NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
Work during this reporting period has proceeded on several fronts. The
tectonic blocks shown in figure 1. Blocks 21, 22, 24, and 25 have been stressed
so far. Block 21 (the Guayana shield) is reasonably well studied, and although
the data are sparse, Block 22 (the central Brazilian shield) is similar to
Block 21. Blocks 24 and 25 (the Amazon and Parnaiba basins) seem to be related
to an aulacogen structure.

The geophysical studies have concentrated on the collection of crustal
structure information and the generation of new measurements of surface wave
dispersion in the shield areas. Long-period seismograms have been obtained from
the international data center and work to digitize and analyze these data has
begun. An index of existing crustal (and upper mantle) studies has also been
prepared.
A coordination meeting was held at Purdue University on June 28 - July 1 whose goals were to make final preparations for the IAGA meeting in Edinboro and plan our next stage of work. A copy of the abstract of the paper to be presented is attached.
PRELIMINARY GEOLOGIC/TECTONIC MAP OF SOUTH AMERICA

Figure 2
Magsat scalar and vector magnetic anomaly data together with regional gravity anomaly data are being used to investigate the regional tectonic features of the South American Plate. An initial step in this analysis is three-dimensional modeling of magnetic and gravity anomalies of major structures such as the Andean subduction zone and the Amazon River nularogen at satellite elevations over an appropriate range of physical properties using Gauss-Legendre quadrature integration method. In addition, one degree average free-air gravity anomalies of South America and adjacent marine areas are projected to satellite elevations assuming a spherical earth and available Magsat data are processed to obtain compatible data sets for correlation. Correlation of these data sets is enhanced by reduction of the Magsat data to radial polarization because of the profound effect of the variation of the magnetic inclination over South America. The results of the modeling and correlation of magnetic and gravity anomalies are used with other regional geophysical data and geologic information to illustrate the utility of satellite magnetic data in characterizing the properties and structure of the South American Plate.

1. Prof. William J. Hinze
 Department of Geosciences
 Purdue University
 West Lafayette, IN 47907

2. II - "Scientific Results from the Magsat Missions: Main Field"

3. Dr. Robert A. Langel

4. Present before August 6th

5. Either oral or poster