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1. INTRODUCTION

Because of the effects of material properties, structures
constructed from orthotropic materials often require extensive analysis,
even when they are geometrically simple. These analyses are commonly
done using finite elements, boundary collocation, and Fourier analysis.

The finite element method is well-documented in books such as
Gallagher [1] and Zienkiewicz [2] and will be dealt with here only
briefly. Finite element methods require the division of the region t3
be analyzed into smaller regions, or "elements." Within each of these
regions, the form of an approximate solution for a stress field is
assumed. Enforcement of boundary conditions and interelement continuity
of displacement then gives a piecewise continuous solution for the
stresses over the region.

Similar to the finite element method is boundary collocation, or
“point matching,” which is described in the papers by Slot and Yalch [3]
and Hooke [4]. For this method, an "exact" solution for the stresses in
a region of materials is developed by requiring the stress field to
match known values at given points on the boundaries. Unlike the
finite element method, however, the stress field solution is good over
the entire region being analyzed, not merely on one small portion of the
region.

Still another way to handle boundary value problems is to specify
a solution form that allows the boundary conditions to be met exactly,
rather than merely from point to point. This can be done with infinite

series of polynomials, but is more often done with Fourier series. It



is to a form of Fourier series solution that this report is devoted.

Timoshenko and Goodier [5] describe a fairly standard procedure for
stress analysis using Fourier series. A Fourier series stress function
is specified so as to match the conditions on two opposing boundaries
and stresses are found from this function. A similar solution can be
performed for the other two boundaries of the rectangular slab and, due
to linearity, the stresses from the two solutions can be added together.
A probiem arises with this method, however. Since the two supposedly
stress-free boundaries frequently acquire "residual" stresses from the
solution, a new series solution must be formulated to cancel these
stresses, i.e., to restore the stress-free condition on the adjacent
boundaries. These series, in turn, will leave residuals on the original
boundaries, and must in turn be cancelled. The process can be repeated
as many times as necessary to reduce the residuals to acceptable magni-
tudes. In 1944, Pickett [6] proposed a method to effectively "automate"
this procedure. By taking a series expansion of the stress function in
two dimensions, all boundary conditions can be met simultaneously.
Details of the method used are described in Little [7]. Theocaris and
Dafermos [8] have used Pickett's method to analyze a thin strip of
isotropic material subjected to dis-Tacement along a single boundary.

In this report, a solution for the gerieral plane stress problem in
a rectangular slab of ortnotropic material is presented. The principal
axes of the material are aligned parallel with the sides of the slab.
Only stress boundary conditions are treated. However, the inclusion of

displacement boundary conditions in the analysis is discussed briefiy
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in Appendix D. The solution is valid for general boundary stresses, as
long as they can be represented by Fourier series. The solution method
is an extension and generalization of Pickett's method [6] tc allow the
consideration of specia'ly orthotropic materials and general stress
boundary conditions. The expansion of the capabilities of Pickett's
method is made feasible by the existence of high speed computers which
can quickly and easily handle large matrices and complicated algebraic
expressions.

When this solution is used, no redefinition of a finite element
mesh is required to change loading conditions. Also (and probably of
the most practical use in the long run), if regions over which solutions
of this form are valid can be joined together to form more complicated
shapes, they become "exact" elements in a new sort of finite element
solution. Accurate results can then be obtained with far fewer elements.

The solution generated is used to work two problems similar to
tests used for material property evaluation. The stress fields found
are examined for the effects of orthotropy, and possibilities for future

use of the solution are discussed.

1.1 Method of Solution

1.1.1 Development of Governing Equations
The equation governing the plane stress distribution in an aniso-

tropic slab is given by Lekhnitskii [9] as



4 8 4 4
S,, 376 3 3 3
2288 .95, L 4 (25, 4 5.) —3-05 - 25, 20
axt 28 535y 1277667 52y 16 5oy
.
: +s, %= 0, (1)
ay

where the stress function ¢ is defined by the following relations:

2 2 2
=3¢ =3¢ = .39
o, ayz s cy 3x2 , and Txy 3X8y . (2)

The elastic compliances Si‘ are defined in Jones [10] and occur in the

J
constitutive relations as

m
[

x = S11% ¥ 5129 * S16Txy
= S129 ¥ S229 * SpgTyy (3)

m
[

Yey = S16% * S26% * Se6Txy -

Positive values of the stresses Oys cy, and Txy are shown in Fig. 1.
[f the problem is specialized to descrit- the stress distribution

in a rectanqular slab of orthotopic material where principal material

axes coincide with the slab boundaries, the compliances 516 and 526

vanish and the governing equation /1) reduces to

4 4 4
3 3 3%y
S22 g;% + (2515 + Sgg) g;i;ff + 5 ;;% =0. (4a)

Using the standard engineering constants, this equation is
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For the special case of isotropic material such that

E
= = 1

the governing equation reduces to the well-known tiharmonic equation for

determining the stress function in plane stress:

4 4 4

3% 3¢ L3¢ _

T+ 2 + =0 . (5)
ax 3x23y2 3y4

The development of a solution toc the orthotropic slab will be
restricted to those problems where known stress distributions are applied
on the boundaries x = 2 and y = +t, where % and t are the half-lengths
of the slab in the x and y-directions, respectively (see Fig. 2). This

restriction leads to the following boundary conditions:

0, (2:¥) = ry(y) rxy(i.y) = rgly)
o (~2,y) = ry(y) Tyy(ty) = rgly) )
oy(x.t) = ra(x) rxy(x.t) = ry(x)
qy(x.—t) = ry(x) Txy(x,-t) = rg(x)

where r, are the given boundary stress distributions. These functions
are not independent but from consideration of overall equilibrium of

forces and moments are related as follows:
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t L
| Iry0) - r] dy + [Lrglx) - rglx)] éx = 0
-t -4
L t
J tr3(x) = g3 dx +] Try(0) - rgn)] = 0 (7
-2 -t
t L
f [rg(y) + rely)]e dy - [ [ry(x) + rg(x)Jt dx
-t -%
t rl
+ f [rp(y) - ry{y)ly dy + Jlrg(x) - rp(x)]x dx = 0
-t -2

Furthermore, the boundary stress distributions r; must be expressibla as
Fourier series.

Equation 4 and the boundary conditions of Eqn. (6) fully describe
the governing set of equations to determine the distribution of stress
in a rectangular slab of dimensions % by t subject to any stress distri-

bution on the boundary.



2. SOLUTION TECHNIQUE

A general solution of Eqn. (4) and (6) can be expressed as the

triconometric expansion

2
¢ = Cyx” + coxy + c3y2 + c4x2y + c5xy2
+ nZO [f,(x) cos(ay) + g,(y) cos(B x)]

]

* Z] [hy(x) sin(ayy) + k (y) sin(Bx)],
n=

where the polynomial terms are necessary in the solution procedure that

follows to assure a general solution set, and where
a=—t and B = —

The functions fn(x), gn(y), hn(x). and kn(y) can be determined from the
set of equations found upon substitution of the solution of Eqn. (8)
into Eqn. (4). The result is a set of fourth-order ordinary differen-
tial equations with constant coefficients in x for fn(x) and hn(x) and a
corresponding set of equations in y for gn(y) and kn(y). These equa-

tions admit of solutions of the form
- SX
fn(x) Fne (9)

which upon substitution in the ordinary differential equations all give

the characteristic equation

o asleg-0, (10)
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where
2v E
- 12 .2
A Ez[ai—z' - -E—]—] and B ET . (]0)

The roots to the characteristic equation are functions of material

properties only. There are trree possible solution forms; these are

1) roots are real, in pairs --- s = *u, *v (u,v >0, u #v)
2) roots are real and equal in pairs --- s = #u (u > 0)
3) roots are complex --- s = *u #iv (u,v > 03 i = v/-T) .

These cases are now explored separately.

CASE 1
When the roots are real in pairs, case 1, the functions fn(x),

g (y), h_(x), and kn(y) have the form

n n
uanx vanx -Uax X Vanx
fn(x) = e ta,e tage +a,e R
ug.y VB Y -ug.y VB
9,(y) =age * +age © +aje +ag e :
(1)
ug X va_X -Ud X -Va_X
- n n n n
hn(x) agn® * a10n® ¥ 31t * 312n® i
uB_y VB Y -uB v -vB Yy
- n n n n
kn(y) = ajgpe = +age 7t agge 268

To take advantage of symmetries which might occur in the formulation of
specific problems, the solution form of Eqn. (11) is recast in terms of

even and odd functions to yield



a

B

fn(x) = [SS]n cosh(uanx) + AS]n sinh(uanx)]/cosh(uani)

+ [SS3n cosh(v«nx) + AS3 sinh(vanx)]/cosh(vanl) .
gn(Y) = [SSZn cosh(uBny) + AS2 sinh(uBny)]/cosh(uBnt)

+ [SS4n cosh(any) + AS4n sinh(vsny)]/cosh(vsnt) ,

(12)

hn(x) 2 [SA]n cosh\uanx) + AA]n sinh(uanx)]/cosh(uani)

+ [SA3n COSh(Van) + M3 sinh(vanx)]/cosh(vanz) R
k. (y) = [SA2_ cosh(ug y) + AA2  sinh(ug y)]/cosh(us t)

+ [SA4n cosh(any) + AR sinh(vsny)]/cosh(vsnt) .

The terms cosh(uani). cosh(vant), cosh(uant), and cosh(vsnt) are

inserted to avoid numerical instability in computatior for large values

of n, and the coefficients (SSln, RS2, etc.) are named in such a way as
to denote states of symmetry in x and y. The first letter in eacn coeffi-
cient describes the symmetry with respect to the x-axis while the second
letter denotes symmetry with respect to the y-axis ("S" denotes symmetry,
while "A" denotes anti-symmetry). Roots corresponding to case (1) occur
in the analysis of highly unidirectional materials such as fiber-
reinforced composites. In fact, any orthotropic material in which either
of the normal moduli E] and E2 is significantly larger than the shear

modulus 612 will fall into this class.

CASE (2)

When the roots are real and equal in pairs, as occurs for isotropic
materials, the functions fn(x), gn(y). hn(x). and kn(y) similarly have

the forms



..\{

12

fn(x) = [SS1n cosh(uanx) + 583, ua,x sinh(uanx)
+ AS1n sinh(uanx) + AS3n Uox, X cosh(uanx)]/cosh(uanz) ,

gn(y) = [SSZn cosh(ueny) + SS4n ug.y sinh(usny)

+ Aszn sinh(uBny) + AS4n ug,y cosh(uBny)]/cosh(uBnt)
(13)

hn(x) = [SA'In cosh(uanx) + SA3 ua X sinh(uanx)

n
+ AAT sinh(uanx) + RA3 uax cosh(uanx)]/cosh(uanz)

kn(y) = [SA2n cosh(ueny) + SA4n ug.y sinh(uBny)
+ A2 sinh(ueny) + AAG uB Yy cosh(ueny)]/cosh(uent) .

As with the previous case, the coefficients denote symmetry conditions.

CASE 3
When the roots are complex, case (3), the functions fn(x), gn(y),

hn(x)’ and k_(y) have the forms

fn(x) = [(SS]n cos(vanx) + AS1n sin(vanx)) cosh(uanx)

+ (sS3, cos(Vany) + AS3, Sin(Vanx)) sinh(uanx)]/cosh(uanz) R

9,(y) = [(ss2, cos(vg y) + ASZ, sin(vg y)) cosh(ug y)

+ (SS4n cos(veny) + AS4n sin(veny))sinh(usny)]/cosh(uent)(, )
14

hn(x) = [(SA]n COS(VanX) + AA]n sin(Vanx))cosh(uanx)

+ (SA3n COS(VanX) + AA3 sin(Vanx)) sinh(uanx)]/cosh(uanl)

k,(y) = [(SA2 cos(vgy) + AA2, sin(vg y)) cosh(ug y)
+ (SA4n cos(vsny) + AA4n sin(veny)) sinh(usny)]/cosh(usnt) .
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As with the previous two cases, the coefficients denote symmetry condi-
tions. While case (3) is not fully developed in this report, it is
nevertholess quite significant. Any material with large shear modulus
G]2 (as compared to the normal moduli E] and E2) fits into this case.

For instance, graphite/epoxy in unidirectional form has material proper-

ties [11]
£, = 19.2 x 10° pxi
12 19.2x pxi
E, = 1.56 108 psi
6y, = 0.82 x 108 psi
Vip = 0.238

and falls. into case (1). However, using this material in angle-ply

Taminates having the stacking sequence [+8] raises the shear

symmetric
modulus while lowering the maximum normal modulus, and gives properties

corresponding to case (3) when 8 lies in the range
25.1° < 8 < 64.9°,

Since laminates of this form are used frequently in composite structures,
this latter case obviously is important. The purpose of this paper is
to describe a general technique for solution and the general development
of equations will be limited to cases (1) and (2). The procedure ror
incorporation of material systems requiring case (3) solutions follows

directly using the same development as described for the first two cases.
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Reformulation of the Stress Function

The equation for the stress function ¢, Eqn. (8), can be recast to

take advantage of even and odd functions as follows:

§ = b5 * 0gp * fps * O (15)

where
dee = ] R y2 + 1 R x2 + E X cos(a.y) + E Y cos(B._x)
SS 2 xss 2 "yss nss ap¥ nss n
n=0 n=0
dep = 1R xly + § X .. sin(a y) + E Y .. cos(B x)
SA © 7 Rysa® Y nsa nY nsa n
n=1 n=0
dae = Lo xy2+ E X cos(a y) + E Y sin(B_x)
AS = 7 "xas®Y T né0 “nas n’ nas n
n=1
opa = Raa®¥ * ¥ Xnaa sin(any) + 7 Yoaa sin(BnX) .
n=1] n=1

In these expressions, the terms ans' ana, Xnas’ and Xnaa are functions

of x, while the terms Ynss’ Y Y ., and Ynaa are functions of y.

nsa’ nas
The forms of these functions depend on the roots to the governing

differential Eqn. (4), as discussed previously, and are presented later.

R

The terms Rxss' R R s’ and Raa are arbitrary constants.

yss® “ysa’ “'xa
Using the definition of the stress function (Ean. (2)), stresses
are derived from the stress function by differentiation. These stresses

are given in terms of the stress function in Appendix A.
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For Case (1), roots real and in pairs, the functions ans. Y

are given

nss
ana
Xnas
naa
nss
nsa

nas

-~ < < < >

naa

15

by

SS1ncosh(uqnx)/cosh(uqng) + SS3ncosh(vanx)/cosh(vanz)

SA]ncosh(uqnx)/cosh(uanz) + SA3ncosh(vanx)/cosh(vanz)

AS]nsinh(uunx)/cosh(uanz) + AS3nsinh(vanx)/cosh(vanz)

AA1nsinh(uanx)/cosh(uahz) + AA3nsinh(vanx)/cosh(vanz)

SSchosh(uBny)/cosh(usnt) + Ss4ncosh(veny)/cosh(vsnt)

SA2nsinh(uB"y)/cosh(uBnt) + SA4nsinh(v8ny)/cosh(ant)

AS2,cosh(ug y)/cosh(ug t) + AS4 cosh(vB y)/cosh(v8 t)

AAZnsinh(usny)/cosh(uent) + AA4nsinh(any)/COSh(vsn:) .

, etc.

(16)

For case (2), roots real and equal in pairs, these functions are given by

XnSS

ané

xnas

xnaa

Y
nss

Ynsa

Ynas

Ynaa

Finally, for case (3), complex roots, these functions are given by

ns

"

{SS1n cosh(uunx) + SS3nuanx sinh(uanx)]/cosh(uanz)

LSMn cosh(uunx) + SA3nuunx sinh(uanx)]/cosh(uanz)

[AS]n sinh(uanx) + AS3 ua X cosh(uanx)]/cosh(uant)

[AA‘In sinh(uanx) + AA3nuanx cosh(uanx)]/cosh(uanz)

[ss2 cosh(ug y) + SS4 ug y sinh(ug y)]/cosh(ug,t)

[SA2, cosh(ug y) + AS4 ug y sinh(u y)]/cosh(ust)
= [AS2 cosh(ug y) + AS4 ug ysinh(uB y)]/cosh(ug t)
= [AA2 sinh(ug y) + AA4 uBy cosh(ug y)]/cosh(ug t) .

(17)

Xnss * [SSlnccs(va“x)cosh(uanx) + SS3nsin(vanx)sinh(uanx)]/cosh(uang)

Xnsa = [SA1 cos(va,x)cosh(ua,x) + SA3,sin(va,x)sinh(ua,x)]/cosh(ua, 1)

Xoas * [ASlnsin(vanx)cosh(uanx) + AS3ncos(inx)sinh(uanx)]/cosh(uune)

na

Xoaa = [AA]nsin(vanx)cosh(uanx) + AA3ncos(inx)sinh(uanx)]/cosh(uunl)

na
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nss [SSchos(any)cosh(uBny) + SS4nsin(vsny)sinh(ueny)]/cosh(usnt)

~
n

nsa [SAZnsin(any)cosh(uBny) + SA4ncos(any)sinh(ueny)]/cosh(usnt)

-
[}

nas [ASchos(any)cosh(uBny) + AS4nsin(v6ny)sinh(uBnY)]/cosh(uBnt)

—
"

[AAZnsin(veny)cosh(uBny) + AA4ncos(vsny)sinh(usny)]/cosh(uBnt) .
(18)

naa

Formulation of Boundary Conditions

The stress function ¢ as expressed by Eqn. (15)-(18) is composed of

three types of functions which contain unknown coefficients. These are

the polynomials (-;--Rxssy2

, etc.), the even series functions (ans, xnsa’

).

Each of the series functions contains two unknown coefficients, so the

Y ), and the odd series functions (xnas’ xnaa’ Ynsa’ Y

Y
nss’® nas naa

even series functions contain eight (SS]n, $S3 , ----, ASZn, ASdn) for

n,
each value of n, and th2 odd series functions contain eight (ASln, AS3n,
-———-, AAZn, AAdn) for each value of n, Thus, 16 unknown coefficients
must be found for each value of n in the series, and another five must

R ..o Ro..s R __»

be found to account for the polynomial terms (R .. Ry oo Rycas Rype

Raa)'
To obtain the solution for the coefficients in Eqns. (15)-(18), the
boundary conditions (Eqn. (6)) are expanded in general Fourier series,

with the form

t+j—

0 (2.y) = 7t  * TG coslag) + 5 sin(ay)] (19)

n

where
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t
¢, = J ri(y) cos(ay) dy
n
-t
t
S] = J rl(y) sin(any) dy .
Nt

Similar expansions hold for the other applied boundary stresses. See
Appendix B for these expansions and their Fourier coefficients.

To take advantage of possible symmetries which might occur with the
stresses applied on the boundaries, boundary conditions are obtained by
equating the sums and differences of the applied stresses (given in
Appendix B) at the boundaries to the corresponding sums and differences
of the general expressions for stress (see Appendix A) evaiuated at the
boundaries. The resulting equations are then manipulated to extract
expressions for the arbitrary coefficients in the following fashion.

For example, on the boundaries x = ¢,
rily) = roly) = o, (L,y) - o (-2,y) (20)

Substituting for rl(y) and rz(y) expanded in Fourier series (as given in
Appendix B) and for o, as given in Appendix A and evaluated at the

boundaries, this equation becomes

1 12 ,
= C ++ Y [cC cos(a,y) + S sin{a.y)]
7t gy T L Gg coslany) * S sinay

=2R -2 ; uﬁx (2) cos(a,y) (21)
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where terms of the form C]_2p are a shorthand notation for (C1 -C2 ).
Recall that terms of the form Xnas(l) are functions involving unknown
coefficients such as AS]n, evaluated at 2. To relate the unknown
coefficients to the known Fourier coefficients of the applied stresses,
both sides of the equation are multiplied by either sin(any) or cos(any)
and integrated along the boundary from -t to t (for stresses on the
adjacent boundaries, the boundary condition equation is multiplied by

sin(snx) or cos(enx) and integrated from -2 to 2). Continuing this

process for the remaining boundary condition relations,

*+ ry(y) = o, (2.y) + o, (-2,¥)

+ r4(x) = cy(x.t) - ay(x,-t)

= oy(x,t) + cy(x,-t)

+
-
F—
——
x
~—
[l

rxy(z,y) - rxy(-i,y)

)
)
)
rs(y; - rG(Y) (22)
)
)

rg(y) + rely) = 1, (Ly) + 7, (-%.y)
r7(x - r8(x) = Txy(X,t) - rxy(x,-t)
ra(x) + rg(x) = rxy(x,t) + rxy(x.-t) ,

the following set of equations result for the unknown coefficients with

all material cases:

(ElAp){(EICp) + 7 (E1Dpn)}
n=1 n=1

ss1, + (E1A)) [ (ET8,)sS2,

(F1Ap) Z](F]Bpn)SS]n + SSZp (F]Ap){(F1Cp) + z](F1Dpn)}
n= n=
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SATp + (E2Ap) Z](EZBpn)SAZn = (EZAp){ EZCp) + Z](EZDpn)}
n= n=

(FZAp) ¥ (FZBpn)SAln + SA2p = (F2Ap){(F2Cp) + 7 (FZDpn)}

n=] n=1 (23)

AS]p + (E3Ap) ZI(E3Bpn)A52n = (E3Ap){(E3Cp) + z](E3Dpn)}
n= n=

(F3Ap) Z](F3Bpn)AS'In + ASZp (F3Ap){(F3Cp) + Z](F3Dpn)}
n= n=

AAIp + (E4Ap) Z](E4Bpn)AA2n (EA4p){(E4Cp) + 21(E4Dpn)}
n= n=

(FaA)) T (F4B )AAT, + A2, = (F4A ){(F4C,) + ] (FdD )}

n=1 n=1

Furthermore, equations of thé following type also result (these examples

are for Case 1 material):

ss3_ = L %560 o), tanh(ua z).
p v tanh(va_2)},.2 P Y
p .Zapt J
ss4_ = ] 3780 _ o5 tanh(u.t) |
p v tanh(vB_t)|,,2 p P
p .28p2 ]
SA3_ = ol C5'69*+ SA1 u tanh{ua_2)
p v tanh(va_2) 2 P P
p 2apt
tanh(uB_t) C
SA4 = - [SAZ 2+ 33y ] (24)
P P tanh(vept) 28§2 tanh(vat)

e —a— b .

RS

B i L

e e L
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o
= -1 1-2
AS3p fiiﬁTVE;EJ’ [AS'Ip tanh(uapg) + EZZ;E ]
p

C
L -1 7-8
AS4p v-fiﬁﬁrvagij-[gggzﬂ-+ Aszpu tanh(qut)]

i s
. -1 1-2p
A3 | AT, tanh(uayt) + =5 ]
p

[ S
. -1 3-4p
AA4p EEEETVEEET AAZp tanh(qut) + 2622 ]
i p
For a complete definition of the terms in Eqn. (23), as well as for the
Case 2 expressions corresponding to Eqn. (24), see Appendix C.
The Eqns. (23) can be paired in matrix form according to symmetry
conditions as, for example,

I ' E1 (88t P1A
..... J_----_ —————— = ——— n=1,2, --- (253)
n

P18 n

where, after partitioning, [I] is the identity matrix, [E1] and [F1] are
square matrices dependent on material properties and slab geometry;
{P]A}n and {P]B}n are column vectors dependent on material properties,
slab geometry, and boundary conditions; and {SS1}n and {SSZ}n are column
vectors containing the unknown constant coefficients of the series

stress function. Similarly,

SAl P2A
..... 2 2 3---: n=1,2, --- (25b)

P28

n
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I | E3 AS1 P3A
]
------ A g-----§ s 3---& n=1,2--- (25¢)
F3 V1 AS2 n P38 n
I | E4 AAT P4A
i
----- :'----—- g----‘g = g"'; n= 1’2) - (25d)
1
Fa | I AA2 n P48 n

Each set of Eqn. (24) may be solved independently; for example, solving
for {551}n and {SSZ}n gives

ss2 = [(11- [F1IEN)] Y easy - CRIIPIAY

(26)
$s1 P1A - [Ei]{ss2}, .

n

Using the unknown coefficients determined vrom the above matrix solutions,
the remaining unknown coefficients can be found from Eqn. (24) for Case
1 or from the corresponding equations for Case 2 material.

The only terms which are still unknown at this point are the
coefficients of the polynomial terms in the expression for the stress
function (Eqn. (15)). These are found in similar fashion to the above
using the brundary relationships of Eqns. (20) and (22) and n = 0.

The polynomial terms R sa and Rxas are then given by

y
c3-40
Rysa = it
(27)
C1-20
Reas = 1t

it g o =

[
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for both materials (1) and (2). The polynomials Rxss’ Ryss’ and Raa are

dependent, not only on material properties, but also on the solutions for
the coefficients SSln. SSZn, etc. For material case 1, roots real and
in pairs, these terms are given by

1

® B
Ryss = IE'CI+20 -1 Eﬂ [sS2 u tanh(ug t) + SS4 v tanh(vB t)]

n=1

@ o
Ryss = 1% Caeq = I (-1)" 2 [SS1 u tanh(ua 2) + SS3 v tanh(va 2)]

8
Rip == - I (-1)" = [AM2 tanh(ug t) + AA4_ tanh(vg t)] .
n=1

For material Case 2, roots real and equal in pairs, these polynomials are

given by
R =1 - ? (-1\" EED—-[SSZ tanh(uB t)
XSS 1?"1+20 3 Tt n n
=]
+SS4n{tanh(u8nt) + uBnt}]
] S n Y%
Ryss = 77 C3eq, = L (-1)7 — [S81) tanh(ua2) (29)
n=1
+ $s3 {tanh(ua 2) + uanl}]
C5+60 S n Sn
. Raa = = TE— - Y (-1) < [AAZn tanh(uBnt) + AA4nu8nt] .
. n=1

Using Eqns. (23) through ) and Apperndix C all of the unknown
coefficients can be solved. Then, using the equations given in Appendix

A, the stresses at any point in the material can be found.

r=1 (28)

LT T e

- e . e



3. COMPUTER IMPLEMENTATION

To solve the equations described previously, a computer program was
written and programmed on a Control Data Corporation Cyber 173 computer
at the Langley Research Center of the National Aeronautics and Space
Administration. A brief description of this program follows.

After receiving input of material properties and the Fourier series
coefficients for the boundary stresses, the program calculates the roots
of the characteristic equation from the material properties and decides
which solution form to use. The subroutine corresponding to that form
is then called to solve for the unknown coefficients. The various
symmetry cases are solved one at a time by computing the elements of
matrices £ and F as required with the values indicated in Appendix C.

A matrix manipulation subroutine is then called to perform a set of
operations common to all symmetry cases. At the end of these operations,
the coefficients for the symmetry cases in question are put into the
proper storage locations and the matrix routine returns control to the
routine which fills the matrices. The next symmetry case is then solved
in the same fashion, until all symmetry cases are done. Any single type
of symmetry can be considered (to the exclusion of all others), or the
program can solve all four types in turn, thus solving a general
(asymetric) loading case. A check on the accuracy of the solution is
given by printing out the input boundary conditions (found by summing
the input Fourier series) in columns beside the corresponding output
boundary conditions (found by summing the "exact" solution on the

boundaries). This feature can also be used to check for errors in input.

23
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Finally, the locations for which stress values are desired are checked,
stresses are calculated at these locations, and a subroutine is called
to print or plot these stresses in useful form.

Several problems arise in implementing the computer code. It has
already been pointed out that terms based on the maximum values of x and
y and on the value of n are included in the solution. These terms are
included to prevent terms involving hyperbolic functions from becoming
too large and destroying the accuracy of the series (by requiring the
differences of large numbers to be much smaller than the numbers them-
selves). For plates with high or low aspect ratios (¢/t greater than
about 4 or less than about 0.25), the arguments of terms such as
cosh (uanz) become too large for the computer to handle when n becomes
large (n approximately equal to 50). Thus, the solutions for these
plates require that fewer terms of the series solution be taken. It is
possible that this may lead to unacceptable accuracy if the loading is
such as to require a large number of terms for convergence of its
Fourier series representation.

Because of the nature of Fourier series expansions, convergence
problems might occur for some types of loadings at the corners of the

slab.

3.1 Sample Problem Solutions

Two practical sample cases were chosen as examples of potential
applications of this solution procedure. The sample cases presented
were selected for their similarity to actual problems encountered in

materials testing and to demonstrate the wide applicability of the
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program developed.
Solutions were generated using 35 and 50 terms in the series formu-
. lations. Plots were generated taking cuts at constant x/¢ equal to 0.0,
0.2, 0.4, 0.6, and 0.8 with -t <y < t. In all cases, t = 1.0, while
2 =1.0, 2.0, 4.0 and 6.0. Thus the slabs analyzed had aspect ratios
AR, = 2/t = 1,0, 2.0, 4.0 and 6.0.
The analysis also involved two different materials. One of these

was isotropic with the properties of steel:

£, = €y = 30.0 x 10° psi
6y, = 12.0 x 108 psi
Vip = 0.25 .

The other material was orthotropic, having the properties of uni-

directional graphite/epoxy from [11]:

E, = 10.2 x 100 psi

E, = 1.56 x 10° psi

] 6 .

G]2 = (0.82 x 10° psi
vy, = 0.238 .

i The loadings, to be referred to subsequently as the "tensile coupon"

and "rail shear" cases, are described as follows.
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3.1.1 "Tensile Coupon: Load Case

The "tensile coupon- test has the following boundary conditions:

rxy(x,zt) = 0 for -2 < x < -(0.95)2
-(0.90)2 < x < (0.09)¢
(0.95)2 < x < &
= +(20)t/2 for -(0.S5, 1 < x < -(0.90)2
= £(20)t/2 for (0.90)2 < x < (0.95)2
rxy(:ﬁ,y) =0
ox(:i,y) =0
oy(x,tt) =0 .

These boundary conditions (see Fig. 3) are chosen to give a very crude
approximation of the stresses on a rectangular coupon clamned in a test
rig and being pulled for the determination of tensile strength. ihe non-
zero values of boundary shear are selected to give an average normal
stress o, of magnitude 1.0 when the applied stresses have diffused

X
completely.

3.1.2 "Rail Shear" Load Case

The "rail shear- test has the boundary conditions

rxy(x,:t) = 1.0 for -(0.80)2 < x < (0.80)¢
=0 for -2 < x < -(0.80)2, (0.80)2 < x < 2
3t
g (x,*t) = x for -(0.80)¢ < x < (0.80)¢
y (0.64)2°
= 0 for -¢ < x < -(0.80)2, (0.80)¢ < x < &
rxy(:l,y) =

Ux(tiv.Y) =0.
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"rail shear" specimen. All specimens showed essentially identical
behavior, with only the magnitude of the stress changing. This is an
aspect ratio effect, since higher magnitudes of °y are required to
satisfy moment equilibrium for lower aspect ratio specimens.

Aspect ratio provides most of the variation in normal stress gy
distribution for the "rail shear" tests. The distributions of 9, in
orthotropic and isotropic plates have nearly identical forms and magni-
tudes for a given aspect ratio, though the maximum magnitude of y is
slightly lower for orthotropic materials at low aspect ratios. At
high aspect ratios, the difference in magnitudes due to material
properties is negligible. See Figs. 11 and 12 for ay plots for an
isotropic plate of aspect ratio of 1.0 and an orthotropic plate of aspect
ratio 6.0, respectively.

Figures 13 and 14 show the shear distribution in isotropic plates of
aspect ratios 1.0 and 6.0, respectively. A comparison of these plots

serves to illustrate the smoothing of the curves for t__ as aspect ratio

Xy
increases in both isotropic and orthotropic plates. Orthotrcpic plates
of low aspect ratio, however, tended to display Txy behavior similar

to isotropic plates of slightly higher aspect ratio (see Fig. 15). The
material properties were of little consequence to the shear stress field
at higher aspect ratios. At the edge of the stress boundary (x/¢ = 0.8),
the behavior of y = *t shows a value of Txy = 0.5 instead of the
anticipated value of 1.0. This is a result of the fact that Fourier
series give average values at discontinuities, so the applied boundary

stress input at this point is, in fact, rxy = 0.5, rather than 1.0.
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3.3 Conclusions and Recommendations

A method for solving exactly the stress field in a slab of orthe-
tropic material was developed. Tests were run to determine the useful-
ness of the method. The procedure suagested by Pickett [6] shows consi-
derable promise for use in the analysis of both isotropic and ortho-
tropic materials. Accurate results were obtained with fairly low run
times.

One of the expected benefits of the method proved to be nonexistent.
It was originally anticipated that all rectanguiar membranes could be
analyzed with similar accuracy, but this was found not to be true. The
inability of the computer to handle large arguments of hyperbolic sine
and cosine functions limits the number of terms which can be taken in
the series solution. For plates with very high aspect ratios, this
limitation can become critically small and destroy the accuracy of the
solution,

The first and most important task for future researchers using
Pickett's method is to develop the solution for Case 3, involving complex
eigenvalues for the governing differential equation (Eq. (4)). Due to
the significance of materials which fall into this case (for example a

[+45°] laminate of graphite/epoxy) the inclusion of this

symmetric
solution is important. Once this is done, a thorough study of convergence,
accuracy, and computing cost for Pickett's method needs to be undertaken.
These parameters should be compared to similar parameters for one or

more finite element programs.
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Assuming that the suggested research proceeds with no major
difficulties, a displacement solution should be formulated following
the approach suggested in Appendix D. This would allow the solution of
more general problems by allowing completely general boundary formu-
lations.

Once a displacement solution has been developed, a method for
joining one of these rectangular slabs to another needs to be developed.
The slab for which the displacement solution holds could then be turned
into a finite element, capable of deforming compatibly with its neighbors
at every point of their common boundaries. For the time being, this
joining of solutions must necessarily involve a minimal number of
elements, due to computer limitations. However, more powerful computers
already being developed make the concept of "exact" finite elements
appear feasible in the very near future, and the technology required
for them needs to be developed now.

An attractive feature of using Pickett's method for finite elements
is that only a few elements may be required even when high local stess
gradients exist. Presently, large numbers of elements are required for

accurate solutions in such regions.

— e r——————
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APPENDIX A

STRESSES IN TERMS OF THE STRESS FUNCTION

Using Equation 15 and the definition of the stress function (Equation

2), the following relations for stresses can be defined:

Tey = Txyss ¥ Txysa © Txyas ¥ Txyaa ’ (A-1)
where

2

3
g = ==
XSS ay2 S

a2
Txyas ~ ~ Fxay %as * otc
With these ter—s defined, the following component stresses for 9,
result:
2 % "
o = R - ¥afx _ cos(ay) + ¥y  cos(B x)
XSS X$S 2 NNss n neg NSS n
(A-2)
- 2 . "

Oca = - ¥ 3K asin(ay) + ¥ Y ¢ac0s(8,x)

n=1 n=0
o =R .x - ¥ox cos(a y) + % v sin(8_x)
xas xas ~~nnas n =, nas n

n=0 n=1
= . @ 2 , "

%aa £ 3 XaaS N0 Y) * ¥ Y aasin(3 x)

o e e v

3 oy
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Similarly, for ¢ :

g

yss = Ryss cos(8yx)

N 2
nzoxnssc°s(°ny) f BnYnss

Iysa Rysay + ¥ anaSi"(“ny) f BnYnsas’"(an)

n=0
(A-3)
%yas ngsxnascos(any) ? BnYraSSIn(an)
% aa = nglxnaasin(any) - f]BnYnaaSIn(an) .
Finally, for Ty
Txyss = f aanSSs1n(a y) + nf16n nsss1n(8nx)
Tyysa = “Rysa® nfl n nsacos (@y) + BnYnsas1n(an)
(A-4)
Txyas - “"xasY f n nasS1"(“nY) f BnYnaSCOS(B X)
Tyyaa = “Raa - nf]anxnaacos(any) - f BnYnaac°S(3nx)'

In all of the above expressions,

_d
x-dxx

~
1]
[= %
xBJ
><

—<
[]]

The X and Y Terms are dependent on material properties and are defined

in Equations 16-18.
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APPENDIX B

FOURIER EXPANSIONS OF BOUNDARY CONDITIONS

The boundary conditions of Equation 6 can be expanded in general

Fourier series.

These expansions are given below.

n

o x(l,y) = %TC1° + n?\%-C]J%os(any) + S] sin(any)}

t
SIRE R

[}

C, cos(a.y) + S, sin(a_y)
I " ]n n :

jt rz(y)cos(any)dy

t
[ roly)sin(a y)dy

1 e | .
=C, *+ £ = 1C, cos(B x) + S, sin(B x)
28 "3 5y U3, n 3, n
L
j r3(X)dX
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L
= fl r3(x)cos(enx)dx

= fz r3(x)sin(8nx)dx

1
= |C
L 4n

"
m —
hﬁ
[

+

n=1

'3
s | r4(x)dx
L
= | r4(x)cos(6nx)dx

= | r4(x)sin(8nx)dx

"
o
-+
=18

C
n=1 5n

rely)dy

'}
cr—rct

re(y)cos(a y)dy

[
cr—ct

re(y)sin(a,y)dy

]
ot

] 1
Txy('fn.Y) = _Z_t‘c6o + § t C6n

u
& ct
-3
[»,]

Pl
<
—
(=¥
~<

] E r6(y)cos(any)dy

= z re(y)sin(a,y)dy

cos(an) + S4ns1n(enx)

cos(ayy) * Ssnsin(any)

cos(ay) * Ssnsin(any)

N
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.. (x,t) = 57 C, + ¥ % ¢y cos(snx) + S7nsin(enx)}

Xy °  n=] n
'3
C7° = {2 r7(x)dx

')
C7n = [1 r7(x)cos(enx)dx

L
Sy = f r7(x)sin(8nx)dx
‘n -2

| —

_ 1
rxy(x,-t) =37 CBO + ngl

'3
C8° = {2 r8(x)dx

2
C8n = {1 r8(x)cos(8nx)dx

2
S8n = {2 r8(x)sin(8nx)dx

Due to linearity, expressions of the form

o, (L,y) + a,(-2,y)

1 1
=a=(C, +Ch )+ ¥ & [(c +C
2t ‘M1, 2o n=1 t ln 2n
and
UX(Q!Y) - Ux('l’y)
° ° n=) n n

[cBncos(snx) + Sg sin(3x)

n

Jeos(ayy) + (S

+ Szn)sin(any)

n

Jeos(any) *+ (S - Sy )sin(ay)
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are valid. These forms are also useful in the solution technique of this

paper, so the following shorthand expressions are introduced:

ez, T O Qg =G "G
Sz, T H S NI
C3eq = G * G C3-4 " 03 "o
S304 %53 *Sq S3-4 753 " Sq_
“se6, " 05 * g ¢s-5, = 5. " 6.
546, " %5 * 3 S5-6, " 55~ %
‘148 = C7 * Lo ‘7.8, = ¢1 " Cg_
748 =57 * 38 >7-8. "7 " 38

Using these,
o, (2:¥) + o, (-2,y)

2] e ] .
D7 Gz LT |Creg S8 (8] ¥ Syep sin(B) |



Ty

(x,t) - Txy(x.-t)

=
21 ¢7-8, * nS

and so forth.

1
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% [C7_8ncos(8nx) + S7_8nsin(8nx)J ,

Sa e s et

e e ——
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APPENDIX C

EXPRESSIONS FOR SOLUTION TERMS

The matrix expressions given by Equations 23 and 25, along with
the explicit expressions for solution terms as in Equation 24, are the
backbone of the solution technique presented in this paper. Each of
the three material cases provides a distinct set of terms for Equation
23 as well as distinct sets of equations with the forms of Equations
24, 27, 28 and 29. The terms and equations corresponding to material
cases (1) and (2) are given below:

Case 1: Roots Real and in Pairs (fu, #v; u,v>0; u # v)

Symmetric x, symmetric y (SS):

(1A ) ((e1c) + ¥ (€W

ss1p + (E]Ap) ¥ (E1Bpn)552n 5 Pt L pn)}

n=1

(F1Ap)n§](r1apn)ss1n + sszp = (F1Ap){(F1Cp) + R (F1Dpn)}
where

E]Ap N 2 ]utanhtﬁa [

20lpt 1 - vtanhlvapzi

3 2
3 u uv
E1B__ = -4(—1)"+ps [ - tanh(ug_t)
Pr " LLg)® + o51 Lve)® + o "

S
- . 5-6
E1Cp [vtanhlva ) * C1+2p]

Y

-4
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v

z[(venz)2 +a

E10,, = 2(-1)"Pg

P n

7 57-8n
p

. 1
Fldy = — { UTanh(uB t)]
] -

Z
ZBpQ vtanhlusptS

3
F1B_ = -4(-1)"Pg3 [ 4 - uy
Pr " Llwa)® + €1 [(va)? + 8

S
. 7-8
F1cp - [vtanhlvspt) * c3+4p]

2
F10. = 2(-1)""Py v
pn n t[(VQn)Z + B

2]] tanh(uanz)
p

7 S5-6n
p

Then, using these coefficients,

S
- 1 5-6p

p 2apt

Y Jge— 180 _ g utanh(ug_t)

p ~ vtanh(vg t) 2 P By
p ZBpQ
| n 8
Ress = 7% G142, - E - T 1552 utanh(uB t) + SS4 vtanh(vg t)]

o §
-1)" Eﬂ{ss1nutann(uanu + $53 vtanh(va 2)] .

Symmetric x, antisymmetric y (SA):

SAT) + (E2A)) n§1 (€28, )5A2, = (E2A) {(E2C)) + nzl (€20}
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(FZAp)n§] (anpn)smn + A2, = (FZAP) {(cmp) + ng] (onpn)}

where

_ 1
E2A, > [ Jtanh{ua z)]
] -

20t vtanﬁ{va 15

P p

(us,))? (v, )

ug)? + 21 [(ve)? + o]

p
C
= 5-6
Ech ~ vtanh(va_2) S1+2p

P

tanh(uBnt)

= 4(-1)P*"
EZBpn 4(-1) a [[(

2
(vB.) C
£20_ = 4(-1)P*" n 3-4n

pn p 2 2 2
C(ve,)" + ap] 28,1
1
FoA_ =
p 2 tanh(ug_t)
28p2 [u -V tanh{vspti
= a(_1ypt. 2
FZBpn 4(-1) uaantanh(uanZ)

] _ 1
[[(uan>2 + 81 [lva)® + eﬁl]

F2C. = Sq.0 + Y ., - (-1)P ‘3-40
p 7+8p tanﬁlvspti 3-4p Bpt

3
F2p_ = 2(-1)P*" b Ce_
pn t[(VQn)z + Bg] 5-6n

Further SA relations are

C
) -1 5-6
SA3; = Eann Va t [;;2;2 * SA‘p““""(”“p“]

P

L W NN e
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tanh(ug_t) C
SAd, = - SAZp[tanh(vept) + — 3-4p
p zspztanh(vspt)
- C3.40
ysa It

Antisymmetric x, Symmetric y (AS):

As1p + (E3Ap) ng} (EBBpn)ASZn = (E3Ap) {(EBCp) + n§] (E3Dpn)}

F =
( 3Ap)n§] (FBBpn)A51n + A2, (F3Ap) {(F3Cp) + n§1 (F3D,,)}
where
E3Ap N 2 ] tanh(ua_2)
2agt fu - v tanhlvaplf
E3B_ . = 4(-1)p+nu82a tanh(ug_t) [ ] - ]
Pn ne " Ltug)? ¢ al1 [ve)? + ol
€36 = Se eV ()P =20
p 5+6p tanh(vapz) 1-2p apl
s }
E30_ = 2(-1)P*" D C,.
pn »Q[(Ven)z + 0.2] 7-8n
P
_ 1
F3Ap utanh(ug_t)

2
28p2 P - vtanﬁlvsptS]

(ua, ) (var_)?

n n

P [t<uan)2 &1 Clva)? + €]

+
F3Byp a(-1)P™Mg ] tanh(ua, ¢)
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C

- 7-8
F3Cp - vtanh(vept5 B S3+4p

2
(va,) C1_2n

P L(va)? + €1 ol

= 2(-1)P
F3Dpn 2(-1)"""'8

Also,

c
4 1-2
AS3) = TaiTeaT [A51ptanh(uapl) + -—er!]

p 2apt
ASE = ——] ‘180 , as2 utanh(ug.t)
p vtanh(vg_ t) 2 P p
p Zsz
R = C1-20
xas 0t

Antisymmetric x, antisymmetric y (AA):

AA1p + (E4Ap) g] (E4B) )ARZ = (EA4p) {(E4Cp) + n§1 (E4Dpn)}
= ®
(F4Ap) n§1 (F4Bpn)AA1n + AAzp (F4Ap) {(F4Cp) + R (F4Dpn)}
where
E4Ap = 2 1 tanh{ua %)
20. t u- v ___L
p tanh(vapz)
2 2
3 u v
E4aB__ = 4(-1)p+"s [ - ] tanh(ug_t)
Pr " LLug)® + a5l [(vg)? + o] "

. v
E4Cp h tanHIVaPQS S1-2p - c5+6p
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(vﬁn)2
S
2 + ag] 3-4n

Ean . = 2(-1)P™
P Bil(ve,)

F4A_ = ,
P anh(ue t)
28 2[ V Tanh(ve t)]
2

- - p+n, 3 tanh(ua_2)
FBpn = 4117 ey [ (v )2 + 8 ] [(van;2 * Bﬁ]] )

- v -
Fac, Eanh(VE,E] S3.4p ~ Cy+gp

(vmn)2

Fap__ = 2(-1)P*" S
pn ant[(van)z s g 1-on

Also,

S
. -1 1-2
M3, = g t {NAlptanh(uapl) + EZEEEJ
P

S
= -1 3-4
AA4p an VBpt [AAzptanh(qut) 4’;8—2;&}
p

C )
5+60 n°n 1
Raa il n§1(-]) —t-[AAZntanh(uBnt) + AA4ntanh(ant)J

4

Case 2. Roots Real and Equal in Pairs (*u, v > 0)

Symmetric x, symmetric y (SS):

® 2
S1, + (E1A}) & (E18,,)552, (E1A) U(EIC)) + n§1 (£10,,)}

(F1A) ? (F1B,,)SS1, + 52 = (F1A)) {(F1c.) + ¥ (F1p_)}
n=1 p P n=1 pn
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where
E1A_ = ] 5
P 2 ua_ftanh ua_ 2
200t |1 - — P P
P tanh(ua_2) + ua_ 2
p P
3
(ug ) N,
= - p+n I
E]Bpn 4(-1) [(u8 )2 + Ol2] tanh(usnt) [[tanh(ue t) + uB t] -
n P
a_ftanh(uc 2)
E1C, = = | Cyupn - Troee P S
P 1+2p [fanh(uap£7 + uapzj 5-6p
3
(ug ) ENn
E1D,, = 2(-1)P"" 7 3 2 S7-8n
[(uBn) + ap] ueni[tanh(uent) + usnt]

2 .
[(ug)® - 2]
E11__ = (2 L)tdnh(us t) + ug t

P [(ug,)* +al]
F1A ! >
P 9 uBnt tanh quf
28,2 |1 - TarRTuET) F UB.t
p p
3
(ua.) F11
F1B8_ = 4(-1)P*" L tanh(ua. ) pn -
pn [(u¢'52’+ Bgl n tanh(uanz) + uanz
3.t tanh(ug_t)
FIC. = - [C P S
p 3+4p [tanh(uB t) + ug t] 7-8p
\3
(ua_ ) F11
FIDp, = 2(-1)P"" > —3 £ S5-6n
P [(usy)® + 871 uaft[tanh(ua 2} + ua 2]
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[(ua,)? - 2]

Fii__ = (2 - ) tanh(ua 2) + ua 2
Pn [lua)? + €2 o

Also,

SS3p =

5S4 =

R =

R.ss =

1 1 -
—x S - §31_ tanh(ua &
tanh(uapz) + uapz [Zuagt 5-6p P ( *p )]

1 1
S - $S2_ tanh(ug t)]
tanh(uspt) + uspt {2u8§£ 7-8p p p

1 ¢
3E “1+20

'8
n n
- nE’](-]) — [ss2, tanh(ug t)

+ SS4n {tanh(usnt) + uBnt}]

1
Iy “3+40

. o Ua
- n;](.1) — [sS1,, tanh(ua 2)

+ 883, {tanh(uanl) + uan‘?.}] .

Symmetric x, antisymmetric y (SA):

SA1_+ (E2A.) ¥ (E28

(FZAp)

n)SAZ, = (E2A;) ((E2c)) + E (E2D )

L= P n

(F2D

® =
o (FZBpn)SAln + SAZp (F2Ap) {(FZCp) + : pn

n=]

[P e -}

n
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1
P ua 2 tanh (uo 1)
20t P
% " Ttanh{ua ‘7’+ ua z]

EZBpn =4 E21pn tanh(uBnt)

Agpz tanh(ua L)

E2C [_énh(ua 1) + ua i] C5- -6p S1+2p
2
(ug )a C
3-4n
£20_ =2 | (-1)P*" n_P __ & ]
pn [(usn)2 + of] pa| g2,
P n
2 2
(uB ) (ug_)
_1\ptn n 2 n -
E21pn > BT ( 5 5 1) tanh(uBnt)
[(ug)™ + a1 "n” \[(ug) ]
F2A = :
p 25 2{uB .t - [1 + uB t tanh(ug_ t)]tanh(uB_ t)}
P* " "p p p p
- uaﬁgg P21
FZBpn = 4("]) [(uan)z N Bgi tanh(uanl) T - [tanh(uanl) Y uanl]
1+ ug t tanh(ug t)]
o (-1)P [ p p-
F2C; = Syugp * Byt C5.60 * 3t C3-4p
3 F21
F20. =2 (-1)P™ B pn c

pn t[(uan)2 + aﬁ] [tanh(ﬂanz) + uant] 5-6n
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) - 2 )
F21 = tanh(ua 2) - tanh(ua_2) + ua 2 .
pn % [(uqn)z + BSJ n n
Also,
SA3_ = ul SAT_tanh(ua_g) + Ss-6p
p  [tanh{ua_2) + ua 2] p P el
P P Uth
C
-] 3-4
SA4, = GE;F [SAzptanh(qut) + EEEZE]
p
R - C3»40
ysa it

Antisymmetric x, symmetric y (AS):

AST_ + (E3Ap) ¥ (E3Bpn)ASZn

D s (E3Ap) {(E3Cp) +

RS (E3Dpn)}

U

(F3Ap) E

+
o (F3Bpn)AS’|n ASZp

(F3A_) {(F3Cp) + ¥

F30_ )}
P n=1 pn

where

2

E3A_ =
- ry .
p 2apt{uap2 L1 uapl tanh(uapl)]tanhIUQpl)F

usls £31

E38_ = 4(-1)P*" P tanh(us_t)
pn [(uen)L + ag] n

1 - pn
[tanh(uepf) + uBntI

1P T+ uaB? tanh(qui)

5+6p ¥ api C7-80 * apz c1-2p

E3Cp =5
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a E31
E30 . = 2(-1)P™" p _pn c
a 2l(ug,)* + o?g] [tanh{uB,t] + ug t] “7-8n
E31 h(ug, t) 2(u8, )’ (u.t)
= tanh(ug - tanh(ug.t) + ug_t
o " [(uBn)2 + agi n n
F3A, ] 5
28§2 1 . uBt tanh (uﬁpt)
[fanhTueptT+ qut]

F3Bpn =4 F31pn tanh(ua, 2)

8t tanh(us t)

F3C * [Tanh(ug,®) = uE,t] Cr-8p = S3+4p
2
5 DN (uan) Sp
FID. = (-1) - F31 c
pn 3n_t— [(ua )2 + 82] pn 1‘2“
n p
2
ua_3 (ux )
F3]pn = 2(_1)P+" 2 P 5 [ 3 n 5 -1] tanh{ua 2)
2l(ua)” + 81 [ [(ua )® + 8]
p n
Also,
AS3 = ﬁé—lﬂj ll‘S'l tanh(ua L) + _l_ZE]
P p 2a t
AS4 = -] [ASZ tanh(ug t) + ‘1%
p  tann{ug t) * ud.t u 2
p P ZprR
C1-20

Ryas = T3t -
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Antisymmetric x, antisymmetric y (AA):

h

AA1p + (E4Ap) ¥ (E4Bpn)AA2n

(E4A_) ((e4c ) + ¥ (E4D
n=1 P p

n=1

(F4Ap) ¥ (F4Bpn)AA1n + ARZ

n=} n=]
where
E4A_ = 1 -
p 2 (1 + ua 2 tanh{ua_2))
2uapt 1 - P uapz B tanh(uapl)
(uBn)2 & tann( - E41
= 4(-1\PMM anh(uf_t p— L}
E4Bpn 4(-1) [(usni? + 05] n n uBnt
1 + ua_2 tanh(ua 2)
E4C_ = D P _g -C
p ay 1-2p ~ “5+6p
(uBn)2 B4l
= 2(-1)PH0 -7~ S3.4n
E4Dpn 2(-1) [(ug,)™ + a1 ug 2t
p n
£E41 8 t [1 [(ue")z - aS]] tanh(ug t)
=\ + - anniu
pn n [(ug )2 + cLZ] n
n p
. 1
FaA ; [T+ ug,t tanh(ug,t)]
2u8p2 1 - uspt tanh(uapt)
n (ucxn)za.n F41 n
F48, = 4(-1)° 5 tanh(uay2) |1 - =5
[(Uan) + Bp] %n

(Fan)) ((Fac)) + T (Fap )}
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1+ uept tanh(uspt)

Fac, = U, S3-4p = Cr48p
2
(ua ) F41
FaDy, = 2(-1)P" ZD 2 42pn S1-2n
[(ue,)® + Bp] vor 2t

F41pn = uanz +

2 2
[1 ) [(ua )" - 621

tanh(ua_2)
[(Uan)z + Bg] n uan

Alen.

A
AA3 G:lf AA1 tanh(ua L) + _l_ZE.]
ap L p ZQ t

[ S
-1 3-4p
AA4p u—Bp-ft' LAAZP tanh(qut) + 2624 ]
)

aa

C
R.. = - -%%99 - f (- 1)n [AA2, tanh(ug t) + AAd ug t] .
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APPENDIX D

INCLUSION OF DISPLACEMENT BOUNDARY CONDITIONS IN THE ANALYSIS

To include displacement boundary conditions in the exact solution
analysis, the problem is reformulated using the displacements u (for
the x-direction) and v (for the y-direction) as the variables of interest.
A1l of the assertions made earlier as to the character of the problem
(plane stress, rectangular slab, etc.) are still considered to hold
true.

At this point, the normal and shear strains are defined by the

relations

’ E, TV, s

+
y  Vry Usy * V>

X X ny N y X '

Also, the stiffness version of Hooke's Law is given as
O = Quex * Qg * Qgvyy
o = Quagy * Qppcy * Q26ny (D-2)
Ty = D6 * Qogsy * Qggryy

where the stiffnesses Qij are as defined in Jones [10]. Specializi~3
the problem to orthotropic materials having their principal axes aligned

with the x- and y- directions of the slab makes

Q16 = Q6 = 0 -

The equilibrium equations then become



,‘:‘

67

Oy ok * Ogg Uoyy * (G2 * Qgp) Voyy = O (0-3)

%6 Voxx * Q22 Vryy * (Qyp ¥ Qgg) Uagy = 0 (3-4)

Differentiating equation D-3 with respect to x gives

Qy Usyux * Qg Yoy * (Qy2 + Qgg) Vayyy =0 - (D-5)

Differentiating equation D-4 with respect to y gives

Q66 v’xxy * Q22 v’yyy * (012 * 066) u’xyy =0
or
v, = - gzg.y' - Sglzﬁi_ggél u’v . (D_s)
XXy 66 YYY 66 XYy
Combining equations D-5 and D-6 gives
Oy sy * Qg Ysyyy
(D-7)

- 0.
Q6

[QZZ v’yyy * (012 * 066) u’xyy]

Differentiating equation D-3 twice with respect to y and rearranging

gives
Q Q
v = - 1 U, = 66 u, . (D'S)
XYYy @, + Qgg)  xxyy ~ Qp; + Qggl “yyyy

This can be combined with equation D-7 and manipulated to give

u, + A u, + B u, 0., (D'g)

XXXX XXyy Yyyy i}

where
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2
a2 Y2 P o0 P
%6 Q1% Q1 2612
B=Q22=E—2.
0 g

Similar manipulations also yield

+Av, +8B8v, 0 (D-10)

¥ xxxx XXyY yyyy -

with A and B defined as above.

At this point, the equations D-9 and D-10 have the same form as
equation 4, with u and v, respectively, in place of ¢.

With suitably complete solution forms for u and v, equations D-3
and D-4 can be used to relate the coefficients of one of the solution
forms to the coefficients of the other. This done, the solution
becomes a problem in u or v alone. Next, any stress boundary conditions
must be expressed in terms of displacements. Following the same basic
path as the development for stress boundary conditions then leads to

the displacement form of the solution.
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