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.... ABSTRACT
| :-

The K_man 40 kW Wind Turbine Generator design incorporates an induction generator for applications where
i i- a Utility line is present and a synchronous generator for standalone applications. A combination of
- feed forward and feedback control is used to achieve synchronous speed prior to connecting the generator
- : t_he load, and to Control the power level once the generator is connected.

"- The dynamics of the drive trai_ aff'ect several aspects of the system operation. These have been ana-

lyZe61_o arrive at the required shaft stiffness. The rotor parameters that affect the stability of the

feedback control loop vary considerably over the wind speed range encountered. Therefor.e, the con-
-- : : _ _oql-er gain-was made a functi6n of wind speed in order to maintain consistent operation over the whole

wind speed range.

The velocity requirement for the pitch control mechanism is related to the nature of the wind gusts to
i_ _: be _n_co.u_itered,the dynamics of the system, and the acceptable power fluctuations and generator dropout

rate. A model was developed that allows the probable dropout rate to be determined from a statistical
model of wind gusts and the various system parameters, including the acceptable power fluctuation.

m

INTRODUCTION

Kaman Aerospace Corporation, under DOE sponsor-.

-- ship, has designed and fabricated a 40 kW, hori-
zontal axis wind turbine generator. The work was

-- _T_:_/T ....part of the Small Wind Energy Conversion Systems
(SWECS) program which is being directed by Rock-

wet! _nt_r_a_iopa]. The wind turbine is current!y
being ewTua_ed in Rockwell's Rocky Flats,
Colorado_ test facility.

Three aspects of the control system dynamics are
discussed _E_hi s paper. The first is the tor-
sional characteristics of the drive train and

factors affecting the selection of the drive
train stiffness. Next is the effect that changes
in rotor characteristics with wind speed have on

the operation of the feedback control loop and
the desirability of making the controller gain a
function of wind speed. Finally, an analytical
method for evaluating the adequacy of the control

system design with respect to wind speed changes,
or gusts, is discussed. The method is based on a

statistical description of wind speed changes
rather than on arbitrarily selected "worst gust"
characteristics and, therefore, provides an
objective means of assessing performance in a
variety of locations.

SYSTEM DESCRIPTION

The _'ind turbine has a 64-foot diameter, two-
blade, down wind rotor with a hub height of 75
feet. The unit has been designed to provide for
direct conversion of wind power into regulated,
60 Hz, electrical power using either an induction
generator for tie-in to a utility or a synchron-
ous senerator for standalone applications. The
rotor operates at 69 rpm and a 1:26, two-stage,
planetary gearbox provides a nominal generator
speed of 1800 rpm. Cut-in wind speed is I0 mph;
rated wind speed is 20 mph; and cut-out wind speed
is 60 mph, at hub height.

Blade pitch is controlled to maintain the power
level in the utility configuration and to maintain

rotor speed, and thus frequency, in the standalone
configuration. Both configurations also incorpor-
ate a feed forward control input based on wind

speed.

The significant elements in the basic control loop
are shown in Figure I. The controller and the
feed forward programmer are implemented in a
microprocessor which also performs the startup and
shutdown sequencing, as well as other monitoring
and control functions. The microprocessor program
includes provisions for integral control, but only
proportional control is used. The output of the
microprocessor is a voltage proportional to the
desired blade pitch angle. A hydraulic position
servo rotates the blades about the axles at the

root ends. The feedback signal is proportional to
rotor speed when either configuration is being
brought up to the nominal operating speed and when
the load is connected in the standalone (synch-

ronous generator) configuration. The feedback

signal is proportional to generator output power
when the load is connected in the utility (induc-
tion generator) configuration. The distrubances

to the system are changes in rotor torque due to
changes in wind speed in either configuration and
changes in load in the standalone configuration.

DRIVE TRAIN DYNAMICS

Several aspects of the drive train dynamics were
considered in establishing the requirements for
drive train stiffness: the avoidance of reson-

ances as the rotor is brought up to operating

speed; the magnitude of the rotor torque:ripple
that is transmitted to the load; and the impact
of the drive train dynamics on the feedback con-
trol loop stability.
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DriveTrainElements

Aschematicrepresentationof thedrive train com-
ponentswithall elementsreferredto therotor
shaftspeedis shownonFigure2. Therotor is
representedbytherigid-bodyinertia, IR, andthe
slopeof thetorque-speedcurve,CR,at a partic-
ular operatingcondition. (Theelastic modesof
therotor arehighenoughin frequencyto beunim-
portantin theseanalyses.)Thecombinedstiff-
nessof therotor shaftandthegearboxis
includedin KS. Thereis anelastomericcoupling
betweenthegearboxandthegeneratorto accommo-
dateshaftmisalignment.Its inertia, IC, is sig-
nificant with respectto theotherelements,but
its stiffness, KC, anddamping,CC,arenot. The
generatoris representedbyits mechanicallosses,
CGL;rotor inertia, IG;andthecouplingto the
load. Thecouplingof the inductiongenerator,
CGC,is theslopeof thetorque-speedcurve. The
utility line connectionis consideredto bea zero
impedancesink. Thecouplingof thesynchronous
generatorappearsasa stiffness, KGC.In this
case,the loadimpedanceis finite, witha loss
term,CL, correspondingto 40kW,aswell asan
inertia term,IL, to accountfor largemotorloads.

Resonances

Theloadis notconnectedwhiletherotor is being
broughtupto speedor duringperiodsof rotor
overspeed.(Thecontrolsystemlimits overspeed
to 125%of ratedspeed.)Thisresultsin a very
underdampedresonancedeterminedlargelybythe
rotorshaft-gearboxstiffness,generatorinertia,
andgeneratormechanicallosses. Theseresonant
frequenciesareplottedasa functionof rotor
shaft-gearboxstiffnessonFigure3. Thesynch-
ronousgeneratorconfigurationhaslowerresonant
frequenciesbecauseof thehighergeneratoriner-
tia. Thecriterion for stiffnessin this caseis
that theresonantfrequencybehigherthanthe
two-per-revfrequencyof thevibratoryrotor
torqueat the125%overspeedcondition.Since
ratedrotor speedis 69rpm,theresonantfre-
quencyshouldbegreaterthan2.9Hz. This
requiresa stiffnessgreaterthan120,000ft-lb/
radian.

TorqueRipple

Thebehaviorof thetwoconfigurationsin trans-
mitting torqueripple fromtherotor to the load
is quitedifferent becauseof thedifferent load
characteristics.Thestandaloneconfiguration
exhiSitsanunderdampedresonancewhiletheutil-
ity configurationis highlydampedbytheinduc-
tion generatorcouplingcharacteristicsandthe
zeroimpedancesinkof theutility line. The
torquetransmissivityof eachis shownonFigures
4 and5 asa functionof frequencyandstiffness.
Theimportantcriterion in this caseis thetorque
transmissivityat thepredominantrotor torque-
ripple frequencyof two-per-rev,or 2.3Hz. This
is shownonFigure6 asa functionof rotor shaft-
gearboxstiffness.
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Forthestandaloneconfiguration,it is desirable
that thetorquerippleat the loadbelessthan
I0%of theactualloadevenwhenthesystemis
lightly loaded(e.g., at 10%of ratedload).
Therefore,thetorqueripple transmittedto the
loadshouldbeless thanI%of ratedtorque. An
analysisof therotor indicatesa two-per-rev
vibratorytorqueat therotorequalto about13%
of ratedtorque. Therefore,a torqueattenuation
of about0.076is desired.Thisrequiresa stiff-
nessgreaterthan180,000ft-lb/radian.

Fortheutility configuration,thetorquetrans-
missivityincreaseswith increasingstiffnessto
amaximumvalueof 0.25. Thiswouldcausea
ripple in thegeneratoroutputequalto about3%
of ratedload,or about1.3kW.Discussionswith
utility companiesindicatethat this wouldnotbe
significantona highcapacityutility line.
Therewill bea randomphaserelationshipamong
twoor moreunits connectedto a commonutility
line, sotheir ripplecomponentsdonotadd
directly. Therefore,this considerationdoesnot
putaconstraintonstiffness.

ImpactonControlLoop

Duringstartupin either configuration,or when
the loadis connectedin thestandaloneconfigu-
ration, thefeedbackcontrolloopis configured
to controlrotor speed.Thefeedbacksignalis
rotor shaftspeedmeasuredat thenodemarked_R
onFigure2. Becausetheadmittanceof therotor
inertia is verylargein comparisonto theother
admittancesat thefrequenciesof interestto the
feedbackcontrolloop,thephaselag betweenrotor
torqueandrotorspeedis essentially90° and
independentof reasonablevaluesof rotor shaft-
gearboxstiffness.

Whenthe loadis connectedin theutility configu-
ration, thefeedbackcontrolloopis configuredto
controlpowerlevel. Thefeedbacksignalis the
powermeasuredat thegeneratoroutput. Thiscor-
respondsto thenodemarked_GonFigure2. The
phaselagbetweenrotor torqueandthis pointis
thesumof the90° lag notedaboveandtheaddi-
tional lag from_Rto RG"Thelatter is largely
determinedbythestiffness, KS, andCGC,and
decreasesasthestiffnessis increased.This
additionallag is approximately45° at a frequency
correspondingto KS/(2_CGC). Sincethefrequen-
ciesof interest to thecontrolloopstability are
in therangeof I/2 to 3 Hz,a stiffnessgreater
than830,000ft-lb/radianis desired.

StiffnessSelection

Eachof theconsiderationsaboveestablishesa
minimumconstraintonrotor shaft-gearboxstiff-
ness. Thelargestof these,830,000ft-lb/radian
for theutility configurationcontrolloopat
ratedload,wastakenasthedesignrequirement.
Deflectionmeasurementsweremadeafter thesystem
wasassembled.Thesemeasurementsincludedthe
rotor shaft, gearbox,andcoupling,andshoweda
stiffnessof about460,000ft-lb/radianfor low
torquelevelsand2,500,000ft-lb/radiannear
ratedtorque. Thislevelof stiffnessis satis-
factorybecausetheconstraintimposedby
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consideration of the utility configuration con-
trol loop requires a stiffness greater than
460,000 ft-lb/radian, which is important only
at torque levels near rated torque.

CONTROL LOOP GAIN

A review of Figures l and 2 shows that the magni-
tude of the control loop gain is determined by the

•! foll_wing:
i
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1 ] (AG)+ CGL + CGC

+ CGL + CL

AC = Controller gain factor

_TR
_e = change in rotor torque per unit change

in pitch angle

CR = slope of the rotor torque-speed curve,
CGL, CGC, CL, as defined om Figure 2

AG = a constant that relates generator
power to generator slip speed

_T
Two of these factors, _--_and_ CR, are derived from

the toter characteristics and vary considerably
over the range of expected operating conditions.

The slope of the torque-speed curve, CR, increases

from ]7G ft-lb-sec/radian at I0 mph to 6254 ft-lb-
sec/_adian at 60 mph. The torque derivative with

_TR
Ditch, _--, is zero when the maximum available

powem is being delivered (i.e., regulation is not
possible). However, if power is restricted to the
les_er of 40 kW or 80% of the maximum available,
the %orque derivative increases from 90 ft-lb/deg.
to 1980 ft-lb/deg, as the wind increases from I0
to 60 mph. The three gain functions, normalized
to their values at 20 mph are shown on Figure 7.
The functions with load are based on the lesser of
40 kg or 80% of the maximum power available.

The loop gain in the no load case changes by a fac-
tor of almost 5. However, this case is primarily
concerned with startup which takes place when the
wind speed increases above ]0 mph or decreases
below 60 mph. The loop gains at these two points
only differ by a factor of 1.5. More importantly,
the control loop stability analysis indicated that
a fixed controller gain could be selected that
would provide adequate speed regulation at I0 and

60 mph and satisfactory overshoot characteristics
at 20 - 25 mph. Test data has verified this pro-
jection up to 30 mph. Test data for startups
_ove 30 mph have not yet Been collected.

When the standalone configuration is operated with
full load, the changes in the torque derivative
are almost fully compensated by changes in the
total damping and the loop gain is essentially
constant. As the load is decreased, the curve
approaches the no load curve. In this case also,
thecontrol loop stability shows sufficient gain
margin to achieve adequate speed regulation and
satisfactory overshoot characteristics under all
of the wind speed and load conditions.

The utility configuration differs in two respects.

First, the damping term is dominated by CGC, the

very steep slope of the induction generator

torque-speed curve. Therefore, the change in loop
gain is almost equal to the change in the torque
derivative, a factor of 20 for lO to 60 mph.
Second, because of the added phase lag of the
drive shaft dynamics, the gain margin available is
much less than that available in the other modes.

The result is that the controller gain that pro-
vides adequate power regulation at 20 - 25 mph
causes instability at 60 mph. Therefore, the con-
troller gain in this mode is made a function of
the mean wind speed such that the total loop gain
remains essentially constant.

RESPONSE TO WIND SPEED CHANGES

The ability of a variable-pitch wind turbine to
maintain a given power level in the presence of
wind speed changes is limited by the capabilities
of the pitch change mechanism. Therefore, know-
ledge of the wind variability that must be accomo-
dated is needed to establish the required capabil-
ities of the pitch change mechanism.

To meet this need, the description of wind varia-
bility must relate the magnitude of wind speed
changes to the time interval over which they are
observed and the frequency with which they can be
expected at the planned location of the wind tur-
bine. The magnitude and time interval, with
respect to the dynamic characteristics of the wind
turbine, determine the impact on the wind turbine.
The frequency determines whether or not they need
to be accommodated. For example, wind speed
changes that cause disruptions in the delivered
power less frequently than once per month or once
per year need not be accon_nodated. However, the
system must accon_nodate wind speed changes that
could cause damage more frequently than once per
lifetime of the machine.

Cliff and Fichtl (Reference I) have developed
a description of wind speed changes based on tur-
bulence theory. It allows the calculation of the
root-mean-square (RMS) value of the change im wind
speed over a time interval as a function of the
mean wind speed, nature of the terrain (surface
roughness), height above the surface, and the
scale of the affected device. The RMS value and
the characteristics of a Normal distribution

determine the probability of exceeding a particu-
lar magnitude of speed change in any one time
interval. The probability and the duration of
the observation time interval determine the
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number of times the change is exceeded per hour of
the mean wind speed. This can be combined with a
mean wind speed distribution to determine the num-
ber of times the change is exceeded per year.

Figure 8 illustrates one form of the Cliff and
Fichtl description using a particular meam wind
speed distribution and a 64-foot diameter rotor
75 feet above terrain with a surface roughness of
0.05 meters (high grass). It describes the wind
speed changes that occur during the 1.4 hours per
year that the mean wind speed is between 50 and
60 miles per hour. It shows, for example, that if
observations are made at one-second intervals,

twenty changes greater than 12.5 mphwill be seen,
but changes greater than 18 mph will only be seen
once in five years during 50 - 60 mph winds. On
the other hand, if the observation interval is

increased to 2.5 seconds, changes greater than
18 mph will be seen almost 20 times per year.
This provides a satisfactory description of wind
speed changes for determining the required capa-
bilities of the pitch change mechanism. The
method of using it is described below.

Figure 9 shows what happens to the rotor speed of
a wind turbine with feed forward control when the

wind speed changes at a rate faster than the pitch
mechanism can follow. After a short delay, the

pitch changes at its maximum rate. Since that is
less than the rate required to compensate for the
wind speed change, a torque unbalance develops and
the rotor accelerates. Eventually, the proper
pitch angle is reached and the rotor returns to
the proper speed. The important parameter is the
maximum change in rotor speed, An, since this
determines the maximum change-fn the delivered
power. (The control system is configured to dis-
connect the load if some critical value is

exceeded.)

Therefore, the dynamics of the wind turbine are
analyzed to determine the wind speed changes (mag-
nitude and time interval) that cause a rotor speed

change equal to the critical value, nc. This is

shown on Figure lO for two values of mean wind
speed and a certain system configuration. The
result is dependent on mean wind speed because the
pitch change required by the rotor to compensate
for a given wind speed change decreases with
increasing mean wind speed. For wind speed
changes above the curve, the rotor speed change is
greater than the critical value. For the stand-
alone synchronous generator application, a criti-
cal speed change of I0% was used, i.e., a I0%
change in frequency and voltage. For the induc-
tion generator connected to a utility line, a cri-
tical speed change equal to the slip at rated
power was used.

The 55 mph system characteristic is superimposed
on the wind change characteristics for mean winds
between 50 and 60 mph on Figure II. This shows
that the highest incidence of exceeding the criti-
cal s_eed change occurs for the wind speed changes

that are observed over intervals of about one sec-
ond. This occurs a little more than 0.2 times per

year during the 1.4 hours per year that the wind
is between 50 and 60 mph. If the pitch rate were
only 3°/sec, instead of 6°/sec, it would occur
much more frequently. The process illustrated on
Figure II is repeated for each of the wind speed
intervals necessary to cover the operating range
of the wind turbine. The exceedance rates for
each interval are then summed to determine the

total number of times per year the critical speed

change is exceeded. The result is shown in the
top data set of Figure 12. The system parameters
under the control of the designer are then
adjusted until an acceptable exceedance rate is
achieved.

The second and third data sets on Figure 12 illus-
trate the influence of the system characteristics

in determining the critical wind speed character-
istics. Although both systems have about the
same exceedance rate, the synchronous generator

configuration, with its longer time constant
(ratio of inertia to damping), reacts with the

larger wind speed changes seen with longer obser-
vation time intervals. While the induction gen-

erator configuration has 97% of its exceedances
when the mean wind is between 50 and 60 mph, the

comparable figure for the synchronous generator
configuration is 81%. The fourth data set on
Figure 12 gives the results when the maximum

pitch rate is adjusted so that the critical
speed is exceeded about 12 times per year for the
induction generator configuration with a lag of
0.15 sec.

It should be noted that there is no "worst gust"
that would produce the same results, even if the
"worst gust" is a function of mean wind speed.

These results are based on a particular wind

speed distribution. The distribution was chosen
to represent the 95th percentile of the 138 geo-
graphical locations tabulated by Frost and Long
(Reference 2). That is, the rate of exceeding
the critical speed will be greater than that
calculated at 5% of the locations and less than
that calculated at 95% of the locations. The

distribution is described at the IO meter refer-

ence height by Weibull coefficients of 9.8 mph
and 1.4.

REFERENCES

l, Cliff, W. C., and Fichtl, G. H., "Wind Velo-
city Change (Gust Rise) Criteria for Wind
Turbine Design," DOE Report PNL-2526, July
1978.

2, Frost, W., and Long, B. H., "Engineering
Handbook on the Atmospheric Environmental
Guidelines for use in Wind Turbine Generator

Development," NASA Report (Contract
NAS8-32118), November 1977.

328



WIND

LOAD

MICROPROCESSOR

FEEDFORWARDPROGRA_ER

CONTROLLER

WIND

POSITION

SERVO

LOAD

TORQUE

Y_'- I DR,VE,_4_I _E_E,_TORI,_ER

RO,OR EEO1 /
- OENE ,OR, E,1

Figure 1 - Basic control loop.

_=

UTILITY
(INDUCTION

KC GENERATOR)

ROTOR: IR 6425

CR 286

Kc 3.5xi06

Cc 15

Ic 92

COUPLING:

ft.lb.sec2/rad. UTILITY: CGL 26.4

ft.lb.sec/rad. IG 189

CGC 44,000

ft.lb./rad. STANDALONE: CGL 26.4

ft.lb.sec/rad. IG 280

ft.lb-sec2/rad. KGC .8xi06

CL 1364

IL 189

STANDALONE
(SYNCHRONOUS

GENERATOR)

ft.lb.sec/rad

ft.lb.secZ/rad.

ft.lb.sec?/rad.

ft.lb.sec/rad.

ft.lb.sec2/rad.

ft.lb./rad.

ft.lb./rad.

ft.lb.sec2/rad.

Figure 2 - Drive train elements.
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CENTER OF SYSTEM WIND CHANGI_

WIND S_EO TIME TIME NUMBER OF

INTERVAL CONSTANT INTERVAL MAGNITUDE OCCURRENCES!
(MPH) (SEC) (SEC) (M*°H) PER YEAR

SYNCHRONOUS GENERATOR: Rate 6_/sec. Lag .33 sec

15 5.06 ...... 0

25 4,55 2,3 16.3 .000

35 2.53 1.6 16.6 .000

45 1.55 1.2 18.5 ,016

55 1.07 1.0 18.3 ,_56

TOTAL .Z74

SYNCHRONOUS GENERATOR: Rate 4.2°tsec, Lag .15 sec

15 5.06 4.3 16.3 .O(X)

25 4.65 2.7 15.1 ,000

35 2.53 1,9 18.3 .000

45 1.55 1.6 18.6 .174

SS 1.07 1,3 16,9 .766

TOTAL ,_41

INDUCTION GENERATOR: Rate 6°]sec, Lag .15 se¢

15 .35 ...... 0

25 .33 2.1 18,3 .000

35 ,31 1.E 17.4 .000

45 .29 .9 15.5 .027

55 .27 .7 14.0 .971

TOTAL .998

INDUCTION GEneRATOR: Rate 4.2°Isec, Lag .15 sec

15 .35 ...... 0

25 ,33 2.5 t6,8 ._)0

35 .31 1.S 16,0 ,002

45 .29 1.1 14.1 1.600

55 .27 .6 12.8 9,191

TOTAL 10,793

Figure 12 - Rate of exceeding critical

speed change.
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QUESTIONS AND ANSWERS

R. Perley

From: R.A. Edkin

Q: Why does an induction machine with only 1% slip exhibit a high damping character-

istic?

A: The damping term i8 inversely proportional to the slip at rated torque, The damping

term i8 the ratio of a.torque to the speed change necessary to produce that torque.

z_
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