 . Although K2 varies considerably, KI (which is the 
dominant singularity) is quite constant. If K2 were to be computed more 
exactly, then it would be necessary to include the next term in the singular 
series[47]. The superiority of the singular approach is evident. 
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Ax 

l/2 
l/4 
l/6 
l/8 
l/10 
l/12 
l/16 
l/20. 
l/24 
l/32 

TABLE 5 
COMPARISON OF Tp BY DIFFERENT METHODS (Figure 13) 

FEM FDM 
1st order 2nd order 1st order Singular 1st order 2nd order Singular 

triangle triangle quadrilateral 
0.1429 0.1176 0.170 
0.1591 0.1737 0.1579 0.083. 0.133 
0.1659 0.1771 0.1674 
0.1697 0.1784 0.1717 0.181 0.151 0.174 0.1815 
0.1721 0.1741 
0.1738 0.1756 I 0.166 0.178 0.1824 
0.1759 0.1775 0.173 0.180 0.1827 
0.1772 0.176 0.181 0.1827 
0.1781 
0.1793 

Ax 

l/2 
l/4 

l/8 

number of 
singular 
elements 

2(all) 
2 
6 
8(all) 
2 
6 

12 
18 
32(all) 

TABLE 6 
SINGULARITY STRENGTHS AND T- 

FEM 

K1 K2 

1.285 0.091 0.170 
1.276 0.067 0.179 
1.234 -0.032 0.179 
1.224 -0.045 0.178 
1.275 -0.056 0.182 1.1325 -0.492 0.1815 
1.232 -0.048 0.182. 
1.212 -0.077 0.181 
1.203 .-0.086 0.181 
1.195 -0.094 0.181 

FDM 
T 

P iY K2 'p 

Under some conditions, the analytical form of the singular terms may be so 
complex that the integration required for the FEM may be difficult to perform 
with acceptable accuracy. In this case, the singular FDM, which satisfies only 
at the nodal points, is a more useful method. 

One of the interesting features of the FEM is that it is often possible to 
distort an element to produce the desired singularity[481. Referring the the 
splitter plate problem, if an 8 node quadrilateral is used and the mid side 
nodes are shifted to the quarter points as indicated in figure 16, the element 
automatically includes a square root singularity. The figure compares these 
quarter point element results with those of the singular FDM and the comparison 
is excellent. 
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E. Radiation Problems 

Regions with internal voids which have strongly radiating boundaries pose 
a problem, particularly for the FEM, even if the boundary conditions are 
linearized, since all of the nodes interact simultaneously and the resultant 
band width is very large and portions of the matrix are dense. One approach is 
to consider the problem as two problems, the radiation problem, and the 
conduction problem. The radiation problem is solved separately,ensuring 
radiative equilibrium among the nodes. The ,radiative heat flux is then 
considered as a known heat flux and applied to the right hand side of equation 
5. Because the boundary condition is so non-linear, it often proves necessary 
to use a strong under-relaxation factor to limit the flux change to assure 
convergence and avoid the overshoot observed with impulsively changed boundary 
conditions as indicated by the transient problem. If the rest of the problem 
is linear, this approach is satisfactory. If the rest of the problem is highly 
non-linear, an iterative FDM appears to work more efficiently. 

F. Phase Changes 

Probably the most difficult problem to treat effectively by either method 
is that of a transient phase change. Three methods, figure 17, appear to be 
the most common. In the first, the interface motion is computed on the basis 
of the conservation equations, just as is done for fluid shock 
calculations[491. If an implicit time s.olution is used, this method requires 
the solution of non-linear algebraic equatons[50,51]. The second method is to 
assume that the phase change occurs over a small temperature range, T. The 
latent heat is then approximated by a large specific heat value, or the 
enthalpy may be used as the primary dependent variable. An iterative solution 
is often needed to ensure that the interface is maintained at the correct 
fusion temperature and special care must be taken in evaluating the 
capacity[51,52]. In a third method, based upon the use of the enthalpy and the 
temperature, the interface position is not explicitly determined. In this 
method an artificiaL specific heat is not used. This method has not been fully 
developed and some problems have been noted if the enthalpy interpolatation is 
other than a step function[531. In its present form, this method may be better 
suited for use with the BFDM. 

Figure 18 compares some typical results of the first two methods using FDM 
and FEM. Comini's solution[51] used Lee's time integration and gave slightly 
greater solidification depths than the other methods. The FDM interface was 
slightly in error at the earliest time because of the lumped capacitance, 
although it quickly gave correct values. The FDM enthalpy solution gave 
essentially identical results. 
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G. Conclusions 

Having used both FDM and FEM for more than 2 decades to solve a variety of 
thermal problems, ranging from simple I-D transient cases to 3-D singular 
biological problems, we have drawn the following general conclusions. 

1. The mathematical FDM appears to be best suited to research problems, 
especially ones for which the analyst wishes to ensure that the 
boundary conditions are treated with high order accurate schemes or 
ones in which special algorithms are used at specified nodal points. 

2. The heat balance FDM appears to be best for: 
1. Highly non-linear problems, for which iterative solutions are 

efficient. 
2. Problems in which the continuity of the heat flux is important. 
3. Multi-dimensional problems involving change of phase. 

3. The FEM is best suited to: 
1. Irregular regions for which the automatic mesh generation and a 

library of highly accurate elements permit good modelling of the 
region and the consequent temperature profile. 

2. Mildly non-linear problems for which the iterations are few. 
3. Problems for which graphical output is important. 
4. Problems in which special temperature profiles are desired, since 

these may be easily obtained with special elements. 
5. Problems involving singular temperature fields or concentrated 

heat sources. 
6. Problems in which different approximations are to be used in 

different regions or problems which involve the joining of several 
parts. 

Although each method may appear to be best for a particular class of 
problems, we have also reached the rather general conclusions that: 

1. The analyst should be knowledgeable about both methods, at least to 
the extent that their general characteristics are understood. 

2. Because thermal FEM elements are still being developed, their 
characteristics are not generally known. The analyst should 
experiment with such elements until their behavior, singly or in 
concert with other elements, is clearly understood[54]. In 
particular, the performance of any one element is not intuitively 
obvious and may not be representative of a 'similar element' for 
another problem[SSl. 

3. Except for very special problems, either approach is satisfactory and 
which method used depends more upon the availability and familiarity 
of codes (and pre- and post-processors) than upon any intrinsic 
differences between the two methods. 
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We recognize that this last conclusion is rather fuzzy, but since the 
results obtained with either method will vary as the stencil or the element is 
changed, we have found that nothing will compensate for the analyst's insight 
into the detailed characteristics of the method used. Since such insight is 
normally developed only by exercising a program on a variety of problems and 
since it is rare that any one person is comfortably familiar with more than one 
method, it is not surprising that there is a considerable tendency to continue 
using a familiar code, even if some shortcomings exist. 

A recent round robin test of FDM and FEM[561 applied to a typical mixed 
boundary condition, transient problem (fig. 19) showed that either method was 
satisfactory and that the apparent value of either depended more upon the pre- 
and post-processors available than upon the intrinsic characteristics or 
accuracies of the methods. On the other hand, for some conditions, 
particularly anisotropic problems, the results of reference 57 indicate that 
the FDM may be more accurate, but when there was no cross coupling, the FEM was 
superior. 

Readers should consult references 58 and 59 for more information about the 
FDM and references 60 and 61 for detailed insight into the FEM. Current work. 
in the FDM is concentrated on improving the accuracy and execution times, with 
special emphasis on thermal network correction methodst621. Extensions of the 
FEM to treat combined convection-conduction problems and to merge the thermal 
FEM with the structural FEM, taking the different mesh requirements and time 
responses into consideration, are also being studied1631. In addition, some 
recent work[64,651 has shown that elliptical PDE's and conduction-convection 
problems can be accurately solved by combining collocation at the Gaussian 
points with the FEM elements. Finally, we should note that the development of 
small-scale personal computers, which are slow but may be dedicated to specific 
tasks, can be expected to have profound influences upon the structure of the 
computer codes, the use of interactive execution, and the specific algorithms 
used[661. In this context, it should be recognized that the substructuring 
method, which is commonly used on these small computers, cannot be used for 
transient problems. 
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NOMENCLATURE 

A 
B 
C 
C 
f 
I 
3 
k 
K 
1 
n 
N 
4' 
'n 

4, 

Qi 
R 
S 
t 
T 

tt 

r 
ci 
B 

&I 

1 P. 

0 

Area 
FDM boundary condition operator 
Specific heat capacity 
Capacitance matrix 
Transition function 
Integral 
Jacobian of transformation 
Thermal conductivity 
Thermal conductance matrix 
Distance between nodes 
Interpolating function 
Shape function 
Generated heat density 
Boundary heat flux 

Directional heat flux 

Net heat input to a node 

Right hand vector 
Singular function 
Time 
Temperature 

Time derivative of temperature 

Smooth temperature distribution 
Weighting parameter 
Boundary condition operator 
Error 
Coordinates of unit square 
Density 
Change 
Nodal values 
Approximation to the Laplacian 
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Figure l.- Finite difference mesh for the heat balance method. 
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Figure 2.- Finite difference nodal point arrangements. 
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Figure 3.- Mapping an element on a unit square 
(showing the Gaussian integration points). 
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Figure 4.- Common two dimensional finite elements. 
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Figure 5.- Error (%) and computer time (set) for a 
clamped shell using an FEM and an FDM [12]. 
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Figure 6.- Treatment of irregular boundaries. 
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lT(exact) = 0.19291 

Figure 7.- Temperature error at the insulated surface 
for a source strength = Xm. 

(Tkxact) = 0.157~1 

Figure 8.- Temperature error for aT/L2 = 0.0625 
and X/L = 0.5. 
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Figure 9.- Temperature at the insulated surface using an FDM and an FEM 
with 2 node linear (L-2) and 3 node linear (L-3) elements. 
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Figure lO.- Eigenvectors for the eight node element 
showing the effect of lumping. 
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Figure ll.- Error in the numerical diffusivity 
for different methods [43]. 
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Figyre 12.- Transient temperature response for a slab using 
TWO) = 0 with ramps of 0 and 1 At and a consistent method 
using a modified initial surface temperature (TOLD = 50). 
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Figure 13.- Temperature at point P for the singular problem. 
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Figure 14.- Heat flux at point Q for the singular problem. 
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Figure 

Figure 15.- Values of the heat flux along the 
insulating splitter plate. 
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16.- Calculation of the time dependent singularity 
strength for the problem of figure 13. 
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Figure 17.- Enthalpy and interface models for 
phase change calculations. 
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Figure 18.- Solidification front position for a plane problem. 
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FINITE DIFFERENCE 

Figure 19.- Comparison of FDM and FEM results for a 
mixed boundary condition problem. 
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