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ABSTRACT

The theory for the UTRC Wind Energy Conversion System Performance Analysis (WECSPER) for the

prediction of horizontal axis wind turbine performance is presented.
(1) treat the wind turbine blades as lifting lines with a prescribed wake model;

are the ability to:

Major features of the analysis

(2) solve for the wake-induced inflow and blade circulation using real nonlinear airfoil data; and (3)
jterate internally to obtain a compatible wake transport velocity and blade loading solution. This
analysis also provides an approximate treatment of wake distortions due to tower shadow or wind shear

profiles.

Finally, selected results of internal UTRC application of the analysis to existing wind

turbines and correlation with limited test data are described.

INTRODUCTION

The analytical capabilities required to
sccurately predict horizontal axis wind turbine
rotor performance are varied and complex depending
on the turbine design, operating conditions, and
the desired computational accuracy. Such factors
as rotor yaw angle, tower shadow, and wind shear
creare inflow profiles which are unsteady and
nonuniform. Conditions where the turbine rotor
wake is close to the rotor disk result in wake
induzed effects which can significantly affect
performance predictions. Further complexities
occur when rotor aeroelastic effects are
considered. Many of these effects are generally
neglacted for wind turbine rotor performance
predictions because the increased computational
costs required to obtain the gain in predictive
accuracy are not justifiable.

The UTRC Wind Energy Conversion System
Performance Analysis (WECSPER) for horizontal
axis wind turbine performance is capable of
treating uniform wind conditions using rigid
blade aerodynamics which include real airfoil
section properties (1ift and drag) for prescribed
wake geometries. In addition, it can treat
nonuniform inflow profiles for conditions which
do not violate the assumptions of the analysis.
The computer code is computationally very fast,
highly modular, and well structured. This
analysis is a logical extension and refinement
of the UTRC Prescribed Wake Rotor Performance
Method of Landgrebe (Refs. 1 and 2) for hovering
helicopter rotors which has been adapted and
applied to statically thrusting propellers
{Ref. 3) and high speed propeller configurations
(Ref. 4). This analysis (Ref. 2) and similar
derivatives for helicopter forward flight
appiiéééigﬁsﬁhave been expanded in capability
and combined into a single comprehensive rotor
inflow analysis, the UTRC Rotorcraft Wake
Anatysis (Ref. 5).
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THEORY

General

Briefly, the method is derived utilizing
blade-element lifting line theory and incorporates
a prescribed wake model consisting of a finite
number of trailing vortex filaments. The
trajectories and positioning of these filaments
are prescribed through internal equations or
input coordinates. To reduce the computational
time, the original analysis makes use of the
fact that for zero yaw angle and steady uniform
wind conditions the flow is steady with respect
to the turbine rotor blades and has an axially
symmetric wake. The analysis uses a cylindrical
coordinate system axially aligned with the
trajectory of the wake. All velocities and
lengths are defined in the positive sense
consistent with the right hand rule. Figure 1
illustrates this coordinate system. Figure 2
is an illustration of two types of prescribed
wake models used for hovering helicopter rotors
(similar representations are used for propellers).
The classical model is the one generally used
for wind turbine application and is used
herein. This model is generally acceptable for
wind turbine applications because the wake 1is
transported rapidly away from the blades. A
free wake analysis can be used to obtain a wake
geometry which models the self-induced distor-
tions; however, this is a costly computational
procedure and is generally not warranted. Once
the position of the wake is prescribed, a set
of equations in terms of the unknown bound
circulations is generated utilizing the Kutta-
Joukowski and Biot-Savart relationships and the
airfoil section lift characteristics. The
solution for the blade bound circulation dis-
tributions is found and the corresponding
induced velocity and section angle of attack
distributions are calculated. With the use of
the two—dimensional airfoil data the complete



blade loading distribution (lift and drag) and
rotor performance (thrust and power) are then
obtained.
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Lifting Line - Wake Modeling

The concept of a prescribed wake, blade
element, lifting line theory applied to wind
turbine rotors assumes that each blade of the
rotor is represented by a segmented bound
vortex lifting line located along the rotor
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blade quarter chordline with a spanwise varying
concentrated circulation strength proportional
to the local blade lift (Kutta-Joukowski Law).
The wake is assumed to be modeled by a system
of discrete segmented trailing vortices shed
from the junction points of the bound vortex
The circulation strength of these
trailing segments is a function of the spanwise
blade bound circulation gradients., A finite
wake whose trailing filament segmentation is
defined by a specified azimuthal step size
(ay), is used which is of sufficient length to
approximate an infinite wake,
illustration of this modeling procedure.

segments.

Figure 3 is an
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Figure 3. Representation of a Blade and
Wake by Bound and Trailing

Vortex Segments

The influence (induced velocity) of the ~
bound and trailing vortex segments at any field
point 1is computed by using the Biot-Savart Law
for finite length, straight line segments of
constant strength. The induced velocity of a
filament segment due to a unit strength is
called the geometric influence coefficient.

The calculation of these coefficients is the
most time consuming portion of the analysis.

Within this analysis it is possible to
prescribe internally several different wake
geometries or to input the wake geometry from
an external source. Only the classical wake
model which is currently used for wind turbine
applications is described. The classical wake _
model is defined by the addition of the wind -
speed and the momentum induced velocity for the
condition being investigated.

()



No radial wake expansion or contraction is
used. The resulting wake shape is a helix for
which the pitch rate depends on the wind speed
and thrust level (Fig. 2).

Yortex core effects are not modeled in
this analysis because it is assumed that
conditions for which the vortex core influence
should be considered will not occur {i.e.,
cisse blade-vortex interactions). The roll-up
of the vortex sheet into a tip vortex is
modaled by prescribing the wake roll-up for the
tip region if desired. Our experience has
shown that for most wind turbine operating
conditions, wake roll-up modeling is unnecessary
for performance predictions, even though flow
visuaalization studies have clearly shown the
existence of a tip vortex.

Blade Element Aerodynamics

The modeling of the wind turbine blade by
the lifting line approach defines the inflow
and the effective angle of attack at each blade
segment. This aerodynamic model is shown
conzeptually in Fig. 4. Tabulated linearized
airfoil data are used to relate the effective
angle of attack at each blade element segment
to the local section lift, thus inherently
accounting for the chordwise vorticity distribu-
tion and the Kutta condition. For this discre-
tized system, the section bound circulation (r)
is related to the local velocity (U), chord
(¢}, and lift coefficient (G )} at a section
through the Kutta-Joukowski Law.

r = % c Cl(a)U (2)
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Figure 4. Lifting Line/Wake Aerodynamics -
Linearized Model

The local velocity and effective angle of
attack {4) are functions of the local tangential
velocity (Up), axial induced velocity (v,),
wind velocity (V_}, and blade pitch angle (g).

Z » 2 2
U= W v+ v) €

-1
o = 8 + tan [(\/w + vz)/L‘T] (4)

The local axial induced velocity due to a given
wake geometry is a function of the unknown
bound circulation distribution and known
geometric influence coefficients (GC) for the
particular wake geometry.

v = 4‘1‘}; GC, T,
z T 34 (5)
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These relationships (Egs. 2-5) result in a system
of simultaneous nonlinear equations in terms of
the wake geometric influence coefficients (GC),
the inflow and section properties at each blade
element, the two dimensional lift coefficients,
and the unknown blade circulation distribution.

Solution

The circulation solution is based on the
linearization of the above relatiounships to
form a system of linear equations whose solutions
can be obtained and corrected for the actual
nonlinearities of the problem using a lagged
iteration procedure. For the linearized
solution it is assumed that all angles are
small, and that the local velocity (U) can be
approximated by the local rotational velocity
(Up). The lift coefficient at each section
is modeled by a linear lift curve slope (a) and
effective angle of attack adjusted for the lift
offset (a,). With these assumptions and Eqs.
(2-5), the section circulation can be expressed
as:

P=t U, als P2 42 e
2 CTa (10 UT 2 ca £
(6)
where,
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is the correction to the linearized equations
for the nonlinearities of the actual problem.
Since the induced velocity is also a function
of the circulation distribution, the equation
at the ith blade section can be rewritten

as
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This equation can be written for each blade
segment, resulting in a system of simultaneous
linear equations if the correction term (Cg)
is assumed known, This system of equations can
be expressed in matrix form for the nth itera-
tion as,

-1
At = pe(r™H
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where the correction vector C(pn_l) is cal-
culated based on the circulation solution

from the previous iteration. When the solution
procedure converges, the resulting circulation
satisfies the original nonlinear relationships.
Using the corresponding angle of attack (Eg.
4), the section lift and drag coefficients are
obtained from tables of airfoil data for each
segment. The lift and drag forces are then cal-
culated and transformed to axial and rotational
forces at each segment. The appropriate inte-
grations of these forces yield the rotor thrust
and torque.

Nonuniform Wind Conditions

As noted earlier, the inclusion of wind
shear, tower shadow, and yawed wind direction
introduce additional complexities into the
problem of predicting the rotor performance.
These nonuniform inflows create aerodynamic
environments at the rotor blades which vary
azimuthally and radially, and distort the wake
geometry in a nonsymmetric manner. This
dissymmetry in the wake and the azimuthal
.variation in the rotor inflow represent aero-
dynamic conditions for which the general
formulation of the method described above is no
longer valid since the solution is no longer
independent of azimuth position. Rigorous
treatment of the problem requires the use of a
more sophisticated analysis which involves the
wake dissymmetry and nonuniform rotor inflow.
Such an analysis exists {(the UTRC Rotorcraft
Wake Analysis, Ref. 5), but it requires a
significant amount of computer time to obtain
the solution. In order to make use of the high
computational efficiency of the above formulation,
the WECSPER analysis includes an approximate
treatment of the wake dissymmetry and azimuthal
variation in the wind inflow. This treatment
is broken into two portions; the wake geometry
dissymmetry, and the azimuthal dependency.

Wake Dissymmetry

Comparisons made at ULKU Detween ctne
predicted results using a Goldstein analysis
and the WECSPER Analysis have shown that for
most wind turbine operating conditions the wake
induced influence at the turbine blade is strongly
characterized by the immediate shed wake from
that same blade. For these conditions the local
wake displacement angle dominates the wake
influence. The wake of the preceding blade is
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transported rapidly away from the rotor disk and
does not have the strong influence on the fol-
lowing blade that is typically seen for hovering
helicopters or statically thrusting propellers.
Thus, to account for the wake dissymmetry due
to the nonuniform inflow, a pseudo wake distortion
method can be used.

To treat wake dissymmetry in a manner
vhich makes use of the computationally efficient
solution procedure for the symmetric wake prob-
lem the trailing wake filaments are regionalized
in terms of their wake age into three regions;
a near wake region, an intermediate wake region

and a far wake region (Fig. 5). The near wake

region is defined from the blade which shed the

wake to one half of the blade azimuthal spacing =
behind the blade. The blade spacing is defined

as the azimuthal spacing between blades. The

extent of the intermediate region is from the

end of the near wake region to one and one-half

blade azimuthal spacings away from the blade.
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Figure 5.

The far wake region is the remaining portion of
the wake. In the analysis, the geometric influ-
ence coefficients for all filaments are first
calculated and stored according to the appropriate
regions for the classical wake model. The near
wake geometric influence coefficients of all
filaments of a given azimuthal position are

then scaled by the ratio of the cosines of the
wake pitch angles defined by the uniform inflow
definition and the local nonuniform inflow -
definition. The reason for scaling is that the
local influence of the filament at the blade

which shed the filament is characterized by the
filament's orientation (Fig. 6). Geometric
assumptions made to result in this simplified
scaling factor have been investigated and the
error introduced by the approximations were

found to be insignificant for general wind



turbine spplications. The intermediate wake
geomz=ry influence is computed based on correc-
tions to the intermediate wake region geometric
These corrections are
based on the change in axial location between
the reference wake and the location of the
displaced wake of this region (Fig. 6). 1In

influence coefficients.

this region, changes in orientation are less
significant than changes in axial location
because of the strong inverse proportionality

to displacement distance defined in the Biot- _

Savart Law.
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The far wake geometric influence coeffi-
cients are assumed to require no corrections
sirce perturbations on the far wake geometry
tend to be felt as
is equal to the
for small perturba-
With this scaling technique, the
ial calculation of the classical wake
geometries influence coefficients need only be
done for one azimuthal position of the rotor.

about a mean wake geometry
an average influence which
influence of the mean wake
rions.

init

Azimuthal Dependence

The performance solution for nonuniform
inflow conditions such as wind shear and tower
The assump-—
tion of near wake dominance and quasi-steady

shadow is rotor azimuth dependent.

aerodynamics allows for the uncoupling of the

azimuthal dependence in the solution procedure.
This in turna, allows for the original, computa-
ally efficient, analysis solution procedure

to ha

used .-

The geometric influence coefficients are
calculated by the pseudo—wake distortion
B dure for the particular inflow condition
at a specified rotor azimuth position and the
circulation distribution and performance
prediction are obtained. This is done for each
azimuth position defining one revolution of
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the rotor and the performance is integrated
over this time period to calculate the time-
averaged wind turbine performance.

Using all of the azimuthally varying bound
circulation distributions obtained above, the
induced velocity distribution at the rotor
blades is recomputed by multiplying the pseudo-
distorted wake influence coefficients for
each rotor azimuth positiom by the appropriate
time-dependent circulation values. Using these
induced velocity distributions at each azimuth
position, the resulting time averaged performance
prediction is made. This essentially computes
an approximately coupled azimuthally dependent
A measurement of the accuracy of the
assumption of the near wake's dominance of the

solution.

rotor performance is obtained hy comparing the
approximately azimuthally dependent and indepen-—

dent performance solutions. If there is a
significant difference, the operating condition
is sufficiently extreme to invalidate the

assumptions used and requires the use of a more

technically sophisticated analysis.

Rigorous treatment of yawed flow requires

an analysis which computes the skewed unsymmetri-
cal wake influence and_the resulting azimuthally
dependent circulation solution (Ref. 5). 1In

the WECSPER Analysis, the assumption of local
wake dominance is assumed to allow the influernce
of small yaw amgles to be treated as an effective
reduction in the uniform axial inflow profile and
neglects the associated wake dissymmetry.

Wake Iteration

Once the rotor performance prediction is
obtained, additional iterations may be required.
The wake geometry is defined by both the non-
induced and induced flow velocity field, and the
induced field is unknown at the onset of the
analytical procedure. The method used in the
WECSPER Analysis is to calculate the classical
wake model based on the predicted momentum-
induced inflow from the previous solution itera-
tion. The first iteration value is specified
by the user. The complete performance solution
is then repeated for each iteration until a
converged momentum induced velocity solution is
obtained. The complete prediction procedure is
djagrammed in the flow chart shown in Fig. 7.

Inflow Profile Models

The analysis is capable of treating seversl
types of inflow profiles with the assumptions
noted earlier. There are currently three types
of profiles available in the analysis, each
shown pictorally in Fig. 8. The conventional
mode of analysis uses a uniform wind profile
model (upper portion of Fig. 8) for conditions
without azimuthal or radial variation in the
wind inflow velocity. A wind shear profile
model can be used in the time dependent
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mode of operation. This model is currently
based on a user specified power law behavior
(lower left portion of Fig. 8),

o
Yy = Yref (h/href) (10)
The influence of a tower support structure on
the wind turbine performance is modeled by
assuming that the tower influence is represented
as a constant velocity deficit from the uniform
value over a selected region on the rotor disk,
centered about the tower centerline. This region
is defined by a tapered column of selected

width and taper on the rotor disk (lower right
portion of Fig. 8).

APPLICATION

An application of the analysis to actual
test conditions to validate the analysis is
currently being funded by a DOE sponsored contract
through Rockwell International. Results are
currently not yet available; however, selected
results of internal UTRC application of the analysis
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are presented. Figure 9 presents a comparison of

measured and predicted rotor performance at omne

blade angle in terms of power ratio versus velocity

ratio for a 1/30 scale model of a Hamilton Standard

3.5 megawatt wind turbine tested in the UTRC main -
wind tunnel (Ref. 6). The low speed airfoil data
used in this analysis was adjusted to reflect
Reynolds number effects on the minimum drag co-
efficient and stall characteristics. These test
results, presented for two different tip speeds,
show some noticable differences in measured results
near the peak power ratios. These differences

with tip speed could be attributable to both
Reynold's number and compressibility effects.

The predicted results show fair to good
correlation for the lower tip speed results
except at the higher velocity ratios. The
difference between measured and predicted
results could be due at least in part to the
Reynold's number corrections used on the airfoil
data and/or the accuracy of the test measurements
and data reduction procedures used for these low
power outputrbpéfating regimes (high véiociiy
ratio). In addition, the lower tip speed results
have a measured power ratio data point at a velocity
ratio of 7 which appears to be slightly incon-—
sistent with the other results. In general,
when one considers the accuracy of the corrected
airfoil data used in the analysis, the correla- -
tion as presented is good.

The results of another application of this
analysis to the UTRC 8 kW wind turbine (Ref. 7)
are shown in Fig. 10. This figure presents
measured and theoretical power output versus
wind speed for data taken onsite on several
different test dates. The scatter in this data
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CONCLUDING REMARKS

The theory for the UTRC WECSPER Analysis
has been presented, and selected results of the
application of this analysis to existing UTC
‘wind turbines, model and full scale, have been
These preliminary results indicate gemer=- —
ally good agreement with measured test results.
Discrepancies noted between test and theory may
be related to the accuracy of the airfoil data
and/cr the accuracy of the test measurements.
However, extensive validation of the analysis
will require more data and comparisons to be
imade, such as that provided by the DOE funded
validation activity noted above.
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QUESTIONS AND ANSWERS

T.A. Egolf

From: W.E. Holley
Q: Is it feasible to compute time varying induced velocity for turbulence inputs?

A: Not with thie analysis. The program assumes a quasi-steady flow aerodynamie to
obtain esolutions under "slowly" varying inflow conditions. Turbulence time scales
are probably too small for application of thie analysis.

From: Anonymous

Q: Have you attempted to compare your code with other rotor prediction codes such as
the efficient induction factor method of propeller theory?

A: The analysis has been correlated in a limited manner with the Goldstein strip theory
for W.T. applications. For helicopter applications (from which this analysis was
originally derived) induction methods which do not recognize a wake model with sig-
nificant wake distortion effects will not yield good performance prediction. For
wind turbine applications this has not been shown to be the case, although neglect-
ing the wake influence at high veloeity ratio (Q R/V) may be a dangerous assumption.

From: W.C. Walton
Q: Who funds this code development?

A: The code development and the applications presented were funded internally by UTRC.
There ie a current validation activity being funded by DOE, through Rockwell Inter-
national (Rocky Flate).

From: F.W. Perkins

Q: Is the accuracy of your analysis significant with respect to uncertainties in the
yaw response of wind turbines?

A: The intent of this analysis is to predict integrated rotor performance (Cp R CT)
4
within the operating conditions for which the assumptions used are valid. The ac-
curacy of the analysis with respect to small variations in yaw angles is probably
quite good. The analysis treats the effect of your angle as a reduction in the
wind inflow. Large yaw angles invalidate the assumptions of the analysis and re-
quire a more sophisticated analysis (ecurrently available at UTRC).

From: T.E. Base
Q: How do you justify using potential flow theories in a shear flow?

A: The treatment of a lifting surface with potential flow models is well justified in
the open literature for fixed wing, propeller and helicopter applications. The
viscous effects in the flow field can be neglected for most of these applications.
"On the lifting surface, the specification of a Kutta condition artificially replaces
the actual viscous phenomenon. In the UTRC WECSPER analysis the Kutta condition
ie handled inherently through the use of actual airfoil data. Other viscous phe-
nomena such as close blade/vortex interactions do not oceur for general HAWT appli-
ecation.

From: J. Tangler

Q: On the Hamilton Standard correlation, what was the rotor's Re number and blade
geometry? Is a model like this adequate for twisted, tapered, blades using a
constant pitch wake?

A: The HSD correlation was for tapered, nonlinearly twisted blades using a constant
ptteh wake model. The tip Reynolds number was approximately 500,000. The analy-~
sig will handle most reasonable combinations of twist, taper and variable airfoil
section types.
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