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ABSTRACT

One of the main prorlems in a multistage dzcision tree

procedure is predicting the optit_al features to be used at

every node. An algorithm is propose;; which predicts the

optima :rLtures at every node in a binary tree procedure.

The algorithm estimates the probability of error by approxi-

mating the area under the likelihood ratio function for two

classes, and taking into account the number of training sam-

plQs used in estimating each of these two classes. Some

results on fQature selection tezhnigaes, particularly in the

presence of a very limited set of training samples are pre-

sented. Results comparing probabilities of error predicted

by I.he propoaed algorithm as a function of dimensionality as

compared to experimental observations are shown for aircraft

and Landsat data. Results are obtained for both real and

simulated data. Finally, two binary tree examples which use

the algorithm are presented to illustrate the usefulness of

the procedure.



CHAPTER 1

INTRODUCTION

1.1 Multistage Classification

A number of different types of classifiers are now in

routine use in remote sensing. Most of these classification

algorithms, using pattern recognition techniques,	 can be

regarded as "single-stage" classifiers, where an "unknown"

pattern is tested against all classes using one feature sub-

set, and then the pattern is assigned to one of the present

classes in a single-stage decision procedure. An example of

such a procedure is shown in Figure 1.1.

In recent years, as classification of multispeetral

data has found a larger number of users and a wider range of

applications, the need has been felt for alternate, more

powerful techniques than the conventional classifiers,

through the use of which more information could be extracted

more accurately and/or efficiently from the scene. 	 Some of

the reasons that have warranted this need include:

1. The need to extract more detailed information from

data. The opportunity to do so results from the

r
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emergence of more complex data sets.	 The growing

use of multitype data bases containing Landsat data

with a variety of other quantitative geodata

together with the anticipated launching of more

sophisticated sensors such as the Thematic Mapper

result in the opportunity to extract considerably

more information from the data.

2. The broadening of the range of applications. As

pattern recognition methods have developed, they

have found a larger number of users with a wider

range of applications. The feedback from these

different and versatile uses has indicated problems

and needs not initially present.

3. The ever present need for improved classification

accuracy. There are some applications for which

conventional classifiers have proved to be marginal

at best. Some of these are listed in Swain et al.

(1) and include multi-image analysis and the use of

mixed feature types.

4. The need for improved processing efficiency. The

conventional, single-stage, classifiers use only

one par t icular feature subset and are somewhat

inefficient, as they must compare an unknown pat-

tern against all possible classes before assigning

that pattern to a particular class.
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Because of these and :::her factors, there has been some

research in recent years directed towards developing multis-

tage classifiers, whereby the decision procedures go through

several stases before finally assigning a pattern to a

class.	 An example of such a procedure is shown in Figure

1.2.

The purpose of this research is to develop a layered

decision algorithm that can increase the accuracy and effi-

ciency over the conventional single-atage classification

approach.	 Developing such an algorithm requires,	 among

other things,	 a careful look at some parameters that are

crucial to any successful attempt at tackling such a complex

problem.	 In particular,	 three areas have to be Investi-

gated:

1. The development of an adequate training procedure

to define an initial set of spectral classes with

their respective statistics;

2. The investigation of various error estimators and

the development cf an adequate performance estima-

tor that can reasonably predict the accuracy or any

trends in performance;

3. The development of an algorithm to build a binary

tree making use of the above-mentioned methods.



S

DATA
3 features

Vegetation
	

Non-
Vegetation

4 features

Forest
	

Non-forest

12 features

Deciduous
	

Coniferous

Figure 1.2	 An Example of a "Multi-Stage" Algorithm
In Classifying Multispectral Data.
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Of Aese three areas, the most important problem is

believed to be the development of an accurate error estima-

tor, especially in the presence of what has come to be known

as the Hughes phenomenon (elaborated upon later in the

review of literature). Predicting the conditions under

which the Hughes phenomenon occurs provides the key to the

solution of the problem. Therefore, a considerable portion

of the research has been directed towards trying to under-

stand and predict the impact of this phenomenon.

1.2 Review of Literature

1.2.1 Training Procedure

Several training methods have been suggested in the

literature. We will not attempt to list all of them, but

rather will give a background of some of the methods

reviewed and used in this work.

The training process is the procedure whereby labeled

samples are selected and used to compute class statistics

which in turn are used to classify unlabeled (i.e., "unk-

nown") samples.

Several parameter estimation methods (training methods)

have appeared in the literature. Sample-partitioning meth-

ods, the leaving-one-out method, clustering are but a few.

See, for example, Fukunaga (2) and Duda and Hart (3).

i

,t
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For remote sensing purposes, clustering has been widely

used in	 developing training	 statistics.	 Two	 basic

approaches have been: a supervised clustering approach, in

which the analyst selects areas of known cover types , each

set of areas belonging to one cover type is clustered sepa-

rately, and then the statistics for these areas are then

obtained with the aid of a computer; and the non-supervised

clustering approach, in which the entire training area is

subdivided into clusters by the clustering algorithm and

each cluster is then identified by the analyst and given a

specific label. The statistics of each cluster correspond-

ing to a cover type or a subclass of a cover type are then

calculated. Fleming et al. (4,5) investigated several clus-

tering approaches and their effect on classification accu-

racy.	 Among the approaches they used were non-supervised

clustering,	 supervised clustering,	 modified clustering,

mrno- (aggregate) cluster blocks, and multi- (class-condi-

tional) cluster blocks.

1.2.2 Performance Estimators

A key factor in the design of a layered decision algor-

ithm is the ability to predict how the algorithm will per-

for-n in terms of accuracy at every note. While optimizing

the performance at every node does not necessarily produce a

globally optimal tree, it is still a very important and use-

4	 ful step in the design.
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Several performance (or error) estimators have appeared

in the literature.	 Again,	 we will not attempt here to

exhaustively list all the contributions made, but rather

will give an idea of how the research in this area has pro-

gressed.

Performance estimators can be divided into two main

categories:

Performance functions which have some sort of direct

relationship with the probability of error. Examples are

Parzen estimators (see (2)), the k-nearest neighbor error

estimator (see (6)). More recently, Mobasseri et al. (7)

published an error estimator that computes the minimum prob-

ability of error through use of a combined analytical and

numerical integration over a sequence of simplifying trans-

formations of the feature space. 	 The results have been

shown to be similar to those obtained by conventional tech-

niques.	 However, the algorithm becomes computationally too

inefficient to use as the number of classes and/or features

increases. Moore, Whitsitt and Landgrebe (8) (see also

Whitsitt and :.andgrebe (9)) developed a stratified posterior

estimator which, like Mobasseri's, depends only on a given

set of statistics. This was later used by Wiersma (10) and

both estimators (Mobasseri's and Whitsitt's) were compared

in (11) and found to give similar results, with Whitsitt's

algorithm being faster in some cases. 	 The former procedure

uses a "deterministic" grid to sample the feature space,

while the latter uses an internally generated random data

base and assigns the feature vector to the appropriate class

via the maximum a posteriori principle. Both procedures

assume normal class conditional statistics.

Separability measures, most of which have only a sub-

tle, indirect, and often unknown, relationship to the proba-

bid of error. Various separability measures have been in

common use in remote sensing applications. Among these are:

Divergence (i2), Transformed Divergence (13), Jeffreys-Ma-

tusita distance (14,15), Bhattacharyya distance (16) and the

Mahalanobis distance (17). 	 (See list in (24).)

Several works have been reported comparing different

separability measures and their effects on performance. (See

(9,13,18,19,62).)

There are two problems with most of the above separa-

bility measures applied to remote sensing applications: 	 (1)

ambiguity and (2) linearity in pairwise error. The term

ambiguity implies here that there dr,s not exist a one-to-

one relationship between the value of the measure and the

probability of error.	 Linearity means that equal incremen-

tal changes in the measure imply equal changes in the pr^ba-

bility of error, over the whole range. 	 Whitsitt (9) devel-

oped a distance measure D e r f
	

erf Y2B) where B is the

Bhattacharyya distance and erf( • ) is the gaussian error

irk
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10

function. Fie found that the resulting measure is less ambi-

guous and more linear than the measure B.

Another key factor in the process of error estimation

is the choice of feature subsets. The problems here are

twofold:

1. As the number of features becomes large, it becomes

desirable to choose a subset of these features that

can adequately predict the accuracy. This selec-

tion process also can become expensive if one must

search through all possible combinations of the

feature set. It is desirable, therefore; to have a

priori knowledge of the importance ri' each feature

in relation to the probability of error. The

Karhunen-Loeve expansion (attributed to Karhunen

(20), and Loeve (21)) in pattern recognition liter-

ature has historically been used as a feature

selection technique. 	 It has the advantage of pro-

ducing uncorrelated features (in theory,	 but the

features are actually approximately uncorrelated in

a practical K-L transformation). 	 In addition, it

imposes an ordering on the features in terms of

importance in a representation error sense. As a

result, first feature 'As "likely" to be more impor-

tant than the second in calculating the probability

of error,	 and so on.	 More recently, Oja and
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Karhunen (22,23) published two papers on the con-

struction of K-L expansions for pattern recognition

purposes that do not require the computation of any

covariance matrices.

2. The probability of error is not necessarily mono-

tonically decreasing as the number of features

increases. This is due to a peculiar phenomenon

that has come to be known as the Hughes phenome-

non. Hughes (25) found that with a fixed and

finite training rattern sample, recognition accu-

racy can first increase as the number of measure-

ments on a pattern increases, but decay with mea-

surement complexity higher than some optimum value.

He also reported that for unlimited training data,

this does not occur and the recognition accuracy

reaches an optimum only at infinite measurement

dimensionality. According to Hughes, if insuffi-

cient sample data are available to estimate the

pattern probabilities accurately, then a Mayes

recognizes is not necessarily optimal. Many papers

have since been published on this phenomenon, con-

firming it or trying to explain why it occurs (see

(26-42)). Thus, it appears that a successful

design should predict when and if such phenomena

occur.
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r	 1.2.3 Multistage Classifiers

In recent years, some work has appeared in the litera-

ture aimed at developing multistage classification algor-

ithms. There is much yet to be learned about such algor-

ithms, and no work has been reported claiming optimality (or

even close to optimality) of results.

In general, earlier work can be grouped into two main

categories:

Sequential classification methods. These can be found

in several papers and books (see, for example, (43-45)).

Basically, the method consists of observations made on fea-

ture measurements, one at a time. After an observation is

made, the classifier either reaches a final decision and the

process is terminated, or it makes another observation until

a final decision is rea hed.

Hierarchical classification methods.	 These are subdi-

vided into two categories:

1. Hierarchical clustering methods. Examples of such

work are found in hukunaga (2), Dubes and Jain (46), who

present a semi-tutorial review of the state of the art in

cluster validity, and Lukasova (47). In general, hierarchi-

cal clustering is designed to generate a classification

tree.	 The "root" node of the tree represents a collection

of samples (either a training data set or the entire sample
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set) and each terminal node represents either an individual

sample or m group of samples belonging to some class within

the set of classes in the dsta set. The method attempts to

divide the set of samples in each node into disjoint subsets

which form new nodes. Defined as such, the method is often

nonparametric and depends heavily on the ability of the

algorithm to find meaningful divisions of samples that cor-

^espond at terminal nodes with reaningful classes.

2.	 Decision trees and criterion functions. 	 Most of

the work done in multistage algorithms belongs to this cate-

gory,	 Often,	 a decision tree	 is built	 using an

optimization	 or criterion function that dictates the

structure of the tree.	 It is this kind of approach that

will be of greatest concern in this research.

Hierarchical methods differ from sequential methods in

certain important respects. While in sequential schemes any

class can be accepted at any stage of the measurement pro-

cess, in hierarchical schemes certain classes are excluded

from consideration at each stage. 	 Alsr., sequential methods

impose a linear ordering on the features. In hierarchical,

methods, features used along one decision path can be diffe-

rent from those used along another path.

In 1971, Nadler (48) tried to calculate error rates in

a hierarchical decision structure under assumptions of sta-

tistical independence among the members of the hierarchy.
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Even under sucsl • assumptions, the results assume "small"

probabilities of errors at any level.

Several heuristic methods of constructing tree designs

have been proposed in the literature. Soma: studies were

done using optimization methods to automate the classifier

design procedure, but the assumptions made were often too

restrictive.	 Meisel and Michalopoulos (49) in 1973 pre-

sented a two-stage partitioning algorithm for the design of

an optimal binary tree.	 In the first stage, a suboptimal

sufficient partition is obtained. 	 The second stage optim-

izes the result of the first stage through a dynamic pro-

gramming approach. The method allows only for linear dis-

criminant functions to partition the space, certainly a

suboptimal and too restrictive condit!,^n.

Tn 1974, Wu et al.	 (50)	 reported on a decision tree

approach with direct application to multispectral data ana-

lyris. Several design procedures were proposed (one of

which is manual). with special emphasis on a heuristic,

machine-implemented approach. The optimality criterion used

is a weighted sum of computation cost and accuracy. Results

were presented which showed superiority in efficiency (but

infrequently in accuracy) over the conventional classifier.

The criterion function used, as it cannot predict beforehand

the structure of the tree below that node, assumes all the

nodes below the node under consideration are terminal nodes,

♦.w
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and hence is necessarily suboptimal. Later papers have

appeared that have pointed to applications using this parti-

cular c^assifier (51,52).

In 1975, You and Fu ( 53) presented a linear binary tree

classifier that uses linear discriminant functions at deci-

sion stages with an application to multispectral remotely

sensed data. The procedure includes a grouping algorithm, a

separability measure, and an error minimization procedure

using the Fletcher-Powell algorithm ( 54). Again, the proce-

dure is certainly suboptimal because of the assumption of

linearity. Results reported, though, show that this classi-

fier is much faster and more accurate than the maximum like-

lihood classifier with the same number of features. This is

due to the fact that the procedure uses different feature

subsets (with a restriction on their number; at each node,

compared with only one feature subset used in the one-stage

maximum likelihood classifier.

Kulkarni and Kanal ( 55) used dynamic programming and

branch-and-bound methodologies in t;*e design of hierarchical

classifiers. The criterion of optimality they used is a

weighted sum of the probability of error and the average

measurement cost incurred in classifying a random sample.

The design assumes that the features used at the nodes are

statistically independent and that the decision at each node

is a function of only that particular feature observation,

r
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the design using, only one best feature at each tree node.

Further, the design of the optimal tree assumes a very low

error rate for the tree, a very restrictive assumption since

in many cases a high error rate is specifically the reason

why a layered classifier was selected, i.e., to improve the

accuracy. Although the authors presented some methods to

reduce the complexity of their design algorithms, the exam-

ples they used involve only a small number of classes and

features.

In 1977, Parkih (56',	 compared several classification

techniques of clouds, including hierarchical design. H ow-

^ver, his paper offers no new insights or major results that

would help improve the state of the art.

Also in 1977, Sethi and Chatterjee (57) developed an

algorithm for the design of an efficient decision tree with

application to pattern recognition problems involving dis-

crete variables. A criterion function was defined to esti-

mate the minimum expected cost of a tree in terms of the

weights of its terminal nodes and costs of the measurements,

which then was used to establish the search procedure for

the efficient decision tree.	 The cor.cept of prime event%

was used to obtain the number of nodes and the corresponding

weights in the design sample. No optimality claim was made,

but the procedure was found to lead to the optimal tree in

most of the cases.	 The procedure uses only one feature at

i

i
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every node, and its applicability to remotely sensed multis-

pectral data is very doubtful.

ti 
In 1978, Breiman (58) presented a procedure for build-

ing a binary classification tree. He used a criterion func-

tion that is only a function of the parent node and the two

descendent nodes.	 He used one best feature at every node.

He also reported on another regression algorithm developed

r
at Survey Research Center, University of Michigan (59), in

whir.h the criterion function tries to reduce the variances

of the two descendent nodes as much as possible from the

variance of the parent node.

Rounds (60) in 1979 developed a binary decision tree

algorithm, but again one feature is selected at every node.

The approach is a nonparametric one, based on the Kolmogo-

r,v Smirnov criterion.

Dattatreya and Sarma (61) in 1981 presented a multis-

tage binary tree "minimum-cost" classifier, when general

cost functions are associ p ted with :he tasks of feature mea-

surements. The optimi2ation of the binary tree is carried

out using dynamic programming. Howevov, one feature is only

selected at every node.

In summary; most of the work done with multistage clas-

sifiers often imposed too restrictive assumptions or condi-

tions, such as using one feature only at each node, or hav-
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inp, a linear discriminant function.	 Moreover,	 very few

results have been reported on situations where the Hughes

phenomenon occurs, namely, working with a limited set of

training samples.

The major contributions of this research are then:

1. The development of some theroretical results that

clearly show the dependence of the accuracy of the

estimated statistics of the classes under considera-

tion on the number of training samples used to esti-

mate the statistics of those classes, as well as on

th- number of features used.

2. The development of an error estimator which is par-

ticularly useful when the number of training samples

is limited,	 and which i3 suited for a binary tree

classification procedure. This estimator, which

allows the selection of a "near optimal" feature sub-

set at every node, has no restrictions on the number

of features that can be used at any node.

3. The incorporation of the above error estimator in a

binary tree procedure, showing the usefulness of such

a procedure in predicting the optimal features that

lead to the best accuracy that can be attained given

a fixed sct of training samples.

i

i

R
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r

1.3 Summary of Contents

In chapter 2, some parameter considerations for a mul-

tistage binary tree classifier are addressed in detail. The
r

t
	

Hughes phenomenon is elaborated upon, and a technique known

as "sumultaneous diagonalization" is introduced. 	 Feature

selection techniques are also treated. A data simulation

algorithm that is repeatedly used in the research is also

treated.

In chapter 3, an approximation algorithm to the proba-

bility of error is proposed that takes into account the

Hughes phenomenon.

Chapter 4 presents experimental results on real and

simulated data.

Finally, chapter 5 summarizes conclusions about the

study. Some analytical details, together with computer

listings and training data are placed in appendices.
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CHAPTER 2

PARAMETER CONSIDERATIONS

FOR

A MULTISTAGE BINARY TREE CLASSIFIER

2.1 The Hughes Phenomenon

One of the major needs for a decision tree classifier

originates from a dimensionality problem often referred to

as the Hughes Phenomenon (25). A considerable portion of

this research is directed towards understanding the Hughes

phenomenon.	 Figure 2.1 illustrates the phenomenon concep-

tually. In the presence of a limited training sample size,

the mean recognition accuracy as a function of the measure-

ment complexity (number of features for our purposes) exhi-

bits a peaking effect.	 Contrary to intuition,	 the mean

accuracy does not always increase with additional measure-

ments. Further, peaking of the curve shifts up and to the

right as the number of samples increases, disappearing in

the case of an infinite number of training samples (complete

knowledge of the underlying distributions).

Figure 2.2 suggests a concept for one possible explana-

tion of this phenomenon.	 Figure 2.2a shows a hypothetical

F

F

t
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graph of class separability plotted vs. dimensiona.

dimensionality increases, so does class separabili

decreasing function of dimensionality) until it saturates,

and any further increRse in dimensionality does not have a

significant effect on class separability. 	 But this is not

the only effect on the mean accuracy.	 With the presence of

a fixed, limited training sample size, any increase in

dimensionality necessarily results on the average in a deg-

radation in the accuracy of statistics estimation of the

class distributions.	 Thus, conceptually, one should expect

a curve similar to that of Figure 2.2b.. Further, as the

number of samples increases, the curve should shift to the

right, i.e., for any given dimensionality, the larger sample

size should provide a better estimate of the true distribu-

tions.	 Assuming these two effects are the dominant effects

on accuracy, adding the two effects results in Figure 2.2c,

a curve similar to Figure 2.1. Based upon this concept of

the phenomenon, the solution to the problem lies in being

able to predict quantitative-.y how the number of samples

present affects the accuracy of the estimated statistics .

Especially in remote sensing applications of pattern recog-

nition methods, training samples are limited as ground truth

is often not present or difficult to get. Thus, the impor-

tance of the Hughes phenomenon, becomes evident, as well as

the validity of this conceptual explanation of it.
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The Hughes phenomenon was studied by many researchers.

(See (26-42)). Hughes (25), who was one of the earliest to

introduce it and treat it in some detail, tried to explain

it from a nonparametric point of view. The explanation

given by Wacker and Landgrebe (62) is of another nonparame-

tric case, where the Eu2lidean distance measure is used for

discrimination among classes.

Several researchers (28-34) tried to study the effect

of .limited training sample size and independence of measure-

ments on the recognition accuracy.

In 1979, Trunk (38) provided a simple example in which

he showed theoretically that the probability of error

approaches zero as the dimensionality increases and all the

parameters are known in a two-class problem, but it

approaches one-half as the dimensionality increases and the

parameters are estimated.

In remote sensing applications, where maximum likeli-

hood classifiers are frequently used, and where the assump-

tion of class-conditional multivariate normally distributed

data is invoked, not much work concerning the dimensionality

;)roblem has been reported yet. Wacker and E1-Sheikh (40-42)

presented some papers dealing with dimensionality problems

for two-class Gaussian problems. Their results again show a

Hughes phenomenon occuring with finite training data.
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It then follows that any error estimator in a multis-

tage classification algorithm that can claim some optimality

in results from an accuracy point of view, should b:: able to

predict when/if a peaking occurs in the curve mentioned ear-

lier. It is this key problem that this research is attempt-

ing to solve, i.e. the development of an error estimator

that can accurately predict the Hughes phenomenon.

Working with multispectral data, one almost always has

to work with multiple feature measurements and multiple

classes. In this research, we propose a binary tree multis-

tage classifier. This means that any node in the tree is

either a terminal node or is further subdivided into two

nodes (with statistics corresponding to two classes).

The advantages of a binary tree procedure are the fol-

lowing:

1. Working with two classes allows a theoretical

understanding of the problem.	 Many pattern recog-

nition results that apply to two-class problems

fail to do so in multi-class ones. This is parti-

cularly true in the "simultaneous diagonalization"

technique that will be introduced shortly.

2. Most feature selection algorithms used in pattern

recognition applications generally,	 and in remote
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sensing applications specifically, are optimal only

when applied to two-class problems. For multi-

clans problems, a separability criterion is aver-

aged over pairs of classes and thus is optimal only

in an average sense. Working with a binary tree,

then, should provide us with both convenience and

accuracy.

Working with multiple features, several properties are

desireu in these features which will make further analysis

easier:

Une;oupled (Independent) Features. Uncoupling of fea-

tures from one another simplifies analysis a great deal as

it permits evaluating the effect of each feature separately

from other features.

Ordered Features. If the features can be ordered, or

at least approximately so, in terms of their effect on the

probability of error, then the process of feature selection

would be made easier.

Optimal Separability.	 The features should be optimal

with respect to the probability of error for two di.2tribu-

tions at hand. Putting it in different words, the feature

subset should be tailored to the separability of the two

distributions.
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To this end,	 a technique known as a "simultaneous

diagonalization" (63,64) is discussed in the next section.

2.2 Simultaneous Diagonalization: Theory

Let E l and E 2 be the estimated covariance matrices for

classes 1 and 2, respectively. We seek a transformation

matrix A such that

A E 1A 	 = I	 A E 
2 

A	 o A
	

(2.1)

uhare I is the identity matrix and A is a diagonal matrix.

This transformation would uncouple the features, while

not affecting the probability of error because the latter is

inv, , riant under linear transformations. We proceed to find

such a transformation as follows. ( ' or more details, see

(2), pp ^ 31-35.)

Let 0 and 4^ be the eigenvalue and eigenvector matrices

of E l , respectively; then

0-11(PT E1 0 0 -11 - I
	

TEI^ = 0)
	

(2.2)

TE) ( E 2 It 0 - = K	 K is a general matrix	 (2.3)
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Next, we desire to diagonalize K.	 To find eiget ; ;alues

of V. it is necessa,°y to solve the equation

IK - 
Al l = 0	 (2.4)

Replacing K and I in (2.4) by (2.2) and (2.3), we get

10 
,1 0 T F 2 m T E 1 F U- I	 0	 (2.5)

0r

( 0- '
 0

T I I E 2 - aEl I 1 4) 
0-' I	 = 0	 (2.6)

Since C)-!III T  
is nonsingular, it follows that

F. 2 - a F, 1 I	 = 0	
(2.7)

or,

IE
1 1 E_ - aI^	 0

	
(2.8)

So, only the eigenvalue and eigenvector matrices of E11E2
need be calculated.

I +_
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The eigenvalue matrix is then A , and the transpose of

the eigenvector matrix, A T , serves as the transformation

matrix.

The idea behind simultaneous diagonalization is to

transform the original features into a new space where the

features are independent and then choose a subset of these

features in the new space which is optimal with respect to

the probability of error.	 This is illustrated in Figure

2.3.

2.3 Feature Selection

Before proceeding to discuss the approximation algor-

ithms to estimate the probability of error, we digress

briefly to discuss how the features are ordered.

The literature offer-- many studies made on comparing

different separability measures and their effectJveness in

choosing the best feature subset (see (9,13,18,62 5)). It

appears that the Bhattacharyya distance is one of the most

suitable separability measures for distinguishing between

classes.	 Thus,	 it will be used as a basis for feature

selection. The fact that the features are independent

allows us to determine the effect of each feature on the

probability of error separately.
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The Bhattacharyya distance for two normal distributions

can be expressed as follows:

B = -g (MCM 2 ) T CE1 ±E 2 , ^M 1 -M 2 ) + 2 In

2	 I E 11
	 I

1	 2

(?..9)

After the simultaneous diagonalization transformation,

however, B can be expressed as:

2

B	 E	
1(dli-d21	

+ 1 In 1 1 + 0

i =1	
4 a i	 i+ 1	 2	 2C X

	

i))] (2.10)

where d ij is the jth element of the transformed class-condi-

tional mean: D i = AT M i ; and	 a i is the ith diagonal element

of A.

Thus, it io dear that for every feature i, B can be

calculated separately. The feature with the largest B is

the best feature, the one with the second largest is the

second best, and so on.	 Also,	 the two best are the best

two, and so on.

X
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2.4	 Simulation Algorithm

2.4.1 Need For A Simulation Algorithm

For remote sensing data analysis, several assumptions

are commonly made. These assumptions are usually that the

data are class-conditionally distributed multivariate normal

and that the data used to train the classifier are represen-

tative of the area of interest.	 This second assumption

actually has several parts.	 The assumption is made that in

the process of training, all classes present in the scene

are found,	 and all spectral subclasses of each class are

also represented in the training data. 	 Furthermore, the

parameters of the distribution of each subclass are also

assumed to be known from the training data. Each pixel is

assumed to come from one of the training classes, and also

is assumed to be entirely of one cover type.

In actual practice, these assumptions are not met. The

number of spectral classes in the area is not known and

clustering or some other method is used to determine the

number of subclasses, in addition to estimating the statis-

tics of those subclasses. 	 Some of these methods also lead

to non-normal subclasses. In particular, the clustering

algorithm available through LARSYS truncates the tails of

the subclass distributions and so leads to non-normal dis-

tributions.

r,
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There are also questions relating to a single picture

element.	 A single pixel in Landsat data covers an area

approximately 80 meters by 50 meters. More than one cover

type may be present in this area and result in a "mixture

pixel" observation. It is not clear how the distribution of

the Spectral response of mixture pixels can be related to

the distribution of the spectral response of "pure pixels".

There has been much speculation in the remote sensing

community as to the effect of the non-satisfaction of the

basic assumptions.	 Whenever new algorithms are brought

forth, the old question is raised again, indicating that

there is insufficient understanding of the interaction of

the real attributes of the data and the theory of the algor-

ithms. At times it is not clear whether a particular

result is due to aspects of the algorithm or to the extent

the data set deviates from the assumptions.

In testing new algorithms, deviations from the assump-

tions may obscure the action of the new process. One way to

clarify the situation is to apply the algorithm first to a

data set satisfying the assumptions.

Such a data set could be obtained artificially, through

simulation. The analyst could then know: how many classes

exist in the data; the true distributions of the classes,

including normality if desired;	 the observations could

really be independent; and no pixel would be a "mixture

F`+

Vri;
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pixel". New algorithms could be studied on such a data set

with the knowledge that any "strange" effects are indeed

algorithm rather than data problems.

In many cases where simulated data have been used in

the past, the data were too artificial, in the sense that

all aspects of the image were controlled, removing the

natural variation in object size, position, and relationship

which occur in real data. This limited the use of the simu-

lated data sets in testing new algorithms.

The natural spatial information occuring in multispec-

tral data could be retained in a, simulated image by spa-

tially basing the simulation on a 71assification. It would

be even better to base the simulated data on a digitized

"ground truth" map if the spectral characteristics of the

cover types were known. By basing the simulation on a clas-

sification, the number of classes, their exact distribu-

tions, and the class of each pixel in the area are known.

If the classification was sufficiently accurate, then the

spatial information held in the classification map will be

close to the actual cover type map and actual spatial con-

tent of the original data. 	 For each pixel in the area, a

random vector distributed according to the pixel's class

statistics could be genera*?d. 	 This becomes the simulated

data vector.

C
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This simulated method was reported in LARS Technical

Report 070980 (66), and the program will be used for testing

the error estimator developed.

2.4.2	 Statistical Background

From the classification nhosen as a basis for the simu-

lation, the following are known: 	 the number of classes K,

the set of classes (w i ,	 i=1 ...K ),	 the class distributions

(f( w i),i-1 .... K ),	 their means and covarianees ( P  and E i ,

i=1 .... K), the number of channels p, 	 and the class of every

pixel in the scene.

From classical statistics:

(1) Let X:px1,	 A:pxp,	 and b:px1.

If X %N (O,I P ), then Y = AX + b ti N (b, AI r A l = AA  )

(where I is the identity matrix having dimensionality

P)•

(2) Let Y be a symmetric, positive definite matrix. Then

there exists A, such that

AA I =	 Y	 ( A is denoted E ^2)

To simulate a pixel which was a member of class i in

the base classification, N(O,I P ) (the random vector for each

pixel is independent of other vectors) is generated.	 (See
1

Appendix A.)	 Next Y = OX +ii i is calculated;	 it is then a
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random vector from the population N(u i ,E i). This process is

repeated for each pixel of the base classification and the

random vectors thus generated are stored appropriately,

i.e., so as to correspond to their simulated spatial loca-

tion.

The program requires as an input a classification map

stored on a results tape.	 The results tape has the class

statistics for p-dimensions also stored on it. The program

then, uses the results map and the stored statistics to gen-

erate a p-dimensional data set, which is stored on a user

specified output tape in LARSYS format.

Appendix A provides a mathematical derivation related

to the generation of normally distributed samples. Appendix

E provides a Fortran program listing for the simulation pro-

Pram.

With all the preliminaries discussed, we are now ready

to begin, our discussion of the error estimator algorithm.



37

CHAPTER 3

PERFORMANCE ESTIMATOR:

APPROXIMATION TO THE PROBABILITY OF ERROR

3.1 The Likelihood Function

As mentioned earlier, our goal is to develop a perfor-

mance estimator that can predict where the peak in the

Hughes curve occurs. Some of the most serious difficulties

facing researchers in trying to estimate the probability of

error in multidimensional analysis are:

1. The need to carry out a multiple integration on

the multivariate probability density function. Most

often, this integration is almost impossible to

carry out analytically, and numerical integration

that is often costly has to be perfomed.

2. The measurement feat l ires are often correlated,

making it difficult to assess the importance of each

feature separately on the probability of error.

3. In most of the cases, one has to deal with multi-

class problems (greater than 2) which further com-

plicates multivariate probability density functions.
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It would be much easier, therefore, if one could work

with a function that is one-dimensional but carries all the

information present. Fortunately, since we are looking at

two classes at a time in a binary tree procedure, such a

function does exist, and is called the likelihood function

(minus the log of the likelihood ratio). See, for example,

(66).

The likelihood function, denoted h(X), is given by:

h(X) = -In p ( X/w 1 ) / p(X/w 2 )	 (3.1)

where

p(X/w i ) is the probability density function of

X given wi.

In remote sensing applications, the assumption of mul-

tivariate class - conditional normal distributions is almost

always invoked, and will be consistently used in this work.

Using this assumption, p(X/w i ) becomes:

p/2
P(X /wi 	

n)

) =	 exp (-^(X T-M i r )r -1(X-Mi))(]).2)

(2	 I r  I 
'^

where M  is the mean vector of class i.

E  is the covariance matrix of class i.

p is the number of dimensions.

a
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In practice,	 M  and E 	 are estimated from 1

tatisties and are replaced by M  and Ei.

The Bayes decision rule for minimum error may t

ten as follows:

P(w I /X)	 c	
P(w2/X)
	 -► 	 X [	

wl

w2

The a posteriori probabilities P(w i /X) may be

lated from the a priori probabilities P(w j ) and the

tional density functions p(X/w i ) using Bayes theorea

P(w i /X) = P(X/w i )	 P(w i ) / P(X)
	

(3.4)

Since p(X) is common to both sides of the inequality

of (3.3), the decision rule can be expressed as:

w^

P(X/w 
1) P (w l )	 < P(X/w 2) P (w 2 )	 -► X e	 (3.5)

w^

P( X/w 1)	 P(w2)	 y1
B(X) _	 ^	 i	 X e

} (X/w 2 )	 P(wl)	 w2
(3.6)

h(X) can then be written as:
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h(X) _ -in ( lX)1	 ^(X- Z T E11 (?°...;1)	 1S(XyM2^T	 1 (x-M2)
t

k +15 1 n	 E1 I	 >	 P(w )	 w251	 ^ In	 1	 II c	 (3. 7)
E2 (
	 P(w2)	 w 

w
In practice, since M 	 and E  are replaced by M  and

€<	 F.i, h(X) becomes (after moving In P(w l )/P(w 2 ) to the L.11.S.):
%

h(X) ° &̂ (X-M )T E-1
1	 2	 2(X-M ) - ^(X-M )T E2

	
2(X-M )1	 1 

^	 !w
In I E ll - In P(w l )	 > 0 -► 	 X e	 2	 (3.8)

IE^	 P(w2)	 <	 w 1

The Bayes test for minimum error reduces then to look-

ing at the value of h(X), assigning measurements with posi-

tive values to class 2, and measurements with negative

values to class 1.

Notc that h(X) is a one-dimensional random variable.

Th- problem then is to know, or estimate, the probability

density function of h(X). Once that is known, the proba-

bility of error can be obtained by carrying o:it a scalar

integration.	 Figure 3.1 shows the probability density

functions for h(X) given either class 1 or 2.

The probability of error can be calculated as:

E = p(error) = p(error/w l )P(w l ) + p(error/w2)P(w2)

(3.9)
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Let the domain or decision space of X be divided into

regl ons i 1 and r 2 .	 Then, if a sample belongs to w 1 , an

error occurs whenever Xcr 2 . Similarly, if a sample belongs

to w F , an error occurs whenever Xcr 1 . Thus,

C -V (Xcr 2 /w 1 ) P(w 1 ) + P (Xcr 1 /w 2 ) P(w 2 )	 (3.10)

In terms of the probability density functions of

h(X/w i ), this becomes:

an

2

C	 p(w )	
m

1 
f

p ( h/w l dh + p(w2)	 p(h/w ) dh
 f

0	 0

(3.11)
e1

+	 e
2

The probability of error is then the area under the

two curves in Figure 3.1 multiplied by the prior probabili-

ties. The objective is to develop an algorithm which will

approximate the class-conditional probability of h(X), and

hence, the probability of error.

3.2 Performance Estimator

Fukunaga and Krile (64) developed an algorithm that

approximates h(X).	 This algorithm assumes there are two-

class multivariate normal distributions,	 and was tested

using one eight-dimensional simulated data set.
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The algorithm, however, assumes the training samples

are enough to reasonably estimate the true statistics of

the distributions, and hence does not take into account the

Hughes phenomenon. Put in other words, in situations where

the training samples are few and do not reflect the true

statistics of the distributions, the algorithm will treat

the statistics obtained from the training samples as a

"perfect" estimation of some "wrong" distributions, when in

fact they are an "imperfect" estimation of the true statis-

tics.

It is this algorithm, proposed by Fukunaga and Krile,

that we will use and modify to take into account the Hughes

phenomenon, Therefore, it seems appropriate to explain the

algorithm in detail, and then discuss the modifications

made to it.

3.2.1 The Norma. Assumption

Looking at equation (3.8), since h(X) is a quadratic

function in general of a normal random variable X, it can-

not itself in general be normally distributed. However, in

the case where El=E2, h(X) becomes a linear function of X

and hence is normally distributed.

In most cases, however, E 1	 E2.	 Fukunaga and Krile

still tried to assume that h(X) is normally distributed.
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An algorithm was developed and tested in this research

under the assumption that h(X) is normally distributed

kalthough E1 ^E2 ) but results showed it to be a very poor

approximation of the probability of error and hence it was

not further analyzed.

3.2.2 The Modified Gamma Distribution Assumption:

Fukunaga and Krile Version

Consider h(X) as given by equation (3.8). Applying

the simultaneous diagonalization technique described ear-

lier, E l is transformed to the identity matrix I, and E 2 is

transformed to a diagonal matrix A . The transformation

matrix is denoted AT , or the transpose of the eigenvector

matrix A.

Without losing generality, we assign the origin of the

coordinate system such that:

m l = 0	 and	 m2 = M1 - M 2	 ( 3. 12)

With Xew l , h(X) can be written as another function of

Y, where Y=A T X, as follows:

E	 f
h(Y /wl) s Y f Y -(Y-;)T n-

1
 (Y D) + In 

1̂ f

E 2 I
P(wl)

2 In

T"	

P(w2)
" 

where D = A m2.

lr^T

(3. 13)
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R

Since the features are now uncoupled,	 this can be

written as:

p	 2	 1	 2	 P(w1)
h(Y /w 1 )	 E ( y i - - (y i - d i ) -In a i ) - 2 In

i • 1	 ai
;(w 

2 )

2	 (3.14)
d 2

Z (0- 1 ) ( y i + i ) - (a i	+ In ai))
i^l	 ai	 ai-1	 Ii-1

P(w1)
2 In .

P(w2)

where p is the number of dimensions.

d i is the ith element of vector D.

Now, we have h(Y/w l ) in terms of p independent Gaus-

sian random variables y i , each of which has zero mean and

unit variance with respect to class wl.

Defining a new transformed variable Z and a trans-

	

formed difference- of-means vector	 as follows:

Z 	 (A
- ^ A

T ) (X-m2)
	 (3.15)

V	 (A- AT ) m2 - A- D
	

(3.16)

{
We



P(wl)
- 2 In .

P(w2)

(3.18)

r
a
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h(X/w 2 ) can bt: expressed ab a function of the new

variable Z and v by substituting ( 3.15)	 and 0.16) into

(3.8) as follows:

ET	 T	 I El)	
P(wl)

r ,	 h(Z/w 2 )	 ( Z+v)	 A ( Z+v) - Z Z + In	 - 2 In

	

E^	 P(w2)

(3.17)

Again, since the features are -neoupled, we can write

h(Z/w 2 ) as follows:

,.	

i	 i

p 	
2	

P (w )
h(Z/w )	 E (A (z +v ) - z2

i - 
In A i ) - 2 In . 1

2	 iml	
i	 P(w2)

=	
ai d

E	 ((A
i 	 i
-1) (z +	

i )
2 - di
	

+ In Ai))
i=1 	 Ai-1	 Ai-1

Again, we have an expression in terms of p independent

Gaussian variables z i , each of which has zero mean and unit

variance.

Next, we define the following quantities for conveni-

ence:

alia
	

(3.19)

blis di/(Ai-l)

	
(3.20)

a 21 A
i - 1
	

(3.21)

S
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b	 A	 d /(A i -1)	 (3.22)
2i	 i i

P	 ( 3.23)C	 E (In A i + d i /(A i -1) + 2 In P ( w1)/P(w2)
i =1

	Substitut i ng equations ( 3.19)-(3.23)	 back into equa-

tions (3.14) and (3.18), we get:

P ( 3.24)h(Y/w l )	 E ( a li ( yi + b li ) 2 )- C
i=1

h(Z/w 2 ) =	 E	 (a 21(zi + b 21 ) 2 )- C	 (3.25)

i=1

	Referring from now on to Y and Z as	 and to y i and

z i as i , we find that h(&^ /w l) and h(^ /w2 ) have the same

functional form, except for the values of ali ► bli, a21, and

b21 •

Theorem 3.1

If X = (x l ...... xp ) where the xi are a sample from a

	

Normal ( O,a 2 )	 population, then the random variable V o

P

iEli /
a2 has a X 2 , or chi-square, distribution.

s
Proof:

See (67), P. 16.
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r

Theorem 3.2

if sI.....,s^
1 
are independent random variables, 	 then

the density of their sum s1+s2+...+sP equals the convolu-

tion of their respective densities.

Proof

See (68), p. 189.

Examining equations (3.24) and (3.25), shows that the

density functions of h(E/w l ) and h(" 2 ) can be obtained by

convolving the densities of p non-central (because of the

bli and the 
b21 

terms) X variables having multiplicative

constants a ll and a 21' and adding a shift parameter C.

w

The density of h(t,) is divided into three parts:

Pkr

Vkr 
ca E 

0 aki (Cki + bki ) 2	 for aki > 0	 (3.26)

-ki

Pks

Vks 	 E	 akj 
( E kj 

+ bkj ) 2	
for akj < 0	 (3.E7)

a kj K 0

C	 F	 (ln A i + d  M 1 -1) + 2 In P(wl)/P(w2)	
(3.28)

1-1

(P - P kr + Pks )	 (k - 1,2)

The density function of V kr' Pkr (h), is the convolu-

tion of p kr densities of squared Gaussian varia b les having

multiplicative constants. 	 All p kr densities lie above the

i
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positive h axis with ad 0. Similarly, the density func-

tion of V ks' pks(h), is the convolution of p ks densities of

squared Gaussian variables with multiplicative constants.

All p ks densities lie on the negative h axis with a kj< 0.

A gamma density function is given by:

8p ^a
	 X P x

P-1 e_"/r(p)
	

(3.29)

Let k be a positive integer. 	 With p=1/2k, and  =112,

the gamma density g(P r X) is referred to as the chi-squared

density with k degrees of freedom. 	 (See (67),p.13).

Theorem 3.3

Ii X 1 ...... X n are independent random variables with

gamma distributions (p 1 ,a), .... I (P X), then Y=X1+.... +Xn

has a gamma distribution (p1+...+pn,a).

Proof

See	 67). p. 15.

Since what we have is the summation of chi-squared

random variables (special form of a gamma distribution),

both p kr(h) and pks(-h) (Pks(h) reflected to the positive

side) can be reasonably approximated by a general gamma

form, especially for large n kr and n ks , as follows:
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e  h a a 
-h/E

k	 g(h)	 h '_ p

s	 Fa+1 T(a+1)

(3.30)

0	 h < 0

The parameters a and S can be determined so that the

mean n and the variance a 2 of the "true " distribution

match those of the approximation.

Next, we calculate the expected values n kr and nks of

,fkr' and V
ks , and the variances a2	 and 02

_	 Pkr	 2	 a	 > 0

a
Vkr	

> 0 aki (Cki + bki )	 ki -

ki-

Pkr

aki > 0 a ki (&ki + 2 
b
ki Eki + bki )

Pkr
E(V

kr )	 nkr =
	 E	 (1 + 0 + bki)
a ki > 0

or,
Pkr

k 
	 E	 aki (1 + b kTI

	

	 i)	 for pkr(h)	 (3.31)
aki > 0

(&ki has zero mean and unit variance)

Similarly,

Pks
nks =

	

	 E	 akj (1 + bk i )	 for Pks ( h )	 (3.32)
akjr 0

4'
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pkr
E(Vkr ) = E( E E	 aki akj (Cki+bki)2 

(Ckj
+bkj)2

a ki , a kj > 0

pkr
= E(	 E	 aki (E ki + 4 bki Eki + 6 b

ki Eki
aki > 0

+ 4 b
ki Eki + bki )) + 0

( The zero term comes because &ki is independent from

C kj and hence they are mutually orthogonal as E(&ki) = 0)

pkr

	

E	 aki (3 + 6 bki  + bki)	 (3.33)

aki t 0

where E(Cki)	
1.3.	 ...	 .(n-1)	 for n even

0	 for n odd

pkr
E2 (Vkr) =	

E	 aki(1 + bki ) + 0

aki t 0

pkr	
(3.34)=	 E	 aki(1 + 2 bk i + bki)

aki > 0

Var (Vkr ) = a k r '-- E(Vk r)	- E2 (Vkr)

pkr

	

: 2	 E	 aki (1 + 2 bk	 (3.35)

	

i )	 for pkr(h)
aki > 0

-A
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Similarly,

pks
a ks	 2	 E

0a kj K 
a2 0 + 2 bk^)	 for pks ( h) 	 (3.36)

For a random variable h, which has a gamma distribu-

tion with parameters a and $, (See equation (3.30) ), then

E(h) _ (a+ 06	 Var (h) - (a+ 1)S 2	(3.37)

(See (67), p. 44)

Therefore, a kr' aks' 0kr' 0ks' can be calculated as:

akr °(nkr	 o/ kr ) - 1	 (3.38)

aks =(nks 	 oks ) - l	 (3.39)

"2
akr ° a kr / nkr	 (3.40)

.2

S ks	 °ks / nks	 (3.41)

The density function p(h/wi),i=1,2, which is our final

goal, is then the convolution of two gamma densities with a

constant shift: one is distributed on the positive side of

the h-axis, and the other on the negative side.
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However, the convolution of these two gamma

densitities is hard to obtain in an explicit mathematical

expression, because in general, a is not an integer. Since

we do not favor a numerical integration technique for cal-

culating the error rate, a "modified " gamma distribution

is proposed as follows:

(h-c) y e- 01-0/6
for h >_ c

g " (h) r
ay+l r(Y+1)

(3.42)
0	 for h < c

Y	 0 or 1

In other words, Gamma density curves are roughly cate-

gorized into two types: one is exp(-h/R), and the other is

h exp(-h/8), depending on whether a obtained by (3.38) or

(3.39) is larger than or smaller than a threshold value of

0.35. (The threshold value of 0.35 is a compromise value,

chosen in an attempt to match the maximum value and loca-

tion of the maximum value of the gamma density to the modi-

fied gamma approximation. 	 It is further explained in

(64)).

The procedure proposed by Fukur.aga and Krile, then, is

as follows:

1) Calculate n kr	 'nks'akr' 0 k	 from	 equations

(3.31),(3.32),(3.35), and (3.36)
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2) Calculate akr and aks form equations (3.38) and

(3.39).

3)Ykr = 0 if a kr ^ 0.35, and Y kr	 1 if akri 0.35.

Similarly forYks .

4) Calculate 
dkr ' 6ks'	 and ckr + cks by the following

t ',

equations:	 (modified	 forms	 of	 equations

(3.38)-(3.41))

s  2( nkr - c kr )
	

-	
( 3.43)i	 Ykr	 o 2	 1

kr

2
(n ks ^cks)	

- 1	 (3.44)
Yks	

2

cks

"2

dkr	 ckr / (nkr - ckr)	
(3.45)

.2

6 k	 cks / ( nks 
_ 

cks)	
(3.46)

Equations ( 3.43)-(3.46) are the same as (3.'>4) - (3.41),

except for the shift of the mean ckr or oks.

The convolution of pkr (h) and pks (h), pk(h),k:1,2, can

be obtained as an explicit expression.	 The result is

(See (64) for details)
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Ykr	 Yks

Pk ^(t) 
=	 6ks _—	 t + (Ykr+ Yks)6kr	 t/6ks

	

(b kr + 
6ks) Ykr+1	 6ks	 bkr+ 6ks

for t <_ 0

	

Yks	 Ykr
b kr	 t +.( Ykr+ Yks)6k8	 a - t/bkr

b	 + b	 Yks+l( kr	 ks)	 16kr	 bkr + 6ks

for t 2 0

(3.47)
Defining the distance d as :

	

d  = C - (c kr - Cks)
	

(3.48)

We can find e l by integrating pl(t) form d l to	 and

e 2 by integrating p 2 (t) from to d 2 . The term d k brings

the shift parameter C back ino the picture, and also

accounts for the displacement of the (h/w k ) approximations

by c kr and e ks . In general,

6 
D * (d k ) M	 Pk*(t)dt

_m

Ykr+1	 Yks

6ks	 -dk +1 + (Ykr+ Yks) 6 kr	 edk/6ks	 d <0

(T6 k+ 6ks	 6ks	 bkr + 6ks	 k

Yks+1	 Ykr
b kr	 dk	 (Ykr+ Yks) 6 ks	 -dk/6kr	 >

-1

1 - 
6 kr 6 ks	 bkr + 1 +	 6 kr + 6ks	

e	 + dk_0

(3.49)
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where r (d k )	 is the approximation for Prob(h/wk40).

Thus, the approximated values of recognition errors are:

'j	el - P(w l ) (1 - D^(dl))
	

(?.50)

e2	 P(w 2) (D*(d2))
	

(3.51)

3.2.3 Proposed, Modified Algorithm

Figure 3.2 shows a flowchart of Fukunaga ' s and Krile's

algorithm. The algorithm assumes that the training statis-

tics are an accurate representation of the true statistics

of the two distributions. This being the case, the proba-

bility of correct clas „ ification that the algorithm pro-

jects is monotonically non-decreasing as a function of

dimensionality. It is this drawback in the algorithm that

we are trying to correct such that the algorithm would take

into account the number of samples used for training.

Looking back at the calculation of the parameters of

the modified gamma distribution, we see that all of them

	

w	 w

depend on two parameters, n k and a k , or the mean and vari-

ance of h. If these parameters are inaccurate, then all of

the other } p arameters will be affected.
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Start

kead M 1 , M2

E l . E2

Do Simultaneous
Diagonalizatign to

Get D, A, A

Order Features
Using Bhattacharyya

Distance

Do t = 1, Number of Features

Calculate Parameters
Of Gamma Distributions

n, a, a, d, c

Calculate Probability
of Error Using

First I Dimensions

Continue

Stop

Figure 3.2 A Flowchart of Fukunaga and Krile's
Algorithm.
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We propose to look t the way these parameters, parti-

cularly a i and o2, are distributed as a function of the

number of training samples.	 We then want to incorporate

that information in our estimation of o f and a 2, such that

the algorithm has a more realistic picture of what the

training samples represent.

Estimating the probability density function of of and

^2
a 2 is by no means an easy task. For the amount of informa-

tion that we have, such an estimation is very involved and

impractical. A disc..ssion of the difficulties one faces in

attempting; 3ueh an estimation is found in Appendix B.

A2
We propose instead to look at the variances of o f and

o2, and then incorporate that information in our estimation
of these parameters.

A 2	 A	 A /^	 A

Let us look at o 1 , (Var ( h /w l )) and "7 2 ,	 (Var (h/w2)).

From equation (3.35), (or (3.36)):

°1	 2 E ali (1 + 2 bli
)

i=1
(3.35)

Substituting for a li and b li by their values from

(3.19) and (3.20) in (3.35), we get:

of	 2 E 0- 1/A 1 ) 2 0+ 2 di/(A1-1)2)	 (3.52)
1=1

After multiplying, this reduces to:

i	 i



c 22 • 2 (tr (A - I) 2 + 2 DT A D)	 (3.57)
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of	 2 E	 (1 - 2 /a i + ( 2 di + 1) /ai )	 ( 3.53)
Jul

In matrix form, this can be written as:

0 2 • 2 (tr (I - A-1 ) 2 + 2 DT 6-1)2 D)	 (3.54)
1

Or in terms of the original distributions:

;2- 1
 (tr (I - E21 E 1 ) 2 + 2 m2 E21 

E1 E21 m 2 )	 (3.55)

(Sae (64)).

Similarly,

a2	
P

. 2 E 
a 21 0+2b 21)Jul

2 i E 1 (A	 _ 1) 2 (1 + 2 A i d i 	 1)2 )

• 2 E	 (a i + 2 (d i - 1)A i + 1)	 (3.56)
Jul

In matrix form, 02 can be written as:

k

F
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Or, in terms of the original distributions:

02 - 2 (tr 6 1 E 2 - I)2 + 2 m2 E;1 E2 E;1 m 2 )	 (3.58)

(See (64)).

In order to calculate the variances of of and o2, we

make the following assumptions:
w

t. The original and transformed means,M 1 ,M 2 , and D

are assumed to be constant. Experience has shown

that one can approximate first- order statistics

with a relatively few number of training samples.
w

2. E i and E2 are independent. This is to say that we

will ignore any relationships that might exist

between the two classes.

Having assumed the above, the results are:	 (See

Appendix C for the complete derivation)

P

	

var(o') - 4 E	 2 n+ n + n n	
43	 + n + '8

i-1	 ^' i	1	 2	 1 2	 A3	 1	 2

	

2	 2	 2	 2
8	 32	 48	 48	 64	 4d1	 Sdi	 14d i 	16d1

	

+ 2 + n n +	 2 + 2	 + n 2 n 2 	 n + n + n n +	 2
n2	 1 2	 n 1 n 2	 nln2	 n1 n2	 1	 2	 1 2	 n2

2+ 32d1
	 + 1	 8 + 8 + 128 + 40 + 40 + 48 + 48 + 512

2	 `+	 n	 n	 n	 2	 2	 3	 2
n 1 n 2	 ^'i	 1	 2	

n 
1 2	 n1	 n2	

n1	 n2	 n1 2

_...	 A..
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1920 	 5 7 6 	 5 7 6
	 2112	 2112	 2304	 2	 4	 8

+ 2 2 + 3 	 4- 3	 + n 2 n 3 + n 3 n 2 +	 + 4d	 -- +
n 1 n 2	n1 n 2	n2n 1	n1n 2	n1n 2	n1n2	 i n 1	n2

8
k	 + n2 +

40
+	

64
n1n2

256 96+ n2n
48+ n 288+ --- 3 352+ n2 n2 384+	

ln2n3
n2 +

n 
n2

r'	 1 2 1 1 2

+ 4d4 2 +	 8 + 40 + 24	 + 48 +	 88	 + 96 (3.59)
i n

 n2 n2	 n 1 n 2 n2	 n 1 n2 nln3

Var(o2)
P

4ja1 8 8 128 + 40 + 40	 48+ 48+	 + 512ai	 nl
+ n2 +

n 
I 
n 
2

.;,1

1

n2	 n3

2	 1
n3

2
n2n

1 2

512
+	 2

192 0
+ 7

.
2 +

576
3	 +

576
3 +

2112
+

2112 2304
+

3+ 4ai 2( 8(d an 1 n 2 n1n 2 n1 n 2 n1 n 2 3	 2n1 n 2 2	 3n1n2 n3 n3n 1n2 A` n1

4
+	 +

8 40
+	 +

64
+

256 96
+

48
+	 +

288
+

352
+

384
n 2 n2

2
n2
1

n ln 2 n 2 n
1	 2

n2n n3
1

n 3 n n 2 n 2 n2n3
2	 1 2	 1 1	 2 2 1

-	 4 + 4 +	 8 +	 8	 + 32	 + 48	 + 48 +	 64
+ 2A2

4
n 1 n 2

2nl 2
n2 nnl 2 2nIn2 2111n1^2 2n1n2 i n 1

4	 8	 8	 2	 40	 24	 48	 88	 96 1
n 2	 nln2	 i n 	 n2	 n2	 n 1 

n 
2
	 n3	 n2n	 n3n1 2

4d 2 ^ 2 + 4 + 12 + 8 + 16
i n2	 n 	 n 1 

n 
2	

n2	 n2n	 (3.60)

	

1	 1 2

Note that Var(a i ) and Var(QZ)  are inversely propor-

tional to the number of training samples used to estimate

the statistics of classes 1 and 2, and directly propor-

tional to the number of dimensions. In other worde, as the

number of training samples increases, the variances of our
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'r
estimates of of and o2 decrease, as expected. Also, as the
number of dimensions is increased, the variances of the

estimates increase.

Since we do not have the prr;`ability density functions

of o f and o2, we want to thiik of a reasonable way to
incorporate the effect of the number of training samples

^2
into our estimation of of and 02	 We claim that a better

2	 2
estimation of the true variances a l and a 2 consists of our

	

^2	 ^2
estimation of these variances, a l and 0 2 , plus some multi-

plicative factor of the standard deviations of these esti-

"2
mates, namely the square roots of Var((I l) and Var(0 2 ), that

were calculated above.

This multiplicative factor was chosen empirically.

Experimental results in Chapter 4 show that the variance of

the probability of error generally increases with increas-

ing dimensionality, especially in the presence of a very

limited training data set. Results also show that the

probability of error is inversely proportional to the num-

ber of training samples. Moreover, it is very sensitive to

the number of training samples in the cases where that num-

ber is not much greater than the number of dimensions.

Based on the above observations, the following empiri-

cal formula for the multiplicative .factor was used:

	

M.F. = 2 p 2 /(n l . n 2 )
	

(3.61)
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where p is the number of dimensions

n  and n 2 are as before.

The new procedure to calculate	 r., probability of

error, becomes as follows:

1) Calculate nkr' n
ks' °kr' oks' from equations (3.31),

(3.32), (3.35), and (3.36)

2) Update a kr and o ks as follows:

okr (new) = ok r (old) +(2p 2 /n 1 . n 2). (Var(okr))

oks (new)	 oks (old) +(2p 2 /n 1 .n 2 ). (Var(oks))

3) Y
kr ` 1 if akr > 0.35, and Ykr - 0 if akr < 0.35.

Similarly for Ylcs.

4) Calculate 6 kr , 6ks, and 
c kr' cks' from equations

( (3.43) - (3.46) ).

5) Calculate P k (t) and D (d
k ) from equations (3.47)

and (3.49).

6) Calculate the probability of error from equations

(3.59) and (3.60).

We are ready now to proceed to Chapter a, where sev-

eral experimental results are shown.
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1	 Introduction

Some results on feature selection techniques will be

presented first.	 Next, several experimental results illus-

trating the Hughes phenomenon are shown. Results comparing

probabilities of error predicted by the proposed algorithm

as a function of dimensionality as compared to experimental

observations are then presented for aircraft and Landsat

data.	 Results are obtained for both real and simulated

data. Finally, twc binary tree classification procedures

that make use of the algorithm are presented to illustrate

the usefulness of the procedure.

The Aayesian decision rule with assumptions of 0-1 loss

function, equal a priori probabilities , and multivariate

normal distributions is used as the decision rule in all

experiments when classification is involved.

Detailed training and test field descriptions for all

the experiments conducted are found in Appendix F.
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4.2 Experiments on Feature Selection Techniques

In this section, some experiments on different feature

selection techniques are presented. The purpose of conduct-

ing these experiments is to choose an effective feature

selection technique, particularly when dealing with a small

number of training samples.

Experiment 4.1

Two classes of wheat and corn are selected from multis-

pectral scanner (hereafter referred to as MSS or aircraft)

data of the 1971 Flightline 210 from the Corn Blight Watch

Experiment,	 and classified.	 The data was collected on

August 13, 1971. Part of the selected data is used for

training and a much larger portion is used for testing. The

number of features used for classification varies from one

to twelve, and the number of training samples for each class

is chosen such that it is much higher than the number of

features (265 samples for wheat, 569 samples for corn).	 A

principle components (Karhunen-Loeve) transformation is

applied to the data, and then three feature selection tech-

niques are compared:

1) In the first feature selection method, the features

are ordered according to the largest eigenvalues

resulting from the K-L expansion. 	 This method,

referred to hereafter as the K-L ordering method,
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assumes that the best feature is that which corres-

ponds to the largest eigenvalue of the mixture covar-

iance matrix of the whole data set, the second best

corresponds to the second largest eigenvalue, ...etc.

This ordering then imposes the condition that a fea-

ture subset with lower dimensionality is always a

subset of another with higher dimensionality. The

method then depends on the eigenvalues of the mixture

covariance matrix, and ignores any among-class vari-

abilities.

2) The second feature selection technique method is

referred to as the Transformed Divergence method

(13). The transformed divergence, T, is defined as

follows:

DT as 	 (1 - e- D/8 )	 (4.1)

where D is the divergence of two normal distribu-

tions, and is defined as follows (12):

D	 2 tr (E1-E2)(E21-E11)

+
 2

w w	 w_ w_	 w w

(M l -M 2 ) T (E 1 1 +E 2 1 )(M 1 -M2 )	 (4.23

For a given dimensionality, 	 the method chooses the

^ 	 feature subset with that dimensionality which gives

the largest value of DT-	 Unlike the K-L method, a

feature subset of lower (!imensionality is not neces-
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sarily a subset of another with higher dimensional-

ity. This method is applied to the data after it has

been K-L transformed.

3) The third feature selection technique method used

is the Bhattacharyya distance (16), defined by equa-

tion (2.9). In this method, a simultaneous diagonal-

sization technique is applied	 to the covariance

matrices of the two classes (after a K-L transforma-

tion of the data), and the best feature is then
I

selected as that which corresponds to the largest

value of B as defined by equation (2.10). The second

largest is that which corresponds to the second larg-
e

'	 est B, and so on.	 As in the K-L method, a feature
i

subset of lower dimensionality is always a subset of

one with higher dimensionality. The transpose of the

eigenvector matrix obtained is then multiplied by the

I observation vectors to transform the data, the mean

vectors and the covariance matrices are transformed,

and the data classified.

Results are shown in Figure 4.1, which plots the recog-

nition accuracy (Pcc %) as a function of dimensionality. 	 It

is seen that of the three methods, 	 the transformed diver-

gence one gives the poorest performance. The K-L method is

better, but the best method is that obtained from the Bhat-

taeharyya ordering, which saturates at a very low dimension-
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Wheat and Corn, real data
(wheat- 265 samples, corn- 569 samples)

- K• L (whole data set)
- Transformed

Diver
(after •L expansion
of whole data set)

- Bhattacharyya

Figure 4.1 Classification Results of Data in
Experiment 4.1 Using Three Feature
Selection `techniques.



69

ality. Note that as dimensionality increases, the three

curves start approaching each other, until they all coincide

when all features are used (The probability of error is

invariant under any linear transformation).

Experiment 4.2

In this experiment, 20 samples each of wheat and corn

are chosen randomly from the training samples of experiment

4.1. The test samples are the same in both experiments.

Again, the same three feature selection techniques elabo-

rated upc.n above are used. Classification results are shown

in Figure 4.2. Unlike the results in experiment 4.1, the

Bhattacharyya ordering here gives the poorest results.

Further, it does not exhibit a peaking effect, an effect

that is expected when working with such a small number of

training samples.	 The transformed divergence ordering does

much better and does exhibit a peaking effect.	 However, it

has a lot of fluctuations. The K-L ordering, on the other

hand, while giving slightly poorer results than transformed

divergence at low dimensionality, is better than the other

two techniques at high dimensionality and has less fluctua-

tions.
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Wheat and Corn, real data
120 samples each)

---- K- L (whole data set )
-- Transformed

Divergence
tatter R-L expanson
of whole data set)

--- Bhattacharyya
(20 samples /class)
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Figure 4.2 Classification Results of Data
in Experiment 4.2 Using Three
Feature Selection Techniques.
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Experiment 4.3

Another two classes, corn and forest, are selected from

the same data set described in experiment 4.1. Again, 20

samples per class are chosen randomly from a larger set of

training samples, and the three feature selection techniques

are compared. Results appear in Figure 4.3

Again, we notice that the Bhattacharyya ordering does

poorer than the other two techniques, and does not exhibit a

peaking effect.	 Transformed divergence	 gives better

results, but again has a lot of fluctuations. 	 The K-L ord-

ering is superior to both, and has less fluctuations.

It should be noted again that the K-L ordering we used

is based over the full data set. 	 It is dependent on the

mixture covariance matrix of the full data set,	 and thus

ignores any between class variabilities resulting from dif-

ferences between class covariance matrices. Because it is

always dependent on the full data set, the number of train-

ing samples used to estimate the mixture covariance mtrix is

almost always large, and hence a good estimate is obtained.

The Bhattacharyya ordering used, on the other hand,

although it takes into account between class variabilities,

depends heavily on the number of training samples used to

estimate the individual covariance matrices of the classes

at hand. Thus, as the number of training samples decreases,

.___-	 - 1
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Corn and Forest, simulated data
(20 samples each)

—K-L (whole data set)
-- Transformed

((after R L exPans^on
of whole data set)

---- Bhattacharyya
(20 sanVes/class)

—1

2 3 4 5 6 7 8 9 10 11
Best n Charnels

Figure 4.3 Classification Results of Data
in Experiment 4.3 Using Three
Feature Selection Techniques.
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poorer estimates of the covariance matrices are obtained,

leading to poorer transformations.

It appears that the transformation obtained from the

simultaneous diagonalization technique is very sensitive to

the number of training samples used to e etimate the statis-

tics of the classes at hand.	 While it produces superior

results when there are enough samples,	 it fails to do so

when the training samples are limited.

Indeed, Wu (50) published results in which he showed

that the divergence criteH,:,n breaks down when the number of

training samples is small, and no longer is zn effective

predictor of accuracy.

The K-L ordering, while ignoring the among-class vari-

abilities in the scene, is only dependent on the number of

data points in the data set used to approximate the mixture

covariance matrix, but is otherwise independent of the num-

ber of training samples used. Thus, while sacrificing the

information we get about the variability between classes in

the set, experimental results show that this sacrifice is

more than warranted when dealing with a small number of

training samples. While not claiming that the K-L ordering

gives the optimal results, we think it is a very effective

procedure i the presence of few training samples, that is

not surpassed by any other procedure that we know of, given

the circumstances above.
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Based on the above, and on the fact that the K-L order-

ing is Rn very efficient technique in that it reduces the

number of permutations of features that have to be searched

through to only the number of features present, it will he

used as a feature selection technique throughout the remain-

der of the experiments.

4.3 Experiments on the Hughes Phenomenon

In this section, some experimental results that illus-

trate the Hughes phenomenon will be presented. The objec-

tives of conducting these experiments are t- demonstrate the

existence of this phenomenon in remote sensing applications,

and to verify the hypothetical explanation of it. 	 Experi-

ments will be performed on aircraft and Landsat data, both

simulated and real.	 In all the following experiments, no

results are obtained for the dimensionality of one.	 Tabu-

lated classification results are found in Appendix D.

Experiment 4.4

The data set described in experiment 4.1 is simulated

using the algorithm described in section 2.4. Two classes,

corn and forest, are selected and 500 training samples are

tom.	 chosen for each class.	 A larger, mutually exclusive set is
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used for testing.	 The K-L method is used in ordering the

features, and the data selected is classified using the best

2,3,4,...	 ,12 features.	 Subsequently, 5 training sets are

randomly chosen from the larger training set, each set hav-

ing 20 samples per class of corn and forest. The five sets

are classified, using the same test fields above, and the

average classification accuracy, (sometimes referred to as

the probability of correct classification, or PCC ), is cal-

culated for each subset of features. Another 5 training

sets are then randomly chosen, this time with 13 samples per

class of corn and forest (The minimum number of samples pos-

sible for 12 features without getting singular covariance

matrices).	 Again, the 5 sets are classified and the aver-

age classification accuracy is calculated for each feature

subset. The results are then plotted in Figure 4.4.

Looking at Figure 4.4, it is seen that when the number

of training samples is adequate, as in the 500 samples per

class case, the probability of correct classification is a

monotonically non-decreasing function of dimensionality.

Since in a K-L ordering, the information is concentrated in

the first few channels, we notice that after the best 5 fea-

tures, the recognition accuracy tends to saturate.

When the number of training samples per class drops to

20, however, we see that not only does the accuracy drop

from the 500 samples case, but also it exhibits a slight

Hughes phenomenon.	 Although the cirve has a maximum at

'a
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Aircraft, simulated data

500 samples/class
-- 20 samples/class
---13 samples/class

,
,
,

,
,
,,

,

`i

2 3 4
	
5 6 7 8 9 10 11 12

Best n Channels

Figure 4.4 Experimental Classification
Results of Aircraft, Simulated
Data Using Differexit Numbers
of Training Samples.
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F

F

dimensionality 3,
k

best 10 features,

though slightly.

it is approximately constant until the

after which it starts decreasing, even

The 13 samples per class case offers a dramatic change

from the two other curves. There is a clear peaking effect

here, with the curve reaching a maximum at dimensionality 5,

after which it drops drastically.

The results conform with the hypothetical curves of

Figures 2.1 and 2.2. The 20 samples and 13 samples curves

can be made smoother if more than 5 sets are averaged, and

hence we should look at them with the idea in mind that

these are only approximations of what the true curves look

like. However, the trend these curves point to is clear.

In the presence of a limited set of training samples, an

increase in dimensionality can result in a decrease in the

classification accuracy, 	 with this effect disappearing as

the number of training samples increases.

Experiment 4.5

The same aircraft data set as that used in experiment

4.1 is used, but without any simulation. 	 400 samples each

of corn and forest are selected for tra'ning, and a larger, 	
'A

separate set is used for testing. Again, 5 different train-

,	 ing sets of 20 and 13 samples per class are randomly chvsen
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from the original training set and classified. The average

classification results for each feature subset are calcu--

l.ated and plotted. Results appear in Figure 4.5.

The curves in Figure 4.5 are not as smooth as they are

in Figure 4.4. This is attributed to the fact that we are

working with real data, which does not as well satisfy the

i
i	 assumptions we make as the simulated data does.	 Still, the
i

curve with the 13 samples does generally poorer than the
i

other two curves and drops dramatically in accuracy, whereas
i

the 400 samples curve appears to saturate almost from the

start.	 The 20 samples curve appears to have a slight peak-
s

ing effect, although the curve is very noisy.

Experiment 4.6

The data set used in this experiment is obtained from

Landsat, flown over Henry County, Indiana. To obtain a data

s uet with more than the 4 features available from Landsat on

any particular date, four data sets flown over the site at

different times are used. 	 The dates the data was collected

on are: June 9, July 16, Aigust 20, and September 26, all

in 1978. The data is concatenated, and a K-L transformation

was performed on it. Simulated data, more precisely meeting

such assumptions as normality is generated, and the first 12

channels are used for classification. We will refer to this

data as multitemporal data to indicate that it is collected

over different times.

-A - -
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Aircraft, real data

—400 samples/class
--20 samples/class
----13 samples/class

\

, ,\

1	 2 3 4	 5 6 7	 8 9 10 11 12
Best n Channels

Figure 4.5 Experimental Classification Results
of Aircraft, Real Data Using Different
Numbers of Training Samples.
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Two classes,

samples per class

for testing. Ag

samples per class

and classified.

4.6.

corn and soybeans, are selected with 250

for training, and a larger independent s,t

ain, 5 different training sets of 20 and 13

are chosen from the original training set

,results are averaged and plotted in Figure

The same results obtained in the previous two experi-

ments are again evident. Note that even with 20 or 13 sam-

ples per class, the accuracy obtained is very close to that

obtained by using all the available training samples. This

is due to the fact that the two classes chosen are highly

separable and thus are easily distinguishible even when

using a small number of training samples to estimate their

statistics.

Experiment 4.7

The same data set as experiment 4.6 is used, but with-

out any simulation. Two classes, corn and soybeans, are

selected with 250 samples per class used f:.-r training, and a

larger, separate, set for testing. Again, 5 different

training sets of 20 and 13 samples per class are randomly

chosen from the original training set and classified.

Results are averaged and plotted in Figure 4.7.

.x

_.-.2
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Landsat, multitemporal, simulated data

~``------• --250 samples/class
94	 1	 ----20 samples/class

— — 13 samples/class

90

86 

ae	 1

0 82

aU
78

74

1	 2 3 4	 5	 6 7	 8 9 10 11 12
Best n Channels

Figure 4.6 Experimental Classification Results
of Landsat, Multitemporal, Simulated
Data Using Different Numbers of
Training Samples.
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Landsat, multitemporal, real data

,' 	1	
" 250 samples/class

94 t	 \	 --20 samples/class
----13 samples/class

86-^

82- 1

CP

78 1

74

70

66	
1	 2 3 4	 5 6 7 8 9 10 11 12

Best n Channels

Figure 4.7 Experimental Classification Results
of Landsat, Multi'.emporal, Real
Data Using Different Numbers of
Training Samples.
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The same observations noticed in the three previous

experiments apply here. There is a drastic drop in accuracy

when 13 samples are used, a slight one when &: samples are

used, and no drop when 250 samples are used.

Summarizing the results of the last four experiments,

we see that there is a definite Hughes phenomenon in the

presence of a limited number of training samples compared to

the number of features used. Further, as the number of sam-

ples increases, the accuracy for any given dimensionality

increases, and the peak in the curve shifts to the right,

i.e., the peaking effect takes place at a higher dimension-

ality, as is seen in Figures 4.4-4.7.

Studying Figures 4.4-4.7 reveals that the region bet-

ween 13 samples and 20 samples is a very sensitive one when

working with a maximum dimensionality of 12. While tnere is

a sharp decline in accuracy at 13 samples per class, there

is only a slight one at 20 samples per class. Another point

to note is that the 20 and 13 samples are chosen from spec-

trally hamogeneous classes, and so a very large number of

samples is not needed to estimate the statistics of these

classes. In a practical situation, the 20 and 13 samples

curves might not be as close to the curves with large num-

bers of training samples as they are in these experiments.
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The results of the last four experiments were a factor

in choosing the empirical formula, or equation (3.61), dis-

cussed in Section 3.2.3. A formula was sought that takes

the sensitivity in the number of training samples into

account, as well as other factors that were discussed ear-

lier.

4.4	 Experiments	 Comparing Algorithm	 and Experimental

Results

In this section, several experiments will be conducted

to assess the performance of the proposed algorithm. Again,

aircraft and Landsat data are used, both simulated and real,

and the number of training samples used will be varied. But

first, we will reproduce the results obtaired by Fukunaga

and Krile (64) to verify the validity of the algorithm.

Experiment 4.8

The data set used by Fukunaga and Krile is described in

detail in Marill and Green (12). The data is simulated, has

two classes and eight features. Each class has 200 training

samples, and both the exact, or true, 	 and the algorithm

recognition rates are calculated. The true recognition

rates are not calculated again in here, but are reproduced

from Fukunaga and Krile, who used numerical integration to

arrive at them.

F_
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Two methods used by Fukunaga and Krile are employed

here: The normal assumption, discussed briefly in Section

3.2.1, and the modified gamma assumption, discussed in Sec-

tion 3.2.2 and used throughout this research. The Bhatta-

charyya distance was used by Fukunaga and Krile, and alt-

hough we have shown it to have limitations, it is used as a

criterion for ordering the features. Results appear in Fig-

ure 4.8.

The results show that the modified gamma assumption

method is a reasonable approximation of the true probability

of correct classification. The normal assumption, though,

does not give a good approximation of Pcc, and hence it is

not further used.

While in this experiment, the modified gamma assumption

is compared to the true probability of error, in actual

practice the true probability of error cannot be calculated

because the underlying distributions are not known. There-

fore, in the following experiments, the proposed algorithm

is compared to an average of five classifications obtained

from five different training sets having the same number of

training samples.	 This average classification se^ves as an

estimate of the "true" error 3urve. This fact should be

remembered as the experimental curves that are obtained are

not as "smooth" as what the true curves would be expected to

J
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Results Using Fukunaga and Krile

Method
1

True
----Modified gamma

assumption
(Bhattac ryya ordering)

--- Gaussian assumption
(Bhattacharyya ordering)

1 2 3 4 5 6 7 8
Best n Channels

ligure 4.8 Classification Results of Fukunaga
ane Krile's Example Reproduced.
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be. The algorithm curves, on the other hand, being depen-

dent, among other things, on the number of training samples

in an averags, way, are expected to 
be 

"smoother" than the

experim -ntal ones.

Before wt: embark on studying the next experiments, It

is Nppropriate at this point to look at a flowchart d*sorib-

ing the modified algorithm that is proposed. This 
is shown

,n Figure 4.9. This figure is to be compared to Fi
g
ure 3#20

or Fukunaga and Krile'3 algorithm,	 to see the changes that

are made.

Elperiment 4,9 (Aircraft, Simulated Data, 20 Sjmgles per

Class)

The simulated, aircraft data set used in Experiment 4.4

i-, usnd here. Two classes, corn and forest, are used. The

experimental, 20 samples per class curve t in Figure 4.4 is

plotted again in Figure 4.10,	 together with the approxima-

tion "., o the probabilit► of correct classification predicted

by the proposed algorithm. Also plotted in Figure 4.10 are

the standard deviations for each feature subset of the five

different nlassifications performed.

We see that the algorithm is a good approximation to

the experimental curve. The approximation is not as good at

lower dimp nsionalities as it is at higher ones, because the
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Do I x 1. Number of Features
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7igure 4,9 A Flowchart of the Modified -*.Igorithm.
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Aircraft, simulated data
(20 samples/class)

1	 2 3 4	 5 6	 7	 8 9 10 11 12
Best n Channels

Figure 4.10 Classification Results of Aircraft,
Simulated Data, Using 20 Samples
per Class.
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assumptions the algorithm makes are better at higher dimen-

sionalities. However, the two curves do peak at the same

dimensionality, i, but more importantly, they have a similar

shape. Both remain relatively constant for a while and then

start decreasing at about the dimensionality of 8.

Examining the standard deviations of P cc ,	 it 1'3

observed that in general they have an increasing trend as

the dimensionality increases. 	 Put in other words,	 the

curves indicate that the variance of the probability of

error "(cVm. to increase with increasing dimensionality.

This agrees with the hypothetical explanation given of the

Hughes phenomenon, namely that the accuracy of the estimated

statistics decreases with increasing dimensionality (i.e.

becoming more random and hence increasing the variance of

error) and that when this effect outweighs the increase in

separability between classes due to increasing dimensional-

ity, a peaking effect is observed. As the number of samples

is decreased, larger increases in the variance of error are

expected.

Experi ment 4.10 (Air cra ft, Simulated D ata,	 13 Samples per

Clas s)

The same example used in Experiment 4.9 is used again,

	

but with 13 samples per class used for training. The exper- 	 l

j

ti
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imental curv y° of Experiment 11.4 is reproduced, together with

the curve predicted by the algorithm.	 The standard devia-

tion cat' P C II is again plotted.	 Results appear in Fifwre

4.11.

Again, the curve predicted by the algorithm is a better

approximation of the experimental curve at high dimensional-

ity. The experimental curve, however, is not very sensitive

to dimensionali y at lower values, and thus a small ambigu-

i.tj in where the peak occurs can be afforded. 	 Still,	 both

curves predict a peak at 3. The standard deviation of the

error again has an increasing trend as dimensionality

inc.-eases.

[.xperiment 11.11 (Aircraft, Veal D ata, 20 Samples per Class)

The example used in Experiment 11. 1-, is repeated.	 AI-ain,

+wu classes are used, corn and forest, from the aircraft,

real data set. Twenty samples per class are used for train-

ing, and five different sets of training samples are classi-

fied and averaged.	 The average is then compared to the

algorithm performance.	 Results appear in Figure 4.12.

The experimental curve has a lot of error variance as

can be seen from the curve and does not seem to be following

any general pattern,	 although	 it starts consistently

decreasing after dimensionality 9.	 It is interesting to
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Aircraft, simulated data
(13 samples/class)

1	 2 3 4 5 6 7 8 9 W 11 12
Best n Channels

Figure 4.11 Classification Results of Aircraft,
Simulated Data, Using 13 Samples
per Class.
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Figure 4.12 Classification Results of Aircraft,
Real Data; Using 20 Samp'es per Class.
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compare this curve with Figure 4.10, where the same condi-

tions exiat with the exception that the data is simulated.

Because simulated data satisfies the assumptions made about

the distributions of classes,	 it produces results that con-

form more with theory than real data does. The algorithm

performance appears to be closer to what is expected, alt-

hough in this case it does not quite follow the experimental

curve. This "randomness" of the experimental curve is made

more evident from looking at the standard deviations of Pcc,

which do not seem to follow any general pattern and are all

rolat.ively large. This is a clear example of a case where

deviations from the assumptions may obscure the action of a

new proposed algorithm.

E xperiment 4.12 (Aircraft, Real Data, 13 Sa mplr:s per Cla ss)

The same example used in Experiment 4.11 is used here,

with 13 tramples per class for training. Results are shown

in Figure 4.13.

Experimental and algorithm results here are very close.

Both peak at 3, and both are vet, y close at high dimensional-

ities. The standard deviations of the errors are also

increasing in general, particularly at high dimensionality.

It is interesting to note that the standard deviation in

almost all of the above four experiments :Marts increasing
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Aircraft, real data
(13 samples/class)

Figure 4.13 Classification Results of Aircraft,
Rval Data, Using 13 Samples per Class.
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notably at about the same place the probability of correct

classification starts dropping sharply. 	 This supports the

idea that at there dimensionalities, the randomness in the

estimated statistics is so large that it pulls the curve

down.

Experiment 4.1.3 (Landsat, Multitemporal, Simulated Data, 20

Samples per Class)

The data set used in this experiment is the same as

that used in Experiment 4.6. It is obtained from Landsat,

with four dates concatenated so that more features are pre-

sented. The 20 samples der class curve of Figure 4.6 is

reproduced in Figure 4.14, together with the curve predicted

by the algorithm.

The algorithm curve seems to drop in accuracy faster

than the experimental curve, but both peak at around 4. The

standard deviation of error also increases as more features

are used.

Experiment 4.14 (Landsat, Multitem oral, Simulated Data,	 13

Samples per Class)

The same data set used in Experiment 4.13 is used, but

with 1^ samples per class for training. 	 Results appear in
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Landsat, multitemporal, simulated data
(20 samples/class)

1	 2 3 4 5 6 7 8 9 10 11 12
Best n Channels

Figure 4.14 Classification Results of Landsat,
Multitemporal, Simulated Data,
Using 20 Samples per Class.
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Figure 4.15.	 The increase in the variance of error with

increasing dimensionality is very noticeable here. Again,

the same observations apply, with both curves starting to

drop in accuracy at the dimensionality of 4.

Experiment 4.15 (Landsat, Multitemporal, Real Data, 20 Sam-

Ales per Class)

The Landsat data set is again used, but without any

simulation. 20 samples per class are used for training,

classification results are averaged and plotted in Figure

4.16.

While the algorithm predicts a somewhat better perfor-

mance than the experimental curve, both have the same shape,

and both are fairly constant until the first 7 or 8 fea-

tures. This is due to the fact that the two classes in this

set, corn and soybeans, are largely separable and hence the

increase in the variance of the error with increasing dimen-

sionality does not outweigh the large separability effect

between these two classes.

L.,
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Figure 4.15 Classification Results of Landsat,
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Sxp2riment 4.16 (Landsat, Muultitemporal, Real Data, 1 ,3 Sam-
ples per Class)

4

The Landsat, real data set is used in this experiment

with 13 samples per class for training. 	 Results are shown

_	 in Figure 4.17.	 The two curves have the same shape, and

'

	

	 peak at the same place,	 4, although again the algorithm

predicts a better performance than does the experimental

f

	

	 curve. The variance of error is again seen to be increasing

with the number of features used.

To summarize the results of the last eight experiments

(4.9-4.16), the probabilities of error predicted by the pro-

posed algorithm as a function of dimensionality as compared

to experimental observations are shown for aircraft and

Landsat data. Results are obtained for loth simulated and

real data, using 20 and 13 samples per class fcr training.

For each case, five different training sets are used, and

classification results are averaged over these five gets.

The standard deviations of errors for each feature subset

are also plotted.

Results indicate that the algorithm predicts in most of

the cases the best, or near best, subset of features to be

used.	 While not always predicting closely the actual clas-

r
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Figure 4.17 Classification Results of Landsat,
Multitemporal, Real Data, Using
13 Samples per Class.
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sification accuracies obtained from the experimental average

curve, it has in most of the cases the same sha pe as the

experimental curve and seems to follow any trends in perfor-

mance that the experimental curve undertakes. Since the

objective behind the algorithm is to predict the best fea-

ture dimensionality and specific subset to be used in clas-

sification rather than to predict the probability of error

itself, the fact that the algorithri does not always accu-

rately predict this probability of error is not of serious

concern.

r

to indicate that

ty results in an

increase becoming

when the random-

a limited set of

the standard deviations plotted seem

in general,	 an increase in dimansionali

increase in the variance of error, that

highly noticeable at high dimensionality,

ness in the estimated statistics,	 given

training samples, is large.

The next step is to incorporate this algorithm in a

binary tree classification procedure, using more than two

classes, and assess its performance. This is done in Sec-

tior, 4.5.
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4.5 Experiments on a Binary Tree Classification Procedure

In this section, two data g ets will be classified in a

binary tree classification procedure, 	 using the proposed
t

algorithm to predict the optimal features at every node.

A complete design of a binary tree classification

procedure should address the problem of how to separate the

htnodes in the tree effectively.	 Se rations should be souY	 P	 g

i that lead to meaningful classes at the intermediate and ter-

`	 minal nodes.	 This problem should be thoroughly studied

before a solution can be arrived at.

It is not the purpose of this research to address this

problem in any detail. Therefore, no attempt has been made

here to dictate a particular procedure or claim any optimal,

or c,'ose to optimal, one. The procedure that will be used

is heuristic, the purpose of conducting the next two exper-

iments is to illustrate the usefuleness of the proposed

algorithm in predicting the optimal features to be used at

every node.	 The problem of how to separate the nodes is

left as a topic for future research.

Experiment 4.17

The Landsat, multitemporal, 	 real data set used in

Experiment 4.6 is used here again. 	 Three informational

3

i

x
s
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classes exist in the scene: corn, soybeans, and other. 13

samples per class are used for training, creating 3 spectral

classes. The reason this is done is that in actual practice

situations, it is almost impossible to distinguish spectral

classes with only 13 training samples per class.	 A much

larger, separate, set is used for testing (all training and

test field descriptions are found in Appendix F). 	 The

binary tree is constructed by using a bottom-up procedure,

combining the most separable classes. The criterion for

measuring separability is that used by Whitsitt (9), and is

defined as follows:

Derf s erf((2B) 1/2 )	 (4.3)

where B is the Bhattacharyya distance and erf (.)	 is the

gaussian error function.	 Whitsitt found that this measure

is less ambiguous and more linear than the measure B.	 The

measure is calculated using the first 12 features after a

Karhunen-Loeve expansion was performed on the data. After

the tree is constructed this way, the proposed algorithm was

used to predict the optimal features to be used at every

node.

The binary tree that resulted from the above procedure

is shown in Figure 4.18.	 The algorithm predicts an optimal
i

feature subset of 4 at the top,	 and a subset of 2 at the

intermediate node.	 These appear below each node.	 Inside

the node, the classes present are shown together with the

total number of training samples present.
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Landsat, multitemporal, veal data
(13 samples/class)

Cq39p

1, 2, 3, 4

C corn
S soybeans
O other

IS
	 O
 13p
1, 2

13p) (13Sp

Figure 4.18 Binary Tree Design Structure of
Landsat, Multitemporal, Real Data,
Using 13 Training Samples per Classy
With Numbers Inside Nodes Indicating
Number of Training Samples Used.
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A single-stage classification is then performed on the

data using feature subsets of 2 to 12. This is done to com-

pare the performance of the bina^y tree procedure to Y,hat of

each of the feature subsets.

Results are plotted in Figure 4.19. The classification

result obtained from the binary tree procedure is drawn in a

dotted line across the page only to compare against the sin-

gle-stage curve, and does not imply that all the feature

subsets were used, or that the classification result is the

same for all feature subsets.

The results indicate that using three classes, the sin-

gle-stage curve has a peak at 4, and that by using all

twelve features, the result is much poorer. The binary tree

procedure, on the other hand, results in a classification

accuracy that is almost as good as the best result obtained

from using the best feature subset (which is unknown in an

f actual practice situation) in a single-stage classification.
i

Thus, it- appears that the algorithm is effective in predict-

ing the best features to be used at each node.

E,	 Experiment 4.18

The aircraft, real data set used in Experiment 4.1 is

used here.	 The data set has seven informational classes.
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Figure 4.19 Single-Stage and Binary Tree
Classification Results of Landsat,
Multitemporal, Real Data, Using
13 Training Samples per Class.
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In this experiment, supervised eluntering (discussed in Sec-

tion 1.2.1) is used to get 9 spectral classes, using an ade-

quate number of training samples per class. 13 samples per

g lass were then randomly chosen from the larger training set

so that it is known that each set of these samples comes

from one spectral class. The bottom-up procedure described

in Experiment 4.17 was then used to build the binary tree,

with the exception of class water, which was separated from

the other classes at the beginning, as water has been known

Prom experience to have spectral properties that are much

different from other agricultural classes. The proposed

algorithm is then used to predict the best features at each

node. A single-stage classification is performed using fea-

ture subsets of 2 to 12,	 and then the bame statistics were

used in the binary tree classification procedure.

The resulting tree appears in Figure 4.20.	 Figure 4.21

shows the classification results obtained from the single-

stage and the binary tree classifiers.

The binary tree procedure, using the proposed algcr-

4
ithm, performs better than any feature subset does in a ,an-

gle-stage procedure.	 The Hughes phenomenom is very evident

here, as the overall classification accuracy for seven

informational classes (9 spectral) drops sharply from a high

of 69.4% to a low of 43.0%.

I

.1.



41 a

.- Nr N	
^w{,/ 

C
....	 cc

fig amilgif
G 

x g xc"L .t/ owl :

110

w

N

Q

da
w
u
w
c^
w
U .
w a

4 ^

w U
0

w
d a^
w a

u v

w a
a+ ^

C
no co
w 0
w ,a
a ^
A +1

td
d w
C! H
w
E^ c 1

w 00
tV C
C rl
+1 N
CO A

O
N

1

d
w
7
OD
rl
W



a^

- single -stage
binary tree

III

Aircraft, real data
(9 classes, 13 samples/class)

Best n Channels

Figure 4.21 Single-Stage and Binary Tree
Classification Results of Aircraft,
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Summarizing the results of the last twb experiments,

the proposed algorithm is shown to be effective in predict-

ing feature subsets that lead to the maximum, or near maxi-

mum, accuracy possible using the Karhunen-Loeve expansion

for ordering the features.

It is worthwhile to note that common belief is that few

features need be used at the top of the tree to separate

classes, and more features need be used deeper in the tree

to distinguish between somewhat inseparable classes. How-

ever, if there are inadequate training samples present, then

the number of training samples towards the bottom of the

tree is less than that towards the tor. Hence, less fea-

tures should be used at the bottom to avoid the Hughes phe-

nomenon. This is evident in the last two examples, particu-

larly in Figure 4.20, where many features are used at the

top, but only few at the bottom.

One point also worth mentioning is that in situations

where a node is divided into two nodes of unequal training

samples, one of them might have inadequate training samples

while the other might have adequate ones. This situation is

illustrated in Figure 4.20, where the top node is divided

into water, and everything else. In this case, the number

of features used is "intermediate", depending on the effect
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of the degradation in the accuracy of the estimated statis-

tics of the node with the inadequate number of training sam-

ples.

e

i
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Summary of Results

The purpose of this research has been to develop an

error estimator that will predict when/if the Hughes pheno-

menon occurs in multispeetral data. Several significant

results were arrived at and are summarized below.

The probability of error was studied through the like-

lihood ratio function, which offered the convenience of

working with a one- dimensional variable, regardless of the

number of features used in estimating the training statis-

tics. An algorithm was then developed to estimate the sta-

tistics of this function, taking into account the number of

training samples used to estimate these statistics. Several

theoretical and experimental results were obtained on the

Hughes phenomenon. These showe4 the dependency of the prob-

ability of error on the number of training samples and fea-

tures used.	 The algorithm developed in Chapter 3 was shown

;:o predict a suitable feature subset to be used at each node

in a binary tree procedure.	 The algorithm was tested in
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Chapter 4 by comparing it to experimental observations under

different conditions, and was utilized in two binary tree

classification procedures to demonstrate its practicality.

Some results were also shown, demonstrating the use-

fuleness of the K-L expansion over the whole data sot in

ordering features in the presence of a limited set of train-

ing samples. The procedure is used extensively in the

research, and appears to have less variablity than other

procedures under the conditions given.

Certain parts of the algorithm developed are heuristic

in nature.	 Reasons why more theoretical solutions were not

pursued were explained.	 These heuristic procedures often

raise difficulty in verifying the validity of the algorithm

strategy.	 The basic point is that when both a practical

solution and theoretical perfection cannot be achieved sim-

ultaneously, one tends tr choose the former. Experimental

results in Chapter 4 demonstrated that the algorithm can be

used practically to yield optimal, or near optimal, results.

5.2 Suggestions for Further Research

The main objective behind developing the error algor-

ithm is to use it as a feature selection technique in a mul-

ti-stage classification procedure.	 In particular,	 the
j

algorithm was developed to be used in a binary tree proce-

dure.	 The design of such a procedure requires, in addition

°	 i
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to choosing the optimal features at each node, an effective

design of separating the nodes. This question was only

addressed superficially in this research, and could serve as

a topic for another research project. An effective design

for separating the nodes, coupled with the developed algor-

ithm to choose the features, should lead to much higher

accuracies than a single-stage classifier.

Several strategies developed in the research were heu-

ristic in nature. Appendix B addresses the problem of why

it is difficult to theoretically calculate the probability

density function of the variances of the likelihood ratio

function given either class one or two. If such a deriva-

tion is made possible, a much better and clearer idea will

be obtained on how the variance of the likelihood ratio

function is affected by the number of training samples, and

the error algorithm can be made to more accurately predict

the probability of error in the presence of a limited number

of training samples.

The K-L expansion was used extensively as a feature

selection technique in the presence of few training samples.

This was based on experimental observations, but necessarily

meant sacrificing the information found from the between

classes variablity. A more detailed study of the relation

of several feature selection techniques to the number of

training samples can be very helpful.
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Appendix A

Generation of Normally Distributed Samples

Let U 1 and U 2 be two random variables independent and

identically distributed Uniform (0,1). Then, let

Z 1 =	 (-2 In U 1 )^ cos 27U 2	 (A.Y)

Z 2 =	 (-2 in U 1 )^ sin 2rU2	 (A. 2)

then Z 1 and Z 2 are independent and identically distri-

buted normal (0,1).

Proof:

s.

I
f(Ullu2)

0

0<U1 < 1 ,	 0- U 2 e l

otherwise
(A.3)

is the probability density function of two independent

uniforms.
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U l - exp `-^( Z 1 2 + Z22)!	 (A.4)

L,,	 2` aretant 7 2 )
1	 A.5

The jacobian of the transformation is:

j_ - 2 —1̂  exp r-'s( Z 2+ Z22) J

f (Z 1 9Z 2 )	 f (U1'U2)	 i

2I exp I -VZ 1 2
 + Z22)J	 0 < expr-^(Z 1 2 + Z 2 2	< 1

	

1	

( Z 20 <2I arctan^<
 1

- 0 otherwise
	 (A.6)

f(7. 1 ) ti N(0,1)	 f(Z2) ti N(0,1)

The side conditions	 give - m< Z 1 « ,	 - -< Z 2 <m

Strictly speaking, Z 1 cannot equal zero; however, prob(Z 1 =

0)=0 as we are working with continuous densities.

To test the effectiveness of the pseudo random vectors

it the multivariate case, rando'tn vectors distributed N(O,Ip)

were generated and then tested with a Kolmogorov-Smirnov

test. Since the multivariate normal cdf is difficult to

evaluate, the sum of squares was calculated and compared to

the Xp2distribution.
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For sample sizes greater than 100, the pseudo random

vectors were distributed properly.	 For sample sizes leas

than 100, the K-S test is not valid. Since we would gener-

ally ( over an entire area) be working with more than 10C

points per class, this was not pursued further.

In addition, the sample covariance matrices were tested

for homogeneity against the true class statistics. For sam-

ple runs of up to 2000 points, there were not significant

differences at the a : 0.10 level.

a

9
1
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Appenddx B

F	 On The Probability Density Functions

Of of And °2

	Let us look at the expressions for V1 and o2	 From

(3.55) and (1.58), we have:

22 2(tr(I - E 2-1 E 1 ) 2 + 2m 2 E2-I 
E1 E 2 -1 m2)

	

°22 - 2(tr(E 1 =1 E 2 - I) 2 + 2m 2 E 1
-1 

E 2 E 1
-1 

m2)	 (3.2)

To be able to calculate the probability density func-

tions of ° 1 and °2, 	 one has to know those of m2 , E l , E l l 9 E29
"-1

and F2

Before we proceed, we make the following assumptions:

1. M1 and M2 , the means of the two classes at hand are

constant. Experience has shown that one can esti-

mate these two quantities relatively accurately

with a small number of training samples. 	 Hence-

forth, we will assume m2	(=Ml -M2 ) to be constant

and not a random variable.

.
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2. E_ and E2 are independent. We will ignore any

re'.ationships that might exist between the covari-

an:,e matrices of the two classes.

'theorem B.'

E l , `2 are each Wishart distributed with parameters

nl E l , nl and L E21 n 2 respectively, where ni cN i -1 and Ni

is the number of samples used in estimating Ei

Proof

See (B.1),pp.159.

Thus, E i , i=1,2 , has the following Wishart distribu-

tion:

n	 n -p-1

E

	

	
(ni)ni I Ei	 i2	

exp(-)I(ni tz E i
-1 Ei))	

(B.3)i
n ip	 p (P-1)/4	 ni/2 p

2 2	 n	 ( Ei	 n	 r ( 11(n +1-k)

	

1	 k-1	 1

where p is the number of dimensions.

Theorem B.2

Eil 
is again Wishart distributed with parameters n 

Eil
t

i

ni .

Proof

See (B.2)
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Theorem B.3

If A is distributed according to Wishart, W(% ,n,

A = CAC  is also distributed Wishart WC^ ,n), 	 whi

Cr.
Proof

See (B.1),pp.162.

From the above theorems, we see that it E 2 , E1)

r21 are Wishart distributed. Further, as E1 is trans

into the identity matrix I, and E2 is transformed

diagonal matrix A	 , the new covariance matrices ai

Wishart distributed. Hence, E1 is transformed into a diago-

nal matrix I that is distributed Wk1/n1 I,nl ).	 We will call

the diagonal elements of this matrix Y i .	 Similarly, E2 is

transformed into a diagonal matrix A	 , that is distributed

W(1/n2 A ,n2 ).	 We will call the diagonal elements of this

^- 1	"-1matrix a i .	 E1 is transformed into a diagonal matrix I

distributed W(1/n1 I ,n1 ), and 
E21 	

is transformed into a

diagonal matrix ", -1 distributed W(1 /n2 A , n2 ) .

Thus, after applying the simultaneous diagonalization

transformation, 0  and a2 become:

2	 p	 " 2
a l = 2 E (1 -	 + Y i 	 + 2 d i 2 Y i )

2 " 21 1	
^i	

X1	 ^i
(B.4)

(B.5)

2	 p	 2
0 2 = 2 E	 ( i	 - 2 ^1 + 2 di2 X i	 11 )

	

1-1 
Yi 	

2Y i	Yi
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Note that equations (B.4) and (B.5) are modified ver-

sions of equations (3.r,,3) and (3.56).

We now look at the probability density functions of the

one-dimensional elements i i and Yi.

Theorem B.4

If Ei3=0 for i	 J, and if A is distributed according

to W(E ,n), then A ll , A 22 1	••.,	 App are independently dis-

tributed and A ii is distributed according to W(Ejj,n).

Proof

See (B.1),pp.163.

Therefore, a l , ...., ^ p	 are each distributed W( ^i
n2

and Y1 , ...., Yp are each distributed W(1/rq nl).	 Hence,

„(n C 2) /2	 nl/2
exp (-^ nlYi)	

(n1/2)
Y i ti	 r (n1/2)

0

Yi >0

(B .6)

Yi <0

A similar expression exists for Y_i l , with 1'i

replaced by 
Y1.	 .

i.

.r4.... 	 ^,	 ....	 ^	 ....._	 .... _	 ..	 ...._+.......+.....u.' 	 a .e:..^......... a....,. ^.._.'._;.._ .
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(n -2)/2n /2
a i 2	 exp (-4 n2^Ai /A1) 	 (n2/2) 2

	
^`i >

n2/2

a i ti	 r (n 2 /2) Ai

0	 ai <

A similar expression exists for ai l , with 
X i , Ai

replaced by ail, ail

Looking at equations B.5) and (B.6), we see tha

though we know the individual distributions of ^ i a

the calculation of the densities of aiand a2 is s

very involved and difficult process. An attempt to arrive

at these densities directly from those expressions is almost

impossible. However, the moments of of and Q 2 can be calcu-

lated,

Since calculating the moments of 7 i (and a i l , Yi ' Y i l )

involves the evaluation	 of an integral of	 the type

, m t ne at dt, and since such an integral does indeed exist,
0
the task of calculating any moment of ai,ail 9 Y , and Y-1

i

is a very easy one.

From any integration table book, we find:

!W t o exp( - at) dt	
r (n+1	 (n >- 1, a> 0)	 (B .8)

0	 n+1a

Thus, if x is distributed W(x/n,n), then:

_,	 J
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w

E(x) - x

E( ;2). (1+2/n) x2
(B.9)

E(x3) - (1+6/n + 8/n 2 ) x3

E(x4) - (1+12 /n +44/n 2 + 48/n 3 ) x4

Since any moment of a i or a2 is a function of the

moments of -1AiI i , Y i , and Y i d ,	 it is theoretically possi-

ble to calculate any moment of a1 and a2.	 Thus,	 it is

theoretically possible to calculate the characteristic fune-

"2	 "2
tion of al or 02 uniquely from these moments.

Papoulis (B.3) provides a way to estimate the probabil-

ity density function of a random variable once its charac-

teristic function is known. However, the convergence prop-

erties of calculating the characteristic function from the

moments of a random variable are very slow.	 A large number

of moments would have to be calculated. Looking at equa-

tions (B.4) and (B.5), it is evident that beyond the first

few moments, the derivation becomes quite a formidable task,

and is very impractical.

Because of these difficulties encountered, it was

decided to calculate only the variances of a1 and a2 and

heuristically incorporate them into the algorithm developed.

^w
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P Yi Yi Y2 1Q2	 =	 2	 E 1- 2— +	 + 2 d	 2
X2 Ji	 ji

(C.1)

1 :3 4

Appendix C

'i	 Derivation of the Variances of o f and o2

We look first at of

From Appendix B, equation (B.4), we have

Noting the assumption that the A i 's are independent from the

y 2 , and taking the expected value of Qi, we get

P	 E(Yi)E(Yi)	 E(Yi)
E(o 2 ) - 2 E	 1 - 2	 +	 + 2 d?	 (C.2)

1	 i=1	 E(a	 E(g2)	 1 E(a2)

Making use of the expressions in (B.9), we get

E(a 2 ) = 2 E	 1 - 2 + (1+2 )(1+2 ) 1 + 2 d 2 (1+2 ) 1 (C.3)
1	 i=1	 ^i	 n 	 n2 Xi	 i	 n2 ai

Now note that of and a2 are the summation of uncorrelated

random variables. Since	 is are independent, y i 's are inde-

pendent, and each a i is independent from each y i , then any

function of p i 's and Y i 's in one dimension is uncorrelated

with any other function of Ja i 's and Y i 's in another dimen-

sion. Hence, the variancesof ;2 and a2 consist of the sum

of the variances in each dimension (See (69), p. 211) and
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do not have any cross-product terms between dimensions.

Therefore, in the following derivations, we will not attempt

to derive a ny cross-product terms as they will cancel oa!t in

the end result.

P	 Yi

	

[E(LI	 = 4E	 E 1 - 2 -	 4

	

1	 i=1	 Xi

2

Y i + 2diYi	 + cross -product
^^	 )	 terms

^i

P Yi Yi + 2dF Yi	 Yi
= 4E	 E 1- 4 -X— + 2 + 4	 - 4	 -

i=1 Xi X2 ai	 ^3

d 2 Y 2 Y `'	 +	 4d 2 Y 3 + 4d4j2
8	 _ +	 -i	 _^_ i i i i	 + cross - product

^i^
^i terms	 (C.4)

Substituting the expressions of (B.9) into (C.4), we get

	

p	 4	 (1+2/n 1 ) + 2d i 	2

	

[E(ai)^] = 4 E	 1-	 + 2	 2	 (1 + n
i=1	 i	 ^i	 n2

a ^ 	 1	 2	 i	 1	 n1	 2	 n2

8  21 2	 6	 8	 1	 12	 44	 48
- ^3 (1+n )(1 + n + n2 ) + x4 (1 + n + n2 + n3

	

`	 )
i	 1	 2	 i	 2	 2	 2

(1 + n? + 42 + 48) + 4d 2 (1 + ±_ + 88 ) + 4d 4 (1 + n )
1	 n1n 1	1	 n1	 1

+ cross-product
terms

i
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pd2
4 E	 1- 4 + ? 1+ 2 + 2 + 4 + 2d 2 + 4 i
i 

1	 ai	 X2	 n1	 n 2
	

n 
1 

n 
2
	 i	 32

^F .	 + 4 + 6 + S + 16	 1 _ 4 1 + 6 + 6 + 8 + 8 + 36

r	 n1	 n 2 	 —1nn2 x2	 ai	 n1	
n2	 nj	 n 	

n 
1 

n 
2

48	 48	 64	 di26	 12	 8	 6+ n1n2 + n2n + n2n2 - 8 3̂ 1 + nl + n2 + n1n2 + n2 + —
1
 n?

Z	 1 2	 1 2	 1	 2	 3 2

1+ 12	 12,	 144	 441 +	 +	 +	 +
44

+
48

+
48

+
S28

+
528

+a4
n	 n-	 n n	 n2

1	 2	 1	 2	 1 n 2 n 3 n3 n 2 n l n2n 1i 2 1 2 l 2

1936	 576	 576	 2112	 2112	 2304	 /	 6	 12
+ 2 2 + 3	 ♦ 3 	 ♦ 3 2 ♦ n 2 n 3 	 3 n 3 	 4di 1 + n + n

n1 2	 n1 2	 n 2 n 1	 n1 2	 n 1n 2	 n1n2	 1	 2

8	 4472	 264	 96	 48	 288	 352	 384

+ n 2 + n 2 + nln2 + n n 2 + n 2 n + n 3 + n n 3 + n 2 n 2 ♦ n 2 n31	 2	 1 2	 1 2	 2	 1 2	 1 2	 1 2

/ 2	 44	 2+ 4d4 
C 

1 + n 
2 + 1n + 2 + n 

4
n + 3

48 
+ 

88 
2+ 

96
3

l\ 	 1	 2	 n2	 1 2	 n2	 n1n?	 n1n3

+ cross-product
	 (C.5)

terms

P
[E(Q 2 ) ^ 2 = 4 }:	 1 -	 + (1 + n + n + n n , _11

i = 1	 i	 ]	 2	 1 2	 X i

	

2d2	 2

+	 i C1 + 
2 
	

+ cross--product

	

X 2 	 n2	 terms
i

	

p	 4d2
= 4 E 1-	 +^ 1+ n + n + n n + 2d +i+ 2

i = 1	 ii	 1	 2	 1 2	 n2
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- 43
1 +	 2	 + -L+	 4	 + 2d 2 ( 1 + ? + 4 1 + 4 +

^1
n1	

n2	
n1n2	

i \\\	
n2 J ^i

n1

+ n2 + 2 + nln +._16 + - -+ -2'	 di (1 + n + n
1	 n2	 1 2	 n1 2	 nln2	 nln2	 `	 1

+ 8 + 4 + 8	 + 4d `' 1 + 4 + 41	 + cross-pro

	

n 1 n 2	 n2	 n1n 2 	 1	 n2	 n2 J	 terms

Now, Var (a 2 ) - [ r ( ;2 ) 2 ] - [8(Q1)]2

car,

Var(c^2)	
P

4 E	
2	 4+ 4+ 8	 _ 4	 4+ 4 + 8

	

1	 i-1 ( i n^
	 n2	 n02	

^ i n1	
n2	

nl

+ 8 + 32 + 48 + 48 + 64 + 4di + 8di + 24di + 16di

2	 n n	 2
n 2	 1 2	 n1n2	 n 1 n 2 	 n1n2	 1	 2	 1 2	 n2

+ 3 2d2 + 1 8 + 8 + 128 + 0 + 40 + 48 + 48 + 512
n n 	 n	 n	 n n	 n	 n2	 2	 n1	 n	 n n3	 21 2	 i	 1	 2	 1 2	 1	 2	 1	 2	 1 2

+	 1920 + 576	 +	 576	 + 2112 + 2112 + 2304 + 4d2	 4 +	 8

n l n 2 n3n	 n3n2	 11	 2 n2n3 n3n2 n3n3 i	 n 1 n21	 2 1	 2 1	 2 1 2

8
+	 +

40 64	 256
+	 +

96
+

48
+

288
+

352

+

384
n 2 n 2

2 n1n2	 n n 21	 2 n 2 n1 n3
2	 2 n n 3 n 2 n 2 n2n31 1	 2 1	 2 1 2

+ 4d4 (n /
2 +	 8	 + 40 + 24	 + 48 +	 88	 + 96 1 (C.7)i n2	 n2	 n2 n1 2 n3	 n2	 1 n 2	 n2 nil1	 2
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Next, we look at v2

From Appendix B, equation ( B.5) we have

t	
p	

?	
^	 2"

i	 ;2 = 2 E	 2- 2 i + 2 7-	 + 1
i=1 Yi	 Yi	 Yil

(C.8)

p	 E(i2)	 E(a )	 2d?E(^ )2 =	 i	 i	 i	 iE(a 2 )	 21.1 E62) - 2 E( Y i) + 
E(Yi)	

+ 1

2 E	 (1+ )(l+n ) ai - 2X  + 1 + 2di(1+n ) a i (C.9)
J= 1	 1	 2	 2

^ 2	 2

[E(Q 2 ) 2 ] = 4E E	 - - 2^i
	

1 + 2d2] 	 + cross-product

	

2 A2 
y 
	 iYi	

terms

p	 4	 2	 2	 4

4E £	 1 + 03 di - 1 + 2a2 3 - 4d
i + 2d i

i=1 Y4	
i 

Y 4 	 Y3	 1 Y 2 	 Y3	 Y 4
i	 i	 i	 i	 i	 i

z

! 4a	 1 _ 1	 + 1	 + cross -product
f Y2	 y i	 terms

P	 12	 44	 48	 12	 44	 48

	

= 4 E ai 1+n + 2 + `3	 1 + n + 2 + ^
i=1`	 1	 n1	 nl	 2	 n2	 n2

+0 3 1+n+-8	 1+n2+44+48 di-
Cl

+ 	 + 81

2	 n 2
	 C	 1	 n	 n•	 n

` 	 l	 n
2 

y	 + tai 1 + n
2	

3 (1 + n ) - 4di 
\ 
1 + n+	 n ) + 2d 4 1 + n2

	

1	 1	 \,.,;.	 1	 1

44 48 	2	 2	 cross-product+	 +	 + 4X	 d i 1 + -- - 1 +1 +n 2 	 n3	 i	 i \	 nl)	 terns
1	 1

r

11
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f	 12	 12	 144	 44	 44	 48	 48	 5284 E a 4	 1 + _r,Z + ---- +	 +	 +	 +	 +	 +
i • 1 i	 n 	 n2	 nln2	 n2	 n2	 nl	 n 3	 nln2

r
F °	 528	 1936	 576 576 	2112	 2112	 2304

2 2n 2
 
n 1	 n 

1 
n 
2	

nln2	 n 2 n 1	 22	 - 2 - 3n 2 	
n1n2

Al	 6	 44	 8	 72	 264	 48	 288+ 4X 3  1 + - +	 +	 +	 +	 + -^-- + 2
96 + --3 + 3---

n 1	 n2	 n1	 2	
nln2	

n l n 2	 n2n1	 nl	 n21

352	 384	 _ r	 6	 6	 8	 8	 36	 G8	 48+ - 2 2 + 2 3 di	 1 + n+ n + 
2

+ 2 + n n	 2+ 2n l n 2	 n2 n1	 1	 2	 nl	 n2	 1 2	
n1 n 2	 n1n2

+ n64 2	+ 2a 2 3 + n + n + n12 1 - 4di11 + n + n + n11

	

1	 2	 1 2	 `	 2	 11 2	 1 2

8	 1	
+ 2 d 1 +6	 q	 2	 12	 44	 24	 48	 88	 96+ - -1 + 

2	 1	 n + n + 2 + n n + -7 + 2	 + 3
n 1
	 n 1 n 2	 2	 1	 nl	 1 2	 nl	 n 1 n 2	 n1n2

l	 2	 cross-product	 (C.10)+ î ai di 
C 

1 + n 
1 - 

1 + 1 +	 terms

p
[E(; 2 )] 2 = 4E	 1+ 2- +

n	 + n nA i - 2X i + 1
1=1	 1	 2	 1 2

+ 2d 2 1 + 2
	 2 + cross -product

i	 ni f	 terms

p	 4	 4	 4	 4	 16	 16	 16	 16	 4
= 4 i z 1 1 + nl + n2 + n

2 + n 2 + nln2 + n 2 n + n n 2 + n 2 n2 

	

1	 2	 1 2	 1 2	 1 2

X3+ 4	 d2 1 + 4 + 2 + 8 + 4 + 8	 -C1+? + 2 + 4i	 i C	 n1	 n2	 n l n 2	n2	 n2n	 n1	 n 2	 n1n2

	

1	 1 2
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+ 2 A 2 	
+n + n +n n	 + 2di 1 + n+	 - 4d`1+2((3
 1	 2	 1 2	 1	 n 1 	

i	
n1 ))

2	 `	 cross - producta.,	 + 4a	 dR 
C

l +	 - 1	 + 1 + cro
R	 i 	 nl)	 terms	 (C. 11)

.^	
Var(o2) - [E(a2) 2 ] - [ E ( o 2)] 2 	or

I
i

I	 Var62) - 4 r	 8 + 8 a, 1 .71_ + 40 + 40 + 48 + 48 + 512

2	 i-1	 i n l	 n 2	 j;I	 n?	 n 2 	n 3 	n 3 	n2n

	

1	 2	 1	 2	 1 2

512	 1920	 576	 576	 2112	 2112	 2304	 8
`	 }	 2 '}	 2 2 }	 3	 +	 3 +	 3 2 +	 2	 +	 3 3	 + 4^i di n

1n 2 n 2	 n2n2	 n n

	

22	 n2n	 n

	

2	 2n2	 n1n4	 n1n2

4	 8	 40	 64	 256	 96	 48	 288	 352	 384 1
+ n 2 + n 2 + n2 + n^n 2 + ,n 2n	 n2n +	 +n 3	 n3n	 n2n2 + n2n3 J

	

2	 1	 1 

I	 '
I	 _	 4 + 4 + 8 + 8 + 32 + 48 + 48 + _64	 + 2a7	 4

n	 n 2 	 n2	 n n	 n n 2	 n2n	 n2n	 1	 n1	 2	 1 2	 1 2	 1

+ 4 + 8 1 + 2d 4 (8 + 2 + 40 + _ 24 , + 48 + 88 + 96

n2	 n1n2/	 i `\ n l	 n2	 n2	 n2n2	 n3	 n2n2	 n3n7. 2

- 4d 2 ( 2 + 4 + 12 + 8 + 16	 (C.12)

	

i n 2	 n 	 n 1 
n 
2	

n2	 n2 n

	

1	 1 2 ))]

Because we do not know the true values of X i . we substitute

for a i in equations (C.7) and (C.12) by Xi.

3
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Appendix D

Classification Results Tables
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r R^ + ) b ^ ^'( PAC CS	 1 s
V̀ ^ ,.^.t .9 a..	 ri..«.

OF PooR QUALITY.

FILE' SWRITE FORTRAN A LARS / PURDUE UNIVERSITY

C	 NswwrrwrwrNwsrNNwrNNNrNrrrrrrrrrrrrirrrrrrrrrrrrrrrrrrrrrrrrrr
C	 WRITTEN PY DILL PFAFF
C	 EDITED BY: MARWAN MVASHER JUNE 14,1980
C	 Nr^rwwrwrrsrrrrrrNrNNrwwrrrrrrNrrrNwNrrrrsrrNrwrrrNrNrrrNrrrrr
C
C
^,	 rrrrrrNwNrwNwrrrrrwwrrrrrNSrrrsrsrNrrrwrrrrcNrwrsrNrrrrrrrrr( ►•
C	 THIS PROGRAM GENERATES SIMULATED DATA BASED ON A
C	 CLASSIFICATION MAP OR A CROUND TRUTH MAP EACH PIXEL
C	 GENERATED THUS COMES FROM A KNOWN CLASS DISTRIBUTION, THE
C	 METHOD USED IS AS FOLLOWS
C	 1. A COOD CLASOIFICATION IS CHOSEN AS A BASE FGA
C	 SIMULATED DATA
C	 2, FROM THIS CLASSIFICATION WE KNOW THE NUMBER OF CLASSES, THE
C	 CLASS STATISTICS. AND THE CLASS OF EACH PIXEL IN THE
C	 ARFA CLASSIFIED.
C	 3. A STREAM OF UNIFORM RANDOM NUMBERS IS GENERATED FOR
C	 EACH CHANNEL. THEY ARE CHANGED 10 NfIRMAL (0, 1) DEVIATES,
C	 4. FOR EACH PIXEL, A RANDOM N(0.I)VECTOR IS TRANSFORMED TO

7P IPUTED ACCOR

('	 NwwiiwwwwwwwrYwN}FwrwNrwNirrrrrriNNRwlw^liNr NNNwwwNwwrwNNwwwNNr
C	 VARIABLES USED IN TPRINT
C
C A	 = COVAR I AWCF SI ORAC C FOR FAC TnR ING
C	 AREAND : ARIA NUMUFR Or CL49UIF ICATI1IN
C	 13	 • ('hVARIP,NCF 011 1PACL FUR MULTIPLICATION
C	 DATA -),0A  P01147 i1411(A1:6
C DATVALmLINE NUMDGR AND ROLL PARAMETER
C	 ICAL wCALIIINATION INFORMATION
C	 IDREC -IDIJITIFICATION RECORD STORAGE
C	 ISTART=START ING POINTS FOR GAUSS
C	 LOGDAT=VATA ['DINTS IN LOGICAL FOP.MAT
C	 NOCHAN-=NJhi:3ER OF CHA! ! •::LS IN CLASSIFICATION
C	 NOCLA5=NUTS:'[R OF CLA L5 IN ORIGINAL STATISTICS
C	 NOFLnS-NU l lt F R 0-- TEST FIELDS
C	 NOPOLIL = I4U1,:`[' Oil PCI(l.ED CLASSES
C	 PN7CL5=CLt.S;,Ir ICAT IONS ARRAY
C	 1	 TAT15TICS STORAGE
c	 NNNiwwwwiY iwwiirwiwiKiwwNiwNiNwwwN11 .YNNwIwiNYNNwwNNNwMNiwwwwwwN
C
C
CwwwwwNwwwrwiwriwAwiNNNNNNNwNwwrwwNNwrwNiiwwwiw•iNwwNwwNrNNwiNwNNNNNi
C INITIALI7ATION
CwwiisrwwiiwwwrwwrwwwNNi+wwNNwNwwwwrwwwi+wwwwswwNwin•awwarww^wwwwwNr
C

INTEGERw2 I2,INTGAT , ICAL ( 3),ILIN(2),PNTCLS ( 1000) , ISTAT(4),
t	 )"ETVC3(3^t

LO,1CALi1 !.1 (;1), LN•.*U iT(2), LCAL(6). I'ATOCIT( 12000)
REAL aq A( ;'), AL'(14>, ?(4i(ID>, Ii(12. 1.^>, U;+TA112>,

1: ). RVAR(3J, 12, 12)	 0), FR.iCAt. t5, •)n)
INTEGER ♦ q IF TANI (1.'), ro . IPlFO(f7), .." .:,'.:I. IPI'LC(;'00), TA7'ENO, THREE,

t	 CI+,FN7(PC), IMv.AN(30, 12), IVPI.(,i3, l:', 1.?). YrS,ND, DATE(.J)
INTECFR4-4	 kl',;':D,FC.GT
E0 ! JI VALE"%." k I;:, I.1 ), (IIJTI)AT, LOGT)AT ), (ICAL, LCAL), (LNWRT, ILIN)
F(AJIVALLN ;FRGCAL (1+1),IVREC(bl))
DATA GUS, 5• AM /' EU, 1 , 1 0, O 0 /
DATA YES, NO, THREE /'YES '. 'NO '. '3'/

PIXEL	 THIS IS 1HE SIMULATED DATA VCC70R,
S AS LAC14 LINE Iii COMPLETED, IT IS WRITTEN TO AN OUTPUT TAPE.

70 RU14 THE PROGRAM, YOU NEED TO HAVE THE FOLLOWING
EXEC FILE ON YOUR DISK:

GETDISK LARSYS
GETDISK DVSYS
GLOBAL TXTLIB CMSLIB FORTRAN SSP370
FILEDEF h PRINTER
FtLEUEF 16 TERMINAL
FILEDEF 12 TAP2
FILEDEF It TAPI ( RECFM VS LRECL 1500 BLKSIZE 1500)
LOAD SWRITE GLOCOM MMTAPE TAPOP DCDVAL GTSERL GTDATE MFSD
RANDII WI?TMTX
START SWRITE

THE PROGRAM WILL ASK FOR INFORMATION SUCH AS
TAPE NUMGERS. FILE NU14DERSP ..ETC	 FROM HERE ON, IT
SHOULD BE EASY TO FOLt. 0.
rNlirww NNN'wwwwwwwwwNNNNsw•NRrrrrrrrNNNiiNNNNNwrwwNrNNrrNrrrrrrr

1
1
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OF POOR QUALITY	 152

FILE SWPITE FORTRAN A LARS / PURDUE UNIVERSITY

DATA FLCT /'SIM '/
L1 1 5v 1. E-5

C
Craar00arrar0rarrrararrrarrrrrrrr0rrrrr0r00000arrr0rr0rrrr0rrr00rrs•
C LUAU T Arf S AND RCAD PARAMETERS

c
r ► arr^raarrarara0r0raarar00rr0rarr00r0•:;rsarr00t•r0rsr0r0r00rsrrrrr•

WR 1 TE (16, 500 )
500 FURl1AT(//5X, SPECIFY TAPE NUMBER ON WHIC14 RESULTS FILE 12 LOCATED

•/rY..'(TYPE E1GHr DIGIT TAPE NUMBER)')
RE Ap t 16. 505)INTAP

505 FOPMAT(I8)
WRITE(16,5101

510 FOF IMAT ( 5X.'nPFCIFY FILE NUMBER AT WHICH RESULTS FILE IS LOCATED'/
4X,'(TYPE THREE DIGIT FILE NUMBER)')

RE:AD116, 515) IFILE
515 F014MAT(13)

CALL MMTAPE(INTAP.IFILE,O)
WR)TC.( 16, 570)

570 FOk1`1AT(//5X,'SPECIFY THE TAPE NUMBER ONTO WHICH SIMULATED DATA IS
tTO L'c, WRITTEN'/SX,'(TYPE EIGHT DIGIT TAPE NUMBER)')

RLAD(lb, 575)TAPENO
575 F0101AT(18)

W1; I l E ( 160 500)
5HO F01:FIAT(5X.'bPECIFY FILE NUMDER AT WHICH SIMULATED DATA IS TO DE W

$I7TI.N'/5X,'(TYPC THREE DIGIT FILE NUMDER)')
RF1,1) 4 16. 5051 JF ILE

585 FO!:I"IAT ( 13)
WRITE ( 16.590)

5QO FORMAT(//5X,'SPECIFY THE RUN NUMBER FOR THE SIMULATED DATA RUN'/
I	 5X,I(TYPE EIGHT DIGIT RUN NUMBER)')
RCAD(16,575) RUNNO
CALL. MOUNT ( TAPENU. 12. 'R I ' )
M AkGxJFILE-1
IF01ANC LE. O) GO TO 3
DO 3 LIP=I,MARG
CALL TOPFF(12)

3 C014fINUE
5 ROAD (11) I

IF(I NE. 1) CO TO 310
RCAIM 11 ) I, J. NOCLAS, NOCHAN, NOFLDS, NUPOOL, (FETVC3(IX ), IX 0 1, NOCHAN)
NOCH=((NOCHAN+.1)/2)02
NOCVMPmNOCHANr(NOCHAN+1) 12
I ST(,^yNC)ti:(("'f'rNOY(')OL
ILtJli=(STOP+ NOCHANrNOP00L

15 RCAL(11)1,J,K
IF(I (.T S' GO TO 15
IF(K.NE COS) GO TO 15
RrAD(I1 ) 1, J, (2 (IX), IX o 1, TEND)
'),') 17 IX=1,lEND
1.1(IX)=Z(IX)

17 CONTINUE
45 RLALI(i l) I. AREANO, NOPNTS, NOLINE, INFO, IDREC

FJ, A+ T 3=-NOCHAN
IF(1 NE 5) GO TO 45
b:RITE(hI520)

540 FO1. ! 'Al ( till ////5X. '+++++++++++++++ ♦+++++++++♦+++++++++♦++++ ' )
VilITE(6, t,'5)

525 F0!it 'aT(5X,'+DA1A SIMULATION USING MCCADES EOVATION+')
OR11L(6, 530)

530 FGA"''1T(5$.,0+++*++++++++++++++++++++++++++++ ++++++♦+1)
VRAT ,- ^6, 335) RJN 10, IDRFC(3)

535 FV"VXT(////KX, 'SIMULATED DATA FUN IS', 19, ' FROM RUN', 19)
WnilE'(6,".37)INPLI t4), INFO(5).lNFO(7:, INr0(3)

537 F6)(MAT(/5),, 'LINE:', I5, ' TO LINE', 15, ' AND COLUMN'. 15, ' TO COLUMN',
ss)

L:f;ITF (6. 540) IPJTA' 1 , IFILE
540 F0i'N •,T(/5X, 'INPLIT r.ESULTS FILE IS ON TAPE', 19, ' FILE', 14)

loo? I I L 4 6. b •15) TAPE-0, JF ILE
545 F^' `,AT(/FjX. 'SIP4U ;_ATED DATA IS ON TAPE'. 19, ' FILE'. 14)

k':i ITE(G. 553)
550 FO-':P'AT4/5\. 'CHANNELS USED')

L::ITC(b, 5Es)FE"ll, 7( IXI,FROCALt1. IX),FROCAL(2, IX)
555 rc-'•1T (5)- 12, 2n. 15. 2, '-', F5, 2)
560 C r ll T i N:1F

rAt L GTDATE(DATE)
W=, I Ti (6, !jt+l))DAIF.

565 FVktAT(/5X,'DATL OF SIMULATION IS '.3A4)
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trY U Y -) l!<si y F^^".?^tY.Y i I

FILE: SWRITE FORTRAN A LARS / PURDUE UNIVERSITY

IDEQ•l
C
Crrrrrrrrrrrrrrisrrr•rrsrrrrrrrrrrrrrrrrrrrrrrsrrrrrrrrrrrsrrrrrw^rw
C FACTOR COVARIANCE MATRICES
Crfrrrwrrrrifrrrrrrrirrrsrrrrrrrrrrrrsrrrrfrsrrrrrrr^rrrwwrr^rrrrwrw
C

DO 30 I X • 1, NOPOO .
IDONI,r10CC#NOCUMP—I
K•0
DO PO IY N IDEQ, (DONE
KpK+I

20 A(K)' Z(IY)
CALL MFSD(A,NOCHAN.EPS, IER)
IF(IER EA '-1) GO TO 300
IF(IER GE . I) GO TO 310
KmO
DO 25 IY•IBEG,IDONE
KRK+I

25 Z(IY)*tA(K)
30 IBEQ-wIDEQ +NOCOMPC

Ciffs.rrrr*,sirrrrrrrrsrrrr^rrrwrrwrwrrrrrrrrrrrrsrrswrrrrwwwwrrsrrwrrr•
C GENIERATF STARTI' ? POINTS
Crfar,rwwrrrrrrwrrrrwirrrrwwwrrrrrrrrrrwrrrrrswrr^wrrwrrrfrrwrrrrrrtrr ♦

29 WRITE ( I6, -fv : )
3: FORPIAT(5X.'DO YOU WANT TO SPECIFIV THE STARTING POINTS FOR THE'/5

b. 'RANDOM NUMBER GENG•RAI'OR? (TYPE YES OR NO)')
REAR (16, 32) INPUT

32 FORMAT(A4)
IF( IN)' UT. E0, NO) GO TO 36
I F (INPUT. E0. VES) GO TO 33
GO TO n9

33 DO 39 IX=1,NOCHAN
WRITC(16,41)IX

41 FORMAT(5X.'SPEC11'V STARTING POINT FOR CHANNEL', 13/5X, '(TYPE A NIN
6 DIGIT ODD NUMBER)')

RCA D( 16, 42) I START (I X )
12 FQ°MAT(19)
39 CONTINUE

GO TO 43
36 CAL.( GTSERL ( ISERL)

ISEF(L--(ISERL/10)0D+l
DO 4U I=I, NOCH
ICFRL,mISERL+1000000
ISTART(I)=ISERL

40 CONTINUE:
43 WRIIF':(6.34)
34 F	 'STARTING POINTS FOR RANDOM NUMBER GENERATOR'//)

DO 44 I=1, NOCHAN
WRITE(6,35)1,ISTART(I)

35 FOfotlATt5X, ' STARTING ,POINT FOR CHANNEL '. 12, ' IS ', 19)
44 CONTINUE

C
Cir*Mi*r*kP*#kriifilkrrrr*ffrrrriflrfil ►rrf4rriiriiif rNifr rC •iirwrrrw
C READ CLA",5IFICATIUNS
Cffraf ♦+ * rrfarrfr •irrrrrwrfrrrfrsrrrrrrffsfrrrrrirarriiirrrrrfs•frrrr
C

I 7 1 1 , F(: ( i )=TAPENO
II(.i"C(P )=JFILE
IVf?f C(3) r RUNNO
N'a't It _ IDREC(5)
I D( E r (`,) = NOCHAN
IV!ti C(t,) ^ 4 1+( (NOPNTS + 9)/4)
N(l',;." r 1 DRFC (6)
1DnL •"(71 a FLGT
DO 14: 11=1,3
InFF .'(f1*16) s DATE(II)

141 CQ'. I I WIE
ID:tCC(20) = NOLINE

C	 DO 1 .15 I l = I. NOCHAN
C	 Itle 'W .. FETVC3(1 I )
C	 VO 1 .1 f. I I2 = 1, 5
C	 FRCCAL(I12,I1) = FRGCAL(II2,INEW)
C 145 C(j,JT Ita,1 r
C	 LIP = t,UCHAN + i
C	 DO 1 1-0 11 ` LIP.NOLD
C	 00 ) ^-0 112	 1. 5
C	 FROCAL( II2.II) R 0.0
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OF PoCR QUALITY

F1LC: SWPITE FORTRAN A LARS / PURDUE UNIVERSITY

C 150 CONTINUE

CALL TOPt)R(12,1100. IER, /DREG)
IF(IER NI, 0) WRITE(16.234)IER
IF(II'R rT 0) CO TO :110
DO t)O MA (, NOCt. AS
CLAPI (MA •0
DO 50 M1lu 1110004AN
1MFAN(MA.''f^ , n0
RMLAN(MA, o 1f0 0
DO 50 MC a, HOCHAN
I VAR (MA, MD, MC) -0

50 R VAR (MA, MO. MC) 00, 0
LNWRT - 0

55 READ( I1)J,K,LINENO, ( PNTCLS ( IX),IXmI , NOPNTS)
IF(J CT 6) 00 TO 95
LNWRT-L.NWRT+1
IF (MOG(t.NWRT, 25). FO 0) WRITE ( 16, 57)LNWRT, NOLIN£

57 FORMAT(5X, 14, ' LINES OUT OF '. 14, ' ARE COMPLETED')
C
CwffAaAwffAA*f«^fffrfffrfrwAfrrrw ♦rrrrrfrrsrsrwAfrraArrrN rrrrrrrfsrr
C OCNERATE AND WRITE DATA POINTS
('fAAf*AAff AAAwwffffff ♦*f•AArArrrrwrrArArfrrwAAAwAAfrrArrlfrrAfffflr•
C

60 I2m1LIN(2)
DATOUT(1)-L1(I)
DATOUT(2)-Ll(2)
I2u327b7
DATOUT(3)wL1(l)
DATOUT(4)=Li(2)
12"0
ICOUNT-4
DO 90 1X- 1. NOPNTII
ICOUNT-1COUNT+I
12-PNTCLS (IX)
L1(1)-.FALSE.
IPOL-(12-1)ONOCHAN
I©E:G-(I2-1) *N000MP
K-IDEG
DO 65 IY-I, NOCHAN
DO 65 IZ-I.IY
K`K+1
D(IY, IZ)=Z(K)
IF(IY EO IZ) GO TO 65
D(1Z.1V)m0.0

65 CONTINUE
DO 70 1Y-l.NOCH
CALL. RANDU(ISTART(IY),NXINP,A2(IY))
IST+'`4T( IY)=NXINP
C A4L RANDU(ISTART(IY),NXINP,A(IV))
IaTART(IY) - NXINP
A(IY)tSMRT( -2.fALOG(A2(IY)))rCOS(6.2S318fA(IY))

70 CONTINUE
CLAPNT( 12)=CLAPNT(12)+l
DO 00 lY=-1,NOCHAN
DATA(IY).0 0
I0-N0Pn0L*N000MP+IF CI.+IY
DO 7b I Z--1, NGCHAN

75 DATA(IY)*DATA(IY)+D(IY.IZ)rA(IZ)
DA1A(IV)=,DATA([Y)+Z(I0)
INTDAT r DATA(IV)+ 5
IF(INTPAT LT 0) INTDAT-0
IF(INTUAT.GT M55) INTDAT-255
ISTAT(IYIrINTDAT
VATOUT((IY-1)*NUiAM+I COUNT) -LOCDAT(2)
GO 92 IZ=-1,6

2 DATOUT((ZY-1)*N05AM+ICOUNT+IZ)z.FALSE.
no CnNT I N%A

[)0 y 0 I I - 1. NC)CHAN
IMCAN(I.".', 11 )-I1!-AN( I2, 11I+ISTATI II )
DO 90 .IJ=I I. NJCHAN
IVAFi(I', I1,JJ)=) VAR (1 , II,JJ)+ISTAT(II)*1STAT4JJ)

90 CONTINQZL
NGI+YTF- 4+NOCHAN r N rY AM
CALL TC'^` .:'t t 1F', h Y7L, IER, DATOUT)
IF(IER It O) W"ilT%(Ih,234)IER
IF( IER (:T, O) GO TU 310
Go TO 55

95 CONTINUE

1
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w+•1r^t^. 
QUALITY0F 'F POOR Q

FILE° SWRITE FORTRAN A LARS / PURDUC UNIVERSITY

DO 100 IN NOCLAS
DO IOD 10-NIOCHAN
11'(CIAPNT(IP) LE 0) 00 TO 98
RMLAlt ( If'. I G) KFl UAT ( 1 MEAN (IP, 10)1 /FLOAT 4 CLAPNT (IP) )

98 DO 100 IT*IO,NOCHAN
IF(CI A('NTI TP) LF 1) 00 TO 100
RE('N7 -r LOAT (CLAF lNT (I P) )
RFVAR-FLOAT (IVAR (IP. IO, j j )
RrMF AN*FLOAT41MF'hN41P, 	

1SEil, AN*FLOAT( IMLAN4IP.
RVAk (IP,10.17) • (1 /(REPNT- 1.))04REVAR—REMEANwSCMEAN /REPNTI
RVAR ( TP. I1. 10) wRVAR(IP, IO. IT)

100 CONTINUE

WRI7Ef6,605lIP.CLAPNT(IF)
605 FOPtl4T(!H) /5X. 'CLASS NUMBER'. 13.5X, 18. ' POINTS'///)

WRITE(6,610)
610 FOf(MAT(37X.'ACTUAL'.4X.'SIMULATED"I

WRITF(b.615)
615 FORMAT(30X,'MFAN'.7X,'MEAN'/)

DO 622 I X..1, NOCHAN
NINCLNOCOMP *NOCLAS*( Ip—l)*NOCHAN
WRITE 4 6, 60 5) FETVC'.)(1 X ). FROCAL(1, FETVC3(I X) ), FROCAL (2. FLTV('I(1 X)) .

62(NIl4C+1X).RMEAN(IP, 1X)
620 FORPIAT 4 5X, 'CHANNEL'. 13.2X. ' ( '#F5. 2. ' — 's F5. 2, ') ', 5X. F8. 3, 3X. F8, 3)
622 C014T I NUE

WRITE(6s625)
625 FORMAT(/////5X,'ACTUAL COVARIANCE MATRIX')

DO 630 NO*1,14000MP
N1N:*(IP-1 ) *N000MP

630 A(fAU)-Z2(N1NC+NO)
CALL WRTMTX(A, NOCHAN, FROCAL, THREE, FETVC3)
WRITE(6,635)

635 FORMAT(////5X,'SIMULATED COVARIANCE MATRIX')
NOrO
DO 640 10*1.NOCHAN
DO 640 INm I, IO
N0^N0+)

w r.0 A(r1r1)-RV^R(IP, 10. !M)
CALL WR TMT X (A, NOCHAN. FROCAL, THftEE. FETVC3 )

645 CONTINUE
CALL TOPEF( 12,IER)
DO 650 IXz3,200

650 IDRCC(IX)40
CALL TOPWR( 12,R00,TER . IDREC)
IF(IE1( NC 0) WRITE(Ib, 234)IER
IF([ER GT. 0) GU 70 310
00 TU 3"0

«34 FORMAT(5X. 'ERROR IS'. 15)
C
("{!{♦!•wl1M{!!!1!w{!!!i!!{w{{{w{!{wlwww{w{^F•{!{!!ww!{!!f ♦11!!11{ w{{•
C ERROR MESSAGES
Cww!{rw{{•^!{•w••{a{•a!{w{ww{ww{lwwaw{ww{ww{wlssa{www{{{www• {s{{www•
C

300 WRITE ( 6,305)
30b F(1t1 MAT(5X, 'ERROR —1')
310 14R11E(60 31 tJ)
315 FORMAT (5X, 'ERROR OT 1')
320 STOP

LEND
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OF POOR

FILE: HVGIIES FORTRAN A LARS / PURDUE UNIVERSITY

;iw •a liowlooaoiiailiiiliiiilwtl>iwiiNiNiiwlYYNNiiNiiNiiNNNNNiNN

HU^I!E:1 FORTRAN
PHO-i,f,w TO CA1.CULATF THE PRQBADLITY OF ERROR FOR TWO CLAhSES
P)Jf„RAM REQUIRES AS INPUT 	 DECK IN THE READER FILE AS
FULL UWS

i11 c)T CARD NUMBER OF TRAINING !SAMPLES OF CLASS 1
(FfiRMAT 13)
5f f.(,NI ► CARD NUMBER OF TRAINING SAMPLES OF CLASS 2
t F GkMAT 13)
M:eW) AND COVARIANCE MATRICES OF CLASS 1 AND 2 IN
LA4i5 iq3 FORMAT
THE )'kOGRAM GIVES AS AN OUTPUT THE PROBABILITY OF CORRET

CLA5`: IFICATION FOR EACH CHANNEL (FOR CHANJJELI. CHANNEL lr&
Cl4A,'V.,.LU 1,2#3, ETC ), THE TRANSFORMATION MATRIX AND THE
NEW Mr AN AND COVARIANCE MAT'ZICEE S
THE PROGRAM REQUIRES THE FOLLOWINO EXEC FILE

GETDISK IMSL
GLOPAL TXTLIB FORTM002 CMSLID DIMSLID SIMSLIB
LOAD HUGHES
START

•iwliNNitawawiiirlwiLiittNiiNiiaNNw'NMtatitttitNttittiNNNtNNNNtttMtttittN

iwarawawiawasaitiiiiiiisw/FiiNNNN6NMlNYNIIiUNNNMNiA/iiiNNNttiNflNwNMNNNNNN

LIfT OF VARIABLES

C	 N1 NUMBER OF TRAININQ SAMPLES OF CLASS 1
C	 N2 NUMBER OF TRAINING SAMPLES,PF CLASS 2
C	 EGVALI' EICENVALUF VECTOR OF 1; 2•` AFTER TRANSFORMATION
C	 DUl NEW MPA14 VECT(IR OF CLASS 1
C	 DD? NEW MPAN VECT (Jfi, OF CLASS 2
C	 VSCMAI VARIANCE OF	 VAR H(X/Wo)
C	 VS(;!-t'12. VARIANCE OF i. 	 VAR H(X/W^ )
C	 TRl.:4:: I ' TRANSFOKIIA ( IGil MATRIX
C	 ^,5; I.L W (,:'W COV. " I.: J; : ,7 7I X OF CLASS 1
C	 SS?I,cW. NJ-W COVARIANCE MATRIX OF CLASS 2
C	 CONST. MULTIPLICATIVE FACTOR OF VA 	 AND VAR (ij')
C
(+K..wslaiwwlaaa aww4•xwwiwl.ia}aiiiiiiciiwiitirtsiwwliiiFiiilwNiiiiiNiiiriNwN

IMPLICIT REAL*9 (A-H2O-7)
REAL-!, 0 SIGMAI (7B), SIGh1A2(79), AINV(7Q), WK(l0')Z), PSIS2( 12. 12).

a WR(1GEJ),f•i1(1,!),M2(12),PERROR.ECVEC:3(12, 1),EGVECT(1, 12).CC(I.12).
wEGVAL R(24 ), F(,VECR(;""I), fiIGMIS(la, I.^. ), AA(1, 1), DFGVEC(12, 12),
+EGVALI (lb':, VA1ACH(IL'). T;:MPI ( 12), DD! GVC(12, li'), MEAIJii(2). MEANS42).
*SGhii^ (2 ), SGMB(2 ), Gt/MAR (2) . GAMAS (2) , Fd_f'HE((2) , ALPHi(2 ),
wCR(P), C6(."),A (2). 0(2), DCLTAR(2). DELTAS (2). DIST(2), ERROR (2).
wSS1NFW(7E3), S3?fJEWt7ka), ASCMS(2), AS(.:illt(^!),
+, S I ^.F;: S (l 2. S :') . DD 3 (12) , UD2 (12) , TRAN ; (l s', 12) , TRAfJ81 (12, 12) .
*LAPn.I,A, W,il(( 500), MEANSI (12. 2). MEANR 1 (12, 2 ), SGMSI (12, 2 ), SGMRI ( 12.2)
ODE)'. .'1 (1^), VGMA(^)
CONPIEXt!6 EGVAL(12),EC4'EC(12,12).ZN,

4X1, XI:. D1 ( 1,2), D2(12)
"QUIVALENCE (EGVAL(1),EGVALR(I)),(EGVEC(1,1).EGVECR(1))

C
Cwalal4lwt(nasalaawwawww4awaaalw+wwwrawwwauwwal^•wawwlawlwwwiwiiii
C
C	 READ NUMRER Or TRAINING SAMPLES OF CLASS 1 AND 2
C	 RLAA I',:.'d VECTOfi:. Lii" ('LA 3CES 1 At:D 2
C	 READ COVARIANCE WORICES Or= CLA`;SS 1 AND 2
C
(;laawlwlwwwawlwswrtw!!wwlw•fwi*awlssiistai.wwwltswwlawailirmiilwiN
C

RFAn(5,967)N1
READ (5,9r,7)N2

967	 FQ;; t AT(J3)
READ (5, 130)M1
Rt:,D (5. 120)M2
RFAD (5, 130) SIGMAI
Ri:•htS, 1"!U)SIGMA2

1:,0	 rLv,^i.,1 (2X, 5E14. 7)
N = I 

C
•̂ avwaLi!!1!iawa RCllc aw aaaaa p >+, y wM1^l ► i♦! t• rt a ♦/ r lw ww4(.Jw44 k44wiY

C	 COMPUTE IN1 E:RSE 0c CLI VAPIANCE MA1 F I X OF CLASS I
Ca "ilaaw4K t`a ► ea4 o- lf. a iaal. 0f4.:k,rasca 4 440a 4;>^aaa l4 ♦14! l aeOwalN

d
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FILE: HUGHES FORTRAN A LARS I PURDUE UNIVERSITY

5 +41 0/EG'JAL1(i)**4)*(8 0/N1 +8.01142 +1.^.0,0/(N1*N2) +40.0 /N1*02
6 +40 0 /N2*+2 +40 0/Nl **3 41H O/Nw *+:l +51 i 0/ (N1 **a *N2 )
7 +512 0/(NlfN?«*2) +17CO 0/1141«*2*W2+021 +576 O/(N1**3*N21
8 +57h 01(N2**3r1J1) +211L' 0/(141*«.^_•tJ.'«031 4 2112 O/(N1**3*N2**2)
9 +";04 0/(Nl**3*N2*•3) +4,0 0DU0R21 t I)*(4 0/N1 +8.0/N2
* +H 0/141002 +40 O/N2*42 +64.0/(N1*142) +25H.0/(N1*N:!0*2)
0 +96 0/(N1**.*142) +4C.O/N2**3 +4H8 0/(NI«N2**3) +3r2 0/(NI**2*N2
* 0*2) +324. O/(141*020142*03) ) +4. O*D;i(JlG l.1 (I )**20(2. 0/N1 +8 O/N2
* +40 O/N20*2 +24.0/(N1*N2) +48.O/N20*3 +89.0/(N10N2**2)
* +96 0/(N1*NP**3))))
VSGMA(2) stVSUh1A(2)+4.0*((ECVALI(I)* 04)r(8.0/NI +8.0/N2
1 +1?0.0/(Nl*NP.) +40.O/N1**2 +40.O/N2**2 440 O/N1003 +40 O/N20*3
2 +L1.^,.O/(141**2rN;!) ♦51 's:. 0/(1410142*0; > +17::0.0/(141**2*1420x2)
3 +575. 0/(N1**3(-N21 +57b, O/tN1*IJ2*0;t>
4 +2112 O/(N1*03*N2*0.^) +2112 0/(N1**<0N20*3) +0304 0/(N10*3*N2**3
5 )) +(4.0*EGVALI(I)**3)*(DSUR21(1)*((3 O/N1 +4.O/N2 +0 O/N2**2
6 +40.0/NI**2 +64 0/(N10N2) +2b6.0/(N1**2*N2) +96.0/(N2*02*N1)
7 +4H.O/N1**3 +228. 0/(N2**3«Nl) +352.0/(N1**2*N2**2) +
8 394. 0/(N2**:.*NI* *3) ) -(4. 0/NI +4.0/N2 +H. O/Nl0 *2 +8, O/N2,,*2
9 +32 O/(N1aN2) +40.0/(NI*N2*4i2) +48.0/(Nl**2*N2)
* +64 0/(N1**2*N2**2))1 a(2.O«EGVALI4I)**2)*(4.0/N1 +4,0/N2
a +8.0/(N1*142) +(2.0*DS0R21(1)**2)*(8.0/N1 +2.0/N2 +40.0/N1**2
0 +24,0/(NI*N2) +48.0/N1**3 +88.O/(N1**2*N2) +96.0/(N)**3*N2))
• -4. 0*DSOR21 (I)*(2. 0/N2 +4. 0/N1 +12. 0/(N1*N2) +8. O/N1**2
* +16 0/(N1*02*N2**2)))1
DO 141 J=1.2
IF(A(J).GT.O O)GO TO 979
MEANS(J)=MEANS(J)+A(J)*(1.0+D(J)**2)
SGMS(J)-SGMS(J)+2.0*((A(J)**2)*(1.0+2.0*(8(J))**2))

974 FORMAT( 1OX, 'SGMRD * '. F20. 4)
C
Ca*rN***a****rrrr*****a*a*****s*N****** Nt)N*rN*******a********

C	 CALCULATE MULTIPLICATIVE FACTOR AND NEW Q AND fa
C
Caa*1414000*•*****•NNNOr*saa*s**a****14140*aN* 141414***0*0a***as****
C
979	 XZX=L`FLOAT(I)

CONST-O 1+2 O#(XZy•,•^)!!!'/" :2)
143 ASCMG(J)=SGMS(J)+CDNST*DSORT(VSCMA(J))
192 ALP1iS(J)=(IMEAN54J)**2)/ASUMS(J:)-1.0

IF(ALPHS(J) GE 0.35)GA1%AS4J)=1.O
CS(J)=(MEAtJS(J))-DSURI((GAMAS(J)+l O)*ASGMS(J`.
DELTAS(J)=ASGMS(J)/(MEANO(J)-CS(J))
CS(J)=-MEA1J5(J)-DSORT((GAMAS4J)+1. 0)*ASONS(J))
IF(A(J) CT 0 0)GO TO 142
GO TO 144

142 MEA14R(J)=Mc.ANR(J) +A(J)*(1.0+D(J)**2)
SG	 (J)=SGtMR (J)+2. 0*((A(J)**2)14( 1. 0+2. 0*(0(J) )*0211

874	 FOR MAT (30 X,  F20. 4)
873	 FOF.)'(AT( IOX, F20, 4)

XZX=DFLOAT(I)
144	 AS,',MR(J)=SGMR(J)+CONST*DSORT(VSGMA(J))
193 ALP I y^(J)=( (ME Al4R4J)*+2)/ASGMR(J))-1.0

IF(ALPF:),(J). GE. 0 35)GAMAR(J)=1. 0
CR(J)=MEANR(J)-VGGRT((GAmAR(J)+1.0)OASGMR(J))
DELIAR(J)=ASGMR(J)/(MEANR(J)-CR(J))

141 CONTINUE
C
(',*****N*N rw*** wa a#Awwwa***fiN *wra*M*a ***i*#N««wwka#**«#««ra* waa•
C
C	 CALCULATE PROBADILITY OF ERROR

CO N** 0r**r*w+*www0«**a*wwr00***0aw•0rw**•0w ♦ «uur«u*rwwww•«w*wow•
C

PSI=PSI+DLOG(EGVALI(I>)+((DD2(I) -DD ICI))¢u2)/(EGVALI 1 1.0)
DO 145 J-1.2
DIST(J)=PSI-(CR(J)-CS(J))

145 CONTINUE
DO 146 K -1.2
IF(DI5T(K). LT. 0. 0)GO TO 147
IF(D LTAR(h) EG 0 0)GO TO 143
ERCO-^(K)=3.0-((DELTAROO/(DCLTAF7(K)+DELTAS(K)))**

1 crh,;- ch)+1 0) )*( ((DIST0) /DELTAR(F",  )+1. 0+((GAMAR(K)+
GGrM:, (K)!«7-LTAS(h))/(DELTAR 1 K) *DELTAS (K)))*4CGAMAR(K))*

(-DIST(K)/DELTAR(K))
vJ TO 146

149 ERROR(K)=1.0
GO TO 146

..
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OF POOR QUALITY

FILL HUCHES	 FC14TRAN A	 LARS / PURDUE: (,(.: t ISITY

CALL L INV2t'(E;ICMA1. N, A1NV, IDGT, CE1. EE2. WK, IER)
WRITE(6.117))ER

117	 FORMAT(' ',13)
C
CrrRArararAAirRR••rrRrrrrwrrrwiniAawANAArwrrNNaNNrNwNwwrAA
C	 Ci)r„'UT1 It..^ ft^,: (I; CUVAftIM10E MATRIK 1 MULTIPLIED
C	 UY CUVAil I,• .l f MA fR I K c^
CASrrRrrrrarrRR••rrrRrrraNNawNrarrNwrawAarNawNrrNaANNwArAAA
C

CALL VMUI.SS(Alr1V, SIGMA2, N, PS1S2. N)
C
CNNNraNNANrraarrrrAiar ArN NNrNNarriNNNrNAwwNAwwwNANAANNAAAA
C	 COMPUTE EIGfNVAl.UE5 ANU EICCNVECTORS OF (INVERSE(
C	 SIGMAI I) (51('MA:'_)
CaR rArraarrNArrr•r# ♦ arawAMNw ♦ANrANwANMAANwwaNAAAAAAAINAAAA
C

CALL E I GRF WS 16”, No N o 2, ECVALR, ECVECR, N. WR, IERR )
WRITE(6,117)IL4R
WI(ITE(6, 126)WR(I)

10^6 FORMAT (' s o V6. 1 )
C
L"aANAAMr rAi#A11rriA AiN,.Ni 4MNNANNrNNA^MNANrrRwwAwNNANANNARA
C	 N04MALIZIN3 CIGENVECTORS (SEE FUKUNACA,
C	 PACE 35)
CrrraAAAArRrrARRArrrArrwaaawwrArArNANaAwiwwrAANNNrAAANAAA
C

CALL VCVT c F'(0ICMA),N, ,ICMiS,N)
CALL VCVTt,f 0iIGMA2. N, SIGM2S. N)

IM10 1	 !.N
()0 

V() 
J = 1, N

FCVtM1.J) - DRFAL(F,GVI:C(J,I))
fGVFCS(J, I)-0M.AL(EGVEC(J, I))

20	 CONTINUE
M N
NN N
CALL VMULFF(E:GVECT, SIGMIS, 1, M. NN. 1, No CC. 1, LEER)

W1 	 1?6) IErk
CALL Vrt:;LF'L (CC. EG'.....:,, 1, Iu I:.:, 1. I:, AA. 1, I IZR )
WRITE(6,1Pb)1ILR

AA(l, I) c USGRT(AA(1, 1))
DO 30 K = 1. N
ECVLC(K.I) = EGVEC(K,I)/AA(1,1)

30	 CONTINUE
10	 CONTINUE

C
('AaR-AA AAARAAAa a#riAi ANr NwNNawANNNawNANwAwNNNARraaNRNANNN
C
CAM#aRUaNrraa#aNArra ANr NwNNwNNirRNANwNNNNwNNNwwNwwANwNNNwAAA
C	 CALCULATE: N:":J PWAN VECTOR DI = EGVECAMI
CArr p rNAr rrARr ► a p rlFAA rrA#R#rNaArA NNaArwaAr#r-AN NrwawANrArr fN ♦
C

DU 90 I = 1, N
Dl ( I )- (0 0, 0 0)

90	 CUNTlNUI
C
C#a p a py "e p a p ,l p w drtl•a p ariM MrAAiAA AAANrAMar#A AR #rNi A•Ai RA p r AA ANaNr#N
C	 C^l_CULATE N-W Mt AN VGCTVf2S
(;#Air llkrArA4#A r p RP•raR•rrRa p ari ^RArAAAaANA ##RNA ► R rwi7wA ARrArwMNaa ♦ AA
C

DO 95 I =I, N
DO 9'1 J = I , N

DEGVEiC(I. J) - DREAL(FGVI.C(J, I) )
F(A'e'-M)	 1tfh" AL(FGVAL (I) )
1)V1'GV(, (1, J) = Cf~tAL(F.GVf'C(I, J) )

i'^.'{lt:,E.vvi:..^J, I)a?t.:'(J)+Dr(I1
Tk,:'J•U (I, J)=0 0

95	 CCr,) ;N(!F
103	 F	 14. ')

DO 777 1 -1. N

777	 C(•.TINUE

CArrRa rA RRrr ARrl w r i4^r:rrA#aAiArAilaAla•a RArArkr}RriA AA•AiArAiNRR
C

a

J



159

OF pooh QUALITY

FILE: HUGHES FORTRAN A LARS / PURDUE UNIVERSITY

C ORDER THE EICENVALUES AND EIGENVECTORS ACCORDING TO
C	 MAXIMUM EIGENVALUE

CrrsrrrrwrNraaArrarrrrrrwwrrrwwwwrrrrrwrrrrrwwrwwwwrwrwrwrwrrwwww
C

DO 120 1=1, N
DO 120 J=1. N
IF(ECVALI(I)-ECVALI(J))120,120,131

131 TEMP=ECVALI(I)
TEMPP=DDI(I)
TTEMP -DD2(I)
EGVALI(I)=EGVALI(J)
DDI(I)-DD1(J)
DD2(I)=DD2(J)
EGVALI(J)=TEMP
DDI(J)=TEMPP
DD2(J)=TTEMP
DO 132 K=1,N
TEMP1(K)=DDEGVC(K.I)
DDEGVC( K,I)=DDEGVC(K,J)
DDEGVC(K,J)-TEMPI(K)

132 CONTINUE
120 CONTINUE

CwArrrwrwrrA#arrrr*rr*N{ar*rw*r**wwwww**rrrrrrwrarwwrwrrrrrrrrrsr
C
C INITIALIZE ALL PARAMETERS UNDER CONSIDERATION

(rrr•r#rrrr*rrArrrwrrr*rrrrwrrrrrwrrrr wrr****rw*r*r#r rr**wrwrwwrrw
C

WRITE(6, 136)
DO 134 1-1,N
DO 134 J=i, N
TRANS(I, J) =DDEGVC(J, I )

134	 CONTINUE
DO 135 II X1.2
MCANR(II)=0.0
ME A NS ( I I)=0.
SGMR (1 I)=0. O
SGMS( I I)=0. O
CAMAR(II)-O.0
GAMAS(II)=0.0
ALPHR (I 1)=0. 0
ALPHS (I I)=O. O
DELTAR(II)=0.0
DELTAS(II)=0.0
CR(I I)=0. 0
CS(I I) =0. O
PSI-0.0
VSGMA( I I)=0. O

135	 CONTINUE
C
('rrN##ANN#N#{###N*NaANara*i**Ar*wArrrrAa*N#NAN ArAaRN##RAAr}rrrarw
C
C CALCULATE PARAMETERS OF GAMMA DISTRIBUTIONS
C
(,Aa♦## AAra{{r#N####AAA####*iNi4r## i#rrN r * # ,►aii##fii#N####iNNNf AAi
C
136 FCRMAT(' ', 10X, 'FIRST N DIMCNSI ,ONS', IOX, 'PROBABILITY OF ERROR')

DO 140 1 = I,N
A(1)=1.0-1 O/EGVALI(l)
B(I)=(DD1(I)-DD2(I))/(EGVALI(I)-1.0)
A(2)=CG1 AL1 (I)-1 0
B(2)=(DSGRT(EGVALI(I))*(DDI(I)-DD2(I)))/(EGVALI(I)-1.0)
DSGR2I1,I)=(DD1(I)-DD2(I))**2

C
(,rifrawrrr rti{kiAiir}NrAi#* IiNrA*r AANa1t*„#Aires#1A awN#r{A}rk{*{•^www
C
C	 CALCULATE VAR (P') AND VAR (k')
C
(rNMNN##f#A#i•i####ri ► #iifYN*NN#NNN#aANif#*##ffAN#**{Ni*N*##aAN{ ♦{ r
C

l'SGMA(1)=VgrMA(1)+4.0*((2.0/EGVALI(I)* *21 *(4 0/NI +4.0/N2
1 tO 0i(NI*t:')) -(4 C/EGVALI(1) r *3) u (4 O!NI +4 O/N?. +

8 0/Nl* ,	+!) ( 1 'hl *r;! +32 0/(Nl*N: 1 1 -#40 0/(N1*N:`ta,")
2 + 40	 4r,4	 4 00 1L) , 1 f 1 ){
4 (1.01N1 +2 0/NL' +6 0/(NIKi42) +4	 +8.0/1N1#(.`ai21))
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OF POO 't; ^;r+,y q

FILE: HJGllE3	 I'ONTRAN A LARS / PURDUC UNIVERSITY

147 IF(DFL7AS(K) EO 0.0)G0 TO 149
ERRW((00- ((DELTA'... (K)/(DCLTAi(K)+DELTAM((K)) )**(GAMAR(K)+1. 0))f
1((-(tUIOTCKI)/ULLIAbIIU>*f 0+((CAr'/%R(K)4CAMAS(K))*1)LLTAR(K))/
2(D:.'t-Thfi(K)+DF,L'IAS(K)))**GAMAS(K))*DEXP(DIST(K)/DELTAS(K) )
CO TO 14b

149 ERPOR(K) =0.0
146 CON fINUL

X XX=1 0-ERROR (2 )
PERROR - 0 5*(1.0-ERROR(1)+ERRORf2))
PCC^ 1 O-PERROR

1: !9 Fdf(MAT (44X, F20. 4 )
WRITE(6,150)I.PCC

150 FO R MAT(' '.16X.I2.25X,F7.5)
151	 FORMAT(' '. 5k, F10. 3, 5X, F10. 3)
152 CONTINUE

WRITE(6,155)
155 FORMAT(/)
140	 CONTINUE

C 190 CONTINUE
C*airiliwiwaiiaiwiaiiiNairr*N*aiN awiaii*aww*wiwwaiiia *riaria*iiiii
C
C	 PRINT TRANSFORMATION MATRIX AND NEW MEAN AND COVARIANCE
C	 MATRICES
C
CrNSS**r***N*a*si*w*rwriii*irr*wwrw•*i*i**i****iwiwiarwrrwarai*wwi•
C

WRIT6(6.919)
919	 FOItMAT(IOX,'TRANSFORMATION VECTOR')

W'iITL'(b, 1E33)((1RANStI . J),J 1. N) . 1=1. N)
W^ I TL (6, 9;'0)

920	 FORMAT(//)
WR I TE ( 6, 921 )

921	 FOHMAT(IOX,'NEW MEAN VECTORS AND COVRIANCE MATRICES OF CLASS I
* A'vl)2 ' )

wrIrE(6, 165)(DD1(I), 1-1,N)
W'^YiE(6j 165)( DD2(I),I-1,N)

it",	 r-,R"IAT( MN', DE14. 7)Di n 7413 1=1,N
DO 746 J=I, N
I FAI NE J) GO TO 747
£SINEW( 1+(I*(I-1))/2)=1.0
ST)F:^W(I+(I* t I-1))/2) =EGVA4_1 (I )
G^, TO 746

747	 SEINFW(I+(J*(J-1))12)=O.0
S;; ;rNUW( 1+(J*(J-1) )/2)-0. 0

746	 GOUT I NUE
74B CONTINUE

NIIN=N,l (N+i ) 12
WPITE.(6, 175)(SSINEW(I), I-1,NMN)
W:7I,E(6.175)(SS2NEW(1), I=1.NMN)

175	 FORMAT('CV', 5E14. 7)
452 STOP

END

a ^!
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Appendix F

Description of Data Sets For Experiments
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OF PLO"

F.1 Training and Test Fields for Aircraft, Simulated

Data Set_ (Tape 203, fi le 3)

Training Fields

CLASS CORN
RUN ( 71053900) ► LINE ( 304, 326, 2) , COL (109, 133, 2 )
RUN ( 71053900) ,LINE ( 512 ► 528, 1) , COL (87, 93 ► 1 )
RUN ( 71053900) ► LINE ( 620, 636, 1) , COL ( 107, 123, 2 )
RUN ( 71053900) ,LINE ( 656, 676, 2) , COL (33, 59, 2 )
CLASS FOREST
RUN ( 71053900) ,LINE ( 798, 812, 1) , COL (141, 161, 2 )
RUN ( 71053900) ,LINE ( 704, 720, 1) , COL (147, 155, 1 )
RUN ( 71053900) ,LINE ( 726, 736, 1) , COL (81, 95, 1 )

Test Fields	 (Also Area Classified)

TEST CORN
RUN ( 71053900) ,LINE ( 143, 154, 1) , COL (42, 57, 1 )
RUN ( 71053900) ,LINE ( 305, 318, 1) , COL (116, 132, 1 )
RUN ( 71053900) ,LINE ( 403 ► 413, 1) , COL (17, 33, i )
RUN ( 71053900) ► LINE ( 643, 657, 1) , COL (121, 127, 1 )
RUN ( 71053900) ► LINE ( 684, 691, 1) , COL (11, 30, 1 )
RUN ( 71053900) ,LINE ( 857, 866, 1) . COL (34, 53, 1 )
TEST FOREST
RUN (71053900) .LINE ( 424, 430, 1) , COL (161 ► 173, 1 )
RUN ( 71053900) , L y NE ( 521, 531, 1) , COL (142, 162, i )
RUN ( 71053900) ,LINE ( 711 ► 728, 1) , COL (149, 158, 1 )
RUN ( 71053900) ,LINE ( 769, 779, 1) , COL (127, 148, i )
RUN ( 71053900) ,LINE ( 837, 851, 1) , COL (155. 162, 1 )
RUN ( 71053900) ,LINE ( 923, 931, 1) , COL (70, 79, 1 )
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OF K. "I"!

f.2 Training and Test Fields for Aircraft, Real

Data Set (Tap_e 203. file 1) ^_^

'training Fields

CLASS CORN
RUN ( 71053900) ,LINE ( 304 ► 326 ► 2) , COL (109, 133, 2 )
RUN ( 71053900) ,LINE ( 512, 528, 1) . COL (87, 93, 1 )
RUN ( 71053900) ► LINE ( 620, 636, 1) , COL (107, 123, 2 )
RUN ( 71053900) ,LINE ( 656, 676, 2) , COL (33, 59 ► 2 )
CLASS FOREST
RUN ( 71053900) , L 1 NE ( 798, 812, 1) , COL (141, 161, 2 )
RUN ( 71053900) ,LINE ( 704, 720, 1) , COL (147, 155 ► 1 )
RUN ( 71053900) ,LINE ( 726, 736, 1) , COL (81 ► 95 , 1 )

Test Fields (Also Area Classified)

TEST CORN
RUN ( 71053900) , LINE ( 227, 247, 1)o COL (81, 96, 1) 	 aRUN ( 71053900) ,LINE ( 334, 351, 1) , COL (66, 100, 3) 	 y
RUN ( 71053900) ,LINE ( 452, 474, 2) , COL (108, 119, 1 )
RUN ( 71053900) , LINE ( 597, 611, 1) , COL (137, 153, 2)
RUN ( 71053900) ,LINE ( 646, 664, i) , COL (101, 128, 2 )
RUN ( 71053900) ,LINE ( 711, 721, 1) , COL (102, 113, 1 )
TEST FOREST
RUN ( 71053900) ,LINE ( 241, 249, 1) , COL (27, 45, 1)
RUN ( 71053900) ,LINE ( 509, 527, 1) , COL (181, 193, 1)
RUN ( 71053900) , L 1 NE ( 729, 751, 2) , COL ( 201, 217, 1)
RUN ( 71053900) ,LINE ( 765, 803, 2) , COL (191, 203, 2 )
RUN ( 71053900) ,LINE ( 833, 855, 2) , COL (151, 171, 2 )
RUN ( 71053900) ,LINE ( 989, 1005.1) , COL ( 141 ► 155, 2)

i

s
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H	 .M

of

OF PL.-011

F.3 Training and Test Fields for Landsat, Multitemporal,

Simulated Data jet	 Tape _203 _ file 6)^^,.a_._-^,_. ,

Training Fields

CLASS CORN
78843016 25 32 1 33 4278843016 62 67 1 133 14178843016 30 33 1 87 10278843016 91 97 1 79 86CLASS SOYB
78843016 9 12 1 61 7778843016 74 82 1 51 6478843016 110 117 1 167 172

Test Fields	 ( Also Area Classified)

TEST CORN
RUN ( '78843016) ,LINE (2, 12, 1) , COL (30, 34, i )
RUN ( 78843016) ,LINE (38, 46, 1) , COL (18, 26, i )
RUN ( 78843016) , LINE (55, 58, 1) , CGL ( 103, 117, 1 )
RUN ( 78843016) , LINE (16, 22, 1) , COL (123, 127, 1 )
RUN ( 78843016) ,LINE (70, 73, 1) , COL (80, 89, 1 )
RUN ( i 3S43016) ,LINE (85, 93, 1) , COL (47, 50, 1 )
RUN ( 78843016) ,LINE (102, 104, 1) , COL ( 140, 155, 1 )
RUN ( 78843016) ,LINE (107, 115, i) , COL (11, 15, 1 )
TEST SOYBEANS
RUN(78843016), LINE(1, 4, 1), COL(91, 100, i )
RUN ( 78843016) ,LINE (16, 20, 1) , COL (56, 70, 1 )
RUN ( 78843016) ,LINE (32, 34, 1) , COL ( 114, 126, 1 )
RUN ( 78843016) ,LINE (49, 51, 1) , COL (113, 125, 1 )
RUN ( 78843016) ,LINE (76, 84, 1) , COL (31, 40, 1 )
RUN ( 78843016) , LINE (99 ► 106, 1) , COL ( 127, 132, 1 )
RUN ( 78843016) ,LINE (106, 114, 1) , COL ( 53, 59.1 )

1

i

i
1

a

i
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IWALITY

F.G Training and Test Fields for l,andsat, Multitemporal,

Real Data Set (Tape 203, file _^) _^^^_

Training Fields

CLASS CORN
78843016 26 32 1 32 42	 1
78843016 91 98 1 79 86	 1
78843016 62 67 1 134 141	 1
78843016 30 34 1 91 102	 1
CLASS SOYB
78843016 9 13 1 68 78	 1
78843016 74 82 1 51 63	 1
78843016 100 105 1 120 132	 1

Test Fields (Also Area Classified)

TEST CORN
RUN ( 78843016) ,LINE (2, i i , 1) , COL (27, 3?., 1)
RUN ( 78843016) ,LINE (38, 46, 1) , COL (19, 25, 1 )
R UN ( 78843016) ,LINE ( 103, 106, 1) , COL (140, 156, 1 )
RUN ( 78843016) ,LINE ( 101, 113, 1) , CCL (12 ► 17 ► 1 )
RUN ( 78843016) ,LINE (78, 86, i) , COL ( 124, 128, 1 )
RUN ( 78843016) ,LINE (67, 74, 1) , COL (94, 98, 1 )
RUN ( 78843016) ,LINE (35, 41, 1) , COL (123, 127, 1 )
TEST SOYBEANS
RUN ( 78843016) ,LINE (41, 44, 1) , COL (67, 79, 1 )
RUN ( 78843016) ► LINE (79, 84, 1) , COL (31 ► 40, 1)
RUN ( 78843016) ,LINE (106, 114, i) , COL (54, 59, 1)
RUN ( 78843016) ,LINE (44, 51, 1) , COL (118, 123, i )
RUN ( 78843016) ,LINE (1, 4, 1) , COL (90, 100, 1 )
RUN ( 78843016) ,LINE (109, 113, 1) , COL (132, 147, 1 )
RUN ( 78843016) ,LINE (44, 47, 1) , COL (155, 161, 1 )
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OF POOR QUALITYo^

F.5 Training and Test Fields for Aircraft Binary Tree

ExaTRl_e (TFe 203^£ile 1 )

Training Fields

CLASS WHT1
71053900 11 626 626 1 162 162 1NS-
71053900 12 627 627 1 164 164 1NS-
71053900 14 628 628 1 159 159 1NS-
71053900 16 629 629 1 163 163 1NS-
71053900 22 635 635 1 167 167 1NS-
71053900 3 461 461 1 71 71 2NS-
71053900 4 461 461 1 79 79 2NS-
71053900 9 463 463 1 75 75 2NS-
71053900 4 621 621 1 167 167 1NS-
71053900 10 624 624 1 159 159 1NS-
71053900 20 633 633 1 161 161 1NS-
71053900 21 634 634 1 163 163 iNS-
71053900 27 639 639 1 163 163 INS—
CLASS WHT2
71053900 3 314 314 1 163 163 1NS-
71053900 6 316 316 1 166 166 1NS-
71053900 7 317 317 1 159 159 1NS-
71053900 8 318 318 1 157 157 1NS-
71053900 10 319 319 1 157 157 1NS-
71053900 17 324 324 1 167 167 1NS-
71053900 18 325 325 1 165 165 1NS-
71053900 21 327 327 1 167 167 1NS-
1053900 22 328 328 1 158 158 1NS-

71053900 7 462 462 1 79 79 2NS-
71053900 10 463 463 1 77 77 2NS-
71053900 17 469 469 1 67 67 2NS-
71053900 21 471 471 1 75 75 2NS-
CLASS HAY
71053900 2 484 484 1 55 55 2NS-
71053900 1 880 880 1 132 132 1NS-
71053900 3 882 882 1 126 126 iNS-
71053900 7 883 883 1 126 126 iNS-
71053900 14 886 886 1 128 128 iNS-
71053900 15 887 887 1 133 133 1NS-
71053900 18 889 889 1 134 134 1NS-
71053900 19 890 890 1 135 135 iNS-
71053900 20 891 891 1 128 128 INS-
71053900 30 895 895 1 132 132 1NS-
71053900 13 488 488 1 41 41 2NS-
71053900 16 490 490 1 43 43 2NS-
71053900 19 894 894 1 135 135 INS—

r-
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OF po a QvALITY	 167

CLASS PAS1
71053900 2 402 402 1 157 157 2NS-
71053900 32 417 417 1 153 153 2N8-
71053900 34 418 418 1 149 149 2NS-
71053900 1 1012 1012 1 101 101 INS-
71053900 1 1012 1012 1 102 102 INS-
71053900 1 1012 1012 1 107 107 INS-
71053900 5 1014 1014 1 101 101 INS-
71053900 6 1015 1015 1 103 103 1NS-
71053900 7 1016 1016 1 102 102 INS-
71053900 10 1017 1017 1 113 113 1NS-
71053900 10 1017 1017 1 115 115 1NS-
71053900 12 1018 1018 1 112 112 INS-
71053900 15 1020 1020 1 107 107 INS-
CLASS PAS2
71053900 0 418 418 1 147 147 2
71053900 0 588 588 1 67 67 2
71053900 0 589 589 1 65 65 2
71053900 0 58y 589 1 67 67 2
71053900 0 589 589 1 69 69 2
71053900 0 589 589 1 75 75 2
71053900 0 593 593 1 71 71 2
71053900 0 595 595 1 61 61 2
71053900 0 595 595 1 71 71 2
71053900 0 596 596 1 57 57 2
71053900 0 596 596 1 59 59 2
71053900 0 596 596 1 67 67 2
71053900 0 597 597 1 63 63 2
CLASS SOY
71053900 4 424 424 2 125 125 2NS-
71053900 3 336 336 2 165 165 2NS=
71053900 22 352 352 2 165 165 2NS-
71053900 1 488 488 2 123 123 2NS-
71053900 2 488 488 2 133 133 2NS-
71053900 22 500 500 2 127 127 2NS-
71053900 9 312 312 2 63 63 2NS-
71053900 10 312 312 2 67 67 2NS-

71053900 5 424 424 2 131 131 2NS-
71053900 7 426 426 2 113 113 2NS-
71053900 11 426 426 2 137 137 2NS-
71053900 41 440 440 2 137 137 2NS-
71053900 23 502 502 2 119 119 2NS-
CLASS CRN
71053900 8 516 516 1 93 93 INS-
71053900 10 518 518 1 87 87 INS-
71053900 17 521 521 1 93 93 INS-
71053900 11 623 623 1 121 121 2NS-
71053900 15 625 625 1 123 123 2NS-
71053900 3 9356 656 2 53 53 2NS-
71053900 23 322 322 2 119 119 2NS-
71053900 29 326 326 2 111 111 2NS-
71053900 19 527 527 1 90 90 INS-
71053900 8 660 660 2 35 35 2NS-
71053900 16 664 664 2 45 45 2NS-
71053900 24 668 668 2 55 55 2NS-
71053900 29 672 672 2 41 41 2NS-
CLASS FST
71053900 11 731 731 1 85 85 1NS-
71053900 13 709 709 1 154 154 1NS-
71053900 17 711 711 1 151 151 INS-
71053900 32 71S 718 1 147 147 1NS-
71053900 3 726 726 1 90 90 INS-
71053900 4 726 726 1 95 95 INS-
71053900 27 732 732 1 95 95 INS-
71053900 32 735 735 1 82 82 1NS-
71053900 15 803 803 1 147 149 2NS-
71053900 20 805 805 1 149 145 2NS-
71053900 30 809 809 1 141 141 2NS-
71053900 11 709 709 1 151 151 1NS-
71053900 28 718 718 1 151 151 INS-
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OF P`,,*.E2 QUALITY

CLASS WAT
71053900 5 888 RRP 1 165 165 INS-
71053900 8 891 891 1 162 162 1NS-
71053900 9 892 892 1 164 164 1NS-
71053900 1 936 936 1 139 139 iNS-
71053900 3 938 938 1 141 141 1NS-
71053900 3 938 938 1 143 143 1NS-
71053900 6 939 939 1 143 143 1NS-
71053900 6 939 939 1 146 146 1NS-
71053900 8 941 941 1 140 140 1NS-
71053900 10 943 943 1 138 138 1NS-
71053900 11 944 944 1 140 140 1NS-
71053900 14 947 947 1 141 141 iNS-
71033900 15 948 948 1 141 141 INS-

Test Fields (Alto Area Classified)

T
3041 312 1 155 161 1 WHEATCUT

UU6 831;0 848 1 67 70 1 WHEATCUT
U6 854 861 1 73 77 1 WHEATCUT

UU7 829 851 2 73 91 2 WHEAT
HH3 619 641 2 151 161 1 WHEAT
002 569 575 1 145 148 1 OATSCUT
FF9 459 475 2 81 99 1 OATS

Z22 873 887 1 19 67 2 HAY
L8 899 923 2 85 99 1 HAY
C4 252 275 2 33 35 1 HAY
G2 659 661 1 92 96 1 HAY
05 713 715 1 39 50 1 HAY

CC2 361 387 2 155 165 1 HAY
BB9 313 327 1 173 185 1 HAY

URE
L2 589 599 1 77 93 1 PASTURE
Z21 1021 1031 1 103 117 1 PASTURE
01 731 743 1 31 55 2 PASTURE
I2 669 675 1 101 123 2 PASTURE
T9 1013 1037 2 201 211 1 PASTURE

HH9 683 693 1 97 129 2 PASTURE
EE5 421 439 2 177 191 1 PASTURE
Z20 423 445 2 11 27 1 PASTURE

iEANS
DD6 593 613 1 101 127 2 SOYBEANS
G4 649 687 2 77 83 1 SOYBEANS

RR2 861 867 1 123 149 2 SOYBEANS
II5 649 671 2 177 191 1 SOYBEANS
002 479 519 2 105 139 2 SOYBEANS
R7 449 473 2 27 55 2 SOYBEANS
Z9 205 231 2 195 211 2 SOYBEANS

7105
7105
7105
7105
7105

P

71053900
71053900
71053900
71053900
71053900
71053900
71053900
TEST SOY
71053900
71053900
71053900
710::3900
710DJ900
71053900
71053900
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OF ^^y .'

71053900 A3 227 247 1 81 96	 1
71053900 A5 225 247 1 49 59	 1
71053900 C1 283 295 1 67 95	 2
71053900 F5 374 387 1 89 99	 1
71053900 DD3 452 474 2 108 119	 1
71053900 HH1 597 611 1 137 153	 2
71053900 JJ1 711 721 1 102 113	 1
71053700 Z15 481 515 2 3 21	 2
71053900 F6 373 387 1 47 79	 2
71053900 Z16 305 327 2 191 203	 1
TEST FOREST
71053900 A10 241 249 1 27 45	 2
71053900 Z6 729 751 2 201 217	 2
71053900 Z3 765 803 2 191 203	 1

RR4 151 171	 171053900 833 835 1
71053900 HH10 765 799 2 139 139	 2
71053900 M3 783 795 1 49 81	 2
71053900 Z18 375 387 1 191 201	 1
TEST WATER
71053900 A9 205 209 1 34 38	 1
71053900 U2 817 819 1 49 51	 1
71053900 A7 221 224 1 27 29	 1
71053900 W3 1000 1004 1 51 54	 1
71053900 W2 1010 1014 1 36 39	 1
71053900 007 969 973 1 :a?6 131	 1
71053900 W7 849 855 1 mki l 205	 1
71053900 W6 873 879 1 185 191	 1
71053900 W5 977 983 1 113 119	 1
71053900 W4 1041 1047 1 11 15	 1

FOREST
FOREST
FOREST
FOREST
FOREST
FOREST
FOREST
FOREST

PONDWATR
PONDWATR
PONDWATR
WATER
WATER
WATER
WATER
WATER
WATER
WATER

0
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F.6 Training and Test Fields for Landsat, Multitemporal
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Training Fields
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CLASS CORN
78843016 0 28 28 1 33 33
78843016 0 29 29 1 35 35
78843016 0 30 30 1 37 37
78843016 0 30 30 1 42 42
78843016 0 32 32 1 34 34
78843016 0 32 32 1 35 35
78843016 0 32 32 1 39 397ee43016 0 64 64 1 134 13478843016 0 64 64 1 137 137
78843016 0 65 65 1 141 141
78843016 0 30 30 1 93 93
78843016 0 30 30 1 96 96
78843016 0 34 34 1 102 102
CLASS SOYBEANS
78843016 0 11 11 1 69 69
78843016 0 13 13 1 72 72
78843016 0 74 74 1 57 57
78843016 0 74 74 1 63 63
7684301& O 75 75 1 52 52
78843016 0 76 76 1 56 56
78843016 0 76 76 1 61 61
78843016 0 77 77 1 53 53
7'8843016 0 80 80 1 60 60
78843016 0 81 81 1 59 59
78843016 0 82 82 1 58 58
78843016 0 100 100 1 125 125
78843016 0 101 101 1 130 130
CLASS ELSE
78843016 0 51 51 1 154 1547SB43016 0 52 52 1 154 154
78843016 0 52 52 1 160 160
78843016 O 53 53 1 158 158
78843016 0 55 55 1 161 161
78843016 0 91 91 1 180 180
78843016 O 91 91 1 182 182
78843016 0 92 92 1 177 177
78843016 0 94 94 1 178 178
78843016 0 95 95 1 Ise 188
78843016 0 52 52 1 39 39
78843016 0 1 1 1 50 50
78843016 0 7 7 1 49 49

1

1
i
1

1

1
1

1

1

1
1
1

1
1

1

i
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'Pest Fields	 (Also Area Classified)

TEST CORN
RUN( 78843016), LINE(2, 11, 1), COL (27, 32 ► 1 )
RUN ( 78843016) ,LINE (38 ► 46, i) , COL (19, 25, 1 )
RUN ( 78843016) ,LINE (103, 106, i) , COL (140, 1'^6, 1 )
RUN ( 78843016) ,LINE (101, 115, 1) , COL (12, 17, 1 )
RUN ( 78843016) , LINE (78, 86, 1) , COL (124, 128, 1)
RUN ( 78843016) , L I NE (67, 74, 1) , COL (94, 98, 1)
RUN (78843016),  L I NE (35, 41, 1) . COL (123, 127, 1)
TEST SOYBEANS
RUN (78843016),  L I NE (41, 44, 1) , COL (67, 79, 1)
RUN ( 78843016) , L I NE (79, 84, 1) , COL (31, 40, 1)
RUN (78843016),  L I NE (106, 114, 1) , COL (54, 59, 1 )
RUN ( 78843016) , L I NE (44, 51, 1 ) , COL (118, 123, 1 )
RUN ( 78843016) ,LINE (1, 4, 1) , COL (90, 100, 1 )
RUN ( 78843016) , LINE (109, 113, 1) , COL (132, 147, 1)
RUN (78843016),  L I NE (44, 47, 1) , COL (155, 161, 1 )
TEST ELSE
RUN (713843016),  L I NE (33, 42, 1) , COL (137, 141. 1)
RUN ( 78843016) ,LINE (54, 57, t) , COL (39, 52, 1)
RUN ( 78843016) ,LINE (55, 59, 1) , COL ( 136, 149, 1 )
RUN (78843016),  L I NE (95, 109, 1 ) , COL (191, 194, 1)
RUN (78843016),  L I NE (108, 114, 1 ) , COL (8, 89, 1 )

,
1'
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