NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

SOFTWARE ENGINEERING LABORATORY SERIES SEL-81-00

GUIDE TO DATA
COLLECTION

SEPTEMBER 1981

eeeeeeeeeeeeeeeeeeeeeee

AT et v

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-
tion Goddard Space Flight Center (NASA/GSI'C) and created for
the purpose of investigating the efftectiveness of software
engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has
three primary organizational members:

NASA/GSFC (Systcimg Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to urnuerstand the software de-
velopment process in the GSFC environment; (2) to measure
the effect ot various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful aevelopmer.t practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En-
gineering Laboratory Series, a continuing series of reports
that incliudes this document. A version of this document was

also submitted as a Computer Sciences Corporation document
CSC/TM-81/6102.

The primary contributors to this document include

Victor Church (Computer Sciences Corporation)
David Card (Computer Sciences Corporation)
Frank McGarry (Goddard Space Flight Center)

Other contributors include
Victor Basili :The University ~{ Maryland)
Jerry Page (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to
Frank E. McGarry
Code 582.1

NAS/GSFC
Greenbelt, MD 20771

ii

ABSTRACT

Guidelines and recommendations are presented for the collec-
tion of software development data, This guide discusses
motivation and planning for, and implementation and manage-
ment of, a data collection effort, Topics covered include
types, sources, and availability of data; methods and costs
of data collection; types of analyses supported; and warn-
ings and suggestions based on Software Engineering Labora-
tory (SEL) experiences., This document is intended as a
practical guide for software managers and enginewrs, ab-
stracted and generalized from 5 ynars of SEL data collection.

iii

TABLE OF CONTENTS

Section 1 - IntroductionN. . « + &+ ¢ ¢ o o o o o o o

1.1 Motivations for Collecting pData.
1.2 How To Use This Guide. e e s s s »
1.3 Organizing the Collection of Data. « s e s s e
1.4 Overview of Software Development Data.
1.5 Related Fublications« « ¢« ¢« ¢« « « o« &

Section 2 - Classification of Software Development

ata L] L] L L] . L L L L] . * . L] . L] L] L]

Classification Structure
Problem Data
Resource Data, . .
Environment Data .
Process Data . , .
Product Data . . .
Change and Error Da

NV NN
N AU oW N

.
L]
L]
.
.
[
.

e e e o o

e e o o o

e ® 8 e o o @
e e ® o o o o
s ® e o o o @
e o o © o ¢ o
e o o ® o o o
s e ® & o o
. . L] . L] L] L]
e o o o o o o
® e o o o o o
® & o o ® o @
e o © e o *

ta

Section 3 - Sources of Software Engineering Data. .

3.1 Technical staff, . . .
3.2 Project Management , .
3.3 Computerized Records .
3.4 Development Products .

e e o o
® e o o
e o a o
s e o o
e © o o
e o o o
L] . . .
e o =+ o
e o o o
e o o o
e o o o
e o o o

Section 4 - Costs and Priorities. « ¢« « o

4.1 Data Collection CoB8tS., . « ¢ o o o o o o o o =

4,1.1 Task Overhead « ¢« « ¢ & o &
4.1.2 Data Processing Cost. « + .« .
4.1.3 Support Software., ¢ . ¢ o -
4.1.4 Analysis Cos8t8. . . . « + ¢ 4+ o e ¢
4.2 Cost Comparisons . . . + « &+ & + & o ¢ ¢ o o @
4.3 Data Dependencies. . . » + « ¢ « & 3 s s s e .
4.4 Priorities ¢ . 4 ¢ 4 4 .t e e e v e

Section 5 - Data Collection Procedures.

5.1 Planning Overview. . . . « ¢ ¢ ¢ ¢ o o« o o « &

5.1.1 Implementation., . . . o o e e
5.1.2 Data Collection and Support Functions
5.1.3 Data Management . . . ¢ ¢ o+ ¢ ¢ ¢ o

iv

—

el ol
80 o0
-~ O U W

*« ® ® o o
]

[S SH S SY SN SN N ~N
5 0 0 0 0 8
[O oK | oud

» & ® e & & o
S o

W

L 2 N I]
NN -

e o o @

& LWwww
-

vy v
®»®~dJd

;,.) A *

Lo B e B e

.~ T v

TABLE OF CONTENTS

Section 5 (Count'd)

5.2 Design of the Data Collection Process.

5.2.1 Data Organization
5.2.2 Data valigation . . .« . .
5.2.3 Storage and Retrieval . .

5.3 Collecting the Data. . . « « « « &

5.3'1 Forma L[] . [] L] L] [] .] L] .
5.3.2 Machine Records . « . .« &
5.3.3 Automated Data Analysis .
5.3.4 Interviews and Consensus.

5.4 Data Management. . « ¢« o s o o o+ o

Section 6 - Applications. « . « « « o

6.1 Monltoting . L] L] . L] L] L] L] L] [] . L]
6.2 Life Cycle Modeling. . . « « « + &
6.3 Methodology Evaluation
6.4 Research . . « o o o+ o s o o o o

Section 7 -~ Recommendations . . . « « .

Appendix A - SEL Data Collection Experiences

Appendix B - Sample Data Collection Forms

® o e e

B.l Sample Data Collection Forms and Instructions.

B.2 SEL Glossary of Terms Used With Data Collection

FOMS: ¢« ¢ o ¢ s o o o o o s o o

References

.

] L
-~ 0 [<]
o

- ST, BT N RV N ST IV NV IV T)
' ' '
N e oy o o S

o MW O

~3 (- - 0 - A -)
- [SN SN SN

PR

PR

"

LIST OF ILLUSTRATIONS

Figure
1-1 Data Collection--Functional Relationships, .
2-1 Research Model« + ¢ ¢ v & = o o + &
2-2 Dimensions of Data . . . e e s s e s o
4-1 Comparative Data Collection Costs. o o e e
5-1 Major sunctions in Data Collect.on
LIST DOF TABLES
Table
2-1 Classification Scheme and Sources of Data .,
2-2 Problem Data ParameterS. . . « + « o« ¢ +» o o
2-3 Process Data FA4CtOr8 . . . ¢ « ¢ o o o« o o
2-4 Product-Derived Data ¢ + ¢ &+ o o
3-1 Data From Technical Staff. « « « « &
3-2 Data From Managers , . . e o o 4 s e 4 e e
3-3 Computerized Recordkeeping e e s e s e s s s
3-4 Product-Derived Data« ¢ e s »
4-1 Measur ing Software Technology Costs. . e 1 e
4-2 Levels of Detail in Gathering various Types
of Data. . . . e 4 s s e s s w s & s e »
5-1 pata Collection Functions. e o e s s & s s
5-2 Data Collection Methods. « « ¢ « « &
5-3 Lesirable Forms Characteristics.«

vi

(F 00— SN SN o
[2 N B R |
O N & W

e ® o o o

S W WwWwivhN N

[N IO O R N B |

MNOOAOE WP~
[SN o

L] - - -
(LRSI

1
- o
& -

g

o

-l

?,zm

[SR
4 *

» et
i >

2t)
*®

SECTION 1 - INTRODUCTION

"Software engineering” is a term commonly accepted to de-
scrioe the way in which software development ought to
occur--ard the efforts tn define and implement such a proc-
ess. The 1968 NATO con‘erence (at Garmisch, West Germany)
popularized the term to serve as exhortation as well as de-
scription (Reference l). Increases in software costs, in
requirements for reliability, and in complexicy of system
solutions involving computers all intensify the need for
control and regularization of the software development proc-
ess. What was arcane art in the early days of electronic
computing must become a disciplined and predictable science
if it is to meet the demands made of the computer industry.

Transforming the software development process from art to
engineering requires a disciplined evaluation of methods and
practices, which in turn implies that some aspects of the
process are measured. The intent of this document is to
describe--and to assist in--the process of extracting reie-
vant and necessary data from the software development activ-
ity. All phases of data collection are discussed, staréing
with reasons for collecting data, through types and sources
and costs of data collection, to applications of the data
once assembled. Although the specific experiences of the
Software Engineering Laboratory (SEL) at the Goddard Space
Flight Center (GSFC) (Reference 2) form much ¢f the basis
fcr the guidelines and recommendations herein, this guide is
intended not as a historical review, but as a prescription
for the fucture.

This guide is aimea at software developers and managers who
would like to be able to assess the value of present and
proposed methodologies in their particular environments.
Properly collected and analyzed, software development data
can aid in identifying sources of problems and errors, in

1-1

o
-

e]
. -

comparing costs of different sizes and types of projects, in
making accurate estimates of production rates and project
schedules. This guide is intended to support such efforts
by providing a firm foundation for the collection of soft-
ware development data. By suggesting approaches, by provid-
ing a classification of types of data, by identifying costs
and pitfalls, this guide should smocoth the development of
software development data bases and increase the value of
software engineering efforts and analyses, The guidelines
and recommendations in this document are primarily based on
5 years of direct SEIL experience in data collection, and are
distilled from discussions at SEL workshops and elsewhere
within the software engineering community.

To provide a common terminology and a ready reference, this
guide includes a description and classification of software
development data (Section 2) and an identification of
sources of data (Section 3). Guidelines for estimating the
costs of data collection for different types and sources of
Aata, including both direct and indirect costs, as well as
suggestions for establishing priorities in a limited-budget
environment, are prcvided in Section 4. The data collection
procedure itself--collection by various ineans, processing
the data, management of the data base, validation--is de-
scribed in Section 5. A brier description of applications
of the data is provided in Section 6 to demonstrate and sug-
gest the uses of data in a software engineering setting.
Specific recommendations for data collection methods, prior-
ities, and applications are presented in Section 7.

As noted above, the thrust of this document is more "how you
can do it" than "how it is done here." Some review of SEL
experience and procedures is in order, however, and is pro-
vided in the appendixes.

1-2

;
W

W R,

o

P -

B g

Resta et ;

P XY
. .

Seatsie

. srr
.

l.1 MOTIVATIONS FOR COLLECTING DATA

Although the software community agrees that problems and
shortcomings exist in the way software products are gener-
ated, there is often great difficulty in specifically iden-
tifying the problems and the means by which one should
attempt to improve the process the next time. Each person
has his/her own set of criteria for judging a software prcd-
uct (or process) to be successful or unsuccessful. Whether
one looks at cost, prcductivity, reliability, modularity,
document size, or other factors, many different parameters
are used as evidence of whether a software project has benn
successful or not. The level and extent to which these
measures of software quality are used, or are meaningful,
are certainly a long way from being commonly accepted by
different software development groups.

Before developers can attempt to improve the software
development process and thereby the product, a clear uiuder-
standing of the strengths and weaknesses of the current mode
of operation must be attained. Although it is somewhat
unlikely, perhaps the current approach to developing soft-
ware his no shortcomings and cannot be improved upon. 1If
80, developers should be aware of this fact and should con-
tinually reinforce the successful practices. On the other
hand, if flaws and problems exist in the approach to soft-
ware development, they must be identified before they can be
corrected. That step is certainly the first in improving
the software development process, This is the primary
reason that anyone should want to collect software develop-
ment data. It is the medium by which one can understand
strengths and weaknesses, for only then can one aspire to
improve the process and the product.

1-3

PO

CoeMe SRR M T e T e
AR

.»::.ss:x

Lonsig

Yy

The motivation for collecting softwars development data can
be divided into two categories:

l. Understanding. Unless developers are completely
satisfied with each software product genecated, there is a
need to understand the strengths and weaknesses of the proc-
ess and the product. The arch. ved {nfrrmation is the only
means by which repeating poor practices can be avoided and
effective development techniques can be reapplied. As soft-
ware developers, the gquestions should always be raised, "“How
am I doing?" and "How can I do better?"”

2. Evaluation. The practices applied to developing
software seem to be quite dynamic in that new methodologies,
models, and tools are ccatincalily becoming available. It is
difficult to accept any approach blindly and to believe that
it will have the s:ne favorable effects on the software that
others may claim., As developers adopt newer and changing
approaches, it greatly behooves the evolving process to con-
currently measure the effects of particular software devel-
opment approaches, For example, with the availability of
numerous and varied software resource estimation models, it
is very problematicul to select an approach that is applic-
able and useful to one's own environment. Before adopting
any one of the models, one would most certainly want to
evaluate that approach utilizing development data within
one's own software area, To evaluate the model, one must
have access to the software development data. This cer-
tainly applies to the evaluation of any other facet of soft-
ware engineering.

Although understanding and evaluation are the two key moti-
vators for collecting development data, there are other re-
lated reaons. To experiment with varying development tech-
nologies, data is needed; to justify changes to development
plans (e.g., schedules or expenditures), data is needed; to

1-4

provide the basis for hoping to advance the state-of-the-art,
data is needed: but the summary fact that calls for the data
collection effort is the desire and the need to understand
and improve the software dsvelopment process and product.
Wwithout accurate, descript .ve data of the software process,
these attempts at understanding and improving will be futile.

1.2 HOW TO USE THIS GUIDE

The intent in producing this guide is to suggest answers to
the "How do I start?” and "what do I do?" questions follow-
ing the recognition that the suftware development process
can be improved. The answers are: "Understand what you're
doing now" and "Collect relevant data."” Thie introduction
will give the reader a high-level overview of the process
without going into details. Section 1.4 particularly iden-
tifies the data to be collected and from where it is
collected. Sections 2 and 3 expand on those topics for ref-
erence purposes and may be skimmed or skipped on first read-
ing.

The next question to be asked often is "How much will {t
cost?"; the reader is directed to Section 4 for this an-
swer., Noting the iterative nature of this entire process
(see Figure 1-1), Sections 4, %, and 6 may be of value in
any order. Section 4 addresses "what (and how much)"; Sec-
tion 5 treats the "how" of data collection; and Section 6
deals with "why."” The details of managing and organizing
the data are desciibed in Section 5 (and treated elsewhere
in depth), along with the basic guidelines for collecting
data.

As a reference to the process of data collection, Sections 2,

3, and 5 form a unit. Section 2 describes the types of data
in more detail than required in an overview; Section 3 de-

scribes where the data is found; and Section 5 addresses how
to get it.

1-5

.
3

The listed references ana the related publications in Sec-
tion 1.5 suggest to the reader what can be done with the
data once it is collected.

1.3 ORGANIZING THE COLLECTION OF DATA

Crucial to the success of the overall data collection proc-
ess is a clear, advance understanding of the local purposes
and analyses to be supportead by the data ("local" meaning
specific to the installation supporting the data collec-
tion). The range and amount (and cost) of data to be col-
lected must be directed and boundeda by the uses to which the
data will be put. Typical goals include

° Quantifying the phasing and staffing patterns of
software development projects

° Numerically characterizing the developed software
{e.g., lines of code per module, percent comments,
complexity measures)

o Identifying major sources of errors (by phase, by

activity, by personnel) and most commonly effective
methods of detecting and correcting errors

o Comparing methodologies, personnel, management
techniques as factors in productivity differences

These and other topics are treated briefly in Section 6 and
discussed in detail in other publications (see References).

Data collection must be identified as one element in a co-
hesive plan for software engineering analysis (Reference 3).
The goals of the entire effort must be clearly defined;
these goals will be the driving fac~ors in planning and im-
plementing the data collection process.

The first step, then, is the identification of these goals
for the local environment. Specific, demonstrable goals
should be set (e.g., "Are there quanti*ative differences

1-6

R R e

between overall productivity measures of equivalent projects
using FORTRAN or PL/1?" or "Do projects that have design
walkthroughs have more or fewer problems during acceptance
testing?").

Once the goals of the software engineering analysis effort
have been determined, the sapecific data requirements of
those analyses must be identifiei. Sources, procedures, and
costs all will affect the selection of data types. Interde-
pendencies mus* be identified tc ensure that all rejuisite
data are targetcd for collection (e.g., resource data may be
of little value witnout data on staffing patterns). Sec-
tion 4 covers these topics.

For some types of software engineering analyses, quantita-
tive models have been developed (Reference 4). Where these
apply to the specified goals identified, the types of data
needed may be spelled out in the descriptions of the mod-
els, For other analyses, identification of data items will
involve more extensive planning. More detail is provided in
Section 6.

Cost factors, model requirements, data dependencies, and
data availability may mandate review and revision of the
software engineering analysis goals. An iterative process
(as shown in Figure 1l-1) may be required to resolve ques-
tions of data availability, priorities, and budgetary
limits. An evaluation of the anticipated return (e.g., more
reliable products, more confidence in project estimation)
should be performed as a justification for the data collec-
tion process. Failure to recognize and secure the level of
commitment required may jeopardize the software engineering
engineering effort when the costs become apparent hefore
those benefits can be demonstrated.

o aa———

Ce fT) A AT
L Y R §

o -4
OF PO QUALL Y

P —
SUFTWARE ENGINEERING | TERATUAE
AESEARCH AEPONTS AND MODELS MOORL DESCRIPTIONS

g

IDENTIPY
AEQUIRIMENTS
FOR DATA

COLLECTION

OENTIFY
(0ALS Q8
SQFYWARE
ENGINEERING
EFFORT

SPECIFY
ANALYSES
AEQLINED

REY EW
FOR [ATA
INTRROE
~INDINCIES

MODIFY
GOALS 8ASID
ON AESULTS
OF
ANALYS!S

ESTABLISH
DATA
COLLECTION
PROCESS

EVALUATE
COSTS Of
COLL‘CCTION

ANALYSIS

REVIEW
MOOIFY

GOALS AND
PRIORITIES

SET
PRIOAITIES

MANAGEMENT
OIRECTIVES

PERFORM
ANALYSES

w—an

Figure 1-1, Data Collection--Functional Relationships
and Iterative Processes’

Definition of the data collection procedures to be used is
implicit in the cost analysis. Data that is readily avail-
able in machine-readable form (e.g., staff charge hours,
computer use records) is inherently less expensive than data
collected on forms or by interview. The details of the col-
lection procedure remain to be worked out, but the general
gsources and methods are defined in the early planning stages.
Section 5 provides guidelines on the planning and design of
the data collection process. Examples of forms used in data
collection by the SEL are shown in the appendixes.

Implenentation of the system, especially in those aspects
that directly impact the software development process (e.g.,
requiring programmers to f£ill out forms), will require

1-8

planning, public relations, and support from management., A
phase-in period must be anticipated, both for the technical
personnel and for the data collection procedures,

1.4 OVERVIEW OF SOFTWARE DEVELOPMENT DATA

This subsection provides a high-level overview of the types
of data pertinent to a software engineering etfoi. and of
the relevant data collection methods. Sections 2 and 3 ex-
pand on these topics; this overview is intended to provide
an introduction and a common frame of reference and termi-
nology for the sections that follow.

In the context of data collection, software development can
be viewed as consisting of five elements: the problem to be
solved, the resoirces needed for soiution, the environment
in which those resources are applied, the process of appiy-
ing them, and the products generated. Data must be col-
lected characterizing each of these elements (at least to
some elementary level) to support a responsible analysis
effort., The data-collection process described in this doc-
ument will be defined in terms of these five elements, de-
scribed as follows: '

l. Problem data--the problem as described in the re-
quirements specification, constraints (such as
space or execution time), stability of the specifi-
cation, type of changes, and so forth

2. Resource data--such as staff-hours and computer time

3. Environment data--characteristics of the installa-
tion which are relatively stable and invariant from
project to project

4. Process data--the methodologies, tools, techniques
used in developing software

1-9

5. Product data--measures and metrics which character-
ize the software and documentation (size, quality,
complexity, etc.)

Each of these classes of data is further categorized by re-
porting interval as summary or snapshot (i.e., at completion
or in process) data, and hv level of detail (from project or
task level down to detailed component or module data). Sec-
tion 2 provides the formal definitions and classification
schenme,

Four major sources of software development data are de-
scribed in Section 3. An understanding of the sources and
terminology will be useful throughout this document, The
four soutces of data are as follows:

1. Technical staff (i.e., programmers, designers, an-
alysts, operations and maintenance people)--
information available via forms, interviews, activ-
ity logs

2. Managers--forms, interviews, personnel records

3. Computerized records--accounting data (machine
time, number of runs), configuration control rec-
ords (e.g., PANVALET), transaction records (if
maintained for detailed analysis)

4. Products--source code, documents, design (may re-
quire tools such as a source analysis program for
data reduction to a usable form)

1.5 RELATED PUBLICATIONS

This subsection provides a list of particularly relevant
publications that may aid in the collection of software de-

velopment data. A more extensive list is provided in the
list of references.

1-10

The Sottware Engineering Laboratory, V. Basili,

M. Zelkowitz, F. McGarry, R. Reiter, W. Truszxowski,
U, Md TR77-535, and NASA-NSG-5123. Describes the
background, goals, and intended data collection
procedures ot the SEL as ot 1977,

Tutorial on Mod.ls and Metrics for Software Manage-
ment and Engineecring, V. R. Basili, IEEE, 1980.
Describes purposes and methods of sotftware data

collection.

Software Enagineering Laboratory (SEL) Data Base
Organization and User's Guide, D. Wyckofft,
CSC/sD-81/6011UDl. Provides a detailed description
of the data management and dissemination procedures
of the SEL.

Sottware Engqineering: Concepts and Techniques,
P. Naur, B Randell, J. N. Buxton (eds.) Petrocelli/
Charter, New York, 1976. A conference report on

the 1968 NATO Conference on Software Engineering at
Garmisch, West Germany. cContains many seminal
papers ot the field, stil'! highly relevant.

Software Engineering Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and System
Description, D. Card, CSC/s5D-81,/6079. Describes

the i1nteractive data entry and editing system used
by the SEL.

—
)

11

[,

SECTION 2 - CLASSIFICATION OF SOFTWARE DEVELOPMENT DATA

Software engineering data, as the term is used here, encom-
passes any information that describes the process or prod-
ucts of a software development effort and that is collected
to support analyses and evaluations of that effort. Rele-
vant data may pertain to any of a nultitude of factors and
be characterized by varying measures of objectivity and
level of detail. Productive research and analyses at a par-
ticular facility will require a broad range of types of
software development data to support comparisons and evalua-
tions This section describes several classes of data that
together provide the range of data types required.

The classifjication scheme presented here is intended to
provide a common framework for discussion; other classifica-
tions can and have been developed (Reference 3). To be
useful, such a scheme must organize the data in some logical
relationship to the goals of the research effort. While
clear and distinct divisions cannot always be drawn, a clas-
sification scheme can aid in the research design by ensuring
adequacy of data collection and clarifying data depended-
cias, The scheme presented here is intended to support
research in improving the process and products of software
development and to clarify the approach of the SEL to this
research. The classes of data identified in this scheme are

Problem data
Resource data
Environment data
Process data
Product data

Section 2.1 describes the dimensions of the classification
scheme (subject matter, time of collection, level of detail)
and relates this classification to the types and levels of

2-1

analyses that may be required. Section 2,2 defines the
problem data class that describes the initial requirement
for software and the changes and constraints involved in the
development., Section 2.3 defines the resource data class,
which is used to track and summarize the expenditures of
staff time and computer time in the solution of the problem.
The actual software development activity is characterized by
the environment and process data classes (Sections 2.4 and
2.5), which deal with such items as invariant attributes of
personnel, management procedures, languages, hardware sup-

port, methodologies, and standards. Section 2.6 defines the
product data class, which describes the output of the soft-
ware development activity. Section 2.7 describes change and
error data--a composite of product and process data.

2.1 CLASSIFICATION STRUCTURE

For purposes of analysis, it is useful to be able to map
classes of data onto elements of the software development
model used in the analysis. 1In its simplest form, the model
used by the SEL identifies an input (the problem or require-
ment), a process (software development methods and tecn-
niques), the environment (including types of machine and
personnel resources available), an output (the products--
software and documentation), and some measure of the re-
sources utilized. Figure 2-1 shows the basic elements of
this model.

To some extent, the mapping of data elements onto model ele-
ments is determined by the purposes and perspective of the
analysts, From a process measurement viewpoint, it may be
useful to view resources and problems as input that is proc-
essed to output a product. From a different standpoint
(e.g., contractural), "resources e:;pended”" may be considered
a product to be controlled by manmipulating the process. In
the same vein, change and error data can be considered to be

=2

PROBLEM [:> - PROCESS — C:’\>

ENVIRONMENT

i

RESOURCE RESOURCE
POOL DATA

8103/8)

Figure 2-1. Research Model

either a product measure or a process measure, depending on
the analyses being performed. Because of this ambiguity,
the data classification scheme described here has been made
flexible to accommodate a variety of investigations.

A rigorous analysis of some facet of the software develop-
ment process will require some data on each element ot the
model--that 1s, some level of detail on the problem, re-
gources, environment, process, and product. A study of pro-
ductivity (products/resources) must consider as well the:
impact of variations in problem and environment and proc-
ess. The major dimension in this classification scheme 1is,
accordingly, sublect class ot data.

Two other dimensions (Figure 2-2) are used in classifying
data: resolution and project status. Resolution, or level
of detail, ranges from the broad brush-strokes of project
overview aata (executive summaries, etc.) to the precision
of module-level and component-level detail. Low-resolution
data, such as total lines of code or total staff-hours for a
project, 1s usetul for screening and comparing projects.
High-resolution data, such as the purposes and results ot
indiviaual computer runs and changes, provide 1nsight into
why a project progressed as it dida.

2-3

SUBJECTCLASS ———

PROBLEM

IR NT
ENVIRONME -

Figure 2-2,

Dimensions of Data

81G3/81

Project status, the third dimension in Figure 2-2, refers to
the stage of the project or component about which the data
has been collerted. "Predictive" data is available before a
project or phase begins, or before a component i3 fully de-
finad. "Snapshot" data reports status at some intermediate
point in the process. “Summary" data characterizes the
project at completion of each major stage of development,
Snapshot data thus describes the path from start to finish,
or on this dimension of data, from prediction te summation.

Table 2-1 briefly shows the classification scheme described
above and the sources of data in each class and subclass.

2.2 PROBLEM DATA

The driving force behind the software development effort is
the software requirement which, in its original statement
and the changes and corrections that inevitably occur,
largely defines the scope of work in a development effort.
The problem class of data is used to characterize the soft-
ware requirement, The parameters used in this characteriza-
tion are listed in Table 2-2. It should be noted that the
major attributes of the problem are ite size and the stabil-
ity of the requirement., The latter attribute is particu-
larly time-dependent (i.e., snapshot data) because the impact
of changes depends greatly on the timing of those changes,

Problem data may also include constraintsg such as space or
execution speed of the software or externally imposed dead-
lines (such as defined by a spacecraft launch date).

2.3 RESOURCE DATA

Life-cycle studies and detailed project performance analysis
require substantially more detailed information than is pro-
vided by project-level summary data, Characterizations of
actual effort expended on esach phase or component of a sys-
tem generally require that timely, detailed data be collected

2-5

(¢/T018

VivQ (AHYNOIL

NI0A3 TIVIIHOLSIH) LOHSIVYNS GNY V1va {NOI137dNOD “TVYNINYI L) AHYINNS NI VANOD AV SSVY108NS HOV3

AJNION3IC3IO INIL

44Y1S TYIINHO I
'SISATYNY Q31YWOLNY

NOILD3IN0D viva G3tvm

OLNY “33¥ 1S IVIHNHIIL
‘SNOILYNTVAI 3AILDENS

S1HO0J3H L1SIL SNOILYNTVYAI
JALLIINGNS 'SISATYNY 031 YmOLNY

434V1S TVYIIN
‘HO3L 'SNOLLYNIVAI JAILIINENS

V1iva INITI3DVNVYN 3A11038NS
S1HOJ43H LNINIDVYNVYA ‘SAHODIY

S1HOJ3Y 1S31 'ViVQ ININIDVYNYN
3AILI31BNS 'SISATYNY GILVNOLINY

ViVQ LNINIOVNVYN IALLIIrBNS

SM3IAHILINI ‘'ViVO ININIOVYNVYNY
JAILIINBNS "S1¥0IIY LIFOHY

(HILNINOD ONV 33V 1S) SGHOIIY

12NQ0ud

SS$300ud

AININNCHIANT

44V1S IVHUNHIIL ONIANNODIY "33V 1S TVIINHDI YL ONILNNODIY ONV S3HNDI4 139anE $S3IOHNOSIH
NOILHHISIA NILSAS QH0I3H 003 “ININND0Q
NOLLVYDI 41D34S NOISIG AYYNINITIING SINIVEISNOD ONV SININIHINGIY W3I180Ud
{3INAOM "ANINCINOD " § 9 (NILSASENS "ISVYHY ‘89 {1J3r0yd ‘63
NOILNI0SIY HOIH 31 VIC3INHILNY NOILNT0S3H MO 123r8NS

L

IIAIY NYL30

23eg JO S3D2INOS pu®b BWIYDS UOTILOTJTISSE[D)

"1-¢ 31qeL

o3

',i(g

E]

| g

[E-R"-%Y
: k]

?;;3.21

Table 2-2, Problem Data Parameters

Problem Statement
- Number of specifications
- Clarity of specification

- Nature of specification (e.g., machine
processable)

Problem Stability

- Number and timing of changes to specifications

- Impact of changes (cost, perturbation of
product)

- Nature of changes (e.g., correction,

enhancement, cosmet.cC.
Problem Characteristics

- Magnitude of problem

Perceived reliability of specifications
- Complexity
- Similarity to previous problems

- Constraints (calendar time, machine resources,
interface to existing software)

Product Delivery Requirements

- Formality of documentation (especially
transition documents)

- Reporting and review procedures

- Impact of software development data collection

from development personnel and/or from the machine account-
ing systems. Required data are

° Personnel resources appliea

- Managenent

- Technical

- Support (clerical, publications, etc.)
) Machine resources required

- Computer time used

- Terminal use (or other access records)

- Data storage (e.g., disk utilization)

Summary data may be used to perform comparisons and evalua-
tions of projects; detailed resource data is necessary to
understand the differences and to tit individual tasks to
models that can be used predictively. Personnel resources
snould include information on the type of effort and compo-
nent (if any) supported. Machine resources should be col-
lected in accordance with whatever cost or chargeback algo-
richms are in use, with additional information to identify
user, type of access, purpose (e.g., of a test run), and
componant(8) involved.

2.4 ENVIRONMENT DATA

With respect to software development, che environment ccn-
sists of the relatively 1invariant fa<i;ors of staff experi-
ence and ability, computer system availapility, management
procedures, and similar attributes of a software development
facility. Other factors may also be included, depending on
the particular installation. 1In the Flight Dynamics area at
GSFC, for example, ‘he programming language--FORTRAN-~and
the graphlc executive support system (GESS) are part of the
environment. The distinction between environmental ddta
(whichh characterizes longer term fendencies, factors, and

2-8

attributes) and process data (waich is concerned with spe-
cific project-related tools and nethodologies) is highly
installation-dependent.

The factors which are treated as environment data include

[Computer language(s) used

° Staff competence

® Sta“[experience with typical problems

L Staff experience with host, target computers
) Stability of software environment

° Availability of machine resources

° Stability of machine resources

° Staffing patterns and team organization

) Management competence

® Management experience with typical problems
® Support facilities (e.g., librarians, technical

publications expertise)

2.5 PROCESS DATA

The specific tools and methodologies that may be applied on
a project-by-project tasi: are described by process data.
For example, to test the "chief programmer/team" methodol-
ogy, a single project may be organized in this manner. Be-
cause this procedure may be imposed on one project &nd
removed on the next, the chief programmer/team technique is
a process factor. On the other hand, a decision to switch
to a new computer system, operating system, or language usu-
ally cannot be a5 easily reversed; for better or worse, the
change will probably impact a number of projects. Such a
change would be treated as environment data.

2-9

From the standpoint of software engineering analyses, envi-
ronmental data desctibes those factors which must be can-
celed out of the results., (That is, the effects of the
environment must be identified, accounted for, and disre-
garded so that other effects can be analyzed.) Process data
describes the tools, methodologies, and technigues which are
being evaluated and undergoing experimentation, Table 2-3
list- some of these factors,

2.6 PRODUCT DATA

A tremendous amount of objective data can be derived from
the products of the development process, particularly by
analysis of the actual software. Elaborate and ambitious
models of software development have been based on such anal-
yses (e.g., Halstead's "software science," Reference 5).

The development products that can be so analyzed include the
software source code, design and specification documents,
process documentation (e.g., design notebooks), and product
documentation (user's guide, system description), as listed
in Table 2-4.

An important characteristic of product data is that it is
relatively nonvolatile., Time-based information is required,
of cocurce, such as growth histories and implementation pat-
terns, but significant amounts of data can be acquired as
late as the end of a project. Change and error data, in
contrast, are very .ependent on timely recordation.,

2.7 CHANGE AND ERROR DATA

Although change and error data does not form a distinct cat-
egory (in terms of the proposed model of software develop-
ment), it is sufficiently important to software engineering
(reliability) to be described separately here. From the
standpoint of operations and maintenance, changes and errors
are a product measure. During develozment, change and error
data may also describe the process.

2-10

Table 2-3., Process Data Factors (Representative)

Graphic representations and expressions

o Flowcharts

[) HIPO (hierarchy-input-process-output) charts
° Data flow diagrams

° Hierarchy diagrams (baselines, tree charts)
() System verification diagrams (SvVDs)

Development methodologies

° Top-down design (stepwise refinement)
° Top-down devi=iopment (stubs, drivers)
o Structured procyramming

) Standards and protocols

° Use of librarian

° Chief programmer/team approach

° Unstructured ("egoless") team

Quality assurance mechanisms

[Design, code reading

[Design, code walkthroughs

° Traceability analyzers

° Standards compliance auditors
® Verification, validation teams

Configuration control and management

Source code control library system
Design, development notebooks

Change reporting and control protocol
Milestone charts

Configuration reporting tools

2-11

Table 2-4. Product-Derived Data

Source Code

° Number of modules
o Component coupling and connectivity
° Component size
- Various measures of lines of code: old versus

new, developed versus delivered, with and
without comments, executable and specification

statements
- Memory requirements: words of machine code
° Complexity of code (e.g., McCabe, Page measures)
® Halstead's "software science" metrics
) Execution characteristics

Specifications and Requirements (if automated)

° Traceability analysis
° Change records (e.qg., changes to specifications)
[Complexity measures

Documentation

) Page counts
- Text
- Figures
- Copies of listings
[] Change history (from notebooks)

tJ

-12

Users of an interactive develoment system, with the instan-
taneous turnaround and immediate response of a terminal-
oriented environment, may use different testing strategies
than would a one-run-per-day batch uscr. The change history
1s different because the 1nteractive user can afford to make
one correction per pass, whereas the batch user must attempt
to correct all errors for each new submission. Change and
error data can be a characteristic of the process, or even
of the environment,

Prevention and correction of errors and adaptability to
change are central to the efforts of software engineering.
The analyses that can measure the effectiveness of various
methodologies in these .espects require substantial amounts
of data on the occurrence and processing of changes and (as
a subset) on detection of errors. This type ot data 1is of
sufficient .mportance and volume to justify its independent
classification, even though there may be overlap with re-
source data.

The definition of changes (and errors) should be related to
the configuration management tools and procedures employed
in the development effort. At each stage ot the developﬁent
cycle, changes would be recorded for all items that had been
accepted for control. The SEL uses the software module as
the basis for defining changes, and relates code changes to
modifications in specification or requirements (as applic-
able). Change reporting and control is important throughout
a software development task; the emphasls and depth of cov-
erage will depend on the specific goals ot the research.

Many ot the methodologies anad techniques being investigated
1n the field of software engineering are directed towara
maintaining flexibility and integrity of a development
effort in the face of changes (whether internal or exter-
nal). Top-down design, iterative refinement, structured

2-13

programming, specification languages--all are partly moti-
vated by this concern., To measure the impact and frequency
of changes, data should be collected as changes are identi-
fied and should include type of change, source, means and

resources to implement, and magnitude and impact of the
change.

For the purposes of software engineering analysis, errors
are perhaps the most interesting type of change because of
the desire to limit error occurrence by applying appropriate
techniques, Methods of detecting, preventing, and correct-
ing errors are of concern to software engineering. A vari-
ety of models of error occurrence have been devised to aid
in predicting the number of errors, or errors remaining, in
a software system. Data to support the use of these models
and analyses is included within this class. 1Information
should be collected on a timely basis to identify the source
of errors, the means used for error detection, and the type
of error. As with other change data, records of resources
required and impact of the error should be collected.

SECTION 3 - SOURCES OF SOFTWARE ENGINEERING DATA

Sources, availability, and methods of collection of software
development data are of major concern to the structuring of
a data collection effort. Reliability, accuracy, consist-
ency and completeness all have impact or the types of anal-
yses that can be performed, and all are affected by the
source of the data. Particularly important is the avail-
ability of the same (or closely related) data from disparate
sources, for purposes of cross-checking. This section de-
scribes the primary sources of software development data,
the types of data available from each source, and, briefly,
the means of collection from each source. (More on the last
topic is found in Section 4.2.)

The primary sources of software development data are

° Developers (personnel)
- Technical staff: analysts, designers, pro-
grammers
- Managers
[Computerized records
- Routine accounting records

- Special-purpose activity monitoring

° Products: source code, documentation, specifica-
tions

3.1 TECHNICAL STAFF

As used here, the term "technical staff" refers to all per-
sonnel who contribute directly to the project products.

This catchall term is used to distinguish productive effort
from managerial activities and includes the designers, pro-
grammers, quality assurance (QA) staff, test teams, and sup-
port personnel. To the extent that managers contribute to

3-1

production, they also are included. (See also Section 3.2.)
Because the technical staff is the major source of nonhard-

ware resources that go into a project, they must also supply
much of the detailed information on the process of software

development.

Although automated data collection procedures should be used
when possible, more intrusive methods--forms, interviews,
activity logs--will commonly be required. The costs and
impacts of various procedures are discussed in Section 5.

Table 3-1 lists the major data items that may be collected
from the technical staff. The major classes of data are
resource data (hours expended, computer usage), product data
(including subjective data, such as perceived complexity,
which is not available elsewhere), and change/error data.

3.2 PROJECT MANAGEMENT

Although the technical staff is the most valuable source of
data concerning the detailed evolution of a project, more
comprehensive and global project data should be obtained
from project management. Administrative data (such as the
amount of time actually charged to a project) can be used to
cross-check (and fill gaps in) the more detailed resource
data supplied by the technical staff. Being less absorbed
in the details of a software development effort, managers
are better able to provide evaluations of the project as a
whole. Sensitive data such as experience and competence of
the technical staff may not be available below the manage-
rial level. Data on support facilities that may be shared
among projects (e.g., typing support) is also available from
project management.

Table 3-2 details the types of software development data for
which project management is a source. Note that, in many
cases, these data can provide verification of data provided
by the technical staff.

3-2

Table 3-1, Data From Technical Staff

Staff Hours Expended (resource data)
o By activity
- Design, code, test, travel, writing, etc.
° By phase

- Requirements analysis, de¢sign, code and test,
integration, acceptance

o By component or subsystem

Component Descriptions (product data)

° Subjective measures and predictions
- Type of software (algorithmic, I1/0,....)
- Complexity, difficulty
- Characteristics of specifications, design
° Status, size at each phase
o Relationship to other components
® Constraints (memory, execution speed)
o Language used

Computer Usage Records

o Purpose and status of each run or session

° Components involved

o Characteristics of computer use (batch, interac-
tive.,...)

Change Error Data

o Origin of change
Components affected
Source of error, how (when) discovered

Time required to effect change

3-3

| e

Wi

e

Table 3-2, Data From Managers

Staffing Patterns and Characteristics

Number ard phasing of personnel
Project organizational structure
Quality and level of experience

Product Characteristics

Quality of products

- Reliability, maintainability
- Efficiency, effectiveness

Degree of structure

Readability (especially documentation)

Compliance with specifications, constraints

Development (Methodology) Data

Development environment

- Type of computer support
- Congeniality

Manageability (visibility)
Adherence to standards or guidelines

- Adequacy of standards or guidelines
- Compliance and enfcrcement

Methodologies used (degree used)

3-4

3.3 COMPUTERIZED RECORDS

Most computer installations provide a means of automatically
collecting and recording details on the use of the facil-
ities, These records typically include information on each
instance of use (job submigsion, interactive session) iden-
tifying the user, the time, and the resources used. Al-
though typicaily collected and analyzed for chargeback and
performance evaluation purposes, these records can also pro-
vide valuable data on software development activities. 1In
addition to project-level resource (cost) data, these rec-
ords can provide a cross-check on programmer-supplied com-
puter use data. The specific data available will depend on
the type of accounting in use at a facility.

A different type of accounting information is provided by
"librarian" systems (e.g., PANVALET). These systems can
identify source code and library utilization by project and
in some cases by component. Properly used, these systems
can provide data on project size, growth history, and errors
and changes over time,

Table 3-3 lists the types »f information that are collected
automatically (for other purposes) and can be used in soft-
ware engineering analyses. Principal motivations in using
these data are their low coat and their availability (al-
though some effort will be required in the data reduction
effort). Also of importance are the consistency and reli-
ability of the data so collected and the negligible impact
on the software development process.

In addition to accounting and library system records, trans-
action records may be collected specifically to aid in soft-
ware development analysis, Such data collection requires an
initial investment (for the development of scftware tc col-

lect such data) and continuing overhead costs, but may be

Table 3-3, Computerized Recordkeeping

Access and Use Records

e Computer loading by time and phase
; - CPU, memory
- 1/0, mass storage utilization
° Use characteristics
- Frequency of use by person over time
- Type of use (compilations, editing, executions)
° Printout volume

Librarian Accounting

[Size and number of modules
° Change history
o Growth history

Automatic Collection of Data

® Computer use data
- Session purpose and status
- Patterns of edits, compiles, tests
- Modules involved in each access
o Product data
: - Change and growth history
H
' - Design evolution (PDL, prologs, baselines)
; ° Test history, status, results

G st

3-6

#raay iy ey

capable of reducing the need for form-filling or replacing
some data collection forms entirely. At present, the SEL

has only begun to investigate costs and potential. Table 3-3
includes some of the types of data which are thought partic-
ularly amenable to this type of data collection.

The high cost of using data collection forms and the limits
to data collection using these forms makes it desirable to
pursue such alternatives, but no empirical recommendations
can be made at this time.

3.4 DEVELOPMENT PRODUCTS

Many of the analyses that can be performed on scftware de-
velopment data require detailed information on the products
of the development process, including the documents and the
deliverable software. This information should be derived
from the products themselves to ensure accuracy and reli-
ability. For the deliverable software, a software tool is
extremely valuable in extracting such data, Maznual methods
may be required for special cases (e.g., segments of assem-
bler code in a FORTRAN system) or non-machine-readable prod-
ucts (such as a design document). Table 3-4 identifies data
elements derivable from the products of the development ef-
fort,

The most commonly used program-size metric is "lines of
code,” hut there are several interpretations of this term.
Comparability and comprehension both can be enhanced by
using a source code analyzer program to compute line and
statement statistics on project and component levels. These
statistics typically include number of source lines, lines
with comments, executable statements, and detailed statement
type statistics.

Specific software models (e.g., McCabe's complexity measure,
Halstead's metrics) (References 6, 7) will require additional

P

Table 3-4. Product-Derived Data

Source Code Analysis

Size (various measures)
Statement type distribution
Module classification
Complexity analysis
Specific models

- McCabe
- Halstead

Document Analysis

') pPage counts by type of page, by volume
) Count of changes to specifications or requirements
° Type of specification, design '

Compliance with Constraints
o Execution time
° Memory loading

- Loader maps
- Dynamic measurements

3-8

detailed analysis. Because the actual product is used, the
reliability of the data is maximized.

Dynamic analyses are more difficult to obtain, although some
computer systems are able to collect data on memory, device,
and CPU utilization to some level of detail, To measure
compliance with constraints such as execution time or memory
allocation, specific data collection procedures may be re-
quired. System load maps or execution analyzers may be
usable or ar least provide some guidance. In most cases,
subjective managnient-level evaluations of performance and
compliance will be adequate for the purposes of software
development data analysis,

Document analysis is less easily automated, although the use
of word processing may facilitate data collection and ctatic
analysis, Some normalization process may be required to
provide comparability among different styles of document:
pages of sample orintout require much less preparation than
text; complex figures require more. Collection of descrip-
tive data i. required to support staffing level analysis or
prediction of costs for future products.

3~9

SECTION 4 - COSTS AND PRIORITIES

Identification and prediction of costs are essential to the
planning of any project. Because collection of software
development data is inherently a long-term activity, cost
identification is especially important to ensure that ade-
quate resources will be budgeted. This section identifies
the types of cost3 incurred in collecting software develop-
ment data and suggests the magnitudes of those costs based
on SEL experiences. Because the planning process will un-
doubtedly involve tradeoffs, cost comparisons (Section 4.2)
and data dependencies (Section 4.3) are also discussed. The
tradeoffs made at a particular facility will depend partly
on these cost factors and partly on the goals of the partic-
ular software data analysis effort. Section 4.4 discusses
priorities and recommendations for data collection in terms
of those goals.

This section provides practical guidance for planning a data
collection effort by suggesting how to maximize the return
for a given level of investment. A successful softwvare en-
gineering research effort requires only--and all of--thase
data needed to support the desired analyses. This section
supports that effort.

4.1 DATA COLL¥ TION COSTS

There are four primary sources of costs to collecting soft-
ware development data:

Impact on monitored tasks
Processing (verifying, storing, disseminating) data
Development and maintenance of support software

Analysis of data

Table 4-1 illustrates these factors and the magnitude of the
associated cost. Cvusts are normalized by relating them to
the magnitude of the projects being monitored.

4-1

Table 4-1. Measuring Software Technology Costs (As a
Percentage of the Tasks Being Measured)

TASK

SEL
EXPERIENCES

GOAL

OVERHEAD TO TASKS (DEVELOPMENT PROJECTS)

FORMS

MEETINGS

TRAINING

INTERVIEWS

COST OF USING TOOLS

DATA PROCESSING
COLLECTING/VALIDATING FORMS
ORGANIZING DATA
ENCODING INFORMATION
DATA MANAGEMENT AND REPORTING

S'JPPORT SOFTWARE
DATA BASE SOFTWARE
CODE ANALYZERS
REPORT GENERATORS
STAFF TRAINING

ANALYSIS OF INFORMATION
MEASURING METHOOOLOGIES
DESIGNING EXPERIMENTS
DESIGNING ANALYSIS TOOLS
DEFINING MEASURES

570 16%

10-12%

6 MAN-YEARS, THEN
1 MAN-YEAR PER YEAR

16 TO 25%

8%

8 TO8%

% MAN-YEAR PER YEAR

10%

81a -8

s g

eI Y

rog
"

[

4.1.1 TASK OVERHEAD

The data collection process adversely affects the monitored
devcolopment projects (tasks) in several ways, depending on
the types of data and the methods employed. Data collection
forms have the greatest impact, particularly when used to
collect component-level data. Forms used by the SEL (See
Appendix B) are filled out by the technical staff on a
weekly basis (to monitor resources) and for each change and
each computer run. Additional time is spent on project-
level quality assurance for forms data and in filling out
forms for resource, component, and project summary data. A
startup cost is also incurred in training development per-
sonnel to use the forms (to ensure consistency).

Task overhead also includes time spent in meetings to define
subjective project-level data and in interviews to collect
background data on changes, errors, and procedures.

Additional costs that may be less easily identified are due .
to the use of data collection tools (such as the PANVALET
librarian system), which may be used more extensively be-
cause a project is being monitored. No attempt has been
made by the SEl to isolate these costs., More sophisticated
automatic data collection procedures have not been imple-
mented by the SEL.

On tasks monitored by the SEL, overhead costs chargeable to
the development tasks ranged from 5 to 15 percent of the
total task cost. It should be noted that the SEL is col-
lecting a very broad spectrum of data; nevertheless, it
seems unlikely that the cost could be held under 5 percent,
even with a less ambitious data collection effort.

cxtmson
.

4.1.2 DATA PROCESSING COST

A continuing staff effort will be required to perform the
collection, quality assurance, validation, data entry, and
reporting functions. Here again, data collection forms con-
tribute most significantly to the cost, while other types of
data processing (such as source code analysis) contribute to
A lesser degree, Data m:.nagement costs (error correction,
status monitoring and reporting) must also be considered.
The experience of the SEL has been that the cost of process-
ing and managing the data amounts to 10 to 12 percent of
development task costs. By simplifying the forms and
streamlining the process, this cost can be cut in half.

4.1.3 SUPPORT SOFTWARE

An initial investment in support software is required in
those cases where data management involves a computerized
data base. 1In any case, training and documentation costs
will be incurred during the startup phase. Because of the
iterative nature of the data collection and analysis process
(Figure 1-1), changes are likely to be required as the ef-
fort progresses.

The SEL chose to build a data management system tailored to
our requirements as they evolved. Six staff-years of effort
were required to develop the system to its present state
(References 2, 11, 12). Maintenance of the software--
primarily enhancements to support new data types--requires

1l staff-year per year. As the data management system and
the collection process become more stable, this is expected
to approach 6 staff-months per year.

4.1.4 ANALYSIS COSTS

The cost of analysis will depend on the availability of
easily adaptable software for statistical processing and
repuorting. This cost element is extremely sensitive to the

4-4

types of analysis required and to the level of detail of the
research. The SEL, which is investigating a very broad
range of concepts and factors, has experienced analysis
costs that amount to 15 to 25 percent of development task
costs., This figure probably represents an upper bound to
this cost factor. The SEL expects to limit this to 10 per-
cent in the future by eliminating unprofitable studies and
avoiding dead ends. An effort of more limited scope would
require a commensurately smaller investment.

4.2 COST COMPARISONS

For each class of data or data source, both startup and con-
tinuing costs must be considered in making comparisons. The
initial investment involved in building a source code ana-
lyzer may be large, but the cost of use is quite small.
Conversely, the cost of processing data forms remains high

as long as data are being collected. Figure 4-1 diagrams

the relative startup and continuing costs of data collection.

4.3 DATA DEPENDENCIES

The data collection process is intended to support analytic
efforts vo improve the software development process, It is
important, therefore, to collect all the types of data
needed for a particular analysis. Some of the required
pieces of data, however, may not be directly obtainable; the
problum is more complex when the needed items must them-
selves be derived from other data types before they are
usable. This section focuses on some of the interdependen-
cies of such derivative data. The SEL is currently investi-
gating (through factor and cluster analyses) consistent
formulations for such hard-to-quantify factors as quality
and and maintainability. For the present, some simpler do-
pendencies will be exposed.

Productivity requires not only the obvious lines of code and

staff-hours but also the life-cycle phases included in the

4-5

(B8N)

NTEAVIEANS

- SOAMS - OETAILED
! COMPONENT DATA

AUTOMATRD DATA
AUTOMATED OATA COLLECTION

COLLECTION

FOAME-CHANGE ERRAQM DATA

\ ey / STATIC ANALYSIS
i _STATIC ANALYS!S v
|
// / SOAMS - RESOURCES
VELOPMENT ., QEVELOPMENT TCOLS
ot 3;%";" // / @y LIBAARY SYSTEM!
s / yd

yd ~ FOAMS - SUMMARY DATA
// /
ACCOUNTING e ACCOUNTING DATA
NATA -
e
e

INTEAVIEWS v

ALBOW

e e
B ——
R
e ———

SUBJEITIVE PROJEIT DATaA

SUBJIECTIVE

STARTLP CONTINULING

.y e

NUMBEAR OF PAQUECTS MONITORED vl

Figure 4-1. Comparative Data Collection Costs

calculation, Comparison of coding-only productivity with
full-development productivity does not reveal anything.

Similarly, change data can be compared only if the data are
normalized to a specific life cycle period. This is partic-
ularly important when projects with different methodologies
are compared,

The most glaring data dependency concerns the experience
level of the technical personnel. Current data indicates
that this factor can swamp other considerations, Some means
(typically, data supplied by project managers) must be found
to normalize project data for this factor before meaningful
comparisons between projects can be made.,

4.4 PRIORITIES OF THE DATA COLLECTION

Obviously the type of data and the detail of data to be col-
lected depend on the objectives of the efforts as well as
the extent of resources available to support the collection
process, If one is merely interested in studying or devel-
oping resource estimation models, the heaviest and possibly
the compiete emphasis would be placed on collecting detailed
data representing the resource expenditures for a project on
a daily or a weekly basis., In this case, one naturally
would not be concerned with collecting detailed change and
error data.

In this section, we will attempt to generalize the relative
importance or significance of information that could be ex-
tracted from a software development project. These general-
ities are based on the extensive experiences of the SEL
during the past 5 or 6 years, It is assumed that the person
interested in collecting the data does not have a singular
area of study in mind (such as software errors only), but
that the reader has more general objectives as stated in
Section 1.1: first, to gain a clearer understanding of the
software development process in the particular environment

4-7

and second, to support efforts when attempting to make a
rational judgment as to the methodologies and approaches to
be used in developing software in future projects,

In outlining this priority schedule, we refer to the classi-
fication scheme described in Section 2, Here, there are
five classes of data that may be collected (process, prod-
uct, project, resources, and error data); and within each
type of Jdata, there is a varying level of detail that one
may request. These levels of information are summarized in
Table 4-2.

Obviously, some of the information defined is nearly useless
without some of the other information; for instance, it does
little good to know how much we spend on building a product

if we know nothing about the size or characteristics of the

product under consideration.

Based on the experiences of the SEL, the following priority
scheme is suggested to anyone pursuing the general task of
collecting software data for studying software development
strategies, models, or tools. The derived priorities are
based on relative usefulness and difficulty in collecting.
The list is ordered from the most important or highest §ri-
ority (1) to the lowest priority (10):

1. Level 1 of Resource Data. This covers the man-

hours expended on the project, as well as the computer usage
and general support hours such as technical publications
hours, ODC technical hours, and librarian support time,.

This information is critical in evaluating the total cost of
a project and the general profile or model of how resources
were consumed. The data has been widely used in helping to
evaluate and build models for future cost and resource esti-
mation,

2. Level 1 of Product Data. To support even the most

elementary analysis of any software project, it 1s mandatory

4-8

Table 4-2., Levels of Detail in Gathering Various Types
of Data
Class of Level-1 Level-2
Data Detail Detail
Process General description of Detailed characteristics

Project

Resources

Change

Product

requirement
Standards used

Tools applied
Team organization

Phase dates

Development machine
Development language

Level of staffing

Weekly manpower expendi-
ture on project

Computer usage by week

Error information as
discovered and fixed

Project size
Number of lines of
code

Number of modules
Number of new lines

Document size

of methodologies applied

Description of each
phase of the life cycle

Subjective quality meas-
ures of project perform-
ance

Staffing details

Environmental perturba-
tions

Manpower by component by
phase

Computer usage by run

Change information

Change history

Individual component
characteristics

Growth history

Subjective rating of
project

that the characteristics of the product be recorded. This
basic information includes such things as lines of code,
number of modules, size of documents, and amount of new code
versus amount of reused code. This data is not overly dif-
ficult to capture and may be extracted once at the end of
the project, but it is required by nearly all meaningful
analyses that could be performed on a software project.

3. Level 1 of Change/Error Data. The two greatest
concerns of building a software product relate to cost and
reliability. Nearly all measures of quality are based on
these two factors., The basic error data help to character-
ize the error-proneness and the reliability of the prod-
uct; tris information complements the information collected
that pertains to resource expenditures to provide the basis
for characterizing the cost and the reliability. The most
important information included here consists of error type,

date that the error is found, cause of the error, and level
of effort required to correct the error,

4. Level 1 of Project Data. To compare characteris-

tics or profiles of different projects, it is quite impor-
tant to record the general project characteristics including
phase dates, staffing characteristics, type of software
being develcped, and the manager's general view of the de-
velopment effort,

5. Level 1 of Process Data. If one hopes to measure

or evaluate the effectiveness of particular approaches to
developing a software product, one must be aware of the de-
velopment characteristics or approaches (methodologies and
techniques) used during the development process. This first
level of process data must describe such characteristics as
team structures, standards followed, testing strategies,
documentation requirements, approaches to configuration

control, and methodologies utilized. This information can
be captured quite easily on this general high level,

6. Level 2 of Resource Data, This is the first of the
more detailed level of data that should be collected from
the software project. This level includes the weekly de-

tailed manpower expended on each component (subroutine,
function, and so on) as well as the type of effort put forth
on each component (such as designing, coding, or testing).
This level of detail allows one to determine such things as
the amount of design effort put forth versus the amount of
code effort, It also determines the relative amount of time
required for the development of each of the system compo-
nents,

The Level-2 resource data should also include the detailed
usage (by run) of the support computer facility. Here, one
captures the reasons that runs were made and the general
profile of run results (such as number of successes or fail-
ures).

7. Level 2 of Project Data. This information consists
of the subjective information describing project character-

istics as viewed by knowledgeable managers. Here, one de-
scribes such characteristics as the quality of the product.

8. Level 2 of Process Data. This information details

the models, tools, and methodologies used in developing the
product. Each phase of the software life cycle must be
characterized with some selected rating for each of the ap-
plied methodologies or tools. As opposed to the general
description (for Level 1) of the environment and basic de-
velopment philosophy, here each of the detailed methodolo-
gies (as listed in Section 2,2) must be itemized. This
information is quite difficult to normalize and is quite
vulnerable to bias and outright error.

i-11

9. Level 2 of Product Data. Once a general Jescrip-
tion of the software product is attained (size, amount of
documentation, and so on), one should then attempt to char-
acterize on the component level (such as size and complexity
of each component), This information is generally obtained
at the end of a project, but the application of this infor-
mation has been found to be quite academic to date.

In addition, one could attempt to capture, for each compo-
nent, the estimated characteristics of the component before
it is developed and again after development is completed.
This information should provide insight into which types of
components we can estimate and which types of components are
most difficult to characterize until they are completely de-
veloped. In the SEL, this particular information has been
found to be relatively expensive to collect and relatjively
difficult to utilize effectively.

10. Level 2 of Change/Error Data. Once all of the
error characteristics have been provided, the detailed level
of data for the change/error information would include de-
tajled descriptions and histories of changes irade to the
software. This data must be captured each time a modifica-
tion is made to design, specification, or code. This data

has been found to be quite difficult and expensive to re-
trieve, and the useful application of it to date seems
somewhat limited.

4-12

SECTION 5 - DATA COLLECTION PROCEDURES

The heart of any software engineering research program is
data collection: the continuing process of collecting, val-
idating, preparing, and furnishing the data required for the
intended analyses. The major shortcoming of most published
models, predictions, and hypotheses in the software engi-
neering field i{s the lack of reliable data to provide vali-
dation. Only with a rigorous, aggressive program of data
collection can software engineering efforts provide a demon-
strable payoff to a software development organization.
Without substantiation by way of data interpretation, all of
the ptonouncements and pontifications of software engineer-
ing theorists are merely unsupported opiniun,

The cost and complexity of this collection process is
largely responsible for the paucity of data, Clearly iden-
tified goals, careful planning, and systematic implementa-
tion are essential, along with adequate monitoring to ensure
that data collection goals are met. This requires a high-
level commitment of rupport for the activity, and implies
the establishment of some central group or organization with
long-term responsibility and resources sufficient for the
task.

This section describes the actual data collection procedures
that are necessary to support practical and useful software
engineering research. Planning for data collection is dis-
cusgsed in Section 5.1. Section 5.2 describes the design of
the process, The mechanics of data collection, for each of
the sources of data identified in Section 3, are described
in Section 5.3. Section 5.4 deals witt the management of
the data from collection through availability for research.
Costs and priorities of data collection (a major concern in
real-world endeavors) are discussed in Section 4.

5-1

5.1 PLANNING OVERVIEW

The planning process for data collection, as noted in rig-
ure 1l-1, includes the following:

) Define the goals of the effort ("identify produc-
~ive methodologies"...)

) Identify the analyses required to achieve those
goals

[Determine what data are needed to perform those
analyses

° Dazermine where the data are, how to collect them,

how much they cost

[Specify priorities--what tc collect first, what to
defer, what to ignore

This procedure, driven by availability of data and available
tesources, should produce a list of what data are to be col-
lected and whence to collect it.

The initial steps in planning for data collection consist of
defining the goals and requirements of the software engi-
neering effort. Because the types of analyses desired may
require spucific classes and level of detail of data, some
focusing of effort should be performed early in the research
effort. Some published models, for example, have precise
and detajled input data requirements. A high-level descrip-
tion of the types of analyses supportable through these ef-
forts is given in Section 6; an in-depth discussion of the
potential of software engineering is beyond the scope of
this doc.nent. Once the specific goals of the data collec-
tion activity have been defined, the mechanics of data col-
lection and managen. ‘'t can be planned in detail.

Planning the actual data collection is straightforward once
the data requirements and availability have been defined.

5-2

Although a number of different functions can be defined, the
actual implementation is not significantly different than
managing any data base functinn. Details on data management
are provided in Reference 13.

The major activities in data collection are shown in Fig-
ure 5-1. The planning for these activities must identify

and define responsibility for:

Implementation

Data collection and support
Data management

Project management

These responsibilities are detailed in Table 5-1.

Implementation functions include design of procedures, forms,
data flows, and protocols and implementation of the data
base; these are essentially one-time startup activities,
Data collection and support functions include supervision
and monitoring of the data collection process, ongoing qual-
ity assurance at the point of collection, and data entry and
validation. Data management functions include definition
and maintenance of the data storage, access, and retrieQal
procedures. The functions of project management of the ac-
tivity can only be defined with respect to the organization
involved, but will certainly include monitoring to ensure
adequate, reliable data. Consistent and valid information--
especially when collected by forms--cannot be obtained with-
out active management support to ensure compliance and
cooperation from development personnel.

The major non-staff resource required is some medium for
archiving and validating the collected data. For small-
scale data collection activities, this may simply require a
file cabinet, data entry/process/correction log, ard dissem-
ination procedure. For larger operations, a computerized
data base is (considering the subject matter) the ob+v ous

5-3

DEVELUPMENT
PRAOJECTS /v

MACMHINE
RECORDS

Q/A FUNCTION

l

| |
I |
I |
l I
| COLLECTION |
I I
' l
l |
! [
I !

AND LOGGING ¢ ‘
VALIDATION DATA
____: COLLECTION
L FUNCTIONS
r-——.—.—.——-——q»—————_.—_

PROCESSING

DATA
MANAGEMENT

L__ur_n_J

FEEDBACK

ANALYSIS
FUNCTION

Fiqure 5-1. Major Functions in Data collection

Table 5-1. Data Collection Functions (1l of 2)

Implementation

o Design/specify data flow for each type of data and
source, QA, monitoring

[Design and validate data forms
° Specify data log format and protocol
[) Write procedures guides, instructions

Data Maragement

) Design files, access mechanisms

) Build data entry and validation mechanisms

() Design/implement maintenance procedures

o Develop data access, reporting procedures

) Provide training and documentation

) Oversee data entry, validation

) Record, evaluate, direct correction of problems and
errors

) Provide status reports

° Identify/request/allocate resources

° Provide training for data entry personnel

Data Collection and Support

) Perform data coding, checking, entry

) Perform maintenance under data base administrator
direction

) Generate routine reports

) Perform consistency checks on data at point of col-
lection

Table 5-1. Data Collection Functions (2 of 2)

° Perform data cross-checking and validation inder
direction of data tase administrator or data col-
lection supervisor

Project Management

) Establishes data collection procedures with devel-
opment projects

° Obtains, allocates resources

9 Directs activity

alternative. These functions (whether or not computerized)
are discussed in Sec.ion 5.3,

5.1.1 IMPLEMENTATION FUNCTIONS

The responsibilities for devising and establishing the col-
lection and monitoring procedures must be defined in the
planning stage. Each step of the data collecuion process
must be identified, and monitoring and QA proceaures speci-
fied. Data collection forms must be designed, and forms-
logging protocols established. A manual or protocol of data
flow, data descriptions, instruction and responsibilities
must be written. Where machine records are to be collected
(e.g., accounting data), some regular procedure should be
described to minimize delays and loss of data and to fix
responsibilities. Procedures for data review at the point
of collection (e.g., the staff person filling out forms)
must be developed and responsibility assigned.

5.1.2 DATA COLLECTION AND SUPPORT FUNCTIONS

The data collection process must be conducted and monitored
on a continuing basis; responsibility for this support func-
tion should be established during the planning activity.
Machine-supplied records must be requested, acquired and
processed., Forms must be collected and logged in a timely
fashion. Point-of-collection quality assurance must be
established as a regqular activity. Attempts to recover
missing data must be made and followed up. Particularly
important when several projects are active at once, a single
central collection and monitoring function will smooth and
simplify the data collection process.

QA functions should be the responsibility of someone associ-
ated with each development project and trained in the
requirements of the software engineering effort. 1In this
way, consistency of data within a project and compatibility
across projects can be ensured.

5-7

Data entry personnel should be trained to become familiar
with the format and typical content of data entry forms.
This will minimize errors in data entry and provide an addi-
tional check on information content.

5.1.3 DATA MANAGEMENT

The data which have been collected, reviewed, logged, qual-
ity assured and assembled must be managed to facilitate ac-
cess for analysis purposes. This is essentially a data base
problem rather than a software engineering problem, and is
not treated in depth in this guide. Some notes, however,
are appropriate here.

() The organizing (indexing) principles should reflect
the data analysis requirements

) The data management system should facilitate iden-
tification of missing or incomplete data

° Access procedures should protect any sensitive
(proprietary; personnel;...) data without blocking
access to the data base

° Because data requirements change with increased
understanding, the data management system must be
flexible and amenable to re-organization

5.2 DESIGN OF THE DATA COLLECTION PROCESS

As noted above, the data collection process involves col-
lecting, validating, storing, and making available data re-
garding software development efforts. The overall design of
this process involves numerous elements, as shown in Fig-
ure 5-1. The logical and physical organization of data must
be defined; validation procedures must be specified; data
storage and retrieval mechanisms (whether or not computer-
ized) must be identified. The "what" of data collection is
driven by the analysis requirements; the "how" depends on
the environment and the available resources. The procedural

5-8

design (organization, validation, storage, and retrieval)
follows from the answers to the "what" and the "how." As
illustrated in Figure 1-1, the entire planning and design
activity is inherently iterative.

5.2.1 DATA ORGANIZATION

The organizing principles chosen for the data base should
simplify the collection and/or analysis activities. The
SEL, for example, organizes its data by project and by
form-type., Most SEL analyses are related to comparisons of
different projects (to identify differences and evaluate
methodologies) and are made easier by the project-oriented
organization. Data validation procedures and manipulations
are typically tied to the original forms (for verification
purposes), so the forms-type division is a useful one.
Other organizations might be chosen (e.g3., by type of data)
as long as the storage method used adequately supports re-
trieval for purposes of editing and analysis.

The SEL data base organization was influenced somewhat by
the limits of the computer system used for data base mainte-
nance. As noted in Section 5.2.3 below, different stordge
systems may impose different requirements or, conversely,
provide different opportunities.

5.2.2 DATA VALIDATION

It is assumed here that some quality assurance and validation
takes place at the data collection point (Section 5.1.2).

To ensure that the data stored is usable, accurate informa-
tion, an additional validation stage is required in the data
processing activity. The SEL data base is computerized, and
can therefore make use of automatic validation programs to
ensure completeness and consistency. Noncomputerized sys-
tems would use manual techniques to ensure that all data is
carefully accepted, logged, summarized, ancd stored for re-
trieval,

5-9

This requirement for validation is, in fact, a significant
argument for computerization of the data., Because all jitems
are checked as they are entered, sporadic errors (which
might slip past a spot-checking system) are discovered.

When found, systematic errors (e.g., consistently entering
an incorrect code for a field) can often be corrected en
masse on a computerized system.

5.2.3 STORAGE AND RETRIEVAL

Design of the storage and retrieval system greatly depends
on the available resources. Possible methods range from
simple file folders to elaborate data base systems., The
chosen system will greatly impact the types and difficulties
of analyses to be performed, with the cost of data entry
(highest for computerized systems) balanced against the cost
of repeated access and summation (highest for linearly or-
ganized manual systems). The intent of this section is
merely to emphasize the importance of this design decision.
More detail on how to design a system is given in Refer-
ence i2.

5.3 COLLECTING THE DATA

As part of the design and planning activity, specific mech-
anisms of data collection must be identified. Collection
methods have been devised for each of the sources described
in Section 3. Table 5-2 lists these methods and the data
sources for which each is suited. Advantages and drawbacks

of each method are discussed below.

In collecting (as in planning) the data, it should be kept
in mind that accurate, complete data--even if collected at
only a high level--is more useful than a large amount of
data of uneven covercge and consistency. The data
collection process should be directed at the information
that is likely to be available, rather than at collecting a
little of everything.

5-10

Table 5-2.

Source

Development staff

Machine records

Development products

Managers

Data Collection Methods

Collectxon‘Methods

pata forms
Interviews
Automated collection

Data reduction and cross-correlation
of automatically collected informa-
tion

Specifically designed analysis pro-
grams :

Data forms
Interviews
Consensus-forming

5-11

5.3.1 FORMS

The bane of every programmer's existence (at least, for pro-
gjrammers on monitored projects), data collection forms are
perhaps the easiest-to-implement method of collecting data
from development personnel,

Properly designed and managed, data forms can provide a
wealth of information concerning the development process at
both summiéry and component levels of detail., Forms can also
serve the purpose of providing archival storage of ephemeral
data (such as the purpose of a test run), permitting data
collection to be uncoupled from the data processing func-
tion., The iterative nature of software engineering re-
search, of course, implies that this uncoupling could aliow
inconsistencies to occur in the data base, When new forams
are designed with new questions, problems of compatibility
may arise. '

There may be (as yet) no good alternatives to forwns for
collecting some types of data. There are, however, some
serious drawbacks to the use of forms for extensive data
collection. In addition to the impact on the development
process and schedule, and the potential morale and compli-
ance problems resulting from the drudgery and boredom of
filling out forms, the design of forms is almost an art.

It is the experience of the SEL that development personnel
will complete progress/status/exception/etc. forms only with
reluctance and with continuing prompting and exhortation
from management. When such encouragement has occurred, de-
tailed reports containing a wealth of data have been col-
lected. Despite some grumbling and some often justifiable
complaints abcut unnecessary duplication of effort, forms
were completed usefully and consistently. With lukewarm or
sporadic management support, forms were completed cursorily
or not at all,

5-12

[t

Table 5-3 lists some of the desirable characteristics of
data ccllection forms. Although specific data requirements
may contravene some of these guidelines, they serve as a
target for the art of forms design,

The data collection forms included in Appendix B have been
developed and used by the SEL at GSFC. They are included as
suggestions and as examples produced by a second-iteration
forms design process. These forms reflect the research
goals of the SEL and are included not as a prescription but
as a guideline.

5.3.2 MACHINE RECORDS

Automatically collected records such as charge accounting
data and source library update data form a major and gener-
ally reliable source of information about the software de-
velopment process. A major attraction is the fact that, by
definition, these data are collected independently of the
software engineering effort. The cost of using them is usu-
ally limited to the cost of data reduction and correlation,
The specifics of the data available will vary from one in-
stallation to another because of differences in systenms,
accounting software, and chargeback philosophy, and in
source code library control systems. In general, however,
these data can support at least summary-level analyses, and
in many cases (and with greater effort), component-level
detail.

Data reduction and cross-correlation efforts typically in-
volve correlating account numbers, users, and job or compo-
nent names to specific projects or systems and compressing
masses of data into a usable synopsis. This may be accom-
plished by the accounting software itself or may require
development of analysis programs. Data security may also be
a concern, depending on the facility. The coverage and

5-13

Table 5-3. Desirable Forms Characteristics

Keep Brief (1 side of 1 page)

Use checkoff or unambiguous short answer
Provide space for comments

Ensure that all requested data can be justified

Use terms which are familiar to the specific envi-
ronment

Provide professional looking, quality reproduced
forms (rather than typed and xeroxed)

Use the same forms for all projects
For Repeated-use forms (e.,g,, status reports):

- limit requests to weekly
- do not ask for the same information repeatedly

Integrate forms into the development reporting
process

-14

w

accuracy of the data will generally justify the investment
in data reduction software.

It would be desirable to use computer-collected records to
profile all the parameters of software development. Impact
on the development process would be minimized, coverage and
accuracy would be improved, consistency and comparability
would be maximized. But the front-end investment in tools
and procedures that would make this feasible has not yet
been made. Computerized accounting records and source code
control systems (see Section 5.3.2) provide some such data,
but the potential for future initiatives in this area is
large., Not all data can be collected automatically, but the
limits of what is possible are presently unknown, More re-
search and investment is required,

5.3.3 AUTOMATED DATA ANALYSIS

Much of the output of a software development effort is read-
ily amenable to analysis by appropriateély designed software
tonls, The software product itself is clearly the most re-
liable source of data on product characteristics, although
some condensation and interpretation of data may be neces-
sary for application, Where automated design and/or docu-
mentation tools are employed, these products also can be
analyzed with minimal investment.

Typically, the analysis programs to provide these data will
need to be developed specifically for the software engineer-
ing effort. Each type of product (source code, program de-
sign languige, documents) will require a tailored analysis
program. The fact, however, that these sources are fixed,
definitive, and machine readable makes this approach highly
attractive,.

5-15

PR

S5.3.4 INTERVIEWS AND CONSENSUS

Some types of information are not easily collected on data
forme because of the subjective or imprecise nature of the
data, For example, motivation for a particular design deci-
sion may be useful in understanding a project but rot easily
recorded on a checklist. cConstraints are frequently defined
in a complex fashion suitable for the development staff but
not for data recording. Judgments on the acceptability,
clarity, or maintainability of software are essential to
software engineering analysis but difficult to quantify in a
consistent manner.

For these types of data, as well as for monitoring of the
data collection process in general, interviews or meetings
are the most direct and useful procedure. Responses that
are not easily collected on checklists can be amplified in
discussions between developers and data analysis staff,
Consistent scales of evaluation can be developed in meetings
of'project managars with the software engineering team. The
cost cf such procedures will limit the extent of use, but
some such activities should be anticipated and planned.

5.4 DATA MANAGEMENT

Managing the data after it has been collected and verified
involves data entry, data editing, validation, and an inter-
face tc the analysts who will use the data, SEL experience
shows that collection of accurate and complete dua . requires
effort and experience. The data management system should be
designed to support this process by identifying gaps and
inconsistenclies in the data (e.g., by using sequential form
numbers). SEL experience also shows that data requirements
change with improved understanding of the development proc-
ess. The data management system must therefore permit

5-16

PO

s

reorganizations data as new items are added and existing
data proves unusable or valueless,

The design and implementation of the SEL data base is de-
scribed in Reference 12.

[

1

%

PR

SECTION 6 - APPLICATIONS

The software development data base will facilitate many ap-
plications of interest to managers and researchers. The
manager would like to have monitoring, estimating, and eval-
uating tools to examine ongoing software development tasks.
The substantial variation in the results of software engi-
neering experiments by different researchers suggests that
the effect of the local environment on the development proc-
ess is a powerful one. This can best be understood by as-
sembly of a historical record of development efforts that
can be used to "tune" the general models to local conditions
(keference 1l4). Sections 6.1 through 6.3 discuss the
classes of tools that can be devised to take advantage of
this historic-~1l data base. Some of the software engineering
research questions which can be addressed with the data are
outlined in Section 6.4. The necessary data for all desired
analyses should be included in the initial data collection
plan.

6.1 MONITORING

A manager is likely to find the collected data very useful
in keeping track of the status of ongoing software develop-
ment projects. The three types of reports described below
would be ernecially valuable,

Resource utilization (computer time, staff-hours) can be
tracked and displayed in tables and/or graphs. Comparison
of these values with budgeted values can help monitor devel-

opment costs.

The progress towards completion of the development effort
can also be tracked. The number of modules designed, number
of modules coded, number of modules tested, and lines of
code developed to date can be determined and report peri-~
odically.

Peview of design and code measurements made during the de-
velopment process can be used to detect potential problems
such as unmanageatly complex code, incor: ete design, and
low testability. These can be the basis ¢* a concurrent
quality assurance program,

6.2 LIFE CYCLE MODELING

The goal of life cycle modeling is to relate the costs of a
software developmenct effort to its productt. A great many
models with different emphases have been devised (Refer-
ences 4, 15, 16). However, as mentioned earlier, all such
models should be cal.brated in the user's environment with
historical data. Thus, one of the important applications of
the data base is in determining appropriate model constants.

The utility of life cycle models is as an estimation tool.
They provide a methnd of estimating the cost and product
size of a dev:lopment project.

6.3 METHODOLOGY EVALUATION

Another application of software development data is in the
evaluation of methodologies and environmental factors. .De-
velopment performance information can be used to identify
the effect of various development approaches (top-down de-
sigr, structured programming, etc.) in the user environ-
ment. Nonmethodological environmental factors (travel time,
group size, etc.) can also be considered in these analyses.
Thus, the user can develop a procedure for evaluating and
ameliorating his/her software development process.

6.4 RESEARCH

Very few questions about the nature of the software develop-
ment process have been answered definitively. Extensive
work is curi:ntly being done in the areas of software met-
rics (Reference 7), classifications, reliability (Refer-
ences 17, 18), and models. Anzlysis in all of these aceas

has been limited by the lack of substantial reliable data.
The reader may wish to address him- or herself to some of
these topics.

SECTION 7 - RECLOMMENDATIONS

Perhaps the most important recommendation is not to expect

instant results., Usable data must be collected over the

life of a project, and data on a number of projects must be

assembled. This does not happen cernight; as a result, the
data collection plans must be laid out to allow adequate
time before analysis results are expected.

Beyond that, some thoughts from the SEL are as follows:

1.

Subjective management information is very important
to project analyses and comparisons,

Do not worry about the Hawthorne effect; typical
projects are too long and typical programmers are
too professional for psychological effects to have
a significant impact.

Try to provide feedback from the data collection
process to the technical staff.

Explain the purpose of data collection to the tech-
nical staff; try to elicit active support.

Do not spend too much time demanding more, or more

precise, or more accurate data.

APPENDIX A - SEL DATA COLLECTION EXPERIENCES

Since its formation in 1977, the SEL has monitored more than
40 development projects representing over a million lines ot
code. The projects include a wide variety of applications,
computers, size, and complexity, but they are concentrated
in the flight dynamics software area. The major source ot
data consists of FORTRAN software systems averaging

00,000 lines of code that perform "scientific" data process-
ing of spacecraft telemetry data,

The SEL devised a set of forms to collect the data initially
expected to be useful. These forms were revised extensively
atfter a period of use and feedback from the programmers who

filled them out. A second revision is currently being con-

sidered for the next hiatus in monitored projects.

Data nave also been collected from the end-product source
libraries using a static source code analyzer called SAP.
This program has been modified to count and report the sta-
tistics used by various complexity models and measures and
to aid in selecting a most consistent definition of "lines

ot code."

Software currently under development by the SEL will analyze
data from accounting tapes maintained by the primary comput-
ing facility for monitored projects, an IBM S/360 facility.

The SEL has also developed an extensive system for storing
thls data using a PDP-1l1,/70 computer system. The data base
software, written in FORTRAN for RSX-llM, provides a stand-
ard data entry and editing capability. Data entry is per-
formed by data entry clerks under the direction of SEI

personnel.

More detail on the SEL is tound in Reference 2.

sty

s

APPENDIX B - SAMPLE DATA COLLECTION FORMS

The forms reproduced here are used by the SEL at the Godaard

Space Flight '.enter to collect data on development proj-
ects. The terms used in these forms are defined in Sec-
tion B.2.

B.l. SAMPLE DATA COLLECTION FORMS AND INSTRUCTIONS

This section contains sample data collection forms and
instructions for their use. The instructions precede the
torms. The following torms are included

1. General Project Summary (GPS)
2. Resource Summary Form (RSF)
3. Component Summary Form (CSF)

&

. Cumponent Status Report (CSR)
. Run Analysis Form (RAF)

5
6. Change Report Form (CRF) and Attitude Maintenance
Change Report (ATM)

INSTRUCTIONS FOR COMPLETING THE GENERAL
PROJECT SUMMARY - FORM 5801 (2,77

Thus form s used to classify the project and will be wsed in comunction with the other

reporting forms to measure the estinated versus actual development progress. It should be
fUled out by the project manager at the beginning of the project. at each major muestone,
and at the end. Numbers and Jates used at the initiation of the project are assumed to be
estimated; tntermediate reports should change estimates to actuals (il known) and update
estimates. The tinal report should accurstely describe the system development life cycle.

A,

PROJECT DESCRIPTION

Description, Give an overview of the project.

Inputs. Speaifications and requirements iete.) of project. Give the format of these.
Requirements How requirements are established and changed.

Products Developed. List all items developed tor the project (¢.3.. operational system,
testing system. simulator. ete.).

Products Delivered. List all items required to be delivered (e.g., source of the oper-
astional system, object code of the operational system, design documents, etc.).
RESOURCES

Target Computer System. System for witich softwars was developed

Development Computer System. System on which sottware was developed.

Constraints List any size or time constrants for the 'imshed product. Do you anticy
pate any problems in meeting these constraints’

Useful ltems From Similar Projects:
1. List previous projects. which will contnbute vanous aspects (o thus project.
2. For each prosect, give the percent of the current project it makes up 10 each
of the 3 listed aspects.
J. For each of the 3 listed aspacts ispecification, Jdesign, code) check what level
of madifications are necessary.
TIME
Start Date. First date of work, including design and modification of the specifications.
End Date. Delivery date.
Estimated Lifetime. Estimate the operational life of the svstem,

Missson Date. Scheduled operation date ot the system twrite unknown if not known or
undecided yet on anv of these dates). Date project must be operational.

Confidence Level. Give the percent probability you think the end Jdate 1s realistic.
te.g.. 1009 means certain deliverv on that date. 07 means no chance ot delivery.)

D (OST

Cost. Towl umount of money the project costa, inciuding both contract and in=house
vustsy,

Mavunum Available. Maximum amount avarlable. independent ot what estimated cost
(L 9

Cowfidence Level. Rate percent reliability n cost estimate.
How Determimned. At iutiation Bow s it estimated, at completion how i 1t calculated.

Personnel. Give the number of tull time equivalent persons required at inveption of the
project, | 3 ol the way into the project, 23 of the way into the project. at the com-
pletion of the protect.

Toutal Person Months Give the total number of months that tull time equivalent per-
wnnel imanagers. designers. programmers, key punchers. editors, secretanes, 2te.) are
assigned to the project Do not include all overhead items such as vacation and sick
leave.

Computer Time. Give the total number of hours on all systems normalized to one
mndctung (¢ 3., the IBM 360 75) and name the machine.

E SIZE

Size uf the System. Include the total amount of mactune space needed tor all instruc-
tions generated on the project plus the space tor data, library routines ie.g.. FORTRAN
1O package) and other code already avaiiable. Break down size into Jdata space and
Ns{ruction spdee.

Confideice Level. Rate percent rehiaility in size estimates.

Tutal Number ol Source Statements. Give the number of FORTRAN, ALC. vr any
ather lunguage instructions generated speafically for this project.

Structure of Svstem. Give overall structure of system. s 1t 3 single foad module. 18 18
P1ooverlay atructure of v it aset of independent programs’ For overlay and separate
programs. ysve the number and average size of ¢ach.

Define Your Concept of 3 Module. Give the cntena you are using to Jdivde the soft-
ware 1110 modules.

Eatunated ‘umber of Modules. [nclude only the number of new modules to be written,

Range in Module Size. Give the number of instructions in the mimimum. maximum and
average module and the language in which they are written as 3 reference.

Number ot Different 1:O Formats Used Give the number ol distinct external data sets
that are required tor the system including card reader, printer. graphics dev.ce. and
temporary files

' COMPLTER \CCESS

Aabrarwan s d penon who can be used to perform any of the Jencal tunctions assocr-
ated with programaung, including those given on the chart. Check the appropriate boves
for those persons wito has. access 1o the computer to perform the given tunctions. Give the
percentage ot tume spent by each in batch and interactive access to the computer.

ity

G. TECHNIQUES EMPLOYED

For "level,” specily to what level of detail in the tinished project the technique i1s used.
(e.g., subroutine, module, segments of 1000 lines, top level. etc.)

Specificstions

Functional - Components are descnbed s a set of functions, each component
performing 1 certain action.

Procedural - Components are specitied in some algorithmic manner te.g., using a
PDL).

English - Components are specified using an Englsh Language prose statement ol
the problem.

Formal - Some other formal system i3 used to spe.ify the components.
Design and Development

Top Down - The impiementation of the system one level at 3 tume. with the current
level and ¢xpansion of the yet to be defined subroutines at the previous higher level,

Bottom Up - The implementation of the sy stera starting with the lowest level rou-
tin¢s and proceeding one level at 3 tme to the higher level routines.

iterative Enhancement - The implementation of successive implementations, cach
producing a2 usable subset of the final product until the entire system s fully
developed.

Hardest First - The implementation of the most Jdifficult aspects of the system first.
Other - Descnbe the strategy used 1t it 15 not 3 combination of any of the above.
None Specified - No particular strategy has been specified.

Coding. The tinal encoding of the tmplementation in an executable prugramming
language.

Structured Code With Simulated Constructs - The language does not support struce

tured control structures te.§.. FORTRAN) but they are simulated with the existing

structures. please state the structured control structures you are using (e.3.. WHILE,
CASE, IF).

Structured Control Constructs - The language supports structured control struc-
tures (e.g.. 3 FORTRAN preprocessor) please list structures you are using.

Other Standard - Describe any other standard you are using.
None Specified - No particular strategy has been specificd.
Validation/ Verification. Testing: execution of the system. via a set of test cases.

Top Down - Stubs or Jummy procedures are written to handle the vet to be tmpie
mented Jspects of the system and testing begins with the top level routines and
proceeds as new levels are added o the system.

Bottom Up - Check out ot a moduie 3t 3 time using test drivers and starting at the
bottom level modules tirst.

Strunture Driven - Using structure ot progzam (o deternine test Jate (e .. every
statement of program esevuted at least once,

Speaitivation Daven = Using specifications of program to determine test data (e,
ailinput vutput relationshups hold for & set of test Jata)

Orher - Descnbe any other strategy you are using
None Specified = No testing strategy has been speciiied.

Valwatwn: Venfication. Inspection visual ¢examination ot the code or Jesgn,
Code Reading = Visual inspection ot the code or design by other programmers.

Walh Throughs - Formal meeting sessions tor the revizw of code snd design by the
various members ot the project, for tevhmical rather than managemgnt purposes.

Proots = Formal proots o1 the Jesign or code, please specily the techniques used,
¢ g aviomatic, predivate transforms, lunctional. ete.

None Spevified - No inspecrion techmgues have been specified

There 1s some space given 1o peemit the turther explanation ot any of the strategies that
may be used.

H. FORMAL NOTATIONS USED AT VARIOUS LEVELS AND PHASES

Gtve the phases (e.g.. design. implementation, testing, etc.) and levels (subroutine,
module. segments ot 1000 lines. top level, et) at which any type of tormalism (flowchart.
PDL. vter will be used in the deselopment ol the system.

1 ALTOMATED TOOLS USED

Name sl sutomated tools used, including sutomated versions ot the formalisms given
above snd compilers tor the programmung languages used, and at wineh phase and 3t what
ievel they are used. Inddude any products that may be developed as part of tius project
te g umulatory.

] ORGANIZATION

Describe how the personnel are subdivided with respect (o responsibilities into teams
OF yroups, gving titles. briet job descriptions, the nuraber of people satistying that titte snd
their names and organizational atfiltations i known.

K STAMNDARDS

List ati standards used. whether they Jre required or optional, and the ttle of the
ducument descnbing the standand

L. MILESTONES

Gave the phase at which management may check on progress of the development ot the
svatem teg., spedilivation. design, implemertation of version |, ¢tc.). State slso the Jate Jt
which it should take place (at completion of the project), how 1t 18 to be determined that the
miulestone was reached. who will be responsible tor resiewing the progress at that point and
what the review provedure will be. Also give the resources used since the last milestone. For

uze of system give the current sze of the system at that milestone. Each milestone has 2
confidence levels, one for Lime ¢estimates and one for resource expenditures. For estimated
future milestone, the first confidence level for the probability of reaching the milestone at
that dste. The second is for the accuricy of the resources used. For past mulestones, the
first confidence level is normally 100% (actual date) while the second is an estimate on the
accuracy of the accounting system.

M. DOCUMENTATION

For each ime of documentation developed, state the type of documentation, its purposs.
the date it should be completed, its size and list any tools used in its production. (At the
beginrung of the project these shouid be estimates. at the end of the project, they should be
accurate figures.)

N. PROBLEMS

Give the three most difficult problems you expect to encounter managing tius project.
Please be as speaific a5 possible.
0. QUALITY ASSURANCE

To what do you attribute your confidence in the completed system. Be as specific as
possible.

s LASaREE

PROJECT NAME
A PROJECT DESCRIPTION

GENERAL PROJECT SUMMARY

Oueipuen

BATE

Pern of Input

Ll s

Medunts Develapes

Predusts Vetivered

AISOURCES
Torgnt Computer Synteme

Constraims: Enssutien Time Sise

Other

Any Probioms in Mesting Conarsints?

Usetul Items fross Similer Projests:

Tocsiimiion

||

Design
Poom % | Weler | Winer | Nene Miner

% | M Nems | %

|
i
T

_ {
I .
T

1
s

.

!
; .

A

HHH

TiME

Start Oste
Canfid Level

Eng Date Entimated Lifetime Mission Dete o

. Cont

Cost §
How Cort Determined

Manimum Avsileble 8 Contidense Lovel

Pusonnet: inseption .
Totsl Person Manthe
Other Costs: Computer Time

173 Way 2/3 Wey Complotion o ..

(hes) Ooeumemstion §

Other {) Other {)
128
Size of By Werds. Dats Words Inewustions
Moximum Spsee Avsilsbie Words. Contidense Level
Total Number of Soures Statements: FOATRAN ALC

Other {)

Structure of Syrrem (Cheok One}:
— Single Overiay
— Ovariay Surusture (Number of Overlays . Avg. Sl e .)
e Indopendent Proyrems (Number of Progrsms Avg. Size
Oefine Your Conespt of s Meduie

Numirer of Modules Range in Moduis Size: Min
Number of Ditterent 1/0 Formets

Mon. o ___ Avp.

2001 (2/77Y

o)
]
~J

#. COMPUTER ACCESS (Chesh AN Thet Apply. Whe Mee Assew t0 Whet.)
N ! Librerian ! Propsmme
“Keving in Now Sowres Code M —
Koying «n Ugtiate of Saures Code X
indusion of Code inte System
Submurting Compistions
'khluic Testing
imegation Tenting
Utility Rurs (Tape Bastive, ts)
Give Pursernages for Types of Asems:
Librarion 1 Pogramme
¥ datoh - - |
% Interastive _j
. TECHNIQUES EMPL OYED (Cheek AN That Apply and Qive Level ot Whiah Uses.)
. M T
Spenfisavon: TR — . L% Lo
Punstions! ' . Proesduresl |
Enginh "1 Formal |
Oesign:
Top Down | Sotvem Up i
tterasive Ennance | Mardant Funt ! !
Other: ' None Used N .
Oevelopment.
Top Down ! Sotvem Up
lerative Enhanes. Mardest Firnt
Other: : None Used | i
Coding:
Simulating Construst | Suuetwad Code | B
Other None i
Valdation/Verifiaation: Testing
Top Down (Stubs) Sottom Up (Drivers)
Qther Socaifiation Driven
Strusture Oriven "None
Validation/Venifigstion: Inipection
Code Reading - " Welk Throueh -
Moot: " None ' '
FORMALISMS USKD
Usea Level Pheses
POL
HiPO
icoweherts R
»avehing Dusg. (Tree Ch.J
s
functions
e T 7T
_O«m T
uo-’;‘..‘ M ’: untie at on

|
|
|
|
i
i
'
|
|

. AUTOMATED TOOLS USED

Name Phases in Whish Used Lovel
[
1
1
!]
J ORGANIZATION
How sre the Personnel Orgenized:
Projest Personnel:
Tite Job Desaription Number Names snd Atfilistions (M KXnown)
K. STANDARDS
Tyoe Options! Required ...
Tite of Do —
Type Optionel Required e e —
Title of Do
Type Optional Required
Tiie of Dogumene
Typu Optionsl Required
Titte of Do t.
Type Optionsl Required
Tive of Dov ‘em
Type Optionel Required .
Tide of Do
Type Optionel Required
Title of Documem
Type Optionst Required
Titte of Do

380-1 (2/77) Continuation

ORIGIMNAY

3 -
00" QJAQL“I.Y
L. MILESTONES

Mhase Estimated Date Confidence Level
How Osterrmned
Reporting frocedure
Resoures Expenditures: Cost Pearmun Monthe Computer Time s,

Size of System Confidense Lovel
Phate Estimeted Oste Confidence Level
How Determuned
A rewen
Regorting Procedw ¢
Auow oe Expenditres: Cost Serson Months Computer Time hrs.

Size of System Confidenss Level
Mase Estimated Date Confidence Level
How Determined
Reporting Procedure
Resowce Expenditures: Com Person Months Computer Time fes.

Size of 8y Confid Lovel
Phase Estimated Date Confidenes Level
How Determined
Reporting Prossdure
Resowce Expendi : Comt Person Months Computer Time hes.

Size of System Confidence Level
Phase Estimeted Date Contid Lovel
How Deter mined
Repurting A scedure
Reourcs £ ditures: Cost Person Months Computer Time hrs.

Size of Sy Confid Lovel .
Phase . Eniivated Date __ Confidence Level _
How Determined
Reporting Procedure ‘ .
Aesowce E itures: Com Person Months Computer Time hes.

Size of Syrtem

Phase

Contid Level .

Enimeted Date

How Deter mined

Contidence Level

Reviewers

Reporting Pr (]

Resource Experditures: Cost
Siza of System

Phase _ - —

Person Months [~ Time

Confidence Lavel

Confidence Level

Yow Derer mines

Review s

Reporting Procedure

Person Monty

Resvurce Expenditures: Cost
Size of System

Cariputer Yime
- Contidence Levat

q80-1 12711 Continuanuon

ORICIMAL . FE IS
OF POORt QUALITY

M ODOCUMENTATION

Type Purpese
Sstimated Dete . Estimated Size Tools Ured
i Type Purpse
} Entime1ad Dete Esumstes 3ize Toels Used
! Type Purpose
i Estimered Date Eastimated Size Yol Used
, Type Pwpen
| Estimatud Dete Estimeted Size Toels Used
Type Purpose
Estimated Dete Estimated Size Tosh Used
Tyoe Purpese
[ed Oate Estimeted Size Took Used
Type Purpose
Estimeted Dete Estimated Size Tools Uced
N. PROBLEMS
State the three most difficult problems you expect to encounter in completing the projest. (1 = mort diffiouit)

0. QUALITY ASSURANCE

State the three 208t i m2oraant 3pects of the design, development ard testing of the systam to which you stribute your
contidencs 7, the completed system. (1 = most importam)

12]

|
l
|
|
|
|
!
i
|

PERSON FILLING OJT FORM

4901 (3/77) Continuation

A 1S

CE poor QuALTY

INSTAUCTIONS FOR COMPLET!JG THE RESOURCE SUMMARY

This torm keeps track ot the project costs on & weskly basis. 1% should be filled out by the project manager every week uf the
project duration.
PROJECT Give project name.
DATE. List date form turned in,
NAME. Name of protect manasger
WEEK OF. List date of each successive Friday.
MANPOWER. List sit personnel on the project on separate lines. Give the number of hours each spent that week on the project.

% OF MANAGEMENT. Add the % of time t™is person spent managing the proje:t during this reporting period. A new form should be
used 1f this % changes.

COMPUTER USAGE. List all machines used on the project. For sach machine give the number of runs during sach week and the
amount of computer tme used.

OTHER. List any other charges to the protect.

RESOURCE SUMMARY

OATE

% OF '
MGMT.

- -

PROJECT
NAME
f

}

- b— —f——
| N NN DN S WA SHUNN SR
N p— —
- ~— lJr{ —
IS - —
- 1
s m — % -
- — -
7]
=
2
s
512
c |
vl
$]2

“INO. RUNS/WOURS CHARGED)

COMPUTER LoA. .

1OTHER CHARGES TO PROJECT

—

B S

-+

209~ (6/79)

B-13

e R~ iS

OF P

INSTRUCTIONS FOR COMPLETING THE COMPONENT SUMMARY

Thes tornt s used to keep track of the components of & system A component 5 3 pisce of the system dentified by namae or
commaon tuNction (¢.g., an untry 10 § tree chart or bateling diagram for the system at any pOINt in time, Or a shared $8CtIoNn of data such
o8 « COMMON biock). With the information an this torm combined with the .nformation on the Component Status Report. the struc
ture and status of the system and ts deveiopment can be ed,

This form should be fiiied out for each component &t the time that the component 13 defined, st the time t 't compieted, snd at
any point :n Lime when § Mmajor madification to the component .3 made. it shouid be filled out by the Derton responsibie for the com
ponent.

PROJECT. Give project 1amy.

DATE. Give dete torm filied out.

NAME OF COMPONENT. Give name (up to 8 characiers) by which the component will be referved to in other forms.
BRIEF DESCRIPTION. State function of component,

TYPE OF SOFTWARE. Check ail classificat:ons that apply. All common blocks are 7:2arste components.

STATUS OF COMPONENT. Check whather this 15 8 new cOmponent, whetner 1t 13 & ¢ imponent under deveiopment {e.g., § Previous
component summary has siready been submittedi, or whether the componant ¢ Now & :a. Hete.

A. CODE SPECIFICATIONS. Give the forts of design for this component ¢nd tell 12 . level of detsil the specifications are given.

F ional -Comganents sre described as 3 set of functiuns, S0Ch COMPONENt Der.OrMINg 3 COrtaIN action.
Procedursi—Comnonents are specitied in some slgonthmic manner {e.g., uting 8 PLL).
English—Components are specitied uning an English Language oross statement af the probiem.

Formal—Some other formal sysiain is usad to specify the componer:ty.

Relative to the one develop -~ the ponent, rate the pr of the specifications. Very precite means that no sdditions) anslysis
on the protlem s needed, pr .58 means that only easy of trivial «deas have ~ te dev-ioped. and imprecise mesns that much work stiit
remaing in developing this compaonent and its basic structure.

8. INTERFACES

Give the relative po of this o 1t 0 the system. Give the number snd list the names of ail components that call this
component, and are called by this camponent. Aiso, give the names of eny components or other items this component thares with
other components {c.,.. COMMON biocks, external dats). The components directly descended from this component refers to the tree
chart ¢r the system, if the interfaces are nOt yet compiate, check ““Not Fuily Specified”

C. PROGRAMMING LANGUAGES

List languages (or assumbly languages) to be used to \mpiement this component. If more than one, list percentages of esch (in
hines of source codel. If there are any constraints on the component {(e.g., size, execution ume) list them. Also give estimated size of
fintshed component in terms of source statements, (estimate size w.th commaents and without comments} and resuiting machine lan-
quages (including data areas, but not COMMON biocks).

Useful items From Similar Projects

1. List previous components and projects which contribute verious aspects to this component.

2. For each such component, give the percent of each of the three listed aspects it mskes up (s.g., 3 component may be 50% of
design but onty 25% of code due t0 changed interfaces, etc.).

3. For each of the three histed aspects, check what level of modifications are necessary.

0. COMPLEXITY
Rate your belief i the complexity of the iMplementation Als0 80LrOXIMate ¢ NUMbEr (Ly) of assignment type statements
(Input statements are inciuded) and control statements (those that siter the How of control, ¢ g.. IF, CALL. GOTQ) The sum af these

two may not be 100% (e.g. CONTINUE, DIMENSION snd REAL statements will not te counted) | O and ceclarstions shouid be
iisted 28 other

E. RESOURCES TO IMPLEMENT

For sach of the three listed ohases {Denign, Code, Testi, estimate computer runs. time nesded, hours 10 ir. ~ement, and esti-
mated compietion dete. It not known, or N0 estimate can be given, write “‘unknown’’,

F ORIGIN OF COMPONENT

If this L 13 ind dent of sany other component of the system (e.g., 1 & low levei component wiich 13 designed first, or
is the root node of the tree chart) then check ves, otherwise check no.

i1 no is checked, then expiain why the componsnt was added. (Usually only one reason will be checked, aithough more may be
cheched, :f sppropriate).

A lower level elsuoration of a higher ievel COMPOneNnt Means that &n existing COMPONENt ‘~as exPanded to INCiude Nnew COMPo-
nents (e.g., sxpanding tree chert). List the higher level component time.

Added as & driver or interface means that 2 calling program was sdded 10 call existing components, List these calied companents.
A redesign of an existing COMPONeNnt means that new capabiiities were added to &n aiready existing component. Write its name.

At ing of an oider ponent. Give the oid name.

A regrouping of existing material means that | PONENts wWere redesigned with 3 new componant resuiting from this re-
design. Give the old component nsmes.

Type of eddition. Why was this component added to the system at ths time? Check the appropriate resson. (Normaily, only
one should be checked, aithough more can be if appropriste.)

G. ADDITIONAL COMMENTS. Add any other comments that will heip expiain the purposs, design, and compiex ity of this com-
ponent.

H. PERSON RESPONSIBLE. Inctude name of person responsible for :mplementing component.

I. PERSON FILLING OUT FORM. Give name of person filling out form. This normally 15 the same name as «n M.

-

1 o

i

e N
OF FUGK Qualiiy

COMPONENT SUMMARY

PROJECT

DATE

NAME OF COMPONENT

CREATION DATE

BRIEF DESCAIPTION

STATUS OF COMPONENT NEW.

TYPE OF SOPTWARE (Cheuk Ati That Apply)
e 1O Processing
pumm— {17 1] T
e LOgic Conrrol

A. CODE SPECIFICATIONS (Check Au That Apply)

UNDER OEVEL

— COMPLETED

Synem; Reisted
DATA/COMMON Block
e Qthar

L LEVEL OF DETAIL
FORM OF DESIGN .ﬁ 1 1 Sasic Block , T
| Comoonent ' Subcomponent ' Stme Otner
X : | Segment N
Functional ! M v .
Procedurasl i X
| English) T
l Formai .]
ethn {) . |
Precision of Code Specihication V.ry Precise Precise Imprecise
8 INTERFACES
Numoer C vetits Cailed Names
Not Fully Specified
Number Catling This Comp "t Names
Not Fully Specitieo
Number Shared iterms Names
Not Fully Specified . e
Number ot Componaents Directly Qescended from This Component Nemes pp— .
Not Fully Specified
C. PROGRAMMING LANGUAGES
Languages Uwed and Percanteqes {) {)
CONSTRAINT PROBLEM EXPECTED T =
Canstraint . Component Meets
P Present Constraint
"Memary Space | ,
! Execution Time N
Other |)
t
Size Source Statements linciuding Comments) I —— Macivine Bytes I
Source Statements (Not including Comments) |
Usetui (tems From Similer Projects |
: : T Specication N Desgn Cooe I
¢ Component Project T ’ 1 i
' % 'Major Minor ' None > Major . Minor © None % Major Minor None :
b t
IL . i
180-3 (878
B-16

H
®

(;'{\,':. 7 T . .
| OF FCUw L+ . 0Y

D COMPLEXITY

Complexity of Function (1117 M ~v -~ i
“b Asnge St 11} s Control Statements ___ . _ 2 Other State:: ay 12 g, Data Ceci ')
€ AESOURCES TO IMPLEMENT '
Bl T "
Runs Computer Time (min) Etort (Rry; . Est Campistion Cate .]
Oenign ' i o
+ Code . 1 ‘
{Tom_ i | ! i o
. . |
£ 1% this component .ndecendent of the existing } Yes viQ
11 No. describe relation of this componant to the sxisting system
nsertad as 3 lower (svel elsboration of higher level components 'namaes!
e 40000 83 @ Oriver Of interface fOr existing COMPONEnts (names)
e) (QUBSIGN (1O 800 naw Capabiiity) of existing components ‘names)
8 rengrming of existing component (name)
regrouping of existing material from seversi components {(names)
| other
| Tvee of Addition
¢rror correction e IR OVEMENt Of user service
planned enhancement e WRHliLY fOF development purposes only |
i inplementation of requirements change e OPUMHZBLION OF TIME/SPOCE/ BOCUTECY :

— improvement of clarity. maintainadiiity, or documentation

JCBPATION “i envirONMent change .

ot~ {explain below)

G. ADOITIONAL COMMENTS

M PERSON RESPONSIBLE FOR 'MPLEMENTING COMPONENT
!J PERSCN FILLING OUT FORM — [N —

3805 ‘419

17

w
}

ORIGINAL vl 0
OF FCOR QUALITY

INSTRUCTIONS FOR COMPLETING THE COMPONENT STATUS AEPORY

This form 13 t0 be used 10 ecCurately keep track of the deveiopmant of ¢8ch compo in the system. A Component Summaery
Report shouid exist f0r each component mentionsd. The f0rm « to Dy turned in 8t the end of each week Pleass fil! out either daly
o Once each week It daily, then a given cOmponent May be listed seversl times during the course of a wesk For esch component
115t the number of hours 1pent on sach of the listed sctivities. This form shouid be filled cut by Dersons working on the project

PROJECT Name of the project.
PROGRAMMER Name of programmar
OATE Oate report turned in Usuaily the date of s Fridey.

COMPONENT Name of component. Either 8 Dart of the system structure for which there s 3 cOmponent summary form. or one of
the tollowing

JCL. Developing commend 1anguage instructions.
Overlay. Deveioping system overiay structure
User Guide. User's Guide Documentation
Syvem Desonption. System Description Documentstion.
DESIGN
Create. Writing of a componant design
Read. Aesding (by peer) of design to ook for errors. (e0.g.. peer review) .

Formsl Review. Formai meeting of several individuals 10r purpose of expiain ng design. Also include hime spent in Preparing for
review Ail those attending review shouid list components discussed in their own Component Status Report for tnat week.

CODE/DEVELOPMENT

Code. Writing executabie instructions and desk checking program,

Resd. Code resding Ly peer Similer to Design Read abovs.

Formal Review. Review of coded components. Similer to Dusign Review above.
TESTING

Umit. Unit testing. Test run with test ¢eta on single moduie.

integ. Integration ! sting of seversl components.

Review. Review of testing status,
OTHMER. Any other aspect related to a component of the project not siready coversd other than Design Code Development. Test
e g Documentation of s specific component). L.st type of activity, and hours spent on that activity A set of activities has been
1stey tor which time may be charned to the overail project:

Travel Time spent on otficial travel reisted 1o this project. unctuding trips to and from GSFC)

Forme. Time spent on hiling out reporting form,

Mestings. T:me spent :n Meetings wniCh are NOt design Or COAE review Meetings.

Traming. Traiming activities identified for project

Ace Test. Acceotance Testing activities.

®asr D

Orcme N .
OF PCQi. L vV

COMPONENT STATUS REFORT

PROJECT DATE
PROGAAMMER
f 1 ‘]’ |
! 0E8I1GN [CODE OEVELOPMENT TEST | OTmen {
COMPONENT 1 Tromo T — + - —
CREATE | READ | pqyigw | C000 LTTY.) J‘"V'“ L UNIT © INTEG | AEVIBW (ACTIVITY! wAS
- D
' | Yeaeeh
i Porrmg i
Messng H
| Ags Tent
: 1 | Yraining
3 ' T T ! T T -
foveey ! . ! ! ! ! I
Nar Jue i 1 ! 1 A ! ? |
| Svetem Oeus 1 ; r !) B 1
: : ‘ } ' ; B
! i [. ' \ J
[H] |
. \ i :
F - : T ; T =
L . - ! J
H T— i ' 1 1
. : { . b " —-—
) 1 : J | i
1 ! . I ‘]
i - L l ! |
- ‘ ! 1 :)
— T T 1
| ' i L i i
- - 4)
} 1 t
| ™ * =t * - o
§ N]
) ; i |
! . L '
T N]
[§
; !
t !
T T
T M
B T | -

ORIGINAL pPas7s o3

‘e e

OF POCR (rirot: v

AR oy

INSTRUCTIONS FOR COMPLETING THE COMPUTEA PROGRAM AUN ANALYSIS FORM
This 1orm wiil De ussE 0 MONIOr TNE 4CTIvILes 107 wiiCh the COMEULer 1§ used N the GBUILE Of § DrOIeCY Hife Cvcle 4An envry shouil
08 Mede 10 ¢aCh COMPULEr run= Cluding §it SCTivILies PErfOrMed when the COMDULEr § LD N an INtIECT Ve MOde

PRAOGRAMMER. Write JOWNn ame Of LEFION Orenss ing COMOULEr runt. TAIE Mmay Ot NECHISNIly DE the DEFION ruNMINg the Drogram
(re. tDrarign)

PROJECT W+ (e aown roect name. Use & afterent torm 1or sach [roject

COMPUT” o ..cate the Mmaching on which thess runy were made (e g.. 3. 380 POP-1' T8
DATE O..e form turneo n

JOR iD. Identitication of 0D

AUN DATE. Date ‘un submitted n tormet MM-OD imontnaey)

INTERACTIVE. P'ace on X f the run waes »/":Mitted frOM an (Ntersctive irmingi.

AUN PURPOSE Place an X in oll Doxec that desaribe this run

Unit Test. A purpose of the run s 10 tESt ONE Or MOre COMPONENts without the rest of the system Being configured into the l08d
moduie A run wiich uses ¢ 'test ariver’ would fall \nto this category.

System Test Thie run executes o 1080 ™Moduie which contains ail of the curnently eveilsbis svstem in orgder to tem ONe Of Nore
components 1n 8 tull system configuretion

Senshmark Tost. Thi ¢ 2 recertificstion type run. A run thet hat successfully enecuted in the Dast ¢ now rerun 10 verify thet
certain capabilities still enist

Meintenange/Utility. A purpose of this run ¢ to perform o library-tvpe tuncton. Examples e runs thet uPdate 0w ce. reste
Dackups. delete corwress/copy dats tets.

Compsie/Assambly/Lisil. A Durpose of the run s to check for errors in the COMPIIe a1sembly and or Hink steps. A run which «a.
L8 ONd OF MOrd of thew 1TEDS MDIY 21 8 DrerequUIsIte 10 8 TYItEM SABCLLION wouid NOt tal! .ntO this Category

Debug Run. This run was submitted 1 Order 1o Mvestigate & kNOWN error.

Othar. This cun nas a purpose which 3068 not fail 1t one of the other categores. Examoies are runs which scoess other 1y
N Order 10 a1 1N the CEIYN deveicDMENt ana/or testing of the Prowct under udy

COMPONENTS OF INTEREST. L st ail components mportant 1o R run (0.9, COMpanents beng tested compiied. copied. etc)

FIRST AUN. Place an X here :f this .1 (he tirst Time any Of the |sted COMPONENts Nave Ledn rOCEIsed by the computer for the pur-
pose of ‘un specttea

MEETS OBJECTIVES This 14 4 subject.ve evalustion Of whether the run wiisfied vour Joiectives Runy that terminate «n errors may de
MUTaCtOry ! the ODISCTIvE a3 10 Ocate ¢r7Ors O tO test 107 COrrectness. rung that terminate normally may be unsatisfactory f the pur
DOVE wah 1O 10CHtE 8N ¢rrOr xNOWN 10 D prasent Thus this Quest:on 8 iInuapendent of whether the Drogram contained any errors or not

RUN RESULTE Check the Dox that best descr:Des the results of this run. Normally oniy one box 18 checkad. aithough more than one
mey De checker { Juurupriate

Good Run Progqram ran 10 termingtion with N0 kNOWN errort.
Setup Breor frror 0 Teating progrem deck
Ludmut Error Deck submitted ncorrectiy. resources unevailabie, KeyOUNCh error Or QEneral subMIsKIOn error
JCL Error JCL statement ncorrect (JCL curds mistyped should be iisted under submit errors.)
Whar Serup Error Such as insutt.cient spece or tine specitied for 100 8. Thiy shou i "ot be caused Dy program error
Maching Ereor. Errory outsy @ .t the control of the programma.
Margware Error. Machine maifunction.
Software Error. System crash or svstem progrem errdr e.g., error n FORTRAN compiier!
Program Error. Error caused Dy “he submitted program.
Comprie Error The 1ource program contains an error which ¢ found by the COMDIIer Of assembier
Link Error The osder or 1inkage editor finds an error,
Execute Error. Systen' error Messages are generstan during the execution 1ted. POILblY causing an abend
Uter Ganeratea Error. The program term:nates N & Orogrammer genarated error Massage which § Ot & SvStem error

Aan to Compt I Tie orogram terminated with No €rr0r MESKAgE "OWever. the results are \ncnrrect 3 ifving that these «
something v. "9 with the prograr

COMMENTS. 't ,ou Dehieve that ,our answers 10 these Questions do NOt JdeQuately cNaracter ze ths ‘un vou May ada iry 30d:it Onsi
JoMmments that you wiah Aisa use this 3pace to ndicate | the run was 0st before vOu NBC & ChaNCe 1O evaliate resuity

G,

87/ 1 use

— - -y—1 T ll‘llﬁll‘ Y 1Yo - - - - S - ~ |.
e - e —— —— -+ - 4 - -—— - - p— - - - - - 4
e o e e - — }— - —-% 47‘ ————— e} [S f R N —
= — e —————— - —4— 44— $—3— -4 — 4 - --§ -~ -4 - _—— e - 4 - - — — - 4
b - —_—— IAT! ——4- — - §—— | -4 -31-} — -~ — - - - — e
4 —_— -ttt 14—+ 4 — pe— J—
o —_— 44 - S+ 4 PRSI SE—
—_— -t - — lfl. —_— et

»lc|m x »| »l> olo z wicls

slE 3 M gl W 581 813183 3l m HHEE

=12 ol 32 2 3| & g1 ¥ 212158t m

3 ClwmiBis Lol BB Ol » & |21812i3]| 2I>»

HEHHBHHHEE BHE HHHEHE

M gl 2 mlmlnlzl®l]S [2lol® FHHEREE

~ 31313}° ° elgo m -l =

spway o M 2 1] ° -~ k] N c <

By wey S s 13 §2 piven 35| mjoawnyg o
8|5 e 1K 40 <|3 3iva | %o
ANIPNOD m S1NINCINOD -
-3y -3 -y -yl H] —
wleny L T poony m |
S1HYSIY NY FSOHUNA NNY

T 14 3ivo - - T UIANNOD 103 0ud HINNYHOOUS

SISATYNY NNY KVHOOUJ HILNGNOD

B=-21

ORIGIMAL, pann i3
OF POC: QUALITY

INSTRUCT'ONS FOR COMPLET. I THE CHANGE REPORY FCAM

This 101M 15 ULed 10 Keep track OF il ChangRt Made 10 & SYSteM A CHONgR 15 any Siterstion 10 the Gengn. decumantstion. or code
wneraied ter o projest Each change can B0 thought of ¢4 8 1tep in the pracens of transferming the Origingl 10:TWere Jengn N0 § Cum-
Diete working syitem The initiel Crestion o/ 19Ctions of freuh code of design s NOt § change

One change repert form should be fille@ out for eech changs. Where seversi Changss 516 made simuiteneously tor Lifferent ree:
1018 8 1eParete 10rm shouid be completed for sash reasen

NUMBER. A unigue ‘dentifier per 'Orm Der sy CONsIRING of .nitials followwed Dy 8 eduence number The smtisis should be those of
the person hilling out the form The 1equence NuMBer INCUID B8 § POSITIVE INtege naICsting the number of forms filied out s0 far dur
ing the doy Number DMWOY .ndicates the firat 1orm of tha day fiiled out by OMW OMWO2 15 the 1900nd form thet day. otc.
PROJECT NAME. Tne name of the deve:onment project

CURRENT DATE. The cate on which sn entry i firss made on the farm, evan +f the form is not campieted on thet dey

SECTION A-IDENTIPICATION
AEASON. Expiain why the change 13 being made.
DESCAIPTION. Oescride the changs that is Deing mada. This should no: B9 0n the varadie name or dit level, Dut sthould be witi-

ciontly sbetrast 1o that the function of the chenged code can be determined, 8.¢., “‘the INput Dutfer wes clesred,” rather then “srrey
buff was set 10 ter0. "

EPPECT. What DO (or docy ts) are changed? List the names of il PO and doc modi{ied 8 part of ths
ChaNge, inciuding version bers.

SPPORT. What sdditionsi COMPONents (nf dOCUMENts) were sxOMINEG /0 deterMining what cChangs wes d’? List al! compo 1]
ang documants that were exemingd, Dut were not ctudily changed, ‘N deciding what change to meke, how to Meke it. and where to
make it This List shOUId NOt overiep with the (st of components #nd GOCUMents actusily changed.
DATES OF CHANGE. Neod for changs determuned on Give the date on which «t waa first realized that 3 changs was needed.
hange started on Give the date on which the changs was started.
What was the #1ort in person-timae required 10 understand and iImpiement the changs?
Give the hest aveiisbie ertimate of the total time needed t0 understand what changs had 10 be made snd how 1o make it, .nctud:

g the /mpiementation time. This thouid :nciude the time of all DerIons invoived in meking the change. As an exampie, /f two people
aach wiried 6 hours on the chenge, the 19ace marked “one day 10 3 devs’’ shouid be checked '

SECTION B-TYPE OF CHANGE

Check the one DOx that Dest describes the change. |t none of the change decriptions seam 10 fit, check other and give » detsiled
aescription of the change in Section E. 11 several of the descriptions seem eQuaily appropriste more than one box may be checked

Crror Corregtion. A\ change made 10 COrrect an error in pravious work. It this box s chacked Sections C and D of the change report
form should be compiated.

Panned Enhancement. The ntertion of a body of COTE INTO & Drogram stub that Wi 1n1tslly Created as 8 dummy ‘Or test NQ PUroOses
or 33ding canad ity 1O an aiready ~x:ting COMPONENnt 43 PIrt of 4 planned NCrementy deveiopment

Impu of Regqu Change. Altering the tystem 10 Conform to a chENGe N reQuiIreMents .Mposed by the customer

Improvernent of Claeity, M elity, or Do stion Changes made to mprove code quality, such 8 'moroving -ndentation of
COde. 'IeqUENcing | 3De!S for readabiiity 3dAING Gf UPASTING JOCUMENIATION Of COTTECTiNg L Terary 8rrors «n -t {UDPressing redundar:®
nforMation of replacing Multiply.oCeurring wctions of code with procedure cails Correctians of v:0iations of Drogramming standaras
and denign ‘mprovements that shouid have Desn vitibie 1n the functional spec.1cai ons of components of the syitem are to be treated
& error corractions. Documentstion undates mads concomitantly with & change should be tresteu as 3 Dart of tnat change and class
f1ed with the orimary cause of the change

Improvement of User Services. Z.uring system development naividudl Drogrammery may ing that a.th vary ' 11ie evt’y ,Ork "Pey £3n
provide the user v th 2ddi'ONsl fac::1ies ON 10D of the fUNCt ONAI "equirements of *he 1y stem Such changes are clatied a3 mDr ve
ments 10 usev 1e7viCH

P

R

Insartion/Ostetion of Ocshug Cods. Changes made to the progrem texnt snecificelly to provide additionsl information curing test runs 50
that errors can be isoisted.

Optimize Time/Bpass/Assursgy. An optimization .3 8 'ocstized sdjustment of the Drogrem whose Mmain PUrPOss is tO reduce its exccy-
1.0 HiME Or MEMOTY 1901,rements, o7 to obteIN resuits Of greater nuMerical scCurscy by funing the sigorithms used to the specific
provem being soived.

Adaptation 1o Environment Chengs. The “baundary” 5f 8 sofvware system is defined to include just thase programs whose deveiop-
ment and mantenance is being Monitored & Purt of the software sngineering Ishorstory project. A change whose causs iles outside
this boundary (8.9, 11 resOONSE O 4N OPErating Sy3tem, cOMpiter, or hardwere chengel is regi-ded 8 environmentally caused.

Was more than ane component sffected by the change? A component 11 defined 0 te Jirectly involved in a change if it coritains
subroutings that are chsnged snd it CONtaing NO WHCOMPONENts coNtaining those wibroutings. (hack yves if the changs directly invoives
mare than one companent of the system, no otharwiss. It may be the case that & ciianas tr Sne subrouting/comoonent will require
some 'uture adjustmaent in other components (thess cOMpPonents May Not even have been caded vet, or their sdaptation may be Post-
poned,. (n uch cases, the effects of the change invaive more than one component even though only one module was notad as changed
on nis form,

SECTION C-TYPE OF ERROH

Chack the one box that best describes the error. If none of the error descriptions seem to 1it, Jheck other snd give s datsiled de-
scription of the error in Section €.

Requirements Incorrast or Misinterpreted. Requirements may be incorrect (incomistent or ambiguous), or their mesning may be mis-
interprated. In sither case, an error of this type, if undatected esrly, May Propagete through design snd into code. Cven if undetected
until scceptance testing (or maintenance), errors resuiting from incorrect or misintsrpreted requirements should be classified in the re-
quirements error Category.

Functional Specifications incorrest or Misinterps “ted. Functional sprcifications sre taken to be & specificstion of a component as a tet
of functions defining the output for sny input. Si. ilar 10 requirements, specifications may be sither incoreect or misinterpreted. Er-
rors in the specifications that occur &8 a resuit of mi understandgings of requirements are classified as misinterpreted requiremaents errors
and not incorrect spacifications. Specification erroi that result from misunderstsndings among those writing the tpecificstians are
clasyified a8 incorrect specifications. Errois in cods ur design or documaents resulting from incorrect or misinterpreied specificstions
should be classified in the specifications error category.

Design Error Invoiving Several Components. A design decision is 8 choice of c*asnization of 3 COMPONENt iNtO SUBCOMPONENts, in-
cluding the specitication of the interfaces among the subcomponents. A design error is 8 dasign decision that resuits in one of the foi-
lowing:

® interfaces that contain insufficient, unnecessary, or redundant information;

& 310t of subcomponents that do not satisfy the specifications of the somponent (i.e., ons or more of the subcomponents do
not have the capatulitiss needed to satisfy the use intended for the component).

Nelle haladenion error may resuit from incorrect or misinterpreted requir or specificat 2ns. In such cases, the ercor
shourd not be class «1ed s & design error, but 88 a reuirements or specification error,

Error in the Design or implementation of a Single Component. Most imple, locslized programming mistakes fail into this category. It
confing ¢hotE cases where the o. yenization of the system into componsnts and their interfaces is correct, but a particulsr component
dass not benhave sccording 1o its intended use (i.e., does not carrespond 1o its specification). This ma - occur because tie aigorithm
used 10 Cesigning the component ts incorrect, or becsuse the implementation of the aigorithm is incorrect. |f the aigorithm has a wnit.
tan spec:fication prior to code generation, and the specification s incorrect or misinterpretad, the error is not classifisd as a design or
mpiementation arror, but as a specificatior error. [f the erroneaus aigorthm has no written specification, or if the .mplementation of
the 3igorithm hes errors nOt attributabie 10 any other category, then the error is classified a3 an error «n the design or \mpiementation
of a singie component.

Misunderstanding of External Environmaent, Excspt Language. Check this box if the srror resuited from mistaken assumptions sbout
the hardware or software environment in which the program operates {i.e., that software outside the “boundary’’ of the project —1ee
"*adaptation to enviror.ment change” n Section 8). Included here are mistaken assumptions about how the operating system works,
about how the hardware 13 controlled, about response of Leripherals to various commands, about the operation of the library tystem,
a0out the intertace to speciel dispisv haraware or software, stc.

Error 1n Use of Programming Lanausge/Compiler. Errors in the use of the language/compiier are those errors that result from some
misunderstanding of how the cOmpiler works, how the !anguage orovided run-time sUPPOrt System operstes, Or s0Me misunderstanding
of particular lsnguage features. Not included in this category are cierical errors (e.g., typos) that lead to compiation errors.

w
1

23

C-2

[,

Cleniesi Grror. Clerical wr0rs 410 those er70rs that OCCur I the Mechanical transistion of an itam from one 10rmat to another (9.9, one
COaIng sheet 10 anctherl. o~ trom one Medium 10 enother 10.9.. cOding sheets to cards). NO INTErPrEtatioNn of eMAaNntic transiation i in
voivad i such & protess.

FOR DESIGN OR IMPLEMENTATION RRAORS ONLY

This section shovid be filled out only «f the error vwas 9 design eror, VOiving teveral components, or «f (€ wes an error in the de
Hgn or implementation of 4 single component. Errors that occur 1> the design of 3 system, subIVS em_ 18t Of COMponents, or singie
component. of 1n the «mpl of & ungle PO \ent. may b categorized in one of two wevs. Either there was an error in the
e of data. or there wes an ror in the tunction of 3 COMPONENt (SUCN &8 8n JIGONTAMIC O COMPULBTIONAl ¢rTar Tesuiting 1 JrOrEM
hehavior not corresponding 10 he intended use of the program) Date use errors can be characterized & either incorrect voiues 1or
318 11eMs OF IMPrODEr HIUMDLIONS ADOUT the structure of data 1tems (8.9, #/TeY 114es OF AIMENKIONs, or ordering of 1tems v & st}
€rrors nvoiving the tunction of & cOMpPonent include control snd computationsl errars, such e Incorrect seguencing of staten ents,
amitted i atements (where such sre NOT clerical errars), improperly d ey -] d Capabilities of the cOMponent 4). otc.

SECTION D--VALIDATION AND REPAIR
What were the astivitiss used to validate the program, to detest the ervar, snd find its esuse?

The purpose of this 1ection 1t t0 discover how it became hnown that an ervor enisting end how the cause of the error was deter:
mined. A check should be put 'n the tirst column for each method usad for velidating the componentis) where the error was found. A
check thouid be put in the second column on the wame line 83 the method by which the symptoms of this particular error was first
noted. The third and fourth columng refer 10 sctivities used to find the cause of the error, once it was known that the errar existed.

In the third column, check ail techmiques used in trying to find the cause of the error. In the fourth column, check those techniques
that yielded the infarmation needed (0 find the Caute. In sOme cases, such & tome ervors found Dy code readiny, the techniqueis) used
to tind the error and discovar 1ts cause will be the same. N ‘e that error messages have been divided into (WO categoriss: those pro-
Guced by the WEPOTT system (¢.g., compiler, nperating system), snd those designed into the code for the specific purposes of the pro).
act Testing has 8130 Deen divided INtO two CAtegOries: test ruNs Made Erior tO SCCEPTANCE testing (Pre-sccaptance test runs), and ac
ceptance tests. |f activities other than thoss iisted in the table were used in finding the error or discovering its Cause, chack ather in the
40Dr0pNIate column, and describe the activities used in Section €. This table inevitably has some redundancy a check in column 2
must alwavs have & corresponding check 1n column 1, similarly with columns 4 and 3

What wes the time used to wolste the asuse?

Check the spece thet Most ciosely apProx:mates the time reguired 10 15olate the cause of the error This should be the tots! of
the time that was tpent in the sctivities tried to find the csusa. |f the cause of the error was never found, and & Workaround was used
check the appropriste box. If the cause was never found and 8 workaround was not used, expiain the circumstances in Section €
Was this error relsted to 8 previous change?

Changes to software may resuit in errors Decsuse of one .. more of several ressons

© the change was incorrectly :mplemanted, :.e., did not conform 1o 1ts specification;

® the changs hidsted an ption made sisewhere in the software,
® a0 sssumption made about the rest of the 1oftware i the design of the change was incorrect

An error 13 related 10 8 revious change if € results from one of the above three conditions. Errors that are uncovered by changes.
v e, snerror masked by another that is revesied when the iatter is corrected, do not belong in this category If the error 1 related to &
Drevious change, give the number and date of the change report torm of the retsted change. When did the error enter the syitem?

Check the box that most clowsly represants the phase /n the erroreous COMPONEnts’ development in which the error was introduced

SECTION E£-ADDITIONAL INFORMATION

This section 18 intended to permit further expianation of ny items you fest may be signiticant in categorizing the change (in-
cluding error corrections). 11 the “other™’ category was checked in sny of the previous sections of the form. a fuiler expianation should
be given here. Do not henitate to give & tull description of the error or change or any Goubts you may have in classifying it The ac
curacy of our analveis is dependent on the amount and accurscy of the data you provide for us. The study we are performing . an at
tompt to do a caretul. detared investigation of the NroceIsss that go on during software development. the kinds of changes and errorsy
that occur dufing developmaent, and the reasons for their occurrence. With your help, we hoDe 10 gain enough nsight 1nto the dewign
coding, and testing of Programs so that proposed techmiques for COPING with 10ftware changes #nd reducing the number ¢f errors can e
avalusted. Your cooperstion and patience in cOmoieting the change report 1OrM each time vOou Make a change to & dncuMent or Pro
Fam are needed and sppreciated.

oy

33

o,

cme

o

e aRR gy

ORIGIMNAL PLARE IS
OF FCCR QLALITY

NUMBER

CHANGE REPORT FORM

PROJECT NAME CURRENT DATE

SECTION A - |IDENTIPICATION
REASON: Why was the changs made?

DESCAIPTION What cnange was made?

1 EFFECT Wnhat ponents (or d) s changed? {inciude version)

EFFORT. What saditionsl components (Or o <mentg) were examined in GOWITining wiat Changs Wl NERNENT e ceeememsom

(Month Jey Yew)

Need for changs determined on
Cangpetarmdon

What was the eHort in derson time requing to underntand and impiement the chenge?
e | ROUT OF 098, - hOW 10 | day, ! G0V t0 3 days, e OO thent 3 days

SECTION 8 - TYPE OF CHANGE (Mow is this change best charecterized?)

= Emor correction O inssrtion/deistion of debug code
3 Psnned ennancement O Optimizstion of time/spece/acourecy ;
C impismentstion of requirements change 0 Adsoution to enviconmaent change ;
O improvement ot lerity, ability, or d tation O Otner (Explain in €) .
C improvement of user services !
Vias more than one COMpOnent aftrcted by the changs? Yes No |
FOR ERROR CORRECTIONS ONLY !
SECTION C - TYPE OF ERROR (How is this error Dest charsciarized?) i
O Requirements incorrect or muintarpreted O Misunderstending of extemal environment, sxcest language 'I
O Functional specifications incorrect or Misinterpreted QO Error in use of programming language/compiler !
~C Dengn error, invonving saversi components Q Clericat ervor ,l
1 Error in the design or impismentation of & single compoanent O Otner (Expiain in E) !i
PFOR DEBIAN OR IMFLEMENTATION ERRORS 7JLY !
It the error was in design or implementation:
The error was & Mistaken aumption sbout the value or st ® of deta
The error was @ Mustake In control l0gic or computation of an exi: #ssion
1002 (6/70) -

e -

ORIGINAL PACE IS
OF POOR QUALITY

POR ERAOR CORRECTIONS ONLY
SECTION O - VALIDATION AND REPAIR

What sstivities were umd t0 validam the program, cemet e error, and find it coum?

ramifications.

Agtivities Activities Agtivities Astivities
Umd tor Suscessiul Tried to Susssmfui
Program in Demeting Find in Finding !
Vlidstion Error Symptoms Coum Cum 1
Pre-90ceptance teri rung '
AcOptanoe testing —
+0000PUNCE LN !
i_lr_gmm of autat
 Cods resting bv programmer)
| "Code resding by other person I :
1 Telks with other programmen V
| Specisl debug code N !
Sysmm error mewages v
| Project spacific error masseges N
 Reading documentation M '
Trace i b
' Dump N i L
. Crose-re ference/stiribute list .
Proof technique |
|Other {Expisin in E) '
i
Whe! wes the time used to isolew the csuse?
e ONG MO OF 1088, - ON® NOUF 1O ONE BV, . o MOrE thAN ONG GBY, —..Mever found
! 11 never found, was a work d uwed?. Yo No (Explein in E)
Was this error relamd 10 8 previow's change? ll
e Y88 (Change Report #/Dste —No __Can't ol
When did t]he error enter the system? ! ;
. requirements —.functions! spacs ___.dasign ____coding end temt ___other ____cen't tett J
1
|

Name:

Authoriznd:

SECTION € - ADDITIONAL INFORMATION
Please give any informstion that may be heiptul in categorizing the error or change, and undsrstanding its Ceuss and its

Date:

8804 (8/78)

N Y

Flsm

ORIGIN/ . 07 i3
OF POOR Qi of

Current Date

Attitude S,;stem Matntenance Repore

Project ‘lame Need for Change determined on (Mo., Day, 'r.)

Describe Change

What components/subroutines/modules are chanqed

desfgn
—— Other (spectfy):

change T an error corrtctionT
This change {s deing made because of & cnnngo in: (Choc 811 that apply)

requirements hardware environment
new information/data software environment
spect fication optimization

ERROR ONLY (7717 out this section 17 chapge 1S an error correction)
The following activities were used in error detection or fsolation: (Check all that
apply) (Put D for detection, ! for {solation)

normal use —trace/dump

test runs T cross reference/attitude 1ist
code reading — System error messages

reading documentation proJcct specific error messages
——— Other ?Spccﬂy

Which of the following best describes the error:

requirements error speci fication error
design error clerical error
error in translating design or specification to code
other: Oescribe

Was this error related tu & previous matntenance change yes no ____ can't tell

Please give any information that may be mipful in categorizing and understanding the
cnange on the reverse side ot this form.

Person f{11ing out this form
Approved Date

Change started on date (month, day, year)

Time spent on this change:
less than ! day 1 day t0 a week more than a week

B.2. SEL GLOSSARY OF TERMS USED WITH DATA COLLECTION FORMS

This section defines the terms used in the software engi-
neering data collection forms reproduced in Section B.l. A

more extensive glossary (based substantially on this one) is
found in Reference 19,

assignment
statements

atti.ude/orbit

attribute list

automated
tools

baseline
diagram

batch

All statements that change the value of a
variable as their main purpose (e.g., as-
signment or READ statements, but the as-

dignment of the DO loop variable in a [LO

statement should not be included).

Any component tnat is directly related to
either the attitude determination (or con-
trol) tesk or to the orbit determination
(or control) task falls into this cate-
gory. This should include full systems in
general (such as GTDS or ISEE-B Attitude)
as well as specific modules such as Dcter-
ministic Attitude or DCCOMNES.

A compiler-gen«rated list of the identi-
fiers used by a program that describes the
characteristics of those identifiers and
shows the source statements wliere they are
first defined (or first used) and, for

variables, their (relative) storage loca-
tions.

Any programs whose purpose is to aid in

software development (e.g., compiler, text
editor, or dump or trace facility). This
includes compilers but not standard opera-

ting system software (e.g., linkage edi-
tor).

A structured chart listing all components
in a system in which a connection from a
higher component to a lower one indicates

that the higher component calls the lower
one.

Use of a computer in which the entire job
is read into the machine before the proc-
essing begins and in which there is no
provision for interaction with the sub-
mitter during execution of the job. (In-
teractive usage is always via a terminal;
batch usage may be via a terminal or a
card deck.)

B-28

=
‘.

L

bottom-up

business/
financial

change

clerical

code reading
command/

control

complexity

component

The design (or implementation) of the sys-
ten starting with the lowest level rou-
tines and proceeding to the higher level
routines that use the lower levels.

The second of the four major categories ap-
plies to components related to some ac-
counting task, financial data formatting,
business data retrieval or reporting, or
possibly personnel daita management. Very
few nf the components being studied will
fall into this class,

A modificaticn to design, code, or docu-
mentation. A change might be made to
correct an errci, to improve system per-
formance, to add capability, to improve
appearance, or to implement a requirements
change, for example.

The process of copying an icem from one
format to another or from one medium to
another, which involves no interpretation
or semantic translation.

Visual inspection of the source code by
persons other than the creator of the code.

This class of components includes those
used either to generate vehicle commands
or to transmit these commands from the
control center.

Measures the difficulty of implementing a
component, independent of the imple-
menter's experience. Tasy (or simple)
means that any good programmer can write
down the correct code with little thought.
Hard (or complex) means that much thought
is involved in che design. (Compare this
with “precise;" e.g., easy and imprecise
may mean a vague specification, but once
the approach is decided upon, the code is
easy to write.)

A piece of the system identified by name
or common function (e.g., separately com-
pilable function, an entry in a tree chart
or baseline diagram for the system at any

point in time, or a shared section of data
such as a COMMON block).

B-29

]

Zimay

conputer time

confidence
level

constrainus

constraints,
space

constraints,
time

control
statements

correction

cosmetic

Create

creation date

cross-
reference

For batch usage, this is the billable time
for all runs, For interactive usage, it
is the number of hours spent at a terminal.

Percentage probability that a given number
is correct: 100 percent means that the
number is absolute certainty; 0 percent
means that the number must be incorrect.

Restri.ticns on resource availability (ex-
ecution time, memory allocation) imposed
by specifications.

All restrictions caused by space problens.
On the Component Summary Report form, list
each reatriction separately, e.g., maximum
number of words that component may occupy
at one time or maximum disk space avail-
able during execution time or for program
storage.

All restrictions causged by various machine
and calendar time problems. On the
Component Summary Report form, list each
restriction separately, e.g., maximum ex-
ecution time for component to process and
respond to some input condition or time to
complete a component or milestone.

All statemencts that potentially alter the
sequence of executed instructions (e.q.,
GOTO, IF, RETURN, or DO).

A change made to correct an error.

Changes in the source program that have
little effect on the performance of pro-
gram, e.g., correct comments, move code
around as long as it does not alter the

algorithm implemented, or change the name
of a local variable,

The creation and recording of the idea.

Date that the component was first named

(e.g., date it first appeared on a tree
~hart).

A list of the identifiers used by a program
showing (by means of indices or statement
numbers) which statements of the program
define and reference those identifiers.

B-30

data base
applications

design

design phase

design reading

development
phase

documentation

dump

end date

English (or
informal)
specifications

This category is to include components that
retrieve, write to, or format informat'~n
for a well-defined formatted bank of in-
formation available to the system. The
user must decide whether the data set s

to be considered a data base or not. An
example of an acceptable data base would

be the ADL file, SLP file, or Geodetics
file, whereas a sequential telemetry file
or tape would not be.

A description of what the system must do,
its components, the interfaces among those
components, and the system's interface(s)
to the external environment.

The creation and recording of the design,
including discussion about strategy with
peers, This phase does not include the
development of any code at the programming
language level, It does include the crea-
tion of specifications for subcomponents
of the current component,

Visual inspection of the design by persons
other than the creator of the design,

The development and recording of code and
inline comments based on the design. This
phase includes the modification of code
caused by design changes or errors found
in testing. It does not include any time
spent in entering the code into the com-
puter.

Written material, other than source code
statements, that describes a system or any
of its components.

A record of the state of the memory space
used by a program at some point in its
execution., A dump may include all or part
of the program's memory space (including
registers).

Date that a project is scheduled to be
completed.

Specifications given as readable English
text, as opposed to some formal notation,

error

external
environment

formal spec-
ifications

function

functional
specifications

hardest first

HIPO (Hier-
archical Input
Process Output)

implementation

integration
test

integration
test, full

A discrepancy between a specification and
its implementation. The specification
might be requirements, design specifica-
tions, or coding specifications.

The combination of hardware and software
used to maintain and execute the software,
includi'.g the compute: on which the soft-
ware executes, the operating system for
that computer, support libraries, text
editors, and compilers.

Some specification technigque based upon a
strict set of rules for describing the
specification and usually involving the
use of an unambiguously defined notation
(o.?., mathematical functions or formal
PDL) .

A mathematical notation used to specify
the set of input, :he set of output, and
the relationship between input and cutput.

A specification of a component as a set of
functions defining the output for any in-
put. The specification emphasizes what
the program is to do rather than how to do
it. However, an algorithmic specification
can be considered functional if it is not
used to dictate the actual algorithm to be
used, (See procedural specifications.)

The design (or implementation) of the most
difficult aspects of the system first.

A graphical technique that defines each
component by its transformation on its
input data sets to its output data sets,

The implementation of a program is either
a machine-executable form of the program,
or a form of the program that can be auto-
matically translated (e.g., by compiler or
assembler) into machine-executable form.

A test of several modules to check that
the interfaces are defined correctly.

Test of the entire system (i.e., top-
level component).

-

integration
test, partial

intended
use of

interface

interaccive

iterative
enhancement

leve]l

level, lowest

librarian

machine words

manpower

Test of any set of modules but not the
entire system,

The result of invokli..3 a program or segment
of a program, inciuding Lhe actions per-
formed by that program when invoked. In-
vocation may be by subroutine or function
call or by a branch to a segment of code.

The set of data passed between two or more
programs or segments of programs and the
assumptions made by ¢.ch program about how
the others operate.

Use of a computer via a terminal in which
each line of input is immediately proc-
essed by the computer.

The design (or implementation) of succes-
sive versions, each pruducing a usable
subset of the final product until the en-
tire system is fully developed.

A viait corresponding to some partitioning
¢r the final product (e.g., a single line
oi code, 10 lines of code, 25 lines of
code, subroutine, or module), If the sys-
tem is hierarchically structured, each
component is at a higher level than its
subcomponents, and the rfystem may be de-
scribed as the highest level compornent
(the component at level 1), the component
at level 2, or the lowest level component,

Smallest unit identified by the activity
(e.g., code reading to the single state-
ment, top-down design to the module level,
or top-down design to level 3),

A clerk whose responsibiiities include
processing source statements but not writ-
ing them, (e.g., maintaining libraries,
updating code, or producing tape backups).

Number of words in a main memory that a
component occupies at one time,

The sum, over the number of people, of the

number of hours per person charged to the
contract.

B-33

mathematical/
numerical

maxjimum space

mission date
module test

none nsed

on-board
processing

optimization

PDL

This category is meant to be a more speci-
fic category than the scientific class.

It contains those components that refloect
a specific alyebraic expression or mathe-
mati~al algorithm. Such components as a
dot product routine or a numerical inte-
grator are in this category.

Total ni mber of machine words that the
system may occupy at one time,

Date that system must be operational.
Test of a single module.

No explicit technique was specified to be
used,

All components that are built for the
purpose of satisfying some on-board proc-
essing need belong to this class. Al-
though the component may be built and
tested on a computer that is not the real
flight computer, it should be classified
as onboard if the final destination is the
OBC (onboard computer) .

Changes in the source code to improve pro-
gram performance, e.g., run faster or use
less space. Optimization changes are not
error corrections; however, if a change is
made to use less space to conform to the
specified space constraint, then the term
"error" applies.

A program design language (often called
pseudocode). Used in the design and cod-
ing phases of a project, PDL is a language
that cuntains a fixed set of control state-
ments and a formal or informal way of de-
fining and operating on data structures.
PDL code may or may not be machine-
readable, and for this study it is not con-
sidered as docum:ntation, but as an
integral part of the finished source pro-
gram,

procedural
specifications

proof
technique

range in mod-
ule size

read

real-time

regrirements

review

scientific

). specification of a component in some al-
%orithmic manner (e.g., using PDL or a

lowchart). The specification says how
the program is to work. (See functional
specifications,)

A method for formally demonstrating that a
piece of software performs according to
its specifications. Proof techniques usu-
ally use some form of mathematical nota-

tion to describe the result of executing a
program,

The number of source statements in a
module, including somments,.

The reading by peers of the recordings of
the current phase to look for errorg, in-
vent tests, and so on.

This class includes components that are a
direct function of events occurring at, or
near, the current time. Typical compo-
nents would be the Attitude Control
Monitors., Since parts of most of the te-
lemetry processors are required to process
data as it is received, they too .ray be
considered real-time components,

A system specification written by the user
to define a system to a developer. The
developer uses these specifications in
designing, implementing, and testing the
system.

A formal meeting of several individuals
for the purpose of explaining design (man-
agement review). Also includes the time
spent in preparing for the review. Aall
those attending a review should list the
components discussed in their own Compo-
nent Summa-y Report for that week.

A component may be in this category if it
is related to some mathematical algorithm,
engineering problem, law of physics, or
celestial mechanics problem, Most of the
full systems develo.ed will fall into this
category, whereas the various pieces of
modules may fall into some of the ocher
clagses.

segment

shared items

simulating
constructs

source
instructions

sovrce
statements

specilication

specification,
imprecise

specification,
precise

A contiguous piece of code that is unnamed
and, hence, cannot be referred to as a
single entity in a program statement. A
segment could be one or several lines of a
subroutine, part of a data area, or an
arbitrary contiguous section of memory.

Data and programs, accessible by several
components, such as COMMON blocks, ax-
ternal files, and library subroutines.

Statements that are used to simulate struc-
tur:d control structures when the language

to be used does not contain structured
control structurus,

Se. source gstatements,

All statements readable by and read by the
compiler. This includes executable state-
nents (e.g., assignment, IF, und GO TO);
nonexecutable statements (e.g., DIMENSION,
REAL, and END); and comments,

A description of the input, output, and es-
sential function(s) to be perf.crmed by a
component of the system. The specifica-
tion is produced by the organization that
is to develop the system; that is, at the
top level, it can be thought of as the
contractor's interpretation of the re-
quirements.

The input, output, and function of the com-
ponent are loosely defined. Much of what
is required is assumed rather than speci-
fied. The specification relies heavily on
programmer experience and verbal communi-
cation to get an unambiguous interpreta-
tion and a full understanding of what is
needed.

The input, output, and function of the com-
ponent are well defined. There are under-
lying assumptions not specified, but it is
assumed that any programmer working on the
prcject, with experience on a similar

project, will understand these assump-

tions. It is possible to arrive at an am-
biguous interpretation or misunderstanding

B-36

Ty TR e T

TRy, WEERC

)

Tk

O RO

specification,
precise
(Cont'd)

specification,
very precise

specification-

driven

standards

start date
string proces-

sing

structure-
driven

structure
of data

structured
code

of the specifications if the reader does
not have enough experience with the prob-
lem or does not obtain further verbal com-
munication.

A completely defined description of the
input, output, and function of a compo-
nent. The implementer of a very precise
specification need make few, if any, as-
sumptions., It is almosu impossible to
arrive at an ambiguous interpretation or
misunderstanding of the specifications.

Using the specifications of the program to
determine test data (e.g., test data is
generated by examining the input/output
requirements and specifications).

Any specifications that refer to the
method of development of the source pro-
gram itself, and not to the problem to be
implemented (e.g., using structured code,
at most 100-line subroutines, or all names
prefixed with subsystem name).

Date on which initial work on a project
began.

This includes components that perform op
erations on lists of characters. Norm-
ally, this class is assumed to include
functions of compilers, hash code string
hook-up, and array comparisons.

Using the structure of the program to de-
termine test data (e.g., generating data
to ensure that each branch of a program is
executed at least once).

The organization of a composite data item
consisting of several variables or other
array items. Examples of such composite
data items are arrays (both singly- and
multiply-dimensioned), strings, complex
variables and constants, records on a disk
file (each record containing several

words), and multiple-word entries in a
table.

The language supports structured control
structures (e.g., a FORTRAN preprocessor).

B-37

e oy

systems

system size

table handler

telemetry/
tracking

testing phase

top-down

trace

type of soft-
ware

By system-related software, one includes
any package designed to affect, modify,
extend, or change the normal available
processing proucedure of the operating sys-
tem. This could include such components
as error tracing or extended I/0 such as
DAIO.

Total number of machine words needed for
all instructions generated on the project
plus space for data, library routines, and
other code. This is the total size of the
system without using any overlay structuce.

Includes components that are specifically
designed to generate or interpret informa-
tion in a table format such as the Gener-
alized Telemetry Processor.

Includes all components that are spec-
ifically required to interface (either

read, write, or format) with telemetry or
tracking data,

The design of tests, testing strategies,
and the running of such tests. Thit phase
does not include the writing of any code
(even for debugging purposes), which
should be recorded under coding.

The design (or implementation) of the sys-
tem, starting with a single component, one
level at a time, by expanding each compo-
nent reference as an algorithm possibly
calling other new components.

A record of program execution showing the
sequence of subroutine and function calls
and, sometimes, the value of selected var-
iables. Code used in producing a trace is
automatically inserted into a program,
usually by the compiler, sometimes by
other support software.

The four major classifications of most of
the applicable software being developed
are: scientific, business/financial,
systems, and utility. These classifica-
tions may be refined into the categories
of: string processing, data base
applications, real time, and table

B-38

! type cf soft-
ware
(Cont'd)

utility

value of data

walkthrough

wor Lkaround

eomesion az

handler. A further refinement includes
the catagories of: attitude/orbit,
telemetry/tracking, command/control, math-
ematizal, and numerical on-boaru.

Any component that is generated to satisfy
some general support function required by
other applications softw..re may be con-
sidered a utility. One thinks of this
class of components as containing software
that does not fit into any of the other
three categories, Although components can
fall into two of the primary categories
(e.g., scientific and utility), it will be
easier to use only the more descriptive of
the categories (e.g., vector cross
product--scientific; data unpacking--
utility).

The number and kind of number (e.g., in-
teger, floating-point, or ASCIl-encoded
character) stored in a local variable or
data area, parameter, common variable, or
system-wide data item,

Formal meeting sessions for the review of
source code and design by the various mem-
bers of the project for technical rather
than management purposes. The purpose is
for error detection and not correction.

The method used to counteract the effects
of an error in a program when the cause of
the error and, consequently, the location
of the statements containing the error is
not known or is inaccessible (e.g., a com-
piler error).

10.

ll.

12.

13.

14'

REFERENCES

P. laur, B. Randell, and J. N. Buxton (eds.), Software
Engineering: Concepts and Techniques. New York:
PetroceIIx?Eharter, 1976

V. R. Basili, M. V., Zelkowitz, F, E. McGarry, R. W.
Reiter, W. F. Truszkowski, and D. L. Weiss, The Soft-
ware Engineering Laboratory SEL-1, TR-535, University
of Maryland, 1Y

V. R. Basili, "Data Collection, Validation, and Anal-
ysis," IEEE Tutorial on Software Engineering and Man-
agement, IEEE Computer Society, Fall 1980

Data and Analysis Center for Software, SRR-1, Quantita-
tive Software Models, 1979

M. H. Halstead, Elements of Software Science. North
Holland: Elsevier, 1977

A, Fictzsimmons and T. Love, "A Review and Evaluation of
software Science," Computing Surveys, March 1978

T. J. McCabe, "A Complexity Measure," IEEE Transactions
on Software Engineering, June 1975

Stanford University, BMDP User's Guide

SAS Institute, Statistical Analysis System (SAS) User's
Guide

SPSs Inc., SPSS-1l User's Guide

Computer Sciences Corporation, CSC/SD-81/6079, Software
Engineering Laboratory (SEL) Data Base Maintenance Sys-
tem (DBAM) User's Guide and System Description,

D. N. Card, September 1981

--, CSC/5D-81/6011UD1l, Software Engineering Laboratory
(SEL) Data Base Organization and User's Guide,
D. C. Wyckoff, September 1981

QED Information Sciences, Data Base Systems: A Practl-
cal Reference, R. Palmer

Goddard Space Flight Center, Software Engineering Lab-
oratory (SEL), A Meta-Model of Software Develcopment
Resource Expenditures (SEL 1internal report), V. R.
Basili, and N. Bailey; also Proceedinas, Fifth Inter-
national Conference on Software Engineering, IEEE, 1981

R-1

P

15.
l6.

17.

18.

19.

RCA, Price S (system description), 1979

L. H. Putnam, "A General Empirical Solution to the
Macro Software Sizing and Estimating Problem," IEEE
Transactions on Software Engineering, July 1978

A. B. Endres, "An Analysis of Errors and Their Causes
in System Programs," IEEE Transactions on Software En-

gineering, June 1975

B. Littlewood, "Theories of Software Reliability," IEEE
Transactions on Software Engineering, September 1980

Data and Analysis Center for Software, GLOS-1, The DACS
Glossary, A Bibliography of Software Engineering Terms,
October 1979

s

BIBLIOGRAPHY OF SEL LITERATURE

Anderson, L., "SEL Library Software User's Guide," Computer
Sciences-Technicolor Associates, Technical Memorandum, June
1980

Bailey, J. W., and V. R. Basili, "A Meta-Model for Software
Development for Resource Expenditures,"” Proceedings of the
Fifth International Conference on Software Engineering.

New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Basili, V. R., “The Software Engineering Laborcztory: Objec-
tives," Proceedings of the Fifteenth Annual Conference on
Computer Personnel Research, August 1977

Basili, V. R., "Models and Metrics for Software Management
and Engineering,"” ASME Advances in Computer Technology,
January 1980, vol., 1

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1980

Basili, V. R.,, Tutorizl on Models and Metrics for Software
Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

Basili, V. R., and J. Beane, "Can the Parr Curve Help with
the Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

Basili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol., 2, no. 1

Basili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"”
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-

ity Metrics, March 1981

Basili, V. R., and T. Phillips, "Validating Metrics on Proj-
ect Data," University of Maryland, Technical Memorandum,
December 1981

res=Crrey

Basili, V. R., and R, Reiter, "Evalu2cing Automatable Meas-
ures for Software Development,” Pruceedings of the Worksho
on Quantitative Software Models Zor §eI1a§If!tx, Complexlty
and Cost, October 1979

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

Basili, V. R., and M. V. 2elkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1l

Basili, V. R., and M. V. Zelkowitz, "Measuring Software De-
velopment Characteristics in the Local Environment," Com-
puters and Structures, August 1978, vol. 10

Basili, V. R., and M, V., Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Socletinrs Press, 1978

Chen, E., and M, V. Zelkowitz, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies,"” Proceedingp of
the Fitth International Conference on Software Engineering.
New York: Computer Societies Press, 1981

Church, V. E., "User's Guides for SEL PDP-11/70 Programs,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. 2eldin, September 1977 (also
designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978)

Mapp, T. E., "Applicability of the Rayleigh Curve to the SEL
Environment" (paper prepared for the University of Maryland,
December 1978)

Miller, A. M., "A Survey of Several Reliability Models"

(pgper prepared for the University of Maryland, December
1978)

National Aeronautics and Space Administration (NASA), NASA
Software Research Technology Workshop (proceedings), March

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report
Form, " NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

Perricone, B. T., "Relationships Between Computer Software

and Associated Errors: Empirical Investigation" (paper pre-
pared for the University of Maryland, December 198l)

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexitv" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Mariatta Corpora-
tion, Technical Memorandum, September 1977

Software Engineering Laboratory, SEL-76-001, Proceedings
From the First Summer Software Engineering Workshop,
August 1970

--, SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M.V, Zelkowitz, F. E. McGarry, et al., May
1977

--, SEL-77-002, Proceedings From the Second Summer Software
Engineering Workshop, September 1977

--, SEL-77-003, Structured FORTRAN Preprocessor (SFORT),
B. Chu, D. 8. Wilson, and R. Beard, September 1977

--, SEL-77-004, GSFC NAVPAK Design Specifications Languages
study, P. A. Schetfer and C. E. Velez, October 1977

--, SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. O'Ne1ill,
S. R. Waligora, and C. E. Goorevich, January 1978

--, SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Nelill, S. R. Waligora, and
C. E. Goorevich, February 1978

B-3

e—

ar

-=-, SEL-78-003, Evaluation of Draper NAVPAK Software Derign,
K. Tasaki and F. E. McGarry, June 1978

--, SEL-78-004, Structured FORTRAN Preprocessor (SFORT)

PDP-llé?O User's Guide, D. S. wilson, B. Chu, and G. Page,
eptember

--, SEL-78-005, l.oceedings From the Third Summer Software
Engineering Workshop, September 1978

--, SEL-78-006, GSFC Software Engineering Research Require-
ments Analysis Study, P. A. Scheffer, November 1978

--, SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July

--, SEL-79-002, The Software Engineering Laboratory: Rela-
tionship Equations, K. Freburger and V. R, Basill, May 1979
=, SEL-79-003, Common Software Module Repository (CSMR)
System Description and User's Guide, C. E. Goorevich,

S. R. Wallgora, and A. L. Green, August 1979

--, SEL-79-004, Evaluation of the Caine, Farber, and Gordon
Program Design Language (PDL) in the ﬁoéaara Space Flight
Center (G§FE§ Code Software Design Environment,

C. E. Goorevich, A. L. Green, and F. E. McGarry, ceptember
197y

--, SEL-79-005, Proceedings From the Fourth Summer Softwar
Engineering Workshop, November 1979 -

--, SEL-80-001, Configuration Analysis Tool (CAT) Functional
Requirements/Specifications, F. K. Banks, C. E. Goorevich,
and A. L. Green, February 1980

--, SEL-80-002, Multi-Level Expression Design Lanquage-
1 (MEDL-R) System Evaluatlon, W. J. Decker,

Requirement Leve
C. E. Goorevich, and A, L. Green, May 1930

--, SEL-80-003, Multimission Modular Spacecraft Ground Sup-
port System (MMS/GSS) state-of-the-Art computer system/

Comgatibilit¥ Study, T. Weldon, M. McClellan, P. Liebertz,
et al., May

--, SEL-80-004, System Description and User's Guide for Code

580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

--, SEL-80-005, A Study of the Musa Reliability Model,
A. M, Miller, November 1980

-=-, SEL-80-006, Proceedings From the Fifth Annual 3oftware
Engineering Wockshop, November 1980

--, SEL-80-007, An Appraisal of Selected Cost/Resource Esti-

mation Models for Softwe:e Systems, J. F. Cook and
. B. McGarry, December (980

--, SEL-81-001, Guide to Data Collection, V. E. Churen,
D. N. Card, F. E. McGarry, et al., September 1981

--, SEL-81-002, Software Engineering lLaboratory iSELz Data
Base Organization and User's Guide, D. C. Wyckoff, G. Page,
F. E. McGarry, et al., September 1981

--, SEL-81-003, Software Engincorlng Laboratory éSBLz Data
Base Maintenance System gDBAM£ User's Guide and System De-~
scription, D. N. Card, D. C. Wyckoff, G. Page, et ail.,
September 1981

Engineering Laborator

-=, SEL-81-004, The Software ’
age, e 1A eptember 1981

D. N. Card, F. E. McGarry,
--, SEL-81-005, Standard Approach to Software Dcvologment.
V. E. Church, F. E. McGarry, G. Page, et al., September 1981
--, SEL-81-006, Software Engineering Laboratory gSEL! Docu-~
ment Library (DOCLIB) System Description and User's Guigde,
W. Taylor and W. J. Decker, December 1981

--, SEL-81-007, Soitware Bneineering Laboratory ESELQ Com=
pendium of Tools, W. J. Decker, E. J. omith, A. L. Grean,.

et al., February 1981

--, SEL-81-008, Cost ana Reliability Estimation Models

i%%REML,Uset's Guide, J. F. Cook and E. Edwards, February
1

--, SEL-81-009, Software Engineering Laboratory Programmer
Workbench Phage 1 Evaluation, W. J. Decker, A. L. Green, and
F. E. McGarry, March 1981

~-, SEL-81-010, Performance and Evaluation of Independent
Software Verification and Integration Process, G. Page and
. E. McGarry, Y

--, SEL-81-011, Evaluatigg Software Development by Analysis
of Change Data, D. M. Welss, November 1981

--, SEL-81-012, Software Engineering Laboratory, G. O.
Picasso, December 1981

--, SEL-81-013, Proceedings From the Sixtn Annual Software
Engineering Workshop, December 1981

--, SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laborator

Turner, C., G. Caron, and G. Brement, "NASA/SEL Data Compen-
dium," Data and Analysis Center for Software, Special Publi-
cation, April 1981

Turner, C., and G. Caron, "A Comparison of RADC and NASA/SEL
Software Development Data," Data and Analysis Center for
Software, Special Publication, May 1981

Weiss, D. M., "Error and Change Analysis,"” Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"”
Naval Research Laboratory, Technical Memorandum, July 1979

Zelkowitz, M. V., "Resource Estimation for Medium Scale

Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer science. New YOork:
Computer Socleties Press,

Zelkowitz, M, V,, and V. R. Basili, "(perational Aspects of
a Software Measurement Facility," Proceedings of the
Software Life Cycle Management Workshop, September 1977

B-6

specification,
precise
(Cont'd)

specification,
very precise

specification-

driven

standards

start date
string proces-

sing

structure-
driven

structure
of data

structured
code

of the specifications if the re.der does
not have enough experience with the prob-
lem or does not obtain further verbal com-
munication.

A completely defined description of the
input, output, and function of a compo-
nent, The irplementer of a very precise
specification need make few, if any, as-
sumptions., It is almos. impossible to
arrive at an ambiguous interpretation or
misunderstanding of the specifications,

Using the specifications of the program to
determine test data (e.g., test data is
generated by examining the input/output
requirements and specifications).

Any specifications that refer to the
method of development of the source pro-
gram itself, and not to the problem to be
implemented (e.g., using structured code,
at most 100-line subroutines, or all names
prefixed with subsystem name).

Date on which initial work on a project
began.

This includes co.ponents that perform op
erations on lists of characters. Norm-
ally, this class is assumed to include
functions of compilers, hash code string
hook-up, and array comparisons,

Using the structure of the program to de-
termine test data (e.g., generating data
to ensure that each branch of a program is
executed at least once).

The organization of a composite data item
consisting of several variables or other
array items. Examples of such composite
data items are arrays (both singly- and
multiply-dimensioned), strings, complex
variables and constants, records on a disk
file (each record containing several
words), and multiple-wori entries in a
table.

The lanauage supports structured control
structu.es (e.g., a FORTRAN preprocessor).

B-37

	1982016122.pdf
	0024A02.jpg
	0024A02.tif
	0024A03.jpg
	0024A04.jpg
	0024A04.tif
	0024A05.tif
	0024A06.tif
	0024A07.tif
	0024A08.tif
	0024A09.tif
	0024A10.tif
	0024A11.tif
	0024A12.tif
	0024A13.tif
	0024A14.tif
	0024B01.tif
	0024B02.tif
	0024B03.tif
	0024B04.tif
	0024B05.tif
	0024B06.tif
	0024B07.tif
	0024B08.tif
	0024B09.tif
	0024B10.tif
	0024B11.tif
	0024B12.tif
	0024B13.tif
	0024B14.tif
	0024C01.tif
	0024C02.tif
	0024C03.tif
	0024C04.tif
	0024C05.tif
	0024C06.tif
	0024C07.tif
	0024C08.tif
	0024C09.tif
	0024C10.tif
	0024C11.tif
	0024C12.tif
	0024C13.tif
	0024C14.tif
	0024D01.tif
	0024D02.tif
	0024D03.tif
	0024D04.tif
	0024D05.tif
	0024D06.tif
	0024D07.tif
	0024D08.tif
	0024D09.tif
	0024D10.tif
	0024D11.tif
	0024D12.tif
	0024D13.tif
	0024D14.tif
	0024E01.tif
	0024E02.tif
	0024E03.tif
	0024E04.tif
	0024E05.tif
	0024E06.tif
	0024E07.tif
	0024E08.tif
	0024E09.tif
	0024E10.tif
	0024E11.tif
	0024E12.tif
	0024E13.tif
	0024E14.tif
	0024F01.tif
	0024F02.tif
	0024F03.tif
	0024F04.tif
	0024F05.tif
	0024F06.tif
	0024F07.tif
	0024F08.tif
	0024F09.tif
	0024F10.tif
	0024F11.tif
	0024F12.tif
	0024F13.tif
	0024F14.tif
	0024G01.tif
	0024G02.tif
	0024G03.tif
	0024G04.tif
	0024G05.tif
	0024G06.tif
	0024G07.tif
	0024G08.tif
	0024G09.tif
	0024G10.tif
	0024G11.tif
	0024G12.tif
	0024G13.tif
	0024G14.tif
	0025A01.tif
	0025A02.tif
	0025A03.tif
	0025A04.tif
	0025A05.tif
	0025A06.tif
	0025A07.tif
	0025A08.tif
	0025A09.tif
	0025A10.tif
	0025A11.tif
	0025A12.tif
	0025A13.tif
	0025B01.tif
	0025B02.tif
	0025B03.tif
	0025B04.tif
	0025B05.tif
	0025B06.tif
	0025B07.tif
	0025B08.tif
	0025B09.tif
	0025B10.tif
	0025B11.tif
	0025B12.tif

