

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

GUIDE TO DATA
COLLECTION

idard Space Flight Center

SOFTWARE ENGINEERING LABORATORY SERIES	 SEL41-00'

GUIDE TO DATA
COLLECTION

SEPTEMBER 1981

FOREWORD

The Software Engineerxng Laboratory (SEL) is an organization

:sponsored by the National Aeronautics and Space Administra-

tion Goddard Space Flight Center (NASA/GSFC) and created for

the purpose of investigating the effectiveness of software

engineering technologies when applied to the development of

applications software. The SEL was created in 1977 and has

three primary organizational members:

NASA/GSFC (5ystums Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to unjerstand the software de-

velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful aevelopmer.t practices. The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports

that includes this document. A version of this document was

also submitted as a Computer Sciences Corporation document

CSC/TM-81/6102.

The primary contributors to this document include

Victor Church	 (Computer Sciences Corporation)
David Card	 (Computer Sciences Corporation)
Frank McGarry	 (Goddard Space Flight Center)

Other contributors include

Victor Basili	 ;The University	 Maryland)
Jerry Page	 (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 582.1
NAS/GSFC
Greenbelt, MD 20771

IV `I

ii

r

ABSTRACT

Guidelines and recommendations are presented for the collec-

tion of software development data. This guide discusses

motivation and planning for, and implementation and manage-

ment of, a data collection effort. Topics covered include

types, sources, and availability of datat methods and costs

of data collection= type3 of analyses supported= and warn-

ings and suggestions based on Software Engineering Labora-

tory (SEL) experiences. This document is intended as a

practical guide for software managers and engineers, ab-

stracted and generalized from 5 years of SEL data collection.

i i i

I
	

11 1

TABLE OF CONTENTS

Section	 1	 -	 Introduction 1-1

1.1 Motivations for Collecting Data. 	 1-3
1.2 How To Use This Guide.	 .	 . 1-5
1.3 Organizing the Collection of Data. 1-6
1.4 Overview of Software Development Data. 1-9
1.5 Related Fublications	 1-10

Section 2 - Classification of Software Development
Data	 2-1

2.1 Classification Structure	 2-2
2.2 Problem Data	 2-5
2.3 Resource	 Data 2-5
2.4 Environment	 Data	 2-8
2.5 Process	 Data	 2-9
2.6 Product Data 2-10
2.7 Change and Error Data. 2-10

Section 3 - Sources of Software Engineering Data.	 .	 .	 . 3-1

3.1 Technical	 Staff 3-1
3.2 Project management	 3-2
3.3 Computerized Records	 3-6
3.4 Development Products	 3-7

Section	 4	 - Costs and Priorities.	 4-1

4.1 Data Collection Costs 4-1

4.1.1	 Task Overhead	 4-3
4.1.2	 Data Processing Cost.	 4-4
4.1.3	 Support Software 4-4
4.1.4	 Analysis Costs 4-4

4.2 Cost Comparisons	 4-5
4.3 Data	 Dependencies 4-5
4.4 Priorities	 4-7

Section 5 - Data Collection Procedures. 	 5-1

5.1 Planning	 Overview 5-2

5.1.1	 iimplementation.	 5-7
5.1.2	 Data Collection and Support Functions	 .	 . 5-7
5.1.3	 Data Management	 5-8

s.

iv
MS

R

TABLE OF CONTENTS

'	 Section 5	 (Cont'd)

5.2	 Design of	 the Data Collection Process.	 5-8

5.2.1	 Data	 Organization	 5-9
5.2.2	 Data	 Valuation	 5-9
5.2.3	 Storage	 and	 Retrieval	 5-10

5.3	 Collecting	 the	 Data 5-10

5.3.1	 Forms	 5-12
5.3.2	 Machine Records	 5-13
5.3.3	 Automated Data Analysis 	 .	 .	 . 5-15
5.3.4	 Interviews and Consensus.	 5-16

5.4	 Data Management.	 .	 . 5-16

Section	 6	 Applications 6-1

6.1	 Monitoring	 6-1
6.2	 Life Cycle Modeling.	 .	 . 6-2
6.3	 Methodology Evaluation	 . 6-2
6.4	 Research	 6-2

Section	 7	 -	 Recommendations	 7-1

Appendix A - 3-SL Data Collection Experiences

Appendix B - Sample Data Collection Forms

B.1	 Sample Data Collection Forms and Instructions.	 .	 . B-1
B.2	 SEL Glossary of Terms Used With Data Collection

Forms B-28

R	 References

I
I
I
t

z.

u_

LIST OF ILLUSTRATIONS

Figure

	

1-1	 Data Collection--Functional Relationships. . . 1-8

	

2-1	 Research Model	 .	 2-3

	

2-2	 Dimensions of Data	 2-4

	

4-1	 Comparative Data Collection Costs. 4-6

	

5-1	 Major ?unctions in Data Collection 5-4

L I S'1 OF ThSLES

Table

2-1 Classification Scheme and Sources of Data	 .	 . 2-6
2-2 Problem Data Parameters.	 2-7
2-3 Process Data Factors	 2-11
2-4 Product-Derived Data	 2-12
3-1 Data From Technical Staff. 	 3-3
3-2 Data	 From Managers	 3-4
3-3 Computerized Recordkeeping	 3-6
3-4 Product-Derived	 Data	 3-8
4-1 Measuring Software Technology Costs. 4-2
4-2 Levels of Detail in Gathering Various Types

of	 Data.	 4-9
5-1 Data Collection Functions. .	 .	 . 5-5
5-2 Data Collection Methods.	 5-11
5-3 uesirable Forms Characteristics.	' 5-14

vi

SECTION 1 - INTRODUCTION

"Software engineering" is a term commonly accepted to de-

scrive the way in which software development ought to

occur--ar3 the efforts to define and implement such a proc-

ess.	 The 1968 NATO conference (at Garmisch, West Germany)

popularized the term to serve as exhortation as well as de-

scription	 (Reference 1).	 Increases in software costs,	 in

requirements for reliability, and in complexity of system

solutions involving computers all intensify the need for

control and regularization of the software development proc-

ess.	 What was arcane art in the early days of electronic
t

computing must become a disciplined and predictable science

if it is to meet the demands made of the computer industry.

Transforming the software development process from art to

engineering requires a disciplined evaluation of methods and

practices, which in turn implies that some aspects of the

Y process are measured.	 The intent of this document is to

describe--and to assist in--the process of extracting rele-

vant and necessary data from the software development activ-

ity.	 All phases of data collection are discussed, starting
a

with reasons for collecting data, through types and sources

and costs of data collection, to applications of the data

once assembled.	 Although the specific experiences of the

Software Engineering Laboratory (SEL) 	 at the Goddard Space
b

Flight Center	 (GSFC)	 (Reference 2)	 form much of the basis

for the guidelines and recommendations herein, 	 this guide is

intended not as a historical review, but as a prescription

for the future.

This guide is aimed at software developers and managers who

would like to be able to assess the value of present and

proposed methodologies in their particular environments.

Properly collected and analyzed, software development data

can aid in identifying sources of problems and errors,	 in

1-1
.n
c

i

comparing costs of different sizes and types of projects, in

making accurate estimates of production rates and project

schedules.	 This guide is intended to support such efforts

by providing a firm foundation for the collection of soft-

ware development data.	 By suggesting approaches, by provid-

ing a classification of types of data, by identifying costs

and pitfalls,	 this guide should smooth the development of

software development data bases and increase the value of

software engineering efforts and analyses. 	 The guidelines

and recommendations in this document are primarily based on

5 years of direct SEA, experience in data collection, and are

distilled from discussions at SEL workshops and elsewhere

within the software engineering community.

To provide a common terminology and a ready reference, this

guide includes a description and classification of software

development data	 (Section 2)	 and an identification of

sources of data	 (Section 3).	 Guidelines for estimating the

costs of data collection for different types and sources of

('ata,	 including both direct and indirect costs, as well as

suggestions for establishing priorities in a limited-budget

environment, are provided in Section 4. 	 The data collection

procedure itself--collection by various ineans, processing

the data, management of the data base, validation--is de-

scribed in Section 5.	 A brief description of applications

of the data is provided in Section 6 to demonstrate and sug-

gest the uses of data in a software engineering setting.

Specific recommendations for data collection methods, prior-

ities,	 and applications are presented in Section 7.

As noted above, the thrust of this document is more "how you
a

can do it" than "how it is done here." 	 Some review of SEL

experience and procedures is in order, however, 	 and is pro-

vided in the appendixes.
r
ti

r

1.1	 MOTIVATIONS FOR COLLECTING DATA

Although the software community agrees that problems and

shortcomings exist in the way softwaca products are gener-

ated,	 there	 is often great difficulty in specifically iden-

tifying the problems and the means by which one should

attempt to improve the process the next time. 	 Each person

has his/her own set of criteria for judging a software prod-
:

uct	 (or process)	 to be successful or unsuccessful.	 Whether

one looks at cost,	 productivity,	 reliability, modularity,

document size, or other factors, many different parameters

are used as evidence of whether a software project has been

successful or not.	 The level and extent to which these

measures of software quality are used, or are meaningful,

are certainly a long way from being comtuonly accepted by
Y

different software development groups.

Before developers can attempt to improve the software

development process and thereby the product, a clear u;,der-

standing of the strengths and weaknesses of the current mode

of operation must be attained.	 Although it is somewhat

unlikely, perhaps the current approach to developing soft-

ware his no shortcomings and cannot be improved upon.	 If

so, developers should be aware of this fact and should con-

tinually reinforce the successful practices. 	 On the other

hand,	 if flaws and problems exist in the approach to soft-

ware development, they must be identified before they can be

Corrected.	 That step is certainly the first in improving

the software development process. 	 This is the primary

reason that anyone should want to collect software develop-

ment data.	 It is the medium by which one can understandy.

strengths and weaknesses, 	 for only then can one aspire to

improve the process and the product.

n
1-3

The motivation for collecting software development data can

be divided into two categories:

1. Understanding. Unless developers are completelyr
satisfied with each software product genaL^ated, there is a

need to understand the strengths and weaknesses of the proc-

ess and the product. The arch:fed infirmation is the only

means by which repeating poor practices can be avoided and

effective development techniques can be reapplied. As soft-

ware developers, the questions should always be raised, "How

am I doing?" and "How can I do better?"

2. Evaluation. The practices applied to developing

software seem to be quite dynamic is that new methodologies,

models, and tools are coatinuaily becoming available. It is

difficult to accept any approach blindly and to believe that

it will have the	 favorable effects on the software that

others may claim. As developers adopt newer and changing

approaches, it greatly behooves the evolving process to con-

currently measure the effects of particu7.^r software devel-

opment approaches. For example, with the availability of

numerous and varied software resource estimation models, it

is very problematic41 to select an approach that is applic-

able and useful to one's own environment. Before adopting

any one of the models, one would most certainly want to

evaluate that approach utilizing development data within

one's own software area. To evaluate the model, one must

have access to the software development data. This cer-

tainly applies to the evaluation of any other facet of soft-

ware engineering.

Although understanding and evaluation are the two key moti-

vators for collecting development data, there are other re-

lated reaons. To experiment with varying development tech-

nologies, data is needed; to justify changes to development

plans (e.g., schedules or expenditures), data is needed; to

F'IF

1-4

4

e

provide the basis for hoping to Rdvance the state-of-the-art,

data is need*,'- but they summary fact that calls for the data

collection effort is the desire and the need to understand

and improve the software development process and product.

Without accurate, descript'.ve data of the software process,

these attempts at understanding and improving will be futile.

1.2 HOW TO USE THIS GUIDE

The intent in producing this guide is to suggest answers to

the "How do I start?" and "What do I do?" questions follow-

ing the recognition that the software development process

can be improved. The answers are: "Understand what you're

doing now" and "Collect relevant data." This introduction

will give the reader a high-level overview of the process

without going into details. Section 1.4 particularly iden-

tifies the data to be collected and from where it is

collected. Sections 2 and 3 expand on those topics for ref-

erence purposes and may be skimmed or skipped on first read-

ing.

The next question to be asked often is "How much will it

cost?"; the reader is directed to Section 4 for this an-

swer. Noting the iterative nature of this entire process

(see Figure 1-1), Sections 4, !i, and 6 may be of value in

any order. Section 4 addresses "what (and how much)"; Sec-

tion 5 treats the "how" of data collection; and Section 6

deals with "why." The details of managing and organizing

the data are described in Section 5 (and treated elsewhere

i
	 in depth), along with the basics guidelines for collecting

data.

As a reference to the process of data collection, Sections 2,

3, and 5 form a unit. Section 2 describers the types of rata

in more detail than required in an overview; Section 3 de-

scribes where the data is found; and Section 5 addresses how

to get it.

1-5

E"-

The listed references and the related publications in Sec-

tion 1.5 suggest to the reader what can be done with the

data once it is collected.

1.3 ORGANIZING THE COLLECTION OF DATA

Crucial to the success of the overall data collection pcoc-.

ess is a clear, advance understanding of the local purposes

and analyses to be supported by the data ("local" meaning

specific to the installation supl .octing the data collec-

tion). The range and amount (and cost) of data to be col-

lected must be directed and bounded by the uses to which the

data will be put. Typical goals include

e	 Quantifying the phasing and staffing patterns of

software development projects

e	 Numerically characterizing the developed software

(e.g., lines of code per module, percent comments,

complexity measures)

e	 Identifying major sources of errors (by phase, by

activity, by personnel) and most commonly effective

methods of detecting and correcting errors

•	 Comparing methodologies, personnel, management

techniques as factors in productivity differences

These and other topics are treated briefly in Section 6 and

discussed in detail in other publications (see References).

Data collection must be identified as one element in a co-

hesive plan for software engineering analysis (Reference 3).

9

	

	 The goals of the entire effort must be clearly defined=

these goals will be the driving factors in planning and im-

plementing the data collection process.
9

The first step, then, is the identification of these goals

for the local environment. Specific, demonstrable goals

should be set (e.g., "Are there quantitative differences

1-6

k.

.mom-... ..	 •-..5_s_	 8^:: ..^..	 ^

between overall productivity measures of equivalent projects

using FORTRAN or PL/l?" or "Do projects that have design

walkthroughs have more or fewer problems during acceptance

testing?").

Once the goals of the software engineering analysis effort

have been determined, the Rpecific data requirements of

those analyses must be identifies. Sources, procedures, and

costs all will affect the selection of data types. interde-

pendencies must be identified to ensure that all requisite

data are targetul for collection (e.g., resource data may be

of little value without data on staffing patterns). Sec-

tion 4 covers these topics.

For some types of software engineering analyses, quantita-

tive models have been developed (Reference 4). Where these

apply to the specified goals identified, the types of data

needed may be spelled out in the descriptions of the mod-

els. For other analyses, identification of data items will

involve more extensive planning. More detail is provided in

Section 6.

Cost factors, model requirements, data dependencies, and

data availability may mandate review and revision of the

software engineering analysis goals. An iterative process

(as shown in Figure 1-1) may be required to resolve ques-

tions of data availability, priorities, and budgetary

limits. An evaluation of the anticipated return (e.g., more

reliable products, more confidence in project estimation)

should be performed as a justification for the data collec-

tion process. Failure to recognize and secure the level of

commitment required may jeopardize the software engineering

engineering effort when the costs become apparent before

those benefits can t^e demonstrated.

a
V

r ^

,UFTWAOE ENG INEERING 01MATUAE
At SIA►Cm AF►ON TS AND MODELS MODEL 0MRI► TIONS

DIN TDr
r,OALS Of

TAFOP f AVSOF	 AAE A
NALYI	

IUOVIRIMENTi
t N	 IN6

TMI IOLYSIi
gOUlllD	 FOP DATA INYMI

EFFORTEffOAT C011lC110N •END'LNCIEi

MODIFY A/ANNINO
GOALS IRS IO ESTABLISH

DATA
SET

ON AOSULiS
AFVIIW	 EVALUATE

.^IDAITIis AN Alrili MOODY	 COSTS OF ►IIOCESS
GOALS AND	 COLLECTION
►QIOIIITIES

ANALYSIS

MANAGEMENT
DUECTIVIS

Imo• fMFTIT At10N

►EIIFOIIM	 COLLECT
ANALYSES	 DATA

a

Figure 1-1. Data Collection--Functional Relationships
and Iterative Processes'

Definition of the data collection procedures to be used is

implicit in the cost analysis. Data that is readily avail-

able in machine-readable form (e.g., staff charge hours,

computer use records) is inherently less expensive than data

collected on forms or by interview. The details of the col-

lection procedure remain to be worked out, but the general

sources and methods are defined in the early planning stages.

Section 5 provides guidelines on the planning and design of

the data collection process. Examples of forms used in data

collection by the SELF are shown in the appendixes.

Implementation of the system, especially in those aspects

that directly impact the software development process (e.g.,

requiring programmers to fill out forms), will require

1-8

planning, public relations, and support from management. A

phase-in period must be anticipated, both for the technical

personnel and for the data collection procedures.

1.4 OVERVIEW OF SOFTWARF DEVELOPMENT DATA

This subsection provides a high-level overview of the types

of data pertinent to a software engineering effOLL and of

the relevant data collection methods. Sections 2 and 3 ex-

pand on these topics; this overview is intended to provide

an introduction and a common frame of reference and termi-

nology for the sections that follow.

In the context of data collection, software development can

be viewed as consisting of five elements: the problem to be

solved, the resources needed for solution, the environment'

in which those resources are applied, the process of apply-

ing them, and the products generated. Data must be col-

lected characterizing each of these elements (at least to

some elementary level) to support a responsible analysis

effort. The data-collection process described in this doc-

ument will be defined in terms of these five elements, de-

scribed as follows:

1.	 Problem data--the problem as described in the re-

quirements specification, constraints (such as

space or execution time), stability of the specifi-

cation, type of changes, and so forth

n	 Resource data--such as staff-hours and computer time

3. Environment data--characteristics of the installa-

tion which are relatively stable and invariant from

project to project

4. Process data--the methodologies, tools, techniques

used in developing software

1-9

:

5. Product data--measures and metrics which character-

ize the software and documentation (size, quality,

complexity, etc.)

Each of these classes of data is further categorized by re-

porting interval as summary or snapshot (i.e., at completion

or in process) data, and h% , level of detail (from project or

task level down to detailed component or module data). Sec-

tion 2 provides the formal definitions and classification

scheme.

Four major sources of software development data are de-

scribed in Section 3. An understanding of the sources and

terminology will be useful throughout this document. The

four sources of data are as follows:

1. Technical staff (i.e., programmers, designers, an-

alysts, operations and maintenance people)--

information available via forms, interviews, activ-

ity logs

2. Managers--forms, interviews, personnel records

3. Computerized records--accounting data (machine

time, number of runs), configuration control rec-

ords (e.g., PANVALET), transaction records (if

maintained for detailed analysis)

4. Products--source code, documents, design (may re-

quire tools such as a source analysis program for

data reduction to a usable form)

1.5 RELATED PUBLICATIONS

This subsection provides a list of particularly relevant

publications that may aid in the collection of software de-

velopment data. A more extensive list is provided in the

list of references.

G

3

r

1. The Software Engineering Laboratory, V. Basili,

M. Zelkowitz, F. McGarry, R. Reiter, W. TCUSZKowskl,

U. Md TR77-535, and NASA-NSG-5123. Describes the

background, goals, and intended data collection

procedures of the SEL as of 1977.

2. Tutorial on Mod..ls anti Metrics for Software Manage-

ment and Engineering, V. R. Basili, IEEE, 1980.

Describes purposes and methods of software data

collection.

3. Software Engineering Laboratory (SEL) Data Base

Organization and User's Guide, D. Wyckoff,

CSC/SD-81/6011UD1. Provides a detailed description

of the data management and dissemination procedures

of the SEL.

4. Sottware Engineering: Concepts and Techniques,

P. Naur, B Randell, J. N. Buxton (eds.) Petrocelli/

Charter, New York, 1976. A conference report on

the 1968 NATO Conference on Software Engineering at

Garmisch, West Germany. Contains many seminal

papers of the field, still. highly relevant.

5. Software Engineering La''boratory (SEL) Data Base

Maintenance System (DBM) User's Guide and System

Description, D. Card, CSC/SD-81/6U79. Describes

the interactive data entry and editing system used

by the SEL.

1-11

F-

SECTION 2 - CLASSIFICATION OF SOFTWARE DEVELOPMENT DATA

Software engineering data, as the term is used here, encom-

passes any information that describes the process or prod-

ucts of a software development effort and that is collected

to support analyses and evaluations of that effort. Rele-

vant data may pertain to any of a multitude of factors and

be characterized by varying measures of objectivi*y and

level of detail. Productive research and analyses at a par-

ticular facility will require a broad range of types of

software development data to support comparisons and evalua-

	

tion p	This section describes several classes of data that

together provide the range of data types required.

The classification scheme presented here is intended to

provide a common framework for discussion= other classifica-

tions can and have been developed (Reference 3). To be

useful, such a scheme must organize the data in some logical

relationship to the goals of the research effort. While

clear and distinct divisions cannot always be drawn, a clas-

sification scheme can aid in the research design by ensuring

adequacy of data collection and clarifying data dependen-

cies. The scheme presented here is intended to support

research in improving the process and products of software

development and to clarify the approach of the SEL to this

research. The classes of data identified in this scheme are

	

•	 Problem data

	

•	 Resource data

	

•	 Environment data

	

•	 Process data

	

•	 Product data
M

Section 2.1 describes the dimensions of the classification

scheme (subject matter, time of collection, level of detail)

y	 and relates this classification to the types and levels of

2-1

a.

analyses that may be required. Section 2.2 defines the

.problem data class that describes the initial requirement

for software and the changes and constraints involved in the

development. Section 2.3 defines the resource data class,

which is used to track and summarize the expenditures of

staff time and computer time in the solution of the problem.

The actual software development activity is characterized by

the environment and process data classes (Sections 2.4 and

2.5), which deal with such items as invariant attributes of

personnel, management procedures, languages, hardware sup-

port, methodologies, and standards. Section 2.6 defines the

product data class, which describes the output of the soft-

ware development activity. Section 2.7 describes change and

error data--a composite of product and process data.

2.1 CLASSIFICATION STRUCTURE

For purposes of analysis, it is useful to be able to map

classes of data onto elements of the software development

model used in the analysis. In its simplest form, the model

used by the SEL identifies an input (the problem or require-

ment), a process (software development methods and tech-,

niques), the environment (including types of machine and

personnel resources available), an output (the products--

software and documentation), and some measure of the re-

sources utilized. Figure 2-1 shows the basic elements of

this model.

To some extent, the mapping of data elements onto model ele-

ments is determined by the purposes and perspective of the

analysts. From a process measurement viewpoint, it may be

useful to view resources and problems as input that is proc-

essed to output a product. From a different standpoint

(e.g., contractural), "resources a:%pended" may be considered

a product to be controlled by manipulating the process. In

the same vein, change and error data can be considered to be

-2

PR A c-_>	 PROCESS	 PRODUCT

ENVIRONMENT

\ -	 .	 J
RESOURCE	 RESOURCE

POOL	 DATA	 o

Figure 2-1. Research Model

either a product measure or a process measure, depending on

the analyses being performed. Because of this ambiguity,

the data classification scheme described here has been made

flexible to accommodate a variety of investigations.

A rigorous analysis of some facet of the software develop-

ment process will require some data on each element of the

model--that is, some level of detail on the problem, re-

sources, environment, process, and product. A study of pro-

ductivity (products/resources) must consider as well the-

impact of variations in problem and environment and proc-

ess. The major dimension in this classification scheme is,

accordingly, subject class of data.

Two other dimensions (Figure 2-2) are used in classifying

data: resolution and project status. Resolution, or level

of detail, ranges from the broad brush-strokes of project

overview aata (executive summaries, etc.) to the precision

of module-level and component-level detail. Low-resolution

data, such as total lines of code or total staff-hours for a

project, is useful for screening and comparing projects.

High-resolution data, such as the purposes and results of

indiviaual computer runs and changes, provide insight into

why a project progressed as it dia.

2-3

F

r

Figure 2-2. Dimensions of Data

2-4

1	 a

Project status, the third dimension in Figure 2-2, refers to

the stage of the project or component about which the data

has been coller^ed. "Predictive" data is available before a

project or phase begins, or before a component 13 fully de-

finad. "Snapshot" data reports status at some intermediate

point in the process. "Summary" data characterizes the

project at completion of each major stage of development.

Snapshot data thus describes the path from start to finish,

or on this dimension of data, from prediction to summation.

Table 2-1 briefly shows the classification scheme dea:ribed

above and the sources of data in each class and subclass.

2.2 PROBLEM DATA

The driving force behind the software development effort is

the software requirement which, in its original statement

and the changes and corrections that inevitably occur,

largely defines the scope of work in a development effort.

The problem class of data is used to characterize the soft-

ware requirement. The parameters used in this characteriza-

tion are listed in Table 2-2. It should be noted that the

major attributes of the problem are ite size and the stabil-

ity of the requirement. The latter attribute is particu-

larly time-dependent (i.e., snapshot data) becau3e the impact

of changes depends greatly on the timing of those changes.

Problem data may also include constraints such as space or

execution speed of the software or externally imposed dead-

lines (such as defined by a spacecraft launch date).

2.3 RESOURCE DATA

Life-cycle studies and detailed project performance analysis

require substantially more detailed information than is pro-

vided by project-level summary data. Characterizations of

actual effort expended on each phase or component of a sys-

tem generally require that timely, detailed data be collected

2-5

.w

J

W
1

S

O

0

W
J

1
<

WN

Q
<

z

v

<0

N ^
uz
<o
WH

>
Uz
W
O
z
W
CL
W

N

ro
D
w
O
N
C1
uHa
0
V)

Tf
ro

Q^

Q)

Z
u

C

0..4

ro
u

..r
w

N
N
ro

L)

v

A
ro
Ey

to/rot9

W

2-6

Table 2-2. Problem Data Parameters

•	 Problem Statement	 j

Number of specifications

Clarity of specification

Nature of specification (e.g., machine

processable)

•	 Problem Stability

Number and timing of changes to specifications

Impact of changes (cost, perturbation of

product)

Nature of changes (e.g., correction,

enhancement, cosmet.;c;

•	 Problem Characteristics

-	 Magnitude of problem

-	 Perceived reliability of specifications

-	 Complexity

-	 Similarity to previous problems

-	 Constraints (calendar time, machine resources,

interface to existing software)

•	 Product Delivery Requirements

n	 -	 Formality of documentation (especially

transition documents)

-	 Reporting and review procedures

-	 Impact of software development data collection

2-7

from development personnel and/or from the machine account-

ing systems. Required data are

e	 Personnel resources applied

Management

Technical

Support (clerical, publications, etc.)

e	 Machine resources required

-	 Computer time used

-	 Terminal use (or other access records)

-	 Data storage (e.g., disk utilization)

Summary data may be used to perform comparisons and evalua-

tions of projects; detailed resource data is necessary to

understand the differences and to fit individual tasks to

models that can be used predictively. Personnel resources

should include information on the type of effort and compo-

nent (if any) supported. Machine resources should be col-

lected in accordance with whatever cost or chargeback algo-

rithms are in use, with additional information to identify

user, type of access, purpose (e.g., of a test run), and

component(s) involved.

2.4 ENVIRONMENT DATA

With respect to software development, the environment con-

sists of the relatively invariant fa::­tiors of staff experi-
ence and ability, computer system availability, management

procedures, and similar attributes of a software development

facility. Other factors may also be included, depending on

the particular installation. In the Flight Dynamics area at

GSFC, for example, the programming language-- FORTRAN-- and

the graphic executive support system (GESS) are part of the

environment. The distinction between environmental data

(whicii characterizes longer term tendencies, factors, and

2-8

T

attributes) and process data (w,iich is concerned with spe-

cific project-related tools and to*thodologies) is highly

installation-dependent.

The factors which are treated as environment data include

e	 Computer language(s) used

e	 Staff competence

e	 Stas", experience with typical problems

e	 Staff experience with host, target computers

e	 Stability of software environment

e	 Availability of machine resources

e	 Stability of machine resources

e	 Staffing patterns and team organization

e	 Management competence

e	 Management experience with typical problems

e	 Support facilities (e.g., librarians, technical

publications expertise)

2.5 PROCESS DATA

The specific tools and methodologies that may be applied on

a project-by-project bash are described by process data.

For example, to test the "chief programmer/team" methodol-

ogy, a single project may be organized in this manner. Be-

cause this procedure may be imposed on one project and

removed on the next, the chief programmer/team technique is

a process factor. On the other hand, a decision to switch

to a new computer system, operating system, or language usu-

ally cannot be ai easily reversed= for better or worse, the

change will probably impact a number of projects. Such a

change would be treated as environment data.

2-9

^rt

From the standpoint of software engineering analyses, envi-

ronmental data describes those factors which must be can-

celed out of the results. (That is, the effects of the

environment must be identified, accounted for, and disre-

garded so that other effects can be analyzed.) Process data

describes the tools, methodologies, and techniques which are

being evaluated and undergoing experimentation. Table 2-3

list- some of these factors.

2.6 PRODUCT DATA

A tremendous amount of objective data can be derived from

the products of the development process, particularly by

analysis of the actual software. Elaborate and ambitious

models of software development have been based on such anal-

yses (e.g., Halstead's "software science," Reference 5).

The development products that can be so analyzed include the

software source code, design and specification documents,

process documentation (e.g., design notebooks), and product

documentation (user's guide, system description), as listed

in Table 2-4.

An important characteristic of product data is that it is

relatively nonvolatile. Time-based information is required,

of courEe, such as growth histories and implementation pat-

terns, but significant amounts of data can be acquired as

late as the end of a project. Change and error data, in

contrast, are very Oependent on timely recordation.

2.7 CHANGE AND ERROR DATA

Although change and error data does not form a distinct cat-

egory (in terms of the proposed model of software develop-

ment), it is sufficiently important to software engineering

(reliability) to be described separately here. From the

standpoint of operations and maintenance, changes and errors

are a product measure. During develop.^^ent, change and error

data may also describe the process.

9—

2-10

Table 2-3. Process Data Factors (Representative)

Graphic representations and expressions

•	 Flowcharts

•	 HIPO (hierarchy-input-process-output) charts

•	 Data flow diagrams

•	 Hierarchy diagrams (baselines, tree charts)

•	 System verification diagrams (SVDs)

Development methodologies

•	 Top-down design (stepwise refinement)

•	 Top-down development (stubs, drivers)

•	 Structured p:o9ramming

•	 Standards and protocols

•	 Use of librarian

•	 Chief programmer/team approach

•	 Unstructured ("egoless") team

Quality assurance mechanisms

•	 Design, code reading

•	 Design, code walkthroughs

•	 Traceability analyzers

•	 Standards compliance auditors

•	 Verification, validation teams

Configuration control and management

•	 Source code control library system

•	 Design, development notebooks

•	 Change reporting and control protocol

•	 Milestone charts

•	 Configuration reporting tools

a

s

2-11.

Table 2-4. Product-Derived Data

Source Code

•	 Number of modules

•	 Component coupling and connectivity

•	 Component size

Various measures of lines of code: old versus

new, developed versus delivered, with and

without comments, executable and specification

statements

Memory requirements: words of machine code

•	 Complexity of code (e.g., McCabe, Page measures)

•	 Halstead's "software science" metrics

•	 Execution characteristics

Specifications and Requirements (if automated)

•	 Traceability analysis

•	 Change records (e.g., changes to specifications)

•	 Complexity measures

Documentation

•	 Page counts

Text

Figures

Copies of listings

•	 Change history (from notebooks)

-12

i s
a

Users of an interactive develoment system, with the instan-

taneous turnaround and immediate response of a terminal-

oriented environment, may use different testing strategies

than would a one-run-per-day batch uQcr. The change history

is different because the interactive ustr can afford to make

one correction per pass, whereas the batch user must attempt

to correct all errors for each new submission. Change and

i

	

	 error data can be a characteristic of the process, or even

of the environment.

Prevention and correction of errors and adaptability to

change are central to the efforts of software engineering.

The analyses that can measure the effectiveness of various

methodologies in these respects require substantial amounts

of data on the occurrence and processing of changes and (as

a subset) on detection of errors. This type of data is of

sufficient .mportdnce and volume to justify its independent

classification, even though there may be overlap with re-

source data.

The definition of changes (and errors) should be related to

the configuration management tools and procedures employed

in the development effort. At each stage of the development

cycle, changes would be recorded for all items that had been

accepted for control. The SEL uses the software module as

the basis for defining changes, and relates code changes to

modifications in specification or requirements (as applic-

able). Change reporting and control is important throughout

a software development task; the emphasis and depth of cov-

erage will depend on the specific goals of the research.

Many of the methodologies and techniques being investigated

in the field of software engineering are directed toward

maintaining flexibility and integrity of a development

effort in the face of changes (whether internal or exter-

nal). Top-down design, iterative refinement, structured

2-13

M

i
I
i

programming, specificat

vated by this concern.

of changes, data should

fied and should include

resources to implement,

change.

ion languages--all are partly moti-

To measure the impact and frequency

be collected as changes are identi-

type of change, source, means and

and magnitude and impact of the

For the purposes of software engineering analysis, errors

are perhaps the most interesting type of change because of

the desire to limit error occurrence by applying appropriate

techniques. Methods of detecting, preventing, and correct-

ing errors are of concern to software engineering. A vari-

ety of models of error occurrence have been devised to aid

in predicting the number of errors, or errors remaining, in

a software system. Data to support the use of these modo:ls

and analyses is included within this class. Information

should be collected on a timely basis to identify the source

of errors, the means used for error detection, and the type

of error. As with other change data, records of resources

required and impact of the error should be collected.

2-14

SECTION 3 - SOURCES OF SOFTWARE ENGINEERING DATA

Sources, availability, and methods of collection of software

development data are of major concern to the structuring of

a data collection effort. Reliability, accuracy, consist-

ency and completeness all have impact on the types of anal-

yses that can be performed, and all are affected by the

source of the data. Particularly important is the avail-

ability of the same (or closely related) data from disparate

sources, for purposes of cross-checking. This section de-

scribes the primary sources of software development data,

the types of data available from each source, and, briefly,

the means of collection from each source. (More on the last

topic is found in Section 4.2.)

The primary sources of software development data are

•	 Developers (personnel)

Technical staff: analysts, designers, pro-

grammers

Managers

•	 Computerized records

Routine accounting records

Special-purpose activity monitoring

•	 Products: source code, documentation, specifica-

tions

3.1 TECHNICAL STAFF

As used here, the term "technical staff" refers to all per-

sonnel who contribute directly to the project products.

I This catchall term is used to distinguish productive effort

from managerial activities and includes the designers, pro-

grammers, quality assurance (QA) staff, test teams, and sup-

port personnel. To the extent that managers contribute to

k

3-1

production, they also are included. (See also Section 3.2.)

Because the technical staff is the major source of nonhard-

ware resources that go into a project, they must also supply

much of the detailed information on the process of software

development.

Although automated data collection procedures should be used

when possible, more intrusive methods--forms, interviews,

activity logs--will commonly be required. The costs and

impacts of various procedures are discussed in Section 5.

Table 3-1 lists the major data items that may be collected

from the technical staff. The major classes of data are

resource data (hours expended, computer usage), product data

(including subjective data, such as perceived complexity,

which is not available elsewhere), and change/error data.

3.2 PROJECT MANAGEMENT

Although the technical staff is the most valuable source of

data concerning the detailed evolution of a project, more

comprehensive and global project data should be obtained

from project management. Administrative data (such as the

amount of time actually charged to a project) can be used to

cross-check (and fill gaps in) the more detailed resource

data supplied by the technical staff. Being less absorbed

in the details of a software development effort, managers

are better able to provide evaluations of the project as a

whole. Sensitive data such as experience and competence of

the technical staff may not be available below the manage-

rial level. Data on support facilities that may be shared

among projects (e.g., typing support) is also available from

project management.

Table 3-2 details the types of software development data for

which project management is a source. Note that, in many

cases, these data can provide verification of data provided

by the technical staff.

3-2

Fi

a`

W-1

Table 3-1.	 Data From Technical Staff

Staff Hours Expended	 (resource data)

• By activity

-	 Design,	 code,	 test,	 travel,	 writing,	 etc.

• By phase

-	 Requirements analysis,	 det iqn,	 code and test,

integration, acceptance

• By component or subsystem
I

Component Descriptions 	 (product data)

• Subjective measures and predictions

-	 Type of software	 (algorithmic,	 I/0,....)

-	 Complexity, difficulty
i

-	 Characteristics of specifications, design
I

• Status,	 size at each phase

• Relationship to other components

• Constraints	 (memory, execution speed)

• Language used

Computer Usage Records

• Purpose and status of each run or session

• Components involved

t
• Characteristics of computer use	 (batch,	 interac-

tive

' Change Error Data

 } • Origin of change

i • Components affected
`M

• Source of error, how 	 (when)	 discovered

• Time required to effect change

t̂	 g 3-3

Table 3-2. Data From Managers

Staffing Patterns and Characteristics

•	 Number and phasing of personnel

•	 Project organizational structure

•	 Quality and level of experience

Product Characteristics

•	 Quality of products

Reliability, maintainability

Efficiency, effectiveness

•	 Degree of structure

•	 Readability (especially documentation)

•	 Compliance with specifications, constraints

Development (Methodology) Data

•	 Development environment

Type of computer support

Congeniality

•	 Manageability (visibility)

•	 Adherence to standards or guidelines

Adequacy of standards or guidelines

Compliance and enforcement

•	 Methodologies used (degree used)

3-4

3.3 COMPUTERIZED RECORDS

Most computer installations provide a means of automatically

collecting and recording details on the use of the facil-

ities. These records typically include information on each

instance of use (job submission, interactive session) iden-

tifying the user, the time, and the resources used. A1-

though typically collected and analyzed for chargetaack and

`	 performance evaluation purposes, these records can also pro-

! vide valuable data on software development activities. In

addition to project-level resource (cost) data, thesR rec-

ords can provide a cross-check on programmer-supplied com-

puter use data. The specific data available will depend on

the type of accounting in use at a facility.

A different type of accounting information is provided by

"librarian" systems (e.g., PANVALET). These systems can

identify source code and library utilization by project and

in some cases by component. Properly used, these systems

can provide data on project size, growth history, and errors

and changes over time.

Table 3-3 lists the types of information that are collected

automatically (for other purposes) and can be used in soft-

ware engineering analyses. Principal motivations in using

these data are their low cost and their availability (al-

though some effort will be required in the data reduction

effort). Also of importance are the consistency and reli-

ability of the data so collected and the negligible impact

on the software development process.

In addition to accounting and library system records, trans-

action records may be collected specifically to aid in soft-

ware development analysis. Such data collection requires an

, initial investment (for the development of software to col-

lect such data) and continuing overhead costs, but may be

3-5

Table 3-3. Computerized Recordkeeping

Access and Use Records

• Computer loading by time and phase

r
-	 CPU, memory

-	 I/0, mass storage utilization

• Use characteristics

-	 Frequency of use by person over time

-	 Type of use	 (compilations, editing, executions)

• Printout volume

Librarian Accounting

• Size and number of modules

• Change history

• Growth history

Automatic Collection of Data

• Computer use data

-	 Session purpose and status

-	 Patterns of edits, compiles,	 tests

-	 Modules involved in each access

• Product data

-	 Change and growth history

-	 Design evolution	 (PDL,	 prologs,	 baselines)

• Test history,	 status,	 results

3-6

-n

capable of reducing the need for form-filling or replacing

some data collection forms entirely. At present, the SEL

has only begun to investigate costs and potential. Table 3-3

includes some of the types of data which are thought partic-

ularly amenable to this type of data collection.

The high cost of using data collection forms and the limits

to data collection using these forms makes it desirable to

pursue such alternatives, but no empirical recommendations

can be made at this time.

°	 3.4 DEVELOPMENT PRODUCTS

Many of the analyses that can be performed on software de-

velopment data require detailed information on the products

of the development process, including the documents and the

deliverable software. This information should be derived

from the products themselves to ensure accuracy and reli-

ability. For the deliverable software, a software tool is

extremely valuable in extracting such data. Manual methods

may be required for special cases (e.g., segments of assem-

bler code in a FORTRAN system) or non-machine-readable prod-

ucts (such as a design document). Table 3-4 identifies.data

elements derivable from the products of the development ef-

fort.

The most commonly used program-size metric is "lines of

code," but there are several interpretations of this term.

Comparability and comprehension both can be enhanced by

using a source code analyzer program to compute line and

statement statistics on project and component levels. These

statistics typically include number of source lines, lines

with comments, executable statements, and detailed statement

type statistics.

Specific software models (e.g., McCabe's complexity measure,

Halstead's metrics) (References 6, 7) will require additional

3-8

Table 3-4. Product-Derived Data

Source Code Analysis

•	 Size (various measures)

•	 Statement type distribution

•	 Module classification

•	 Complexity analysis

•	 Specific models

McCabe

Halstead

Documen t_ Analysis

•	 Page counts by type of page, by volume

•	 Count of changes to specifications or requirements

•	 Type of specification, design

Compliance With Constraints

•	 Execution time

•	 Memory loading

-	 Loader maps

Dynamic measurements

r""'"'''

.r	 ^

^-	 -77777--

f

datailed analysis. Because the actual product is used, Lhe

reliability of the data is maximized.

Dynamic analyses are more difficult to obtain, although some

computer systems are able to collect data on memory, device,

and CPU utilization to some level of detail. To measure

compliance with constraints such as execution time or memory

allocation, specific data collection procedures may be re-

quired. System load maps or execution analyzers may be

usable or at least provide some guidance. in most cases,

subjective management-level evaluations of performance and

compliance will be adequate for the purports of software

development data analysis.

Document analysis is less easily automated, although the use

of word processing may facilitate data collection and static

analysib. Some normalization process may be required to

provide comparability among different styles of document:

pages of sample printout require much less preparation than

text= complex figures require more. Collection of descrip.

tive data i.: required to support staffing level analysis or

prediction of costs for future products.

3-S

SECTION 4 - COSTS AND PRIORITIES

Identification and prediction of costs are essential to the

planning of any project. 	 Because collection of software

development data is inherently a long-term activity, cost

identification is especially important to ensure that ade-

quate resources will be budgeted. 	 This section identifies

the types of costa incurred in collecting software develop-

" ment data and suggests the magnitudes of those costs based

on SEL experiences.	 Because the planning process will un-

doubtedly involve tradeoffs, cost comparisons 	 (Section 4.2)

and data dependencies	 (Section 4.3) are also discussed. 	 The

tradeoffs made at a particular facility will depend partly

on these cost factors and partly on the goals of the partic-

ular software data analysis effort. 	 Section 4.4 discusses

priorities and recommendations for data collection in terms

of those goals.

This section provides practical guidance for planning a data

collection effort by suggesting how to maximize the return

for a given level of investment. A successful software en-

gineering research effort requires only--and all of--those

data needed to support the desired analyses. This section

supports that effort.

4.1 DATA COLD" ,rION COSTS

There are four primary sources of costs to collecting soft-

y	 ware development data:

•	 Impact on monitored tasks

•	 Processing (verifying, storing, disseminating) data

•	 Development and maintenance of support software

•	 Analysis of data

Table 4-1 illustrates these factors and the magnitude of the
ww

associated cost. Costs are normalized by relating them to

the magnitude of the projects being monitored.

4-1

7

I

i

W:.

Table 4-

L

r

TASK SEL
EXPERIENCES

GOAL

OVERHEAD TO TASKS (DEVELOPMENT PROJECTS) 5 TO 15% 5%
FORMS

MEETINGS
TRAINING
INTERVIEWS
COST OF USING TOOLS

DATA PROCESSING 10.12% 6 TO 8%
COLLECTING/ VALIDATING FORMS
ORGANIZING DATA
ENCODING INFORMATION
DATA MANAGEMENT AND REPORTING

S^JPPORT SOFTWARE 5 MAN-YEARS, THEN a MAN-YEAR PER YEAR
DATA BASE SOFTWARE 1 MAN -YEAR PER YEAR

CODE ANALYZERS

REPORT GENERATORS

STAFF TRAINING

ANALYSIS OF INFORMATION 15 TO 25% 10%
MEASURING METHODOLOGIES
DESIGNING EXPERIMENTS
DESIGNING ANALYSIS TOOLS
DEFINING MEASURES

4-2

P­­7

4.1.1 TASK OVERHEAD

The data collection process adversely affects the monitored

dev.+ lopment projects (tasks) in several ways, depending on

the types of data and the methods employed. Data collection

forms have the greatest impact, particularly when used to

collect component-level data. Forms used by the SEL (see

Appendix B) are filled out by the technical staff on a

weekly basis (to monitor resources) and for each change and

each computer run. Additional time is spent on project-

level quality assurance for forms data and in filling out

forms for resource, component, and project summary data. A

startup cost is also incurred in training development per-

sonnel to use the forms (to ensure consistency).

Task overhead also includes time spent in meetings to define

subjective project-level data and in interviews to collect

background data on changes, errors, and procedures.

Additional costs that may be less easily identified are due•

to the use of data collection tools (such as the PANVALET

librarian system), which may be used more extensively be-

cause a project is being monitored. No attempt has been

made by the SEL to isolate these costs. More sophisticated

automatic data collection procedures have not been imple-

mented by the SEL.

On tasks monitored by the SEL, overhead costs chargeable to

the development tasks ranged from 5 to 15 percent of the

total task cost. it should be noted that the SEL is col-

lecting a very broad spectrum of data; nevertheless, it

seems unlikely that the cost could be held under 5 percent,

even with a less ambitious data collection effort.

• P

l

t

4-3

IF V

4.1.2 DATA PROCESSING COST

A continuing staff effort will be required to perform the

collection, quality assurance, validation, data entry, and

reporting functions. Here again, data collection forms con-

tribute most significantly to the cost, while other types of

data processing (such as source code analysis) contribute to

a lesser degree. Data ;n,.nagement costs (error correction,

status monitoring and reporting) must also be considered.

The experience of the SEL has been that the cost of process-

ing and managing the data amounts to 10 to 12 percent of

development task costs. By simplifying the forms and

streamlining the process, this cost can be cut in half.

4.1.3 SUPPORT SOFTWARE

An initial investment in support software is required in

those cases where data management involves a computerized

data base. In any case, training and documentation costs

will be incurred during the startup phase. Because of the

iterative nature of the data collection and analysis process

(Figure 1-1), changes are likely to be required as the ef-

fort progresses.

The SEL chose to build a data management system tailored to

our requirements as they evolved. Six staff-years of effort

were required to develop the system to its present state

(References 2, 11, 12). Maintenance of the software--

primarily enhancements to support new data types--requires

1 staff-year per year. As the data management system and

1 ' s

	

	 the collection process become more stable, this is expected

to approach 6 staff-months per year.

1	 4.1.4 ANALYSIS COSTS

The cost of analysis will depend on the availability of

r	
easily adaptable software for statistical processing and

reporting. This cost element is extremely sensitive to the

4-4

r-

types of analysis required and to the level of detail of the

research. The SEL, which is investigating a very broad

range of concepts and factors, has experienced analysis

costs that amount to 15 to 25 percent of development task

costs. This figure probably represents an upper bound to

this cost factor. The SEL expects to limit this to 10 per-

cent in the future by eliminating unprofitable studies and

avoiding dead ends. An effort of more limited scope would

require a commensurately smaller investment.

4.2 COST COMPARISONS

For each class of data or data source, both startup and con-

tinuing costs must be considered in making comparisons. The

initial investment involved in building a source code ana-

lyzer may be large, but the cost of use is quite small.

Conversely, the cost of processing data forms remains high

as long as data are being collected. Figure 4-1 diagrams

the relative startup and continuing costs of data collection.

4.3 DATA DEPENDENCIES

The data collection process is intended to support analytic

efforts %:o improve the software development process. It is

important, therefore, to collect all the types of data

needed for a particular analysis. Some of the required

pieces of data, however, may not be directly obtainable; the

problc.m is more complex when the needed items must them-

selves be derived from other data types before they are

usable. This section focuses on some of the interdependen-

cies of such derivative data. The SEL is currently investi-

gating (through factor and cluster analyses) consistent

formulations for such hard-to-quantify factors as quality

and and maintainability. For the present, some simpler de-

a'
	 pendencies will be exposed.

Productivity requires not only the obvious lines of code and

staff-hours but also the life-cycle phases included in the

4-5

a
a	 2

i

-_<

1

d

NTE^V^Ews

FO RMS -ONAILEO
COMMNENT DATA

/ AUTOMATo0OATA
AUTOMATtODATA COLLECTION

COLLEC"ON

/

/!{

FOAME-CHANGE EAr10N DATA

STATIC ANALYSIS
STATIC ANALYSISS

F011MS-11ESOUACES

DEVELOPMEN T Of V l LOPAIEN T T OO LS
TOOLS LIEAAAV SrSTENII

9 0I1MS -SUMAIAM DATA
i 1

^	 I

ACCOUNTING
^

ACCOUNTING DATA
DATA

^NTEIIVI W$ /

F
G
H

N
S Su/.IE_TIVE vIR OACr BATA

$UB^tC'rvE

STAAtU ► CONTINUINGi

^VLM/P1 OF PROACTS MONITORED-----^ '

r

Fi g ure 4-1.	 Ccmparative Data Collection Costs

4-6

calculation. Comparison of coding-only productivity with
P

full-development productivity does not reveal anything.

Similarly, change data can be compared only if the data are

normalized to a specific life cycle period. This is partic-

ularly important when projects with different methodologies

are compared.

The most glaring data dependency concerns the experience

level of the technical personnel. Current data indicates

that this factor can swamp other considerations. Some means

(typically, data supplied by project managers) must be found

to normalize project data for this factor before meaningful

comparisons between projects can be made.

4.4 PRIORITIES OF THE DATA COLLECTION

Obviously the type of data and the detail of data to be col-

lected depend on the objectives of the efforts as well as

the extent of resources available to support the collection

process. If one is merely interested in studying or devel-

oping resource estimation models, the heaviest and possibly

the complete emphasis would be placed on collecting detailed

data representing the resource expenditures for a project on

a daily or a weekly basis. In this case, one naturally

would not be concerned with collecting detailed change and

error data.

In this section, we will attempt to generalize the relative

importance or significance of information that could be ex-

tracted from a software development project. These general-

ities are based on the extensive experiences of the SEL

during the past 5 or 6 years. It is assumed that the person

interested in collecting the data does not have a singular

area of study in mind (such as software errors only), but

that the reader has more general objectives as stated in

Section 1.1: first, to gain a clearer understanding of the

software development process in the particular environment

4-7

.—

and second, to support efforts when attempting to make a

rational judgment as to the methodologies and approaches to

be used in developing software in future projects.

In outlining this priority schedule, we refer to the classi-

fication scheme described in Section 2. Here, there are

five classes of data that may be collected (process, prod-

uct, project, resources, and error data); and within each

type of data, there is a varying level of detail that one

may request. These levels of information are summarized in

Table 4-2.

Obviously, some of the information defined is nearly useless

without some of the other information; for instance, it does

little good to know how much we spend on building a product

if we know nothing about the size or characteristics of the

product under consideration.

Based on the experiences of the SEL, the following priority

scheme is suggested to anyone pursuing the general task of

collecting software data for studying software development

strategies, models, or tools. The derived priorities are

based on relative usefulness and difficulty in collecting.

The list is ordered from the most important or highest pri-

ority (1) to the lowest priority (10):

1. Level 1 of Resource Data. This covers the man-

hours expended on the project, as well as the computer usage

and general support hours such as technical publications

hours, ODC technical hours, and librarian support time.

This information is critical in evaluating the total cost of

a project and the general profile or model of how resources

were consumed. The data has been widely used in helping to

evaluate and build models for future cost and resource esti-

mation.

2. Level 1 of Product Data. To support even the most

elementary analysis of any software project, it is mandatory

4-8

f

r W

Table 4-2. Levels of Detail in Gathering Various Types
of Data

Class of	 Level-1
Data	 Detail

Process	 General description of
requirement

Standards used

Tools applied

Team organization

Project	 Phase dates

Development machine

Development language

Level-2
Detail

Detailed characteristics
of methodologies applied

Description of each
phase of the life cycle

Subjective quality meas-
ures of project perform-
ance

Staffing details

Environmental perturba-
tions

Level of staffing

Resources Weekly manpower expendi- Manpower by component by
ture on project	 phase

Computer usage by week	 Computer usage by run

Change	 Error information as	 Change information
discovered and fixed

Product	 Project size
Number of lines of
code

Number of modules

Number of new lines

Document size

Change history

Individual component
characteristics

Growth history

Subjective rating of
project

4-9

that the characteristics of the product be recorded. This

basic information includes such things as lines of code,

number of modules, size of documents, and amount of new code

versus amount of reused code. This data is not overly dif-

ficult to capture and may be extracted once at the end of

the project, but it is required by nearly all meaningful

analyses that could be performed on a software project.

3. Level 1 of Change//Error Data. The two greatest

concerns of building a software product relate to cost and

reliability. Nearly all measures of quality are based on

these two factors. The basic error data help to character-

ize the error-proneness and the reliability of the prod-

uct; this information complements the information collected

that pertains to resource expenditures to provide the basis

for characterizing the cost and the reliability. The most

important information included here consists of error type,

date that the error is found, cause of the error, and level

of effort required to correct the error.

4. Level. 1 of Project Data. To compare characteris-

tics or profiles of different projects, it is quite impor-

tant to record the general project characteristics including

phase dates, staffing characteristics, type of software

being developed, and the manager's general view of the de-

velopment effort.

S.	 Level 1 of Process Data. if one hopes to measure

or evaluate the effectiveness of particular approaches to

developing a software product, one must be aware of the de-

velopment characteristics or approaches (methodologies and

techniques) used during the development process. This first

level of process data must describe such characteristics as

team structures, standards followed, testing strategies,

documentation requirements, approaches to configuration

4-10

J

« P
r

control, and methodologies utilized. This information can

be captured quite easily on this general high level.

6. Level 2 of Resource Data. This is the first of the

more detailed level of data that should be collected from

the software project. This level includes the weekly de-

tailed manpower expended on each component (subroutine,

function, and so on) as well as the type of effort put forth

on each component (such as designing, coding, or testing).

This level of detail allows one to determine such things as

the amount of design effort put forth versus the amount of

code effort. it also determines the relative amount of time

required for the development of each of the system compo-

nents.

The Level-2 resource data should also include the detailed

usage (by run) of the support computer facility. Here, one

captures the reasons that runs were made and the general

profile of run results (such as number of successes or fail-

ures) .

7. Level 2 of Project Data. This information consists

of the subjective information describing project character-

istics as viewed by knowledgeable managers. Here, one de-

scribes such characteristics as the quality of the product.

8. Level 2 of Process Data. This information details

i
the models, tools, and methodologies used in developing the

product. Each phase of the software life cycle must be

characterized with some selected rating for each of the ap-

plied methodologies or tools. As opposed to the general

description (for Level 1) of the environment and basic de-

velopment philosophy, here each of the detailed methodolo-

gies (as listed in Section 2.2) must be itemized. This

information is quite difficult to normalize and is quite

vulnerable to bias and outright error.

4-11

C

9. Level 2 of Product Data. Once a general descrip-

tion of the software product is attained (size, amount of

documentation, and so on), one should then attempt to char-

acterize on the component level (such as size and complexity

of each component). This information is generally obtained

at the end of a project, but the application of this infor-

mation has been found to be quite academic to date.

In addition, one could attempt to capture, for each compo-

nent, the estimated characteristics of the component before

it is developed and again after development is completed.

This information should provide insight into which types of

components we can estimate and which types of components are

most difficult to characterize until they are completely de-

veloped. In the SEL, this particular information has been

found to be relatively expensive to collect and relatively

difficult to utilize effectively.

10. Level 2 of Change/Error Data. Once all of the

error characteristics have been provided, the detailed level

of data for the change/error information would include de-

tailed descriptions and histories of changes trade to the

software. This data must be captured each time a modifica-

tion is made to design, specification, or code. This data

has been found to be quite difficult and expensive to re-

trieve, and the useful application of it to dare seems

somewhat limited.

4-12

C

SECTION 5 - DATA COLLECTION PROCEDURES

The heart of any software engineering research program is

data collection: the continuing process of collecting, val-

idating, preparing, and furnishing the data required for the

intended analyses. The major shortcoming of most published

models, predictions, and hypotheses in the software engi-

neering field is the lack of reliable data to provide vali-

dation. Only with a rigorous, aggressive program of data

collection can software engineering efforts provide a demon-

strable payoff to a software development organization.

without substantiation by way of data interpretation, all of

the pronouncements and pontifications of software engineer-

ing theorists are merely unsupported opinian.

The cost and complexity of this collection process is

largely responsible for the paucity of data. Clearly iden-

tified goals, careful planning, and systematic implementa-

tion are essential, along with adequate monitoring to ensure

that data collection goals are met. This requires a high-

level commitment of rapport for the activity, and implies

the establishment of some central group or organization with

long-term responsibility and resources sufficient for the

task.

This section describes the act,jal data collection procedures

that are necessary to support practical end useful software

engineering research. Planning for data collection is dis-

cussed in Section 5.1. Section 5.2 describes the design of

the process. The mechanics of data collection, for each of

the sources of data identified in Section 3, are described

in Section 5.3. Section 5.4 deals witk the management of

the data from collection through availability for research.

Costs and priorities of data collection (a major concern in

real-world endeavors) are discussed in Section 4.

5-1

5.1 PLANNING OVERVIEW

The planning process for data collection, as noted in eig-

ure 1-1, includes the following:

e	 Define the goals of the effort ("identify produc-

Itive methodologies"...)

e	 Identify the analyses required to achieve those

goals

e	 Determine what data are needed to perform those

analyses

e	 Determine where the data are, how to collect them,

how much they cost

e	 Specify priorities--what to collect first, what to

defer, what to ignore

This procedure, driven by availability of data and available

resources, should produce a list of what data are to be col-

lected and whence to collect it.

The initial steps in planning for data collection consist of

defining the goals and requirements of the software engi-

neering effort. Because the types of analyses desired may

require speecific classes and level of detail of data, some

focusing of effort should be performed early in the research

effort. Some published models, for example, have precise

and detailed input data requirements. A high-level descrip-

tion of the types of analyses supportable through these ef-

forts is given in Section 6= an in-depth discussion of the

potential of software engineering is beyond the scone of

this doc,.,nent. Once the specific goals of the data collec-

tion activity have been defined, the mechanics of data col-

lection and managen.-t can be planned in detail.

Planning the actual data collection is straightforward once

the data requirements and availability have been defined.

5-2

Although a number of different functions can be defined, the

actual implementation is not significantly different than

managing any data base functi ,)n. Details on data management

are provided in Reference 13.

The major activities in data collection are shown in Fig-

ure 5-1. The planning for these activities must identify

and define responsibility for:

•	 Implementation

•	 Data collection and support

•	 Data management

•	 project management

These responsibilities are detailed in Table 5-1.

Implementation functions include design of procedures, forms,

data flows, and protocols and implementation of the data

base; these are essentially one-time startup activities.

Data collection and support functions include supervision

and monitoring of the data collection process, ongoing qual-

ity assurance at the point of collection, and data entry and

validation. Data management functions include definition

and maintenance of the data storage, access, and retrieval

procedures. The functions of project management of the ac-

tivity can only be defined with respect to the organization

involved, but will certainly include monitoring to ensure

adequate, reliable data. Consistent and valid information--

especially when collected by forms--cannot be obtained with-

out active management support to ensure compliance and

cooperation from development personnel.

The major non-staff resource required is some medium for

archiving and validating the collected data. For small-

scale l ata collection activities, this may simply require a

file cabinet, data entry/process/correction log, and dissem-

ination procedure. For larger operations, a computerized

data base is (considering the subject matter) the ob^-'ous

5-3

UEVELOPMENT

PROJECT4

FORMS
	 MANAGEMENT

DATA	 I

MACHINEI	 PRODUCTSRECORDS

I
I	

R-—

	 I

I	 I
I	 I
I 	 I
 I

i	 I
I	 I
I 	 DATA ICOLLECTION 	 IFUNCTIONS
L_ --.----.—^

i
I
I

DATA	
PR OII	 BASE

I

I
I

iSING	 (^

DATA
MANAGEMENT	 la

ANALY SIS 	 FEFEEDBAC K

FUNCTI
UNCTI ON

Fiqure 5-1. Major Functions in Data t_ollection

5-4

Table 5-1. Data Collection Functions (1 of 2)

;mplementation

IF

•	 Design/specify data flow for each type of data and

source, QA, monitoring

•	 Design and validate data forms

•	 Specify data log format and protocol

•	 Write procedures guides, instructions

Data Maragement

•	 Design files, access

•	 Build data entry and

•	 Design/implement mai

•	 Develop data access,

•	 Provide training and

mechanisms

validation mechanisms

ntenance procedures

reporting procedures

documentation

•	 Oversee data entry, validation

•	 Record, evaluate, direct correction of problems and

errors

4	 Provide status reports

•	 Identify/request/allocate resources

•	 Provide training for data entry personnel

Data Collection and Support

•	 Perform data coding, checking, entry

•	 Perform maintenance under data base administrator

direction

•	 Generate routine reports

•	 Perform consistency checks on data at point of col-

lectior,

5-5

Table 5-1. Data Collection Functions (2 of 2)

•	 Perform data cross-checking and validation dnder

direction of data base administrator or data col-

lection supervisor.

Project Management

•	 Establishes data collection procedures with devel-

opment projects

•	 obtains, allocates resources

•	 Directs activity

7-6

;,t

alternative. These functions (whether or not computerized)

are discussed in Sec.ion 5.3.

5.1.1 IMPLEMENTATION FUNCTIONS

The responsibilities for devising and establishing the col-

lection and monitoring procedures must be defined in the

planning stage. Each step of the data collection process

must be identified, and monitoring and QA procedures speci-

fied. Data collection forms must be designed, and forms-

logging protocols established. A manual or protocol of data

flow, data descriptions, instruction and responsibilities

must be written. Where machine records are to be collected

(e.g., accounting data), some regular procedure should be

described to minimize delays and loss of data and to fix

responsibilities. Procedures for data review at the point

of collection (e.g., the staff person filling out forms)

must be developed and responsibility assigned.

5.1.2 DATA COLLECTION AND SUPPORT FUNCTIONS

The data collection process must be conducted and monitored

on a continuing basis; responsibility for this support func-

tion should be established during the planning activity.

Machine-supplied records must be requested, acquired and

processed. Forms must be collected and logged in a timely

fashion. Point-of-collection quality assurance must be

established as a regular activity. Attempts to recover

missing data must be made and followed up. Particularly

important when several projects are active at once, a single

central collection and monitoring function will smooth and

simplify the data collection process.

QA functions should be the responsibility of someone associ-

ated with each development project and trained in the

requirements of the software engineering effort. In this

way, consistency of data within a project and compatibility

across projects can be ensured.

I

5-7

V _—T

Data entry personnel should be trained to become familiar

with the format and typical content of data entry forms.

This will minimize errors in data entry and provide an addi-

tional check on information content.

5.1.3 DATA MANAGEMENT

The data which have been collected, reviewed, logged, qual-

ity assured and assembled must be managed to facilitate ac-

cess for analysis purposes. This is essentially a data base

problem rather than a software engineering problem, and is

not treated in depth in this guide. Some notes, however,

are appropriate here.

•	 The organizing (indexing) principles should reflect

the data analysis requirements

•	 The data management system should facilitate iden-

tification of missing or incomplete data

•	 Access procedures should protect any sensitive

(proprietary; personnel;...) data without blocking

access to the data base

•

	

	 Because data requirements change with increased

understanding, the data management system must be

flexible and amenable to re-organization

5.2 DESIGN OF THE DATA COLLECTION PROCESS

As noted above, the data collection process involves col-

lectinq, validating, storing, and making available data re-

garding software development efforts. The overall design of

this process involves numerous elements, as shown in Fig-

ure 5-1. The logical and physical organization of data must

be defined; validation procedures must be specified; data

4>

	

	 storage and retrieval mechanisms (whether or not computer-

ized) must be identified. The "what" of data collection is

driven by the analysis requirements; the "how" depends on

the environment and the available resources. The procedural

5-8

"-F

C

design (organization, validation, storage, and retrieval)

follows from the answers to the "what" and the "how." As

illustrated in Figure 1-1, the entire planning and design

activity is inherently iterative.

5.2.1 DATA 3RGANIZATION

The organizing principles chosen for the data base should

simplify the collection and/or analysis activities. The

SEL, for example, organizes its data by project and by

form-type. Most SEL analyses are related to comparisons of

different projects (to identify differences and evaluate

methodologies) and are made easier by the project-oriented

organization. Data validation procedures and manipulations

are typically tied to the original forms (for verification

purposes), so the forms-type division is a useful one.

Other organizations might be chosen (e.g., by type of data)

as long as the storage method used adequately supports re-

trieval for purposes of editing and analysis.

The SEL data base organization was influenced somewhat by

the limits of the computer system used for data base mainte-

nance. As noted in Section 5.2.3 below, different storage

systems may impose different requirements or, conversely,

provide different opportunities.

5.2.2 DATA VALIDATION

It is assumed here that some quality assurance and validation

i	 takes place at the data collection point (Section 5.1.2).

To ensure that the data stored is usable, accurate informa-

1 tion, an additional validation stage is required in the data

processing activity. The SEL data base is computerized, and

can therefore make use of automatic validation programs to

r ensure completeness and consistency. Noncomputerized sys-

tems would use manual techniques to ensure that all data is

carefully accepted, logged, summarized, and stored for re-

trieval.

5-9
I

This requirement for validation is, in fact, a significant

argument for computerization of the data. Because all items

are checked as they are entered, sporadic errors (which

might slip past a spot-checking system) are discovered.

When found, systematic errors (e.g., consistently entering

an incorrect code for a field) can often be corrected en

masse on a computerized system.

5.2.3 STORAGE AND RETRIEVAL

Design of the storage and retrieval system greatly depends

on the available resources. Possible methods range from

simple file folders to elaborate data base systems. The

chosen system will greatly impact the types and difficulties

of analyses to be performed, with the cost of data entry

(highest for computerized systems) balanced against the cost

of repeated access and summation (highest for linearly or-

ganized manual systems). The intent of this section is

merely to emphasize the importance of this design decision.

More detail on how to design a system is given in Refer-

ence 12.

5.3 COLLECTING THE DATA

As part of the design and planning activity, specific mech-

anisms of data collection must be identified. Collection

methods "ave been devised for each of the sources described

in Section 3. Table 5-2 lists these methods and the data

sources for which each is suited. Advantages and drawbacks

of each method are discussed below.

In collecting (as in planning) the data, it should be kept

in mind that accurate, complete data--even if collected at

only a high level--is more useful than a large amount of

data of uneven coverzge and consistency. The data

collection process should be directed at the information

that is likely to be available, rather than at collecting a

little of everything.

5-10

F_ J

Table 5-2. Data Collection Methods

Source	 Collection Methods

Development staff	 Data forma
Interviews
Automated collection

Machine records	 Data reduction and cross-correlation
of automatically collected informa-
tion

Development products 	 Specifically designed analysis pro-
grams

Managers Data forms
Interviews
Consensus-forming

5-11

4

Vh k'
. F

•, ll

5.3.1 FORMS

'the bane of every programmer's existence (at least, for pro-

grammers on monitored projects), data collection forms are

perhaps the easiest-to-implement method of collecting data

from development personnel.

Properly designed and managed, data forms can provide a

wealth of information concerning the development process at

both summary and component levels of detail. Forms can also

serve the purpose of providing archival storage of ephemeral

data (such as the purpose of a test run), permitting data

collection to be uncoupled from the data processing func-

tion. The iterative nature of software engineering re-

search, of course, implies that this uncoupling could allow

inconsistencies to occur in the data base. When new forms

are designed with new questions, problems of compatibility

may arise.

There may be (as yet) no good alternatives to for,ns for

collecting some types of data. There are, however, some

serious drawbacks to the use of forms for extensive data

collection. In addition to the impact on the development

process and schedule, and the potential morale and compli-

ance problems resulting from the drudgery and boredom of

filling out forms, the design of forms is almost an art.

It is the experience of the SEL that development personnel

will complete progress/status/exception/etc. forms only with

reluctance and with continuing prompting and exhortation

from management. When such encouragement has occurred, de-

tailed reports containing a wealth of data have been col-

lected. Despite some grumbling and some often justifiable

complaints about unnecessary duplication of effort, forms

were completed usefully and consistently. With lukewarm or

sporadic management support, forms were completed cursorily

or not at all.

5-12

Table 5-3 lists some of the desirable characteristics of

data cciliction forms. Although specific data requirements

may contravene some of these guidelines, they serve as a

target for the art of forms design.

The data collection forms included in Appendix B have been

developed and used by the SEL at GSFC. They are included as

suggestions and as examples produced by a second-iteration

forms design process. These forms reflect the research

goals of the SEL and are included not as a prescription but

as a guideline.

5.3.2 MACHINE RECORDS

Automatically collected records such as charge accounting

data and source library update data form a major and gener-

ally reliable source of information about the software de-

velopment process. A major attraction is the fact that, by

definition, these data are collected independently of the

software engineering effort. The cost of using them is usu-

ally limited *to the cost of data reduction and correlation.

The specifics of the data available will vary from one in-

stallation to another because of differences in systems,•

accounting software, and chargeback philosophy, and in

source code library control systems. In general, however,

these data can support at least summary-level analyses, and

in many cases (and with greater effort), component-level

detail.

Data reduction and cross-correlation efforts typically in-

volve correlating account numbers, users, and job or compo-

nent names to specific projects or systems and compressing

masses of data into a usable synopsis. This may be accom-

plished by the accounting software itself or may require

development of analysis programs. Data security may also be
a concern, depending on the facility. The coverage and

5-13

•	 Ensure that all requested data can be justified

•	 Use terms which are familiar to the specific envi-

ronment

•	 Provide professional looking, quality reproduced

forms (rather than typed and xeroxed)

•	 Use the same forms for all projects

•	 For Repeated-use forms (e.g., status reports):

limit requests to weekly

do not ask for the same information repeatedly

•

	

	 Integrate forms into the development reporting

process

k

E"

accuracy of the data will generally justify the investment

in data reduction software.

It would be desirable to use computer-collected records to

profile all the parameters of software development. Impact

on the development process would be minimized, coverage and

accuracy would be improved, consistency and comparability

would be maximized. But the front-end investment in tools

and procedures that would make thin feasible has not yet

been made. Computerized accounting records and source code

control systems (see Section 5.3.2) provide some such data,

but the potential for future initiatives in this area is

large. Not all data can be collected automatically, but the

limits of what is possible are presently unknown. More re-

search and investment is required.

5.3.3 AUTOMATED DATA ANALYSIS

Much of the output of a software development effort is read-

ily amenable to analysis by appropriately designed software

tools. The software product itself is clearly the most re-

liable source of data on product characteristics, although

some condensation and interpretation of data may be neces-

sary for application. Where automated design and/or docu-

mentation tools are employed, these products also can be

analyzed with minimal investment.

Typically, the analysis programs to provide these data will

z
need to be developed specifically for the software engineer-

ing effort. Each type of product (source code, program de-

sign langu ►ge, documents) will require a tailored analysis
program. The fact, however, that these sources are fixed,

definitive, and machine readable makes this approach highly

attractive.

5-15
M^

n 3

5.3.4 INTERVIEWS AND CONSENSUS

Some types of information are not easily collected on data

forme because of the subjective or imprecise nature of the

data. For example, motivation for a particular design deci-

sion may be useful in understanding a project but not easily

recorded on a checklist. Constraints are frequently defined

in a complex fashion suitable for the development staff but

I R 	not for data recording. Judgments on the acceptability,

clarity, or maintainability of software are essential to

software engineering analysis but difficult to quantify in a

consistent manner.

For these types of data, as well as for monitoring of the

data collection process in general, interviews or meetings

are the most direct and useful procedure. Responses that

are not easily collected on checklists can be amplified in

discussions between developers and data analysis staff.

Consistent scales of evaluation can be developed in meetings

of project managers with the software engineering team. The

cost of such procedures will limit the extent of use, but

some such activities should be anticipated and planned..

5.4 DATA MANAGEMENT

Managing the data after it has been collected and verified

involves data entry, data editing, validation, and an inter-

face to the analysts who will use the data. SEL experience

shows that collection of accurate and complete dt, : requires

effort and experience. The data management system should be

designed to support this process by identifying gaps and

inconsistencies in the data (e.g., by using sequential form

numbers). SEL experience also shows that data requirements

change with improved understanding of the development proc-

ess. The data management system must therefore permit

t

i

reorganizations data as new items are added and existing

data proves unusable or valueless.

The design and implementation of the 5EL data base is de-

scribed in Reference 12.

5-17

W-

P---	 i --

SECTION 6 - APPLICATIONS

The software development data base will facilitate many ap-

plications of interest to managers and researchers. The

manager would like to have monitoring, estimating, and eval-

uating tools to examine ongoing software development tasks.

The substantial variation in the results of software engi-

neering experiments by different researchers suggests that

the effect of the local environment on the development proc-

ess is a powerful one. This can best be understood by as-

sembly of a historical record of development efforts that

can be used to "tune" the general models to local conditions

(Reference 14). Sections 6.1 through 6.3 discuss the

classes of tools that can be devised to take advantage of

this historic a l data base. Some of the software engineering

research questions which can be addressed with the data are

outlined in Section 6.4. The necessary data for all desired

analyses should be included in the initial data collection

plan.

6.1 MONITORING

A manager is likely to find the collected data very useful

in keeping track of the status of ongoing software develop-

went projects. The three types of reports described below

would be ernecially valuable.

Resource utilization (computer time, staff-hours) can be

tracked and displayed in tables and/or graphs. Comparison

of these values with budgeted values can help monitor devel-

opment costs.

The progress towards completion of the development effort

can also be tracked. The number of modules designed, number

of modules coded, number of modules tested, and lines of

code developed to date can be determined and report 	 peri-

odically.

6-1

6-2

-A

Peview of design and code measurements made during the de-

velopment process can be used to detect potentiail problems

such as unmanageably complex code, incor;.'dte design, and

low testability. Tho)se can be the basis 	 a concurrent

quality assurance program.

6.2 LIFE CYCLE MODELING

The goal of life cycle modeling is to relate the costs of a

software development effort to its productL. A great many

models with different emphases have been devised (Refer-

ences 4, 15, 16). However, as mentioned earlier, all such

models should be calibrated in the user's environment with

historical data. Thus, one of the important applications of

the data base is in determining appropriate model_ constants.

The utility of life cycle models is as an estimation tool.

They provide a method of estimating the cost and product

size of a d.evilopment project.

6.3 METHODOLOGY EVALUATION

Another application of software development data is in the

evaluation of methodologies and environmental factors. De-

velopment performance information can be used to identify

the effect of various development approaches (top-down de-

sign, structured programming, etc.) in the user environ-

ment. Nonmethodological environmental factors (travel time,

group size, etc.) can also be considered in these analyses.

Thus, the user can develop a procedure for evaluating and

ameliorating his/her software development process.

6.4 RESEARCH

Very few questions about the nature of the software develop-

`	 ment process have been answered definitively. Extensive

work is curc:ntly being done in the areas of software met-

rics (Reference 7), classifications, reliability (Refer-

ences 17, 18), and models. Anzlysis in all of these areas

F"
..
 T

F- --;

has been limited by the lack of substantial reliable data.

The reader may wish to address him- or herself to some of

these topics.

6-3

,,-

. 	_._....

SECTION 7 - REt-JMMENDATIONS

Perhaps the most important recommendation is not to expect
a

instant results. usable data must be collected over the

life of a project, and data on a number of projects must be

assembled. This does not happen c-ernight; as a result, the

data collection plans must be laid out to allow adequate

time before analysis results are expected.

Beyond that, some thoughts from the SEL are as follows:

1. Subjective management information is very important

to project analyses and comparisons.

2. Do not worry about the Hawthorne effect; typical

projects are too long and typical programmers are

too professional for dsychological effects to have

a significant impact.

3. Try to provide feedback from the data collection

process to the technical staff.

4. Explain the purpose of data collection: to the tech-

nical staff; try to elicit active support.

5. Do not spend too much time demanding more, or more

precise, or more accurate data.

7-1

F

!	 APPENDIX A - SEL DATA COLLECTION EXPERIENCES

Since its formation in 1977, the SEL has monitored more than

40 development projects representing over a million lines of

code. The projects include a wide variety of applications,

computers, size, and complexity, but they are concentrated

in the flight dynamics software area. The mayor source of

data consists of FORTRAN software systems averaging

b0,000 lines of code that perform "scientific" data process-

ing of spacecraft telemetry data.

The SEL devised a set of forms to collect the data initially

expected to be useful. These forms were revised extensively

after a period of use and feedback from the programmers who

filled them out. A second revision is currently being con-

sidered for the next hiatus in monitored projects.

Data nave also been collected from the end-product source

libraries using a static source code analyzer called SAP.

This program has been modified to count and report the sta-

tistics used by various complexity models and measures and

to aid in selecting a most consistent definition of "lines

of code."

Software currently under development by the SEL will analyze

data from accounting tapes maintained by the primary comput-

ing facility for monitored projects, an IBM S/360 facility.

The SEL has also developed an extensive system for storing

this data using a PDP-11/70 computer system. The data base

software, written in FORTRAN for RSX -11M, provides a stand-

ard data entry and editing capability. Data entry is per-

formed by data entry clerks under the direction of SEI,

personnel.

More detail on the SEL is found in Reference 1.

A-1

a

U	 APPENDIX B - SAMPLE DATA COLLECTION FORMS

:he forms reproduced here are used by the SEL at the Goddard

Space Flight ,enter to collect data on development proj-

ects. The terms used in these forms are defined in Sec-

t-"on B.2.

B.1. SAMPLE DATA COLLECTION FORMS AND INSTRUCTIONS

This section contains sample data collection forms and

instructions for their use. The instructions precede the

torms. The following forms are included

1. General roject Summary (GPS)

2. Resource Summary Form (RSF)

3. Component Summary Form (CSF)

4. Component Status Report (CSR)

5. Run Analysis Form (RAF)

6. Change Report Form (CRF) and Attitude Maintenance
Change Report (ATM)

F- V

B-1

INSTRUCTIONS FOR COMPLETING THE GENERAL
PROJECT SUMMARY - FORM SWI 1:,77 ►

Tlus form is used to classify the project and will be used in conjunction with the other
reporting forms to measure the estimated versus actual development progress. It should be
filled out by the project manager at the bepnning of the protect, at each major milestone,
and at the end. Numbers and data used at the initiation of the project are assumed to be
estimated; intermediate reports should change estimates to actuals of known) and update
estimates. The final report should accurately describe the system development life cycle.

A. PROJECT DESCRIPTION
Description. Give an overview of the protect.
Inputs. Speafications and requirements (etc.) of project. Give the format of these.
Requirements, How requirements are established and changed.
Products Developed. List all items developed for the project le.g., operational system,
testing system. simulator. etc. 1.

Products Delivered. List all items required to be delivered te.g., source of the oper-
ational system. object code of the operational system, design documents, etc.).

B. RESOURCES
Target Computer System. System for which software was developed
Development Computer System. Svstem on which software was developed.
Constraints. List any size or time constraints for (lie finished product. Do you Antici-
pate any problems in meeting these constraints"
Useful Items From Similar Projects:

I. List previous projects, which will contribute venous aspects to ttus project.
:. For cacti protect, ove the percent of the current project it makes up in each

of the 3 listed aspects.
3. For each of the 3 listed aspiicts (specification, design, code) cheer what level

of modifications are necessaiy.

C. TIME
Start Date. First date of work. including design And modification of the specificatrons
End Date. Delivery date.
Estimated Lifetime. Estimate the operational life of the system.
Mission Date. Scheduled operation date at the system (write unknown it not known sir
undecided yet on Aviv of their dates). Date project must be operational.
Confidence Level. Give the percent probability you think the end date is realistic.
(e.g.. 100 • means certain delivery on that date. (Y' means no chance of delivery.)

B-2

r,

VT

D COST

Cost Total amount of money the project costa. Including both contract end In-louse
culls.

Maximum available, \Iawlmum amount available. independent of what estimated cost
Is

Coiuidence Level. Rate percent reliability in cost estimate.

How Determined it Initiation Itow is it estimated, at completion how it it calculated.

Personnel. Give the number of full time equivalent persons required at inception of till
project, 1 3 of the way into the project, : 3 of the way into the project, at the com-
pleuon of the protect.

Total Person Months Give the total number of months that full time c juivaletit per-
sonnel I nsanagers, delugnen, programmers, key punchers. editors, secretanes, etc.) are
assigned to the project Do not include all overhead Items such as vacation and sick
leave.

Computer Time. Give the total number of hours oil 	 systems normalized to one
niachuie it g., the IBNI 360 'S I and name the machine.

E SIZE

51ze of the System. Include the total amount of machine space needed for all instruc-
tion, gCneralol in the project plus (lie spuce for data. library routines te.g.. FORTRAN
1 O paaageI And other code already available. Break down size into data space and
nstructIM space.

Condideuce Level. Rate percent reliability in size estimates.

Total Number of Sourly Statilmil a. Cave the number of FORTRAN. ALC. or any
oHhcr language instructions generated specifically for this project.

Structure of System. Give overall structure of s y stem. Is It a single load module. is it
r+ wcrla} strucnire ar Is it a set of independent programs' For overlay and separate
programs, yl vc the number and average size of cacti.

Define l our Concept of a Module. Give the entena you are using to divide the soil-
ware Into modules.

Estimated Number of Modules. Include only the number of new modules to be written.

Range in Module Size. Give the number of instructions in the minimum. maximum and
average module and ills language in which they are written as a reference.

Nunuser of Different 1.0 Formats Used Give the number of distinct external data sets
th.It arc required for the s y stem including card reader, printer. graphics device. and
temporury tiles

F CO%lPI TER %i C ESS

nbranan is a person who an he used to perform am of the lericil 'unctions assocr
and with ; , rogramming, Including those given on the :hart. ClIcA the appropriate Noyes
for those persons ono ha y , access to the computer to perform the Riven tunctions. Gi lie the
per;entage of time spent by cacti In batch and interactive access to the computer.

B-3

G. TECHNIQUES EMPLOYED
For "Isvel," %peaty to what level of detail in the finished project the technique is used.

(a.&, subroutine, module, segments of 1000 fines, top le vel. etc.)
Spedfiatiors

Functional - Components are descnbed as a set of functions, each oomponent
performing s certain action.
Procedural - Components are speafied in some algorithmic manner ie g., using a
PDL).
English - Components are specified using an English Linguage prose statement of
the problem.
Formal - Some other formal system is used to spe.ify the components.

Design and Development
Top Down - The implementation of the system one level at a tune, with the current
level and expansion of the yet to be defined subroutines at the previous higher level.
Bottom Up - The implementation of the sy stem starting with the lowest level rot.
tines and proceeding one level at a time to the higher level routines.
Iterative Enhancement - The implementation of successive implementations, each
producing a usable subset of the final product until the entire system is fully
developed.
Hardest First - The implementation of the most JoMcult aspects of the system first.
Ot her - Descnbe the strategy used if it is not a combination of any of the above.
None Specified - No particular strategy has been rpearied.

Coding. The final encoding of the implementation in an executable programming
Is nguage.

Structured Code With Simulated Constructs - The language does not support struo
teed control struaures (e.g.. FORTRAN) but they are simulated with the existing
structures. please state the structured control structures you are using (ag., WHILE,
CASE, IF).

Structured Control Constructs - The language supports structured control struc-
tures le.g., i FORTRAN preprocessor) please list structures you are using.
Other Standard - Describe any other standard you are using.
None Specified - No particular strategy has been specified.

Validation/Verification. Testing: execution of the system, via a set of test cases.
Top Down - Stubs or dummy procedures are written to `candle the vet to be imple-
mented aspects of the system ind testing begins with the top Ie%ei routines and
proceeds as new levels are added to the system.
Bottom Up - Check out of a module at a time usin% test drivers anJ starting at the
bottom level modules rust.

a

8-4

Stru.ture Driven - Lung structure of program to driernnne test date ir.g.. every
statemrm of rmgram esecuted it least once),

Spr.•nlicatiun Dnven - Using specflfcarions of program to determine test data tc.1 ,
all Input output relationships hold for r set of itst data).

Other - Describe any other strategy you are using

None Specitled - No testing strategy has been speolled.

Validation Venficatwn. Inspection visual cwminaton of the tide or design.

Code Reading - Visual insprcton of the .ode or design by other programmers.

Walk Throughs - Formal meeting sessions for the revi:w of .ode and design by the
,anous members of the project, for technical rather than management purposes.

Proofs - Formal proofs of the design or .ode, please specify the techniques used.
e w• aaomatic. predicate transforms, functional. etc.

\one Specified - %o I nspect ion techniques have been spectlled

There is some ,pace given to permil the further expUnotnon of any of the strategies that
play be used.

H. FORMAL NOTATIONS USED AT VARIOUS LEVELS AND PHASES
Give the phases fr.g., design. Implementation, testing, etc.I and levels ► subroutine.

nodule. segments o	 00f 10	 lines. top level, etc) Jt which any type of formalism illowchart.
PDL.:i,.j will he used In the Jrvelopment of [tit system.

1	 AUTOMATED TOOLS USED
%Jnle all JUt01nJted tools Used, including automated versions of the formallsins given

ahoy Jnd :ornpilen for the programming languages used, and at which phase and at what
Icvrl the% are us.,l. In.lud.• any products that may be developed as part of tills project
it , vunulaiorl.

1 ORGANIZATION

Des.nhe how the personnel are subdivided with respect to responsibilities into teams
or groups, giving titles. tenet job descriptions. the number of people sarisfy inl that title and
their names ind organicatfonJl affiliations if known.

k STANDARDS

List all standards used. whether they are required or optional, and the title of the
document dastnhung the standard

L MILESTONES
(Ii,e me chase at which management may ct:eck)it of the de%clornnent of the

,v • ttm tr.}...pewi,ation. design. implemertation of version 1, etc.). State also the Jilt at
which it ,nould take ria.e iat aarnpler)on of the project), how it is to he determined that the
milestone was rca.• hed. who will be responsible for revtewmg the progress at that point and
*flat the review procedure will he. Also gist the resources used once the last milestone. For

3-5

size of system Vv* the curtent raze of the system at that milestone. Each mdeuone has
confidence levels, one for time estimates and one for resource expenditures. For estimated
future milestone, the Mt confidence level for the probability of reachini the milestone at
that date. The second is for the accuracy of the resources used. For past milestones, the
Pint confidence level is normally 100% tactual date) while the second is an estimate on the
accuracy of the accountinjl system.

M. DOCUMENTATION

For each time of documentation developed, state the type of documentation, its purpose.
the date it should be completed, its size and list any tools used in its production. (At the
bejpnrun` of the protect these should be estimates, at the end of the project, they should be
accurate noures.)

N. PROBLEMS

Give the three most difficult problems you expect to encounter mana{ing tius project.
Please be as specific as possible.

O. QUALM ASSURANCE

To what do you attribute your confidence in the completed system. Be as specific as
possible.

8-6

1
,i

09NERAL PROJECT SUMMARY

NWJtCT NAM	 DATt

A fi11O1tCT OttCRIPTHM
Oww~

IbWaoniwtu
1►odwu 0 doom

hdwn UrINd

a flttOUAcas
Tow com"ver trROnw	 Owdgotomt Cootfnw traMw
coro"im: ins"Mm Tinto	 so

O"W
Anr ANlomw in him" Conewdmut

L%" Item hor11 D Aw Rolecus
^- Nod iwlbn	

,

TMMM-- Mum t̂iwit^	 MW*	 ^ Minor I N«w I 11 I MMttWw 1MIMw r Nenr

C TIMe
stwt Dow _	 and Ono	 1"Wie d Litotrnto — Min" Oow
Conlhlawo Level

0. co"
Cott t	 f ►nintum AwdWs •	 Comfidortoo Level
Mw Coat O"n ined
hrwnnM: ln@Wwn .	 t /2 Wor	 2A Wor	 ComepaNn

Tow person Aft"ft

Otnw Cam Com/utw Theo	 I1n111	 Ooounwntetion t
O"W 1	 ► 	 Otn. 1	 1

L SI2t

tin of swami	 Words	 Dow Wad	 Inew"ism
Meninoini Sam AewWle	 Word. Confi6onoo Lad
Totol Nutow of Souroo sutonu v tOQTRAN 	 ALC

	

OtbW 1	 1
Structure of Srnom Whoft OW:

— tingle Oewlor
_ Orwur Sttuotwo I ww" of Ovals" 	 MA boo	 1

	

— IndepondwN ►repot (Nun wr of f *Wstm	 Ar% Sieo	 1
Oefiro vow Conant of a Modulo

Number of Moduin	 Mango in MWuW tin: Min 	 Mon. __ Ave.
Nun" of Odfwent 1/0 iotmotr

1118-942/171

B_7/

.y

F COMIUTIR ACCISS IChaak AN TM Apop. WAa "m Aotsat is WAN. ►

slaving in Now "we Cap
Kwtng IS Urdaa si Sowa CNo
I"d~ s/ Csdo Ina WNrn
Siam"Ing Comodausm

Intswel On Tali"

Utility AVON I Tapo" Ousi, ImI

Give Persons"" it T"m of Aaaatc
LtfrarMn	 .r.nrnw

% Sash
% Interactive

O• TSCNNIOUIS 1MPI OY1D ICMek AN TM Ap v and Ono LWW N W%O Uttl,)

Dow;
Top Oown	

_	
OoMm Up	 i

Iterative caftans	 Nralm pim
Other	 M

D«slopment .
Too Down somm W_
Itorop to tnh nee, ""a" First

Otho i Nsno Used

Cody

SimWawng COmt rum lvwewad we
Other NOM

ValWatlon/Vrrhmtlon: Testing ^
Top Down (Stabs) sormm Up lorurrsl
Othsr: 4oaNlontlon Driven
Struaturs Or IV" NOno

Vshdalmn/ Vrdirtion: Inspiration
:oils Reading	 _--

hoof:
Walk Through
NOM

K FORMALISMS US10

Used	 Lore	 Photos
FOL
NIPO-

^,cwehutt
^^d^ne pw. ITrH Ch.l

iunarons
Imo.' . p

Otho

B-8

1. AUTOMATID TOOLS U81O

I ORGANIZATION

How we ON f/eltomd OrpMsd:

*aim ftitonnel:

Title	 Job Dest.lptbn	 N"mew	 Nntm and ANNletlem (N Knernl

K. STANDARDS

Tyos Optional, Requir	 _.
Title of Document

I

i
Type Optbml Requred __
Title of Document

Type Optional Required
I	 Tiao of Document
f I

Typn OptbnN Required
Title of Dooumrn .

Type Optional _ — Required
Title of Doi, 	 vot

j	 Type Optbml Rpured —._._
Title of Document

Type Optional Required
Title of Ooeumemi
Type Optional— Required
title of Document .,

$40. 1 a17'01 gonenubuon

B-9

0

OF Auot?

RtG1^1o^^. l',?r^ fS

L. MILESTONES

Phass	 estimated Date	 Confidence Leval
Mow Determined
Reviews"
Reporting Procedure
Resource Exponditws: Coat	 Person libMh	 Computer Time	 ha.

$isa of System	 Confidence Level

Phu	 Estimated Date	 Confidence Level
Now Determined
A. ,evrers
Reporting procedwe
Room so Expe ditws: Cost	 ewcen Month	 Computer Time	 hrt.

Else of System" 	 Confidence Level

Mesa	 Estiinatd Date	 Confiders Level
Mow Determined
Reviewers
Reporting Procedure
Resource Exis"turs: Cow	 Person Month	 Computer Time	 her.

use of System	 Confidence Level

Phw _	 Estimatd Date	 Confidence Level
Now Determined
Reviewers
Reporting woeedure
Resource Eapnditurs: Coe	 Person Writhe	 Computer Time	 ha

Silo of System	 Confidence Level

Photo	 Estimated Date	 Confidence Level
Mow Detwndned
Revlevwws —	 —
Reporting A3cedure
Rsource Expenditures: Cost	 Parson Months	 Computer Time	 Art.

Site of System	 Confidence Level

Photo .	 En'dlvaated Date _	 Confidence Level
Mow Determined
Reviewers
Reporting Procedure
Resource Ex penditures: Dow	 Peron Month	 Computer Time	 Niter

Size of System	 Confidence Lord—

Phase
	 Esti gnetd Date

	 Confidence Level
How Oeter"vnod
Reviewers
Reportinq Procdure
Resource Expesiditwes: Cost 	 Pwson Momhs	 romputw Time	 hrs.

Size of System	 Confidence Level

Phases	 Estimated Data	 Confidence Level
Flow DMM 'ninai
Revolm-0
Reporting Procedure
Re..rurce Expenditures: Coat 	 Person Months _ Cormputer time _ hrs. --

Siu of System	 _ Confidence Level

18(61 ^7 i^tl ^ont^nu^.^n

B-LO

ORIG:''i.i'_	 IS
OF POOR QUALITY

FA DOCUMENTATION
i

Typo purism
i	 btlmeted au btw otod tin Tools Used

i	 Type Nrps, —

Eairmai au btimned silo _ Tads Used

Typo , , purism
1141inteted ate banned Site Tart Used	 i

Typo Pupas i
btimeted ate btlmeted We Tools Utod

TVPo	 purpose

ittlmrted ate	 btinteted Site	 Tools Well

► mometed Date	 "meted Site _	 Tools Utad

Typo __	 putpoM
butted ata	 inserted tits	 Tooh Urod

N. ►ROsLEMs
I

	

	 I
State the three most difflouit poblem you expert to encounter in completing the Project. 11 • attest diffloult)

I
1

I	 I
I	 —r	 I

^	 I

I	 ^

O. QUALITY AtsU11ANCE
I

State the thra •sat r..G.vm sPMU of the design, dwNopment end tetung of the rWwn to which you avilwte your
oonfidenkm trio comosted tynom. 11 • most important)

i

I

I

I

PERSON FILLING OJT FORM
740.1 (2/77) ComnnWUon

B-11

voN

--

i i5

OF P00fz

^r

INSTRUCTIONS FOR COM ►LET140 THE RESOURCE SUMMARY

This form keeps track of the project costs on a weakly basis. It should be tilted out by the project manager ever y wank of the
project duration.

PROJECT Give project name.

DATE. List date form turned in.

NAME. Name of project manager

WEEK OF. List date of each successive Friday.

MANPOWER. List sit personnel on the project on separate lines. Give the number of hours each spent that week on the project.

% OF MANAGEMENT. Add the % of time Nis person spent managing the projwa during this reporting period. Anew form should be
used if this % changes.

COMPUTER USAGE. List all machines used on the project. For each machine give the number of runs during each week and the
amount of computer time used.

OTHER. List any other charges to the project.

B-12

r;
'r

-"'-,,.,,,c„a,.^u,-n:.^'..^.:. .. as..Ya.r`r.a....f..aa3c...u.,.^.:. ..,i' "'^^,^6u ^::<: 	 ^'^Li.• °' "^R'_^..t ...-.°K. ..^__	 —

RESOURCE SUMMARY

PROJECT	 OATS

NAME

WEEK OF

' MANPOWEA (HOURS)	
O F

F	 ^^

COMPUTER l.aA., .
INO. RUN&HOU RS CHARGE01

I	
I	

i	 I

I	 l	 i	 l	 I

7	 ^^1
OTHER CHARGES TO PROJECT

^_	

II

	 I

I
I

i

!t9-1(4176)

B-13

i	 + SS

OF FUUit Q
UALITY

INSTRUCTIONS FOR COMPLETINO THE COMPONENT SUMMARY

This form s used to keep track of the components of a system A component is a piece of the system identified by mama or
common function ie.g„ an entry 'n a tree chart Or batifline diagram for the system at any point in time, or a shared section of data such
is a COMMON block). With the information on this form combined with the information on the Component Status Report, the %true
turf and status of the system and its development can be monitored.

Th i s form should be filled out for each comoonent at the time that the component is defined, at the time it ^t compgted, and at
any point n time when a major modification to the component ^s made. It should be filled out by the person res ponsible for the com-
ponent.

PROJECT. Give protect name.

GATE. Give date form filled out.

NAME OF COMPONENT. Give name (up to B charoclersl by which the com ponent will be rebind to in other forms.

BRIEF OESCRI►TION. State function of component.

TYPE OF SOFTWARE. Cheek W classificaGOns that apply All common blocks are r :'Hrste components.

STATUS OF COMPONENT. Check whether this is a new component, whether it is a c impotant under development le.g., a previous
component summary has alfeedy been submitted), or whether the comoOmsnnt is now c,+n-s11te,

A. COOE SPECIFICATIONS, Give the font of design for this com ponent snd tell t ► >n-,c. level of detail the specifications an given.

Functional-Components are described as a set of funct„sm, eech component ow orming a certain action.

Prooadural-Components are specified in some algorithmic manner (e.g.. using a PGL).

"ish-Components are specified using an English Language prow statement of the problem.

Formal-Some other formal sys:ain is used to specify the componer:ts.

Relat ve to the one develop r the component, rate the precision of the specifications. Very prectu meant that no additional analysis
on the problem is needed, pr ,w means that only eas y or trivial ideas have ` to dey^loped, and imprecise means that much work still
nmalns in developing this component and its basic structure.

B. INTERFACES

Give the relative position of this component in the system. Give the number and list the names of all components that call this
component, and are called by this component. Also, give the names of env components or other items this component shares with
other components le.v . COMMON blocks, external dotal. The com ponents directiy descended from this component refers to the tree
chart cr the system, if the interfaces are not yet complete, check "Not Fully Specified"

C. PROGRAMMING LANGUAGES

List languages (or assembly languages) to be used to implement this component. If more then one, list percentages of each tin
Imes of source code ► . If there we any constraints on the component (e.g., site, execution timel list them. Ala give estimated site of
finished component in toms of source statements, (estimate site w.th comments and without comments) and resulting machine lam•
guagn lincluding data areas, but not COMMON block+l.

Useful Items From Sinter P►o)ects

1. List previous components and projects which contribute various aspects to this component.

2. For each such component, give the percent of each of the three listed atoms it makes up leg„ a component may be 50% of
design but only 25% of code due to changed mte ►faces, etc.).

3. For each of the three listed aspects, check what level of modifications are necessary.

B-14

D. C04PLExITY

Rate your belief in the complexity of the implementation Also a pt.roximate t , t number lui 9i) of assignment tvoe statements
(input statements are included) and control statements ithow that altar the flow of control, • g.. IF, CALL. GOTO) Thr su m+ of Shute
two may not be 100% (e.g., CONTINUE, DIMENSION and REAL statements will not tie counted) I 0 and declarations should be
listed as other

E. RESOURCES TO IMPLEMENT

For each of the three listed phases IDesign, Code, Txti, animate comoutel runs. time needed, hours to ir. dement, and esti-
meted completion date. If not known, or no estimate can be given, write "unknown".

F ORIGIN OF COMPONENT

If this component is independent of any other component of the system Io.g., is a low level compoMnt which n designed first, or
is the root node of the tree chart) then check gas, otherwise check no.

If no is chocked, then explain why the component was added, (Usually only one reason will be chocked, although more may be
checked, it appropriate).

A lower level alaiwn icon of a higher level component mans that an existing component was expanded to include new compo•
nena (e.g., expanding tree cherti. List the higher level component time.

Added as a driver or inteAaes means that a calling program was added to call existing com ponents. List these called components.

• redaeign of an existing component mans that new capabilities were added to an already existing component. Write its name.

• renaming of an older component. Give Me old name.

• regrouping of existing material mom Mat several eompononts wen redesigned with a new component resulting from this re•
design. Give the old component names.

Type of addition. Why was this component added to the s ystem at this time? Check me appropriate reason. (Normall y , only
one should be checked, although more can be if appropriate.)

G. ADDITIONAL COMMENTS. Add any other comments that will halp explain the pur pose, design, and complexity of this com-
ponent

H. PERSON RESPONSIBLE. Include name of person responsible for implementing component.

1. PERSON FILLING OUT FORM. Give name of anon filling out form. This normall y is the tame name n in M.

B-15

COMPONENT SUMMARY

PROJECT DATE

NAME OF COMPONENT CREATION DATE
BRIEF DESCRIPTION

—_

STATUS Of COMPONENT	 NEW.	 UNDER DEVIL COMPLETED

TYPE Of SOFTWARE IChe.k All That Apolyl
.__Ii0 Prooeserng Syaiem; Related
_Algorithmic OATA/COMMON Block
_Logic Control	 __Other

A. CODE SPECIFICATIONS ICheck An That Appall

^^— LEVEL OF DETAIL
FORM OT DESIGN	 r Basic Block

Component	 Subcomponent	 Stmt	 Other
Segment

Functional

~Procedural

English ~
Formal

Lane I)

Precision of Code Specification	 V.,ry Precise	 Precise Imprecise

S	 INTERFACES

Number Components Called	 Names
Not Fully Specified

Number Calling This Component—Nam M
Not Fully Specified

Number "arod Items	 Name$
Not Fully Specified

Number or Components Directly Descended from This Com ponent Names
Not Fully Specified

C. PROGRAMMING LANGUAGES

Languages Used and Percentages 	 1	 1 1	 1

CONSTRAINT PROBLEM EXPECTED
^Constraint	 Component Meats

r-
Present	 Constraint

Memory Space

Execution Time +	 i
Cher I	 1

Site	 Source Statements (tnciud-mg Commentil Machine Bytes
Source Statements (Not Including Comments)

Useful items From Similar Projects

Soec•'iub on Design	 Coo.
Component	 Project	 — TT'—

%	 Major	 Minor	 None
i

Major I Minor ,	 None	 '6	 Major	 Minor	 Von@^

l
160 . 3 it •6+

B-16

r.

n

G r',	

OF FGJtc Q u . 'I Y

0 COMPLEXITY

Comolextty of Function	 Easy	 Moderaw	 ''.M	 __

_,r- ^E Assignment Statements__ '. Control Statements « + Othe r State., a ". a g.. Data Cecl L' I

E RESOURCES TO IMPLEMENT

Runs	 Computer Time Iminl 	 [Hon (ltn)	 Est Compauon Cate—^

Design	 -
Coda	 I

is this component inde pendent of the existing cdrrt ponantsl	 Vet
I

;)o
If No describe relation of this component to the existing evsasm

—nterted as a lower level elaboration of higher level components 'nantetl
--added as a driver or Interface, for existing components (mamas)
,_s redesign Ito add new ca pabilit y) of existing components names)
_a renaming of existing component (name)
-regrouping of existing material from several components (nametl
_mother

T voe of Addition
error col'"i Improvement of uwr service

_ planned enhancement utility for develo pment purposes onl y	fI
__.mplementatlon of requirements change optimization of ttmerspaceha¢curocY
— _improvement of clarity. maintainabilit y , or documentation adaptation	 • I environment change	 i

_of. w lexplaln below)

F

AIDOITIONAL COMMENTS

I

N P ERSON RESPONSIBLE F OR I MPLEMENTING COMPONENT

`I PERS(,N F ILLING OL' T FORM
ao s win

B-17

r=m

f
9

Of FOOR QUILL! i Y
n
5

C	 INSTRUCTIONS FOR COMPLETINO THE COMPONENT STATUE REPORT

This form is to be used to accurately kM tract of the development of each Component in the $V"IM A Component Summary
Repon should exist for each component mentioned. The form is to bas turned in It the end of MCh week PfaW Hu out *other daily
or anal each Week It daily, then a given Component may in listed several times during the i ourN of a week For each Component
l ist the number of hours spent on own of the listed activities. This form Mould be filled out by persons working on tai profs?

PROJECT Name of the project.

`	 PROGRAMMER Name of programmer

1

I 	 DATE Oats, report turned in UsualW Me date of a Frudey.

r	 COMPONENI Name of component. Either I pent of the system structure for which there is s eompori summary tam, or one of
I[1	 the following

JCL. Developing command language instructions.

1r
	 Overlay. Developing system overjoy structure.

User Guide. Uwr't Guide Documentation

Synom Oweription. System Description Documentation.

OESION

Gate. Witing of a com ponent design

Read. Reading (by peal of design to look for errors (e.g., peer review)

Formal Review. Formal meeting of several individuals for pur pose of explain rte design. Also include time spent in preparing for
review Ail those attending review should list Components discussed in their own Component Status Report for that week.

CODE/DEVELOPMENT

Code. Writing executable instructions and desk checking program.

Reed. Code reading by peer Similar to Design Read above.

FormM Review. Review of coded com ponents. Sunda to Otisign Review above.

TESTING

Unit. Unit testing. Test run with test data on single module.

(nip Integration —sting of several components.

Review. Review of testing status.

OTHER. Any other aspect related to a com ponent of the project not already Aver W other than Design Code Development Test
le g Documentation of a soacific com ponent). List typo of activity, and hours spent on that activity A set of activities has been
'istea for which time may be cnaretid to the overall project:

Travel Time spent on official travel related to this project. inclucling trips to and f rom GSFC)

Forms. Time spent on filling out re porting forms.

Meetings. Time loons in meetings which Ire not design or code review meetings.

Training. Training activities identified for project

a	 Ace Tort. Acceoance Testing activitin.

B- 1.6

OF PGt? , r.^► :;

COWONENT ITATU= REPORT

PROJECT _	 OATE

PROGRAMMER

OESIGN	 COOS OEVEIOrMENT	 TEST	 OTHER

COMPONENT	1011MA1	 00IIMAI

	

CIItAf! I IItAO 111lVIlW	 C00! ^ AIAO } 11lVItW ^ l/Nlf 	 INTtO ` 11tV1lW ACTIVITY)	 Mlq

r'Ir

B-19

n...,

ORIGINAL

OF POC P.

INSTRUCTIONS FOR OOIYML[TING Tht COMPUTSR PROGRAM RUN ANALYSIS FORM

Thu ram will be used M men-for the activ ities for which the oPfftouler 4 uNll in the OWN of a erOIM hfe cycle In entry Woulu
to made for each computer r un- scluding 111 activities QMformeo wnen the campulw a unto i n am mtwect .vo made

PROGRAMMER, Write Jcwn harhe of person Wearing cOmOulw rune. This miss, not nspsnrily be the poison running the program
li S. librarians
PROJECT W r to down W019CI rvme. Use a d.fferent form for eacn protect

COM/UTr .	 ,rate the machine am which thaw r uns wwo made to g.. 3%3t0 POP-I I 2#1

OAT# Cs,.e form turned n
JOe 10 Identification of pD

RUN OATS. Date • tin Submitted m format 1 11400100 Imontrt.dayl
INTINACTIVE. P lace in X .t the r un wao w'.'Tlttato from an rMwect lw tarmsewl.

RUN ►UR/OSS, p lace
an X in all boxes that dsaalbe tells run

Unit TaaL A purppn of the run 4 to test one or more corhponento without the toes of tote system being configured into ter 40
module A run which tiles a 'tell dnvw' *quirt fall into this Catoestly.

Lysnm Tee< This run execute a tour module which contains all ql ter curlontly avertable syllem in order to toll One W Two
tlomt.oants In a full system configuration

ewtehmerk Toot. This 4 a recertificelion type r un A run that has successfull y executed In the past is row rerun to vonfy that
certain caabrlrt,ea urn exist

ManResonea/Uldlly. A pur pose Of this run A to perform a 'hbrw Y • tviats function. Examples are runs that update lourco. create
backups. delete corwesUmpV data nil.

^.Oel1011a/AINh1bIY /Lurk. A purpose Of the run i to chick for errors in the compile a/nmbl y and or Imk stew. A run which .n•
cfWai once Or main of "M ste ps SIMPIV as a Wereduryte to a 1lfstertl execution would not fall into this cotowv

Oeoug Run This run was submitted n Order to hvestigato a known error.

Other. This run has a put pon whrCh does sol tool mto OM Of the Other Cit"Of .e► Examples ao runs which sCceM Other Niter"/
m Order to aid in tells design development lino/Or testing of the protect under Rudy.

COMPONENTS OF lNTEl1EST, L it oil com ponents mparlant to Inls run lo.g., cdmglinonts Doing tested Cbmpded. Cop ied etc l
FIRST RUN. P lace an X hoe -f this .t the f irst time any of the I .sted components hove users orO cesled by the computer for the our-
close Of run specified

MEETS ORJECTIVEL This 4 a tubslii evaluation of whether ter run satisfied Your jblectivea Runs that terminate .n errors may on
Satisfactory ' 1 ter objective +vat to riCate errors or to test for correctness. runs that terminate normally rha y be unntratactor y -f the but
pots was to locate am error known w De Wesent Thus this Question . l i nuapertdent Of whether the Program COnlsimed any errors or not.

RUN RtSULTL Chock this ban that best describes the resulll of this run Normaiiv only one box I Checked, although more that One
Re v Do Checker I aoWoar4tl.

Good Run Orel*{ram ran t0 termination with no known NIOf I.

Sesup Enoe Fercr in jesting orogram deck
Gubnvt Error Deck subnnrtted ncorrvCtiv, resources unevarlable, keypunch *fear or general submrnlon error

JCL Error JCL statement nmrrect IJCL Carol m-stvped should be listed under submit errort.l
ilrhr Setup Error Such as .Muff . ci Mt laic@ or t.me fac • tied for lob step . This shw to 'Mt be caused by program error

Machine treat. Errors outs- v ,f the 	 of ter Programmer.

Hardware Error. Machine malfunction.

Software Error. System cram of s ystem program error Ie.g., error m FORTRAN compuerl

Program Error. Error caused Ov ' he suonldlea Program.

C,)mprle Error The Source Program contains an error which .s found ov the compiler or assembler

Link Error TM Ioaoer or ankage editor f inds an error.

Execute Error. Svsten^ error massage$ ere genwaled during the ekecution ste p oourbiv causing an abtnd

User Genrated Error The Pr ogram terminates n a Programmer ge nerated error riessaliv which s not a s ystem error

Rsn to Gompl in Tr .e Program trmmated with no error massage howwer, ter results are -nmrrect i gr.Aving Mat tilers r
sorheM.ng v. • nq vdh the Wogrof"l

COMMENT& If rou ber.h ♦ that ,our answers to these g ue► uonl do not adeoustety •:narocfr , ro th s • un You may ado Iry Saint oral
Comments that YOU * .in Also use tnq space to ndrcate f the evil son ost be fore you had a Chance to evallAte •*suits

B-20

r

W

t
O

W

Q

QW

U

q:

g

I

t
i

I I	 ^ ,

Y^ I I	 I	 i
1

II

1

I

I	 i
I	 (

I
I	 I	 I
I

uonNOWO') o ► bow i

MW PMUw"p ion
auk anew

IE
W

,o►y >tw1
H

ro► ^3 NIgWO^ I I

A

^

X0"1 u^M►loi I I
--1s rou3 ^wrpNM ^ ,	 I

^ou3 on►Nj 64410

A

/o431-X

!O/I^ tlWOnf ^

unW Po«D

►uutaMQ0 I"vv toN Pt() unW

►altoNgo toyy unW

UAW tool I

I
N	 ^

I	 I
I

;
I	 I

r	 rs	 H	 I f	 ^	 I (^	 I
Wcc

'w►G
unW Ongsd

y(
J^ 'rW1/AIQWM^Y/NIOWO'^ '

3Z 4imnimuoustufm

.^-r
1

a

us1 >twu+uavw	 I I

t►^1 W^YAy' I	 i	 '

tut uun I

3AIIOVW91NI I

W

~
^

I	 I	 I
I

I	 I	 I	 I	 ^	 I

^	 I

I	 I	 I	 I

I 	 I 	 ^	 ^	 I 	 I 	 I 	 I

t.)F PvOs:

B-21

J

ORIWNIIA! po. ^*- ar
OF Poor;

maTIUJCT•ow PGR COMPt.ETi 9 TING CHANGE REPORT rORM

The form is uwd to keep track of NI changes made to a gntem A Change is my altarasSen to the design deWmarh ghOn. Of Coda
vnwmd her a Prpledl Each Change can M thought Of se 4 n in tha prOCess of transforming the Original software design into a cum,
pote vrdrknng Wftam The initial Creation 01 SeeUOns of fresh Code or design .t MW # Change

One Change report form should r filled out for Nth chanq. Whoa Several Changes a g o merle simultaneousl y tnf different rat•
ant a Separate form should to Completed fail Nth reasen

NUM6611. A unique • denti fer pal ram por day consisting of nfUal/ 10110%ved by a SeduonN number rho initials should be those of
the Marton filling out the form The sequence numb" Mould be a positive intogar ,moitatins the fwmear of forms filled out so far dv
ing the day Number OMWO I indicates the first farm of the da y hoop out by OMW. OfrIW02 is the teoond form that doll. etc.

PROJECT NAME. Tie name of ttr development protect

CURMNT GATE. The date on which an entry is tint made on the form, evrM of the form it not completed on that day

SECTION A—IOENTIPICATION

REASON. Explain why tha change it being made

DESCRIPTION, pasernhe the change that is terry mace. This should not eo on the variable name or bit level, bull Should be suffl
ciarnly #hottest to that the function of Me Changed code can be determnrpl, a.g., "the input buffer was cheered," rather than "array
butt 	 set to hero „

EFFECT. What components (or documents) are Changed? list the names of all como~ts and documents modified as pan of that
ch", mcludnrne vertron mutineers.

EFFORT. what additional components (me documental were examined in determining what Change was needed ? List all Components
and documents that were examined, but were not actWlly Changed. , m deciding what Change to make• how to make it. and where to
mako .1 This list should not overlap with tho , qt of components and documents actuall y changed.

OATES OP CHANGE. Need for change determined on Give the date on which .t was first realised Mat a change was needed

Change started on Give the doll on which the Change wee Started,

what vies Me effort .n person•time required to understand and .mpreme nt the an"?

Give the best available estimate of the total time needed t0 undorstar rd whit chimp had to be merle and how to make it, mcfud
.rig the -molemantation tire. rhis Mould include the time of all persons involved in making the champ. At m examplo, .f two people
each w,,rked fl hours On the Change, the @dace marked "one day 10 3 da ys° should be Chocked

SECTION E—TYPE OF CHANG$

ISeck the one box that best describes the Change. If none of the Change descriptions Seem to fit, chalk other and give a detailed
descri ption of the Mange in Section E. If Several of the descriptions seem equally appropriate more than one box ma y be chocked.

Error Co►reatem % change made to Correct an error in previous work. It this DOE .s Checked Sections C and O of the Change repot
form should be Completed.

Planned Enhancement. The nsomon of a t)ody of code into a program stub that wee nnholl,e created as a dummv for tell rig purooses
of adding canobihty to on alftadv exming Componenl /e part of a planned mcre.rerital clevonOpment

Implementation of Requirements Change. Altering the tvstom to conform to a chmgo .m reouirememts ,m to ed by the customer

Improvement of Closely, IWrntainobility, or Doeumenuthon Champs made to improve code quality, such a morevmg ndentatiom of
code. r"mMCing I spats for readabilit y adding of updating docUrritmiatiom or corroct.mg I, ttrNy effort in t iuopress.ng redundw.
ntor rmation or xI:W&C.ng multipiv•occur rmg sections of Code with Procedure coils C4rrectioeis of wolat tons Of programming its most as

and design • mprovemmtt that should have been visible in the f unctional s0oc. ficsi ortf of components of the Sworn are to be treated
as error CNfectidM. Docurnen tat.on updates made Concomi tantly m1h a Change Should be 11`98te0 as a pan of that change snd class•
l ied with the primary Cause of the Chang)

Improvement of U►er Services. C„f.ng Wllerm devNOCn'fnt nnw •dual PrGgr ammierh ma y f ind that A,th ,cry ' Mf e•t'a :Ofk •n ev ca^
Provide the user .v.th ada.^onal r ac • ^hes o n top of the f u nCDOnaI r sowro ments o f 'he ivitern Sucn Changes a r t r . assaa St mo r Ive
mentl to user Services.

B-22

o»f, +

hssarMWDel~ of Oft%co4v. Chan{r made to the program text soec ►fially to provide additional information owing tat runs w
that arras an be isolated.

Opumta TinufflpnNAesa rsley. An optimisation ,s a ioai ►ad adjustment of the program whose main purpow is to reduce its ex.-cu.
r.nn tome or Ihamory ems.rements, or to Obtain ►cults Of greater numer al accuracy , by tuning ter algorithm{ used to the specific
orallam being solved.

Adaptation to tmMsenmosm Change. The "boundary .• of a software system is defined to include lust those programs whose develop-
ment and maintenance is being monitored u part of the software eriginewing laboratory project. A cha.9g1 whose Ca ps Ira outside
this boundary 	 in raocona to an operating system, compiler, or hardwwe change) is rep doid as envlronmentelly caused.

Wall moors than one component eNacted by the chMge? A Component is defined to to 4et ctl y involved in a change if It cofitaons
subroutines that are changed and It contains no subcomponents containing thoses Wbroutina. Quick yes if the change directly involves
more than one component of the system, no Otherwise. It may be the sew that a ci*r4e tr. ,o subroutlM/component will require
some 'uture adjustment in other components (theme somponenu may not even have been coded yes, or their ada ptation may be post-
poned,. In such ens, the effects of the ehenp involve more than one component even though only one module was noted at changed
on .ails form.

SECTION C—Tr►t Of ERROk

Check the one box that best describes the error. If none of the error descriptions tam to fit. J11ak other and give a detailed do.
soiption of the error in Section E.

R1gssManwm Ingo crest or MMMiapraad. Requirements may be incorrect (Inconsistent or embigisow), or their meaning may be mis•
interpreted. In either an. an error, of this type, It undetected early, may propagate through design and into code. :fen if undetected
until acceptance testing (or maintenance), errors resulting from incorrect or misinterpreted re quirements should be classified in the to.
qulremtertts error category.

Functional Eplaifieatkate Incorrect or WeinwP 'old. functional s prcifiations are taken to be a s pecification of a com ponent se a set
of functions defining the output for any input. S. fi lar to requirsms its, specifications may be either Incorrect or misinterpreted. Er-
fors in the specifications that occur r a result of ml andarstandings of reou4smwnts are classified as misinterpreted requirements anon
and not incorrect s pecificationt. Specification lrroi that result from misunderstandings among thaw writing the specifications are
classified a incorrect specifications. E►rois in coda it design or documents resulting from incorrect or misinter preted specifications
should be classified in the specifications error category.

Design Error Involving Swerai Components. A design decision is a choice of o mlertisation of a component into wbeom ponsonts,in-
cluding the specification of the interfaces among the subcomponents. A daigm error is a design decision that results in one of the fol-
lowing:

• interface that contain insufficient, unnecessar y , or redundant information;

• a cat of subcom ponents that do not atisty the specifications of ter component li.e., one or more of the subcomponents do
not have the apaWUties needed to satisfy the use intended for the component).

M&WAQngn error may result from incorrect or misinterpreted re quirements or specificatr :ns. In such caw, the error
bbouid not be cuss .led as a design error, but a a w4uiroornents or specification nor.

Error In the Design or Implemenotion of a Einght Component. Most simple, localised programming mistakes fall into this category. It
cerAlinE UtOte twat where the u.,wizatoon of the s ystem into components and their interfaces is correct, but a particular component
des{ not behave according to its intended use (i.e., does not corres pond to its s pecification). This me- occur because the algorithm
used in assigning the com ponent is incorrect, or because the implementation of the algorithm is incorrect. If the algorithm has a writ-
ten specification prior to code generation, and the s pecification is incorrect or misinter preted, the error is not classified as a design or
m plementaaon error, but as a s pecdicatvor error. If the erroneous algorithm has no written specification, or if the implementation of
the algorithm ha errors not attributable :o any other atpory, them the error is classified as am error in the design or implementation
of a single component.

Misundenanding of External Environment, Except Language. Check this box if the error resulted from mistaken assumptions about
the hardware or software environment in which the program Operates 0.0., that software Outside the "boundar y" ,lf the project—sat
"adaptation to envororment change" n Section S). Included here are mistaken assumptions about how the operating system works,

'

	

	 about how the hardware a controlled, about response of wi pMrals to various commands, about the operation of the library tstem,
about the interface to special display hardware or software, ate.

fG'.
Error in Use of Programming Larquaga(CompUer. Errors in the use of the lenguageicomisder are those errors that result from some

y

	

	 misunderstanding of how the compiler works, how the language provided run-time support system o perates, or some misunderstanding
of particular i ►ngusp fatures. Not included in this category are clerical errors (e.g., typos) that lead to compilation errors.

e-2 3

0er100 Error. Clerical effort are those Wrote that occur in tan machanial translation of an ittim from ons format to another (e.g., one
coding sheet to anotherl, o' from one indium to another too.. coding Iflaets to cards). No interpretation or semantic translation is in
volv4d tin such a process.

PON DESIGN 011 IM►LEMENTATION ERRORS ONLY

This section sha.ld be filled out only .1 the error vela f design error, I nvolving moral 90nlpOnenh, or if d Wall an error in the do-
sign or .mplomental.on of a single Com ponent. Errors that occur M the design of a system, subWP em set of components, or single
component. or m tho .mplemanlation of a single COrhpp ynt. they b,, ategorited in one of two Neva Either there was an error n the
uss of data. W mere woo an error m the function of a component touch as an algorithmic or Computational errnf toulting in Jrogram
hellav of not corresponding to the intended use of the arograml Date use errorn Can to CMrecleriled H either incorrect vcl ues for
data Moms or Improper assum ptions about the structure of date items to.g„ array Imes at dimensions, or ordering of items .I, a Iqt)
Errors involving the function of a component include Control and Com putational errors, such as incorrect sequencing of statenionh.
omitted statements lwhere such are not clerical errors), improperly Computed expressions. omitted Capabilities Of the COmflononl YI, etc.

SECTION 0—VALIDATION AND REPAIR

What were the aotivstin Nod to validota the Progam. to deteet the offer, erd NM Its nun?

The purpose of this Section is to discover tow it become known that an error existing and how the cause of the error
wall deter

mined. A check should be put in the first Column for each method used for volidating tan compOnonits) where the error was found. A
check could be put in the second column on the tern* fine as the method by which the symptoms of this pa rticular error was first
note. The third and fourth columns refer to activities used to find the cause of the error, once it was known that the err,)r existed.
In the third column, check all techni ques used in Irving to find the Cause of the error. In the fourth Column, check those techniques
that viol led the information needed t0 find the cause. In some cases, Such as some erron found by code readiN. the techniquois) used
to find the error and discover its cause will be the same. N to that error moss"n have been divided into two Categories: those pro.
ouced by the support system to.g., compiler, nporeting s y stem), and those designed into the Code for the specific purposes of the Prot.
ett Telling has also been divided into two Categories test runs mile prior to acceptance testing ipre • acceptonce lost runel, and ac
ceptana tests. If activities other than those listed in the table were used in finding the error or discovering its cause, Chock other in the
appropriate Column, and describe the activities used in Section E. This table inevitably hall some redundancy a check in column 2
must always have a corresponding chock m Column 1, similarly with columns 4 slid 3.

Want won the time used to redlata the muse?

Check the space that most c10se1V o pproxonsles the time required to isolate the Cause of the error This should be the total of
the time that woo spent in the activities tried to find the cause. If the cause of the error was never found, and a workaround was use
Chock the appropriate box. If the Cause was never found and a workaround was not used, explain the circumstances on Section E

Was this error related to a previous change)

Changes to software may result in errors because of one more of several reasons

e the change wen incorrectly Implemented, i.e.. did not conform to its specification;

e the change invelideted an assumption made elsewhere in the software,

e M assumption made about the feet of the software in the design of the Change was incorrect

An error is related to a previous change if it results from one of the above then Conditions. Errors that are uncovered by Changes,
t • , an error .naaked by another that is revealed when the latter is Corrected, do not belong in this category If the error is related too
Previous change, give the number and date of the change report form of the related change. When did the error enter the system

Check the box that most closely represents the Orion m the errorAOUO Components' development in which the error was introduced

SECTION E—ADDITIONAL INFORMATION

This section is intended to permit further ex planation of any items you feet may be significant in categorizing the Change Ian
Clud.ng error Corrections). It the "other" category was checked in any of the previous sections of the form, a fullor explanation thouW
be given here. DO not hesitate to give a full description of the error or change or any doubts you ma y have in classifying it The etc
Curac y of our anal ysis is dependent on the amount and accurac y of the data you provide for us. The study we are performing .f an at
tempt to do a Careful. detailed investigation of the ferocesses that go on during Software deviltiopmf it. the kinds of changes and errors
that occur during development, and the reasons for their occurrence. With your help, We ho pe to gain enough insight into the design.
coding, and testing of programs so that proposed techniques for Cop ing with Software Changes and reducing the number of errors can ere
evaluated, your cooperation and patience m com pleting the change report form each time you make a change to a document or pro
gram Caro needed and appreciated.

B-24

7-

ORIGINA!	 '15

OF FOOn QUALITY

NUM1 1111 111

CHAN01 REPORT FORM

PROJECT NAME	 CURRENT DATE

^'	

SECTION A - IDENTIFICATION

REASON Why was the dwqs mode?--

DESCRIPTION What crtant la was medal

EFFECT What cornoonsinot lot documents) me Changed? (Include vwv*nl

EFFORT What additional components for ; -.onwta) won oxvnkW In determining whet dwW was IwWdi

(011101	 rJsV	 Yowl

Need for change determined on

Change stoned an 11 .	 I

Vftl was the offort in tenon time roduiriv? to undentene l and imolstinerl it
the -1 angs?

—1 hour or Im.	 __I hour to I day,	 —1
day

to 3 da
y
s.	 —mon this 3 days

SECTION 9 - TYPE OF CHANGE (Now is this
change

beat characterized?)

= Error correction	 C3 Inartion/dolartion of dftq code

q Planned enhancement 	 C Optimization of tithwapecalftiourecy

C implementation of roltuirem"Its change	 Adaptation to onvi'virifflont change

q improvement of ;Iwitir, main
t
ainabilit

y
, or documentation	 C Other (Explain in E)

Improvement of user services

Was more then one component ,"Mod by the change? Y41—No-

FOR ERROR CORRECTIONS ONLY

SECTION C - TYPE OF ERROR (14ovy is this error bed char"wril ledli)

q Requirements incon, on or misint
erpret

ed	 C Misunderstanding of exte
rn

al orivirdelment, except lat i llusp

q Functional s
peci f

ications inc
o
rrect or misinterp

reted	
C Error in

use
of Programming ionguagoloornpilse

^ Des ign error, involving saveral components	 q Vericat error

-G Error in the design it implementation of a single component 	 q Other (Explain in E)

FOR 068M OR IMPLEMENTATION 111111 110111111111 FALY

--4 If the error was in
design o

r implementation:

The arr 3r was a mistaken assumption about "to value
or

structure of data

The error was a mistaken control logic or computation of an axwession

$00-240/791

B-25

ORIGINAL PA G E 13
OF POOR QUALITY

i

FOR ERROR CORRECTION@ ONLY

SECTION 0 - VALIDATION AND REPAIR

What at vib a weft used a valid&* the prepenh, oaast dw error, and Md is cwse?

►re•Wmateraa Mg t kuns

Activities
Used for
Prega m

validaden

Activities*
Suaaaful	 I

in Oc*tttinS	 `
Error Symptoms

A&tWiN*
Tried to

Find	 I
Cause	 i

Activities
fww0tfui
in FW4"

Cause

L
Amtptimm actin,
aramaptanm w —~

Inapaetion of outmi
Coo rewl"I by of"-	 ter
Code reading tie ot=jm
Talks with other propemmm I ^^—~
Sandal debut Coda I {-

• SVtamWipl m""ps

roiect wale a aria "Was"m
Reeding dooumenadon
Trace

rOumo i. 1Cramfaftnm/atrrl0ua list
Proof adhnique
ether IExWein in E ►—'^

Whn was the time used to i$O a* tie OWa?

_.one now or low `one how to one day. __more then one dew. _never found	 II
If never found, was a workaround used?	 Yea	 No (Explain In E)

Was this error elated to a pftwio" change?

Yes (Change Report d/Date) —No _Can't all

When did the error enter the system?

-requirenMnte -fue r in--e! specs -dosgn _coding and test	 .other _Can't tell
i

SECTION E - ADDITIONAL INFORMATION

P hase gwe any Informetion that may the helpful in eategoritktt the error or ehMge, and understanding in cam &M Its
ramifications.

I

i
I
i

S	 I 	 ^

h

F	 1

r:	 Name:	 Authorimd:	 Onto:t

f
C

OF POOR; QU.``.,.. '. I

Current Oats

Attitude S;stem Maintenance Report

Project 'lame	 Need for Change determined on (Mo.. Oay. y r.) -

Describe Change

What components/subroutines/modules are chanted

CHUGE (NON-ERROR) (fill out this sect on if change is	 an error correct on
nis change is being made because of a change In: (Chet a 1 that app's)

requirements	 hardware environment
new information/data	 software environment
specification	 optimization
design
other (specify):

out this Section if Change 13 an error Correction)
The following activities were used in eri6r detection or isolation: (Check all that
apply) (Put 0 for detection. I for isolation)

normal use
test runs
code reading
reading documentation
other (Specify):

tracs /dump
cross reference/attitude list
system error messages

w ^roJect specific error messages

Which of the following best describes the error:

requirements error	 specification error
design error	 clerical error

^. error in translating design or spe -UT —cation to code
other: Describe

Was this error related to a previous maintenance change „yes ^no _, _ can't tell

ease give any inrormation that may be malpful in categorizing and understand nag the
cnange on the reverse side of this form.

Person filling out this form

Approved	 Oate

Change started on date (month. day, year)

time spent on this change:
less than 1 day	 1 day to a week	 more than a week

z

B-27

i

r

B.2. SEL GLOSSARY OF TERMS USED WITH DATA COLLECTION FORMS

This section defines the terms used in the software engi-

neering data collection forms reproduced in Section 9.1. A

more extensive glossary (bared substantially on this one) is

found in Reference 19.

assignment	 All statements that change the value of a
statements variable as their main purpose (e.g., as-

signment or READ statements, but the as-
signment of the DO loop variable in a GO
statement should not be included).

attitude/orbit

	

	 Any component tnat is directly related to
either the attitude determination (or con-
trol) task or to the orbit determination
(or control) task falls into this cate-
gory. This should include full systems in
general (stich as GTDS or ISEE-B Attitude)
as well as specific modules such as Dctor-
ministic Attitude or DCCONES.

attribute list	 A compiler-generated list of the identi-
fiers used by a program that describes the
characteristics of those identifiers and
shows the source statements where they are
first defined (or first used) and, for
variables, their (relative) storage loca-
tions.

automated	 Any programs whose, purpose is to aid in
tools	 software development (e.g., compiler, text

editor, or dump or trace facility). This
includes compilers but not standard opera-
ting system software (e.g., linkage edi-
tor) .

baseline	 A structured chart listing all components
diagram	 in a system in which a connection from r

higher component to a lower one indicates
that the higher component calls the lower
one.

1 batch Use of a computer in which the entire jab
is read into the machine before the proc-
essing begins and in which there is no

t

	

	 provision for interaction with the sub-
mitter during execution of the job. (In-
teractive usage is always via a terminal;
batch usage may be via a terminal or a
card deck.)

B-28

?W

bottom - up	 The design (or implementation) of the sys-
tem starting with the lowest level rou-
tines and proceeding to the higher level
routines that use the lower levels.

business/	 The second of the four major categories ap-
financial	 plies to components related to some ac-

counting task, financial data formatting,
business data retrieval or reporting, or
possibly personnel data management. Very
few r, f the components being studied will
fall into this class.

change	 A modification to design, code, or docu-
mentation. A change might be made to
correct an error, to improve system per-
formance, to add capability, to improve
appearance, or to implement a requirements
change, for example.

clerical	 The process of copying an i,:em from one
format to another or from one medium to
another, which involves no interpretation
or semantic translation.

code reading	 Visual inspection of the source code by
persons other than the creator of the code.

command/	 This class of components includes those
control	 used either to generate vehicle commands

or to transmit these commands from the
control center.

complexity	 Measures the difficulty of implementing a
component, independent of the imple-
menter's experience. Easy (or simple)
means that any good programmer can write
down the correct code with little thought.
Hard (or complex) means that much thought
is involved in the design. (Compare this
with -'precise,-" e.g., easy and imprecise
may mean a vague specification, but once
the approach is decided upon, the code is
easy to write.)

component	 A piece of the system identified by name
or common function (e.g., separately com-
pilable function, an entry in a tree chart
or baseline diagram for the system at any
point in time, or a shared section of data
such as a COMMON block).

B-29

^y

computer time For batch usage,	 this is the billable time
for all runs.	 For	 interactive usage,	 it
is the number of hours spent at a terminal.

confidence Percentage probability that a given number
level is correct:	 100 percent means that the

number is absolute certainty= 0 percent
means that the number must be incorrect.

constraints Restri.;tiens on resource availability 	 (ex-
ecution time, memory allocation)	 imposed
by specifications.

constraints, All restrictions caused by space problems.
space On the Component Summary Report form, list

each restriction separately, e.g., maximum
number of words that component may occupy
at one time or maximum disk space avail-
able during execution time or for program
storage.

constraints, All restrictions caused by various machine
time and calendar time problems.	 On the

Component Ssmma!y Report form, list each
restriction separately, e.g., maximum ex-
ecution time for component to process and
respond to some input condition or time to
complete a component or milestone.

control All statements that potentially alter the
statements sequence of executed instructions	 (e.g.,

GOTO,	 IF, RETURN, or DO).

correction A change made to correct an error.

cosmetic Changes in the source program that have
little effect on the performance of pro-
gram, e.g., correct comments, move code
around as long as it does not alter the
algorithm implemented, or change the name
of a local variable.

create The creation and recording of the idea.

creation date Date that the component was first named
(e.g., date it first appeared on a tree
chart) .

cross- A lint of the identifiers used by a program
reference showing	 (by means of indices or statement

numbers) which statements of the program
define and reference those identifiers.

B-30

data base This category is to include components that
applications retrieve, write to, or 	 format informat'. ­n

for a well-defined formatted bank of in-
formation available to the

System.
	 The

user must decide whether the data set is
to

be considered a data base or not. 	 An
example of an acceptable data base would
be the ADL file, SLP file, or G*odetics
file, whereas a sequential telemetry file
or tape would not be.

design A description of what the system must do,
its components, the interfaces among those
components, and the system's interface(s)
to the external environment.

design phase The creation and recording of the design,
including discussion about strategy with
peers.	 This phase does not include the
development of any code at the programming
language level.	 it does include the crea-
tion of specifications for subcomponents
of the current component.

design reading visual inspection of the design by persons
other than the creator of the design.

development The development and recording of code and
phase inline comments based on the design.	 This

phase includes the modification of code
caused by design changes or errors found
in testing.	 it does not include any time
spent in entering the code into the com-
puter.

documentation Written material, other than source code
statements,	 that describes a system or any
of its components.

dump A record of the state of the memory space
used by a program at some point in its
execution.	 A dump may include all or part
of the program's memory space	 (including
registers).

end date Date that a project is scheduled to be
completed.

English	 (or Specifications given as readable English
informal) text, as opposed to some formal notation.
specifications

B-31

error A discrepancy between a specification and
its implementation.	 The specification
might be requirements, design specifica-
tions, or coding specifications.

external The combination of hardware and software
environment used to maintain and execute the software,

includi , .g the compute: on which the soft-
ware executes, the operating system for
that computer,	 support libraries,	 text
editors, and compilers.

formal spec- Some specification technique based upon a
ifications strict set of rules for describing the

specification and usually involving the
use of an unambiguously defined notation
(e.g., mathematical functions or	 formal
PDL) .

function A mathematical notation used to specify
the set of input,	 ':he set of output, and
the relationship between input and output.

functional A specification of a component as a set of
specifications functions defining the output for any in-

put.	 The specification emphasizes what
the program is to do rather than how to do
it.	 However, an algorithmic specification
can be considered functional if it is not
used to dictate the actual algorithm to be
used.	 (See procedural specifications.)

hardest first The design	 (or implementation)	 of the most
difficult aspects of the system first.

HIPO	 (Hier.- A graphical technique that defines each
acchical Input component by its transformation on its
Process Output) input data sets to its output data sets.

implementation The implementation of a program is either
a machine-executable form of the program,
or a form of the program that can be auto-
matically translated 	 (e.g.,	 by compiler or
assembler)	 into machine-executable form.

integration	 A test of several modules to check that
test	 the interfaces are defined correctly.

integration	 Test of the entire system (i.e., top-
test, full	 level component).

i

B-32

F

integration Test of any set of modules but not the
test,	 partial entire system.

intended The result of invoki,.g a program or segment
use of of a program,	 includ inch Lhe actions per-

formed by that program when invoked. 	 In-
vocation may be by subroutine or function
call or by a branch to a segment of code.

interface The set of data passed between two or more
programs or segments of programs and the
assumptions made by f .,ch program about how
the others operate.

interactive Use of a computer via a terminal in which
each line of input is immediately proc-
essed by the computer.

iterative The design	 (or implementation)	 of succes-
enhancement sive versions, oar-.h pruducing a usable

subset of the final product until the en-
tire system is fully developed.

level A t% ;iit corresponding to some partitioning
c,,	the final product	 (e.g.,	 a single line
of code,	 10 lines of code,	 25 lines of
code, subroutine, or module). 	 If the sys-
tem is hierarchically structured, each
component is at a higher level than its
subcomponents, and the system may be de-
scribed as the highest level component
(the component at level 1),	 the component
at level 2, or the lowest level component.

level, lowest	 Smallest unit identified by the activity
(e.g., code reading to the single state-
ment, top-down design to the module level,
or top-down design to level 3).

librarian	 A clerk whose responsibilities include
processing source statements but not writ-
ing them, (e.g., maintaining libraries,
updating code, or producing tape backups).

machine words	 Number of words in a main memory that a
component occupies at one time.

manpower	 The sum, over the number of people, of the
number of hours per person charged to the
contract.

B-33

mathematical/ This category is meant to be a more speci-
numerical fic category than the scientific class.

It contains those components that refloct
a specific algebraic expression or mathe-
matical algorithm.	 Such components as a
dot product routine or a numerical inte-
grator are in this category.

maximum space Total number of machine words that the
system may occupy at one time.

mission date Date thiit system must be operational.

module test Test of a single module.

none iised No explicit technique was specified to be
used.

on-board	 All components that are built for the
proceusing	 purpose of satisfying some on-board proc-

essing need belong to this class. Al-
though the component may be built and
tested on a computer that is not the real
flight computer, it should be classified
as onboard if the final destination is the
OBC (onboard computer).

optimization	 Changes in the source code to improve pro-
gram performance, e.g., run faster or use
less space. Optimization changes are not
error corrections= however, if a change is
made to use less space to conform to the
specified space constraint, then the term
"error" applies.

PDL	 A program design language (often called
pseudocode). Used in the design and cod-
ing phases of a project, PDL is a language
that contains a fixed set of zontrol state-
ments and a formal or informal way of de-
fining and operating on data structures.
PDL code may or may not be machine-
readable, and for, this study it is not con-
sidered as doc =antation, but as an
integral part of tt,e finished source pro-
gram.

T^

8-34

range in mod- The number of source statements in a
ule size module,	 including ;omm*nts.

read The reading by peers of the recordings of
the current phase to look for erroro,	 in-
vent tests, and so on.

real-time This class includes components that are a
direct function of events occurring at, or
near,	 the current time.	 Typical compo-
nents would be the Attitude Control
Monitors.	 Since parts of most of the te-
lemetry processors are required to process
data as it is received,	 thoy too .nay be
considered real-time components.

reg ► irements A system specification written by the user
to define a system to a developer. 	 The
developer uses these specifications in
designing,	 implementing, and testing the
system.

review A formal meeting of several individuals
for the purpose of explaining design 	 (man-
agement review).	 Also includes the time
spent in preparing for the review.	 All
those attending a review should lint the
components discussed in their own Compo-
nent Summary Report for that week.

scientific A component may be in this category if it
is related to some mathematical algorithm,
engineering problem,	 law of physics, or
celestial mechanics problem.	 Most of the
full systems developed will fall into this
category, whereas the various pieces of
modules may fall into some of the ocher
classes.

B-35
i

A

procedural	 R specification of a component in some al-
specificationsgorithmic manner (e.g 	 using PDL or a

flowchart). The specification says how
the program is to work. (See functional
specifications.)

proof	 A method for formally demonstrating that a
technique	 piece of software performs according to

its specifications. Proof techniques usu-
ally use some form of mathematical nota-
tion to describe the result of executing a
program.

segment A contiguous piece of code that is unnamed
and, hence:, cannot be referred to as a
single entity in a program statement. 	 A
segment could be one or several lines of a
subroutine, part of a data area, or an
arbitrary contiguous section of memory.

shared	 items Data and programs, accessible by several
components, such as COMMON blocks, Rx-
ternal films,	 and library subroutines.

simulating Statements that are used to simulate struc-
constr.uct.s tursd control structures when the language

to be used does not contain structured
control structures.

source Se,_ source statements.
instructions

source All statements readable by and read by the
statements compiler.	 This includes executable state-

ments	 (e.g.,	 assignment;	 IF,	 :end GO TO);
nonexecutable statements 	 (e.g., DIMENSION,
REAL, and END); and comments.

specification A description of the input, output, and es-
sential function(s)	 to be perf ,-rmed by a
component of the system.	 The specifica-
tion is produced by the organization that
is to develop the system;	 that is, at the
top level,	 it can be thought of as the
contractor's interpretation of the re-
quirements.

specification, The input, output, and function of the com-
imprecise ponent are loosely defined. 	 Much of what

is required is assumed rather than speci-
fied.	 The specification relies heavily on
programmer experience and verbal communi-
cation to get an unambiguous interpreta-
tion and a full understanding of what is
needed.

specification, The input, output, and function of the com-
precise ponent are well defined. 	 There are under-

lying assumptions not specified, but it is
assumed that any programmer working on the
project, with experience on a similar
project, will understand these assump-
tions.	 It is possible to arrive at an am-
biguous interpretation or misunderstanding

H-36

s p e c i f i c a t i o n ,
p r ec i s e
(Cont ' d)

of the s p e c i f i c a t i o n s i f the reader doea
not have enou~gh experience with the prob-
lem or does no t ob t a in f u r t h e r verba l com-
munication.

s p e c i f i c a t i o n ,
very p r e c i s e

s p e c i f i c a t i o n -
dr iven

s tandards

s t a r t d a t e

s t r i n g proces-
s ing

s t r u c t u r e -
dr iven

s t r u c t u r e
of da t a

s t r u c t u r e d
code

A completely def ined desc r ip t i on of t he
i n p u t , ou tpu t , and funct ion of a compo-
n e n t . The impkernenter of a very p rec i s e
spec iE ica t i an need make few, i f any, as -
sumptions. r t is almost impossible t o
a r r i v e a t an ambiguous i n t e r p r e t a t i o n or
misunderstanding of the s p e c i f i c a t i o n s .

us ing the s p e c i f i c a t i o n s of the program t o
determine t e s t da ta (e .g . , t e s t da t a is
generated by examining the input /output
requirements and s p e c i f i c a t i o n s) .

Any s p e c i f i c a t i o n s t h a t r e f e r t o the
method of development of the source pro-
gram i t s e l f , and not t o the problem t o be
implemented (e .g . , using s t r u c t u r e d code,
a t most 100- l ine subrou t ines , or a l l names
pref ixed with subsystem name) .
Date on which i n i t i a l work on a p r o j e c t
began.

T h i s inc ludes components t h a t perform op
e r a t i o n s on l i s t s of cha rac t e r s . Norm-
a l l y , t h i s c l a s s is assumed t o include
func t ions of compilers , hash code s t r i n g
hook-up, and a r r a y comparisons.

using the s t r u c t u r e of the program t o de-
termine t e s t da t a (e .g . , generat ing da t a
t o ensure t h a t each branch of a program is
executed a t l e a s t once) .
 he organ iza t ion of a composite da t a i tem
cons i s t i ng of s eve ra l v a r i a b l e s or o ther
a r r a y items. Examples of such composite
da t a items a r e a r r ays (both s ing ly- and
mu1 tiply-dimensioned) , s t r i n g s , complex
v a r i a b l e s and cons t an t s , records on a d i sk
f iLe (each record conta ining s e v e r a l
words) , and multiple-word e n t r i e s i n a
t a b l e .

The language suppor t s s t r u c t u r e d c o n t r o l
s t r u c t u r e s (e . g . , a FORTRAN preprocessor) .

systems	 By system-related software, one includes
any package designed to affect, modify,
extend, or change the normal available
processing procedure of the operating sys-
tem. This could include such components
as error tracing or extended I/O such as
DAIO.

system size	 Total number of machine words needed for
all instructions generated on the project
plus space for data, library routines, and
other code. This is the total size of the
system without using any overlay structure.

table handler	 Includes components that are specifically
designed to generate or interpret informa-
tion in a table format such as the Gener-
alized Telemetry Processor.

telemetry/	 Includes all components that are spec-
tracking	 ifically required to interface (either

read, write, or format) with telemetry or
tracking data.

testing phase	 The design of tests, testing strategies,
and the running of such tests. Thi£ phase
does not include the writing of any code
(even for debugging purposes), which
should be recorded under coding.

top-down	 The design (or implementation) of the-sys-
tem, starting with a single compinent, one
level at a time, by expanding each compo-
nent reference as an algorithm possibly
calling other new components.

trace	 A record of program execution showing the
sequence of subroutine and function calls
and, sometimes, the value of selected var-
iables. Code used in producing a trace is
automatically inserted into a program,
usually by the compiler, sometimes by
other support software.

type of soft-	 The four major classifications of most of
ware	 the applicable software being developed

are: scientific, business/financial,
systems, and utility. These classifica-
tions may be refined into the categories
of: string processing, data base
applications, real time, and table

B-38

a

type cf soft-	 handler. A further refinement includes
ware	 the categories of: attitude/orbit,
(Cont'd)	 telemetry/tracking, command/control, math-

ematizal, and numerical on-boaru.

utility	 Any component that is generated to satisfy
some general support function required by
other applications software may be con-
sidered a utility. One thinks of this
class of components as containing software
that does not fit into any of the other
three categories. Although components can
fall into two of the primary categories
(e.g., scientific and utility), it will be
easier to use only the more descriptive of
the categories (e.g., vector cross
product--scientific: data unpacking--
utility).

value of data	 The number and kind of number (e.g., in-
teger, floating-point, or ASCII-encoded
character) stored in a local variable or
data area, parameter, common variable, or
system-wide data item.

walkthrough	 Formal meeting sessions for the review of
source code and design by the various mem-
bers of the project For technical rather
than management purposes. The purpose is
for error detection and not correction.

workaround	 The method used to counteract the effects
of an error in a program when the cause of
the error and, consequently, the location
of the statements containing the error is
not known or is inaccessible (e.g., a com-
piler error).

,I

B-39

.a

rT=	 ,,
i

i

REFERENCES
1

1. P. Maur, B. Randell, and J. N. Buxton (eds.), Software
En ineerin : Concepts and Techniques. New York:
Petroce i harter,

2. V. R. Basili, M. V. Zelkowitz, F. E. McGarry, R. W.
!Reiter, W. F. Truszkowski, and D. L. Weiss, The Soft-
ware Engineerin2 Laborator y SEL-1, TR-535, University
UT Maryland, 1

3. V. R. Basili, "Data Collection, Validation, and Anal-
ysis," IEEE Tutorial on Software Engineering and Man-
agement, IEEE Computer Society, Fall 1980

4. Data and Analysis Center for Software, SRR-1, Quantita-
tive Software Models, 1979

5. M. H. Halstead, Elements of Software Science. North
Holland: Elsevier, 1977

6. A. Fitzsimmons and T. Love, "A Review and Evaluation of
Software Science," Computing Surveys, March 1978

7. T. J. McCabe, "A Complexity Measure," IEEE Transactions
on Software Engineering, June 1975

8. Stanford University, BMDP User's Guide

9. SAS Institute, Statistical Analysis System (SAS) User's
Guide

10. SPSS Inc., SPSS-11 User's Guide

11. Computer Sciences Corporation, CSC/SD-81/6079, Software
V..,.4 ____ i.... T	 ICWTA nso-M Raa= Mai ntonanr-o CV=-

12. --, CSC/£D-81/6011UD1, Software Engineering Laboratory
(SEL) Data Base Organization and User's Guide,
D. C. Wyckoff, September 1981

13. QED Information Sciences, Data Base Systems: A Practi-
cal Reference, R. Palmer

14. Goddard Space Flight Center, Software Engineering Lao-
oratory (SEL), A Meta-Model of Software Development
Resource Expenditures (SEL internal report), V. R.
Basili, and N. Bailey; also Proceeding s, Fifth Inter-
national Conference on Software Engineering, IEEE, 1981

R-1

c ^-

15. RCA, Price S (system description), 1979

16. L. H. Putnam, "A General Empirical Solution to the
Macro Software Sizing and Estimating Problem," IEEE
Transactions on Software Engineering, July 1978

17. A. B. Endres, "An Analysis of Errors and Their Causes
in System Programs," IEEE Transactions on Software En-
gineering, June 1975

18. B. Littlewood, "Theories of Software Reliability," IEEE
Transactions on Software Engineering, September 1980

19. Data and Analysis Center for Software, GLOS-1, The DACS
Glossary, A Bibliography of Software: Engineering Terms,
October 1979

^-	 f

R-2

BIBLIOGRAPHY OF SEL LITERATURE

Anderson, L., "SEL Library Software User's Guide," Computer
Sciences-Technicolor Associates, Technical Memorandum, June
1980

Bailey, J. W., and V. R. Basili, "A Meta-Model for Software
Development for Resource Expenditures," Proceedings of the
Fifth international Conference on Software Engineering.
New York: Computer Societies Press,

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Basili, V. R., "The Software Engineering Laboratory: Objec-
tives," Proceedin s of the Fifteenth Annual Conference on
Computer Personnel Research, August

Basili, V. R., "Models and Metrics for Software Management
and Engineering," ASME Advances in Computer Technology,
January 1980, vol.

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1980

Basili, V. R., Tutorial on Models and Metrics for Software
Management andEn xneerLn . New York: Computer Societies
Press, 1980 (also Ydesignated SEL-80-008)

Easili, V. R., and J. Beane, "Can the Parr Curve Help with
the Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no.

Basili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

Basili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop:ual-ity T^Tee r ics, March i9d i

Basili, V. R., and T. Phillips, "Validating Metrics on Proj-
ect Data," University of Maryland, Technical Memorandum,
December 1981

B-1

Basili, V. R., and R. Reiter, "Evalurcing Automatable Meas-
ures for Software Development," Proceedin s of the Workshop
on Quantitative Software Models Tor Reliabilit y , Mplexit
and Cost,o er

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, eptember

Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management WorKS op, August

Basili, V. R., and M. V. Zelkowitz, "Measuring Software De-
velopment Characteristics in the Local Environment," Com-
puters and Structures, August 2978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on So tware Engineering. New Yorks Com-
puter Societies ress,

Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedings o
the Fitth International Conference on Software En lneerin .
New York: ! Computer Societles Press,

Church, V. E., "User's Guides for SEL PDP-11/70 Programs,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, eptem er 	 (also
designa a SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978)

Mapp, T. E., "Applicability of the Rayleigh Curve to the SEL
Environment" (paper prepared for the University of Maryland,
December 1978)

B-2

Miller, A. M., "A Survey of Several Reliability Models"
(paper prepared for the University of Maryland, December
1978)

Natiunal Aeronautics and Space Administration (NASA), NASA
Software Research Technology Worksho (proceedings), March

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Ropor`•
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

Perricone, B. T., "Relationships Between Computer Software
and Associated Errors: Empirical Investigation" (paper pre-
pared for the University of Maryland, December 1981)

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexit y " (paper prepared for the
University of Maryland, December 1976)

Sc:heffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Mari3tta Corpora-
tion, Technical Memorandum, September 1977

Software Engineering Laboratory, SEL- 1 6-001, Proceedings
From the First Summer Software Engineering Workshop,
August

--, SEL-77-001, The Software Ensineerinj Laborator ,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1.977

-, SEL-77-002, Proceedings From the Second Summer Software
Engineering Workshop, September 1977

--, SEL-77-003, Structured FORTRAN Preprocessor (SFORT),
B. Chu, D. S. Wilson, and R. Beard, September 1977

--, SEL-77-004, GSFC NAVPAK Desi g n Specifications Languages
Study, P. A. Scher er and C. E. Velez, October 1977

--, SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. 0 Neil ,
S. R. Waligora, and C. E. Goorevich, January 1978

-, SEL-78-002, FORTRAN Static Source rode Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

B-3

--, SEL-78-003, Evaluation of Draper NAVPAK Software Dori n,
K. Tasaki and F. E. McGarry, June

--, SEL-78-004, Structured FORTRAN Preprocessor SPORT
PDP-11 70 User's Guide, D. S. W1 son, B. Chu, and G. Page,
September

--, SEL-78-005, 1 :aceed in s From the Third Summer Software_
Engineering Workshop, September

--, SEL-78-006, GSFC Software Engineering Research Require-
ments Analysis Study, P. A. Scheffer, November 1978

--, SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, u y

--, SEL-79-002, The Software En g ineering Laboratory: Rela-
tionship Eguations^.Pr urger and V. R. Basiii, May 1979

--, SEL-79-003, Common Software Module Repositor y CSMR
System Descri tion and User s ui e, C. E. Goorevich,
S. R. Waligora, and A. L. Green, August 1979

, SEL-79-004, Evaluation of_ the _Caine, _Farberu and Gordo
Program Design Lan ua a PUG in the Goddard Space Flight
Center (GSF	 ode 580 Software Des n Env ronment,
C. E. Goorevic , A. L. Green, and F. E. Mc arry, .Yeptember
1979

--, SEL-79-005, Proceedings From the Fourth Summer Software
Engineering Workshop, November 1979

--, SEL-80-001, Configuration Analysis Tool CAT Functiona
Re uirements S ec f cat ons, F. K. Banks, C. E. Goorevich,
and A. L. Green, February T980

--, SEL-80-002, Multi-Level Expression Design Language-
Requirement Leve	 MEDL-R) System Evaluation, W. J. Decker,
. E. Goorevich, and A. L. Green, May

--, SEL-80-003, Multimission Modular S pacecraft Ground Sup-
port System (MMS	 to a-o -t e- rt ComputerSystem/
Compatibility Study, T. Weldon, M. McClellan, P. Liebertz,
et al. ,May 1930

-, SEL-80-004, System Description and User's Guide for Code
580 Configuration Analysis Tool CAT), F. K. Banks,
W. J. Decker, J. G. Garra an, et al., October 1980

-, SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November

B-4

--, SEL-80-006, Proceedin gs From the fifth Annual Software
'	 Engineering Workshop, November

--, SEL-80 - 007, An AR12raisal of Selected Cost Resource Esti-
mation Models for So twe";eeS stems, J. F. Cook and

McGarry, ecem er 1950

--, SEL-81-001, Guide to Data Collection, V. E. Churcn,
D. N. Card, F. E. McGarry, et a ., eptember 1981

--, SEL-81-002, Software En g ineering Laborator y SEL) Data
Base Or ganization and User's Guide, D. C. Wyckoff, G. Page,
F. E. McGarry, at al., September-T981

--, SEL-81-003, Software Engineering Laboratory (SEL) Data
Pans MA i nt&nAnr%& Avatam f nRAMI 11sar as 1"m i s And _ vsFam no-
sĉ rlptlon, D. N. Cara, D. co wycKOrr, G. Page, et a1.,
Septembe r 1981

--, SEL-81-004, The Software En g ineering Laborator ,
D. N.' Card, F. E. mcuarry l G. Fag*, at a.,.., September 1981

--, SEL-81-005, Standard Approach to Software Develo ment,
V. E. Church, F. E. McGarry, G. Page, at al., Septtmo*r 1981

--, SEL-81-006, Software Engineering Laboratory SEL Docu-
ment Library (D0 L) System Description and User's Guide,
W. Taylor and W. J. Declter, December 1981

--, SEL-81-007, Software En ineerin Laboratory SEL Com-
pendium of TOOls,-V.=o DDecker, E. J. SM!tn, A. L. Green,.
et al., February 1981

--, SEL-81-008, Cost ana Reliabilit y Estimation Models
(CAREM) User's Gui e, J. F. Cook and E. Edwards, Fe ruary

--, SEL-81-009, Software Eng ineering Laboratory Programmer
Workbench Phase 1 Evaluation, W. J. Decker, A. L. Green, and

E. McGarry, arch

--, SEL-81-010, Performance and Evaluation of Independent
Software Verification and Integration Process, G. Page and

c arry, May

!	 -, SEL-81-011, Evaluating Software Develo ment. by Analysis
of Change Data, D. M. Weiss, November].

--, SEL-81-012, Software En ineerin Laborator , G. 0.
Picasso, December

B-5

--, SEL-81-013,

--, SEL-81-014,

s From the Sixtn A
ember 1981

Collection of Soft

nual Software

YYbY
91

b{1t ^Virwvi^ i.{{ LI{ttL •S{{ YWYVrYiV^	 ^7YY /
teen,	 . ec er, an	 carry, eptember 1981

Turner, C., G. Caron, and G. Brement, "NASA/SEL Data Compen-
dium," Data and Analysis Center for Software, Special Publi-
cation, April 1981

Turner, C., and G. Caron, "A Comparison of RADC and NASA/SEL
Software Development Data," Data and Analysis Center for
Software, Special Publication, May 1981

Weiss, D. M./ "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and compuEer Sclence. New York:
Computer Societies Press,

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the
Software Life Cycle Management Workshop, September 1977

B-6

specification,	 of the specifications if the re-der does
precise	 not have enough experience with the prob-
(Cont'd)

	

	 lem or does not obtain further verbal com-
munication.

specification,	 A completely defined description of the
very precise

	

	 input, output, and function of a compo-
nent. The ir-pl'.ementer of a very precise
specification need make few, if any, as-
sumptions. it is almost impossible to
arrive at an ambiguous interpretation or
misunderstanding of the specifications.

specification-	 Using the specifications of the program to
driven determine test data (e.g., test data is

generated by examining the input/output
requirements and specifications).

standards

	

	 Any specifications that refer to the
method of development of the source pro-
gram itself, and not to the problem to be
implemented (e.g., using structured code,
at most 100-line subroutines, or all names
prefixed with subsystem name).

start date

	

	 Date on which initial work on a project
began.

string proces-	 This includes co,-itponents that perform op
sing

	

	 erations on lists of characters. Norm-
ally, this class is assumel to include
functions of compilers, hash code string
hook-up, and array comparisons.

structure-	 Using the structure of the program to de-
driven

	

	 termine test data (e.g., generating data
to ensure that each branch of a program is
executed at least once).

structure	 The organization of a composite data item
of data

	

	 consisting of several variables or other
array items. Examples of such composite
data items are arrays (both singly- and
multiply-dimensioned), strings, complex
variables and constants, records on a disk
file (each record containing several
words), and multiple-wor:i entries in a
table.

structured	 The language supports structured control
code	 structL.es (e.g., a FORTRAN preprocessor).

8-37

	1982016122.pdf
	0024A02.jpg
	0024A02.tif
	0024A03.jpg
	0024A04.jpg
	0024A04.tif
	0024A05.tif
	0024A06.tif
	0024A07.tif
	0024A08.tif
	0024A09.tif
	0024A10.tif
	0024A11.tif
	0024A12.tif
	0024A13.tif
	0024A14.tif
	0024B01.tif
	0024B02.tif
	0024B03.tif
	0024B04.tif
	0024B05.tif
	0024B06.tif
	0024B07.tif
	0024B08.tif
	0024B09.tif
	0024B10.tif
	0024B11.tif
	0024B12.tif
	0024B13.tif
	0024B14.tif
	0024C01.tif
	0024C02.tif
	0024C03.tif
	0024C04.tif
	0024C05.tif
	0024C06.tif
	0024C07.tif
	0024C08.tif
	0024C09.tif
	0024C10.tif
	0024C11.tif
	0024C12.tif
	0024C13.tif
	0024C14.tif
	0024D01.tif
	0024D02.tif
	0024D03.tif
	0024D04.tif
	0024D05.tif
	0024D06.tif
	0024D07.tif
	0024D08.tif
	0024D09.tif
	0024D10.tif
	0024D11.tif
	0024D12.tif
	0024D13.tif
	0024D14.tif
	0024E01.tif
	0024E02.tif
	0024E03.tif
	0024E04.tif
	0024E05.tif
	0024E06.tif
	0024E07.tif
	0024E08.tif
	0024E09.tif
	0024E10.tif
	0024E11.tif
	0024E12.tif
	0024E13.tif
	0024E14.tif
	0024F01.tif
	0024F02.tif
	0024F03.tif
	0024F04.tif
	0024F05.tif
	0024F06.tif
	0024F07.tif
	0024F08.tif
	0024F09.tif
	0024F10.tif
	0024F11.tif
	0024F12.tif
	0024F13.tif
	0024F14.tif
	0024G01.tif
	0024G02.tif
	0024G03.tif
	0024G04.tif
	0024G05.tif
	0024G06.tif
	0024G07.tif
	0024G08.tif
	0024G09.tif
	0024G10.tif
	0024G11.tif
	0024G12.tif
	0024G13.tif
	0024G14.tif
	0025A01.tif
	0025A02.tif
	0025A03.tif
	0025A04.tif
	0025A05.tif
	0025A06.tif
	0025A07.tif
	0025A08.tif
	0025A09.tif
	0025A10.tif
	0025A11.tif
	0025A12.tif
	0025A13.tif
	0025B01.tif
	0025B02.tif
	0025B03.tif
	0025B04.tif
	0025B05.tif
	0025B06.tif
	0025B07.tif
	0025B08.tif
	0025B09.tif
	0025B10.tif
	0025B11.tif
	0025B12.tif

