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ABSTRACT

One of the main protlems 1in a multistage d:cision tree
procedure is predicting the optiwal features to be used at
every node. An algorithm is proposeu which predicts the
optima’ .nu.tures at every node in a binary tree procedure.
The algorithm estimates “he probability of error oy approxi-
mating the area under the 1likelihood ratjo function for two
classes, and taking into account the number of training sam-
ples used in estimating each of these two classes. Some
results on feature selection techniques, particularly in the
presence of a very limited set of training samples are pre-
sented. Results comparing probabilities of error predicted
by the proposed algorithm as a function of dimensionality as
compared to experimental observations are shown for aircraft
and Landsat data. Results are ootained for both real and
simulated data. Finally, two binary tree examples which use
the algorithm are presented to 1illustrate the usefulness of

the procedure.



CHAPTER 1

INTRODUCTION

1.1 Multistage Classification

A number cf different types of classifiers are now in
routine use in remote sensing. Most of these classification
algorithms, wusing pattern recognition techniques, can be
regarded as "single-stage" classifiers, where an "unknown"
pattern is tested against all classes using one feature sub-
set, and then the pattern is assigned to one of the present
classes in a single-stage decision procedure. An example of

such a procedure is shown in Figure 1.1.

In recent years, as classification of multispectral
data has found a larger number of users and a wider range of
applications, the need has been felt for alternate, mnore
powerful techniques than the conventional classifiers,
through the use of which more information could be extracted
more accurately and/or efficiently from the scene. Some c¢f

the reasons that have warranted this need include:

1. The need to extract more detailed information from

data. The opportunity to do so results from the
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emergence of more complex data sets. The growing
use of multitype data bases containing Landsat data
with a variety of other quantitative geodata
together with the anticipated launching of more
sophisticated sensors such as the Thematic Mapper
result in the opportunity to extract considerably

more information from the data.

The broadening of the range of applications. As
pattern recognition methods have developed, they
have found a larger number of users with a wider
range of applications. The feedback from these
different and versatile uses has indicated problems

and needs not initially present,.

The ever present need for improved classification
accuracy. There are some applications for which
conventional classifiers have proved to be marginal
at best. Some of these are listed in Swain et al.
(1) and include multi-image analysis and the use of

mixed feature types.

The need for improved processing efficiency. The
conventional, single-~stage, classifiers wuse only
one particular feature subset and are somewhat
inefficient, as they must compare an unknown pat-
tern against all possible classes before assigning

that pattern to a particular class.



Because of thease and z.her factors, there has been some
ressarch in recent years directed towards developing multis-
tage claassifiers, whereby the decision procedures g» through
several stages before (finally assigning a pattern tc¢ a
class. An example of such a procedure is shown in Figure

1.2,

The purpose of this research is to develop a layered
decision algorithm that can increase the accuracy and effi-
ciency over the conventional sirngle-stage classification
approach. Developing such an algorithm requires, among
other things, a careful look at some parameters that are
crucial to any successful attempt at tackling such a complex

problem. In particular, three areas have to be investi-

gated:

1. The development of an adequate training procedure

te define an initial set of spectral classes with

their respective statistics;

2. The investigation of various error estimators and
the development cf an adequate performance estima-
tor that can reasonably predict the accuracy or any

trends in performance;

3. The development of an algorithm to build a binary

tree making use of the above-mentioned methods.
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Of -hese three areas, the most important sroblem is
believed to be the development of an accurate error estima-
tor, especially in the presence of what has come to be known
as the Hughes phenomenon (elaborated upon later in the
review of literature). Predicting the conditions under
which the Hughes phenomenon occurs provides the key to the
solution of the problem. Therefore, a considerable portion
of the research has been directed towards trying to under-

stand and predict the impact of this phenomenon.

1.2 Review of Literature

1.2.1 Training Procedure

Several training methods have been suggested in the
literature. We will not attempt to 1list all of them, but
rather will give a background of some of the methods

reviewed and used in this work.

The training process is the procedure whereby labeled
samples are selected and used to compute class statistics
which in turn are used to classify unlabeled (i.e., "unk-

nown") samples.

Several parameter estimation methods (training methods)
have appeared in the literature,. Sample-partitioning meth-
ods, the leaving-one-out method, clustering are but a few.

See, for example, Fukunaga (2) and Duda and Hart (3).



For remote sensing purposes, clustering has been widely
used 1in developing trajning statistices. Two basic
approaches have been: a supervised clustering approach, in
which the analyst selects areas of known cover types , each
set of areas belonging to one cover type is clustered sepa-
rately, and then the statistics for these areas are then
obtained with the aid of a computer; and the non-supervised
clustering approach, 1in which the entire training area is
subdivided 1into clusters by the clustering algorithm and
each cluster is then identified by the analyst and given a
specific label. The statistics of each cluster correspond-
ing to a cover type or a subeclass of a cover type are then
calculated. Fleming et al. (4,5) investigated several clus-
tering approaches and their effect on <classification accu-
racy. Among the appracaches they used were non-supervised
clustering, supervised clustering, modified clustering,

mono- (aggregate) cluster blocks, and multi- (class-condi-

tional) cluster blocks.

1.2.2 Performance Estimators

A key factor in the design of a layered decision algor-
ithm is the ability to predict how the algorithm will per-
formn in terms of accuracy at every node, While optimizing
the performance at every node does not necessarily produce a
globally optimal tree, it is still a very important and use-

ful step in the design.



Several performance (or error) estimators have appeared
in the 1literature. Again, we will not attempt here to
exhaustively list all the contributions made, but rather
will give an idea of how the research in this area has pro-

gressed.,

Performance estimators can be divided 4into two main

categories:

Performance functions which have some sort of direct

relationship with the probability of error. Examples are

Parzen estimators (see (2)), the k-nearest neighbor error
estimator (see (6)). More recently, Mobasseri et al. (7)
published an error estimator that computes the minimum prob-
ability of error through use of a combined analytical and
numerical integration over a sequence of simplifying trans-
formations of the feature space. The results have been
shown to be similar to those obtained by conventional tech-
niques., However, the algorithm becomes computationally too
inefficient to use as the number of classes and/or features
increases. Moore, Whitsitt and Landgrebe {8) (see also
Whitsitt and Landgrebe (9)) developed a stratified posterior
estimator which, 1like Mobasseri's, depends only on a given
set of statistics. This was later used by Wiersma (10) and
both estimators (Mobasseri's and Whitsitt's) were compared
in (11) and found to give similar results, with Whitsitt's

algorithm being faster in some cases. The former procedure



uses a "deterministic" grid to sample the feature space,
while the latter uses an internally generated random data
base and assigns the feature vector to the appropriate class
via the maximum a posteriori principle. Both procedures

assume normal class conditional statistics.

Separability measures, most of which have only a sub-

tle, indirect, and often unknown, relationship to the proba-

bility of error. Various separability measures have been in

common use in remote sensing applications, Among these are:
Divergence (%2), Transformed Divergence (13), Jeffreys-Ma-
tusita distance (14,15), Bhattacharyya distance (16) and the

Mahalanobis distance (17). (See list in {24).)

Several works have been reported comparing different
separability measures and their effects on performance. (See

(9,13,18,19,62).)

There are two problems with most of the above sepaia-
bility measures applied to remote sensing applications: (1)
ambiguity and (2) linearity in pairwise error. The term
ambiguity implies here that there dr:s not exist a one-to-
one relationship between the value of the measure and the
probability of error. Linearity means that equal incremen-
tal changes in the measure imply equal changes in the pr-ba-
bility of error, over the whole range. Whitsitt (9) devel-
oped a distance measure De = erf ﬁ/gg) where B 1is the

rf
Bhattacharyya distance and erf(-) 1is the gaussian error
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function, He found that the resulting measure is less ambi-

guous and more linear than the measure B,

Another key factor in the process of error estimation
is the choice of feature subscis. The problems here are

twofold:

1. As the number of features becomes large, it becomes
desirable to choose a subset of these features that
can adequately predict the accuracy. This selec-
tion process also can become expensive if one must
search through all possible combinations of the
feature set, It is desirable, therefore, ¢to have a
priori knowledge of the importance ci each feature
in relation to the probability of error, The
Karhunen-Loeve expansion (attributed to Karhunen
(20), and Loeve (21)) in pattern recognition liter-
ature has historically been used as a feature
selection technique. It has the advantage of pro-
ducing uncorrelated features (in theory, but the
features are actually approximately uncorrelated in
a practical K-L transformation). In addition, 1t
imposes an c¢rdering on the features in terms of
importance in a representation error sense. As a
result, first feature is "likely" to be more impor-
tant than the second in calculating the probability

of error, and so on, More recently, Oja and
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Karhunen (22,23) published two papers on the con-
struction of K-L expansions for pattern recognition
purposes that do not require the computation of any

covarjiance matrices.

The probability of error is not necessarily mono-
tonically decreasing as the number of features
increases. This is due to a peculiar phenomenon
that has come ¢to be known as the Hughes phenome~
non. Hughes (25) found that with a fixed and
finite training rattern sample, recognition accu-
racy can first 1increase as the number of measure-
ments on a pattern increases, but decay with mea-
surement complexity higher than some optimum value.
He also reported that for unlimited training data,
this does not occur and the recognition accuracy
reaches an optimum only at infinite measurement
dimensionality. According to Hughes, if insuffi.
cient sample data are available to estimate the
pattern probabilities accurately, then a Bayes
recognizer is not necessarily optimal. Many papers
have since been published on this phenomenon, con-
firming it or trying to explain why it occurs (see
(26-42)). Thus, it appears that a successful
design should predict when and if =such phenomena

occur.,
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1.2.3 Multistage Classifiers

In recent years, some work has appeared in the litera-
ture aimed at developing multistage classification algor-
ithms, There is much yet to be learned about such algor-
ithms, and no work has been reported claiming optimality (or

even close to optimality) of results,

In general, earlier work can be grouped into two main

categories:

Sequential classification methods. These can be found

in several papers and books (see, for example, (U43-45)),
Basically, the method consists of observations made on fea-
ture measurements, one at a time. After an observation is
made, the classifier either reaches a final decision and the
process is terminated, or it makes another observation until

a final decision is rea hed.

Hierarchical classification methods. These are subdi-

vided into two categories:

1. Hierarchical clustering methods. Examples of such
work are found in Fukunaga (2), Dubes and Jain (U6), who
present a semi-tutorial review of the state of the art in
cluster validity, and Lukasova (47). 1In general, hierarchi-
cal clustering iy designed to generate 2 <c¢lassification
tree. The "root" node of the tree represents a collection

of samples (either a training data set or the entire sample
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set) and each terminal node represents either an individual
sample or a group of samples belonging to some class within
the set of classes in the data set. The method attempts to
divide the set of samples in each node into disjoint subsets
which form new nodes. Defined as such, the method is often
nonparametric and depends heavily on the ability of the
algorithm to find meaningful divisions of sauples that cor-

respond at terminzl nodes with reaningful classes,

2. Decision trees and criterion functions, Most of
the work done in multistage algorithms belongs to this cate=-
gory. Often, a decision tree is built using an

optimization or criterion function that dictates the
structure of the tree. It is this kind of approach that

will be of greatest concern in this research.

Hierarchical methods differ from sequential methods in
certain important respects. While in sequential schemes any
class can be accepted at any stage of the measurement pro-
cess, in hierarchical schemes certain classes are excluded
from consideration at each stage. Alsc, sequential methods
impose a linear ordering on the features, In hierarchical
methods, features used along one decision path can be diffe-

rent from those used along another path.

In 1871, Nadler (48) tried to calculate error rates in
a hierarchical decision structure under assumptions of sta-

tistical independence among the members of the hierarchy.
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Even under suc!" assumptions, the results assume "small"

probabilities of errors at any level.

Several heuristic methods of constructing tree designs
have beer proposed in the 1literature., Som.: studies were
done using optimization methods to automate the classifier
design procedure, but the assumptions made were often too
restrictive. Meisel and Michalopoulos (4¢) in 1973 pre-
sented a two-stage partitioning algerithm for the design of
an optimal binary tree. In the first stage, a suboptimal
sufficient partition is obtained. The second stage optim-
izes the result of the first stage through a dynamic pro-
gramming approach. The method allows only for linear dis-
ecriminant functions to partition the space, certainly a

suboptimal and tco restrictive conditicon,

Tn 1974, Wu et al. (50) reported on a2 decision tree
approach with direct application to multispectral data ana-
lyeis. Several design procedures were proposed (one of
which is manual). with special emphasis on a heuristic,
machine-implemented approach. The optimality criterion used
is a weighted sum of computation cost and accuracy. Results
were presented which showed superiority in efficiency (but
infrequently in accuracy) over the conventional classifier,
The criterion function used, as it cannot predict beforehand
the structure of the tree below that node, assumes all the

nodes below the node under consideration are terminal nodes,
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and hence is necessarily suboptimal, l,Later papers have
appeared that have pointed to applications using this parti-

cular c:assifier (51,52).

In 1976, You and Fu (53) presented a linear binary tree
classifiar that uses linear discriminant functions at deci-
sion stages with an application to multispectral remotely
sensed data. The procedure includes a grouping algorithm, a
separability measure, and an error minimization procedure
using the Fletcher-Powell algorithm (54)., Again, the proce-
dure is certainly suboptimal because of the assnmption of
linearity. Results reported, though, show that this classi-
fier is much faster and more accurate than the maximum like-
lihcod classifier with the same number of features, This is
due to the fact that the procedure uses different feature
subsets (with a restriction on their number, at each node,
compared with only one feature subset used in the one-stage

maximum likelihood classifier,

Kulkarni and Kanal (55) wused dynamic programming and
branch-and-bound methodologies in the design of hierarchical
classifiers, The criterion of optimality they used 1is a
weighted sum of the probability of error and the average
measurement cost incurred in <classifying a random sample.
The design assumes that the features used at the nodes are
statistically independent and that the decision at each node

is a function of only that particular feature observation,
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the design wusing only one best feature at each tree node,
Further, the design of the optimal tree assumes a very low
error rate for the tree, a very restrictive assumption since
in many cases a high error rate is specifically the reason
why a layered classifier was selected, i,e., to improve the
accuracy. Although the authors presented some methods to
reduce the complexity of their design algorithms, the exam-
ples they used involve only a small number of oclasses and

features,

In 1977, Parkih (56) compared several classification
techniques of clouds, 1including hierarchical design. Howe
~ver, his paper offers no new insights or major results that

would help improve the state of the art.

Also in 1977, Sethi and Chatterjee (57) developed an
algorithm for the design of an efficient decision tree with
application to pattern recognition problems involving dis-
crete variables. A criterion function was defined to esti-
mate the minimum expected cost ¢f a tree in terms of the
weights of its terminal nodes and costs of the measurements,
which then was used to establish the search procedure for
the efficient decision tree. The corcept of prime eventy
was used to obtain the number of nodes and the corresponding
weights in the design sample. No optimality claim was made,
but the procedure was found to lead to the optimal tree in

most of the cases. The procedure uses only one feature at
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every node, and its applicability to remotely sensed multis-

pectral data is very doubtful.

In 1978, Breiman (58) presented a procedure for build-
ing a binary classification tree. He used a criterion func-
tion that is only a function of the parent node and the two
descendent nodes. He used one best feature at every node,
He also reported on another regression algorithm developed
at Survey Research Center, University of Michigan (59), in
which the criterion function tries to :1educe the variances
of the two descendent nodes as much as possible from the

variance of the parent node.

Rounds (60) in 1979 developed a binary decision tree
algorithm, but again one feature is selected at every node.
The approach is a nonparametric one, based on the Kolmogo-

r.v Smirnov criterion.

Dattatreya and Sarma (61) in 1981 presented a multis~
tage binary tree "minimum-cost" classifier, when general
cost functions are associaced with ‘he tasks of feature mea-
surements. The optimization of the binary tree is carried
out using dynamic programming. However, one feature is only

selected at every node.

Ir sunmary,; most of the work done with multistage clas-
sifier:t often imposed too restrictive assumptions or condi-

tions, such as using one feature only at each node, or hav-
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ing a 1linear discriminant function. Moreover, very few
results have been reported on situations where the Hughes
phenomenon occurs, namely, working with a limited set of

training samples.

The major contributions of this research are then:

1. The development of some theroretical results that
clearly show the dependence of the accuracy of the
estimated statistics of the classes under considera-
tion on the number of training samples used to esti-
mate the statistics of those classes, as well as on

th. number of features used.

2. The development of an error estimator which is par-
ticularly useful when the number of training samples
is limited, and which is suited for a binary tree
classification prnacedure, This estimator, which
allows the selection of a "near optimal"™ feature sub-
set at every node, has no restrictions on the number

of features that can be used at any node.

3. The incorporation of the above error estimator in a
binary tree procedure, showing the usefulness of such
a procedure 1in predicting the optimal features that
lead to the best accuracy that can be attained given

a fixed sct of training samples.
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1.3 Summary of Contents

In chapter 2, some parameter considerations for a mul-
tistage binary tree classifier are addressed in detail. The
Hughes phenomenon is elaborated upon, and a technique known
as "sumultaneous diagonalization®™ is introduced. Feature
selection techniques are also treated. A data simulation
algorithm that 1is repeatedly used 1in the research 1is also

treated.

In chapter 3, an approximation algorithm to the proba-
bility of error is proposed that takes into account the

Hughes phenomenon.

Chapter U4 presents experimental results on real and

simulated data.

Finally, chapter 5 summarizes conclusions about the
study. Some analytical details, together with computer

listings and training data are placed in appendices.
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CHAPTER 2
PARAMETER CONSIDERATIONS
FOR

A MULTISTAGE BINARY TREE CLASSIFIER

2.1 The Hughes Phenomenon

One of the major needs for a decision tree classifier
originates from a dimensionality problem often referred to
as the Hughes Phenomenon (25). A considerable portion of
this research 1is directed towards understanding the Hughes
phenomenon, Figure 2.1 illustrates the phenomenon concep-
tually. In the presence of a limited training sample size,
the mean recognition accuracy as a function of the measure-
ment complexity (number of features for our purposes) exhi-
bits a peaking effect. Contrary ¢to intuition, the mean
accuracy does not always increase with additional measure-
ments, Further, peaking of the curve shifts up and to the
right as the number of samples increases, disappearing in
the case of an infinite number of training samples {(complete

knowledge of the underlying distributions).

Figure 2.2 suggests a concept for one possible explana-

tion of this phenomenon. Figure 2.2a shows a hypothetical
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Figure 2.1 The Hughes Phenomenon.
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graph of class separability plotted vs. dimensionality. As
dimensionality increases, so does class separability (a non-
decreasing function of dimensionality) until it saturates,
and any further increase in dimensionality does not have a
significant effect on class separability. But this is not
the only effect on the mean accuracy. With the presence of
a fixed, limited training sanple size, any increase in
dimensionality necessarily results on the average in a deg-

radation in the accuracy of statistics estimation of the

class distributions. Thus, conceptually, one should expect
a curve similar to that of Figure 2.2b.. Further, as the
number of samples increases, the curve should shift to the

right, i.e., for any given dimensionality, the larger sample
size should provide a better estimate of the true distribu-
tions. Assuming these two efrfects are the dominant effects
on accuracy, adding the two effects results in Figure 2.2c,
a curve similar to Figure 2.1. Based upon this concept of
the phenomenon, the solution to the problem 1lies in being
able to predict quantitatively how the number of samples
present affects the accuracy of the estimated statisties .
Especially in remote sensing applications of pattern recog-
nition methods, training samples are limited as ground truth
is often not present or difficult to get. Thus, the impor-
tance of the Hughes phenomenor becomes evident, as well as

the validity of this conceptual explanation of it.
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The Hughes phenomenon was studied by many researchers.
(See (26-42)). Hughes (25), who was one of the earliest to
introduce it and treat it in some detail, ¢tried to explain
it from a nonparametric point of view. The explanation
given by Wacker and Landgrebe (62) 1is of another nonparame-
tric case, where the Euclidean distance measure is used for

discrimination among classes.

Several researchers (28-34) tried to study the effect
of limited training sample size and independence of measure-

ments on the recognition accuracy.

In 1979, Trunk (38) provided a simple example in whieh
he showed theoretically that the probability of error
approaches zero as the dimensionality increases and all the
parameters are known in a two-class problem, but it
“pproaches one-half as the dimensionality increases and the

parameters are estimated.

In remote sensing applications, where maximum likeli-
hood ciassifiers are frequently used, and where the assump-
tion of class-conditional multivariate normally distributed
data is invoked, not much work concerring the dimensionality
problem has been reported yet. Wacker and El-Sheikh (40-42)
presented some papers dealing with dimensionality problems
for two-class Gaussian problems. Their results again show a

Hughes phenomenon occuring with finite training data.
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It then follows that any error estimator in a multis-
tage classification algorithm that can claim some optimality
in results from an accuracy point of view, should b: able to
predict when/if a peaking occurs in the curve mentioned ear-
lier. It is this key problem that this research is attempt-
ing to solve, i.e. the development of an error estimator

that can accurately predict the Hughes phenomenon.

Working with multispectral data, one almost always has
to work with multiple feature measurements and multiple
¢lasses. In this research, we propose a binary tree multis-
tage classifier. This means that any node in the tree is
either a terminal rode or is further subdivided into two

nodes (with statistics corresponding to two classes).

The advantages of a binary tree procedure are the fol-

lowing:

1. Working with two classes allows a theoretical
understanding of the problemn. Many pattern recog-
nition results that apply ¢to two-class problems
fail to do soc in multi-class ones. This is parti-
cularly true in the "simultaneous diagonalization"

techrique that will be introduced snortly.

2. Most feature selection algorithms wused in pattern

recognition applications generally, and in remote
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sensing applications specifically, are optimal only
when applied to two-class problems, For multi-
clays problems, a separability criterion is aver-
aged over pairs of classes and thus is optimal only
in an average sense. Working with a binary tree,
then, should provide us with both convenience and

accuracy.

Working with multiple features, several properties are
desireu in these features which will make further analysis

easier:

Uncoupled (Independent) Features. Uncoupling of fea-

tures from one another simplifies analysis a great deal as
it permits evaluating the effect of each feature separately

from other features.

Ordered Features. If the features can be ordered, or

at least approximately so, 1in terms of their effect on the
probability of error, then the process of feature selection

would be made easier.

Optimal Separability. The features should be optimal

with respect to the probability of error for two distribu-
tions at hand. Putting it in different words, the feature
subset should be tailored ¢to the separability of the two

distributions.
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To this end, a technique known as a "simultaneous

diagonalization" (63,64) is discussed in the next section.

2.2 Simultaneous Diagonalization: Theory

Let Zland 22 be the estimated covariance matrices for
classes 1 and 2, respectively, We seek a transfrarmation

matrix A such that

L = p) = A L)
A 1A I A 2A (2

where I is the identity matrix and A is a diagonal matrix.

This transformation would uncouple the features, while
not affecting the probability of error because the latter is
inveriant under linear transformations. We prouceed to find
such a transformation as follows. (¥or more detaiis, see

(2)) pp" 31"’350)

Let © and ¢ be the eigenvalue and eigenvector matrices

~

of 21, respectively; then

o~ 2T ;:1 6 0% = 1 (@T;:l@ = 0) (2.2)

6"%¢T 5 ¢ G-% = K K is a general matrix (2.3)
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Next, we desire to diagonalize K. To find eigetvalues

of ¥, it is necessa:y to solve the equation

= 0 (2.4)

IK - A1

Replacing K and I in (2.4) by (2.2) and (2.3), we get

I ~ - - - -
io%Tr2¢o1-xo!‘¢Tzlc’@!’|- 0 (2.5)
Or
~ ~ —‘
|9—%°TH Ly - ”1“ ¢ 0 4‘ =0 (2.6)

-1
Since p 5¢T is nonsingular, it follows that

: ; 2.7)
- N = () (

22 Arl
or,

i7le - u[ =0 (2.8)

1 2
A_lA

So, only the eigenvalue and eigenvector matrices of 21 22

need be calculated.
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The eigenvalue matrix is thenA , and che transpose of
the eigenvector matrix, AT. serves as the transformation

matrix.

The idea behind simultaneous diagonalization is to
transform the original features into a new space where the
features are independent and then choose a subset of these
features in the new space which is optimal with respect to
the probability of error. This 1is illustrated in Figure

2.3,

2.3 Feature Selection

Before proceeding to discuss the approximation algor-
ithms to estimate the probability of error, we digress

briefly to discuss how the features are ordered.

The literature offerc many studies made on comparing
different separability measures and their effectjveness in
choosing the best feature subset (see (9,13,18,62,05)). It
appears that the Bhattacharyya distance is one of the most
suitable separability measures for distinguishing between
classes, Thus, it will be used as a basis for feature
selection. The fact that the features are independent
allows us to determine the effect of each feature on the

probability of error separately.
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The Bhattacharyya distance for two normal distributions

can be exprassed as follows:

B =g (M-M)" (I, + 2 2)’(M M)+—1=(z+z)'

(2.9)

After the simultaneous diagonalization transformation,

however, B can be expressed as:

P I ,(d )

149147954 1 1/1 %

B = % l 7 T r 1 + 2 1n 2( !54-A1 (2.10)
i

where dij is the jth element of the transformed class-condi-
T ~
tional mean: D, = A My; and Ay is the ith diagonal element

of A.

Thus, it is elear that for every feature i, B can be
calculated separately. The feature with the largest B is
the best feature, the one with the second largest is the
second best, and so on. Also, the two best are the best

two, and so on.
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2.4 Simulation Algorithm
2.4.17 Need For A Simulation Algorithm

For remote sensing data analysis, several assumptions
are commonly made. These assumptions are usually that the
data are class-conditionally distributed multivariate normal
and that the data used to train the classifier are represen-
tative of the area of interest, This second assumption
actually has several parts, The assumption is made that in
the process of training, all classes present 4in the scene
are found, and all spectral subclasses of each élass are
also represented 1in the training data. Furthermore, the
parameters of the distribution of each subclass are also
assumed to be known from the training data. Each pixel is
assumed to come from one of the training classes, and also

is assumed to be entirely of one cover type.

In actual practice, these assumptions are not met. The
number of spectral classes in the area is not known and
clustering or some other method is used to determine the
number of subclasses, in addition to estimating the statis-
tics of those subclasses. Some of these methods also lead
to non-normal subclasses. In particular, the clustering
algorithm available through LARSYS truncates the tails of
the subclass distributions and so leads to non-normal dis-

tributions.
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There are also questions relating to a single picture
element. A single pixel in Landsat data covers an area
approximately 80 meters by 50 meters, More than one cover
type may be present in this area and result in a "mixture
pixel” observation. It is not clear how the distribution of
the spectral response of mixture pixels can be related to

the distribution of the spectral response of "pure pixels",

There has been much speculation in the remote sensing
community as to the effect of the non-satisfaction of the
basic assumptions. Whenever new algorithms are brought
forth, the old question is raised again, indicating that
there is insufficient understanding of the interaction of
the real attributes of the data and the theory of the algor-
ithms. At times it is not clear whether a particular
result is due to aspects of the algorithm or tov the extent

the data set deviates from the assumptions,

In testing new algorithms, deviations from the assump-
tions may obscure the action of the new process. One way to
clarify the situation is to apply the algorithm first to a

data set satisfying the assumptions.

Such a data set could be obtained artificially, through
simulation. The analyst could then know: how many classes
exist in the data; the true distributions of the classes,
including normality 1if desired; the observations could

really be independent; and no pixel would be a "mixture
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pixel", New algorithms could be studied on such a data set
with the knowledge that any "strange"™ effects are indeed

algorithm rather than data problems.

In many cases where simulated data have been wused in
the past, the data were too artificial, in the sense that
all aspects of the image were controlled, removing the
natural variation in object size, position, and relationship
which occur in real data. This limited the use of the simu-

lated data sets in testing new algorithms,.

The natural spatizl information occuring in multispec-
tral data could be retained in 2 simulated image by spa-
tially basing the simulation on a classification. It would
be even better to base the simulated data on a digitized
"ground truth" map if the spectral characteristics of the
cover types were known. By basing the simulation on a clas-
sification, the number of classes, their exact distribu-
tions, and the class of each pixel in the area are known.
If the classification was sufficiently accurate, then the
spatial information held 1in the classification map will be
close to the actual cover type map and actual spatial con-
tent of the original data. For each pixel in the area, a
random vector distributed according to the pixel's class
statistics could be generat=zd. This becomes the simulated

data vector.
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This simulated method was reported in LARS Technical
Report 070980 (66), and the program will be used for testing

the error estimator developed.

2.4.2 Statistical Background

From the classification chosen as a basis for the simu-
lation, the following are known: the number of classes K,
the set of classes(wi y i=1,...K), the class distributions
(f(wi),i-1,...K). their means and covariances ( My andEi y
i=1,...K), the number of channels p, and the class of every

pixel in the scene.
From classical statistics:

(1) Let X:px1, A:pxp, and b:px1.

If XaN (0,1 ), then Y = AX + baN (b, AIDAT = A

(where I is the identity matrix having dimensionality

p).
(2) Let Y be a symmetric, positive definite matrix. Then

there exists A, such that

o l‘

ant = g (A is denoted I %)

To simulate a nrixel which was a member of class 1 in
the base classification, N(O,Ip) (the random vector for each
pixel is independent of other vectors) is generated. (See

1
Appendix A.) Next Y = E;X + uiis calculated; it is then a
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random vector from the population N( y ,Zi). This process is

i
repeated for each pixel of the base classification and the
random vectors thus generated are stored appropriately,

i.e., 50 as to correspond to their simulated spatial loca-

tion,

The program requires as an input a classification map
stored on a results tape. The results tape has the class
statistics for p-dimensions also stored on it. The program
then, uses the results map and the stored statistics to gen-
erate a p-dimensional data set, which is stored on a user

specified output tape in LARSYS format.

Appendix A provides a mathematical derivation related
to the generation of normally distributed samples. Appendix
E provides a Fortran program listing for the simulation pro-

gram.

With all the prnliminaries discussed, we are now ready

to begin our discussion of the error estimator algorithm,
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CHAPTER 3
PERFORMANCE ESTIMATOR:

APPROXIMATION TO THE PROBABILITY OF ERROR

3.1 The Likelihood Function

As mentioned earlier, our goal is to develop a perfor-
mance estimator that can predict where the peak in the
Hughes curve occurs. Some of the most serious difficulties
facing researchers in trying to estimate the probability of

error in multidimensional analysis are:

1. The need to carry out a multiple integration on
the multivariate probability density function. Most
often, this integration 1is almost impossible to
carry out analytically, and numerical integration

that is often costly has to be perfomed.

2. The measurement featnres are often c¢orrelated,
making it difficult to assess the importance of each

feature separately on the probability of error.

3. In most of the cases, one has to deal with multi-
class problems (greater than 2) which further com-

plicates multivariate probability density functions.



38

It would be much easier, therefore, if one could work
with a function that is one-dimensional but carries all the
information present. Fortunately, since we are looking at
two classes at a time in a binary tree procedure, such a
function does exist, and is called the likelihood functionr
(minus the log of the likelihood ratio). See, for example,
(66).

The likelihood function, denoted h(X), is given by:

h(X) = -1n p(x/wl) / p(x/wz) (3.1)

where

p(X/wi) is the probability density function of

X given Wy

In remote sensing applications, the assumption of mul-
tivariate class-conditional normal distributions is almost

always invoked, and will be consistently used in this work.
Using this assumption, p(X/wi) becomes:

P(X/w,) = ’ exp (=%(X'-M.1 )z

(2n)P/2 l I, '

-1
1

(X—Mi))(3.2)

where Mi is the mean vector of class 1i.

Zi is the covariance matrix of class i.

p is the number of dimensions.
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In practice, M1 and 21 are estimated from training

statisties and are replaced by M, and Zi.

i

The Bayes decision rule for minimum error may be writ-

ten as follows:

P(w,/X) 2 P(w,/X) = X € 1 (3.3)

The a posteriori probabilities P(wi/X) may be calcu-
lated from the a priori probabilities P(wj) and the condi-

tional density functions p(X/wi) using Bayes theorem, i.e.

P(wilx) = p(X/wi) P(wi) / p(X) (3.4)

Since p(X) is common to both sides of the inequality

of (3.3), the decision rule can be expressed as:

p(X/wy) P(w,) < p(X/wy) P(wy) =+ Xee (3.5)

rS

p(X/wl) P("'z) \-'1
>

p(X/wy) P(w)) ¥

2(X) = (3.6)

h(X) can then be written as:
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: . , T =1 T -1
2 - = o % . R} -M 3 i [ -
h(X) in (£(X)) L (% x.‘) L, (7 ?,) (X ¥, T, (v Mz)
L | w
+4ln ) > P x0T Gl
L.
ZI P(wz) v,

~N
In practice, since M1 and 21 are replaced by M1 and

Xi’ h{(X) becomes (after moving 1ln P(wl)/P(wz) to the L.H.8.):

1 1

-~ - .‘-. TA_ -~ _ -h TA_ -~
h(X) L(X Ml) k| (x-ml) L(X Mz) I, (x—uz)

+y 1n|f1| - 1 Pl
l zJ P(""2) w

2 (3.8)

AV
o
+
e
]

1
The Bayes test for minimum error reduces then to look-
ing at the value of ﬁ(x), assigning measurements with posi-
tive values to class 2, and measurements with negative

values to class 1.

Notc that ;(X) is a one-dimensional random variable.
The problem then is to know, or estimate, the probability
density function of ;(X). Once that is known, the proba-
bility of error can be obtained by carrying out a scalar
integration. Figure 3.1' shows the probability density

functions for h(X) given either class 1 or 2.
The probability of error can be calculated as:

€ = p(error) = pl(error/w,)P(w;) + p(error/w,)P(w,)
1 1 2 2

(3.9)
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Let the domain or decision space of X be divided into

regions Fl and r2. Then, if a sample belongs to W an
error occurs whenever Xerz. Similarly, if a sample belongs
to w,, an error occurs whenever Xerl. Thus,

€ =l‘(x:?2/w!) P(w!) + P(x:l"l/wz) P(w (3.10)

2)
In terms of the probability density functions of

G(X/wi), this becomes:

€ = P(w)) jrp(h/wl' dh + P(wz)J( p(h/wz) dh
0 0
(3.11)

1 + e,

The probability of error is then the area under the
two curves in Figure 3.1 multiplied by the prior probabili-
ties. The objective is to develop an algorithm which will
approximate the class-conditional probability of Q(X), and

hence, the probability of error.

3.2 Performance Estimator

Fukunaga and Krile (64) developed an algorithm that
approximates ﬁ(X). This algorithm assumes there are two-
class multivariate normal distributions, and was tested

using one eight-dimensional simulated data set.
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The algorithm, hLowevur, assuwes the training samples
are enough to reasonably estimate the true statistics of
the distributions, and hence does not take into account the
Hughes phenomenon. Put in other words, in situations where
the training samples are few and do not reflect the true
statistics of the distributions, the algorithm will treat
the statistics obtained from the training samples as a
"perfect”" estimation of some "wrong" distributions, when in
fact they are an "imperfect" estimation of the true statis-

ties.

It is this algorithm, proposed by Fukunaga and Krile,
that we will use and modify to take into account the Hughes
phenomenon. Therefore, it seems appropriate to explain the
algorithm in detail, and then discuss the modifications

made to it.

3.2.1 The Normal Assumption

Looking at equation (3.8), since Q(X) is a quadratic
function in general of a normal random variable X, it can-
not itself in general be normally distributed. However, in
the case where Zl= 22, S(X) becomes a linear function of X

and hence is normally distributed.

In most cases, however, I, #I,. Fukunaga and Krile

still tried to assume that h(X) is normally distributed.
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An algorithm was developed and tested in this research
under the assumption that B(X) is normally distributed
valthough El 122 ) but results showed it to be a very poor
approximation of the probability of error and hence it was

not further analyzed,

3.2.2 The Modified Gamma Distribution Assumption:

Fukunaga and Krile Version

Consider B(X) as given by equation (3.8). Applying

the simultaneous diagonalization technique described ear-

lier, il is transformed to the identity matrix I, and 82 is
transformed to a diagonal matrix A . The transformation
matrix is denoted AT, or the transpose of the eigenvector

matrix A.

Without losing generality, we assign the origin of the
coordinate system such that:

a

m. =0 and m, = M - M, (3.12)

With Xew h(X) can be written as another function of

1 ’
Y, where Y:ATX, as follows:

h(Y/w)) = YOy cv-)T A7 (v-D) 4+ 1n I-—l—l
. | 2]
P(wl) (3.13)
- 2 1n <
) . Plwy

where D = A my.
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Since the features are now uncoupled, this can be

written as:

- P 2 l a 2 'y P(wl)
h(Y/wl) = I (y1 - = (yi-di) -1n Ai) - 2 1n
j=] A -
i P(wz)
- a2 (3.‘b)
P 1 1 )* 9 .
= I ((1- %) (yi + — - (== 4+ 1ln Ai))
P(wl)
- 2 1n =
P(wz)

where p is the number of dimensions.

Y
~

d1 is the ith element of vector D.

Now, we have h(Y/wl) in terms of p independent Gaus-
sian random variables Yo each of which has zero mean and

unit variance with respect to class "1'

Defining a new transformed variable Z and a trans-

A

formed difference- of-means vector V as follows:

z = (A°% AT (x-&z) (3.15)

v = (A7% AT ;2 - 2% (3.16)
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ﬁ(X/wz) can bu expressed as a function of the new
variable Z and v by substituting (3.15) and (32.16) into

(3.8) as follows:

" - T ~ ~ T ' El' i(w‘)
= 4+ -2 24+ 1ln =, - 21n <
h(Z/w,) (Z+v) " p (Z4v) l IJ P(w,)
(3.17)

Again, since the features are -ncoupled, we can write

ﬁ(Z/wz) as follows:

;(u )
- P ~ 2 2 - 1
h(z/w.) = ¢ (A, (z,4v,)" - 2z - 1n A,) - 2 1ln <
( 2 FEERRRE Sk A i i P(v,)
‘li‘ -
P - A d -
- I (O (zr 2272 s
=1 i LR | -1
1 i i
i(w )
-2 1n —— (3.18)
P(wz)

Again, we have an expression in terms of p independent
Gaussian variables zi, each of which has zero mean and unit

variance.

Next, we define the following quantities for conveni-

ence:
a = 1- 1/3, (3.19)
by,= 4,/ -1) (3.20)
a .= &, - 1 (3.21)
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A ITYES ) (3.22)
b21 Ai di i

Substituting equations (3.19)-(3.23) back into equa-

tions (3.14) and (3.18), we get:

P
h - 2 3.24
B(Y/wp) = T (e by + by )0)- (3.24)

- P
h(Z/wz) - I (az1 (z

2
+ b.,.,)%)-¢C (3.25)
{=1 21

i

Referring from now on to Y and 2 as &, and to Yy and
z, as g ., we find that h(&/wl) and h(¢/w,) have the same
functional form, except for the values of aji{+.by4, a2y, and

b21.

Theorem 3.1

If X = (xl,....,xp) where the x; are a sample from a
Normal(o,oz) population, then the random variable V =
p
zxi /02 has a xz,
i=1 P
Proof:

or chi-square, distribution.

See (67), p. 16.
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Theorem 3.2

Ifr sl,....,sp are independent random variables, then
the density of their sum sltazo...osp equals the convolu=-
tion of their respective densities.

Proof

See (68), p. 189,

Examining equations (3.24) and (3.25), shows that the
density functions of Q(E/w‘) and ﬁ(ﬁ/wz) can be obtained by

convolving the densities of p non-central (because of the

bli and the b21 terms) x° variables having multiplicative

constants a and =a

14 2y and adding a shift parameter C,

The density of h(:) is divided into three parts:

pkr "
- 3.2
Vir pX 8y (Cki + bki) for Ay 20 ( 6)
a > 0
ki~
e 2 7)
) - (3.2
\kS o i 0 nkj (Ekj + bkj) for akj < 0
k]
Ce= T (Inh 4 a/G.-1) + 2 1n B Y IP(w.) (3.28)
i=1 i 1777 n Plw, W,
(P = P, * Pry) (k = 1,2)
The density function of vkr' (h), 1is the convolu-

pkr

tion of pk densities of squared Gaussian variables having
T

multiplicative constants. All pkr densities lie above the
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positive h axis with a, 3 0. Similarly, the density func~

ki
tion ecf Vks. pks(h). is the convolution of Pys densities of
squared Gaussian variables with multiplicative constants.

All Pis densities lie on the negative h axis with akf 0.

A gamma density function is given by:

5, ) - ZP xP1 2% sr(p) (3.29)
1 ]

Let k be a positive integer. With p=1/2k, and X =1/2,
the gamma density g(p,») is referred to as the chi-squared

density with k degrees of freedom. (See (67),p.13).
Theorem 3.3

Ir Xl,....,xn are independent random variables with

gamma distributions (pl,x),...., (pn,A), then Y:x1

+eoeotX
n
has a gamma distribution (p1+...+pn,A).

Proof

See (67). p. 15.

Since what we have 1is the summation of chi-squared
random variables (special form of a gamma distribution),
doth pkr(h) and pks(-h) (pks(h) reflected to the positive
side) can be reasonably approximated by a general gamma
as follows:

form, especially for large n and n

kr ks’
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a =-h/E
g(h) =/n¢ h 20
< 8°+1 r(a+l)
(3.30)
0 h <0

The parameters a and 8 can be determined so that the
mean n and the variance 02 of the "true " distridbution

match those of the approximation.

Next, we calculate the expected values Ny and Nyo of

2 2
vkr’ and Vks, and the variances okr and Ors *

Pkr 2 a 20
Ver = ) % o ki (Epg *+ Byy)
ki=
pkr 2 2
= L apg By * 20y By ¥ By )
a, .> 0
ki-
- pkr
= = 1 4+0+0b
E(Vy,) "wr . f 0 ( ki)
ki-
or,
" 2 2 (h)
"er - X 8,y (1 + b)) for py, (3.31)
a, ,.> 0
ki-
(Cki has zero mean and unit variance)
Similarly,
n ks 2 £ (h)
= L + or .
e T, 0 g U B y) Pks (3.32)
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pkr
2 . +b )2
E(Vkr) E( I ¢ a4 akj (eki ki

apge akj >0

2

(ij+bkj)

pkr
= E( I

aki: 0

2

2 .2 3 2
(Bpg F by Epg +6 by &y

k1

3

4
+ 4 bki Eki + bki)) + 0

( The zero term comes because Eki is independent from

and hence they are mutually orthogonal as E(Eki) = 0)

Ekj
P
kr
= 2 2 4 3.33
. z a; (3+60b., +b.) ( )
ki=- 0
where E(Ezi) = 1.3. v .(n-1) for n even
0 for n odd
P
22 (v )=t al14bi) o0
kr a ki ki
ki= 0
P
kr
- 2 2 4 (3.34)
b aki(l + 2 bki + bki)
aki— 0

- 2 2
Var (vkr) =0, = E(vkr) E (vkr)
P
kr
. 2 2 (3.35)
2 . f o aki(l + 2 bki) for pkr(h)
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Similarly,

- Pks 2 2
O = 2 I akj(l + 2 bkj) for pks(h) (3.36)
akj‘ 0

For a random variable h, which has a gamma distribu-

tion with parameters a and B, (See equation (3.30) ), then

E(h) = (at+ 1)8 Var (h) = (a+ 1)82 (3.37)

(See (67), p. 44)

Therefore, Or® kg’ Bkr’ Bks' can be calculated as:
o =(nZ_ /o2 ) -1 (5.38)
kr kr kr *

-2 ~2
as “(Myg /oy ) -1 (3.39)
B, = 02 / n (3.40)
kr kr kr .

A2 -~
Bks = Ove / Mo (3.41)

The density function p(h/gi),i=1,2, which is our final

goal, is then the convolution of two gamma densities with a

constant shift: one is distributed on the positive side of

the h-axis, and the other on the negative side.
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However, the convolution of these two gamma
densitities is hard to obtain in an explicit mathematical
expression, because in general, o is not an integer. Since
we do not favor a numerical integration technique for cal-
culating the error rate, a "modified " gamma distribution

is proposed as follows:

(h-c)Y " (h-c)/é for h > ¢

(3.42)

\ Y for h < ¢

Yy =0 orl

In other words, Gamma density curves are roughly cate-
gorized into two types: one is exp(-h/8), and the other is
h exp(-h/B), depending on whether o obtained by (3.38) or
(3.39) 1is larger than or smaller than a threshold value of
0.35. (The threshold value of 0.35 is a compromise value,
chosen in an attempt to match the maximum value and loca-
tion of the maximum value of the gamma density to the modi-

fied gamma approximation. It 1is further explained 1in

(64)).

The procedure proposed by Fukuraga and Krile, then, is
as follows:

- " ~2 ~2
1) Calculate Nir » Mot Pkt Oks from equations

(3.31),(3.32),(3.35), and (3.36)
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2) Calculate ay, and a, form equations (3.38) and
(2.39).

3) Yy = 0 if @ <0.35, and v, =1 ifae,  »0.35.
Similarly forvks .

4) Calculateékr '6ks' and ¢, ., € o DY the following
equations: (modified forms of equations

(3.38)-(3.41))

(;kt - ckt)z (3 a3)
Yer © ~2 =1 '

(n
- ks ks -1 (3.44)

~2

o 3.45)
kr Opr 1 (r = Cpy) ¢

A2 ~
¢ 0ks / (nks - cks

) (3.46)

Equations (3.43)-(3.46) are the same as (3.:%)=-(3.41),

except for the shift of the mean Gy OF Qg -

*
The convolution of q&r(h) and p,  (h), p (h),k=1,2, can
be obtained as an explicit expression, The result 1is :

(See (6U4) for details)



5 Ykr s Yks
Pt (1) = ( ks _t 4 Ykr+ Yks)°kr et/ ks
(6, + 6, )T L Cus Sr * ks
{ for t £ 0
5 Yks Ykr
kr t . (Ykr + Yks)Sks e-t/ék,
\ yks+1
(6kr + Gks) 6kr 6kr+ 6ks
for t 2 0
(3.47)

Defining the distance d as :
d = € - (e, = ) (3.48)

*
We can find e, by integrating pl(t) form d

, by integrating p;(t) from -« to d

1 to =, and

e The term dk brings

2'
the shift parameter C back ino the picture, and also

accounts for the displacement of the (h/wk) approximations

by Cpr and Crs® In general,
d

K
* = * -
D (dk) Py (t)dte
r Ykr+l -d Yks
Sks k (Ykr + Yks) Skr dy/6ks <
—tE s +1+ XL e , d,50
Srr+ ks ks Skr + Sk
< 5 Yks+1l 4 5 Ykr s
1-(+ kg k ;14 Ykr+ Yks)Oks e—dk/ kr 4 20
kr + Sks Skr Spr + i k
\

(3.49)
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* "~
where I (dk) is the approximation for Prob(h/wk¢0).

Thus, the approximated values of recognition errors are:

- L]
e, = P(w,) (1 - D 4 (2,50)

- ]
e, = P(w,) (D (d,)) (3.51)

3.2.3 Proposed, Modified Algorithm

Figure 3.2 shows a flowchart of Fukunaga's and Krile's
algerithm, The algorithm assumes that the training statis-
tics are an accurate representation of the true statistics
of the two distributions. This being the case, the proba-
bility of correct clas.ification that the algorithm pro-
jects is monotonically non-decreasing as a function of
dimensionality. It is this drawback in the algorithm that
we are trying to correct such that the aigorithm would take

into account the number of samples used for training.

Looking back at the calculation of the parameters of

the modified gamma distribution, we see that all of them

depend on two parameters, Y and ok,

ance of h. If these parameters are inaccurate, then all of

or the mean and vari-

the other ,arameters will be affected.
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( Start 4)
]

kea? Ml: Mz
21. 22

Do Simultaneous
Diagonalization to
Get D, A, A

Order Features
Using Bhattacharyya
Distance

________<- 5o [ =1, Number of Features )

Calculate Parameters
Of Gamma Distributions

n, o, a, 8, ¢

Calculate Probability
of Error Using
First I Dimensions

{_ Continue )

< Stop )

Figure 3.2 A Flowchart of Fukunaga and Krile's
Algorithm.
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We propose to look "t the way these parameters, parti-
cularly ;f and 3%, are distributed as a function of the
number of training samples, We then want to incorporate
that information in our estimation of gi and ;g. such that

the algorithm has a mbre realistic picture of what the

training samples represent.

Estimating the probability density function of ai and

Oy is by no means an easy task. For the amount of informa-
tion that we have, such an estimation is very involved and
impractical. A disc.ssion of the difficulties one faces in
attempting auch an estimation is found in Appendix B.

-~

We propose instead to look at the variances of % and

~

Og, and then incorporate that information in our estimation

of these parameters.,

"
“

Let us look at Oi, (Var (h/wy)) and T (var (h/wz)).

From equation (3.35), (or (3.36)):

. P 2
52 -2 1 a¥, (1 + 217 (3.35)

Substituting for a,;, and b;y by their values from

(3.19) and (3.20) in (3.35), we get:

-2
o

VIS 32/(r.-1)2 3.52
1 (1 - 1/2)7 (1 + 24d,/(A-1)%) ( )

P
= 2 I

i=1

After multiplying, this reduces to:
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In matrix form, this can be

-2

ol t=-1,2 T

= 2 (¢exr (I - A )" 4+ 20D

Or in terms of the original

1 2,2

‘2 ‘-
o, " 2 (tr (1 - 22 zl) + 2
(See (64)).
Similarly,
2 _ P 2 2
%27 2 I 8 (14 20y
P . 5 .
=2 I (A - DT (1 + 22
i=] ’
P

written as:
("2 p)

distributions:

AT 2-1 & 2-1°
m, I, I, I, mz)

Az - 2
g 4y /O -D%)

A2 » -
-2 -
I O5+2(d DA+ 1)

~

In matrix form, 03 can be written as:

~

2 ~ - ~
o, = 2 (tr (A - 1)2 + 2 DTA

a

D)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)
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Or, in terms of the original distributions:

- A_l -~ _ 2 AT A-l " A-l -~
05 2 (tr (2l I, I)° + 2 my, I;7 I, I} ©, ) (3.58)

(See (64)).

a az
In order to calculate the variances of Oi and 02. we

make the following assumptions:

1. The original and transformed means, ﬁl'ﬁz' and 6
are assumed to be constant. Experience has shown
that one can approximate first- order statistics
with 2 relatively few number of training samples.

2, 51 and Ez are independent. This is to say that we
will ignore any relationships that might exist

between the two classes.

Having assumed the above, the results are: (See

Appendix C for the complete derivation)

Var(ai) = 4 I —2-2- -ni—+ -‘-‘-“—-4- 811 - ia -ni-+-“—+_2;
=1\ i \M1 2 ™M M\ P2 -
2 2 ’ 2 2
+ 8, 32 . 48 . 48 . 64 L4y Bdy 204y 164y
2 n.n 2 2 2 2 n n n,n 2
ny 12 nyn;  nin,  nng 1 2 172 nj
324} 1 (8 . 8 128 , 40 , 40 , 48 . 48 , 512
+ + ==+ =+ + S+ e
n.n2 A n n n,n n n n nl nn
172 i\1 2 172 1 2 1 2 172
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3 2
+ 2020, 576 , 576 , 2112 , 212, 2304 | 4q2 (ﬁL , 8
nnj nn, nyny nln2 nlnz nlnz 1 n,
v B0, e 256, 96, 48, 288, 352, 328143)
1 2 172 172 172 2 M2 Mt MM,
+ 4ay (ni' s B0, 24 s, 88 963) (3.59)
1 %2 my mm,  n) ooy mgny
Var(o) = 4 Y fL + ﬁL + li? + ﬁ% + ﬁ% + 3% + i%-+ i}z
i=1 1 2 ™" =a] w3 B n) nin

b 312, 1920, 576 , 576, 2112, 2112, 2304 ) . 43 d3<

2 a2 3 3 3n2 2n3 3n3
Ry PR mmp, MR, ngmy ngn,  BEn

+ ;4_+ _8_2_ + 5% + n6: + 2256 + 36 + _l%+ 2388 + 32522 + 328103
2 B L H 172 nin, nin, nj nyn, ninj nyn)
- (;i + fL + J% + J% + 3§ + “82 + 28 + g“z + 2x§ L
1 2 nj nj nt, n,nj nia, nin; ny
4 8 8 2 40 24 48 88 96
+ 2 + + 2d4%( = + = + = + + = + +
n, “1“2) i(nl n, ni n,n, ni “inz ni,,z)
2 4 12 8 16
- 4d?2 (= 4+ 2 4 + — +
i <n2 n, n,n, ni ninz) (3.60)

Note that Var(ai) and Var(ag) are inversely propor-
tional to the number of training samples used to estimate
the statisties of classes 1 and 2, and directly propor-
tional to the number of dimensions., 1In other wordes, as the

number of training samples increases, the variunces of our
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estimates of oi and ci decrease, as expected., Also, as the
number of dimensions is increased, the variances of the

estimates incrcase,

Since we do not have the pra~ability density functions

2 2
of % and Oos we want to think of a reasonable way to

incorporate the effect of the number of training samples
- ~2

into our estimation of Oi and 0, ., We claim that a better
estimation of the true variances oi and og consists of our
estimation of these variances, ;i and 3: y Plus some multi-
plicative factor of the standard deviations of these esti-

A2 ~
mates, namely the square roots of Var(oy) and Var(og), that

were calculated above.

This multiplicative factor was chosen empirically.
Experimental results in Chapter 4 show that the variance of
the probability of error generally increases with increas-
ing dimensionality, especially in the presence of a very
limited training data set. Results also show that the
probability of error is inversely proportional to the num-
ber of training samples. Moreover, it is very sensitive to
the number of training samples in the cases where that num-

ber is not much greater than the number of dimensions.

Based on the above observations, the following empiri-

cal formula for the multiplicative factor was used:

M.F. = 2 p2/(n1. n,) (3.61)
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where p is the number of dimensions

n1 and n, are as before,

The new procedure to <calculate .5y probability of

error, becomes as follows:

1

2)

3)

4)

5)

6)

eral

kr’ "ks’' “kr® %ks’
(3.32), (3.35), and (3.36)

Calculate ; from equations (3.31),

52 Az ]
Update okrand Oxg 3% follows:

;ir (new) = ;ir (o014d) +(2p2/nl.n2). (Var(c‘vit))!5
Sis (new) = ;is (ol1d) +(2p2/nl.n2). (Var(ais))li

= £ .
Yer © 1 if O r > 0.35, and Yer 01 Oy < 0.35

Similarly for Yis

Calculate § &, , and Cxr’ Sks°® from equations

kr® “ks
( (3.43) - (3.46) ).
*
Calculate p: (t) and D (dk) from equations (3.47)
and (3.49).

Calculate the probability of error from equations

(3.59) and (3.60).

We are ready now to procced to Chapter 4, wherc sev-

experimental results are shown.
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CHAPTER U4

EXPERIMENTAL RESULTS

4.1 Introduction

Some results on feuture selection techniques will be
presented first. Next, several experimental results illus-
trating the Hughes phenomenon are shown. Results comparing
probabilities of error predicted by the proposed algorithm
as a function of dimensionality as compared to experimental
observations are then presented for aircraft and Landsat
data. Results are obtained foir both real and simulated
data. Finally, twc binary tree classification procedures
that make use of the algorithm are presented to illustrate

the usefulness of the procedure.

The Bayesian decision rule with assumptions of 0-1 loss
function, equal a priori probabilities , and multivariate
normal distributions 1is used as the decision rule 1in all

experiments when classification is involved.

Detailed training and test field descriptions for all

the experiments conducted are found in Appendix F.
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4,2 Experiments on Fenture Selection Techniques

In this section, some experim&nts on different feature
selection techniques are presented. The purpose of conduct-
ing these experiments 1is to choose an effective feature
selection technique, particularly when dealing with a small

number of training samples.

Experiment 4.1

Two classes of wheat and corn are selected from multis-
pectral scanner (hereafter referred to as MSS or aircraft)
data of the 1971 Flightline 210 from the Corn Blight Watch
Experiment, and classified. The data was collected on
August 13, 1971, Part of the selected data is wused for
training and a much larger portion is used for testing. The
number of features used for classification varies from one
to twelve, and the number of training samples for each class
is chosen such that it is much higher than the number of
features (265 samples for wheat, 569 samples for corn). A
principle components (Karhunen-Loeve) transformation 1is
applied to the data, and then three feature selection tech-

niques are compared:

1) In the first feature selection method, the features
are ordered according to the largest eigenvalues
resulting from the K-L expansion. This method,

referred to hereafter as the K-L ordering method,
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assumes that the best feature is that which corres-~
ponds to the largest eigenvalue of the mixture covar-
iance matrix of the whole data set, the second best
corresponds to the second largest eigenvalue, ...etc.
This ordering then imposes the condition that a fea-
ture subset with 1lower dimensionality is always a
subset of another with higher dimensionality. The
method then depends on the eigenvalues of the mixture
covariance matrix, and ignores any among~class vari-

abilities.

2) The second feature selection technique method 1is
referred to as the Transformed Divergence method
(13). The transformed divergence, DT' is defined as

follows:

4 -D/8
D, = 2000 (1 - e / ) (4.1)

where D is the divergence of two normal distridu-

tions, and is defined as follows (12):

1 -~ - ‘_"1 A_l
D = 2 tr (XI-ZZ)(L2 —21 )
1 - " T n_l “'1 - [
+ 3 (Ml-Mz) (21 +I, )(Ml-Mz) (4.2)

For a given dimensionality, the method chooses the
feature subset with that dimensionality which gives
the largest value of Dq. Unlike the K-L method, a

feature subset of lower Aimensionality is not neces-
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sarily a subset of another with higher dimensional-
ity. This method is applied to the data after it has

been K-L transformed.

3) The third feature selection technique method used
is the Bhattacharyya distance (16), defined by equa-
tion (2.9). In this method, a simultaneous diagonal-
ization technique 1is applied to the covariance
matrices of the two classes (after a K-L transforma-
tion of the data), and the best feature is then
selected as that which corresponds to the largest
value of B as defined by equation (2.10). The second
largest is that which corresponds to the second larg-
est B, and so on. As in the K-L method, a feature
subset of lower dimensionality is always a subset of
one with higher dimensionality. The transpose of the
eigenvector matrix obtained is then multiplied by the
observation vectors to transform the data, the mean
vectors and the covariance matrices are transformed,

and the data classified.

Results are shown in Figure 4.1, which plots the recog-
nition accuracy (P..%) as a function of dimensionality. It
is seen that of the three methods, the transformed diver-
gence one gives the poorest performance. The K-L method is
better, but the best method is that obtained from the Bhat-

tacharyya ordering, which saturates at a very low dimension-
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Figure 4.1 Classification Results of Data in

Experiment 4.1 Using Three Feature
Selection Techniques.
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ality. Note that as dimensicnality increases, the three
curves start approaching each other, until they all coincider
when all features are used (The probability of error 1is

invariant under any linear transformation).

Experiment 4.2

In this experiment, 20 samples each of wheat and corn
are chosen randomly from the training samples of experiment
4.1, The test samples are the same in both experiments.
Again, the same three feature selection techniques elabo-
rated upcn above are used. Classification results are chown
in Figure 4.2. Unlike the results in experiment 4.1, the
Bhattacharyya ordering here gives the poorest results.
Further, it does not exhibit a peaking effect, an effect
that is expected when working with such a small number of
training samples. The transformed divergence ordering does
much better and does exhibit a peaking effect. However, it
has a lot of fluctuations. The K-L ordering, on the other
hand, while giving slightly poorer results than transformed
divergence at low dimensionality, is better than the other
two techniques at high dimensionality and has less fluctua-

tions.
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Experiment 4.3

Another two classes, corn and forest, are selected from
the same data set described 1in experiment 4.1, Again, 20
samples per class are chosen randomly from a larger set of
training samples, and the three feature selection techniques

are compared. Results appear in Figure 4.3

Again, we notice that the Bhattacharyya ordering does
poorer than the other two techniques, and does not exhibit a
peaking effect. Transformed divergence gives better
results, but again has a lot of fluctuations. The K-L ord-

ering is superior to both, and has less fluctuations,

It should be noted again that the K-L ordering we used
is based over the full data set. It is dependent on the
mixture covariance matrix of the full data set, and thus
ignores any between class variabilities resulting from dif-
ferences between class covariance matrices. Because it is
always dependent on the full data set, the number of train-
ing samples used to estimate the mixture covariance mtrix is

almost always large, and hence a good estimate is obtained.

The Bhattacharyya ordering used, on the other hand,
although it takes into account between class variabilities,
depends heavily on the number of training samples used to
estimate the 1individual covariance matrices of the classes

at hand. Thus, as the number of training samples decreases,
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poorer estimates of the covariance matrices are obtained,

leading to poorer transformations.

It appears that the transformation obtained from the
simultaneous diagonalization technique is very sensitive to
the number of training samples wused to estimate the statis-
ties of the classes at hand. While it produces superior
results when there are enough samples, it fails to do so

when the training samples are limited.

Indeed, Wu (50) published results 1in which he showed
that the divergence criterim-n breaks down when the number of
training samples 1is small, and no longer is &zn effective

predictor of accuracy.

The K-L ordering, while ignoring the among-class vari-
abilities in the scene, 1is only dependent on the number of
data points in the data set used to approximate the mixture
covariance matrix, but is otherwise independent of the num-
ber of training samples used. Thus, while sacrificing the
information we get about the variability between classes in
the set, experimental results show that this sacrifice is
more than warranted when dealing with a small number of
training samples. While not claiming that the K-L ordering
gives the optimal results, we think it is a very effective
procedure i~ the presence of few training samples, that is
not surpassed by any other procedure that we know of, given

the circumstances above.
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Based on the above, and on the fact that the K-L order-
ing is a very efficient technique in that it reduces the
number of permutations of features that have to be searched
through to only the number of features present, it will he
used as a feature selection technique throughout the remain-

der of the experiments.

4,3 Experiments on the Hughes Phenomenon

In this section, some experimental results that illus-
trate the Hughes phenomenon will be presented. The objec-
tives of conducting these experiments are t - demonstrate the
existence of this phenomenon in remote sensing applications,
and to verify the hypothetical explanation of it. Experi-
ments will be performed on aircraft and Landsat data, both
simulated and real. In all the following experiments, no
results are obtained for the dimansionality of one. Tabu-

lated classification results are found in Appendix D.

Experiment 4.4

The data set described in experiment 4.1 1is simulated
using the algorithm described in section 2.4. Two classes,
corn and foreat, are selected and 500 training samples are

chosen for each class. A larger, mutually exclusive set is
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used for testing. The K-L method is used in ordering the
features, and the data selected is classified using the best
2,3,4,... ,12 features, Subsequently, 5 training sets are
randomly chosen from the larger training set, each set hav-
ing 20 samples per c.ass of corn and forest. The five sets
are classified, using the same test fields above, and the
average classification accuracy, (sometimes referred to as
the probability of correct classification, or Pcc), is cal-
culated for each subset of features. Another 5 training
sets are then randomly chosen, this time with 13 samples per
class of corn and forest (The minimum number of samples pos-
sible for 12 features without getting singular covariance
matrices). Again, the 5 sets are classified and the aver-

age classification accuracy is calculated for each feature

subset. The results are then plotted in Figure 4.4,

Looking at Figure 4.4, it is seen that when the number
of training samples is adequate, as in the 500 samples per
class case, the probability of correct classification is a
monotonically non-decreasing function of dimensionality.
Since in a K-L ordering, the information is concentrated in
the first few channels, we notice that after the best 5 fea-

tures, the recognition accuracy tends to saturate.

When the number of training samples per class drops to
20, however, we see that not only does the accuracy drop
from the 590 samples case, but also it exhibits a slight

Hughes phenomenon. Although the cuarve has a maximum at
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dimensionality 3, it &{s approximately constant wuntil the
best 10 features, after which it starts decreasing, even

though slightly.

The 13 samples per class case offers a dramatic change
from the two other curves, There is a clear peaking effect
here, with the curve reaching a maximum at dimensionality 5,

after which it drops drastically.

The results conform with the hypothetical curves of
Figures 2.1 and 2.2. The 20 samples and 13 samples curves
can be made smoother if more than 5 sets are averaged, and
hence we shoula look at them with the idea in mind that
these are osly approximations of what the true curves look
like. However, the trend these curves point to is clear,
In the presence of a limited set of training samples, an
increase in dimensionality can result in a decrease in the
classification accuracy, with this effect disappearing as

the number of training samples increases.

Experiment 4.5

The same aircraft data set as that wused in experiment
4.1 is used, but without any simulation. 400 samples each
of corn and forest are selected for tra‘ning, and a larger,
separate set is used for testing. Again, 5 different train-

ing sets of 20 and 13 samples per class are randomly chousen
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from the original training set and classified. The average
classification results for each feature subset are calcu-

lated and plotted. Results appear in Figure 4.5,

The curves in Figure 4.5 are not as smooth as they are
in Figure 4.4, This is attributed to the féct that we are
working with real data, which dces not as well satisfy the
assumptions we make as the simulated data does. Still, the
curve with the 13 samples does generally poorer than the
other two curves and drops dramatically in accuracy, whereas
the 400 samples curve appears to saturate almost from the
start. The 20 samples curve appears to have a slight peak-

ing effect, although the curve is very noisy.

Experiment 4.6

The data set used in this experiment is obtained from
Landsat, flown over Henry County, Indiana. To obtain a data
se2t with more than the 4 features available from Landsat on
any particular date, four data sets flown over the site at
different times are used. The dates the data was collected
on are: June 9, July 16, Aagust 20, and September 26, all
in 1978. The data is concatenated, and a K-L transformation
was performed on it. Simulated data, more precisely meeting
such assumptions as normality is generated, and the first 12
channels are used for classification. We will refer to this
data as multitemporal data to indicate that it is collected

over different times.
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Two classes, corn and soybeans, are selected with 250
samples per class for training, and a larger independent s.t
for testing. Again, 5 different training sets of 20 and 13
samples per class are chosen from the original training set

and classified,. iesults are averaged and plotted in Figure

ul6.

The same results obtained in the previous two experi-
ments are again evident. Note that even with 20 or 13 sam-
ples per class, the accuracy obtained is very close to that
obtained by using all the available training samples. This
is due to the fact that the two classes chosen are highly
separable and thus are easily distinguishible even when

using a small number of training samples to estimate their

statisties.

Experiment 4.7

The same data set as experiment 4.6 is used, but with-

out any simulation. Two classes, corn and soybeans, are
selected with 250 samples per class used !:7 training, and a
larger, separate, set fer testing. Again, 5 different

training sets of 20 and 13 samples per class are randomly
chosen from the original training set and classified.

Results are averaged and plotted in Figure U4.7.
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The same observations noticed in the three previous
experiments apply here. There is a drastic drop in accuracy
when 13 samples are used, a slight one when <¢Q samples are

used, and no drop when 250 samples are used.

Summarizing'the results of the last four experiments,
we see that there 1is a definite Hughes phenomenon 1in the
presence of a limited number of training samples compared to
the number of features used. Further, as the number of sam-
ples increases, the accuracy for any given dimensionality
increases, and the peak in the curve shifts to the right,
i.e., the peaking effect takes place at a higher dimension-

ality, as is seen in Figures 4.4-4.,7,

Studying Figures 4,4-4.7 reveals that the region bet-
ween 13 samples and 20 samples 1is a very sensitive one when
vorking with a maximum dimensionality of 12. While tnere is
a sharp decline in accuracy at 13 samples per class, Lhere
is only a slight one at 20 samples per class. Another point
to note is that the 20 and 13 samples are chosen from spec-
trally homogeneous classes, and so a very large number of
samples is not needed to estimate the statistics of these
classes. In a practical situation, the 20 and 13 sauples
curves might not be as close to the curves with large num-

bers of training samples as they are in these experiments.
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The results of the last four experiments were a factor
in choosing the empirical formula, or equation (3.61), dis=-
cussed in Section 3.2.3. A formula was sought that takes
the sensitivity in the number of trainiag samples into
account, as well as other factors that were discussed ear-

lier.

4.4 Experiments Comparing Algorithm and Experimental

Results

In this section, several experiments will be conducted
to assess the performance of the proposed algorithm. Again,
aircraft and Landsat data are used, both simulated and real,
and the number of training samples used will be varied. But
first, we will ©reproduce the results obtaired by Fukunaga

and Krile (64) to verify the validity of the algorithm.

Experiment 4.8

The data set used by Fukunaga and Krile is described in
detail in Marill and Green (12), The data is simulated, has

two classes and eight features. Each class has 200 training

samples, and both the exact, or true, and the algorithm
recognition rates are <calculated. The true recognition
rates are not calculated again in here, but are reproduced

from Fukunaga and Krile, who used numerical integration to

arrive at them.
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Two methods used by Fukunaga and Krile are employed
here: The normal assumption, discussed briefly in Section
3.2.1, and the modified gamma assumption, discussed in Sec-
tion 3.2.2 and used throughout this research, The Bhatta-
charyya distance was used by Fukunaga and Krile, and alt-
hough we have shown it to have limitations, it is used as a

criterion for ordering the features. Results appear in Fig-

ure 4,8,

The results show that the modified gauma assumption
method is a reasonable approximation of the true probability
of correct classification. The normal assumption, though,
does not give a good approximation of P.., and hence it is

not further used.

While in this experiment, the modified gamma assumption
is compared to the true probability of error, in actual
practice the true probability of error cannot be calculated
because the underlying distributions are not known. There~
fore, in the following experiments, the proposed algorithm
is compared to an average of five <classifications obtained
from five different training sets having the same number of
training samples. This average classification se¢rves as an
estimate of the "true" error czurve. This fact should be
remembered as the experimental curves that are obtained are

not as "smooth"™ as what the true curves would be expected to
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be. The algorithm curves, on the other hand, being depen~
dent, among other things, on the number of training samples
in an average way, are expected to be "smoother® than the

experimns=ntal ones.

Before wie embark on studying the next experiments, 1t
is appropriate at this point to look at a flowchart describd-
ing the modified algorithm that is proposed. This is shown
in Figure 4,9, This figure is to be compared to Figure 3.2,
or Fukunaga and Krile's algorithm, to see the changes that

Are made,

Experiment 4,9 (Aircraft, Simulated Data, 20 Samples per

Class)

The simulated, aircraft data set used in Experiment 4.4
iz umnrd here. Two classes, corn and forest, are used. The
experimentai, 20 samples per class curve, in Figure 4,4 is
plotted agnin in Figure 4.10, together with the approximae
tion to the probabilitr of correct classification predicted
by the propesed algorithm. Also plotted in Figure U4.10 are
the standard deviations for each feature subset of the five

different elassifications performed.

We see  that the algorithm is a good approximation to
the experimental curve. The approximation is not as good at

lower dimensioralities as it is at higher ones, because the
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Figure 4,9 A Flowechart of the Modified llgorithm,
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assumptions the algorithm makes are better at higher dimen-
sionalities. However, the two curves do peak at the same
dimensionality, 3, but more importantly, they have a similar
shape., Both remain relatively constant for a while and then

start decreasing at about the dimensionality of 8,

Examining the standard deviations of it is

cc’
observed that in general they have an increasing trend as
the dimensionality increases. Put in other words, the
curves indicate that the variance of the probability of
error seem- Lo increase with increeasing dimensionality.
This agrees with the hypothetical explanation given of the
Hughes phenomenon, namely that the accuracy of the estimated
statistics decreases with increasing dimensionality (i.e.
becoming more random and hence increasing the variance of
error) and that when this effect outweighs the increase in
separability between classes due to increasing dimensional-
ity, a peaking effect is observed. As the number of samples
is decreased, larger increasss in the variance of error are

expected.

Experiment 4,10 (Aircraft, Simulated Data, 13 Samples per

Class)

The same example used in Experiment 4,9 is used again,

but with 13 samples per class used for training. The exper-
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imental curve of Experiment .4 is reproduced, together with
the curve predicted by the algorithm. The standard devia-

tion of P is again plotted. Results appear in Firure

¢ e

b1,

Again, the curve predicted by the algorithm is a better
approximation of the experimental curve at high dimensional-
ity. The exper.mental curve, however, is not very sensjtive
to dimensionality at lower values, and thus a small ambigu~-
ity in where the peak occurs can be afforded. Still, both
curves predict a peak at 3. The standard deviation of the
error again has an increasing trend as dimensionality

incceases.

Experiment 4.11 (Aircraft, Real Data, 20 Samples per Class)

The cxample used in Experiment 4.5 is repeated. Arain,
,wo classes are used, corn and forest, from the aircraft,
real data set. Twenty samples per class are used for train-
ing, and five different sets of training samples are classi-
fied and averaged. The average 1s then compared to the

alporithm performance. Results appear in Figure 4,12,

The experimental curve has a lot of error variance as
can be seen from the curve and does not seem to be following
any general pattern, although it starts consistently

decreasing after dimensionality 9. It is interesting to
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compare this curve with Figure 4,10, where the same condi-
tions exint with the exception that the data is simulated.
Because simulated data satisfies the assumptions made about
the distributions of classes, it produces results that con-
form more with theory than real data does. The algorithm
performance appears to be closer to what is expected, alt-
hough in this case it does not quite follow the experimental
curve, This "randomness" of the experimental curve is made
more evident from looking at the standard deviations of P¢.,
which do not seem to follow any general pattern and are all
relatively large., This is a clear example of a case where
deviations from the assumptions may obscure the action of a

new proposed algorithm,

Experiment 4.12 (Aircraft, Real Data, 13 Samples per Class)

The same example used in Experiment 4,11 is used here,
with 13 =samples per class for training. Results are shown

in Figure 4,13,

Experimental and algorithm results here are very close.
Both peak at 3, and both are very close at high dimensional-
ities. The standard deviations of the errors are also
increasing in general, particularly at high dimensionality.
It is interesting to note that the standard deviation in

almost all of the above four experiments starts increasing
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notably at about the same place the probability of correct
claxsification starts dropping sharply. This supports the
idea that at these dimensionalities, the randomness in the
estimated statisties 1s so large that it pulls the curve

down.

Experiment 4.13 (Landsat, Multitemporal, Simulated Data, 20

Samples per Class)

The datea set used 1in this experiment 1s the same as
that used in Experiment 4.6. It is obtained from l.andsat,
with four dates concatenated so that more features are pre-
sented, The 20 samples Ler class curve of Figure U.6 is
reproduced in Figure 4.14, together with the curve predicted

by the algorithm.

The algorithm curve seems to drop in accuracy faster
than the experimental curve, but both peak at around 4. The
standard deviation of error also increases as more features

are used.

Experiment 4.14 (Landsat, Multitemperal, Simulated Data, 13

Samples per Class)

The same data set used in Experiment 4.13 is used, but

with 13 samples per class for training. Results appear in
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Figure 4,15, The increase in the variance of error with
increasing dimensionrality is very noticeable here. Again,
the same observationa apply, with both curves starting to

drop in accuracy at the dimensionality of &,

Experiment 4.15 (Landsat, Multitemporal, Real Data, 20 Sam-

ples per Class)

The Landsat data set is again used, but without any
simulation. 20 samples per class are used for training,

classification results are averaged and plotted in Figure

u‘16.

While the algorithm predicts a somewhat better perfor=-
mance than the experimental curve, both have the same shape,
and both are fairly constant wuntil the first 7 or 8 fea-
tures. This is due to the fact that the two classes in this
set, corn and soybeans, are largely separable and hence the
increase in the variance of the error with increasing dimen-
sionality does not outweigh the large separability effect

between these two classes.
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Experiment 4.16 (Landsat, Multitempora), Real Data, 13 Sam-

The Landsat, real data set is used in this experiment
with 13 samples per class for training. Results are shown
in Figure 4,17, The two curves have the same shape, and
peak at the same place, 4, although agair the algorithm
predicts a better performance than does the experimental
curve, The variance of error is again seen to be increasing

with the number of features used.

To summarize the results of the last eight experiments
(4.9-4,16), the probabilities of error predicted by the pro-
posed algorithm as a funetion of dimensionality as compared
to experimental observations are shown for aircraft and
Landsat data. Resuits are obtained for both simulated and
real data, using 20 and 13 samples per class fcvr training.
For each case, five different training sets are usec, and
classification results are averaged over these five sets.
The standard deviations of errors for each feature subset

are also plotted.

Results indicate that the algorithm predicts in most of
the cases the best, or near best, subset of features to be

used, While not always predicting closely the actual clas-
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103

sification accuracies obtained from the experimental average
curve, it has in most of the cases the same shavpe as the
experimental curve and seems to follow any trends in perfor-
mance that the experimental curve undertakes. Since the
objective behind the algorithm is to predict the best fea=-
ture dimensionality and specific subset to be used in clas-
sification rather than to predict the probability of error
itself, the fact that the algorithm does not always accu-
rately predict this probability of error is not of serious

concern.,

ihe standard deviations plotted seem to indicate that
in general, an increase in dimensionality results in an
increase in the variance of error, that increase becoming
highly noticeable at high dimensionallity, when the random-
ness in the estimated statisties, given a limited set of

training samples, is large.

The next step is to incorporate this algorithm in a
binary tree <classification procedure, wusing more than two
classes, and assess its performance. This is done in Sec~

tion 4.5,
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4,5 Experiments on a Binary Tree Classification Procedure

In this section, ¢two data sets will be classified in a
binary tree classification procedure, using the proposed

algorithm to predict the optimal features at every node,

A complete design of a binary tree classification
procedure should address the problem of how to separate the
nodes in the tree effectively, Seprations should be sought
that lead to meaningful classes at the intermediate and ter-
minal nodes. This problem should be thoroughly studied

before a solution can be arrived at.

1t is not the purpose of this research to address this
problem in any detail. Therefore, no attempt has been made
here to dictate a particular procedure or claim any optimal,
or clnse to optimal, one, The procedure that will be used
is heuristic, the purpose of conducting the next two cxper-
iments is to illustrate the usefuleness of the proposed
algorithm in predicting the optimal features to be used at
every node, The problem of how ¢to separate the nodes is

left as a topic for future research,.

Experiment 4.17

The Landsat, multitemporal, real data set used in

Experiment U4,6 is wused here again. Three informational
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classes exist in the scene: c¢orn, soybeans, and other. 13
samples per class are used for training, creating 3 spectral
classes, The reason this is done is that in actual practice
situations, it is almost impossible to distinguish spectral
classes with only 13 training samples per class. A much
larger, separate, set is used for testing (all training and
testt field descriptions are found in Appendix F). The
binary tree is constructed by using a bottom-up procedure,
combining the most separable classes. The criterion for
measuring separability is that used by Whitsict (9), and is

defined as follows:

/2

D - erf((28)/?) (4.3)

erf

where B is tre Bhattacharyya distance and erf (.) is the
gaussian error function. Whitsitt found that this measure
is less ambiguous and more linear than the measure B. The
measure is calculated using the first 12 features after a
Karhunen-Loeve expansion was performed on the data. After
the tree is constructed this way, the proposed algorithm was
used to predict the optimal features to be used at every

node.

The binary tree that resulted from the above procedure

is shown in Figure 4,18, The algorithm predicts an optimal

feature subset of U4 at the top, and a subset of 2 at the
intermediate node. These appear below each node, Tngide
the node, the classes present are shown together with the

total number of training samples present.
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A single-stage classification is then performed on the
data using feature subsets of 2 to 12. This is done to com-
pare the performance of the binary tree procedure to vhat of

each of the feature subsets.

Results are plotted in Figure 4.19. The classification
result obtained from the binary tree procedure is drawn in a
dotted line across the page only to compare against the sin-
gle-stage curve, and does not imply that all ¢the feature
subsets were used, or that the classification result is the

same for all feature subsets.

The results indicate that using three classes, the sin-
gle-stage curve has a peak at 4, and that by using all
twelve features, the result is much poorer. The binary tree
procedure, on the other hand, results in a classificaticn
accuracy that is almost as good as the best result obtained
from using the best feature subset (which is wunknown in an
actual practice situation) in a single-stage classification.
Thus, it appears that the algorithm is effective in predict-

ing the best features to be used at each node.

Experiment 4.18

The aircraft, real data set used in Experiment 4.1 is

used here, The data set has seven informational classes.,
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In this experiment, supervised clustering (discussed in Sec-
tion 1.2.1) is used to get 9 spectral classes, using an ade-
quate number of training samples per class. 13 samples per
¢lass were then randomly chosen from the larger training set
so that it is known that each set of these samples comes
from one spectral class. The bottom-up procedure described
in Experiment 4.17 was then used to build the binary tree,
with the exception of class water, which was separated from
the other classes at the beginning, as water has been known
from experience to have spectral properties that are much
different from other agricultural classes. The proposed
algorithm is then used to predict the best features at each
node, A single-stage classification is performed using fea-
ture subsets of 2 to 12, and then the same statistics were

used in the binary tree classification procedure.

The resulting tree appears in Figure 4.20. Figure U4.21
shows the classification results obtained from the single-

stage and the binary tree classifiers.

The binary tree procedure, using the proposed algcr-
ithm, performs better than any feature subset does in a sin-
gle-stage procedure. The Hughes phenomenom is very evident
here, as the overall classification accuracy for seven
informational classes (9 spectral) drops sharply from a high

of 69.4% to a low of U43.0%.
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Summarizing the results of ¢the last two experiments,
the proposed algorithm is shown to be effective in predict-
ing feature subsets that lead to the maximum, or near naxi-
mum, accuracy possible using the Karhunen-Loeve expansion

for ordering the features.

It is worthwhile to note that common belief is that few
features need be used at the top of the tree to separate
classes, and more features need be used deeper in the tree
to distinguish between somewhat 4inseparable classes. How-
ever, if there are inadequate training samples present, then
the number of training samples towards the bottom of the
tree is less than that towards the tor. Hence, less fea-
tures should be used at the bottom to avoid the Hughes phe=-
nomenon., This is evident in the last two examples, particu-
larly in Figure 4,20, where many features are used at the

top, but only few at the bottom.

One point also worth mentioning is that in situations
where a node is divided into two nodes of unequal training
samples, one of them might have inadequate training samples
while the other might have adequate ones. This situation is
illustrated in Figure 4.20, where the top node is divided
into water, and everything else. In this case, the number

of features used is "intermediate", depending on the effect
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of the degradation in the accuracy of the estimated statis-

tics of the node with the inadequate number of training sam-

ples,
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CHAPTER 5
SUMMARY ANL CONCLUSIONS

5.1 Summary of Results

The purpose of this research has been to develop an
error estimator that will prediet when/if the Hughes pheno-
menon occurs in multispectral data. Several significant

results were arrived at and are summarized below,

The probability of error was studied through the like-
lihood ratio function, which offered the convenience of
working with a one- dimensional variable, regardless of the
number of features wused in estimating the training statis-
tics. An algorithm was then developed to estimate the sta-
tistics of this function, taking into account the number of
training samples uced to estimate these statistics, Several
theoretical and experimental results were obtained on the
Hughes phenomenon. These showed the deperdency of the prob-
ability of error on the number of training samples and fea-
tures used. The algorithm developed in Chapter 3 was shown
«0 predict a suitable feature subset to be used at each node

in a binary tree procedure. The algorithm was tested in
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Chapter U by comparing it to experimentzl observations under
different conditions, and was utilized in two binary tree

classification procedures to demonstrate its practicality,

Some results were also shown, demonstrating the use-
fuleness of the K-L expansion over the whole data set in
ordering features in the presence of a limited set of traine
ing samples, The procedure is used extensively in the
research, and appears to have less variablity than other

procedures under the conditions given,

Certain parts of the algorithm developed are heuristic
in nature, Reasons why more theorecical solutions were not
pursued were explained, These heuristic procedures often
raise difficulty in verifying the wvalidity of the algorithm
strategy. The basic point is that when both a practical
solution and theoretical perfection cannot be achieved sim-
ultaneously, one tends tr choose the former. Experimental
results in Chapter 4 demonstrated that the algorithm can be

used practically to yield optimal, or near optimal, results.

5.2 Suggestions for Further Research

The main objective behind developing the error algor-
ithm is to use it as a feature selection technique in a mul-
ti-stage c¢lassification procedure. In particular, the

algorithm was developed ¢to be used in a binary tree proce-

dure, The design of such a procedure requires, in addition
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to choosing the optimal features at each node, an effective
design of separating the nodes, This question was only
addressed superficially in this research, and could serve as
a topiec for another research project. An effective design
for separating the nodes, coupled with the developed algor-
ithm to choose the features, should 1lead to much higher

accuracies than a single-stage classifier.

Several strategies developed in the research were heu-
ristiec in nature. Appendix B addresses the problem of why
it is difficult to theoretically calculate the probability
density function of the variances of the 1likelihood ratio
function given either class one or two. If such a deriva-
tion is made possible, a much better and clea;er idea will
be obtained on how the variance of the likelihood ratio
function is affected by the number of training samples, and
the error algorithm can be made to more accurately predict
the probability of error in the presence of a limited number

of training samples.

The K-L expansion was used extensively as a feature
selection technique in the presence of few training samples.
This was based on experimental observations, but necessarily
meant sacrificing the information found from the between
classes variablity. A more detailed study of the relation
of several feature selection techniques to the number of

training samples can be very helpful.
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Appendix A

Generation of Normally Distributed Samples

Let Ul and 02 be two random variables independent and

identically distributed Uniform (0,1). Then, let

)
(-2 1n U, )? cos 2nu, (A.1)

o
n

b ,
(=2 1n Ul) sin 27U, (A.2)

then Z1 and 22

buted normal (0,1).

are independent and identically distri-

Proof:

] 0 < U1< 1, 0-<U, <1
) = (A7)

f(Ul.U
0 otherwise

2

is the probability density function of two independent

uniforms.
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U, = exp | 42,2+ 2% (A.4)
] 1 2
7
v, = 2—}7 arctnn(%)
< ' ‘1 (A.5)

The Jjacobian of the transformation is:
R | ¢y 2 2
J 27 exp[ z(Al + 22 )]
£(2),2,) = £(U,,U,) .' Jl

1 2 2 2 ., 2
= )y eXP [-%(Zl + 22 )] 0 < exp[-’i(zl + 42 )] < 1

Z
1 2 .
0 <2" arctan (z ) < ]

1
= 0 otherwise (A.6)
f(Zl) v N(O,1) f(zz) v N(O, 1)
The side conditions give = =< Zl<oo ’ - @< Zz<m .

Strictly speaking, Zl cannot equal zero; however, prob(Z1 =

0)=0 as we are working with continuous densities,

’To test the effectiveness of the pseudo random vectors
ir the multivariate case, random vectors distributed N(O,Ip)
were generated and then tested with a Kolmogorov-Smirnov
test. Since the multivariate normal c¢df is difficult to
evaluate, the sum of squares wass calculated and compared to

2
the xp distribution.
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For sample sizes greater than 100, the pseudo random
vectors were distributed properly. For sample sizes less
than 100, the K-S test is not valid. Since we wouid gener-
ully (over an entire area) be working with more than 10C

points per class, this was not pursued further,

In addition, the sample covariance matrices were tested
for homogeneity against the true class statistics. For sam-
ple runs of up to 2000 points, there were not significant

differences at the o = 0,10 level.



127

Appendix B

On The Probability Density Functions
~2 ~2

d
of oy An 9,

Let us look at the expressions for si and og . From

(3.55) and (3.58), we have:

g 2 1 2,2 SRS S -1
c t 3 -
\ 2(tr(1 I, I+ 2m, I, Ly I, my) (8.1)
-~ 2 - ~ ‘l ~ 2 -~ ~ -‘l ~ ~ -l "~ ~
o, 2(er(r, I, =D+ 2m, I, I, ;7 my) (8.2)

To be able ¢to calculate the probability density func-

~ ~ " ~ ~ 1 ~

2 2
tions of 0, and 0,, one has to know those of m, Loy iy, Iy,

=1
and iz.

Before we proceed, we make the following assumptions:

~

1. M1 and M2’ the means of the two classes at hand are

constant. Experience has shown that one can esti-
mate these two quantities relatively accurately

with a small number of training samples. Hence-

A

forth, we will assume m, (:Ml'Mz) to be constant

and not a random variable.
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2. I. and I, are independent. We will ignore any

rc.ationships that might exist between the covari=-

ar~e matrices of the two classes.

Theorem B.'
tl ’ 52 are each Wishart distributed with parameters
%121, n, and %282, n, respectively, where n; =N; -1 and Ny

is the number of samples used in estimating 51

Proof

See (B,1),pp.159.

~

Thus, 21, iz1,2 , has the following Wishart distribu-

tion:
n -~ n -p'l a PS
i i -1
- (n )~—| L ———— exp(-%(n, tr I £.))
I, 172 1 2 1 1 i (B.3)
22 1 |zi| T T (%(n_ +1-k)
i
k=1
where p is the number of dimensions.
Theorem B.2
"l -1
Ly is again Wishart distributed with parameters T I, ,
i
nil
Proof

See (B.2)
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If A is distributed according to Wishart, W(L ,n), then

1
B = CAC is also distributed Wishart W(¢ ,n), where i =

See (B.1),pp.162.

~ ~

From the above theorems, we see that L, , 22, XI] , and

1
51 is transformed

?;1 are Wishart distributed. Further, as

~

into the identity matrix I, and ¥, is transformed 1into a

diagonal matrix A , the new covariance matrices are also

-

Wishart distributed. Hence, 21 is transformed into a diago=-
nal matrix i that is distributed W 1/n)I,n;). We will call
the diagonal elements of this matrix ;i’ Similarly, 2::2 is
transformed into a diagonal matrix A , that is distributed

w(1/n2A ,nz). We will <call the diagonal elements of this

-

-1 -
matrix A, . !, 1is transformed into a diagonal matrix I 1
distributed W(1/n11 ,nl), and 851 is transformed into a

diagonal matrix & = distributed W(1/n,A yny ).

Thus, after applying the simultaneous diagonalization

~2
transformation, o, and 02 become:

1 2
~ 9 p ° 2 -
o, =2z (1-."*+Y¥1 +24q27 ) (B.4)
= - i =
=1 A, a2 2,2
1 1 1
‘\2 ~ -~
AZ p
o0 =21 Qa1 -2Me2a?M (B.5)
{=1 7 2 - ==,
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Note that equations (B.4) and (B.5) are modified ver-
sions of equations (3.53) and (3.56).
We now look at the probability density functions of the

one-dimensional elements Ai and vq.

Theorem B.%

If £1j=0 for 1 3y J, and if A is distributed according
to W(! ,n), then Ayyr Aggy  eeey App are independently dis-
tributed and Ajj is distributed according to H(zjj.n).

Proof

See (B.1),pp.163.

A

M m)
. . n,
and vy, ....,yp, are each distributed W(1/m,n). Hence,

Therefore, il’ ....,ip are each distributed W(

( (ny=2)/2 . n /2 .
é Yy exp (-4 nyv,) (n,/2) v, >0
Y,
i r (n,/2)
1 (8.6)

0 -

\ Yi <0

A similar expression exists for ;Il. with §i

replaced by y;l
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( .(n2-2)/2 R n2/2 .
Ai exp (- nzlilxi) (n2/2) At > 0
. { n2/2
Ay r (n2/2) Ai
(B.7)
\ 0 Ai <0

A similar expression exists for A;l, with ii' Ai
replaced by 3;1, A;l .

Looking at equations {(B.5) and (B.6), we see that even
though we know the individual distributions of A and Yy

A ~

2
the calculation of the densities of (ﬁ and ¢, is still a
very involved and difficult process, An atfiempt to arrive
at these densities directly from those expressions is almost

2 2
impossible. However, the moments of %4 and 02 can be calcu-

lated.

: =1 - ~=-1
Since calculating the moments of A, (and XAy, vy , vy )

involves the evaluation of an integral of the type

o N =-at

Tt e dt, and since such an integral does indeed exist,
0
~ . | - ~
the task of calculating any moment of Ai,xi y Y{ and y-1
i
is a very easy one.
From any integration table book, we find:
7 " exp(-at) dt = I (ntl) (n >-1, a> 0) (.8)

0 n+l
a

Thus, if x is distributed W(x/n,n), then:
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E(x) = x

E(x2) = (1+42/n) x°

9 3 (B.9)
E(x3) = (146/n + 8/n") x

E(ad) = (1412/n +44/n2 + 48/0°) x°

~ ~

Since any moment of Oi or 6, 1is a function of the
moments of ;1, i;l' ;1, and ;;], it is theoretically possi=-
ble to calculate any moment of 5i and 35. Thus, it is
theoretically possible to calculate the characteristic funce

~ ~

tion of O, or Og uniquely from these moments.

Papoulis (B.3) provides a way to estimate the probabil-
ity density function of a random variable once its charac-
teristic function is known. However, the convergence prop-
erties of <calculating the characteristic function from the
moments of a random variable are very slow. A large number
of moments would have to be calculated. Looking at equa-
tions (B.4) and (B.5), it is evident that beyond the first

few moments, the derivation becomes quite a formidable task,

and is very impractical.
Because of these difficulties encountered, it was

2 2
decided to calculate only the variances of 9, and %, and

heuristically incorporate them into the algorithm developed.
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Appendix C

Derivation of the Variances of 6% and 8%

We look first at 3%

From Appendix B, equation (B.4), we have

i p Y y? y2

62 = 2 1 [1 P S E% +2a,2 2 ] (c.1)
- A . 2
1=1 ARz 32

Noting the assumption that the xi's are independent from the

;i, and taking the expected value of 82, we get

A P E(v,) E(y2) E(v?)
E(02) =231 |1 - 2—1 + .: + 2 a2 ‘i (c.2)
i=1 E(X,) E(X2) E(A2)
Making use of the expressions in (B.9), we get
- P 2 2 2,1 2 .1
E(oi) =2 |1 -5+ (4 (1+5) = + 2 4 (1+5-) - [(c.3)
i=1 i 1 2 Ai 2 Ai

Now note that 8% and 8% are the summation of uncorrelated

random variables. Since ii's are independent, ;i's are inde-
pendent, and each ii is independent from each ;i’ then any

function of ii's and yi's in one dimension is uncorrelated

~

with any other function of Ai's and ?i's in another dimen-

sion. Hence, the variancesof 62 and o% consist of the sum

*
“~

of the variances in each dimension (See (69), p. 211) and
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do not have any cross-product terms between dimensions.
Therefore, in the following derivations, we will not attempt
to derive any cross-product terms as they will cancel out in

the end result,

v -2 25
) P Y Y + 244y _
[£(53)%]) = 4| 2 (1 -2t A4 1) + cross-product
i=1 i Xi‘
~ Az 2‘ ,..2 A3
P Y$ + 2d<y Y
=4Ez (1-4 ;i + 2 - ‘21 1)+ 4 ;% - 4 T% -
=1 t " M M
252 o 253 uws2
8 {lil + ti.tmfdiyi * Adyy: + cross-product
3 sy terms (Cc.4)
Ai Ai

Substituting the expressions of (B.9) into (C.4), we get

2
(1+2/n1) + 2di

A p

[EG2)?2) =41 {1-5-+2 ‘ 1+ 2
i=1 i A 2

4 2 2 4 6 8 6 8

+ 2 a2 A+ 2 5Ha e 2+ )

R U S np o} n, nj

Bd3 2 6 ., 8 1 12 . 44 , 48

- =5 (1+;—)(1 + ot ) + = (1 + . + = + 3)

M 1 T 2 "y M
1+ 224 ﬁ% + ﬁ%) + 4d3(1 + fl + l%) + 4d3(1 + fL)
“1 nl nl 1 nl 1

cross-product

+
terms
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P ] d?
= 4 L 1-—}-4»—2-2- +-‘;2-+-l—+nl'n+2di+a—~1
1=1 t QR 1 ™ 172 2
sfos2v 228 afi 6, 6,88+ 3
" 2 1 1 M 1 2 nf nj MM
6 df
i R (R i
103 nfn, ninj A 1 2 12 0} 172
v+ L1422, 12, A4 A0, 40, 28, 28, 228, 228
M 1 P2 M "pom2 P @y MR, MMy
+ 1232 + 5376 + 5376 + 23‘.13 + 2%15 + 2302 + Adi(l + ne + %g
nlnz n1n2 nznl nlnz n1n2 nlnz 1 2
+__§2_+ 5% 4 n7§ 4 264 26 + g_g_+ 2883 . 32522 . 32843)
mp P2 7172 MRz mpRp Rz mynp MRy MmNy
aqi 1+ 2 4 12, 44 24 48 . 88 96
i n n? mn n3 nqn n.n3
1 2 2 172 2 172 1%2
4 cross-product (c.5)
terms
[E62)1? = 4 7 (1 ol G
1 i=1 M ny o My MM/

2 2
Zdi 2
+ — 1+ o +
)\i 2
P
=4 f1-44+2

i

terms
442
ni+;‘3—+ l‘n +2di+~——“1+2
1 2 ™M "2
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—-f’-s- 1+-§-+-r-‘2—-+""n+2d§(1+-‘-‘3- + L 1+—f‘-—+;‘-‘-'—
M 1 2 172 2 A "1 2

+;"5+-1-‘?+n12 -%6+ 167+ %62+ad§(1+—3—+»’i~
1 M2 172 MRy Mty M™y 1M

s 84 4 8 )+4d" (1+_'_‘10_+_5_> + cross-product
2

n,n, n% n1n§ i n% terms
(C.6)
Now, Var (a]) = [£(03)?] - [E(s3)]°
or,
- 2 [ 4 4 8 4 [ 4 4 8
Var(o?) = 4 ¢ Sl + -S et -+ =
1 =2\ \"1 P2 ™M™ M\ "2 nj
2 2 2 2
8 32 48 48 64 4dy  8dy  24dy 1647
¥ nl T am n,n2 ¥ nn * n?n? Ya T e n,n n?
2 172 1"2 1%2 172 1 2 172 2
324} 1 (8 8 128 . 40 . 40 . 48 . 48 . 512
+ —— + ;‘7;— o + o + — + = + =+ 5+ -3 + 2‘
ninj i\1 2 172 ™) my; my ony mn,
2
s gL gL g e (L
172 12 2™ 1"2 172 1"2 1 2
1 2 172 192 172 2 172 172 12
+ Ad;(f—+a§——+£’%+ 24 +-11%+ 882 + 963> (C.7)
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Next, we look at 5%

From Appendix B, equation (B.5) we have

P ii A a2,
62 =21 |-2- 2t bl (c.8)
20 a1 vy V3

32 3 2n7%
B (52 P E(Ai) nE(Ai) 2diz(A1)
02) = 2 I 5o = 2= =
1=1 [EGD  TEGY) 0 EGD

+ 1

P
= 2 I (1+'£0(1+ 2) A2 - 22, + 1 + 2d2(1+—gdk (Cc.9)
i i i n, i

1=1 " M2
2
A2 ~
. P /AT 2% Y oroduct
[E(62)2) = 4E T | w5 ~ —= + 1 + 2d2—= ] + cross-produc
2 i=1\ Y4 Yi iyi terms
Ay 2 2 4
p )‘i 5 di 1 .y 3 [.di Zdi
= AE D N mp t Al o )Ml s Y T
a2
T i _ 1 ), ) 4 cross-product
Yi Yy terms
P
=4 3 (;; 1+ 32 4 5% + ﬁ% 1+ %Z + ﬁ% + ﬁ%
N L 2 mp; M

+a2 {1+ -2 ) (3(1+ 2 )-ua2({1+ 2+ 8) 4 2av 1+ 12
i n, n, i I 1 o

44 | 48 2 2 \_ cross-product
+ =+ =3 ) + 4hy di (1 + - 1) +1]+ terms
ny nl 1
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P
i=] 1 2 172 ny "y " n, nin,
+ 5228 + 1?3? + 5376 + 5376 + 2%12 + 2%1% + 213!0130
nafl MRy MRy Mty M, MR, MM
+Ax2 <1+-1~2~+-‘—“1—+5-f1+—85+ 72+264+26 +-‘-'-g-+——3-—288
\ 1 "2 np mp MTy oniny  mgny o omp o mpny
+32522+328“3>di (1+-—6—+;l§-+-8-2-+-§5-+n3g+ "82+ 28
M "M 1 2 M 172 MRty mny
+ g“2> + 0 (3+n6+6+ 1:)- adi(1+-§-+;‘§-+ 12
nyn 1 "2 MM 2 1 My
172
+-§;+——%-—-—)+ 2d'i<1+;‘2-+—1—2-+-’i%+ 2:+—"—g~+ 28 36>
1 MM 2 ™1 mp Mm% oy omm,
2 2 \_ cross-product
+ Mi di(l + n 1)+ 1] + terms (C.10)
- 4 2 2 4
[E(oi)]z = 4 I L+ 4 = xg -2y 4+ 1
i=1 1 P2 MM
+ 242 (1 + =\ 2 + cross-product
i n, i terms
= 4 L 1+;‘9~+;‘L+—%+—%+n1: ;6+162+§6 Al
i=1 1 2 nl n2 172 nlnz n1n2 nln
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2 2. 4 4 4 . 2
I+ =+ + +2d“(1+-~+-:)-éd‘<l+-—-—)
( np M “1“2) 1 "L o) i "

2\ cross-product
1 * ) ) tipe terms (C.11)
Var(ag) - [E(G%)z] - [E(G%)]z or
P
var(s3) = 4 ¢ | a4 24 B, 128 iRy SRl 48, 312
i=1 1 2 172 1 ™2 1 "2 M™
+ 5122 + 1222 + 5376 + 5763 + 2;15 + 2:1% + 230136 + l')‘i di(;‘_@__
nn%  ninf  nain, nan> adn2  nZn’  nind 1
4 8 40 . 64 256 96 . 48 . 288 . 352 . 384
* n, T tae? n,n, Y a%n, T 2o, T n? T nin, | nin? | n2n3)
2 1 172 21 1 271 172 271

R IR Coll i R R =g

M2 MM 1 P2 ny M%2 np nin,  nyn,y

-4di<§-—+;§‘—+n1‘2‘ +—§é—+ ;6 (C.12)
2 1 172 n nlnz

Because we do not know the true values of Ai’ we substitute

for X, in equations (C.7) and (C.12) by A

i i’
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Appendix D

Classification Results Tables
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Appendix E

Computer Program Listings
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Tlawa o Hiea [ ST

OF POOR QUALITY.

"
e
=
n

[elslalelels]

OOGOOOOOOCONOOCOHNOOOINONCIOOOONONOOOOOCONOOONNONOOOHOONOONO

Causn

SWRITE FORTRAN A LARS / PURDUE UNIVERSITY

SEBNNIENNNNENNONININRENEEOINRRNNCESEEONNANROINERENESRNRENDENRNS
HRIYTFN Py DILL PFAFF

EDITED DY: MARWAN MUASHER JUNE 14, 1980
RERENUER RSN NREBE RN PR ORUGOEPRNEILRANOOOPEOERNGINADNANSNDINNERNG

0..00.0000ooo.oooov.ooonnouooccooou.ooooocawonnoooo..oqoooooo.
l ROGRAH GENERATEB SIHULAYED DATA B A'FD DN

CLAS n! TION MAP CROUND TRUTH MAP H Pl EL

GE'CRATED TMUB COHES FROM A KNOWN CLASS DlBTRluUTlDN THE

MET O USED 15 AS FOLLOWS:

DOD CLAS IFICATION IS CHOSEN AS A BASE FOR

[

SIVULATC
2 FROM THIS CLAQ’!FICATION WE KNOW THE NUMBER OF CLASSES, THE
CLASS STATISTICS, AND THE CLASS OF EACH PIXEL IN THE
AREA CLASSIFIED.
3. A STREAM OF UNIFORM RANDOM NUMBERS 1S GENERATED F
EACH CHhNNEL. THEY ARE CHANGED 10 _NIRMAL (Oo‘) DE JATES,
4. FOR_EACH PIXEL, A RANDOM N(O, 1)VECT(R 1S TRANSFORMED TOD
LE DISTRIBUTED ACCORDING TO THE CLASS GTATXSTILS OF THAT
PIXEL. THIS I5 THE SIMULATED DATA VLCTDR
5 AS_EACH LINE 18 COMPLETEDR, IT 1S WRITTEN TO AN QUTPUT TAPE.
10 RUN TE PROGRAM, YOU NEED TO NAVE THE FOLLOWING
EXEC FILE ON YOUR DISK:

GETDISK_DVSYS

GLONAL TXTLIB CMSLIB FORTRAN §SPJ70

FILEDEF PRINT

FILEDE 16 TERMINAL

FILEDEF 12 TAR2

FILEDEF i1 TAP1 (RECFM VS LRECL 1500 BLKS 1500

LOAD SWRITE GLOCOM MMYAPE TAPOP DCDVAL GT ERL GTDATE MFSD

RAHDU WRTMTX
START SWRITE

THE PROGRAM HILL ASK FOR !NFORHATXON SUCH AS
TAPE NUMLDERS, FILE NUMBERS, ..ETC  FROM HERE ON, IY
SHOQULD BE EASY TO FOLLc.
R T AR TR TR YT AR LYY AT AL LI YY TR L AR Y AT Y ALY XY T

bbbt bl ittt it L L I T Y T T R A XYY PR PR Y TR Y YR Y YRR Y Y
VARIABLES USED IN TPRINT

A = COVARIANCE ST0ORAGH FOR FACTORING

AREAN(: AHOA MUMBFR (f CLASGIFICA

B S CLVAR TANCE "tnpnct FUR HULT]PLXC&?ION
TA  =DolA FOINT STURAGE

?QZVALﬁLINC NUHB{.R lo'lD ROLL PARAMETER

LIPIATION INFORMATION

IDREC_=IDENTIF ICATIUN RECORD STORAGE
ISTART=STARTING POINTS FOR CAUSS
LBEDAT=DATA FOINTS 1N LOGTCAL FORMAT
NOCHAN=LUMITR OF CHAMHELS IN CLASSIFICATION
NOCLAS=NUMPER OF CLASGLS IN DRIGINAL STATISTICS
NOFLDS=NUI TR OF TEST FIELDS
NOPCUL= 0N GF POOLED CLASSES
PNTCLG=CLALE IF ICATIONS ARRAY
2 =GTATISGTICS STORAGE

'...Q.i..lIil’...iGQQQ.O..IG....GQIIQQIOIQ.“CGQ’..."Q........

(3L XL L2 2R 2222 X222 2R 2222222222 XSRS TIRNY SRR ZATYRTY 22 YY )

C INITIALIZATION

Cone

c

TR R R R R R R R R Y Y Y T XYY Y Ry R R Yy Y Y Y P Y Y Y YRy Y

INTECER"‘ lXLT!)N;K(}AY. ICAL(3), ILIN(2), PNTCLS(1000), ISTAT(4),
LD JCAL*1 £ 1(2), LOSDAT(D), LCAL (&), FATOUIT (12000)
REI\L*G AT AL, 2(2700), REL2, 17), DnTe‘H 12),

L3 Kiemit (30, 107), RVAR(3Y, 12, 12) . DM FICAL €5, )
XNTE(“’R'G TETART(10), BOS, 100170, Al »‘-‘..i- IDILC(200), TAEND, THREE,

£ 4 CLAFHTORCY, IMEANCI0, 320, IVl ad, 20 3:0) 0 YES, NOL DATE ()
INTEGFRe4 150, FLGT
EQUIVALDLTU V10, L1). CINTDAT, LOGDAT), C1CAL, LCAL), (LNWRT, ILIN)
EGUIVALLLYICT (FRGCAL (1, 1), IDREC(51))
DATA EUS, 5.AM /‘EOSG v 1 0.0.0 /
DATA YES, NO. THREE /‘YES ‘. 'ND  *, '3°/
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FILE SWRITE FORTRAN A LARS / PURDUE UNIVERSITY

[a1gtelela]

DATA FLGV /7°'81M ¢/

EVPSey, E-
L bkt dddatedebdddtdldddd ddd it L L I T Y R Y T Y R Y Y Y Y Y Y Y Y NN R I Y
LOAD TAPES AlD READ PARAMETERS
CRONNGPNO00RCPONUBANDNRRNORRNCURANRNORRN CERNNGRBRANSEEBOOREOIDNORRD
NR!TE(]b.ﬁOOD
500 ‘ﬂ MAT(//5X, "BPECIFY TAPE NUMDER ON “HICN RESULTS FILE 18 LOCATED
$/%%, '¢TYPL EIGHT DIGIT TAPE NUMBER) '
READ(16, H505) INTAP
509 FORMAT(1B)
HWRITE(14, 510)
S10 FOPMAT(DX, 'SPFCIFY FILE NUMDER A? NH!CN RESULTS FILE 1S LOCATED'/
X, ‘{TYPE THREE DIGIT FILE NUMBER)
_ READ(16, 519 IFILE
515 FOMMAT(13)
CalL MMTAPE (INTAP, IFILE, O)
WRITE(16, 970)
570 FOthT(//5X,’SPFClFV THE TAP E NUMBER ONTO WHICH SIMULAYED DATA IS
70 LE WRITTEN'/UX, "(TYPE EIGHT DIGIT TAPE NUMBER)')
AIRYY 575)TA§’END
879 FORMAT(IB)
1TECL 6, 560)
SHO FORMAT(OX, ‘SPECIFY FILE NUMDER AT WHICH SIMULATED DATA IS 1O DE W
SITTEN’/SX, *(TYPL THREE DICIT FILE NUMDER) ‘)
CAlLi1 e, SBS)JFILE
585 FDHHAT(XQ)
RITE (16, 590)
590 FO” 1AT(/7/5X, *SPECIFY THE RUN NUMBER FOR THE SIMULATED DATA RUN‘/
SX, ‘{TVPE EIGHT DIGIT RUN NUMBER) '’
READ(14, 575) RUNHO
CaLt. MOUNT(TAPEND, 12, ‘R1*)
MARG=JIF ILE~1
IF (ARG LE. O) GD TO 3
o]0 LIP=1, MARG
CALL TOPFF(312)
3 CONTINUE
o RNLAD(LI0)]
IF <1 NE. ¢0 70 310
READC11) 1, J) NOCLLAS, NOCHAN, NOFL.DS, NOPOOL., (FETVC3(IX), IX=}, NOCHAN)
NO(Ht((NDCHAN+l)/2) «2
NOCOMP=NOCHAN® (NDCHAN®1 ) /2
ISTL=2=NOCOMP «NOPOOL
TEND=TS TP+ NOCHAN*NOPOOL.
15 RCADCIL) I, O
IF(] 1.7.3% ¢0O 7O
1F (K. NE EOQS) CO TO 19
READCIS)T, D (2C1X), IX=], JIEND)
DD 17 1X=1, JEND
21X =2(¢1X)
17 CONTINUE
49 READL(11)1, AREANO, NOPNTS, NOL INE, INFO, IDREC
NOFE T3-NOCHAN
IF{] NS 9) GO TO 49
WRITE (&, 920)
920 FORI'NT(LHIZZZ79X, 4444409030460 0 4044404440004 4 464404444 444")
VRTITE LA, 525)
525 ES?ggréﬁyéé;DAYA SIMULATION USING MCCABES EGUATION+')
¢ 9
S30 FOPATIOY, ‘+e 04 00#000#0‘00+¢++000¢0+0+++¢00+0¢¢000')
LR ITEWG, U35) RUNVID, IDREC(D)
8939 FPHNAT(////SX.’SIHULATED DATA RUN !S',IQ.’ FRDH RUN’, 19)
WETIU (A, ES7)YINFOI4), INFOUS)Y, INFO(T7:, INFO
537 ﬁOHHAT(/S):'L KE ! :IJ,' 70 LINE’.IS:‘ AND COLUHN'.!S.‘ Y0 COLUMN’,
€5)
LRITE (S, DAOYINTAY, IFILE
540 FORMAT(/0X, "INPUT RESULTS FILE IS ON TAPE’, 19, * FILE’, 14)
W ITL (A LAD)TAPEND, JF L
D45 FL-MAT(/7Dx, ‘SIMULATED DATA 1S ON TAPE'’, 19, ' FILE’. 14)
WITTELL) 550)
550 ?3??&5(;3\3'FUQ HELS USED?)
L1100 (b, SBSIFEIN 1(XX) FROCAL(! IX), FRACAL(Z, IX)
S90S FCOuAT (D, I 2aFh 2 F5. 2)
560 CLHTINUVE
CALL GTDATE(DATE)
VA TTE L6, UOELIDATE
565 FORMAT(/5X, ‘DATL OF SIMULATION 1S ‘. 3A4)
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FILE. SWRITE FORTRAN A  LARS / PURDUFE UNIVERSITY

1DEG={

[ R Y Y Y Y Y Y Y Y Y N Y Y Y Yy Y Y Y Y YY)

C FACTOR COVARIANCE MATRICES
R T R Ry Yy Yy Y Yy Y Y Y Y R Yy Yy Y Y YYYYY Y

0 30 IX=1, NOPDOL
anNltlBFOONOCOHP'I

U=0
DO 20 1Y=1BEG, IDNONE
UaKet
20 A(K)I2(1Y
CALL HFSD(A:NOCH&N.EPSolER)
IF(IER EQ - 10 3
AF&!ER GE. 1) GO TO 310
-
DO 25 1Y=]BEGC, IDONE
KoK+
QG 2(IY)I=A
. Jo lBkO-lDEOONDCOHP
CHetanaanaastinaleadstiaeladutonntausdacadodniotatinanucadaanisndeeene
€ GENIERATE STARTI’ % POINTS
CRHRERINNRERAINORBRG IRNAQEHNEANGGANRRAONARUCOORERDUGRNBRESNIRRGERIINNARAD
¢
29 WRITE(16,72)
3 FORMAT(5X, ‘DO _YOU WANT TO SPECIFIY THE STAR NG POINTS FOR THE‘/S
b "RANDOM NUMBER GENLERAVOR? (TYPE YES OR NO)
REAL (16, 32) INPUT
32 FORMAT(AQ)
IF(INPUT. EQ. NO) CO TN Jb6
IF CINPUT. EQ. VE ) GO 70 33
G0 T0 29
33 DO 39 IX=1, NOCHAN
WRITC(146,41)1X
41 FORMAT(SX, ‘SPECIFY STARTING POINT FOR CHANNEL’, 13/5X, ‘(TYPE A NIN
¢ DIGIT ODD NUMDER) ')
READ(14, 42) ISTART(IX)
A2 FOPMAT(19)
39 CONTINUE
GO 10 43
36 CALL GTSERL (ISERL)
18ERL=(1SERL/10) B+
DI 40 I=1, NOCH
ICERL=]SERL+1000000
1START(1)=15ERL
0 CONTINUE
43 WRITE (6. R4)
3 FHHMA1(////51.'STARTlNG POINTS FOR RANDOM NUMDER GENERATOR'’//)
DY 44 1=1, NOCHAN
WRITE(L, 35)1, ISTART(1)
35 FORMAT(HX, ‘STARTING POINT FOR CHANNEL “.12,°’ 1S ', 19)
e 44 CONTINUVE
CHIRCBERRE R R AR NOROROGERUANARRRRONNBRRRRORARBLIRNNGRBEHANRRBERLRRNAGREREN
C READ CLASYIFICATIUNS
(WX IR R Y R Yy Ry R Y Y N Y Y Y Y Y Y N P Y Y Y Y YRR YYY Y Y
(o
INEEC (1) =TAPEND
I UC(2I=UF ILE
IDKREC(3) = RUNNO
NL DY - IDREC(S)
IDEEC (%) = NOCHAN
IDHLCLA) = A2 ((NDPNTS « 9)/4)
NO A = TDREC(S)
IDLC(?2) = FLGT
DO 144 II=3,0
IDREC(11+16) = DATE(II)
141 COWTINUE
IDNEC(20) = NOLINE
c DO 145 Il= 1., NOCHAN
C T8EW FETVC3(11)
C D) 140 118 = 1,9
C FROCALCTIIZNIT) = FRGCAL(112: INEW)
C 145 COWTlhIF
C LIt = HUCHAN + 1
C PO 150 11 = LIP.NOLD
C po 120 112 = 1,5
Cc FRGCAL(I]I2.11) = 0.0

e s
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FILE: GWRITE  FORTRAN A LARS / PURDUE UNIVERSITY
g 150 CONTINUE

ER £ l E
ER T 0) T0
0 HA 1, N()Cl AS
LAPNT( -0

50
59

RY =
ALY LlNFNgB(PNTCLS(l!)clllinNOPNTB)

- z:,
52:00

1

T.25). £Q O) WRITE(1&4, 57)LNWRT, NOL INE
57 ¢ LINES OUY OF 7,14, ARE COMPLETED’)
SROEBOGNDOBOGAPAGRACOORBGERINGENAVOBORNEVTRVBRAVARRRRNBGBNEBRNRBRNERS

)
GCENERATE 4HD WRITE DATA POINTS
»

*
FRNENROBRGRAGVIERIDRRRANRORNNQERNBONRBAQNABDGNPAVANUBENNVRGRORENRENNS

aaoan

60 l‘ﬂ!L!N(")
DATOUT (1 )=
DATOUT

L
L
L
L

PRSIy
HAENM

sase  one
~n o
Aoe  NJou
- e

)
)
}

o

(ol

2

-t
O
~ -t (3
+*V
[
=]
«

NOCHAN
QcamMp

CHAN

112>Uu0

*eMmZZ

e N
- <0 ZZ

ol it

Pl erell mm DT Lot C IR D~ Dot C LTI ettt bt O3 e B

-Nar D
MAGT "8 Cr= T AN~ I IO e N €D~ 2 P < Fie D N RN exd

AT IO =D P NZ SO T DT = NdN= <+ OG-V L

fol
c
<
D

AT s Crrw A C (e O"N s possT -

N~ -

GO TO 63

|

Tormeax
AR

65

Qe <™ UMK §-T20

CH
{ART(IY):NXINP:&?(IV))
T

N

ART(!Y).NX!NP.A(IV))
2«QALOG(& (IV)))aCOS(6 20D180ACIY))
CLGPNT(X")01

5
Py

~ A~ —fdedrese Tes AT PN

Ni
1
K
)
.0
NO
18
NX
18
-

il del o il
- R

70

-9

felololad dottiadtioini-tolob Sele b el e ™ g
00~ 200~M~100 109~ OCH!

N D Zeei 4

N

—
-~
-t

CDNPNXF nL+1y
D« XY;IZ)QA(IZ’

nornfa ey

75

DA SACT -3
u-

=220

EOPIO<CA~~2

=t

-

2
TDAT=0

INTRAT=255

AM+ TCOUNT ) =LOCDAT(2)

) #NOSAM+ICOUNT+12) = FALSE.

—Z

,_
e
1 1 =222

<
r
it et e =
—reere  CmC |
\-rh-—b.n C* ~ “’J“‘Z""““-‘ZOO%

I>0>MMNT >0
<

NTTH s30T
Toi Addmmgay

4]
fo 1
=

4
i3
>
<
-
3
2

HAN
'SP*Az(IL,l!)&ISTAT(ll)
JI=IVARCID, 11, U +ISTAT(I1)#ISTAT(JUN)

HQNGHﬂ”Aﬂ

v YTR, TER., DATQUT)
bt\ITl (1&:;34)!ER

GO 70 310

—gp s
~ et
2
t s
It
!

IVAR (]
90 C(_‘)NT INUEL

n

Y

25 CON
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FILE: GUWRITE FORTRAN A LARS / PURDUL UNIVERSITY

21

oTT

Ol Fw2Z

98
3y

) # (REVAR~REMEANSGLMEAN/REPNT)

<CLMMMMAgI™0
>X ky
X 4
-~ -7
o €
v -
S ey et wa] o T

100

<

AT AR AT AP

{
"
A
=(}

wRVA

C AB

+ CLAPNT (1P}

» 'CLASS NUMBER’, 13, 5X, 10, * POINTS'///)
ACTUAL ’, 4X, 'SIMULATED’)

p AN, 7!.‘HEAN‘I)

NOCL BO(XP-l)ONOCH
EETVCf£IX).FROCAL(l.&ETVCB(lX)).FROLAL(2.FLTVF?(I!)L
HANNEL . 13, 2X, ‘() F3. 2, '=',F5. 2, *) " BX, FO. 3, X, F8. D)

I e
]

609
610
615

ENETOATINB DD+ TI Dol

PrRI>MDPMI M
e aw N

-~
e
—

'ACTUAL COVARIANCE MATRIX‘)
&30 +NO

; NDCHAN.FROCAL.THREE-FETVCS)
5X, ‘SIMULATED COVARIANCE MATRIX’)
CHAN

—r T ReelT

OID>~=0OT00~DT=00OTQTJICO
[ A e ]

AP Ores ADCaSTD APl

PM S a0SMeSs
S UrEN~OH~ZAB~ 2N~ T

639

cagm
0ol
D>
o

o~

650

NN TIOONDZVTIZNENDPZONEONMNEZONETN
ONMDOCD>0D>~
STTT OY -
OPIOI TXee
——p Y s ey
2 NY PT =Z

®34 FORM

C
COBBRABRRUNAIBABRGINRITRBG RO RBAERNBUEENABRBERBLBEVRANAORRRRIBOTRARRPINRGES

€ ERROR MESSAGES
CONRRIBRLI NNt BINd it RNERNARERRRRERRRO B PIRTETRNRRNIRRNNEORIDURONS
C

300 WRITE(SL %)
309 FﬂHHATé 'ERROR -1')
¢

30
X
g
%) YErRoR o1 1)

0 WRITE(&, 31%)
5 FORMAT(ER,
0 sTOP

T
END

~ L’

3

1]
S
1]
L33
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FILE: HUGHES FORTRAN A LARS / PURDULC UNIVERSITY

BERNCENOGRNVERNPONARBROOGEBERVLEBRBNBRBOBRSVBOBVIUBDANROOBRLES

HULHES FORTRA
PROGTAI T CAL (.ULATF THE PROBABLITY OF ERROR FOR _TWD CLAYSES
PH(..‘MM HKEQUIRESL AS INPUT ., DECK IN THE READER FILE AS

FOLLOW
- F(H;;;;?\?g NUMBER OF TRAINING SAMPLES OF CLASS |
HIMA
- SECOD CARD NUMBER OF TRAINING SAMPLES OF CLASS 2
(FUKRMAT I3

)
- f}ﬁpprh38 COVARIANCE MATRICES OF CLLASS | AND 2 IN
RE7G
THE VRUGRAN GIVF° AS AN QUTPUT THE PROBABILITY OF CORRECY
CLAGLUIFICATION FOR EACH _CHANNEL (FOR CHANNCL1, CHANNEL 1,
CHAELG 1,2,3, ETC ), THE TR ﬁNSFURMATlUN MATRIX AND THE
NEW Me AN AND COVARIANCE MATR
THE PROGRAM REQUIRES THE rﬂL 0 lNO EXEC FILE

GETDISK_IMSL

GLOPAL TXTLIB FORTMOD2 CMSLIB DIMSLID &IMSLIB

LOAD _HUGHES

START
FEBARRORRRBIRRBBIRBLBROE R ARBRR AR L AN BRANSRRNARRDESHRRRANBERRRGRIARNRRRE RS

(AAZ 2R LR 2282222 22222232 2222232722212 222222 ET A2 Ay ey yyy)
LIST OF VARIABLES
Ni: NUMDER OF TRAINING SAMFLES OF CLASS

N2 NUMBER OF TRAINING GAMPLES, pF CLASS 2
EG‘;ALg’f EIGENVALUE VECTOR OF %7 &, AFTER TRANSFORMATION

DD EW MEAN VECTOR UF CLASS 1

DD NEW MEAN VECTUR, OF CLASS 2

VGOMAL. VARIANCE OF %)= VAR H(X/W,)
VSGMA2:. VARIANCE OF 0 = VAR H{X/Wg)
TRANGL TRAN FORMATIGN MATRIX

icH B W COVANIANCE uanxx Or CLASS
SSPlEW, u~ COVARIANCE MATRIX _OF CLA

R1
COINST. MULTIPLICATIVE FACTOR OF VAR (d"g AND VAR ('; )

OGO AOOHOOONNINOOOADCONOOAOOOOINOCCONNNOHNO

HRERERAVNBERIPRARBERIRBRRRSRNAEABRERBELBERPBUXABRRRICREGRFERRERBERERPRERRERRE

IMPLICIT REAL#B (A-H, 0—7’

REAL+0 SIGMAL(78), SIGMAZI(78), ATNV(78), HK(X’)"’:"S!SZ(I 12),
#WROLLE) M1, M2(22), PE‘.RRUR: EGVECH (12, 1), EGVECT (1, 12),CC(1,12),
#EGVALR(24), EGVECR(2S0), HICMIS(1a, 12), AA(L, 1), DP.GVEC( 12, 12),
*EGUVALLI (12, BATACHOI2 ), TEMPICIR), DDEGVC (12, 12'), MECANRCD), MEANSIQ),
*+GOMIN(D Y, SEMS(2), CAMAR(2), GAMAS (2), ALPHI (), ALPHSE(2),

*CRO), CE(D), A2), B(D), DELTARCZ) . PLELTAS(E) . DIST(2), ERROR(2),
#GSINFW(T78), SGENEW(78), ASCMS(2), ASCI(),
«STu 5012, 12, DRy, UDZ-.‘( 12), TRANG (12, 12), TRANS1 (12, 12)
#LAMNLLA WK (400), MEANSE (12, 2), MEANRL (12, 2), SGMS1 (12, 2), SCGMR1 (12, 2)
RDS N (12)  VESMALS)
COMPlLEX®#1é6 EGVAL (1), EGVEC(IR, 12), IN,
#X1, X2, D1C122), D2012)
c ZQUIVALENCE (EGVAL(1), EQVALR(1)), (EGVEC(1, 1), EGVECR(1))
CHERBPAARLNADBRAIFRPARSRO QUL R IRRABSRB S URREBEROREREERRERRRRBEON
C
C READ NUMRER OF TRAINING SAMPLES 0" CLAQS 1 AND 2
C RUAD 1D AM VECTORE Uit CLAGEES 1 ALY
E READ COVARIANCE MATRICES OF CLA‘: 1 AND 2
CRUFARPARNVQCRENVGRBRRRNVVUARARRERB BB RPREL P RRRBBRROVRBRLBRAORBRERS
C
READ(S, 967 )IN1
READ (95, 957)N2
957 FORSMAT(IS)

READ (5, 130)M}

READ (5, 130)M2

READ (9, 130) SIGMAL

R{ DS, 170)SICMHA2

1.0 FOLMAT(EX, SE18.7)

N = 12

CRURBUBBRTINSARICCHBIVPRPEPRIISUBCEPRIFTRHLENTIRRDI I AT ATRERY
C COMPUTE INVERSE UF CUVARIANCE MATITIX OF CLASS I

CUeREP BB E R ODP P AU RN eRERRNIORL U LARERRAETRE>LARNEHOPOBRRTLOUNNN
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FILE  HUGCHES FORTRAN A LARS 7/ PURDUL uihvi* 1S3TY

CALL _LINVOO(GTOMAL, N, AINV, IDCT, CEL. EE2. WK, IER)
WRITC G, 117) TER
cll? FORMAT( *, 13)
N Y Y Y Y Y Y N Y Y Yy Y Y Y N Y Y YN Y R YR Y Y]
¢ COMPUTE Toa RO (0 CDVAnxANCE MATRIX 1 MULTIPLIED
C DY COVART L MATHIX 2
CHaanounenenaercrtsanbudadoaRaRaitanaenerseaenesrnadlanabase
C
¢ CALL VMULSS(ALTHNY, SIGMA2, N, PS182, N)
CRUERBRIPBIBRBBNIIBARIPIRNBRARBUQITVUBANGRUOGBBRBRNVANRNRRNEND
C COMPUTE E1GENVALULS AND EIGENVECTORS OF ( INVERSE (
C SICMALDY)Y (STEMAD)
Cratoateontadindet i RatadiiaaacatNRalitafdlenanasaiaslannane
C
CALL _EIGRF(PS152, Ny N, 2, EGVALR, EGVECR., N. WR, 1ERR)
WRITE(&, 117)1ERR
WRITE (6, 126)WI0L)
é?b FORMAT(* ‘., Fb. 1)
CHUBE N NN B ENBRE IR P AR B LEARBRER AR BRBURRERRRBERBNNRORUNREY
g PQERHQL}Zlhu EIGENVECTORS (SEE FUKUNAGA,
/ 39
CER RGN NBARRAB RNt aR R RARRBRRRRANERERBERLRRRRRRRERBRBRORENNN
C
CALL VCVTSI(STOMAL. N, GIGMIS, N)
CALL VCVTLE (S ITGMAZL N STIGMDS, N)
DO 1D 1 « 1.N
np a0 v = LN
EQGVECT (L, J)Y = DRFALIEGVEC(U: 1))
FGVECS (J, § )= DREALCEGVEC(Y, 1))
20 CONTINVUE
M= N
NN = N
CAaLlL VMULFF(EGVECT, SIGM1IS, 1, M, NN.: §, N, CC, 1, 1IEER)
WIITE(H, 1206)1EER
CALL VWHULFY (CC, EGYIECDT, 2,00 1d 1N Afw 1) TIER)
WRITE(S, 126)11ER
AA(L, 1) = DSGRT(AAC(L, 1))
DO 30 KW = {1, N
EGVEC (K, 1) = EGVEC(K, 1)/AA(L, 1)
30 CONTINUE
10 CONTINVE
CRRURA RO RPRARRERRNRBERRBRRRRRRRRBRRRRBRABERRRPEARRRR N

C
CHEARR AP RBRRRA RN BRARPRABRPBRABERERBRRRRBIRRRBBABERRBRERRN RN

C CALCULATE NOW MEAN VECTUR DI = EGVECeMI
[ R R T N S Y Y Y T Y Y YT Yy R T

0)
Dy 0 0, 0.0)
90 CONT INUL
[ R R Ry R Ry ey R Y YR Y Y

C CALCULATE NEW MY AN VECTORS
CHBI NN N RHBE BRI R PR N AN R B RGN R AR S RAEARARRN AR BBHA PR RBIBARRBNARRRRERNS

DO 9% I =3, N
DD 95 t’

=
DEGVEC(T, JY = DREAL(EGVEC(J, 1))
FGW Ui llY = DREFAL(EGVAL(]))
DRFGUL LT, Y = DReALEGVEC(T, J))
DUropy=ti Jod, Deri+DICD)
DO Loviad, DY eM20+D24 )
Thev'v331 (1, U120 O
5 COYWi THUE
183 FUaMAT(SRH 4, ™)
PO T77 1 =1.N
DD!(I)nDbeu(n!(Z))
SO PR ALIDR(T)

' !
777 (.(nTlNUE.

RRARPT AP RNARRRB P I RAERBRARCPRBABRANABRATRNRER R ARAERA R NBIURERER

(21914}
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ACE 13
ORIGRIAL FAZ
oF POOR QUALTY

FILE: HUGHEE FORTRAN A LARS / PURDUE UNIVERSITY

C ORDER THE EICENVALUES AND EIGENVECTORS ACCORDING TO
g MAXIMUM EIGENVALUE
8.!00".00).90.bQ0'0QQ.00000.!ll....i..!'lli..i.l.l.lllll.!.Q....
DO 120 1=, N
DO 120 J=1,N
IF(LCVALI (1) -EGVALL (J)) 120, 120, 131
131 TEMP=EGVAL1(I)
TEMPP=DD1(1)
TTEMP=DD2(I)
EGVAL1 (1)=EGVAL! (J)
DD3(1)=DD1(J)
DD2(1)=DD2(J)
EGVALLI (J)=TEMP
DD1(J)=TEMPP
DD2(J)=TTEMP
DO 132 U=1,N
TEMP1 (K)=DDEGVC (K, 1)
DDEGVC (K, 1)=DDEGVC(K, J)
DDEGVC (K, JI=TEMP L (K)
132 CONTINUE
120 CONTINUE
o Y Y Yy Y Yy O Y Y Yy L Ty
c
g INITIALIZE ALL PARAMETERS UNDER CONSIDERATION
CHEB ORI RN AR RS RO RN R RS R AN AR R BB R RAE R B AR SRR R R RSP R B RN C SRR RBRBEED
C

NR!TE(b.le’
DO 134

Js=
TRANS(X J)=DDEGVC(J,I)
134 CONTINUE
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Om=D DRI D~ ~U)
R e 7110 B Y T T PN
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O rmt 4t 1t 4t St 5t o v it 2t
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o0

CSGMA(XI) =0.0
135 CONTINUVE
g»nbcu»uu«auon-«a»'r&*nooa»wno»*u»n&u&»v»av«aQwoqoﬁua«qnoo&auunod
CALCULATE PARAMETERS OF GAMMA DISTRIBUTIONS

CHRBARAB RS EBRBRA AR BERRRREARABARRERURNERBR BRI A BRSPS AR R BB EA PR U BEREN

0o

[2]

136 SSRTQS(; '.1OX.‘FXRST N DIMENSIONSG ‘., 10X, ‘PROBABILITY OF ERROR’)
A(1)=1 0-1 O/EGVALLI(I)
B(1)=(DD1(])-DD2(1))/(EGVALI(I)-1.0)
Al2)=EGYALLI(T)-1 O
D(2)=(DSGRT(EGVALLI(I))*(DDI(1)-DD2(I)))/(EGVALI(I)~1, O)
DSGR2171)=(DD1(1)-DD2(1) ) #a2

GQIQ'QQ..Qr.l.i...’..l..'.lﬂQl'kQ..leHﬁ*IQQGI...IQO.IC‘.i..@?!l.

CALCULATE VAR (¥, *) AND VAR (T )

RIS R R R e R R R R R R R 2 R e R 2 R R R R R Y S R N Ry Yy Yy

USGMA(1)=VEGMA(1 44 O#( (2. O/JEGVALL(T)#e2)e(4 O/N1 +4 O/N2
+8. 0/ (N1al)) -(4 C/ZEGVALLI(1)+#a3) o (4 O/NI +4 O/N2 +

8B O/Nles - 48 O/1i0eel) 432 OZINLIONI'Y 401 O/ (NYeNI+aD)

+ 40 O0/(N1u2eNe) 453 Q/7(NI®#RZeNSr 0 4 Oel) M1 ( 1)
(1. 0/N1 42 O/NL +6 O/(NI#N2) +4 O, el 4B D/ iN1ava2)))

[plalslelnTle]e!

PSR I T
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Appendix F

Description of Data Sets For Experiments
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F.3 Traoining and Test Fields for Landsat, Multitemporal,
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T ¥ s
CRICaTAL & AGE L
OF POOR QUAL\TY

F.5 Training and Test Fields for Aircraft Binary Tree

Example _(Tape 203,file 1) . i

Training Fields

CLASS WHT1

71053900 11 b26 626 1 162 142
71053900 12 627 627 1 164 164
71053900 14 628 428 1 159 1959
71053900 16 &29 429 1 163 163
71053900 22 633 635 1 167 167
71053900 3 461 461 1 71 71
71053900 4 461 461 1 79 79
71053900 9 4463 463 1 73 73
71053900 4 621 621 1 167 167
71053900 10 624 624 1 1959 159
71053900 20 633 633 1 161 161
71053900 21 634 634 1 163 163
71053900 27 639 639 1 163 163 INS-
CLASS WHT2

710537200 3 314 314 1 163 163
71053900 6 316 316 1 166 166
71053900 7 317 317 1 159 1959
71053900 8 318 318 1 157 1957
71053900 10 319 319 1 157 1357
71053900 17 324 324 1 167 167
71053900 18 325 325 1 165 165
71053900 21 327 527 1 167 167
71053900 22 328 328 1 158 158
710539200 7 442 462 1 79 79
71053900 10 463 463 1 77 77
71053900 17 469 449 1 67 67 2
71053900 21 471 471 1 75 75

CLASS HAY

71053900 2 484 484 1 o9 99 2
71053900 1 880 880 1 132 132 INS-
71053900 3 882 B882 1 126 126 INE-
71053900 7 883 883 1 126 126 1NS-
71053900 14 886 B86 1 128 128 ING-
71053900 15 887 887 1 133 133 INS~-
71053900 18 889 B89 1 134 134 1NS-
71053900 19 890 890 1 13% 135
71053900 20 891 891 1 128 128
71053900 30 895 895 1 132 132 INS~
71053900 i3 488 488 1 41 41
71053900 16 490 490 1 43 43
71053900 19 894 894 1 135 135
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RN N P I
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F POCR QUALITY 167
CLASS PASH
71033900 4 402
7310953900 2 417
710353900 34 416
71053900 1 1012
71093900 1 1012
71053900 1 1012
71053900 S 1014
71053900 - 1015
71053900 7 1016
710953900 10 1017
71053900 10 1017
71053900 12 1018
71053900 19 1020
CLASS PAS2
71053900 o] 418
71053200 o] 88
71053200 (o] °89
71033900 o] °8Y
710539200 o] 989
710539200 0 589
71093900 (o] 993
71053900 0 99
71033900 0 599
71053900 (o] 996
71033900 0 996
71053900 0 996
71053900 0 597
CLASES S0OY
71053900 4 424
71053900 3 336
71053900 22 3592
710537900 1 488
71053900 2 486
71053900 22 900
71053900 9 312
71053900 10 312
71053900 S 424
71053900 7 426
71053900 11 426
71053900 41 440
71053900 23 502
CLASS CRN
71053900 8 516
71053900 10 518
71053900 17 521
710539200 11 623
71053900 15 &2%
71053900 3 556
71053900 23 322
71053900 29 326
71053900 19 Sa7
71053900 8 660
71053900 16 664
71053900 24 668
71053200 29 672
CLASS FST
71053900 11 731
71053900 13 709
71053900 17 711
71053900 32 716
71053900 3 726
71053900 4 7256
71053900 27 732
71053900 32 735
710539200 15 803
71053900 20 805
71053900 30 809
71053900 11 709
71053900 2B 718
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F.6 Training and Test Filelds for Landsat, Multitemporal

Binary Tree Example (Tape 203, file 5)

Training Fields

CLASS CORN

78843016 0 28 28 1 33 33 1
78843014 0 29 29 1 35 39 1
78843016 0 30 30 b 37 37 1
78843016 0 30 30 1 42 42 1
78843016 0 32 32 i 34 34 1
78843016 0 32 32 1 395 35 1
78843016 0 32 32 1 39 1
76843016 0 64 44 1 134 134 1
78843016 0 64 64 1 137 137 1
78843016 0 65 65 1 141 141 1
78843016 0 30 30 1 93 93 1
78843016 0 30 30 1 96 96 1
78843016 0o 34 34 1 102 102 1
CLASS SOYBEANS

78843016 0 11 11 1 &9 &9 1
78843016 0 13 13 1 72 72 1
78843016 o] 74 74 1 57 57 1
78843016 0 74 74 1 63 63 1
7884301¢& 0 75 75 1 52 o2 1
78843016 0 76 76 1 o6 56 1
78843016 0 76 76 1 61 61 1
78843016 0 77 77 1 93 53 1
78843016 0 80 80 1 &0 60 1
788430146 0 81 81 1 o9 9 1
78843014 0 82 82 1 o8 S8 1
78843016 0] 100 100 1 125 125 1
78843016 0O 101 101 1 130 130 1
CLASS ELSE

78843016 0 o1 o1 1 154 154 1
78843016 0 o o2 1 154 154 1
78843016 0 o2 52 1 160 160 1
788430164 O 53 53 1 158 158 1
78843014 0 o9 3] 1 161 161 1
78843016 0 91 21 1 180 180 1
78843016 0 91 91 1 182 182 1
78843016 (o] 92 92 1 177 177 1
78843016 0 94 94 1 178 178 1
78843016 0 95 95 1 188 188 1
78843016 0 B2 52 1 39 39 1
78843016 0 1 1 1 20 50 1
78843016 0 7 7 1 49 49 1
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Git v

(Also Area {lassifaied)

Test Fields
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