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1^. Abftnetf

The off-axis tensile test was examined experimentally to obtain actual
displacement fields over the surface of graphite-polyimide coupon specimens;
the experimental results were compared with the approximate analytical
solution of Pagano and Halpin and newly generated finite element results.
A new optical method of high sensitivity moire interferometry was used to
determine the actual displacements to high precision. 	 It is shown that the
approximate analytical solution and the finite element results compare very
favorably with the. measured centerline displacements in the test section,
and the finite element displacement fields provide excellent agreement with
the moire displacements throughout the specimen.	 Results are presented far
a 15 degree fibe ►• orientation. and coupon aspect ratios of 5 and 15.
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INTRODUCTION

The off-axis tensile test [1-4] has received considerable

attention as a basic test method for material characterization of

fibrous composites. Lt has been used to verify the applicability of the

tensor transformation equat,ons for elastic properties, as a shear test

method [5-8], and as a strength test [^-10]. A potentially advantageous

feature of the test is the biaxial stress state in the material prin-

cipal coordinates. This stress state is useful for studies on the

influence of stress interaction on nonlinear behavior and strength.

The biaxial stress state can be a disadvantage. if the biaxial stresses

are not known accurately or if they are not properly considered.

An important difficulty with the off-axis test is the exten-

si gnal-shear coupling associated with the anisotropic material behavior

of the coupon and the constraints of the test fixture. An analytical

solution for the exact boundary value does not exist, but. an approximate

solution was proposed by Par^ano and Halpin [l], and finite element

results were presented in [2,3,5]. Indeed the "exact" boundary value.

problem to be studied cannot be stated with mathematical certainty

because of possible specimen pull-out from the grips.

The experimental determination of elastic properties and

nonlinear behavior of composite materials requires a zone of uniform

strain in the test section. The off-axis coupon under fixed-grip loading.

results in a nonuniform strain distribution with rather severe gradients

near the grips. However, finite element results and the approximate

,..
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solution of Pagano and Halpin predict that a region of uniform strain is

attained in the central test section of the specimen if the aspect ratio

is large enough. Fu11 field displacements showing the .high gradients

near the grip« and the influence of aspect ratio on the strain distri-

button in the central test section of the specimen have not previously

been demonstrated experimentally for advanced composite materials. The

rationale and ob,^ectives of this paper are

1. experimental determination of the full displacement field for
off-axis loading of advanced composites;

2. demonstration of the influence of specimen aspect ratio;

3. evaluation of finite element solutions by comparison with
experimentally generated displacement fields;

4. presentation of stress fields determined by finite element
studies;

5. corroboration of the approximate ana ytical solution of Pagano
.and Halpin by agreement with experimentally generated lateral
displacements of the centerline; and

6. demonstration of a powerful experimental measurement method.

BASIC CONSIDERATIONS

In order to qualitatively assess the influence of the exten-

^	 signal shear coupling on the off-axis test (Fig. 1), it is essential to

E' .	 note its dependence upon the coefficient of mutual influence

^^ 	 nxy,x = ^16^511 (Where 5
16 and 

^^l 
are components of the compliance

^t

^^	 matrix) and the specimen aspect ratio A = L/W. An approximate analyt-

..,	 ical expression for the. error in axial modulus E x was developed by

^_^	 Pagano and Halpin [1]. It is written here in an ammended form..i
l ^.
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1
Ex=Exl =^J

where
z

3nx 
x	 fix)

3 Gx + Za2
xy

The coefficient S is a measure of the. error between the apparen^ modulus

Ex and the actual modulus Ex . The error approaches zero as nxy,x ^ 0

or as ^ ^► ^. The ratio Ex/Gxy is finite and decreases with increasing

e (0 < 9 ^ g0). As indicated in Fig. 2, 
^xy^x 

has a maximum critical

value at approximately 6	 10° for the material under consideration

Table 1). The coefficient. of mutual influence is a material coefficient,

whereas ^ is a function of material properties, specimen geometry and.

assumptions of the approximate solution..

Figure 3 shows the variation of R with fiber orientation 8 and

aspect ratio ^. For aspect ratios in the range 2-15, the critical fiber

angle ranges from 17-10 degrees with a maximum value ^ = 0.420 for a 2

and e = 17°. In contrast., for ^ = 15, 
smax 

= 0.037 at 8	 10 degrees.

Figure 3 shows that the approximate solution of Pagano and Halpin pre-

diets that. the extensional-shear coupling effects can be significant

over a range of fiber orientations depending upon specimen aspect

ratio. The effect. of this undesirable coupling on the determina ion of

the :axial modulus can be made. negligibly small through the use of speci-

mens with large aspect ratios. Using Figs. 2 and 3 as a guide, the

authors. chose to investigate the 15 degrees off-axis coupon in greater

detail.
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MOIRE ANALYSIS

An experimental investigation was undertaken to enable com-

parison with and evaluation of the approximate results. The specimen

was unidirectional HTS1/PMT- 15 g^^aphite -polyimide. Two specimens with

aspect ratios of 5 and 15 were machined to the dimensions shown in Fig.

4. The fiber orientation was 15 degrees from the longitudinal axis.

The specimens were clamped along the enlarged end sections in

a tensile loading fixture which had a precision guided head... The

fixture ensurEd pure longitudinal translation, i.e. fixed-grip displace-

meat loading condi tions.

,.
A new optical method of high-^ensitive moire interferometry

was used. The method gives the in-plane displacements throughout the

field of view. Specifically, it reveals interference fringe patterns

that are contours of constant U and V displacements, where U and V are

the in-plane longitudinal and lateral displacements, respectively.

sensitivity was 32.8 x 10 -6 in, per fringe (0.833 µm/fr); since inter-

polation to a fraction of a fringe is normal, displacements are deter-

mined with an accuracy of a few microinches.

The method utilized a thin cross-line diffraction grating of

silicone rubber on the surface of the specimen. Frequency of the speci-

men grating was 15,240 lines per inch ( 600 R,/mm). A virtual reference.

.grating of 30,.480 R,/in. (1200 ^,/mm) was superimposed on the specimen

grating by a simple optical system. The specimen grating deformed.

together with the specimen as tensile loads were. applied and. moire

interference fringes were formed by the interaction of the deformed

4
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specimen grating and the undef^rmed reference grating.

The moire method is described in detail in [11,12], Actually,.

the test example used in X11] to demonstrate the technique was nearly

the same as the specimens studied here. However, rigid grip loading

conditions were not achieved sufficiently well in that work and the

specimens and loading fixture were refined for the present study.

FINITE ELEMENT ANALYSIS

In an effort to further evaluate the off-axis test, the fixed-

grip displacement loading condition was investigated numerically using

the finite element method. This loading condition is the idealized

model of the test described in the section on moire analysis. Vlore

specifically, a displacement formulation for plane stress anisotropic

elasticity was used. To increase the numerical accuracy and eliminate

any preferential direction in the response, rectangular elements com-

posed of four constant strain triangles were used in conjunction with

static condensation to eliminate the internal nodes. The two meshes

used in the present study contained 861 nodes and 800 elements.. Results

were obtained for aspect ratios of 5 and 15 for the 15° off-axis angle.

RESULTS AND DISCUSSION

Theoretical/Experimental Comparisons, ^

The U and U displacement fields from a finite element. analysis

of one-half the specimen are shown along with the moire results in Figs.

5 and 6. Practica ly constant fringe orders. along the top of each

moire pattern confirms the good approximation to the fixed grip
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conditions in the test; further study confirms nearly zero lateral

motion at the grips. A high strain concentration in one corner of the

coupon with aspect ratio of 5 is also evident. The moire interferometry

patterns define the displacement fields for these physical specimens

with high precision.

Comparison of these figures indicates very good correlation

between theory and experiment. It is concluded from these figures that

the fixed-end finite element solution is a good representation of the

actual displacement field.

Results for the centerline lateral displacements obtained

using moire, finite elements and the Pagano and Halpin solutions are

compared in Figs, 7 and 8. A unifying condition was imposed to calcu-

late lateral displacements, namely, the centerline longitudinal displace-

merit was made equal to that of the real specimen in each case. These

figures show that there is very good agreement between all three methods

of analysis. The finite element solution p^r^ovides better results for

the maximum lateral deflection for the larger aspect ratio and the

approximate solution provides better agreement for the sma ler aspect

ratio. However, the difference in actual displacements is ver y small in

all cases. There is no significant difference in slopes (i.e. strain).

`	 As expected, the fully constrained fiinite element model always predicts

larger lateral displacements than the less constrained solution of

i
	 Pagano and. Halpin. Comparison of the two figures shows that there is

s
very little difference in the actual lateral displacement for the aspect

ratios of 5 and. 15.

^	 _-	 _	 1
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The influence of aspect ratio is more clearly demonstrated in

Fig. g which shows plots of the Lateral displacements of the Pagano and

Halpin solution normalized with respect to specimen width. Fora three-

fold increase in aspect ratio there is a threefold increase in the

maximum normalized. lateral c:^splacement.

A comparison of displacements along the specimen quarter points

(widthwise) shows that the finite element solution is more accurate near

the grips tFig. 10). It is not expected that the Pagano and Halpin

solution would provide good agreement in this section as boundary condi-

tions were specified only on the centerline.

It is also evident from results of the finite element analysis

in Figs. 11-13 that a complex biaxial stress state with high stress

concentrations is present in one corner of the specimen. The lack of

exact satisfaction of stress boundary conditions in these figures is

typical of finite element results obtained using constant tress,

elements and is not a serious problem. The contours were plotted by

computer with. contour values chosen to exhibit thE: magnitude of the

stress concentrations in the corners; this also contributed to the

apparent lack of satisfaction of boundary conditions.

The only assumption in the Pagano and Halpin solution. is that

the shear stress. is independent of longitudinal coordinate. (All ds-

placement boundary conditions in their solution are consistent with the

actual displacements.) Having shown that the finite element solution

pravidPS a very good approximation to the actual displacement field

(Figs. 5-7), we can determine the extent to which this assumption on

stress is valid from the finite element results. Contours of shear
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stress for aspect ratios of 5 and 15 a^ •c ^i^own in Fig. 12. While there

is some variation in shear Stress along the centerline it is not severe.

Indeed, in the central portion of the specimen ( .gage. section] the shear

h	
stress is independent of the axial coordinate. There is a rather

^t̂.	
severe stress concentration in one. corner. The larger aspect ratio,`

.'	 provides a larger regio^^ of uniform stress as welt as lower transverse

and shear stress in the test section. The Pagano and Halpin solution

predicts zero transverse stress throughout the specimen. The finite

element results Show that this condition is approach^,d as the specimen

aspect ratio is increased.

Factors Influencin!a ^^`heoretical/Experimental Comparisons.^..

Iri any attempt to make a precise correlation between theory

and experiment there will be some aspects of the problem which will not

be identical in both anrlyses. Some of those which may hr,ve had an

effect on the current. study are discussed in this section. The engi-

veering properties used in the theoretical ^Eolutions were based upon

test results from material of the same specification, but a different

batch than that used for these experimental tests. Pure shear test

results were not available; hence, it was necessary to estimate G12

based on results from a [t45] s tensile test. and other investigations of

shear modulus obtained from off-axis tests [7,8]. (As will be shown,

lateral displacement of the coupon is sensitive to G 12 .) An acceptable

moire grid could be established. only to within 0.04 in. (l mm) of the

actual specimen end.. The displacements at the . "exact" er^d of the

specimen were determined by extrapola ion of the moire results. Also,

.^ ,, ^	 ;. ^	 ^	 r.	 -	 3^^..:.
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the properties and thickness. of the actual specimen may vary slightly

from. point to point. Finally, both approximate solutions assumed linear

elastic behavior everywhere. There is a strong possibility that the

shear behavior., in parttcu'iar, is nonlinear in the corner with the high

stress concentrations. For these reasons, exact equality of expert-

mental and theoretical results should not be expected and engineering

judgement must be exercised.

The influence of the shear modulus on the lateral deflection

of the specimen centerline is clearly shown in Fig. l4 where the Pagano

and Halpin sglution was used to present results for a range of shear

modulus varues. It ;s observed that the maximum deflection varies by as

much as twenty-five percent for shear moduli ranging from 0.6 - 1.0 x

i06 psi. The lower value corresponds to that obtained from a [^45^5

tensile test [l 3] and the higher value corresponds more closely to off-

axis tensile and rail shear tests for similar materials [7,8]. Based

upon these results a value of G 12 = 0.725 x 106 psi was used far the

theoretical predictions in the comparisons between theory and experi-

meat,

CONCLUSIONS

High precision experimental results have been presented for

the full-field displacements of unidirectionai off-axis graphite-poiyimde

coupons. The experimental results show the existence of .high strain

gradients Heal^ the grips, and the influence of specimen aspect ratio on

the displacement field. Excellent correlation between experimental and
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finite element results is shown for the entire displacement field.

The approximate analytical solution of Pagano rnd Nalpin is

shown to be quite accurate in the centre] test section of the specimen.

The accuracy of the approximate solution increases with increasing

aspect ratio. Tt is recommended that aspect ratios pf 15 or larger be

used for determination of elastic cons^rnts.

The results of this investigation verify the existence of

strain and stress concentrations in two corners of the specimen. These

stress concentrations. are not predicted by the approximate analytical

solution and r^ence finite element analysis is preferred for studies on

strength.

^^.
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TABLE 1

ELASTIC PROPERTIES OF hTSI / PMR-1': -6^^^HITE -POLYIMIDE

E1	18.7 X 106 psi

v12	 0.34

E2	 = 1.19 x 106 psi

G12 = 0.72 x 106 psi
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