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INTRODUCTION 

For some time researchers in structural analysis have recognized that the 
large number of degrees of freedom required in the solution of structural 
problems has often been the result of geometry and structural arrangement 
rather than complexity of the response behavior. This fact has led to 
considerable research into methods to reduce the degrees of freedom in 
structural problems and hence computer resources and costs. These methods 
have become known as reduction methods and are thoroughly reviewed in 
reference 1. One technique to reduce the degrees of freedom in static and 
dynamic problems is the reduced basis method which combines the classical 
Rayleigh-Ritz approximation with contemporary finite-element methods to retain 
modeling versatility as the degrees of freedom are reduced. The present paper 
reviews the reduced basis method and its applications to a nonlinear dynamic 
response problem presented in reference 1 and then summarizes the status of a 
research effort to apply the method to nonlinear transient thermal response 
problems. 
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SUMMARY OF METHOD FOR 
NONLINEAR DYNAMIC RESPONSE PROBLEMS 

The equation of motion for a nonlinear dynamic response problem 
neglecting damping is shown at the top of figure 1. In the 
equation [M] represents the mass matrix, {X) is a vector of nodal 
accelerations and {Q) and {F) are the applied loads and internal nodal 
forces,.respectively. The total number of degrees of freedom in the problem 
is denoted by m. The internal nodal forces are comprised of a linear portion 
and a vector of nonlinear displacement dependent terms as indicated by the 
expression for {F). The essence of the reduction method is to use a few 
known modes or global basis vectors to represent the displacements in the 
structure. Thus, {X) is replaced by the expression [r]{\y) where [r] is, a 
matrix whose columns are the known structural mode shapes and {Y) is a 
vector of modal participation coefficients which become the new unknowns in 
the problem. For practical application to dynamic response problems, [r] is 
composed of only the first few vibration modes; thus, n is much smaller 
than m. To reduce the equations, the expression for {X} is substituted 
into the equation of motion and both sides of the equation premultiplied by 
the transpose of [r]. 

EQUATIONOFMOTION: [MI(?) = (Q) - {F) 
m,m m 

MASSMATRIX 1 

NODALACCEL 

1 [ k;;;lN;;;;;;LFORCES 

WHERE: (F) = [K](X) + (G(X)) 

REPLACE {X) WITHREDUCED REPRESENTATION: {Xi = Cl-1 (#I; n<<m 
m m,n n 

BASIS VECTORS (LOWESTVIBRATIONMODES) d 

Figure 1 
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REDUCED EQUATIONS FOR NONLINEAR DYNAMIC RESPONSE PROBLEMS 

The reduced equation of motion, expressed in terms of the unknown modal 
participation coefficients, is shown at the top of figure 2. In this 
equation n represents the number of basis vectors in [r] and hence the 
number of unknowns in the reduced problem. The barred quantitites represent 
the reduced matrices or vectors and are obtained by the indicated matrix 
multiplications. As shown at the bottom of the figure, the solution process 
consists of solving eigenvalue problems to obtain the basis vectors, using the 
basis vectors to reduce the equations and then integrating the reduced 
equations to obtain the modal participation coefficients and thus, the dynamic 
response of the structure. This technique was applied to a shallow spherical 
cap subjected to a step load in reference 1 as described in the next two 
figures. 

REDUCED EQUATIONOF MOTION: [iii1 ($1 = {vi - (71 
n,n n n n 

- 

WHERE: [Ml = u-3' [MI cri 
n, n n,m m,m m,n 

lQ\ = mT iQl 
n n,m m 

n n,n n n, m m 

CKI = [riT c~i [i-i 
n, n n,m m,m m,n 

SOLUTION PROCESS1 .SOLVEElGENVALUE PROBLEM FOR BASIS VECTORS 

*REDUCE EQUATIONS 

@INTEGRATEREDUCED EQUATIONS TOOBTAIN 
DYNAMICRESPONSE 

Figure 2 
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SELECTION OF BASIS VECTORS 

As indicated in figure 3, a combination of two sets of basis vectors were 
considered for step loaded dynamic response problems in reference 1. The 
first consisted of a few eigenvectors from the solution of a linear eigenvalue 
problem based on initial conditions. The second set was comprised of a few 
vectors from the linear problem and a few from the solution of a steady-state 
(static) nonlinear eigenvalue problem where the structural stiffness matrix 
has been modified to contain the nonlinear stiffness terms associated with the 
steady-state nonlinear deflections. 

CASE OF STEP LOADING 
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Figure 3 
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CLAMPED SHALLOW SPHERICAL CAP 

The problem shown in figure 4 consists of a clamped spherical cap 
subjected to a point load of 177.93 Newtons at the apex applied as a step 
function in time. The shell is axially symmetric and the meridian was modeled 
by 10 shear-flexible curved elements with quintic interpolation functions for 
each of the displacement and rotation components (for a total of 148 nonzero 
displacement degrees of freedom). Nondimensional motion histories for the 
shell apex from the full system equations (148 degrees of freedom) and two 
sets of reduced equations (10 initial modes and 5 initial +,5 steady-state 
modes) are shown on the right of figure 4. The 10 initial or linear modes 
track the full system solution for a short time but fail to duplicate the full 
response of the shell. The combined linear and steady-state nonlinear modes, 
however, do a very good job of duplicating the response except for a slight 
shift in phase after about 200 microseconds. This good agreement has led to 
consideration of the modal reduced basis technique for nonlinear transient 
thermal analysis as outlined in figure 5. 
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Figure 4 
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APPLICATION TO NONLINEAR TRANSIENT THERMAL ANALYSIS 

Matrix equations describing heat transfer in a heated structure are shown 
at the top of figure 5. In the equations [K] is the conductance matrix, 
{T) the nodal temperatures, [C) the capacitance matrix, {t) the time rate 
of change in the nodal temperatures and (Q) the applied heat load. The 
total number of degrees of freedom is denoted by m. To reduce the 
equations, {T) is replaced by a modal representation where [r] contains 
vectors of thermal mode shapes and {Y 
pation coefficients. The vectors in i 

is a vector of unknown modal partici- 
r] may be obtained from solution of 

two thermal eigenvalue problems associated with the full system of equations. 
When {T) is replaced with the modal representation in the heat transfer 
equation and both sides of the equation multiplied by the transpose of [r], a 
set of reduced equations in terms of the unknown modal participation coeffi- 
cients is obtained. The barred quantities represent the reduced matrices and 
vectors obtained by the indicated matrix multiplications. Similar to the 
dynamic response problem, it is assumed that local temperatures can be 
represented by a few global modes or basis vectors so that n will be much 
smaller than m. 

HEATTRANSFER EQUATIONS: ;K;{;l + 

CONDUCTANCEMATRIX 

NODALTEMPERATURES j.l 

REPLACE (T) WITH (T) = [r] 11)) 
m m,n n 

-BASISVECTORS FROMSOLUTIONOF 

WHERE: CKI = rriT [Ki [i-i 
n, n n,m m,m m,n 

El = rriT [Cl Cri 
n, n n,m m,m m,n 

I$\ = ,y-iT (Ql 
, m 

AND: n<< m 

Figure 5 
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IMPLEMENTATION OF REDUCED BASIS TECHNIQUE 

Implementation of the reduced basis technique for thermal problems is 
outlined on figure 6. The SPAR Finite Element Thermal Analyzer (ref. 2) was 
used to generate full system conductance and capacitance matrices and heat' 
load vectors and save them for use in auxiliary computer programs. An 
existing eigenvalue extraction routine was used to solve the thermal 
eigenvalue problems to ,obtain thermal mode shapes used as basis vectors. 
These basis vectors were then used in a pilot computer program to reduce the 
full system equations and integrate them using the Crank-Nicholson algorithm 
to obtain the unknown modal participation coefficient (Y) and thus the 
thermal response. This process was evaluated by applying it to the sample 
problem described in figure 7. 

l OBTAIN FULL SYSTEM MATRICES WITH SPARTHERMALANALYZER 

l SOLVE EIGENVALUE PROBLEMSTOOBTAIN BASIS VECTORS 

l USETESTCODETO REDUCEEQUATIONS 

l USEA CRANK-NICHOLSONALGORITHMTO INTEGRATEREDUCED 
EQUATIONS 

Figure 6 
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SAMPLE THERMAL PROBLEM 

The problem shown in figure 7 represents a 147.32 cm segment of the lower 
surface of the Space Shuttle wing and consists of a 0.39 cm thick aluminum 
skin covered by a 3.81 cm thick layer of Reusable Surface Insulation (RSI). 
The combined structure was modeled with two-dimensional finite elements as 
shown on the left of figure 7. The RTV adhesive-Strain Isolator Pad 
(SIP)-RTV adhesive bonding mechanism used to attach the RSI to the aluminum 
was also included in the model. The grid shown has 84 node points and hence 
84 degrees of freedom since the elements used to model the structure have only 
temperature as the nodal degrees of freedom. The edges and aluminum structure 
were assumed to be adiabatic and the surface was heated by the heat pulse 
shown on the right of figure 7. The heat pulse is reasonably representative 
of Shuttle reentry and is sufficient to produce surface temperatures where 
radiation becomes appreciable and, thus, causes the heat transfer equations to 
become highly nonlinear. Thermal properties of the RSI are also nonlinear as 
indicated in figure 8. 
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Figure 7 
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RSI THERMAL PROPERTIES 

Specific heat and conductivity for the RSI are shown as functions of 
temperature in figure 8. The specific heat varies with temperature and 
because the RSI is very porous, the conductivity varies with pressure as well 
as temperature. The version of the SPAR Thermal Analyzer used in this 
investigation accomodates only temperature and time dependent properties. 
Consequently, the pressure dependency was converted to a time dependency by 
utilizing the known pressure history for a typical Shuttle reentry 
trajectory. Thus, the nonlinear material properties of the RSI also 
contribute to the overall nonlinearity of the problem. 

5 x lO+j 

4 

CONDUCTIVITY, 3 
BTU 

in. 2 - set - OF 2 

TIME, set 

SPECIFIC HEAT 

7 r1900 

1 0.32 1 

CONDUCTIVITY 0.29 

1000 2000 3000 
TEMPERATURE, OF 

Figure 8 

SPECIFIC 
HEAT, 
BTU 

lb -OF 

141 



llllllllllllllllllll I I IllI I 

TEMPERATURE PROFILES FOR SAMPLE PROBLEM 

A series of temperature distributions through the depth of the sample 
problem from a full SPAR analysis are shown in figure 9 for several discrete 
times during the heat pulse. These distributions indicate the type of 
behavior the basis vectors must approximate to be useful. Initially the 
entire structure is at a constant temperature of 311 K. As heating is 
applied, the RSI surface experiences a rapid temperature rise which gradually 
diffuses through the RSI and SIP to the aluminum skin. After peak heating 
occurs, the surface begins to cool while the interior of the RSI and the 
aluminum skin continue to experience a temperature increase. To be useful, 
the basis vectors used to reduce the degrees of freedom must characterize this 
nonlinear response, give accurate solutions and be easily and inexpensively 
generated. The approach used to generate basis vectors for this problem is 
shown in figure 10. 
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Figure 9 
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GENERATION OF BASIS VECTORS 

Since the use of eigenvectors from the structural eigenvalue problem 
proved to be a useful set of basis vectors in the dynamic response problem, a 
similar approach was taken to generate basis vectors for the thermal response 
problem. In general, the thermal eigenvalue problem indicated in figure 10 
would be solved for two temperature states of the system. The first state 
corresponds to the initial temperature condition and the second state 
corresponds to a temperature distribution from a "pseudo" steady-state problem 
for time averaged thermal properties and heating where the aluminum 
temperature was held constant at some selected value. A few thermal mode 
shapes from the first eigenvalue problem and a few from the second eigenvalue 
problem (which include the nonlinear temperature effects) would be combined to 
form a set of basis vectors. Additionally, for reasons which are explained 
subsequently, the reciprocal of the first vector from the two eigenvalue 
problems and a constant vector might also be included as basis vectors. 
Thermal mode shapes from the eigenvalue problem based on initial conditions 
are shown in figure 11. 

l SOLVETHEEIGENVALUE PROBLEM: [Kl{T\ = AL-Cl(TI 
m,m m m,m m 

. USETHETHERMALMODE SHAPES AS BASIS VECTORS 

(1) FIVE VECTORS FROM PROBLEM INITIAL CONDITIONS 

(2) FIVEVECTORS FROM PSEUDO STEADY STATE SOLUTION 

(3) RECIPROCAL OF FIRSTVECTOR FROM (1) AND (2) 

Figure 10 
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THERMAL MODE SHAPES (BASIS VECTORS) 

Normalized thermal mode shapes from the linear eigenvalue problem (in 
which matrices were evaluated at an initial temperature of 311 K) are shown in 
figure 11. Although numbered sequentially, these modes do not, in fact, 
represent the first five modes from the two-dimensional eigenvalue problem 
associated with the finite element model shown in figure 7. Because of the 
two-dimensional nature of the eigenvalue problem, most of the lower modes 
involve multiple waves in the lateral direction. A total of 84 eigenvalues 
were extracted and the five modes shown have only a single wave in the lateral 
direction with multiple waves through the depth of the structure. As a first 
attempt to approximate the temperature distributions shown in figure 9, twelve 
modes from the eigenvalue problem for the initial temperature condition were 
selected as basis vectors. Additionally, to enhance the representation of the 
diffusion character of the temperature distributions up to 600 set (see fig. 
9), the reciprocal of the first mode shape was also used as a basis vector. 
Finally, to accommodate a uniform temperature change, a constant vector was 
included for a total of 14 basis vectors. Temperatures from the reduced basis 
method are compared with temperatures from full SPAR analysis in figure 12. 
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COMPARISON OF REDUCED BASIS AND FULL SYSTEM RESULTS 

Temperature histories for the sample problem are shown for the RSI 
surface, RSI mid-point, and the aluminum structure in figure 12. The solid 
curves represent results from the full system of equations obtained with the 
SPAR Thermal Analyzer and the solid symbols are the reduced basis results 
based on the 14 modes discussed in figure 11. The results from the reduced 
basis method agree very well with those from the full SPAR analysis. However, 
it should be noted that the uniform heating and symmetry of the sample problem 
result in a one-dimensional problem in which a 14 degree of freedom model 
( i.e., a single vertical slice through the model in figure 7) would be 
sufficient for the problem. Thus, use of 14 basis vectors would be expected 
to give excellent results. 
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SUMMARY 

The effort described in the current paper is directed toward applying the 
reduced basis method to nonlinear transient thermal analysis. Quite obviously 
the success of the method depends on the choice of basis vectors used to 
reduce the system of equations. Initial efforts used a set of 14 basis 
vectors consisting of modes from a thermal eigenvalue problem where the 
matrices were evaluated at the initial temperatures. This set of basis 
vectors gave excellent results for a one-dimensional 14 degrees of freedom 
thermal problem. Future work will focus on use of additional or alternate 
basis vectors including modes from the previously described eigenvalue 
problems, time derivatives of such eigenvectors, and possibly one-dimensional 
eigenvectors (analogous to the use of beam vibration modes in plate vibration 
problems). The type and number of basis vectors needed for approximate 
solutions to more complex problems beginning with two-dimensional nonsymmetric 
transient thermal problems will be studied. 
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