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ABSTRACT 

The computational methods used to predict and optimize the thermal- 
structural behavior of aerospace vehicle structures are reviewed. In general, 
two classes of algorithms, implicit and explicit, are used in transient ther- 
mal analysis of structures. Each of these two methods has its own merits. 
Due to the different time scales of the mechanical and thermal responses, the 
selection of a time integration method can be a difficult yet critical factor 
in the efficient solution of such problems. 

Therefore mixed time integration methods for transient thermal analysis 
of structures are being developed. This proposed methodology would be readily 
adaptable to existing computer programs for structural thermal analysis. 

1. INTRODUCTION 

Over the last two decades, significant attention has been devoted to the 
development of lightweight, durable thermal protection systems (TPS) for 
future space transportation systems. Research programs are currently under 
way at the Langley Research Center to investigate various metallic TPSconcepts 
ill l One of the proposed candidates is the titanium multiwall tile (see [2] 
and references therein for a discussion). Early design procedures of the TPS 
concept involved both analytical and experimental studies. In particular, a 
degree of confidence has been established in the TPS concept due to the design 
studies by Jackson and Dixon [3] and Blair et. al. [4]. 

A titanium multiwall tile consists of alternating layers of superplas- 
tically formed dimpled sheets and flat septum sheets of titanium foil. As de- 
scribed in reference [3], this multiwall concept impedes all three modes of 
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heat transfer ----conduction, radiation and convection. The superplastically 
formed dimpled sheets and the long thin conduction path tend to minimize heat 
conduction. The flat septum sheets of titanium foil impede radiation. The 
small individual volumes created by the dimpled layers virtually eliminate air 
convection. The optimal design of such thermal protection systems requires 
effective techiques in coupled thermal and stress analyses. Finite element 
methods offer the greatest potential in w>deling such complicated problems. 
However, the resulting semi-discrete equations may involve many thousand 
degrees of freedom. Since the problem to be solved is transient and non- 
linear, the selection of an appropriate time integration method is an essen- 
tial step in the solution of such a complicated problem. Adelman and Haftka 
151 recently conducted a survey study on the performance of explicit and 
implicit algorithms for transient thermal analysis of structures. Calcula- 
tions were carried out using the SPAR finite element computer program [6] and 
a special purpose finite element program incorporating the GEARB and GEARIB 
algorithms. Based upon their studies, they concluded that, generally, implic- 
it algorithms are preferable to explicit algorithms for "stiff" problems, 
though non-convergence and/or wide-banding of the resulting matrix equations 
may decrease the advantage of the implicit methods. 

These difficulties are similar to those found in fluid-structure prob- 
lems. Over the past few years, several remedies have been proposed for these 
difficulties. Belytschko and Mullen [7] have proposed an explicit-implicit 
method where the mesh is partitioned into domains by nodes and the partitions 
are simultaneously integrated by explicit and implicit methods. Hughes and 
Liu [8] have proposed an alternate implicit-explicit finite element method 
where the mesh is partitioned into domains by elements and this element parti- 
tion concept simplifies the computer-implementation and enhances its compati- 
bility with the general purpose finite element software. 

Although the implicit-explicit method has been proven to be very success- 
ful in some fluid-structure interaction problems (see e.g., [8-lo]), the size 
and complexity of the program are increased because of the addition of the 
implicit method. To overcome these difficulties, 
have proposed an Em-E partition, 

Belytschko and Mullen [ll] 
in which explicit time integration is used 

throughout. However, different time steps within different parts of the mesh 
can be employed simultaneously. Partitioned and adaptive algorithms for ex- 
plicit time integration have also been proposed by Belytschko [12]. 

Recently, Liu and Belytschko [13] put forward a general mixed time 
implicit-explicit partition procedure within a linear context. It incorpo- 
rates the mentioned algorithms as special cases and is shown to have better 
s.tability properties than those in Em-E partition [ll]. Similar concepts can 
also be used in transient conduction forced-convection analysis (see Liu and 
Lin 1141). 

In the present paper, we extend these implicit-explicit concepts nodes 
and elements ( to transient thermal analysis of structures where different time 
integration thods with different time steps can be used in each element 
group. The aim of this approach is to achieve the attributes of the various 
time integration methods. 
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For example, in transient structural analysis, explicit methods require 
the size of the time step to be proportional to the length of the shortest 
element, while in transient thermal analysis, explicit methods require the 
step size to be proportional to the the square of the length of the shortest 
element. So it is more advantageous to employ this mixed time implicit- 
explicit technique for transient thermal analysis of structures since the 
Em-E partition proposed in [11,12] is often inefficient for this kind of 
problem though it is very efficient in structural analysis. 

In section 2 we review the finite element formulation for transient heat 
conduction. In section 3 we describe the mixed time integration procedures 
viz two element groups '"A" and "B" . A family of integration partitions can 
then be deduced by selecting the appropriate definitions for the quantities of 
"A" and "B". Five useful partitions which are of practical importance are 
presented. In section 4 the stability characteristic of the algorithm is 
discussed. In section 5 we generalize the mixed time methods described in 
section 3 to NUMEG element groups. A computational algorithm for this mixed 
time implicit-explicit integration is also presented. Numerical results are 
presented in section 6 and conclusions and suggestions for further research 
are presented in section 7. 

2. FINITE ELEMENT FORMULATION FOR TRANSIENT HEAT CONDUCTION 

We consider a body R enclosed by surface r which consists of two parts: 

53 and r l q 
The Cartesian coordinates of the body will be denoted by xi . 

The governing equations for transient heat conduction are: 

1 

egii = c2 
; in sZ (2.1) 

e=g for xi in r 
t3 (2.2) 

O,ini + he = q for xi in r 
Q 

(2.3) 

and 
8 = e. for xi in R and t = 0 . (2.4) 

Here a comma designates a partial derivative with respect to x ; a super- 
script dot designates time (t) derivative; n. is the component oflthe outward 
unit normal vector; C2 is the thermal diffus%vity (the ratio of thermal con- 
ductivity to specific heat times density); 8 is the temperature; h is the 
convective heat transfer coefficient; and g, q and 8 are given functions. 
Repeated indices denote summations over the appropriate'range. 

The variational or weak form of equations (2.1)-(2.4) is: 

(i,v> + a(e,v) = (q,v) in r 
q 

(2.5) 

where v is the test function; and 

<;,v) = $, L ii vd61 
C2 

(2.6) 
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a(e,v> = Jn e,iv,idn + 1, hev dr 
Q 

(2.7) 

and 

(qSv)r p Jr W dr C&8) 
Q q 

The finite element equations are obtained by approximating the trial 
functions by shape functions (Ni) so that 

NEQ v= i& Ni(xj)di"' 

g= 

(2.9) 

(2.10) 

and 

e =v+g (2.11) 

Here NDMNP is the total number of nodal points used in the finite element 
mesh and NEQ is the number of trial functions used (for this particular case 
it is equal to the number of equations to be solved). 

The resulting semidiscrete equation for transient heat conduction is 
then: 

. 
$+2=x (2.12) 

with initial condition 

$0) = e 
-0 

(2.13) 

where 

~ = [M~j J = (Ni, Nj ) = /a ~ N,Njd” 

,K = [Kij] = a(Ni,Nj) = 1, Ni,kNj,kd' + Jr hNiNj dr 
9 

(2.14) 

(2.15) 

(2.16) 

M, and 5 ase assumed to be symmetric and positive definite. The thermal para- 
meters, C and h, are in general temperature dependent. However for discus- 
sion purposes herein, they are assumed constant throughout. 

3. MIXED TIME PARTITION PROCEDURES 

In this section, mixed time integration methods are employed to solve 
equations (2.12) and (2.13). For the purpose of describing these mixed time 
integration techniques we subdivide the mesh into element groups A and B, each 
of which is to be integrated by a different method. Let n be the time step 
number, 8 , v 
spectiveG. "Z 

and F be approximations 8(t > and F(t ) re- 
et rns and At be the time steps ~e$(t~c!r'e?emkt gr&p "A and 
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element group B respectively, where m is an integer and is greater or equal to 
1. A time step cycle (mat) can then be defined by an increment of m substeps 
with a time step of At each, so that one time step cycle is defined by step n 
to step nim. The portions of the lnatrices obtained by assembling element 
grqup A and element group B are denoted by superscripts "A" and "B", respec- 
tively. fo lows that any global matrix 

Hence s+ MB and K = KA+ KB . Nodes 
is the sum of the two ms- 

trices, cf. M = 
group B areWde&edN by suFers&ipr "B", 

associated with only element 
whereas those which are in contact 

with at least one element of group A are denoted by superscript "A"; nodes 
which are connected to both group A and group B are designated by "C", so "C" 
is a subset of "A". To simplify the presentation, we further denote those 
element matrices associat e# withet least one node C by superscript "C", so 
$and,$ are subsets of M, and 5 respectively. 

&l;t!ezi;tiKaO_ 3yKE 

However, in actual coRputer 
lement group is not necessary. We further denote ,M = 

"Simila~ly,"a~l~~~tors 
parts, cf. fi = (5 ft ) , V, = 

a;;@;p ,"~d't~t~~:~~~~ofd~~l~,,'~:~,~~~,aft~::B" 

denotes the tr#pspo#. The "c;ef$ iInds$Times Brq# efined by augmented 
matrices,:=2 +e where 8 . Similar defini- 
tions are fo;V and F . Any %o%zero 

= (!J!Q 
t%ms in F obtained in a compu- 

tation of F 
wed 

are neglected: they are assumed to be z&o. 

As an example, consider a one dimensional mesh depicted in figure 1, it 
consists of 8 nodes and 7 elements. Then the set of nodes "A" will be 1,2,3, 
4,5; the set of nodes "B" will be 6,7,8; and the set of nodes "C" will be 5. 

ELEMENT e q 

. 2 z - ; - 0 

NODE i = 1234k676 

GROUP A (mAt) i GROUP B (At) 
I 

Figure I 

Let 5" , Ke and Fe be the eth element mass, stiffness and force contributions 
to the global ar'rays respectively; then 

d= .I1 Me .V 

MB= ef5 ie 

Mc ; - =M N N 

and 
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*B If we let Pi be the ith component of the global assembled vector g *B 

then 
p*B-! (o,o,o,o,P5~o,~6,P7,P8) 

With these definitions, the mixed time partition is given as follows. 
0 Governing equation 

for j=O,m; 

MV -n+j 

and 

for j=l,...,m-1; 

B *B MV - -n+j 

(3.1) 

(3.2) 

+-*x where 8 is a suitable extrapolator (and/or interpolator) of ,*x (and/or 8*x ) 
for x=?%Ad B. In actual computation, equation (3.2) is implicitly includean* 
in equation (3.1), and for j=l,...,m -1 no quantities of A are being solved. A 
family of integration partitions can then be deduced from equations (3.1) and 
(3.2) if M, is assumed to be lumped. Some members which are of practical im- 
portances are shown in table 1. 

Table 1 

For purposes of describing the computer implementation and stability 
analysis, the modified generalized trapezoidal rule will be used to carry out 
the time temporary discretization of equations (3.1) and (3.2) though other 
implicit integration methods can also be used; they are: 

l Modified generalized trapezoidal rule 
for j=l,...,m; 

zA -n+j = 2 + (1-a>jAt -f (3.3) 

for 1 < j < m define the set "C" only, 
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zB -+j = c+j-l + (I-a)At $+jml 
A 

%iul +amAt+,,, ti 

(3.4) 

(3.5) 

and 

eB 
*+j 

= gB 
-+j 

+ aAt VB 
-31+3 

(3.6) 

In the above equations, a is a free parameter which governs the stability and 
accuracy of the method. We now, illustrate some useful partitions which have 
been depicted in table 1. 

Example 1: E-E partition 

Ax In this case, m=l, G+l z %x+l for x=A and B. Equations (3.1) and (3.2) 
reduce to: 

%+1 

%l+1= 

and 

8 = 
-n+l 

Equations 

+ %+1= %l+1 (3.7) 

f&+ (l-a)At k& (3.8) 

%+1 + aAt In+1 (3.9) 

(3.7) to (3.9) represent the predictor-corrector explicit 
algorithms with equation (3.8) as the predictor and equation (3.9) as the 
corrector. 

Example 2: mE-E partition nA 
In this m>l,e -A 

= s+j 
AB -B case, -n+j and 0 -n+j - s+j l 

Equations (3.1) to 
(3.6) reduce to: 

PREDICTOR PHASE: 

and 

equation (3.3) (3.10) 

equation (3.4) 

GOVERNING EQUATIONS: 

equation (3.1) 

and 

equation (3.2) 

(3.11) 

(3.12) 

(3.13) 
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CORRECTOR PRASE: 

equation (3.5) (3.14) 

equation (3.6) (3.15) 

Examnle 3 mE-I nartition I 
In At s cas- 
A only, 9 
This is ii% 4 

= -z m > 1 ; in equation (3.1),-i:% 
_ Gti for the portion which is r 
automa 

aie$?o 
for element group 

,Kc for j=O and m. 
.tically if element group A is defined to be the implicit 

and element group-8 is d$ined to. be the explicit element group. 
< j < m, and (&+j z $.,+j, for 1 < j ( m . Equations (3.1) to 

PREDICTOR PHASE: 

equation (3.3) (3.16) 

and 

equation (3.4) 

GOVERNING EQUATIONS: 

for j=O,m; 

MV -n+j 
+ ICL8*A + K% 

- -Il+j - -n+j = %+j 

and 

for j=l,...,m-1; 

(3.17) 

(3.18) 

(3.19) 

CORRECTOR PHASE: 

equation (3.5) (3.20) 

equation (3.6) (3.21) 

Example 4: E-I partition 
This is a special case of example 3. Equations (3.1) to (3.6) reduce to: 

!En+i + All+1 + -5, = %+1 
%+1 = ,'& + (1-a)At J& 

%+1 = .%+1 +‘aAt V -II+1 

(3.23 

(3.23) 

(3.24) 
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Equations (3.22) to (3.24) represent the implicit-explicit algorithms devel- 
oped by Hughes and Liu (see e.g., [8,10]) in which equation (3.23) is the 
predictor and equation (3.24) is the corrector. 

Example 5: 
In this 

I-I partition A 
case, m=l, 8 = gA 

reduce to the usual irnplixt'fk%% &ion an t 
Equations (3.1) to (3.6) 

%+1 + %+l = En+1 (3.25) 

En+1 = tn + (1-a)At & (3.26) 

8 -n+l = %+1 + aAt &+l (3.27) 

4. STABILITY CRITERION 

Our aim in this section is to deduce the stability characteristic of 
these mixed time partition algorithms. It suffices to restrict ourselves to 
the case in which F-O and all mass matrices are lumped for purposes of sta- 
bility analysis. k-energy balance technique (see [8] for a discussion) is 
employed to carry out the stability analysis. To simplify the subsequent 
writing, the following notations will be used. 

b&J = &+m - En (4.1) 

$*,> = (En* + x,)/2 (4.2) 

[&+jl = &+j+l - x -n+j 

and for j=O,l,...,m-1 

<x 
mn+j> = (Xn+j+l + Xn+j)'2 

(4.3) 

(4.4) 

We have not made a complete satisfactory stability analysis of these mixed 
time partition procedures. However, if we assume: 

1. T C 
5 z 

*B > l/m2 where 

(4.5) 

2. (4.6) 

3. 

j=l ,...,m -1 

and let 

4. 

5. 

(4.7) 

(4.8) 

(4.9) 
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6. (4.10). 

the energy expression of these mixed time partition procedures can be shown to 
be: 

Here, K'= 
a > l/2 . 

and 

S nim < sn - 2mAt tti - 2At ;t P;+j (4.11) 

KB - 5' and the stability is governed by ,M *R and z *B provided 
Lt 

= $ - 1/2jAt $ (4.12) 

$ = f + (a - 1/2)jAt g (4.13) 

the definitions of M *R *B 
and M for the five cases discussed in section 3 are: 

Example 1: E-E partition 

!! 
*R = gR and E *B 

Example 2: mE-E 'partition 

fj*R= $ and g*B= $ 

Example 3: mE-I partition 

M*R= $ + & *B and M N =$ 

Example 4: E-I partition 

M*R= kJ$ + 9; and g *B 
= $ 

Example 5: I-I partition 

JbJXR= $ and *R M = WB -1 

Q ese mixed time partition procedures are 
and ,M are. both positive definite. A summary 

Example 1: E-E partition 

$rit = 'Erit ' 2 

Example 2: mE-E partition 

Qd mC 
crit = ncrit c 2 and .QB c2 crit 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

stable if a > l/2 and M "R 

of the results is as fzllows: 

(4.19) 

(4.20) 
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Example 3: mE-I partition 

mC B 
n crit (2 and n crit <2 

Example 4: E-I partition 

'Erit ' 2 and S?,ft2 

Example 5: I-I partition 

unconditionally stable 

In equaiions (4.19) to (4.22), Ojx 
where A 

is defined to be jAt Xxrit 
crit denotes a typical eigenvalue of the eigenprobfem 

M% + K% = 2 NN . ..N 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

5. IMPLEMENTATION ASPECTS 

In this section, we generalize the mixed time integration methods de- 
scribed in section 3 to NDMEG element groups. Different time integration 
methods (implicit/explicit) with different time steps can be used in each ele- 
ment group. be Let AtNqG and T@E = 1 the element group time step and element 
group time respective y for ,...,NUMEG. There are NlJMEL elements in 
each element group. We denote At as the minimum time step amount for all these 
element groups. In this formulation all element group time steps are required 
to be integer multiples of At and the time steps for adjacent groups are 
integer multiples of each other. Furthermore, no two implicit groups with 
different time steps can be adjacent to each other. In addition, for each 
implicit group that element group time step must be greater than those of the 
adjacent explicit groups. The main advantage of this ml implicit - m 
explicit - m3 implicit -... etc. technique is to minimize the semi- andwidth ii 
of complicated problems especially in the three-dimensional case. To illus- 
trate the idea, consider the one dimensional mesh shown in figure 2. It con- 
sists of NUMEG element groups and NUMNP nodes. In this case NUMEG is equal to 
4 and NDMNP is equal to 12. We assumed that node 1 is an essential boundary 
condition node and hence the number of equations, NEQ, is equal to 11. The 
essence of the present development can be deduced graphically by considering 

NODE 

GROUP 

I I 1 

I 8 1 
I I I 

I(6At) ; El2Att) : I(4At) : E(At) 
I I I 

.z;*;;;;:=- 

Figure 2 

171 



the solution procedures of the matrix equations. The "active column equation 
solver" is the key to the success of this technique (see[8,13] for a descrip- 
tAon of this equation solver). The profile of the effective stiffness matrix 
,K of this one dimensional mesh is shown in figure 3. We can observe from 
figure 3 the following: 

Group 1: implicit with Atl= 6At , five words of storage (l-5), 3 elements and 
3 equations. 

Group 2: explicit with At2= 2At , two words of storage (6-7), 3 elements and 2 
equations. 

Group 3: implicit with At3= 4At , seven words of storage (8-14), 3 elements 
and 4 equations. 

Group 4: explicit with At4= At , two words of storage (15-16), 2 elements and 
2 equations. 

NODE NO EQT NO 
2 I 

3 2 

4 3 

5 4 

6 5 

7 6 

a 7 

9 8 

IO 9 

II IO 

12’ II 

IO II 
GROUP 3 (4A-t) I 12 I3 

t 

14 

GROUP4 fAt)E 
1. 

Figure 3 

The equation systems of each element group are uncoupled and hence each group 
can be integrated at its os‘n) group time step. For example, we assume the 
effective stiffness matrix._K is formed and factorized once. In a time 
interval of 6At , group 1 will be integrated implicitly once, group 2 will be 
integrated explicitly three times, group 3 will be integrated implicitly once 
and group 4 will be integrated explicitly six times. In order to handle the 
forward. reduction and backsubstitution and update procedures automatically, we 

* each has a dimension of NLJMNP. 
:~~~~r~~n~~n~r:~~~~~D~~~d s?&gEdf each node. 

At 
Nodes associated wit i! o%!?ly 

one element group NEG are assigned a time step of AtNEG , whereas those which 
are in common to other element groups are assigned to have the maximum time 
step from the adjacent groups. TNODE array contains the nodal time of each 
node. From these two arrays (AtNoDE and TNoDE ) and the boundary condition 
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codes, another time step array AhE and an equation time array T 
then be genera ed. ? have %&',I~~~ 

Both At%!kankT%$remented by the further a master time T, w 
equation systems can 
of NEQ. We require 
smallest time step At 
arrays are: 

. For this particular exazple the AtNODE and At 
NEQ 

and 

AtNEQ= (6At,6At,6At,2At,2At&At&At&At&At,At,At) 

arrays are incremented by time steps of AtNO E and 
With these definitions, the generalized m? xed time inte- 

on is to proceed over the time interval [O,Tmax] . The procedures are as 
follows: 

1. 

2. 

3. 

where 

and 

4. 

5. 

6. 

6a. 

Initialization 

Set TM, TNEG ,TNODE and T NEQ= ' 

Determine V 
“0 

V 
-0 

= -l(F - E,) -0 

Form and factorize $ 

* TG K*NEG K= 
- NEt=l '- 

*NEG 
,K =w SEC-k aAtNEsmG if implicit 

*NEG PG 5 =m which is a diagonal matrix if explicit 

T+ * 
M TM+ At ; set effective force g* equal to zero 

Loop on element groups NEGsl,...,NDMEG 

If TNEG+ AtNEG > TM go to 5a 

Loop on elements e=l,...,NUMEL 

Define predictor values E' 

If' Te 
NODE + At:ODE <T M 

then EioDE' zEODE+ (l-ddtNoDE $ODE 

If Ticks + At:O~E > TV 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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6b. 

and 

where 

6c. 

6d. 

5a. 

7. 

7a. 

7b. 

8. 

8a. 

8b. 

9. 

---- 

then 

Form 

z*e= 

f*e= 

SODE 

element effective force g *e 

$F + aAt NE$e if implicit 

$T+ ahJEe- EeF) if explicit 

K = diagonal matrix with AtiODE along the diagonals 

Sum up effective force from element contributions 

F*+ F*+ fe N N N 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

End of element loop 

End of element group loop 

Solve for 2 , i.e., forward reduction and backsubstitution 
*-1 * 

g=_K E (5.11) 

Loop on equation number N=l,...,NEQ 

N N 
If TNEQ+ AtNEQ > TM go to 7b 

Forward reduction and backsubstitution for equation N 

End of equation number loop 

Update 1 and JJ 

Loop on N=l,...,NUMNP 

N N 
If TNODE+ AtNODE > TM go to 8b 

ON+ solNtioN fromNstep 7 
iN f (2 - E )/aAtNoDE 

End of nodal number loop 

If TM > TM stop, otherwise go to 4 

* “f ” means "is replaced by" 
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6. NUMRRICAL EXAMPLES 

The s.tability and accuracy of these mixed time partition procedures are 
confirmed by the following one dimensional heat conduction problem. The 
finite element mesh consists of a rod kept at a temperature of 0.0 for all 
time at the left end and insulated at the right end, and subjected to a con- 
stant initial temperature of 0.1. The finite element model consists of (from 
left to right) 10 elements, each with a length Rl = 10.0, 10 elements, each 
with a lengthof R 
thermal diffusivi y, C , is set to 200.0. % 

= 109.0, and 10 elements,each with a length of R 
A total of five h 

= 10.0. The 
compu er runs are 

being made. They are (1) explicit, (2) explicit-implicit, (3) 10 explicit- 
explicit, (4) 10 explicit-implicit, and (5) implicit. All analyses are run 
with At = 0.25 which is the critical time step based on II = 10.0. For the m 
explicit-implicit cases, the implicit elements are the midd e 10 elements 2 
(a = 100.0). The results obtained from these five analyses are compared to the 
an lytical 2 solution. They are depicted in figure 4. The temperature reported 
is at x = 100.0. The solution time ratios (normalized by the implicit time) 
for the above five cases are 0.892, 0.971, 0.578, 0.638 and 1.000 respec- 
tively. 

Figure 4. 
Fqurc 5. 

In order to demo3strate the advantages of this mixed time technique C2 
is raised to 2.0 x 10 for the implicit elements. A time step of At = 0.25 
is used for the explicit-implicit and 10 explicit-implicit runs. This problem 
would therefore not be stable with a lOE-E partition. The results are pre- 
sented in figure 5. 

All the above calculations performed with a=0.5 and lumped mass matrices 
are assumed throughout. 
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7. CONCLUSION 

In this paper, we have developed a family of mixed time partition proce- 
dures for transient thermal analysis of structures. Both the stability cri- 
terion and the implementaton aspects of these methods are described. Numer- 
ical corroboration of the stability and accuracy of these techniques is also 
presented. The implementation procedures of these new algorithms are straight- 
forward and are recommended for inclusion in current thermal analysis computer 
programs. 
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