
SEL-81-013

PROCEEDINGS OF
THE SIXTH ANNUAL SOFTWARE

ENGINEERING WORKSHOP

ORGANIZED BY:
SOFTWARE ENGINEERING LABORATORY

GSFC

DECEMBER 2, 1981

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

NASA
National Aeronautics ana
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

PROCEEDINGS

OF

SIXTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

Organized by:

Software Engineering Laboratory
GSFG

December 2, 1981

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space Administra-

tion Goddard Space Flight Center (NASA/GSFC) and created for

the purpose of investigating the effectiveness of software

engineering technologies when applied to the development of

applications software. The SEL was created in 1977 and has

three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-

velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports

that includes this document.

Single copies of this document can be obtained by writing to

Frank E. McGarry
'Code "582.1' ~
NASA/GSFC
Greenbelt, Maryland 20771

ill

Page Intentionally Left Blank

SIXTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

ABOUT THE WORKSHOP

The Sixth Annual Software Engineering Workshop was held on December 2, 1981,
at Goddard Space Flight Center in Greenbelt, MD. Nearly 200 people, represent-
ing 6 universities, 19 agencies of the federal government, and 30 private
organizations, attended the meeting.

As in the past 5 years, the major emphasis for this meeting was the reporting
and discussion of experiences in the identification, utilization, and evaluation
of software methodologies, models, and tools. Eleven speakers, making up four
separate sessions, participated in the meeting with each session having a panel
format with heavy participation from the audience.

The workshop is organized by the Software Engineering Laboratory (SEL), whose
members represent the NASA/GSFC, University of Maryland, and Computer Sciences
Corporation (CSC). The meeting has been an annual event for the past 6 years
(1976 to 1981), and there are plans to continue those yearly meetings as long
as they are productive.

The record of the meeting is generated by members of the SEL and is printed and
distributed by the Goddard Space Flight Center. All persons who are registered
on the mail list of the SEL receive copies of the proceedings at no charge.

Additional information about the workshop or about the SEL may be obtained by
contacting:

Mr. Frank McGarry
Code 582.1
NASA/GSFC
Greenbelt, MD 20771

301-344-5048

Page Intentionally Left Blank

AGENDA

SIXTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GODDARD SPACE FLIGHT CENTER

BUILDING 3 AUDITORIUM
DECEMBER 2, 1981

8:45 a.m. INTRODUCTORY REMARKS

MORNING CHAIRMAN

9:00 a.m. SESSION NO. 1

D. Weiss (NRL)

J. Page (CSC)

V. Basili
(University of MD)

10:30 a.m. BREAK

10:45 a.m. SESSION NO. 2

J. Gaffney/R. Judge (IBM)

J. Post
(Boeing Aerospace)

D. Card (CSC)

12:45 p.m. LUNCH

AFTERNOON CHAIRMAN

1:15 p.m. SESSION NO. 3

B. Littlewood/A. Sofer
(GW University)

F. E. McGarry/GSFC

F. E. McGarry

"Evaluating Software Development
Characteristics"

"Analyzing Error Characteristics in Software
Development"

"Evaluating the Effects of an Independent
Verification and Validation Team"

"Assessment of Software Measures in the
Software Engineering Laboratory"

"Software Metrics"

"The Quantitative Impact of Four Factors on
Work Rates Experienced During Software
Development"

"Software Quality Metrics for Distributed
Systems"

"Identification and Evaluation of Software
Metrics"

V. Basili

"Software Models"

"A Bayesian Approach to Parameter
Estimation in the Jelinski-Moranda Software
Reliability Model"

vii

H. Sayani/C. Svoboda
(ASTEC)

2:45 p.m. BREAK

3:00 p.m. SESSION NO. 4

H. Mills/M. Dyer (IBM)

B. Jones (Hughes)

R. Hamilton
(Bell Labs)

5:00 p.m. ADJOURN

"The Problem of Resonance in Technology
Usage"

"Software Methodologies"

"A Methodology for Improving Software
Reliability"

"Selecting a Software Development
Methodology"

"Development Techniques for Generic
Software"

viii

Workshop Introduction

The software engineering workshop is one attempt to promote the interchange of
ideas, experiences and approaches to the measurement and evaluation of varying
techniques used in the software development process. The first meeting was
held in August of 1976 in partial response to NASA's concern for the apparent
gap between the availability of state-of-the-art software development approaches
and the actual utilization of these techniques. Also, the First International
Conference on Software Engineering had been held in Washington, DC the previous
year and had stimulated interest and concern within the NASA community.

The first workshop at Goddard essentially surveyed some available state-of-the-
art development techniques to determine if they would be applicable in the NASA
environment. The meeting was attended by approximately 25 people. As a result
of this first workshop, NASA/GSFC initiated efforts to investigate the effective-
ness of the numerous available approaches to developing software.

Within a few months after the first workshop, an organization was created
(called the Software Engineering Laboratory--SEL) which was chartered to
measure the impact that various methodologies, tools, and models had on appli-
cations software within NASA/GSFC. The SEL was formed as a partnership between
NASA/GSFC, the University of Maryland, and Computer Sciences Corporation (CSC).
During the first year of operation, the SEL concerned itself with the approaches
to conducting software development experiments and to collecting development
data for study. The SEL became very interested in finding others who were
attempting to do similar things.

The Second Software Engineering Workshop was held in September 1977 at NASA/
GSFC with the central theme being 'Who else is performing software experiments
and collecting software data'. Approximately 55 persons attended this meeting
and many approaches and experiences relating to software experiments and data
collection were discussed—both during presentations and during informal
discussions.

The third meeting was held in September of 1978 at NASA/GSFC. Continued
emphasis was placed on the data collection and software experiments. Many of
the discussions focused on thequestion of 'how* do-.you collect software data
and how do you successfully conduct software experiments. This meeting was
attended by approximately 70 people.

The fourth and fifth meetings again were held at NASA/GSFC in November of 1979
and November of 1980 respectively. During these sessions, the emphasis was
once again placed on data collection and the actual experiences with software
methodologies, models, tools, and measures.

The sixth meeting is another attempt to listen to experiences that people have
had in attempting to apply various modern programming practices. Although the
workshops occasionally seem to stray away from the central theme of data
collections and software experiments, the major objectives are still essentially
being met. As an example, these workshops have been instrumental in providing
suggestions and guidance to the efforts within the SEL at Goddard. The SEL has
now been in existence for about 6 years and has-closely monitored 34 applications
projects with NASA/GSFC, collecting approximately 15 m bytes of development data.

IX

This data has continually been studied and evaluated and has led to numerous
measurements and evaluations of software methodology models and tools.

Many effective relationships were initiated through the workshops and a great
number of experiences, experimental results and data itself has been exchanged
between organizations. The Sixth Workshop will attempt to stimulate further
exchanaes.exchanges.

Q
_
oDCOO

C
LLI
LJJ

0
0

O
)

OLUC
O

CO

OLLJ
Q

CO

x
i

Page Intentionally Left Blank

o a

OCCC3* O

C

o
 w

QQCLOCCO
C

D

|ioD<Hco

LUC
O

>-f n
vl̂O_
l

^

o

^
 5

h-
^

<
 ^

^^
—

 k

°aUJ H
f
f

tt.
_

_

«<r
-L.
|

t

0
 ^

CO
Z1

• WHO IS COLLECTING
• WHO IS EXPERIMENl

fcC
O

Q
.

LUCOQ2C
N

Q1-2n
 i

5
 <

liLU
in

>
 I

«
l

LU

LU
£

 D
C

<
 Q

.
Q

 C
C

=
i

L
U

<

^

D

=
)

?
?

0
 0

Q

Q

1
1•

•

0
0

<»tLUCOQcc00

CO2LU^̂
™

ôcLUQ
_

X

• SOME RESULTS OF E
SOFTWARE MODELS
SOFTWARE METRICS

RC
O•

O2X!?

-
^

^Oh-C
J

LU_
li

__l
Oo<K<

 C
O

Q
 1

-

CO
"

LU

t
 ̂• FURTHER EXPERIMEIS

& PROPOSED EXPERI

o1O2Xfe
x

iii

Page intentionally left blank

o

Q>

_

O
CCU

J
LU_

c
^C
OQLU

COLUgzX0LU

oLJ_
COosLUDC<§

LUQ
C

C
J

m

9
-
 °

U
J

Q
.

C
O

O

"
•

^

3

O

C
O

L
U

C

O

Q
>

C

O

O

8
§

f
^ >

s
LU

h
-

o

s
a

g
3 t o
U

L
U

C

C
U

-
L
U

b
t

0
b

 ̂
L
U

<

^

d

D
 >

-
L
L

_
l

_
J

O

^
 D

L
OC

>

°-
CL

L
U

 ^

s...

ROCEED

a.O^_^

<sQ

...(FORMS

COĈO<HLLI
>L
_

0**•

ÔDCLLH~r̂

DETAILED!

o<oc^ LU

>L5_J<>Z01-COLLEC

zoCOUJQ_l£r~LU^

...(EXPERII

COr̂L
U

ÊL
U
Q
_

XL
U'E CONTROL

5ocLUL
U

C
O

CO_J<<
1
<0L
_STATISl

COLUccCO<^ CO_lLUQO§Q<DQ**»DZUJ
DC<5t0COaoo(DL
U
XE•__iDa

COMETRIC

X
V

Page Intentionally Left Blank

c/>C
C

U
J

LU
(/)

L
U

(/)

LU

><
t a
o

 O
C

/)
U

-

CD

C
/)

•§•(/) O
Q

CJ
{5

0

O

-J
U

J

C
"3

C

O

=
CC

'E
Q

_
C

-̂
C

C

C/DERIMENT

NITORED

CL
C

2

5

£
2

LABORATOI

INFORMATI
yC

L
OLU

.
C

L

1
£QI
I
I

1U
J

U
J

DCQ
_

LUC
C

C
Od

ĥ
M1ANAGEF

>
^

:
c/5CC.

i
S

PROGRAM l\

C
/>

U
J

m

<
r^ c/)

K
<

^
c
?

^^
f*^*

™
^™

i§
i

Z

u
_

Z
O

o

>
S3 8

.
t

£
£

<

1

g

1

8
^

C
N

LUP
f
f
\

f
~

n

O

Q

w
'

C
/J

1

 1
 1

I—

*

^

—
 J =

}
L
U

cc O
 CQ

-i
o
 o

 -^
U

_

H

C
O

°
£

Q

c/)
m

w
 X

,
U

J

o

o
<

o

P

o
X

Q

u
j

o

§
fe

Q

^

>
 I-

<(/)<

x
v

ii

Page Intentionally Left Blank

ccos^s*CO
£

rft
-" C

O
CD

li!

JNDER STUDY

-jCOLUf ̂APPROA(

zo5ccCDLUh-zJbzoH:<oLL.
CCLUJDEPENDENTV

«£.

iEMENTTOOL
CD<<•̂

ONFIGURATIOr

o

GE(MEDL-R)
<z>CD!EQUIREMENTS

cc

CDz9JFORMATIONH_̂

OI-ATA ABSTRAC

Q

(YOURDON&DEMARCO

COCO<
TRUCTUREDAr

CO

•z.CDCOLUr\2 CHARTS FOR 1

•z.

<oo

HALSTEAD,
ccU

J
U

J
_m

^S<•

QLUC
C

O

LU|XoCCa.rv

C
J

0_
j

LUNrn

O8S

o8IDC
D

8oC
D

8o0
0

8ooLO

8oLO

OOOC
M

(D^-LUCOCOHOLU—
)

OCCQ
_

U
J

5Qu_0Q2LULU

^^"2.

C
O

C

O

C
O

C

D

L
O

^

C
D

C

D
 C

O

«—

«~

«—

O
O

C
O

0
0

0
0

--

C/D
CO

l
-

^
Q

Q
Q

g
o

Q
U

j
U

J
<

(
O

<
C

<
l
L

U
L

U
Q

Q
Q

<
C

C
<

Q
C

D

C
/)

LUt^

5

CO

^
-J

^
< "

APPROACHES
MEASURES -

TOOLS EVALU/

METHODOLOG

X
IX

Page Intentionally Left Blank

0_OXC/)

ccOtoccOo0_o

COOCODCoDCoccoDCDCLJLI

o

a.oLLJ
oJbCOLLJ
C

L

C
C

OCOLUQO

LLJ

Q
_

OLLJ
QC

C
OCOLLJ

OQoi

x
x
i

SUMMARY OF THE SESSIONS:

SIXTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

Suellen Eslinger

COMPUTER SCIENCES CORPORATION -

and

THE GODDARD SPACE FLIGHT CENTER

SOFTWARE ENGINEERING LABORATORY

Prepared for the

NASA/GSFC

Sixth Annual Software Engineering Workshop

SESSION 1 - EVALUATING SOFTWARE DEVELOPMENT
CHARACTERISTICS

Dave Weiss - "Analyzing Error Characteristics in Software De-

velopment"

Tfte first speaker of the first session was Dave Weiss from

the Naval Research Laboratory (NRL). The purpose of his

presentation was to characterize software changes in two

different software development environments. Changes re-

quired to correct errors formed one subcategory of the soft-

ware changes studied. Data was used from several projects

at GSFC and at NRL; data for the GSFC projects was collected

by the Software Engineering Laboratory (SEL).

Although the two environments were quite different, the

characteristics of the software changes were found to be

very similar. For example, in both environments relatively

few errors (approximately 5 percent) took more than 1 day to

correct, and relatively few errors (approximately 2 to

5 percent) were caused by. requirements problems. Although

the error characteristics detected may not be applicable to

other environments, the same type of study could be per-

formed by another group of software developers to charac-

terize errors in their environment. The results of this

type of study can help-determine where effort should be

focused to reduce errors and thus improve reliability in

software being developed in a given environment.

In response to questions from the audience, Weiss clarified

several points:

• Interface errors were only a small part of the

errors counted that affected more than one module. Unlike

similar studies in the literature, relatively few errors in

the two environments were found to be interface errors.

S. E stinger
CSC
1 of 21

• All projects studied were completed, but no data

was used from the maintenance phase of the projects.

• Changes were tracked from the time that a module

was entered into the library. In both environments this

process took place after the programmer had coded, compiled,

ana tested the module, i.e., at the completion of unit

testing.

• Neither environment had a formal configuration con-

trol board. The programmer was responsible for determining

the correctness of the change, and the effort to fix an

error was accepted to be the amount of time the programmer

said it took to make and test the change.

• The NRL environment had even less configuration

control than the GSFC environment. Configuration control in

the NRL project consisted of project leaders alone perform-

ing library updates.

Jerry Page - "Evaluating the Effects of an Independent Veri-

fication and Validation Team"

The next speaker of the session was Jerry Page from Computer

Sciences Corporation (CSC). The purpose of his presentation

was to evaluate the effectiveness of a particular methodol-

ogy when utilized in the development of application soft-

ware. Experiments in applying independent verification and

integration (V&I) were conducted at GSFC during the develop-

ment of two ground-based software projects. CSC was re-

sponsible for the V&I effort under contract to GSFC.

Detailed data for the projects was collected by the SEL.

The two V&I projects were compared to two similar earlier

projects monitored by the SEL for which V&I had not been

used. Seven specific measures were used to weigh the

effects of applying the methodology. The only clearly

S. Eslinger
CSC
2 of 21

favorable effect found was a reduction in the number of re-

quirements errors. Furthermore, the V&I experimental proj-

ects were costly, and the resulting software seemed to be as

error prone as the software produced by the projects for

which V&I was not used. However, the speaker noted that as

more experience is gained with a particular methodology,

better results are usually achieved. Thus, Page indicated,

more experimentation with V&I is warranted, especially with

projects of a larger size (10 to 12 staff-years) and/or with

high reliability requirements.

This presentation generated a large response from workshop

participants. The following points were clarified by Page

in answer to questions from the audience:

• The V&I teams represented approximately 15 to

18 percent of the development effort in size and were simi-

lar to the development teams in experience.

• In general, the V&I teams worked behind the devel-

opment teams, verifying the completed code while new code

was being developed.

• The activity of code reading was performed by the

development teams as a standard practice. Since the V&I

teams were relatively small compared to the amount of code

produced, the V&I teams emphasized testing of the software

and not code reading. In fact, testing was found to be the

most cost-effective part of the V&I effort.

• No investigation was made of the effect of the V&I

teams on the readability or the maintainability of the

code. Since the V&I teams were not directly involved in the

code reading activity, their presence was not expected to

affect the quality of the code in readability or maintain-

ability.

S. Eslingei
CSC
3 of 21

• In the four projects studied, similar methodologies

were used, except for the presence of the V&I teams.

• In all four projects, acceptance testing was per-

formed by an independent team, whose effort did not overlap

the effort of either the development teams or the V&I

teams. In particular, the V&I teams did not verify the

acceptance tests. Thus, the quality of acceptance tests was

not perceived to differ significantly for the four projects.

• Most errors found during acceptance testing were

not due, in general, to testing with real data. Since real

data is not usually obtained until very late in acceptance

testing, most testing is performed with simulated data.

• A member of the audience suggested that the value

of tne V&I efforts may appear after acceptance testing.

Page responded that in this environment, on the average,

only 15 percent of the total cost is incurred during the

maintenance phase. Thus, a significant savings in cost is

not expected for the V&I projects during this phase. How-

ever, all of the projects studied are still being monitored,

and the data will continue to be analyzed.

• There were some instances in which the development

teams relied upon the V&I teams to find their errors.

• There was also an overlap in errors found by the

development -teams and the V&I teams .although the percentages

have not been computed.

• CSC's Milt Phenneger, wno participated in the V&I

effort, suggested that the V&I process could be improved by

tailoring the design and scheduling of the software releases

to an independent testing effort. However, the speaker

noted that the purpose of the experiment was to assess the

effect of independent V&I without perturbing the existing

software development process.

S. Eslinger
CSC
4 of 21

Vic Basil! - "Assessment of Software Measures in the Software

Engineering Laboratory"

The last speaker of the session was Vic Basili from the

University of Maryland. This presentation concentrated on

software measures as studied in the SEL. He outlined the

characteristics of measures examined by the SEL during the

past 4 years. His discussion focused on various classes of

measures/ such as subjective and objective measures of the

software process and product/ cost, and quality. He dis-

cussed the use of metrics for categorization, evaluation,

and prediction. One result obtained from the analysis of

SEL data is that many of the complexity measures, including

the Halstead measures, are highly correlated with each other

and with the number of lines of code. This is a disappoint-

ing result because it indicates that in this environment

none of the more sophisticated complexity measures is a

better predictor than the simple measure of lines of code.

A cost model has been developed using subjective metrics to

modify the basic size/effort equation. Other results indi-

cate that in this environment productivity correlates posi-

tively with methodology but with few other factors,

including size. Also, subjective measures of quality cor-

relate positively with methodology-and inversely with com^ ... —

plexity.

In response to questions from the audience, Basili clarified

the following points:

• Examples were given of the subjective measures of

quality, of the methodology measures, and of the complexity

measures for which data is being collected by the SEL.

• On a typical project studied by the SEL, methodol-

ogies either tend to be used as a total group or completely

avoided. As methodology is used to a larger extent, the

quality and productivity tend to increase. However, the

S. Eslinger
CSC
5 of 21

measures dealing with the degrees of use of a particular

methodology do not function individually as predictors.
Rather, the overall set of methodology measures should be
used.

S. Eslinget
CSC
6 of 21

SESSION 2 - SOFTWARE METRICS

Bob Judge - "The Quantitative Impact of Four Factors on Work

Rates Experienced During Software Development"

The first speaker of the second session was Bob Judge from

the International Business Machines Corporation (IBM), who

presented the results of a study done jointly with John

Gaffney. The purpose of the study was to attempt to use

parameters (or factors) to explain the effort required for

developing software with the end goal of building a cost

estimation model.

The effects of four factors on work rate were measured for

nine components of the software development life cycle. The

four general factors studied were the personnel type (pro-

grammers versus systems engineers), the product (type of

software application), the computer (one of three host com-

puters) , and the code type (new versus modified software).

Data was used from projects developed within IBM. The esti-

mation process was more effective for some components of the

life cycle than for others. The four factors provided the

best estimates of work rate for the components dealing with

implementation and the worst estimates of work rate for the

requirements analysis phase. Overall, 39 percent of the

variation in work rate for the projects studied was ex-

plained.

In response to questions from the audience, Judge clarified

the following points:

• The study was based on historical data for com-

pleted projects.

• The number of samples used for the analysis was the

number of projects studied. However, not every project

necessarily covered all nine components of the software life

cycle.

S. Eslinger
CSC
7 of 21

• The cost data used came directly from customer

charges and was, therefore, considered highly accurate.

Inaccuracies, however, could be present in the distribution

of costs among the nine life cycle components. Dimensions

of cost were expressed in staff-months instead of dollars to

eliminate the effects of inflation. The size data used

could contain some inaccuracies but, on the whole, it was

felt to be fairly accurate.

• The purpose of the study was to obtain a predictive

model for cost estimation.

Jonathan Post - "Software Quality Metrics for Distributed

Systems"

The second speaker for the session was Jonathan Post from

Boeing Aerospace Corporation, who discussed measures for

distributed processing systems. As part of a project to

define and evaluate measures for distributed systems, per-

sonnel investigated the similarities and differences between

measures applicable to distributed systems and those appli-

cable to single-processor systems.

The starting point for the study was the set of factors or

qualities desirable in a software system and the criteria

for evaluating those factors as defined by J. McCall from

the General Electric Company. Post added criteria appli-

cable to distributed systems to some of McCall1s factors,

and he defined additional factors and associated criteria

for distributed systems. The rationale for these additions

was presented in some detail. Post indicated that during

the next year data will be collected for distributed systems

developed by Boeing Aerospace; it will then be analyzed in

an attempt to evaluate the quality measures that have been

defined.

S. Eslinget
CSC
8 of 21

In response to questions from the audience, Post clarified

the following points:

• A definition of a distributed system is critical to

the project to select projects for which data will be col-

lected. Since no consensus currently exists in the com-

munity for the exact definition of a distributed system,

significant effort was expended on establishing what this

project considered to be a distributed system.

• The data will be collected using McCall's approach

of a standard worksheet filled out by project personnel.

Information will be extracted from these forms by a single

person in an effort to eliminate the potential for bias in

the responses. Interviews will also be held with project

personnel to establish the validity of the data. Since Post

is familiar with practices used in the projects being

studied, he expected that his role in the company as a

quality assurance monitor would help him obtain valid data.

• The set of quality metrics established includes

some system metrics and some software metrics. Some of the

distributed system factors are the same as those established

by McCall. Other factors have been modified (i.e., new cri-

teria added to those given by McCall), while still others

are entirely new.

Dave Card - "Identification and Evaluation of Software

Metrics"

The last speaker of the session was Dave Card of CSC. The

purpose of his presentation was to describe a procedure for

identifying the underlying qualities measured by a set of

software measures. For a number of actual software proj-

ects, values have been determined by the SEL for 200 meas-

ures that cover the range of GSFC software development

activities.

S. Eslingei
CSC
9 of 21

For this study, data was used from 22 projects for 60 meas-

ures describing the software development process and prod-

uct. The product measures studied included size and

resource measures, and the process measures were ratings of

the degree of use of various methodologies, tools, and docu-

mentation procedures. Six of these measures, for which

there were insufficient examples of use in the data, were

rejected by a test of normality. A factor analysis was per-

formed on the remaining 54 measures that extracted 5 factors

accounting for 77 percent of the variance of the original

data. The factors can be thought of as the underlying inde-

pendent qualities being measured by the 54 measures. The

five factors represented methodology intensity, project

size, computer usage, quality assurance, and change rate.

Card emphasized that this procedure produces a descriptive

model, not a predictive model, and that it is an interme-

diate step toward further research.

This presentation generated considerable audience interest.

In response to questions, Card briefly described the factor

analysis procedure and clarified the meanings of several

factors. He also expanded upon the following points:

• The factors themselves are not directly measur-

able. The factor analysis procedure, however, computes the

correlation of the original variables (i.e., measures) with

each of the factors. The measures shown as contributing to

each factor were those whose correlations with the factor

were at the 0.01 level of significance.

• Variance can be viewed as the amount of information

contained in the data. Thus, the factor model produced ac-

counted for 77 percent of the information in the 54 measures

over the 22 projects.

• The 200 measures for which data is collected by the

SEL were originally selected as completely characterizing

S. Eslinger
CSC
10of21

the GSFC software development activity. The 60 measures

used in this particular study consisted of all those related

to the software development process or product. Of these,

54 passed the test of normality and were used in the factor

analysis.

• The measures reflecting the degree of use of a

particular methodology, tool, or documentation procedure are

not binary variables but are ratings on a scale of 0 to 5.

These ratings, reflecting the degree of use of each proce-

dure, were assigned to each project by a single group of

people.

• The factor procedure does not produce a predic-tive

model. It provides information different from the correla-

tions among variables. For instance, although the produc-

tivity measure was not significantly correlated with the

methodology intensity factor, it can not be implied or in-

ferred that productivity is independent of any specific

methodology. In fact, the productivity measure may be

highly correlated with the degree of use of an individual

methodology.

• The approach followed in this study is different

from that generally followed. Usually, studies select de-

sirable qualities and then seek measures of these quali-

ties. Here, data from a number of measures is collected,

and the qualities being measured by this data are then iden-

tified.

• Several people besides the speaker pointed out that

these results reflect the environment being studied by the

SEL and that they may not be applicable to other environ-

ments.

S. Eslinger
CSC
i i o f 2 i

SESSION 3 - SOFTWARE MODELS

Ariela Sofer - "A Bayesian Approach to Parameter Estimation

in the Jelinski-Moranda Software Reliability

Model"

The first speaker of the third session was Ariela Sofer from

the George Washington University, who presented the results

of work done jointly with Bev Littlewood. The purpose of

the presentation was to evaluate the effectiveness of the

Jelinski-Moranda software reliability model.

Error data provided by John Musa from Bell Laboratories was

used to perform the evaluation. Estimates produced by the

Littlewood model from this data were shown to be better than

similar estimates obtained from the Jelinski-Moranda model.

Several shortcomings in the Jelinski-Moranda model were

enumerated. In particular, the estimates obtained from this

model were consistently too optimistic. A Bayesian reparam-

eterization of the Jelinski-Moranda model was presented; and

estimates produced by the standard and reparameterized ver-

sions of the Jelinski-Moranda models for the error data were

compared. This comparison showed that the reparameterized

Jelinski-Moranda model produced better results than the

standard version.

In response to questions from the audience, Sofer clarified

the following points:

• In the error data used, the times between failure

were calculated as the execution times between program fail-

ure. John Musa, who collected the data, further explained

that a program failure was considered to be any occasion on

which the program did not perform according to its require-

ments.

S. Eslinger
CSC
12 of 21

• The models being evaluated assume that the times

between failures are independent. This may not be the case

witn actual data.

• The models assume that when a program failure

occurs, the error is corrected before execution of the pro-

gram continues.

Disagreement on the approach presented in Sofer's talk was

evidenced by comments from John Musa and Nozer Singpurwalla.

Musa stated that it was unfortunate that Littlewood was not

present at the workshop to participate. Certain other

points were made as follows:

• Musa stated that he had published a comparable re-

parameterization of the Jelinski-Moranda model in 1975.

• Both Musa and Singpurwalla pointed out that there

are problems with using quantile-quantile (Q-Q) plots to

evaluate the models. Q-Q plots are based on an assumed dis-

tribution of the random variable being studied. Thus, they

are sensitive to 'the choice of this distribution for which

no clear criteria are available.

• Furthermore, Singpurwalla noted that if a uniform

prior distribution were assumed, the Bayesian model should

have given the same result as the original Jelinski-Moranda

model. The fact that it did not suggests an error in the

calculations.

• Musa said that the flaws in this approach to com-

paring reliability models were pointed out to him by Amrit

Goel. Musa relayed this information to Littlewood but has

not yet received a response from him.

Hasan Sayani - "The Problem of Resonance in Technology Usage"

The second speaker of this session was Hasan Sayani from

ASTEC Corporation, who presented the results of work done

S. Eslinger
CSC
13of21

jointly with Cyril Svoboda. His presentation focused on the

management considerations of introducing tools into any

software development environment.

The discussion was based on observations made while con-

sulting in this field with a number of companies. The im-

portance of having an appropriate tool environment in

developing software was brought out; and the problems in-

volved in the implementation of such an environment were

discussed from both the user and managerial point of view.

In particular, Sayani identified specific recommendations

(both dos and don'ts) to guide the process of adopting

tools. The central theme of his presentation was the need

for a systems approach to the management of software tech-

nology.

This presentation generated considerable audience interest.

The chairman of the afternoon sessions, Vic Basili, remarked

that Sayani had presented a comprehensive list with which he

agreed. The speaker clarified the following points in the

ensuing discussion:

• The tools whose implementations were studied in-

cluded PSL/PSA, data base design tools, process design

tools, and librarian systems.

• Members of the audience remarked that the study

appeared to be applicable to the implementation of other

technologies in addition to tools. Sayani agreed and stated

that the approach might also be applied to introducing tech-

nology to developing nations.

• Users generally agree that tools are oversold.

This situation creates management problems.

• Methodologies and tools tend to be sold to people

with weak systems backgrounds who do not understand how the

new technologies interact with the total software develop-

ment life cycle.
S. Eslinger
CSC
14 of 21

• The training and maintenance of a toolsmith group

is an important part of the tool implementation process to

avoid the problem of tools falling into disuse when key

people leave the environment.

• Companies should also standardize and institu-

tionalize these tools to enforce their use.

• A member of the audience remarked that Japanese

management techniques might be applicable to this topic.

Sayani responded that certain of their techniques would be

pertinent but others would not because of cultural differ-

ences. However, the Japanese have adopted the use of cer-

tain technologies that were developed here but are not as

widely used in this country. For example, there are a large

number of PSL/PSA users in Japan.

S. Eslinger
CSC
15of21

SESSION 4 - SOFTWARE METHODOLOGIES

Mike Dyer - "The Clean Room Software Development Process"

The first speaker of the fourth session was Mike Dyer from

IBM, who presented the results of work done jointly with

Harlan Mills. The purpose of the presentation was to de-

scribe the mechanics of the "clean room" software develop-

ment process. Pilot projects for this approach are still

being set up.

After the preparation of a structured specification, the

software development process is divided between two groups

of people: design engineers and product engineers. The

design engineers will design and code the software product

with the goal of producing first-time correct code. No use

of the computer will be made by the design engineers in ac-

complishing this goal; instead, extensive inspections and

reviews will be conducted. The product engineers will per-

form operational testing on the code produced by the design

engineers with the goal of testing for the customer environ-

ment. Tests will be selected randomly from a set of tests

developed by the product engineers from the structured spec-

ification, and errors identified by the product engineers

will be returned to the design engineers for correction.

This software development process purposely omits the usual

step of unit testing.

Dyer stated that, based upon small experiments already con-

ducted, there is evidence that this process works. More

extensive experiments are now being planned in which data

will be collected to evaluate the effect of this approach on

the reliability of the software produced.

The audience reaction generated by this presentation was the

largest of the entire workshop. Harlan Mills joined Mike

Dyer in responding to the questions from the audience.

S. Eslinger
CSC
16 of 21

The following points were brought out in the ensuing dis-

cussion:

• Design engineers will be experienced in software

design and coding; product engineers will be experienced in

system integration and testing. Dyer and Mills indicated

that IBM currently has on its staff skilled people who can

perform, or can be trained to perform, in this new environ-

ment.

• The product engineers are not considered quality

assurance personnel. They must perform the analysis neces-

sary to produce the data base of test cases from the struc-

tured specification. They must also run the tests and

analyze the results. To function properly the product en-

gineers must have a thorough knowledge of the customer's

operational environment.

• The product engineers will participate in drawing

up the structured specification. They will reenter the

software life cycle after the code is developed. They will

not be allowed access to design materials during the testing

phase.

• Good specifications are necessary for this approach

to be successful. The entire process is based on the use of

a structured specification methodology.

• This approach to software development is not pri-

marily aime.d at cost savings. The question of whether or

not the "clean room" process will yield productivity gains

has not been addressed. The expected benefit is in the in-

creased reliability of the software produced. However, the

testing phase in the "clean room" process is not expected to

cost any more than is currently spent in the usual unit,

functional, and acceptance testing phases.

S. Eslinger
CSC
17 of 21

• This process is also not expected to help in sizing

software systems.

• Mills and Dyer clarified an earlier point by saying

that test data will not be chosen at random. Rather, random

tests will be selected from a data base of test cases that

are designed to test all capabilities set forth by the

structured specification. There will be errors that are not

found by the random selection of tests, but evidence is

available that random testing is as good as any other form

of testing. In fact, since in sampling theory the sample

size, and not the population size, is critical, Mills be-

lieves that a random sample of tests can provide better

testing coverage than conventional testing.

• Evidence also exists that successful system testing

can be performed without unit testing.

• Mills indicated that they do not expect to attain

perfection but that they do expect to achieve an increase in

reliability.

• No plans have been made to seed code with errors to

assess the efficiency and effectiveness of the product engi-

neers.

• A member of the audience observed that this process

appears to push error detection farther into the software

life cycle. Dyer responded that this is not the case. More

errors are expected to be found by the design engineers

through the review process. Moreover, since the product

engineers will be performing operational testing, they are

expected to find errors that normally would not be uncovered

until the software was operational.

• To evaluate this process, a complete history of

errors must be maintained.

S. Eslinger
CSC
18 of 21

• Several members of the audience questioned the use

of mean time between failures (MTBF) as a measure of soft-

ware reliability. Mills and Dyer indicated that they be-

lieved MTBF to be a reasonable measure and one that was

familiar to management and demanded by customers. Vic Basili

indicated that MTBF is a measure that is associated with

other measures of software quality. Another member of the

audience suggested the use of mean time to repair (MTTR).

• Mills emphasized that the "clean room" software

development process would require some modification in pro-

grammer behavior. Since it is known that programmers can

write thousands of lines of correct code, the goal of pro-

ducing first-time correct code is not unreasonable. Pro-

grammers must be made to believe that they can do this

without the use of the computer. Mills and Dyer hope to

achieve this behavior modification by not allowing the pro-

grammers to have access to the compilers.

• Mills also stated that product engineering was de-

vised because they felt that testing is a critical part of

the development process. This process does not remove 'the

ability to test the software; rather, design engineers are

asked to test by thinking instead of making computer runs.

• No projects using this approach are yet complete.

The pilot projects are still in the process of being set up.

• The approach is expected to work for any type of

software application.

• Vic Basili indicated that in recent testing experi-

ments he has run, the functional tests uncovered most of the

errors. However, the testers did not always recognize that

the test results had indicated errors.

S. Eslingei
CSC
19 of 21

Bob Jones - "Selecting a Software Development Methodology"

The second speaker of the session was Bob Jones from Hughes

Aircraft, who discussed an approach for selecting a software

methodology. The presentation centered on a Hughes contract

with the U.S. Air Force to define a set of tools and method-

ologies to be used for integrated digital flight control

software development. In response to this specific need of

the Air Force, Hughes surveyed the environment and attempted

to take a logical approach to the selection of tools and

methodologies for that environment. The results of the

study have been presented in a guidebook, a document of con-

siderable size. Jones indicated that Hughes has started to

collect data to evaluate the cost benefits of using the

techniques specified by the guidebook.

In response to questions from the audience, Jones clarified

several points:

• The tools and methodologies recommended included

the use of CADSAT, structured design, high-order languages,

and modern programming languages.

• The software produced will not be verified in

flight. There is a standard-procedure for verifying flight

control software that uses simulated data. It is not

planned to use the software produced by this experiment in

flight but only to verify that it performs according to

specification.

• Hughes will be collecting only cost data for this

experiment. In evaluating cost-benefit tradeoffs, the bene-

fits obtained by following the guidebook will be determined

by the customer.

• A member of the audience pointed out that if the

guidebook covered all the tools and methodologies mentioned,

it would constitute a 4-year curriculum. Jones agreed but

S. Eslingei
CSC
20 of 21

stated that the guidebook did not present detailed instruc-

tions in the technologies.

Richard Hamilton - "Development Techniques for Generic

Software"

The last speaker of the session was Richard Hamilton from

Bell Laboratories, who spoke about a methodology for devel-

oping generic software. His discussion centered on one

class of application: networking with a specific protocol.

The use of a layered approach and a finite state machine in

implementing the X.25 protocol was presented. The complex-

ity, size, and speed of the newly developed generic program

were compared to an older, machine-specific X.25 protocol

program. Hamilton indicated that the complexity of the two

programs was about the same. However, the size of the ge-

neric program was larger and its speed was faster.

In response to questions from the audience, Hamilton clari-

fied the following points:

• The complexity measure used was the McCabe measure

that provides a measure of the number of branches in the

program.

• Hamilton indicated that the finite state machine

used in the generic program was modeled as closely as pos-

sible to the specification.

• A member of the audience commented that there might

be a size and/or speed tradeoff effect operating in this

instance. That is, the increased size in terms of more mod-

ularity might contribute to its increased speed.

• The layered approach often requires extra overhead

in additional procedure calls. Hamilton noted that several

hundred extra bytes were attributable to this overhead.

• No attempt was made to use macros to decrease the

overhead.

S. Eslingei
CSC
21 of 21

PANEL #1

EVALUATING SOFTWARE DEVELOPMENT CHARACTERISTICS

D. Weiss, Naval Research Laboratory
J. Page, Computer Sciences Corporation
V. Basili, University of Maryland

EVALUATING SOFTWARE DEVELOPMENT CHARACTERISTICS:
A Comparison Of Software Errors In Different Environments

David M. Weiss
Naval Research Laboratory

Introduction

According to the mythology of computer science, the first computer program
ever written contained an error. Error detection and error correction are now
considered to be the major cost factors in software development [Boe72, Boe73,
Wol74]. Much current and recent research is devoted to finding ways to
prevent sotware errors. One result is that techniques claimed to be effective
for preventing errors are in abundance. Unfortunately, there have been few
empirical attempts to verify that proposed techniques work well in production
environments. Indeed, there have been few attempts even to collect data that
could yield insight into the issues involved. The purpose of this paper is to
compare error data obtained from two different software development
environments.

To obtain data that was complete, accurate, and meaningful, a
goal-directed data collection methodology was used. The approach was to
monitor changes made to software concurrently with its development. The
results reported here were obtained by applying the methodology to three
projects at NASA/GSFC, and one project at the Naval Research Laboratory
(NRL). Although all changes were monitored for most projects, we are
concerned here only with results obtained from the error data, and only with
data that may be used to compare the two environments. Readers interested in
a more detailed description of the research methodology or other analyses
using other data from the same sources are referred to [BasSl, Wei79, WeiSl].

Research Methodology

The methodology is goal oriented. It starts with a set of questions to be
answered, and proceeds step-by-step through the design and implementation of a
data collection and validation mechanism. Analysis of the data yields answers
to the questions of interest, and may also yield a new set of questions. The
procedure relies heavily on an interactive data validation process; those
supplying the data are interviewed for validation purposes concurrently with
the software development process. The methodology has six basic steps, as
described in the following.

1. Establish the goals of the data collection.
Many (but not all) of our goals are related to claims made for the
software development methodology being used. As an example, a goal
of a particular methodology might be to develop software that is easy
to change. The corresponding data collection goal is to evaluate the
success of the developers in meeting this goal, i.e. evaluate the
ease with which the software can be changed.

D. Weiss
NRL
Io f25

2. Develop a list of questions of interest
Once the goals of the study are established, they are used to develop
a list of questions to be answered by the study. In general, each
goal will result in the generation of several different questions of
interest. For example, if the goal is to evaluate the ease with
which software can be changed, we may identify questions of interest
such as: "Is it clear where a change has to be made?", "Are
changes confined to a single modules?", "What was the average effort
involved in making a change?"

3. Establish data categories
Once the questions of interest have been established, categorization
schemes for the changes and errors to be examined may be constructed.
Each question generally induces a categorization scheme. If one
question is, "How many errors result from requirements changes?", one
will want to classify errors according to whether or not they are the
result of a change in requirements.

4. Design and test data collection forms
To provide a permanent copy of the data and to reinforce the
programmers' memories, a data collection form is used. Forms design
was one of the trickiest parts of the studies conducted, and will not
be discussed here.

5. Collect and validate data
Data are collected by requiring those people who are making software
changes to complete a change report form for each change made, as
soon as the change is completed. Validation consists of checking the
forms for correctness, consistency, and completeness, and
interviewing those filling out the forms in cases where such checks
reveal problems. Both collection and validation are concurrent with
software development.

6. Analyze the data
Data are analyzed by calculating the parameters and distributions
needed to answer the questions of interest.

To apply the methodology to the collection of change data, the following
definitions were used.

A change is an alteration to baselined design, code or documentation.

An error is a discrepancy between a specification and its implementation.

A modification is a change made for any reason other than to correct an
error.

D.Weiss
NRL
2 of 25

The Projects Studied

The studies reported here contain complete results from four different
projects. Two different environments and several different methodologies were
used. One environment was a research group at the Naval Research Laboratory
(NRL), and the other was a NASA software production environment at Goddard
Space Flight Center. Table 1 is an overview of the data collected for each
project. For the ARF project, only error data were collected. Table 2 gives
the values of parameters often used to characterize software development
projects.

The Architecture Research Facility

The purpose of the Architecture Research Facility (ARF) project, developed
at NRL, was to develop a facility for simulating different computer
architectures. The simulation is based on a description of the target
architecture written in the Instruction Set Processor language [Bel71].
A complete description of the ARF simulator is available elsewhere [Elo79].
Briefly, to simulate a machine, the ARF uses a set of tables that describe the
machine being simulated and its state, a module to perform instruction
simulation, and a module to handle the interface to the user. The machine
description contained in the tables is produced by an ISP compiler (an
existing compiler was used)

The ARF was developed by a team of nine people, not all full time.
Development took about ten months and 192 people-weeks, exclusive of
consulting and secretarial support, to develop. The delivered system
contained about 20,000 lines of FORTRAN code.

The primary goal of the ARF designers was to produce a working simulator
that would permit the simulation of small target-emachine programs. The
designers also viewed the ARF development as an experiment in the application
of software engineering technology [Elo79]. The key parts of the technology
used are the following.

* Rather than developing the whole system at one time, the ARF was to
be done using the family approach to software development [Par76].
The system was to be built in three main stages. Each stage would
produce a member of the ARF "family" of programs, providing different
facilities.

* The information-hiding principle [Par72a] was to be applied to
conceal design decisions that were expected to change during the
lifetime of the ARF.

* Informal design specifications, followed by standardized interface
specifications, followed by high-level language coding specifications
were written for each major module of the ARF before any code was
written. Each specification was reviewed before its successor was
produced.

* FORTRAN code was written from the coding specifications, compiled,
and then reviewed by someone other than the coder prior to debugging.
The coder debugged the code and delivered it for testing. A tester
(usually) other than the coder or designer, was selected to test the
debugged code.

D.Weiss
NRL
3 of 25

* At the possible expense of some run time performance, several
debugging aids were designed into the system to make development
easier. These included

a. A method for detecting errors involving improper access to
table entries, known as the binding mechanism,

b. A consistent execution-time error reporting scheme for
table interface functions, and

c. A mechanism for inserting, and turning on and off,
debugging code through the use of a corapile-time
preprocessor.

The Software Engineering Laboratory

The Software Engineering Laboratory (SEL) is a NASA sponsored project to
investigate the software development process, based at Goddard Space Flight
Center (GSFC). A number of different software development projects are being
studied as part of the SEL investigations [BaiSl, Bas77]. Studies of changes
made to the software as it is being developed constitute one part of those
investigations.

Typical projects studied by the SEL are medium size FORTRAN programs that
compute the position (known as attitude) of unmanned spacecraft, based on data
obtained from sensors on board the spacecraft. Attitude solutions are
displayed to the user of the program interactively on CRT terminals. Because
the basic functions of these attitude determination programs tend to change
slowly with time, large amounts of design and sometimes code are often re-used
from one program to the next. The programs range in size from about 20,000 to
about 120,000 lines of source code. They include subsystems to perform such
functions as reading and decoding spacecraft telemetry data, filtering sensor
data, computing attitude solutions based on the sensor data, and providing an
(interactive) interface to the user.

Development is done by contract in a production environment, and is often
separated into two distinct stages. The first stage is a high-level design
stage. The system to be developed is organized into subsystems, and then
further subdivided. For the purposes of the SEL, each named entity in the
system is called a component. The result of the first stage is a tree chart
showing the functional structure of the subsystem, in some cases down to the
subroutine level, a system functional specification describing, in English,
the functional structure of the system, and decisions as to what software may
be reused from other systems.

The second stage consists of completing the development of the system.
Different components are assigned to (teams of) programmers, who write, debug,
test, and integrate the software. Before delivery, the software must pass a
formal acceptance test. On some projects, programmers produce no intermediate
specifications between the functional specifications produced as part of the
first stage and the code. Some projects produce pseudo-code specifications
for individual subroutines before coding them in FORTRAN. During the period
of time that the SEL has been in existence, a structured FORTRAN preprocessor
has come into general use.

In distinction to the ARF developers, NASA is not concerned with
experimenting with new software engineering techniques. It is concerned with
introducing improved techniques into its software development process.

D.Weiss
NRL
4 of 25

Nonetheless, the principal design goal of the major SEL projects is to produce
a working system in time for a spacecraft launch. Results from SEL studies of
three different NASA projects, denoted SELl, SEL2, and SEL3, are included here,

Project

SELl
SEL2
SEL3
ARF

Number of
Changes

281
229
760

Number of
Modifications

101
110
453

Number of
Errors

180
119
307
143

Table 1 Overview of Data Collected

Project

SELl
SEL2
SEL3
ARF

Project

SELl
SEL2
SEL3
ARF

Effort Number of Lines of
(Months) Developers Code (K)

79.0
39.6
98.7
44.3

5
4
7
9

50.9
75.4
85.4
21.8

Dev. Lines
of Code (K)

46.5
31.1
78.6
21.8

Number of
Components

502
490
639
253

Table 2 Summary of Project Information

Errors Per K Lines
Of Developed Code

3.9
3.8
3.9
6.6

Errors Resulting
From Change
(As Percentage
Of NonClericals)

5
14
12
13

Repeated Error Ratio
(Average Number
Of Corrections
Per Error)

1.02
1.08*
1.05
1.007

* Upper bound. Exact number of repeated errors for SEL2 is unknown.
By conservative means, the ratio could be estimated as 1.04.

Table 3 Measures of Erroneous Change

D. Weiss
NRL
5 of 25

Results

The results presented here are derived from analyses of several different
data parameters and distributions. Table 3 shows error density, errors
resulting from change, and repeated error ratio for each project. These
parameters indicate that for all projects most changes were made correctly on
the first attempt.

Figures 1 and 2 are an overview of the change distributions for the SEL
projects (recall that data' on modifications is not available for the ARF
project). Figure 3 shows sources of modifications, i.e. reasons for modifying
the software, and figure 4 shows sources of nonclerical errors. Although
there were a significant number of requirements changes for two of the SEL
projects, none of the projects show a significant number of errors resulting
from incorrect or misunderstood requirements.

For all projects, the major source of errors was the design and
implementation of single components. (For these projects, a single component
is nearly always a FORTRAN subroutine or block data.) Relatively few errors
were the result of misunderstandings of requirements, specifications,
programming language or compiler,'or software or hardware environment.
Aspects o£ the design involving more than one component was also not a major
source of errors. Figure 5 shows a continuation of the same pattern. For
most projects, interfaces were not a significant source of errors.

A further categorization of design and implementations errors, including
both single and multi-component design errors is shown in figure 6. The
pattern for the SEL and ARF projects is quite different here; relatively few
ARF errors involved the use (including definition, representation, and access)
of data. For the SEL projects, data errors were a significant fraction of
design and implementation errors.

A direct measure of ease of error correction is shown in figure 7. For
all projects, the overwhelming majority of errors took less than a day of
effort to correct. Indeed, most error corrections took an hour or less of
effort.

Figure 8 is a measure of locality of errors with respect to project
components. Only components that required at least one error correction (one
fix) are represented. The majority of such components required no more than
one correction. -For all projects, 80% or more of such components were
corrected at most three times.

Locality of errors with respect to project subsystem (project module for
the ARF), is shown in figure 9. The distributions here show the reverse
pattern of those in figure 8, i.e. most corrections are clustered in a few
subsystems (modules).

Conclusions

The ARF and SEL projects involved different applications and were
developed in different environments, using different methdologies, people with
different backgrounds, and different computer systems. Despite these
differences there are a number of similarities between the two, as listed in
the following.

D.Weiss
NRL
6 of 25

1. There is a common pattern to the sources of error
distributions. The principle error source is in the design and
implementation of single routines.. Requirements, specifications
and interface misunderstandings are all minor sources of errors.

2. Few errors are the result of changes, few errors require more
than one attempt at correction, and few error corrections result
in other errors.

3. Relatively few errors take more than a day to correct.

These similarities may be explained by different factors in the different
environments. The SEL projects may be viewed as redevelopments. Much of the
same design and some of the same code is reused from one project to the next.
As a result of experience with the application, the changes most likely to
occur from one project to the next have been identified by the designers. The
systems are now designed so that these changes are easy to make. Confirmation
of this explanation was provided by one of the primary system designers in
discussions held after the data were analyzed.

In the ARF environment, the explicit use of techniques to identify and
design for potential changes is a likely contributing factor to the
similarities in the distributions.

Common factors to both the SEL and ARF projects were the stability of the
hardware and software supporting the development and the familiarity of the
programmers with the language they were using.

The most striking difference between the ARF and SEL projects is in the
proportion of intended use to data errors. The ARF project has a considerably
smaller proportion of data errors than the SEL projects. One reason for this
may be the conscious attempt of the ARF developers to apply abstract data
typing and strong typing in their design.

Acknowledgements

Support for a research project involving data collection in a production
environment must come from many sources. These sources include project
management, the programmers supplying the data, those maintaining the data
base (in both paper and computerized form), those assisting in data analysis,
and those providing technical review and guidance. A few of the people
providing such support were Frank McGarry, Drs. Victor Basili, David Parnas,
John Shore, and Gerald Page, Honey Elovitz, Alan Parker, Jean Grondalski, Sam
DePriest, Joanne, Shana, and Joshua Weiss, and Kathryn Kragh.

D.Weiss
NRL
7 of 25

References

[BaiSl] J. Bailey and V. Basili, "A Meta-Model For Software Development
Resource Expenditures," Proc. Fifth Int. Conf. Software Eng., pp.
107-116, 1981

[Bas77] V. Basili, M. Zelkowitz, F. McGarry, et al., The Software Engineering
Laboratory, University of Maryland Technical Report TR-535, May 1977

[BasSl] V. Basili and D. Weiss, "Evaluation of a Software Requirements
Document By Analysis of Change Data," Proc. Fifth Int. Conf. Software
Eng., pp. 314-323, 1981

[Bel71] C. Bell and A. Newell, Computer Structures: Readings and Examples,
McGraw-Hill, New York, 1971

[Elo79] H. Elovitz, "An Experiment In Software Engineering: The Architecture
Research Facility As A Case Study, Proc. Fourth Int. Conf. Software
Eng., pp. 145-152, 1979

[Par72a] D. L. Parnas, "A Technique For Software Module Specification With
Examples," Comm. ACM, vol. 15 no. 5, May, 1972, pp. 330-336

[Par76] D. L. Parnas, "On the Design and Development of Program Families,"
IEEE Trans. Software Eng., vol. SE-2 no. 1, pp. 1-9, 1976

[Wei79] D. Weiss, "Evaluating Software Development by Error Analysis: The
Data from the Architecture Research Facility," J. Systems and
Software, vol. 1, pp. 57-70, 1979

[WeiSl] D. Weiss, "Evaluating Software Development By Analysis Of Change
Data," Ph.D. Thesis, University of Maryland, 1981

D. Weiss
NRL
8 of 25

THE VIEWGRAPH MATERIALS
for the

D. WEISS PRESENTATION FOLLOW

D.Weiss
NRL
9 of 25

PURPOSE OF RESEARCH

* FIND A WAY OF EVALUATING SOFTWARE DEVELOPMENT METHODOLOGIES

* LEARN ABOUT THE SOFTWARE DEVELOPMENT PROCESS

* LEARN ABOUT MEASURING THE SOFTWARE DEVELOPMENT PROCESS

APPROACH

* STUDY CHANGES USING GOAL-DIRECTED DATA COLLECTION

D. Weiss
NRL
10 of 25

RESEARCH METHODOLOGY DEVELOPED

* ESTABLISH GOALS

EXAMPLE: EVALUATE THE DIFFICULTY OF CHANGING SOFTWARE

* DEFINE QUESTIONS OF INTEREST

EXAMPLES: IS IT CLEAR WHERE A CHANGE HAS TO BE MADE?

ARE CHANGES CONFINED TO SINGLE MODULES?

WHAT WAS THE AVERAGE EFFORT INVOLVED IN MAKING A
CHANGE?

* DESIGN DATA COLLECTION FORM

* COLLECT AND VALIDATE DATA CONCURRENTLY WITH DEVELOPMENT

* ANALYZE DATA

D.Weiss
NRL
11 of 25

TYPES OF CHANGES

* DEF: A CHANGE IS AN ALTERATION TO (BASELINED) DESIGN, CODE, OR

DOCUMENTATION.

* DEF: AN ERROR IS A DISCREPANCY BETWEEN" A. SPECIFICATION AND ITS

IMPLEMENTATION.

* DEF: A MODIFICATION IS A CHANGE MADE FOR AN* REASON OTHER THAN TO

CORRECT AN ERROR.

* CHANGES = MODIFICATIONS + ERROR CORRECTIONS

D. Weiss
NRL
12 of 25

SUBCATEGORIES OF CHANGES

* MODIFICATIONS

IMPLEMENTATION OF REQUIREMENTS CHANGE

OPTIMIZATIONS

IMPROVEMENTS OF USER SERVICES

IMPROVEMENT OF CLARITY, MAINTAINABILITY, OR DOCUMENTATION

ADAPTATION TO ENVIRONMENT CHANGE.

* ERROR CORRECTIONS

CLERICAL ERRORS

NON-CLERICAL ERRORS

REQUIREMENTS INCORRECT OR MISINTERPRETED

SPECIFICATIONS INCORRECT OR MISINTERPRETED

DESIGN ERROR INVOLVING SEVERAL COMPONENTS

ERROR IN DESIGN/IMPLEMENTATION OF A SINGLE COMPONENT

ERROR IN USE OF PROGRAMMING LANG OR COMPILER

MISUNDERSTANDING OF ENVIRONMENT

D. Weiss
NRL
13of25

Project

SEL1
SEL2
SEL3
ARF
A-7

Number of
Changes

281
229
760

88

Number of
Modifications

101
110
453

Number of
Errors

180
119
307
143
79

Table 5.4a Overview of Data Collected

Effort

Project

SEL1
SEL2
SEL3
ARF
A-7

79.0
39.6
98.7
44.3

Number of
Developers

5
4
7
9

Lines of
Code (K)

50.9
75.4
85.4
21.8

Dev. Lines
of Code (K)

46.5
31.1
78.6
21.8

Number of
Components

502
490
639
253

Table 5.4b Summary of Project Information

D. Weiss
NRL
14 of 25

Changes Per K Lines
Of Developed Code

Errors Per K Lines Error To Mod Ratio
Of Developed Code (NonClericals Only)

Project

SEL1

SEL2

SEL3

ARF

6.0

7.4

9.7

3.9

3.8

3.9

6.6

1.3

.92

.54

Table 5.5 Change and Error Densities

Project

SEL1

SEL2

SEL3

ARF

Erroneous Change Rate Errors Resulting Repeated Error Ratio
(Ratio Of Changes From Change (Average Number
Resulting In Errors (As Percentage
To All Changes) Of NonClericals)

Of Corrections
Per Error)

.025

..061

.041

5

14

12

13

1.02

1.08*

1.05

1.007

* Upper bound. Exact number of repeated errors for SEL2 is unknown.
By conservative means, the ratio could be estimated as 1.04.

Table 5.6 Measures of Erroneous Change

D.Weiss
NRL
15 of 25

Project

SEL2

SEL1

SEL3

ARF

4

5

7

9

Number Of People Errors Per Person

25

26

44

10

Table 5.7 Errors Per Person By Number Of People

Effort
(People-Months)

Project

SEL2

ARF

SEL1

SEL3

39.6

44.3

79.0

98.7

Errors Per
Person-Month

2.4

2.1

1.7

3.1

Table 5.8 Errors Per Effort By Effort

Changes Per
Person-Month

5.8

3.6

7.7

D. Weiss
NRL
16 of 25

0
0

\
I

co
y,

_U
U

J

O

t

IenCO

6

CMU
J

CO

•oo

$
o

o

o
CM

«-

<
_

l-l
O

K
Z

O
u

ic
o

Q
.U

J
C

C
U

U
J
Z

I-
O

u
.

Mcta6

(OCO

to £

y
liJ

•C
52

JJ O

•so

CM

03enCO

O

I
(

I
I

I
I

I

CO
«

•
2

o

0
0

«
 0

o
 fc

C
 111

CO

6

CO_
l

CO

•oo

o

o

p

o

<
 -I

o

o

o

o

CO

CM

t—

O
K

Z

O
iu

 c
o

O
u
.

O

O

O

O

O
O

O

O

<
-I

_
l

O
 X

 <
 2

 O
 0

1
 co

(L
uicruuizt-

ou.

D
.W

eiss
N

R
L

17 of 25

0
0

C
M

in

Sl
i

o
 t

03Q
.

I(O
£O

O
J

V
)

§
o

o

in

r̂
o

o

o

CM

i-

L
u

X
C

J
-l

C
J
-I U

) D
C
 _

 O
 <

-J c/)

O
u
-

•o<D
T

3
_3OXU

JC
/3

O^w

in

CO

fe •"
J? o
o
 t

tnCO

g,o

-oo
in(O

I
I

I
I

I

Siio fc

0
)

Q
.

03
£O

u6
0
cCO

S(N6
0

•oo

S
o

o

in

•*
o

o

o

C
M

«
-

O
O

O
O

O
r»

<
o
 in

*

c
o

O
O

O
CM

t-
L

U
X

O
-

1
O

-J
U

J
E

C
_

O
<

l-
|c

«

O
. Q

J £
E

 O
 1

1
1
 Z

 I-
O

u
.

O
X

O
C

Z
O

U
J
C

/}

U
J X

 O
 -1

O

—
 IU

J O
C
 —

 O
<

-K
/5

Q
.Q

J
O

C
O

IU
Z

I-
O

u
.

O
K

Z
C

3
U

J
C

O

D
. W

eiss
N

R
L

18 of 25

O
1

O
>

CM

o-Sien

IQ.
*

'S"DC

H

3

o>
uj

g"
C

O

<J

cO
)

cu•D

OoC
T

3.n

£5O0)re"Ere
£0)C

in£3iZo

V

n
*

"*
0
)

2

<
U

O
)

0
5

O

)

-
 r

e
o

i_
.o.0

reoc01£'5C
T

0)0)ocre

re

o

re

a
o

*5

o

£
(/»

</s
w>

re

O

O

O
 C

"c

S

S

S
i

w

*

I

£

§

1

T
3

T
J

'5
-^

c
O

O

O

 >

re

O
 o

'^'^o
 £

o
o

o
o

g
o

o
o

i**
<

o
 in

t

fi
o>

j i-

D
.U

J
C

C
C

J
U

J
2

I-
O

u
.

coo£reV
)

OIo(A0)

O

0)
V

D

Q
LLI
Q

.

co
cr

-*
0)

C
DC

D

onCOT
3OS3Oen

COCM

CM(D

I
I

I
I

I
I

U
J

Q
.C111en>

CM

0)Q
.

CO

to

in

CM

I
I

6O
)

^30)
OencrvDC

I§>

COCO

rn0
0

o

o

o

r^
to

in
o

o

o
co

CM

«-
o

o

o

o

o

o
ID

t̂

C
O

C

M

r-

O
.U

J
C

C
U

L
U

Z
H

O

u
.

Q
. IU

 C
C

 O
 U

J 2

I-

O
u
-

S
O

Q
c

/5

D
.W

eiss
N

R
L

19 of 25

00

CO

I
I

I
I

5cLUO
J

T
O

g
,«

 o
.

m

SJ E
 o

*°

Q
W

O

g
.

»
2

&

^
C

/)
—

w

^

CO

co

00

o

I
I

I

O
)

(0,
•B

»
E

<u.E o
Q

C
O

U

ffl

O0)Q
.

O

O
00

I*.

o

o

o

o

o

o

LO

^

C
O

 C
M

 t-
O

O
O

O
O

O
O

O
O

C
L

U
J

C
C

O
L

U
Z

I-
O

L
L

— ocoz.

0
°

.
03

6>cLU1-"5
.

<£>

1̂

*
t

1
1

1
1

1
1

1
1

_
lH
P

s
fl

Q
C

O
O

§>-i^
c
fl^

 C
o> =

 o
Q

S
O

_

0

C

w

£
0

%

o-0)
DC

-3
E

i!^
1

i

>£1=.

i
J

LU"o>.

O
O

O
O

O
O

O
O

O
O

O
r

x
t

O
L

O
^

O
O

c
M

'
-

CO

C
S

~

£

in

CSJ

If)

(£>

I
I

O
)

T
O

^

<
!)

Q

.
'i I

0
3

.E

O

°

Q
W

O

O

•lit "

3OC
/33£0

iZ

oc SS

a. ai cc o LU 21-
O

u.

O
O

O
O

O
O

O
O

O

Z
O

Z
O

-J
L

U
C

C
O

<
-lc

/5

O
u
.D

.W
eiss

N
R

L
20 of 25

30
27

N
P O
E N
R C
C L
E
N
T I

C
O A
F L

S

20

E
R

10

13

10 10

SEL1 SEL2 SEL3

PROJECT

ARF

Figure 5.7 Interface Errors.

D. Weiss
NRL
21 of 25

O

O

O

r~
CD in

I
I

I

o>

•o<uis

oI
LUCO

o

o

o

o
<*

C
O

C

M

«-

Z
O

Z
O

-lu
J
C

C
_

o
<

-ic
/>

O
.LU

G
C O

u
J
Z

h
-

O
u

.

tqino>.0
)

™
LL

C
O

2 |

S

§

oli(0

0
}

o
oj %

Jltsg
1.1

I
I

I
I

I

o>

cc<

•o o>
c
 «

cuD

S
o

o

o

o

o

o

tn
^

co
C

M
 i-

Z
O

Z
O

-
I
U

J
(
X

_
O

<
-
lM

o. LU a u LU 2 H
-

O
u.

€
.£

I
I

I

_ch
.

o

?.si
-fo 2

D•o

oQ

Q
)

Q
.

I
I

_
L

O

O

O

O

O

O

O

O
r^

to
in

T
t

co
C

M

t-

C/3

oWc_o-4—
»

03
•4—

»

Ca.coo30
0

o2L
co

•g"gs

O
O

O
O

O
O

O
-

Q
. U

J C
C

 U
 U

J Z

I-

O
u
-

Q.UJO: U
U

JZ
H

O

u-

D
. W

eiss
N

R
L

22 of 25

toco

LO

1
1

1

re
"BO
re r—

0)O
)

reCD

3

Q
*:

oLUCMLUV
)

C
M

C
M

o

o

CO

^^
o

o

o

o

o

o

LO

"*
C

O

C
M

t-

~
 £

 >
±

i 2
 ro

^ 2 >
5

°"-

c
 £

o
o

o
o

o
o

o
o

o
oto

0. U
J CC

 O
 LU

 2
 I-

O
u.

O
-U

JC
C

U
u

iZ
I—

O

u
-

£LU

2o'C™"oCo6
0

CC
O

U

CM

LO

I
I

I

CO

re
 r-

X
.
-O

euenre

6en
'35cv
OO£LULU

C
O

CM

0
0

O
O

O
O

O
O

O
O

O

Z
O

Z
U

-
IIU

C
C

U
<

_
IO

O

C
L

L
L

lC
C

O
m

Z
I-

O
U

.

ocDE

>
EH <o

0)O
)

(O

6
*-

5LUC
O

LUV
)

wotoon

o

o

o

o

O
O

O
O

O
^

-
c

o
c

M
t
-

O
u

.

D
.W

eiss
N

R
L

23 of 25

CNJ

0
0C
M[

oo

CMC
N

O
)

in
sXIt

™
o

-i
i_

H

I
<v

v)

13Z
COCM

o
o

o
o

o
o

o
o

r>
to

if)
**

co
C

M
 «-

u

X
u

iD

O
O

S
o

-
O

Q
.U

JC
C
 O

L
U

2
H

O

U
-

(£>

CD
§E3

CM

O

O

O

O
r*«

<o
in

^-
Oro

o
o

o
CM

«-

U
- —

 X
U

J
Q

O

O
2

o
.O

2
tiJ

2
l-

to

C
LU

J C
C

O
U

J
H

 h
-

O
u
.

onXEco

m

a>
co

CO

CM

O(O

enoo(Oin

V
)

0>

"£
«

o

_
j

^-
u
 i

5

^5

3

COCM

O
O

O
O

O

O
O

O
r̂

(o

in

*t

co

C
M

 «-

u

--

X
u

jQ

3C
Tu.

U
-

in300

O
.U

IC
C

O
U

J
2

I-
O

U
.

Q
.L

U
D

C
O

L
U

2
I-

O
U

.

D
.W

eiss
N

R
L

24 of 25

CONCLUSIONS ABOUT SOFTWARE DEVELOPMENT COMMON TO NRL AND NASA/GSFC

* PRINCIPAL ERROR SOURCE IS DESIGN AND IMPLEMENTATION OF SINGLE ROUTINES

REQUIREMENTS, SPECIFICATIONS, AND INTERFACE MISUNDERSTANDINGS ARE

MINOR SOURCES OF ERRORS.

* FEW ERRORS ARE THE RESULT OF CHANGES, FEW ERRORS REQUIRE MORE THAN

ONE ATTEMPT AT CORRECTION, AND FEW ERROR CORRECTIONS RESULT IN OTHER

ERRORS.

* RELATIVELY FEW ERRORS TAKE MORE THAN A DAY TO CORRECT.

DIFFERENCES BETWEEN ARF AND SEL SOFTWARE DEVELOPMENT

* THE PROPORTION OF ARF ERRORS INVOLVING DATA IS CONSIDERABLY SMALLER

THAN THE CORRESPONDING PROPORTION FOR SEL ERRORS

D.Weiss
NRL
25 of 25

METHODOLOGY EVALUATION:

EFFECTS OF INDEPENDENT VERIFICATION

AND INTEGRATION ON ONE CLASS OF

APPLICATION

Jerry Page

COMPUTER SCIENCES CORPORATION

and

GODDARD SPACE FLIGHT CENTER

SOFTWARE ENGINEERING LABORATORY

Prepared for the

NASA/GSFC

Sixth Annual Software Engineering Workshop

zo
o

o
U

J
V

)

U
.U

.

LU
H

O
.

oQdXw

fcguj Q

•̂
M

(D
O

U
J

2
T

<
u
j Q

U
J

<
U
j

O

J.P
age

C
S

C
Io

f4
7

Viewgraph 1: Title

One area of study in the Software Engineering Laboratory

(SEL) is methodology. This presentation describes the

effects of an independent verification and integration (V&I)

methodology on one class of application, v&l is the name

that we will use for what some call independent verification

and validation (iv&V) and others call verification and vali-

dation (V&V). "One class of application" means the develop-

ment of solutions for a set of similar problems

(ground-based support for satellite operations) that are

developed in the same computing environment—simply put, a

specific problem in a specific environment.

Goddard Space Flight Center, SEL-81-104, "The Software En-
gineering Laboratory" (Software Engineering Laboratory
Series), D. N. Card et al., February 1982.

J. Page
CSC
2 of 47

LU(fl

33
iS

iiB c-

-.?~
i

-
 «

•

-5

. -I s

•13

•?S =

I

T
'

J. Page
C

SC
3 of 47

Viewgraph 2: Resource Profiles

Why use a V&I methodology? Why have we experimented with a

V&I methodology? To introduce V&I methodology, let me show

you resource profiles for four real projects developed for

the Goddard Space Flight Center (GSFC) by Computer Sciences

Corporation (CSC) and monitored closely by the SEL. These

resource profiles show technical hours charged to the proj-

ects by week. Technical hours are those hours charged by

the programmers and the first-line managers. First-line

managers are those managers who make decisions, set prior-

ities, and solve problems daily, as opposed to higher level

managers who receive weekly or less frequent progress re-

ports. Tnese resource profiles also do not include service

charges, which amount to approximately 13 percent of the

hours charged to a project. Service hours include those

hours charged by librarian, secretarial, technical, publica-

tions, and data technician support groups.

In these profiles, design activity starts at the far left-

hand side and continues throughout the project at decreasing

levels. The first vertical line indicates the conclusion of

a series of requirements analysis and critical design re-

views. It is the point at which implementation and corre-

sponding testing are allowed to begin. The second vertical

line is the point at which implementation (coding) is sup-

posed to be complete and system testing starts. The third

vertical line is the point at which the software is supposed

to be ready (for operation) and acceptance testing starts.

The fourth vertical line indicates the end of acceptance

testing and the beginning of maintenance (by another group).

Most people who measure software products apply many meas-

ures to the software product from the point at which it en-

ters the maintenance and operation (M&O) phase. We do too,

but since we have no responsibility for the software once it

J.Page
CSC
4 of 47

is transferred to the maintenance group and because it is

more difficult to collect data through another group, we

apply many of our measures one or two phases earlier, i.e.,

from the beginning of acceptance testing or from the begin-

ning of system testing.

As you can see from three of these four profiles (excluding

the one in the upper left-hand quadrant), the peak effort is

at the start of acceptance testing. Some of the reasons

that the peak effort occurs at that point are

• All the projects grow between 15 and 40 percent

after the start of implementation because of re-

quirements escalation.

• These projects cross two or three funding periods.

This puts some constraint on how much work can be

done in any one funding period.

• Management problems exist. The profile in the

lower left-hand.quadrant shows the application of

the "mythical man-month."

• There is a hard deadline (launch of a satellite).

• The computers are not very reliable (6- to 8-hour

mean time to failure).

We know_ what we are doing during that peak effort (the peak

at the third vertical line). A large fraction of our work

there is correcting errors.

It is commonly accepted that the cost to correct an error

approximately doubles as it enters each new phase of the

development life cycle. For example, if an error originates

in the requirements phase (the phase preceding design) and

if that requirements error gets designed, the cost to cor-

rect the error during design will be one to two times more

than to correct the error in the requirements phase. If the

designed requirements error gets implemented, the cost to

J. Page
CSC
5 of 47

correct the error during implementation will be two to four

times more than to correct the error in the requirements

phase. If the implemented requirements error enters the

system testing phase, the cost to correct the error will be

four to eight times more. If the implemented requirements

error enters the acceptance testing phase, the cost to cor-

rect the error will be 8 to 16 times more. If it enters the

M&O phase, the cost to correct the error will be 16 to

32 times more (for one simplified example, see Figure 1).

The same progression holds for errors that originate in de-

sign and implementation. Therefore, during the M&O phase,

even implementation errors are costly to correct; they cost

four to eight times more to correct during the M&O phase

than during the implementation phase.

We do not need a general hypothesis to know that it costs

more to correct errors in the later stages of development.

Our own data collected over the last 5 years shows that some

increase occurs in the cost of correcting errors from one

phase of development to the next. SEL data shows that (re-

gardless of error type) the average error discovered during

the acceptance testing phase costs more to correct than the

average error discovered during the system testing phase and

that the average error discovered during the system testing

phase costs more to correct than the average error dis-

covered during the implementation phase. The increase in

the average effort to correct the average error from one

phase to the next varies from project to project, but it

frequently approximates a doubling of effort.

Common sense indicates that there will be cost increases for

changes to the evolving product as development progresses

through the life cycle. Certainly, in this environment

there are several transfers of responsibility: from the

requirements team to the development team, from the

J.Page
CSC
6 of 47

CD

O

O
H

-

t sujuu r—0
0

L
U

0
2

OCCOCCCCLULUO

C
LU

COuuLUQOO

<IO_
C

O
LUGCOaLU
Q

C

ens-io3-Pmoenenc•H-Pu0)S-l

-p0)ouQ)

tn•Hfa

CD
C

O

C
O

CM

£
0

0
^

H

O

C
h
-

,
C

C
^&

5
m

L
u

O
 X

C
C
 O

L
L

J.P
age

C
SC

7 of 47

designers to the implementers, from the implementers to the

testers, and finally, from the development team to the main-

tenance team. These are -not complete transfers of responsi-

bility; instead, the team size increases or decreases at

different points in the development life cycle. Because a

system is never 100-percent completely or accurately docu-

mented and because few people can instantaneously absorb the

content of the documentation, new team members will require

additional time to become familiar with the system. There-

fore, functions will increase in cost when new members or

groups become responsible for them.

Since the average development team size is six members, pre-

maturely removing one member from the team always affects

the schedule adversely. If the schedule cannot be adjusted

(adjustments are more difficult late in the life cycle

because of launch deadlines), then a replacement member must

be added to the team. This replacement increases cost and

it does not solve the schedule problem completely unless the

replacement individual is more productive than the individ-

ual who was replaced.

We know that we have to improve our methodology, both in

management and development practices, to move error-

correction efforts earlier into the development life cycle,

closer to the commission of the errors.

We know this from the advocates of V&I methodology, from our

own SEL data, and from common sense. To save money, we must

move the peak effort away from the start of acceptance test-

ing (the third vertical line in the resource profile) and

nearer to the design phase (between the first and second

vertical lines in the resource profile) . For example, we

spend approximately 30 percent of our dollars for system and

acceptance testing (the area between the second and fourth

vertical lines). If 50 percent of that expenditure is for

J.Page
esc
8 of 47

error correction (15 percent of dollars), then by moving

that error-correction effort into the implementation phase,

we will reduce the cost of that effort by approximately

one-half; i.e., we will save approximately 7.5 percent of

our development cost.

J.Page
CSC
9 of 47

"T
S

h*

.1:

•i- .
«

J:s

-
_
 4

*

8
.

I":
c

•

•ic

c

•

8-1?

-
T

l

J. Page
C

SC
10 of 47

Viewgraph 3; Scaled Resource Profiles

These resource profiles are scaled so that the start of ac-

ceptance testing is 1 on the x-axis. The technical hours

spent each week (the y-axis) are scaled by the developed

lines of code (in thousands). The scaled resource profiles

show technical hours per thousand lines of developed code by

fraction of development life cycle. The unsealed resource

profiles (see viewgraph 2) show technical hours by week of

development life cycle.

J. Page
CSC
11 of 47

LO3

LLJ

oCCLUHU
J

C
L

OLULUQ

DESIGN, IMPLEMENT, TEST, DOCUMENTHARTER:

0

RE: SCIENTIFIC, GROUND-BASED, NEAR-REAL-TIME
INTERACTIVE GRAPHIC

85% FORTRAN, 15% ASSEMBLER MACROS

<tOu.OU
J

Q
.

h-

ANGUAGES:

«
j

OWXHiXo5COLO
*

enQZ?iDQlACHINES:

2

CTERISTICS: AVERAGE HIGH LOW

enLO
•

toLO'

X2
<

0

ROCESS CHAR

DURATION (M

0
.

o
i

tooCOOCLULL.EFFORT (STAFI

^
^
uoooor-U

J
NV

)

LO
 CO

r̂
 C

N
O

JC
O

CO

O

•

*
^

 C
N

o
o•

•

If) (0DEVELOPED
DELIVERED

IE EQUIV.)

2

STAFF (FULL-T

en oo
•

•
*~

C

O
 P

>

q
 e

n
<o co rx

t—

r—

^! P
If) O

 ̂
»—

f—(A

AVERAGE
PEAK
INDIVIDUAL:

KPERIENCE

r
"̂

U
JAPPLICATION

o
 en
•

•
LO

 CM

LO

O

(6 LO

0
0

O

LO

^u.u.c/3MANAGERS

TECHNICAL

EIENCE

EL
UOVERALL EXPI

od rx

q
q

«—

r-

O
 If)

O
 0

0
r—

U
.

LUC/5
MANAGERS
TECHNICAL

J. Page
C

SC
12 of 47

Viewgraph 4; Development Environment

I will talk about four projects today. Two went into opera-

tion about 2 years ago; the other two went into operation

about 3 months ago. A V&I methodology was applied to the

last two. The last two projects will be labeled V&I 1 and

V&I 2 on the following viewgraphs. The projects that became

operational 2 years ago will be labeled Past 1 and Past 2.

Date Past 1 Past 2 V&I 1 V&I 2

Development
start

Maintenance
start

Operation
start

M&O end

May 1978

Oct. 1979

Feb. 1980

Active

June

Aug .

Oct.

Sept.

1978

1979

1979

1980

Oct.

June

Aug.

1979

1981

1981

Active

Oct. 1979

May 1981

Aug. 1981

Active

This viewgraph shows the average value of each development

characteristic and the high and low values of the develop-

ment characteristics from 12 projects in one class of appli-

cation. The high or the low values themselves do not

represent one project but show the most and least of any

characteristic attributed to any of the 12 projects. The

four projects that I will talk about are included in these

statistics.

What is our development environment like? Our development

teams design, implement, test, and document software that is

scientific, ground-based, near-real-time, and interactive

graphic. The software is 85 percent FORTRAN, 1 percent as-

sembler, and 14 percent assembler macros. The assembler

macros are required for the graphics capability. The soft-

ware is developed on the IBM S/360-75 and -95, which are

batch oriented with a timesharing option (TSO).

This is an operations environment, not a development envi-

ronment. In this environment, the developers have access to

J.Page
CSC
13of47

the IBM S/360-95 via a Remote Job Processing (RJP) terminal

and via TSO terminals. The developers use the IBM S/360-75

primarily in programmer-present blocks of time for integra-

tion and system testing via a graphics device. The IBM

S/360-95 is the primary day-to-day satellite operations ma-

chine. When a hardware failure occurs, the developers lose

access to the machine via the RJP and TSO terminals and must

immediately relinquish their programmer-present time (if

they have it) on the IBM S/360-75 so that operations activ-

ities can continue with minimal interruption. Since

programmer-present blocktime is scheduled weekly and since

the schedule is usually fully booked, IBM S/360-95 hardware

failures always affect the development schedule adversely,

especially late in the development life cycle.

In addition, the IBM S/360-75 is the primary satellite

launch and launch-simulation operations machine. It is not

unusual to have launches monthly, and frequently they are

delayed on a day-by-day basis for 1 to 2 weeks or on a

week-by-week basis for 2 to 4 weeks. When this happens,

additional simulations are scheduled and/or additional mis-

sion planning machine time is required. Again, the devel-

opers must - relinquish scheduled programmer-present

blocktimes.

We estimate that 20 to 40 percent of scheduled programmer-

present blocktime is lost because of hardware failures on

both machines and because of launch delays. When frequent

hardware failures and launches occur during the later stages

of a development project, you can see how they can contrib-

ute significantly to the peak effort at the start of accept-

ance testing because of the need to make up lost machine

time to complete the development project on schedule.

On the average, the development process takes 15.6 months,

requires 8 staff-years of effort, develops 57,000 lines of

J. Page
CSC
14 of 47

code, and delivers 62,000 lines of code. Some amount of old

code is used in each of these projects. The average staff

size is 5.4 people and peaks at 10 people (full-time equiva-

lents) . Fourteen individuals are usually involved; this

figure includes the first-line managers, i.e., those mana-

gers who make decisions, set priorities, and solve problems

on a daily basis. For this application, on the average, the

managers have 5.8 years of experience and the technical

staff has 4 years. The technical staff includes the mana-

gers (approximately 30 percent). The managers have 10 years

of professional experience overall, and the technical staff

has 8.5 years of professional experience.

J. Page
CSC
IS of 47

I-LU§ELU0
.

XLLJ3^

U
J

OCCa.|5HU
J

Q2U
J

a.U
J

Q2"̂U
J

OO

Q(0(0U
J
u0cca.zU

J

a.OU
J

U
J

O

LUOCCOLU

(IGUITIES AND

EDCOzU
JREQUIRE

Z0pLoU
J

a.U
J

U
J

COLUOC0U
J

Q

COz0pHU
J

OCa.tfMISINTEI

CO3_
j

1 1DESIGN 1

U
J

COU
J

OCoU
J

Q

G FAULTS
ZPOLUOCOC0CJu.OCOooLUCOU

J
OCoU

J
Q

D ACCEPTANCE

ZSU
J

COCOCOST OF
TESTING

UJ
COU

J
OCoU

J
Q

F FAULTS

OOCU
J

ooCO^
^
^
mEARLY Dl

U
J

COccoz

0zh-CLLUCCItOCO°
0QUALITY

OPERATI

LUCOin!••
OCoz

o0HE
lPRODUC

ZH-Z§

J.P
age

C
SC

16 of 47

Viewgraph 5; V&I Experiment

Why use a V&I methodology? It has often been claimed that

the use of a V&I team would solve some of our problems.

What we want to know from this experiment is "Does the use

of an independent V&I team improve our development process

and product?" To test this hypothesis, we will apply seven

measures. These measures, however, are not completely inde-

pendent of each other. They measure, in different ways, the

occurrence of two basic properties:

1. When errors are discovered earlier, they are less

costly to correct.

2. The use of a V&I methodology helps to discover er-

rors earlier.

The seven measures with explanations follow.

1. Decrease requirement's ambiguities and misinterpre-

tations. This will save time and money, especially in later

stages of development. Overall, these are the most expen-

sive errors to correct because requirements are the starting

point for the development life cycle.

To evaluate this measure, the development error data that is

collected by the SEL from the development and V&I teams from

the start of implementation through the completion of ac-

ceptance testing will be examined. In this experiment, the

use of a V&I methodology is not expected to reduce the de-

velopment error rate; rather, it is expected to help dis-

cover errors earlier. If the use of a V&I methodology

provides this benefit, a larger fraction of requirements

errors will be detected during the design phase, in which

the SEL has no formal process for recording errors, and

therefore, fewer requirements errors (a smaller percentage

J.Page
CSC
17 of 47

of total errors) will remain to be discovered during the

formal reporting period. Compared with the past proj-

ects, a 50-percent decrease in the percentage of require-

ments errors reported by the development and V&I teams will

be a clear indication of success for this measure. In addi-

tion, since the V&I team will pursue the resolution of un-

specified and ambiguous requirements, fewer of these

requirements problems are expected in the later stages of

development.

2. Decrease design errors. This will save time and

money in later stages of development. Design errors are the

second most expensive to correct.

To evaluate this measure, the development error data will be

used to compute the percentage of the design errors that are

complex design errors. Complex design errors are many-

component errors, whereas simple design errors are single-

component errors. A component is a subroutine or shared

block of code. Simple design errors are frequently related

to (1) wrong assumptions about data values and structures,

e.g., integer versus real variables, 2-byte versus 4-byte

variables, location in buffer, or length of a format;

(2) lapses in memory, e.g., missing items (declarations,

dimensions, subscripts, statements, or counter incrementers)

or incorrect variable names (not misspellings); or (3) in-

correct interpretation of computations, e.g., wrong sense of

direction (sign operator), factors of 2 or root 2, or wrong

order of steps. Complex design errors are frequently

Formal error reporting for development is keyed to machine-
readable code that, in this environment, is the executable
source code. Therefore, formal error reporting occurs only
from the start of implementation through the completion of
acceptance testing. Maintenance error data is collected
from the maintenance group in a slightly different form.

J.Page
CSC
18 of 47

related to interfaces and operational considerations and,

therefore, they affect modules (several components). Since

interfaces and operational aspects receive more scrutiny and

high-level attention, they are more likely to be discovered

during design reviews, which for the most part occur outside

the formal error reporting period. The simple design er-

rors, which are found in the detail of the design, are less

likely to be found by a small V&I team (approximately

15 percent of development effort). If the use of a V&I

methodology helps to discover complex design errors ear-

lier, a larger fraction of the complex errors will be de-

tected during the design phase, and therefore, fewer complex

design errors (a smaller percentage) will remain to be dis-

covered during the formal reporting period. Compared with

the past projects, a 50-percent decrease in the percentage

of complex design errors reported by the development and V&I

teams will b-e a clear indication of success for this measure.

3. Decrease the cost of correcting errors. According

to those who advocate the use of a V&I methodology and from

our own SEL data, we know that correcting errors one life

cycle phase earlier will produce a significant savings.

To evaluate this measure, the relative cost of correcting

errors before and after acceptance testing started will be

computed. If the use of a V&I methodology reduces the

cost of correcting errors, the developers will spend less

effort per error in the later stages of development. Com-

pared with the past projects, a 20- to 25-percent reduction

Here, the relative cost of correcting errors is computed by
tabulating the effort to correct errors (reported by the
development teams) in each phase, computing the percentage
of error-correction effort that occurred in each phase, and
then dividing the error-correction effort percentage of each
phase by the corresponding percentage of errors found in
that phase.

J.Page
CSC
19of47

in the relative cost of correcting errors after acceptance

testing started will be a positive indication of success for

this measure. Maintenance error data that is collected by

the SEL from the maintenance groups will also be used.

4. Decrease the cost of system and acceptance

testing, if the first three items occur, less effort will

be required in these phases.

To evaluate this measure, the percentage of the development

cost'required to complete system and acceptance testing will

be computed. If the use of a V&I methodology helps to

discover errors closer to the phase in which they origi-

nated, (1) the development teams will spend less time cor-

recting errors during system testing and the system tests

will be completed sooner, reducing the cost of system test-

ing and (2) the development teams will need only to prepare

for and to demonstrate the acceptance tests, reducing the

cost of acceptance testing. Compared with the past proj-

ects, a smaller percentage of development cost for system

and acceptance testing will be a positive indication of suc-

cess for this measure. If the cost is less than the average

cost for this application, it will be a clear indication of

success.

5. Increase the early discovery of errors. This will

save time and money in later stages of development as stated

aoove. It will also improve the reliability of the software

or at least improve confidence in the reliability of the

software, since error rates will be less (or the mean time

The development cost is computed by weighting the hours
charged to a project by the different responsibilities of
the personnel assigned to the project. A manager's hours
are multiplied by 1.5; a programmer's hours are multiplied
by 1.0; support service personnel's hours are multiplied by
0.5.

J.Page
CSC
20 of 47

between failures will be greater) in the later stages of

development. To evaluate this measure, the development and

maintenance error data will be used to compute the percent-

ages of errors that were discovered before and after accept-

ance testing started. If the use of a V&I methodology helps

to discover errors earlier, most of the errors will be dis-

covered before acceptance testing starts. Compared with the

past projects, a 50-percent reduction in the percentage of

errors discovered after acceptance testing started will be a

clear indication of success for this measure.

6. Improve the quality of the software put into opera-

tion. This will decrease maintenance costs. In general,

the use of a V&I methodology will be most beneficial in the

M&O phase, since systems with lifetimes greater than 1 or

2 years usually have maintenance costs that range from 30 to

100 percent of the development cost.

To evaluate this measure, the software and maintenance error

data will be used to compute the error rate for the M&O

phase. If the use of a V&I methodology improves the quality

of the software put into operation, the error rate in the

M&O phase will be smaller compared with the error rates of

the past projects. An error rate less than the average er-

ror rate (0.5 to 0.6 errors per thousand lines of developed

code) for .this application will be a positive indication of

success for this measure.

7. Maintain productivity and cost. Adding another

interaction for the development team will slow them down and

will, therefore, reduce their productivity.and increase the

cost of development. However, if requirements and complex

design errors are reduced, if the cost of correcting errors

is reduced, and if the time spent on system and acceptance

testing is reduced, those reductions should offset the cost

of interaction between the development and V&I teams.

J. Page
CSC
21 of 47

Therefore, productivity and development costs should remain

the same. We do not expect to offset the cost of the V&I

team completely, but optimistically speaking, we hope to.

To evaluate this measure, the software and the weighted work

hours charged to the projects by the development teams will

be used to compute (in staff-months) the cost of 1000 lines

of developed code. A cost less than or equal to the average

cost (1.7 staff-months per thousand lines of developed code)

for this application will be a clear indication of success

for this measure. That is to say, an average cost for the

development team .plus an added cost for the V&I team is a

clear indication of success; the development teams will have

maintained productivity despite the interaction with the V&I

team.

By one calculation, the cost of interaction with the V&I

team is estimated to be 10 percent of the development ef-

fort. Therefore, if the development teams are average in

performance and require only the average cost even though

they are interacting with a V&I team, the use of a V&I meth-

odology will have effected approximately a 10-percent sav-

ings in development cost. If the use of a.V&I methodology

works well, i.e., if the first six measures show positive

indications of success, then the combined cost of the devel-

opment and V&I teams will be close to the average cost of

development for this application. Since the cost of the V&I

effort will be approximately 15 percent of the development

effort and the estimated cost of interaction with the V&I

teams is 10 percent, a combined cost of the development and

V&I teams that is near the average development cost will

indicate approximately a 25-percent savings in development

cost (15 percent real savings).

J.Page
CSC
22 of 47

CCO

U
J

Xo

MENTS AND DESIGN
*ATE SYSTEM TESTING
ISTENCY END TO END

U
I

*•?

(/J

VERIFY REQUIR
PERFORM SEP/
VALIDATE CON
FIX NOTHING
REPORT ALL

CTERISTICS:tOCESS CHAR)

EE0
.

C
O

r-r-CODURATION (MONT

15-18 PERCENT OF DEVELOPMENTEFFORT aLUSTAFF (FULL-TIME

*~. °
^

C

O

C

O

AVERAGE
PEAK
INDIVIDUALS

RIENCE

U
JAPPLICATION EXP

u.u.

MANAGERS
TECHNICAL STA

U
J

O2

OVERALL EXPERIE
»
- 0

0L
L

MANAGERS
TECHNICAL STA

AS DEVELOPMENT TEAMS, BUT IN DIFFERE
•

C
C

<
f

AME CONTRACTOI
PERATIONAL ARE-

C
O

O

J.P
age

C
SC

23 of 47

Viewgcaph 6; V&I Team

What did we expect the V&I team to do in this experiment?

The V&I team was supposed to

• Verify requirements and design.

• Perform separate system testing

• Validate the consistency from start to end (from

requirements to product)

• Fix nothing

• Report all findings

The V&I process lasted 14 to 16 months and required an ef-

fort of 16 to 18 percent of the development effort. The

process required an average of 1.1 people and peaked at

3 people (full-time equivalents). Six individuals were in-

volved, including the first-line managers. The application

and overall experience of the technical staff was similar to

that of the development teams (viewgraph 4); the managers,

however, had a little more experience.

The V&I.team was associated with the same contractor as the

development teams but came from a different operational area.

Next, we will examine the results of the experiment.

J.Page
CSC
24 of 47

U
JZ

U
JZ

C
O

O
w

o

COU
J

—
I

mo

0>

si2
8

°

28;

CM

to

te
(Ad

8°

.
"•C

fl

0U
J

e

C
N

5

2U
J

<
i

i
i

to

X

v

rm

I

I

LUCC5o
COU

J
o

f-
C

M

UJCCDCO<U
J

UJCCDCO<U
J

5

i
i

i
i

i
r

S

S

v

f»

S

«-

S«O
U

U
3

M
O

X
 _

i"2u
8°a.S

i

fe

dLUCC

I
I

3

S
i

i
i r

o

o

o

o
V

C

O

C
M

t-

CO

0>

(A
 O

Z
z

8°"-W
J

dU
l

oc

r
i

i
i

r
i

r
S

8

8- 5
8

8 2
S

U
O

U
U

3J.P
age

C
SC

25 of 47

Viewgraph 7; Measure 1 - Requirements Problems and
Measure 2 - Design Flaws

This viewgraph shows the breakdown, by percentages, of all

the requirements and design errors detected from the start

of implementation through the end of acceptance testing.

1. Requirements Errors

Expectation:

For requirements errors, we expect to see a 50-percent

decrease in the percentage of requirements errors.

Findings:

From the bar graphs, you can see that the percentage of

requirements errors for both V&I projects was reduced 84

to 90 percent compared with the past projects. In addi-

tion, very few requirements remained unspecified in the

later stages of development. Hence, there were very few

late surprises in terms of requirements problems com-

pared with the past projects.

Conclusion;

The use of a V&I methodology did significantly decrease

requirements ambiguities and misinterpretations.

2. Design Errors

Expectation;

For design errors, we expect to see a 50-percent de-

crease in the percentage of complex design errors. Com-

plex design errors are those involving many components.

Simple design errors are single-component errors. A

component is a subroutine or a shared block of code.

F i nd i ng s;

From the bar graphs, you can see that the percentages of

complex design errors for the V&I projects are 26 and

J. Page
CSC
26 of 47

23 percent of the total design errors. It is a little

less for the two past projects (23 and 18 percent).

Conclusion;

The use of a V&I methodology did not decrease complex

design errors.

J. Page
esc
27 of 47

CM
U

J
1/5

<LLLLO

toU
)

ccU
J

>OO
C

O
<M

C
N

(A

LU
esoo

<0
.

CCD(0<U
J

rves
oC

M
CM

oo

C/)CC
CCUJ

J.P
age

C
SC

28 of 47

Viewgraph 8; Measure 5 - Early Discovery of Faults

This viewgraph shows the percentage of errors of the total

that were found after acceptance testing started.

Expectation;

We expect to see a 50-percent reduction in the percentage of

errors found after acceptance testing starts.

Findings;

You can see that for the two V&I projects there was a slight

decrease (less than 30 percent) in the percentage of errors

found after acceptance testing started.

.Conclusion:

The use of a V&I methodology did not sigificantly increase

the early discovery of errors.

Additional Data;

The percentage of errors found in each phase is as follows:

Phase Past 1 Past 2 V&I 1 V&I 2

After Acceptance Testing 18.2 23.0 15.6 17.5
Started

Before Acceptance Testing 81.8 77.0 84.4 82.5
Started

Maintenance and Operation 3.4 . 5.3 5.0 6.9

Acceptance Testing •— 14.8 17.7 10.6 I0v6

System Testing 14.8 4.8 8.2 18.9

Code/Unit Testing 67.0 72.2 76.2 63.6

This viewgraph and viewgraphs 9 through 11 contain M&O data

through November 20, 1981. The length and status of the M&O

phases are as follows:

M&O Phase Past 1 Past 2 V&I 1 v&I 2

Months

Status

25

Active

14

Complete

5

Active

6

Active

J.Page
CSC
29 of 47

Except for project Past 2, which has ended, the results pre-

sented in viewgraphs 8 through 11 can only become worse with

further operation. However, the results are not expected to

change appreciably because of the characteristics of the

environment. Typically, in this environment, 95 to 100 per-

cent of the postacceptance error corrections and enhance-

ments occur during the first 6 months of M&O. For example,

the supposedly last-planned modification of the source code

for both V&I projects occurred a few days before

November 20, 1981.

After the first 6 months of M&O, typically, the software is

changed only to support a degradation in satellite hardware

performance, e.g., failure of a primary sensor. However, to

support a launch, the software is engineered to support

these types of contingencies but not always accurately

enough for day-to-day operation. Since the usual lifetimes

of these projects range from 1 to 3 years, the users must

weigh the cost of extensive development to support serious

or critical degradation in satellite hardware performance

with the benefit to be gained during the expected (and usu-

ally shortened) life of the satellite. For example, about a

year ago, the satellite of project Past 1 (25 months M&O)

had a critical hardware failure that seemed to end the proj-

ect prematurely; -however, relatively simple modifications to

the software allowed the users to keep the satellite active

in a degraded mode of operation.

J.Page
CSC
30 of 47

C
O

IXCN

(N5

oo0
0
•

CN

CDZ(JU
J

ccccoou.OCOoo

CNC/5
CM

0
0r
•̂

«N

C
O

LUCCD(0<LU

IU
l•

CM

Io
•

CM
IT)

siis*
Z

Z

tuu.

J. Page
C

SC
31 of 47

Viewgraph 9; Measure 3 - Cost of Correcting Flaws

This viewgraph shows the relative cost of correcting errors

found after acceptance testing started. This number is the

ratio of the fraction of effort required to correct the er-

rors that occurred after acceptance testing started to the

fraction of errors that occurred after acceptance testing

started. For example, if 50 percent of the effort to cor-

rect errors was expended after acceptance testing started

and if that effort was needed to correct 5 percent of the

errors, this number would be 10.

Expectation: . ''

We expect to see a 20- to 25-percent lower relative cost to

correct errors after acceptance testing starts.

Findings:

From the bar graphs, you can see that the relative cost to

correct errors after acceptance testing started was the same

as that for the past projects. The relative cost to correct

errors before acceptance testing started was approximately

0.5. This indicates that the cost to correct errors after

acceptance testing started was "between 4.4 and 4.9 times

more costly than the cost to correct errors before accept-

ance testing started.

Conclusion;

The use of a V&I methodology did not decrease the cost of .

correcting errors in the acceptance testing and M&O phases

combined.

J. Page
CSC
32 of 47

Additional Data:

The relative cost of correcting errors in each phase is as

follows:

Phase Past 1 Past 2 V&I '1 V&I 2

After Acceptance Testing 2.78 2.76 2.88 2.76
Started

Before Acceptance Testing 0.60 0.47 0.59 0.63
Started

Maintenance and Operation 4.85 4.53 4.09 3.54

Acceptance Testing 2.31 2.23 2.31 2.26

System Testing 1.00 1.09 1.30 1.08

Code/Unit Testing 0.47 0.43 0.58 0.49

These figures, in part, validate the common belief (advanced

_by proponents of V&I methodology) that errors are more ex-

pensive to correct when they are discovered later in the

development cycle. You can also see from these figures and

from the figures in the previous viewgraph that the results

are different for different phases; but, remember that we do

not have responsibility for the maintenance phase, and data

is more difficult to obtain from the group who has responsi-

Dility. Therefore, we measure things one or two phases ear-

lier, i.e., during acceptance testing or system testing.

The relative cost of correcting errors in the M&O phase was

less for the V&I projects mainly because of fewer require-

ments errors in that phase. The past projects had at least

twice as many requirements errors in that phase.

J. Page
CSC
33 of 47

LLI

LUO<a.LUOo<oLU

LUXccLU2LUa.OLU

2

in
° g
§ 3
<

b*

LU
ro

I
I

OoLUGCDU
)

<LU

2PLUI-LU
C

N

CM

U

M
-

2

^

<

M

a

z

z

a

<
 E

CMdv

o
 1

2

..

P 5
S3 &
H

I
H
 a

2

X

2
 «

^ "*
a
 a

o
 >

o
 <

O
)

PSO• ^

CVJ
9
)

COzaE
2

M

O

C
M

w

a
H

I
>

Q

<

CM

I-W<OLIa.

IT
I

I
I

I
I

I
I

I
O

Irt

L
O

L
O

O

IT
J

M

C
M

«
-

O

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

in

o

in
r*

LO

CM
1

I

1S
O

O
 ±

N
3
IA

Id
O

1
3
A

3
a

 dO
 %

J. P
age

C
SC

34 of 47

Viewgraph 10: Measure 4 - Cost of System and Acceptance
Testing

This viewgraph shows the cost for time spent in various de-

velopment calendar phases (not activity phases). Design

activity takes place in the design calendar phase, in the

code/unit testing (implementation) calendar phase, and even

in the system and acceptance testing calendar phase. De-

tailed SEL data shows that design activity ranges from 30 to

45 percent of the development effort. On the average, how-

ever, only 23 percent of the development effort occurs dur-

ing the design calendar phase, i.e., the phase in which only

design-related activity is performed. The remaining design

activity is performed primarily during the implementation

phase because requirements change, previously missing infor-

mation is acquired, and design errors exist. Since it is

not unusual to receive requirements changes during the sys-

tem and acceptance testing phases, since some previously

missing information may be acquired during these phases, and

since design ,errors are also discovered in these phases,

some design activity occurs here, too.

This viewgraph also contains the average cost for each phase

and the highest and lowest cost for each phase for the

12 projects in our sample. The high or low costs themselves

do not represent the cost of one project but show the most

and least money spent for the various phases by any of the

12 projects.

Expectation;

We expect to see a reduction in the cost of the system test-

ing and acceptance testing phases.

Findings;

On the average, we spend 29 percent of our dollars on system

and acceptance testing. You can see that one V&I project

was below the average (26.6 percent) and the other, above

J. Page
CSC
35 of 47

(31.1 percent) . Together, they were equal to the average.

Both were less than our two projects from the past.

Conclusion;

The use of a V&I methodology did not significantly decrease

the cost of system and acceptance testing.

Additional Data;

We do not have responsibility for the maintenance phase.

Our best estimate is that the maintenance costs for the faur
\

projects are about 15 percent of the development costs. The

V&I projects had approximately 16- to 18-percent overheads,

to pay for the V&I effort.

J. Page
CSC
36 of 47

ecLUQ
.

O

LUcctoLUOH-aiCOLUDCD(0<LU

LUOH
I

H

V
)

U
J

I-U
J

Oz<a.LUOO

LULU

V
)

LUzDU
J

QO<J

I
T

ICM

CM

i
i

i
i

i
i

i
i

i
i

i
r

CM
o

co

<
e

T

pg

to ro

to ro

3-a.
in »-
(N

 C
M

LU!
O

O
lQ

 >J
/saoaa3

o
o
ia

 M
/suoaaa

S
S

o

J. Page
C

SC
37 of 47

Viewgraph 11; Measure 6 - Quality of Software

This viewgraph shows the errors per thousand lines of devel-

oped code for various calendar phases. What is important

here is the M&O phase.

Expectation;

We expect to see an error rate in the M&O phase less than

the average error rate for this application.

Findings;

From the bar graphs, you can see that the error rates for

the two V&I projects are not better than the error rates for

the two past projects. The average error rate in the M&O

phase is between 0.5 and 0.6 errors per thousand lines of

developed code; both V&I projects had error rates higher

than the average.

Conclusion:

The use of a V&I methodology did not improve the quality of

the software put into operation.

Additional Data;

Error rates from the other phases are important track rec-

ords. Hypothetically, let us say that projects Past 1 and

V&I 2 were developing the same product. If we measured the

acceptance testing error rates, we would see that both had

error rates of 1.4 errors per thousand lines of developed

code. We would not be able to tell too much about the proj-

ects from that viewpoint. However, if we examined those

projects' error rates before acceptance testing, we would

see that project Past 1 had a preacceptance testing error

rate of 7.9 and project V&I 2 had a preacceptance testing

error rate of 10.6. From this, we may be able to predict

the worse M&O phase error rate for project V&I 2.

J. Page
CSC
38 of 47

fxO
0
0
CM

CMCMOZ

OO

UJZccUJ>O3

UJoCC
»

U4
>

to
 <

OZCD

CD
r̂

<

o

1

O

2
 >
2
 <

oOCM
*

to

*~
cc

z

CC
•

CD
^

O
 C
D

cc
>

0.

<

in
CM

o
*

•

•

•

•
CM

«
-

f
-

t
-

t
-

O
O

1Q
 >

l/S
H

!N
O

IA
J-d

d
V

±
S

J. Page
C

SC
39 of 47

Viewgraph 12; Measure 7 - Productivity/Cost

This viewgraph shows the cost (in staff-months) per thousand

lines of developed code (K DLOC).

Expectation;

We expect the V&I overhead costs to be an add-on cost to our

average development cost.

F i nd i ng s ;

Because of the interaction with the V&I team and some other

problems, we drove the productivity of the development teams

to the low end of our productivity range. Together, the two
V&I projects were about 85 percent more expensive than our

two past projects. Since the quality of the products was
not any better (see viewgraph 11), an 85-percent increase in

cost for the same product is a very expensive penalty to

pay. The cost of the development part of 'the V&I projects

(2.2 staff-months per K DLOC) was approximately 30 percent
higher than the average development cost (1.7 staff-months

per K DLOC). This is three times as large as the estimated
cost of interaction with the V&I team.

Conclusion:

The use of a V&I methodology is expensive.

J. Page
CSC
40 of 47

O

H2U
J&l EXPERIMI

^ ^
^
^

u.OWH
-

U
J

OC

U
J

>ZLUQLUCODU
J

<ZU
J

goU
J

Z2OUL

MEASURE

- —
 ,-

FOUND
COLUE

g
D

oQUIREMENTS AMBIG
D MISINTERPRETATK

L
U

2
O

C
<

2LUi DECREA!

LU

OOCj

SIGN FLAWS

LUO

CREASE II

U
J

QO2

CO§• •ST OF CORRECTING F

OO

—
 2

-CREASE II

U
J

QO2

ST OF SYSTEM AND
CEPTANCE TESTING

0
0

0
<

2U
J

CO. DECREA!

^
H

gCO

COD

RLY DISCOVERY OF F

Û
J

2U
jL INCREAS

^
^

gCO

K_DQ
.lALITY OF SOFTWARE

ERATION

ODUCTIVITY
t+-r

-30.
ccC

do
Q.C.

2
.•i

u
ju

t/\ *
^
 0

=
Is

CO
O

C
f

<

0
;

u
j

u
j :

E

O
f

O
i

n̂̂
j

2

0

0

5
2

-i

01

i MINUS

5
3

;
*Q

U
oA

^

O
c
c

S
t

N

1 i
: Q

.o0
)

U
J

5

J. P
age

C
SC

41 of 47

Viewgraph 13; Results of V&I Experiment

From the data we have used, which includes resource data,

error data, and the software, we have found that a V&I meth-

odology provided

1. A large decrease in requirements ambiguities and

misinterpretations. There were very few late surprises in

terms of requirements problems, and the number of require-

ments errors reported was significantly less than for the

past projects.

2. No decrease in design errors. The fraction of com-

plex design .errors was similar to that of the past projects.

3. No decrease in the cost of correcting errors. The

relative cost of correcting errors that occurred after ac-

ceptance testing started was the same as that for the past

projects.

4. A small decrease in the cost of system and accept-

ance testing. One V&I project had a system and acceptance

testing cost less than the average system and acceptance

testing cost; the other V&I project was above the average

cost. However, both V&I projects -had costs below the costs

of the past projects used in the comparison.

5. A small increase in early discovery of errors. For

both V&I projects, the percentage of errors that occurred

after acceptance testing started was less than the percent-

age of errors that occurred after acceptance testing started

for the past projects.

6. No improvement in the quality of software put into

operation. The error rates in the M&O phase for both V&I

projects were higher than the average error rate for soft-

ware put into operation for this class of application.

7. A decrease in productivity and an increase in

cost. Because, in part, the interaction of the V&I and

J. Page
CSC
42 of 47

development teams lowered productivity and because there was

not a savings in correcting errors, the cost was high.

We scored a plus with the first measure (requirements prob-

lems) ; zero with the next five measures; and a double minus

with the last measure (productivity/cost).

J. Page
CSC
43 of 47

111v>

toX
U

l

U
J

zO

tc<
LL
O

(0(/>U
J

OO

o
1

ULJ
zH

o"•

LLJ

U
J

ccdLUCC
3

•
H

D
0—

 U
J

0
-2

<
0

i-EE
co 5;
EEz
U

. U
l

w

"
 x

a
$

~
w

 w
O

<

<

5
 g

 g
I

I
I

U
.

00

_
(/>

uj
3

h
-H

-
H

 u
j

C/>
CC

I- I-
Z

Z

t&
 ^&

C3 C5

•••
E

 E
U

J
U

J
z
 z

h-
K

-

I
I

U
J

J. Page
C

SC
44 of 47

Viewgraph 14; Summary

For our first application of a V&I methodology in this en-

vironment

• V&I did not improve the process

• V&I was very expensive

• V&I was a management headache

To qualify this, our experience with many methodologies has

been as follows:

• The first time a methodology is applied, mistakes

are made (and we made many mistakes), and many of

the potential benefits or advantages of the method-

ology are not realized.

• The second time a methodology is applied, there is

a tendency to overcompensate for the things that

you did worst the first time, and the methodology

still does not work as well as it potentially could.

• The third time a methodology is applied, you lower

your expectations somewhat or modify them, and you

home in on what is right for your environment.

In general, development teams are at the bottom of the totem

pole in this environment. Because they work in an opera-

tions environment, they have low priority for accessing the

machines. They have adversary relationships with the

analysis/requirements team, the team that conducts accept-

ance testing, the people who schedule computer time, the .

computer operators, the programmer assistance center, and

the customer. The V&I team members, who are like a develop-

ment team but do not design or implement, have the same ad-

versaries. Placing a V&I team in this environment creates

another adversary for both the development team and the

development-like V&I team. The manager who monitors both

teams (the customer) has twice as many complaints, computer

J. Page
CSC
45 of 47

problems, priority decisions, schedule problems, cost prob-

lems, reporting problems, and conflicts to deal with. The

V&I experiment was a management headache.

However, we believe that we know what changes are needed and

how to moderate them to make the use of a V&I methodology

more cost effective in this environment for

• The right size effort

• The right reliability requirement

Most of our projects require 8+4 staff-years of effort. We

believe that a V&I methodology will be cost effective in the

10- to 12-staff-year range and that cost savings will be

achieved for larger efforts. All our completed projects

have been for ground-based software, but we have started to

develop some onboard (flight) prototype systems. For these

systems, which have a more stringent reliability require-

ment, we believe that a V&I methodology will be cost effec-

tive for 5- to 6-staff-year efforts. In both these cases,

we believe that a V&I effort of approximately 15 percent of

the development effort is sufficient for our work.

J. Page
CSC
46 of 47

THE VIEWGRAPH MATERIALS
for the

J. PAGE PRESENTATION WERE
INCORPORATED IN PAPER

J.Page
CSC
47 of 47

EVALUATING SOFTWARE DEVELOPMENT CHARACTERISTICS:
ASSESSMENT OF SOFTWARE MEASURES IN THE

SOFTWARE ENGINEERING LABORATORY

Victor R. Basil!
University of Maryland
College Park, MD 20742

The purpose of this presentation is to discuss some of the work done

on metrics in the Software Engineering Laboratory. To put things in per-

spective, there are many factors that affect software quality and each of these

factors has several criteria which define it. Metrics represent some sort

of measurement as to whether or not we have achieved a particular criteria.

For example, one factor that we would like the software to possess is relia-

bility. One of the many criteria that goes to make up this generalized

factor of reliability might be fault tolerance. One of the metrics that can

be used to evaluate fault tolerance might be the number of crashes of the

system.

There are many views of metrics.. We can think of metrics as being

subjective or objective. Subjective metrics normally do not involve any

exact measurement;.. they. tend to....be..an estimate-of extent to a^degree in the —

application of some technique or a classification or qualification of a

problem or experience. Subjective metrics are usually done on a relative

scale; e.g., they may be binary (yes or no), or discrete numbers (zero, 1,

2, 3). Examples of subjective metrics would be a qualitative judgment on

the use of Process Design Language or an evaluation of the experience of

programmers in a particular application.

Objective metrics, on the other hand, tend to be absolute measures

taken on the product or process. For example, the time of development,

V. Basili
Univ. of MD
1 of 24

Che number of lines of code delivered, the productivity in lines of code

per staff month, the number of errors or changes associated with the project.

The distinction between subjective and objective metrics is typically a

little bit fuzzy. Very often we make a metric subjective because we don't

know how to quantify it.

Another characterization of metrics is as product or process metrics.

Product metrics measure the developed product, such as the source code, the

object code, or the documentation. Such metrics might be lines of code

(objective metric) or readability of the source code (subjective metric).

Process metrics tend to measure the process model used for developing the

product. Metrics such as use of methodology (subjective metric) and effort

and staff months (objective metric) are two metrics that measure the process.

Another characterization is to think of metrics as being cost or quality

metrics. It is clear that cost can be a quality metric. However, typically

a goal in software development is to minimize cost and maximize quality. So

for that reason we will consider these as separate views. Cost normally

involves the expenditure of resources in dollars, which might include some

capital investment, and this metric is usually normalized according to some

value component. For example, we measure staff months or productivity in

terms of dollars received for dollars spent, or output for dollars spent, or

size per time slice. Quality metrics, on the other hand, measure some form

of .the value of the product. For example, trying to measure the mean time

to failure of the product, the ease of change, the correctness, or the

number of errors remaining are all quality measures.

Use of Metrics

We use metrics in varying ways. We can use them to characterize,

V. Basili
Univ. of MD
2 of 24

evaluate, or predict. Almost all metrics fit in the characterizing category.

In that sense, the metric helps to distinguish the product and process or

environment. For example, we may categorize an environment by the use of

a methodology, the number of externally-generated changes, or the size. This

allows us to compare environments or products or processes.

Not all characterizing metrics are evaluative. Metrics are considered

evaluative if the metric correlates with or shows directly the quality of the

process or the product. For example, the number of errors recorded during

acceptance testing or the productivity involved in the development of a

software project give us some way of evaluating whether the product has some

reasonable reliability or the development is cost effective.

The most powerful capability a metric can have is prediction; that is,

the measure is estimable or calculable and is used to predict another

measure. For example, estimating size as a predictor of effort is a way to

use an estimable metric to predict some desired information.

To demonstrate that a particular metric evaluates or predicts, requires

some validation. Too often metrics are proposed in the literature which are

meant to be evaluative or predicted, but that capability is not established

by experiment or case study.

Analyzing Objective Metrics in the Software Engineering Laboratory

In a paper presented at the Sigmetrics Workshop (Basili/Phillips), we

tried to use the laboratory project data to study the relationship between

various metrics of size and complexity. One of the questions raised was

could we predict effort, which was a cost measure, and the number of errors,

a quality metric, using the various size and complexity metrics that appear

in the literature. A second question was to be able to check the internal

V. Basili
Univ. of MD
3 of 24

consistency of several of those size and complexity metrics. The metrics

used are given in Table 1. The relationship between the various complexity

metrics appears in Table 2, which gives the Pearson correlation coefficient.

As can be seen from this table, several of the complexity and size metrics

OBJECTIVE SIZE AND COMPLEXITY MEASURES STUDIED

SRC : SOURCE LINES OF CODE INCLUDING COMMENTS

XQT : EXECUTABLE STATEMENTS

SOFTWARE SCIENCE METRICS

N : LENGTH IN OPERATORS AND OPERANDS

V : VOLUME

V* : POTENTIAL VOLUME

L : LEVEL
E : EFFORT

CYC : CYCLOMATIC COMPLEXITY

CLS : NUMBER OF CALL STATEMENTS

CAJ : CALLS AND JUMPS

CHG : CHANGES TO THE SOURCE CODE

REV : NUMBER OF REVISIONS (VERSIONS) IN THE LIBRARY

EFF : NUMBER OF HOURS EXPENDED IN DEVELOPMENT

ERR : NUMBER OF ERRORS ASSOCIATED WITH COMPONENT

Table 1
V. Basili
Univ. of MD
4 of 24

G
O

t_
J

C
£

1 —
L
U

^
~

>
-

1r^
^

xL
U

1'
Q

_
^
~

**C
D

(-J

Q•=
t

L
U

rvj
•— «
G

O

L
U

L
U

1 —
L
U

C
Q

C
L
.

»
 —

 <
—

1
[—

G
O

C
D

1 —
<c—

 1
L
U

ct:

G
O

1
(_

>

t_
>

>
-

C
_
i>J

<C(_>

c_>
Q

±
G

O

1 —
C

3
Xt£

3
0
1

(_
>

>L
U

cr:

U
D

toC
T
»

r^U
2>

.—
I

C
D

L
O

cn
U

D
O

O

0
0

C
N

J
.O

O
—

 ̂
-

—
 *-

—
 J

-*J
r>v

UD
oo

cn

OD
ir>

C
D

C

O
r-«>

i—
 i

oo

oo

CD

cr
cr>

cn
K

>

L
O

oo

r̂
.

r>s.
cn

CD

r̂
.

cr
LO

C
N

I
1̂

0

CD
r̂

LO

C
N

I
r^

c
r

10

toG
Oi

L
U

<
_
>

U
D

t
^

1-J-)
tocncn.-HL
O

e
nmL
OC
N

I
cncr
r>o
L
O

C
N

J

i—
 i

CNJ
cnr-^

C
_J

>
-

<_>

tor\r—
I

cno
o

ooL
O

tocnoocnCNI
cr
cnCNJ

C
D

C
N

J
cnC

N
J

cn
L
O

C

D

C
D

•-H

U
D

C

N
I

C
T

L
O

C

N
I

oo
oo

^r

G
O

C23
X

t_
i

n)
H

V
. B

asili
U

niv. of M
D

5 of 24

correlate well with one another. On the other hand, the change metrics do

not correlate well. In trying to use combinations of these metrics to predict

effort and errors, we see by Table 3 that there is some success in accounting

for effort with some of the metrics, but less success in accounting for errors,

PREDICTING EFFORT AND ERRORS USING

SIZE AND COMPLEXITY METRICS

EFF

CIS

CYC

CAJ

SRC

XQT

REV

E

CHG

EFF

,7977

.7399

,7957

,7583

,7100

.7122

,6612

,4799

Table 3

ERR

.6346

.5704

,5592

,5848

,5576

,5485

,6734

,5432

V. Basffl
Univ. of MD
6 of 24

Another study was to look at the internal validation of some of the

metrics. Specifically, the software science metrics were examined to see

whether predicted values for some of the metrics and actual values related in

some way. Again, Pearson's correlation was usedjthe results are given in

Table 4. One can see from this table that metrics like length, that is,

XV \

N and N.do correlate. There is not a bad relationship between V and V*,

although in the group of metrics that relationship is probably the worst.

It should be noted that projects are broken up into two groups—those of

small components which were 50 lines or less, and large components which were

more than 50 lines.

Based on this study, we made the following conclusions: First of all,

there does exist some relationship between complexity metrics and effort and

errors. However, most of the complexity metrics do not do much better at

estimation than lines of code or executable statements. On the other hand,

many of the metrics related very well with each other, which seems to imply

that they really are measuring the same thing. The goal, therefore, should

be concentrated on looking at orthogonal metrics. We are currently investi-

gating data metrics in the SEL.

Using Subjective and Objective Metrics to Predict Cost

In a paper presented at the 5th International Conference on Software

Engineering (Bailey/Basili), we inverted that experiment by examining the

relationship between productivity and various factors. Basically, we used

nonparametric statistics. The results were as follows: We found no signifi-

cant relationship between productivity and size. However, there was a large

set of methodology factors that showed varying degrees of positive correla-

tion with productivity. A combined methodology factor that was used to pre-

V. Basili
Univ. of MD
7 of 24

INTERNAL VALIDATION

SMALL COMPONENTS

LARGE COMPONENTS

50 LINES

50 LINES

(280)

(285)

N
A
N

LARGE

,79

SMALL

,83

V- V1 ,52 ,50

L
A
L ,62

E
A
E ,51

PEARSON CORRELATION

Table

V. Basili
Univ. of MD
8 of 24

diet cost or effort in the cost model showed a significant positive correla-

tion with productivity as might have been expected. In this study, projects

with high methodology rating were shown to have come from a different popula-

tion than those with a low methodology rating. No other factor showed a

significant positive correlation with productivity and we were able to show,

at least in the SEL environment, that methodology does correlate with producti-

vity and therefore has been an effective approach to software development.

Using Subjective Metrics to Predict Quality

Based on the study to predict productivity but changing the statistical

approach to factor analysis, we compressed three sets of metrics into three

factors--quality, methodology, and complexity. Methodology ana complexity

were not significantly correlated in the study. However, quality was sig-

nificantly correlated with methodology with a correlation (R) of .67 and

quality was also significantly correlated with complexity with a correlation

(R) of -.64. In both cases, the correlation was less than a .001 significance

level.

Using methodology alone to predict quality, the coefficient of determina-

2
tion (R) is equal to .45. This means that methodology accounted for

essentially 45% of the quality rating. Using methodology and complexity both,

2
we got an R of .65. This implies that there is some evidence that we can

predict quality from methodology and complexity and that methodology is again

highly correlated, not with just productivity as we saw in the previous study,

but also with quality. Work in this particular area is just beginning and

we plan to make tremendous use of the subjective metrics, not just for

evaluation, but also for prediction.

V. Basili
Univ. of MD
9 of 24

REFERENCES

(Basili/Phillips) - Basil!, V. and Phillips, T. ."Validating Metrics

on Project Data" - Submitted to special issue of Software Metrics,

Transactions on Software Engineering.

(Bailey/Basili) - Bailey, ,J. and Basili, V., "A Meta-Model for

Software Development Resource Expenditures," Proceedings of the

Fifth International Conference on Software Engineering, March 1981,

pp. 107-116

V. Basili "
Univ. of MD
10 of 24

THE VIEWGRAPH MATERIALS
for the

V. BASILI PRESENTATION FOLLOW

V. Baali
Univ. of MD
11 of 24

FACTOR
(RELIABILITY)

CRITERIA
(FAULT TOLERANCE)

9

METRICS
(NUMBER OF CRASHES)

V. Basili
Univ. of MD
12 of 24

VIEWS OF METRICS

SUBJECTIVE VS, OBJECTIVE

SUBJECTIVE:
NO EXACT MEASUREMENT
AN ESTIMATE OF EXTENT OR DEGREE IN THE APPLICATION

OF SOME TECHNIQUE
A CLASSIFICATION OR QUALIFICATION OF PROBLEM OR

EXPERIENCE
USUALLY DONE ON A RELATIVE SCALE
E,G,, USE OF A PDL
EXPERIENCE OF THE PROGRAMMERS IN THE APPLICATION

OBJECTIVE:

AN ABSOLUTE MEASURE TAKEN ON THE PRODUCT OR PROCESS
E,G,7 TIME FOR DEVELOPMENT
NUMBER OF LINES OF CODE
PRODUCTIVITY

NUMBER OF ERRORS OR CHANGES

V.Basili
Univ. of MD
13 of 24

VIEWS OF METRICS

PRODUCT VS, PROCESS

PRODUCT:

MEASURE OF THE ACTUAL DEVELOPED PRODUCT

I.E., SOURCE CODE, OBJECT CODE, DOCUMENTATION
E.G., LINES OF CODE, READABILITY OF THE SOURCE CODE

PROCESS:

MEASURE OF THE PROCESS MODEL USED FOR DEVELOPING
THE PRODUCT

E.G., USE OF METHODOLOGY, EFFORT IN STAFF MONTHS

COST VS. QUALITY

COST:
EXPENDITURE' OF RESOURCES IN DOLLARS INCLUDING

CAPITAL INVESTMENT USUALLY NORMALIZED ACCORDING

TO SOME VALUE COMPONENT
E.G., STAFF MONTHS, PRODUCTIVITY, SIZE/TIME SLICE

QUALITY:
SOME FORM OF VALUE OF THE PRODUCT
E.G., RELIABILITY, EASE OF CHANGE, CORRECTNESS,

NUMBER OF ERRORS REMAINING
V. Basili
Univ. of MD
14 of 24

USE OF METRICS

PREDICTIVE VS, EVALUATIVE VS, CHARACTERIZING

CHARACTERIZING:

MEASURE HELPS DISTINGUISH THE PRODUCT OR PROCESS
OR ENVIRONMENT

E,G,, USE OF A METHODOLOGY, NUMBER OF EXTERNALLY

GENERATED CHANGES, SIZE

EVALUATIVE:

MEASURE CORRELATES WITH OR SHOWS DIRECTLY THE QUALITY
OF THE PROCESS OR PRODUCT

E.G., NUMBER OF ERRORS REPORTED DURING ACCEPTANCE
TESTING, PRODUCTIVITY

PREDICT IVE|
MEASURE IS ESTIMATABLE OR CALCULABLE AND IS USED TO

PREDICT ANOTHER MEASURE
E.G., ESTIMATING SIZE AS A PREDICTOR OF EFFORT

USE REQUIRES VALIDATION

V. Basili
Univ. of MD
15 of 24

ANALYZING OBJECTIVE MEASURES

IN THE SEL

USING SEL PROJECT DATA TO STUDY THE RELATIONSHIP BETWEEN

VARIOUS METRICS OF SIZE AND COMPLEXITY

PREDICTING EFFORT (A COST MEASURE) AND NUMBER OF ERRORS
(A QUALITY METRIC) USING SIZE AND COMPLEXITY METRICS

CHECKING THE INTERNAL CONSISTENCY OF SEVERAL SIZE AND
COMPLEXITY METRICS

V.Basili
Univ. of MD
16 of 24

OBJECTIVE SIZE AND COMPLEXITY MEASURES STUDIED

SRC : SOURCE LINES OF CODE INCLUDING COMMENTS

XQT : EXECUTABLE STATEMENTS

SOFTWARE SCIENCE METRICS

N : LENGTH IN OPERATORS AND OPERANDS

V : VOLUME

V* : POTENTIAL VOLUME

L : LEVEL

E : EFFORT

CYC : CYCLOMATIC COMPLEXITY

CLS : NUMBER OF CALL STATEMENTS

CAJ : CALLS AND JUMPS

CHG : CHANGES TO THE SOURCE CODE

REV : NUMBER OF REVISIONS (VERSIONS) IN THE LIBRARY

EFF : NUMBER OF HOURS EXPENDED IN DEVELOPMENT

ERR : NUMBER OF ERRORS ASSOCIATED WITH COMPONENT

V. Basil!
Univ. of MD
17 of 24

PREDICTING EFFORT AND ERRORS USING

SIZE AND COMPLEXITY METRICS

EFF

CIS

CYC

CAJ

SRC

XQT

REV

E

CHG

EFF

,7977

, 7399

,7957

,7583

,7400

.7122

,6612

,4799

ERR

,6346

,5704

,5592

,5848

.5576 .

,5485

.6734

,5432

V. Basili
Univ. of MD
18 of 24

G
O

1 —
L
U

sz»—Xy _
j

C
L.

L
U

ooL
U

L
U

L
U

P
Q

Q
.

0
0

O<cL
U

ce:

0
0

>3—
3

ooC
3

Xo
r

L
U

cc

C
D

C
D

cn0
3

t-H

C
D

L
T
\

C
D

0
3

O
O

O

O
 .

C
N

I
O

O

0
3

cr
cr

0
3

f̂
.

C
O

0
3

oo

cn

cn

CD

co
cn

C
D

o
co

r—
 <

r>>*
r>

^

rH

L
O

r—

 1
oo

oo

o>

cn

CD

-3"
ho

-̂r
CD

-

cn
cn

LT\
N

\̂
cn

ro

L
O

C

N
I

i\
o
o

oo

r̂

cn

o
o

cn

r\
cn

r̂

oo

C
N

I C
D

CD

r̂

ho

LO

cr
C

N
I

-a-
LO

LO

r—

 <
cn

cn
C

N
I

N
->

C

N
I

ro

C
N

J

C
N

J

CD

î

i —
 i

cn

L
O

C

D

cn
L
O

C

N
J

C
N

J

N
">

i—

 i
O

3

C
N

I
r̂

»
C

T

cn
cr

cr
LO

C

N
J

co

co

r^
r^

o
o

o
o

cr

oo
c_>

—
 3

<->
I —

C

D
_
J

>
-

<
C

C

£

C
D

^
T
.

L
U

C

_
)

C
J

C
_
)

O
O

X

<
-J

V
.B

aali
U

niv. of M
D

19 of 24

INTERNAL VALIDATION

SMALL COMPONENTS

LARGE COMPONENTS

50 LINES

50 LINES

(280)

(285)

N
A
N

LARGE

,79

SMALL

,83

V-

I t , AL

A
E

,52

,71

,61

,50

,62

PEARSON CORRELATION

V. Basili
Univ. of MD
20 of 24

CONCLUSION

• CAN USE COMMERCIALLY-OBTAINED DATA TO VALIDATE COMPLEXITY METRICS

• VALIDITY CHECKS AND ACCURACY RATINGS ARE VITAL

• THERE EXIST RELATIONSHIPS BETWEEN COMPLEXITY METRICS AND EFFORT

AND ERROR COUNTS

• THE BETTER THE DATA, THE BETTER THE RESULTS

• DON'T DO MUCH BETTER THAN LINES OF CODE ON EXECUTABLE STATEMENTS

• METRICS RELATE WELL WITH EACH OTHER

(MEASURING THE SAME THING)

V. Basili
Univ. of MD
21 of 24

USING SUBJECTIVE AND OBJECTIVE METRICS
TO PREDICT COST (EFFORT)

A META-MODEL WAS DEVELOPED FOR DERIVING AN INDIVIDUALIZED
COST MODEL FOR THE LOCAL ENVIRONMENT

IT ASSUMES EACH ENVIRONMENT IS DIFFERENT AND- IS CLASSIFIABLE
BY A SET OF FACTORS (CAPTURED USING SUBJECTIVE METRICS)

SOME FACTORS ARE CONSTANT ACROSS THE ENVIRONMENT AND ARE
HIDDEN IN A BASIC SIZE/EFFORT EQUATION BASED UPON
PAST HISTORY WITHIN THE ENVIRONMENT

OTHER FACTORS CAUSE DIFFERENCES BETWEEN PROJECTS AND CAN BE
USED TO EXPLAIN THE DIFFERENCE BETWEEN ACTUAL EFFORT
AND EFFORT AS PREDICTED BY THE BASIC SIZE/EFFORT
EQUATION

CAN PREDICT COST (EFFORT) WITH THE USE OF SUBJECTIVE METRICS

V. Basili
Univ. of MD
22 of 24

EVALUATING THE EFFECT OF VARIOUS
FACTORS ON PRODUCTIVITY

WE EXAMINED THE RELATIONSHIP BETWEEN PRODUCTIVITY AND VARIOUS
FACTORS

FOUND NO SIGNIFICANT RELATIONSHIP BETWEEN PRODUCTIVITY AND SIZE

A LARGE SET OF METHODOLOGY FACTORS SHOWED VARYING DEGREES OF
POSITIVE CORRELATION WITH PRODUCTIVITY

A COMBINED METHODOLOGY FACTOR SHOWED A SIGNIFICANT POSITIVE
CORRELATION WITH PRODUCTIVITY

[PROJECTS WITH HIGH METHODOLOGY RATING CAME FROM A DIFFERENT
POPULATION THAN THOSE WITH A LOW METHODOLOGY RATING]

NO OTHER FACTORS SHOWED A SIGNIFICANT POSITIVE CORRELATION
WITH PRODUCTIVITY

METHODOLOGY IS CORRELATED WITH PRODUCTIVITY

V.Basili
Univ. of MD
23 of 24

USING SUBJECTIVE METRICS TO PREDICT QUALITY

WE COMPRESSED THREE SETS OF METRICS INTO THREE FACTORS:

QUALITY, METHODOLOGY, AND COMPLEXITY

METHODOLOGY AND COMPLEXITY WERE NOT SIGNIFICANTLY

CORRELATED

QUALITY WAS SIGNIFICANTLY CORRELATED WITH

METHODOLOGY (R = ,67) AND COMPLEXITY (R =-64)
AT LESS THAN ,001 SIGNIFICANCE LEVEL

USING METHODOLOGY ALONE TO PREDICT QUALITY, R2 = ,45

USING METHODOLOGY AND COMPLEXITY WE GET R2 = ,65

THERE IS EVIDENCE WE CAN PREDICT QUALITY FROM

METHODOLOGY AND COMPLEXITY

METHODOLOGY IS CORRELATED WITH QUALITY

V. Basil!
Univ. of MD
24 of 24

PANEL #2

SOFTWARE METRICS

J. Gaffney/R. Judge, IBM
J. Post, Boeing Aerospace
D. Card, Computer Sciences Corporation

SOFTWARE METRICS

The Quantitative Impact of Four

Factors on Work Rates Experienced During

Software Development

John E. Gaffney, Jr.

Robert W. Judge

IBM Corporation

Federal Systems Division

Manassas, Virginia 22110

Abstract

This paper describes a model of the software development process
which is being used at the IBM, Federal Systems Division. The model
considers the software development process to consist of a sequence of
activities, such as "program design" and "module development" (or coding),
A manpower estimate is made by multiplying code size by the rates (man
months per thousand lines of code) for each of the activities relevant
to the particular case of interest and summing up the results. The
effect of four objectively determinable factors (organization, software
product type, computer type, and code type) on the productivity values
for each of nine principal software development activities has been
assessed. The analysis indicates that four factors can be identified
which account for 39% of the observed productivity variation.

R.Judge
IBM
I of IS

Software Cost Analysis By Work Components

Software development costs may be estimated by considering each of

the activities or work components that constitute a particular software

development process. These components are the basis for a software
(2)engineering management model used by the Federal Systems Division of

IBM. Sixteen work components have been identified from which the software

organization or the engineering organization involved in a software

development project can structure its particular activities. Data on 9

of them served as the basis for the work reported upon here. This

information was based on experience at the IBM, Manassas, Virginia

facility. These work components are:

Software Requirements Definition - This work component includes the

definition and/or analysis of functional, operational, and other software

system requirements.

Software Development Planning - This work component includes all tasks

necessary to generate the plans necessary for the implementation of the

software system.

Functional Design - This work component covers the documentation of the

functions the software must perform to meet the requirements imposed

upon it.

Program Design - This work component covers the documentation of the

software system from an internal viewpoint.

Module Development - This work component covers the tasks associated

with the detailed design of the software modules and their coding and

test.

R.Judge
IBM
2 of 15

Software Integration and Test (SWIT) - This work component covers the

integration and testing of the software system and the analysis to

determine if it meets the system requirements.

SWIT Problem Analysis and Error Correction - This work component covers

the analysis and correction of software problems uncovered during SWIT.

System Test - This work component covers the hardware/software integration

and test effort.

Acceptance Test - This work component covers the demonstration to the

customer that the software system satisfies the requirements imposed

upon it.

A cost estimate can be made by considering the nature of the particular

software development job and the work components (such as program design,

coding, etc.) that constitute it. Then, the labor (man months) for

each component is estimated. The sum of these man month figures is the

amount required for the given job. The labor for each work component

is estimated as the product of the productivity rate (in man months per

thousand source lines of code = MM/KSLOC) and the amount of source lines

of code. Thus;

Total labor (man months) = „ Pe x S = SP
— . . = —.—~._- -..,.-..= - Lt 1 i.

Where; n = number of work components

Pe. = work rate #i

S = amount of source lines of code (=KSLOC).

The approach to considering the software development process as a

sequence of activities with well-ordered time precedence relationships

is a model long used by industrial engineers, and has been applied

R.Judge
IBM
3 of 15

(3 4)recently to modern electronic systems development. ' Considering the

development process in terms of its constituents enables the estimator

to achieve a greater degree of intellectual control than if he were to

evaluate the process overall. For example, it may not be clear how the

availability of a new process that facilitates unit testing would impact

overall development productivity. However, its effect on the work

component that covers unit test would be much easier to discern. Then,

the effect on overall productivity can be readily calculated by simply

reviewing the appropriate rate (e.g. the proper "Pe.̂ " in the equation

given above).

The Impact .of Four Factors on Work Component Productivities

Earlier work has considered the effect on overall productivity of

various factors relating to the complexity of the code to be developed,

the skills of the software development work force, and other factors

representative of the software development environment. ' ' ' This

paper provides a quantitative assessment of the impact of several

significant factors on the work rates of 9 specific work components.

A linear regression model was structured to relate the values of

work rate in man months per KSLOC (MM/KSLOC), experienced in a reasonably

large number of cases (typically more than 30 data samples), to variables

representative of the factors; organization, software product type,

computer type, and code type involved in each case. The multiple correlation

coefficient between the MM/KSLOC value and the encoded values of each of

the variables was determined in each case. The square of this value

times 100 is equal to the amount of variation in the given cost component

'explainable' by these four variables. Table 1 tallies their percentages,

together with the sample size for each of the 9 work components that

were evaluated.

R. Judge
IBM
4 of 15

Table 1 - Percentage of Variation in Work Rate
~~"~"~ " ~ ' f 1

Explainable by Four Factorsv

Work
Component

Software Requirements
Software Development

Plan
Functional Design
Program Design
Module Development
Software Integration

and Test (SWIT)
SWIT-Problem Analysis

and Error Correction
System Test
Acceptance Test

Average

Percentage of Variation
In Work Rate Explained
By The Four Factors (1)

15.12

17.81

15.53

38.43

55.87

46.90

60.33

26.13

49.40

36.17

Number of
Samples Used

30

38

45

66

60

51

51

39

42

47

(1); organization (2 alternatives); product types (2 alternatives);
computer type (3 alternatives); code type (3 alternatives)

Table 1 shows that, on a work component basis, the percentage of
variation explained by the four factors is 36.17%. However, on an overall
project basis, this percentage increases to 39% value. This 1s~b'ecause
the percentage of variation explained is larger for those work components
which represent a greater proportion of the overall software product
development effort.

Conclusion
0

The methodology of 'bottom-up' or 'micro1 software development cost
estimation and analysis has been described. The definitions of the
sixteen cost components used by the IBM Federal Systems Division were
presented. The effects of knowledge of four factors in resolving the
uncertainty of nine of these cost components were presented.

R.Judge
IBM
5 of 15

Bibliography

1. Cruickshank, R. D., and Lesser, M., "An Approach To Estimating and

Controlling Software Development Costs in "The Economics of Information

Processing," R. Goldberg and H. Lorin (eds); Wiley, 1981.

2. Quinnan, R. E., "The Management of Software Engineering, Part V,"

"IBM Systems Journal," Volume 19, No. 4, 1980

3. Maynard, H. B. (ed.), "Industrial Engineering Handbook," McGraw-

Hill, 1956.

4. Norden, P. V. , "On the Anatomy of Development Projects," "I.R.E.

PGE.M. Transactions," Vol. EM-7; No. 1, pg. 41.

5. Walston, C. E. and Felix, C. P., "A Method of Programming Measurement

and Estimation," IBM Systems Journal, Vol. 16, 1977, pg 54-73.

6. Gaffney, Jr., J. E., "Maximize Design Effort and Minimize Program

Control Complexity - To Maximize Software Development Productivity,"

"Proceedings, IEEE Computer Software and Applications Conference,"

October, 1980, pg 225-228, IEEE catalog # 80CH1607-1.

7. Basili, V. R., and Reiter, R. W., Jr., "An Investigation of Human

Factors in Software Development," "IEEE Computer," December 1979,

pg 21-38.

8. Brooks, W. D., "Software Technology Payoff; Some Statistical Evidence,"

IBM Software Engineering Exchange (IBM Federal Systems Division,

Bethesda, Md), Volume 2, No. 1, April, 1980.

R. Judge
IBM
6 of 15

THE VIEWGRAPH MATERIALS
for the

J. GAFFNEY/R. JUDGE PRESENTATION FOLLOW

R. Judge
IBM
7 of 15

THE QUANTITATIVE IMPACT OF FOUR FACTORS ON
WORK RATES EXPERIENCED DURING SOFTWARE DEVELOPMENT

J, E, GAFFNEY, JR, R, W, JUDGE.
IBM CORPORATION

MANASSAS, VIRGINIA

SIXTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA

GODDARD SPACE FLIGHT CENTER

DECEMBER 2, 1981

R. Judge
IBM
8 of 15

WORK RATE

o WORK RATE IS AN INDICATOR OF PRODUCTIVITY WHICH
USES SOURCE LINES OF CODE (SLOC) AS THE MEASURABLE

LABOR (MAN MONTHS) = WORK RATE (MM/SLOC) 0 WORK(SLOC)

R. Judge
IBM
9 of 15

SOFTWARE WORK COMPONENTS

o SOFTWARE REQUIREMENTS DEFINITION

o SOFTWARE DEVELOPMENT PLANNING

o FUNCTIONAL DESIGN

o PROGRAM DESIGN

o MODULE DEVELOPMENT

o SOFTWARE INTEGRATION AND TEST

o PROBLEM ANALYSIS AND ERROR CORRECTION

o SYSTEM TEST

o ACCEPTANCE TEST

R.Judge
IBM
10 of 15

ESTIMATION METHODOLOGY

N

TOTAL LABOR (MAN MONTHS) = y^ PE x S = M
i = 1 l

WHERE:
M = MAN MONTHS

N = NUMBER OF WORK COMPONENTS

PF = WORK RATE #1
* T

S = NUMBER OF SOURCE LINES OF CODE

R.Judge
IBM
11 of IS

THE FOUR FACTORS

WHOSE EFFECT WAS ANALYZED

o ORGANIZATION (2 ALTERNATIVES)

o PRODUCT TYPE (2 ALTERNATIVES)

o COMPUTER TYPE (3 ALTERNATIVES)

o CODE TYPE (3 ALTERNATIVES)

R. Judge
IBM
12 of 15

OVERALL MAN MQNTHS/KSLOC

D I S T R I B U T I O N

(ONE PER V/ORK COMPONENT)

NO, OF CASES

(SIMULATED)

IWKSLOC

R. Judge
IBM
13 of 15

PERCENTAGE OF VARIATION IN WORK RATE

EXPLAINABLE BY FOUR FACTORS

AVERAGE

WEIGHTED AVERAGE

PERCENTAGE OF

VARIATION IN
WORK RATE EX-

WORK

COMPONENT

SOFTWARE REQUIREMENTS

SOFTWARE DEV, PLAN
FUNCTIONAL DESIGN

PROGRAM DESIGN
MODULE DEVELOPMENT

SOFTWARE INTEGRATION

AND TEST (SWIT)
SWIT-PROBLEM ANALYSIS

AND ERROR CORRECTION

SYSTEM TEST
ACCEPTANCE TEST

PLAINED BY THE

FOUR FACTORS

15,12
17,81
15,53
38,43

55,87

46,90

60 , 33
26,13
49,40

NUMBER OF
SAMPLES USED

30
38

US
66
60

51

51
39
42

36.17

39,00

R.Judge
IBM
14 of 15

SUMMARY

o DESCRIBED WORK COMPONENT APPROACH TO ESTIMATION

o ASSESSED IMPACT OF FOUR FACTORS ON WORK RATE

o DETERMINED THAT THESE FOUR FACTORS ACCOUNTED FOR
39% OF THE VARIABILITY IN THE OVERALL WORK RATE

o EXPLAINED WHY THE RESULTS DEMONSTRATE THE POWER
OF THE WORK COMPONENT APPROACH

R.Judge
IBM
15 of 15

SOFTWARE METRICS:
SOFTWARE QUALITY METRICS FOR DISTRIBUTED SYSTEMS

by

Jonathan V. Post
Boeing Aerospace Company

ABSTRACT

Recent publication of numerous books and papers indicates
the growing importance of Software Quality Metrics [1]. Studies
at the Boeing Aerospace Company [2,3] have extended this field to
cover Distributed Computer Systems. Emphasis is placed on
studying Embedded computer systems, and on viewing them within
a system life cycle [4]. The approach of J.A.McCall, et.al.
[5,6], at General Electric was pursued and extended, maintaining
the hierarchy of quality factors, criteria, and metrics [fig.l].
New software quality factors have been added, including Sur-
vivability, Expandability, and Evolvability [fig.2].

, .„....„_ KEYWORDS

Software, Quality, Metrics, Distributed, Survivability, Life Cy-
cle, Expandability, Evolvability, Virtuality

INTRODUCTION

What is a distributed computer system? Enslow [7] requires
such a system to meet five criteria, while LeLann [8] requires it
to be a collection of entities participating in system perfor-
mance. Mauchley and Eckert built the first distributed computer,
BINAC, circa 1947 > and acknowledged [9] that the structure of the
human brain, with its two cerebral hemispheres, was ,a guiding
design metaphor. Dr.Roger Sperry's Nobel Prize in Medicine was
for experiments performed at Caltech which established that the
human brain is a distributed computer [10]. We consider a dis-
tributed system to be formed by the interconnection of potential-
ly autonomous systems to accomplish system functions cooperative-

j. Post
Boeing
1 of IS

ly.

There are several ways the term "distributed" may be inter-
preted. Data may be distributed, processors may be distributed,
processes may be distributed, users may be distributed, communi-
cations may link geographically dispersed clusters of components,
or some combination of these strategies may be imposed on system
architecture. Each of these types of distributedness leads to
design tradeoffs, and to qualitative distinctions between cen-
tralized and distributed systems. No single model allows
analysis of all such tradeoffs; data is either specialized, anec-
dotal, or condensed to "lessons learned" or scenario form. The
application of Software Quality Metrics should help to provide a
unifying framework for all such distributed systems. As Norber
Weiner first emphasized [11], it is possible to build a reliable
system out of unreliable parts.

It will be increasingly important to understand distributed
computer systems. Some of their characteristics will emerge more
extensively in future configurations. One characteristic peculiar
to distributed systems, and of importance in the 80's, is Geo-
graphic Dispersion1. The extent to which computers within a dis-
tributed system can be physically displaced from each other,
range from the centimeter to the multi-thousand-kilometer . Com-
puters will indeed be "tightly-coupled" over intercontinental
distances by fiber-optics technology currently under research.
This technology complements that of the communications satellite.
Interconnection of even a very small percentage of available com-
puters will be able to form distributed systems of complexity
beyond those of today, since by 1999 there will be on the order
of one billion computers in the world [13].

QUALITY METRICS APPROACH

The approach chosen to evaluate distributed systems is the
Software Quality Metrics methodology, which has been fruitfully
applied to the study of a broad range of uniprocessor computers
and embedded computer systems [1]. Since the 1970's, additional
factors have been judged necessary in evaluating the performance
of software and systems besides that of classic Reliability which
was a factor closely identified with software and system quality.
McCall and others [5,6] identified eleven software quality fact-
ors and developed a system of metrics to predict and assess the
degree of presence of these factors. As shown in fig.l, each fa-
ctor is composed of a number of criteria which are further broken
down into quantitative metrics. The eleven Factors identified :
Correctness, Reliability, Efficiency, Integrity, Usability, Main-
tainability, Testability, Flexability, Portability, Reusability,
and Interoperability. The extension of this approach to distrib-
uted systems was introduced at last year's workshop by Robert W.
Lawler of Boeing Aerospace Company [15]. The research conducted
during the past year, as reported to RADC[2], has concentrated on
identifying unique characteristics of distributed systems, and on

J. Post
Boeing
2 of 15

definition or redefinition of factors and criteria which can mea-
sure these characteristics. Three new software factors, four new
system factors, twelve new software criteria , and two new system
criteria have been described, and the factor of Testability has
been generalized into the factor of Verif lability. Examples of
these new factors and criteria are described below and in fig.2.

DISTRIBUTED SYSTEM CHARACTERISTICS

How do we approach the identification of the characteristics
of distributed systems? Distributed System characteristics are
identified and classified, along with rationales for the
selection of Distributed Systems. 58 rationales are grouped into
9 reasons in fig.3 . The rationales given for selection of a
distributed system over .a uniprocessor system indicate the
characteristics which people imagine distributed systems, as a
whole, exhibit. No one system meets more than a fraction of
these identifications, just as no system life cycle for a distri-
buted system quite fits into the system life cycle models for
uniprocessor systems. Instead, we find the distributed system to
be distributed through time in a distributed life cycle of con-
current phases of Operation, Revision, and Transition [fig.4].

NEW QUALITY FACTORS

The main difference between software metrics for a distri-
buted system and software metrics for a uniprocessor system is
that the quality of software in a distributed environment depends
upon the design and performance characteristics of the entire
system. We therefore distinguish between Software Quality Factors
and System Quality Factors, although these have impact upon each
other. The quality factor of Survivability, for example, re-
flects system performance when one or more nodes or communication
links become totally nonoperational . The concepts of Reliability
and Redundancy in a uniprocessor are not broad enough to describe
Survivability. — —-_.

Survivability is a factor which measures the capability of a
system to operate when one or more components are destroyed. For
a non- distributed system, Survivability is not a very meaning-
ful measure. A single unit computer, depending on the degree of
hardening and the damage received in the tactical environment,
will usually either continue to operate, or else be completely
incapacitated. For a geographically dispersed system, it is
desirable that damage or destruction of individual components
shall allow the system to continue functioning, albeit at a some-
what lower level of performance. Survivability, then, might
measure the likelihood of a distributed system to exhibit this
"graceful degradation". The 5 criteria within the system quality
factor of . Survivability are Autonomy, Distributedness, Anomaly
Management, Modularity, and Reconfigurability. (See fig. 2)

Distributed Systems also require metrics to evaluate the capaci-
J. Post
Boeing
3 of 15

ty of expanding and upgrading the system, so we have identified
and defined the corresponding factors of Expandability and
Evolveability. Expandability is the extent to which the system
capability can be expanded to enhance current functions or to add
new functions. The criteria within the factor of Expandability
include: Virtuality, Generality, Modularity, Augmentability,
Clarity, Specificity, and Simplicity. Evolvability is the extent
to which the system performance could be enhanced by the incor-
poration of new technology. Criteria within Evolvability are
Virtuality, Generality, Modularity, Clarity, Specificity, and
Simplicity. In addition, we have defined four new system quality
factors, Availability, Safety, Transportability, and Interchange-
ability.

NEW CRITERIA

Twelve new software criteria were identified during investi-
gation of characteristics for distributed systems [2]. These
criteria are: Compliance, Validity, Clarity, Specificity, Virtu-
ality, Comprehensibility, Reconfigurability, Distributedness, Au-
tonomy, Supportability, Augmentability, and Compatibility
[fig.5]. In addition, two new system criteria were identified :
Self-containedness (an attribute of Transportability) and Homo-
geneity (an attribute of Interchangeability). A majority of these
system and software criteria are applicable to uniprocessors as
well. The following brief discussion on one of the new software
criteria, Virtuality, shows how the entire system, including the
human users, needs to be measured to evaluate the system quality.

For Distributed Systems, there is a new criterion within the
quality factor for Usability. We refer to this criterion as Vir-
tuality. The structure of a distributed system can be quite com-
plex, and it is not always desirable for the user to be appraised
of this structure. The user may perceive the system in terms of
a virtual architecture, and be shielded from knowing the actual
internal representation and location of data.

Virtuality is a measure of the extent to which the system
appears to the user as it is intended to appear to the user. The
user (or users) of a system is not expected or intended to see
the system's logical, topological, or physical structure. In-
stead, an abstract "virtual" system is designed. The "real" sys-
tem supports, emulates, and embodies the designed appearance and
"feel" of the virtual system.

Theodor H. Nelson [12] explains the relationship between
Virtuality and other criteria such as Conceptual Simplicity,
Machine Independance, and Network File Availability. "Our ap-
proach to computer design we call 'the design of Virtuality.' By
Virtuality we mean the seeming of an object or system, its con-
ceptual structure, its atmospherics and its feel.... What counts
is effects, not techniques.... The design of an interactive com-
puter environment, similarly, should not be based on particular

J. Post
Boeing
4 of 15

hardware, or a particular display device, or a programming tech-
nique.... the systems analysis for an interactive system should
deal with the mental space of the user's experience."

Virtuality also measures the subjective component of the
user interface. In the special case of flight training simula-
tors [14], the "feel" of the system has long been regarded as
crucial to Usability. "Feel" is evaluated by expert pilots (su-
perusers). This goes beyond Human Engineering, which concen-
trates on one display/sensory modality at a time, or on total
bits per second. "Feel", and ther eforti Virtuality, involves ges-
talt perception, with an emphasis on right-brain holistic activi-
ty. Virtuality, and the human brain, cannot be ignored when
studying distributed systems.

NEW METRICS

During the next year of this research effort there will be a
set of metrics developed within the criteria and factors discuss-
ed above. The existing metrics [6] will be added to, deleted, and
modified in accordance with results to date. The work yet to be
performed may be summarized as follows:

(1) Select Quality Metrics for Validation (Identify those metrics
that will make the greatest contribution to validating the quali-
ty measurement framework previously developed);

(2)Develop Scenarios and Collect Data (Design the data collection
methodologies and gather relevant data from Boeing Aerospace Com-
pany projects which use distributed embedded computer systems);

(3) Validate Metrics (Validation techniques consistent in concept
and methodology with McCall, et.al. [6], but with multivariate
regression analysis and other numerical analysis and correlation
methods; conduct interviews with engineering and management
personnel to supplement empirical data);

(4) Produce a Report and Handbook (Final Report to be published
by RADC. A Handbook will be prepared that describes the step-
by-step procedures required to implement the quality meas-
urements for distributed systems).

SUMMARY

Software Quality Metrics may be applied to the evaluation of
distributed computer systems. Exactly what constitutes a distrib-
uted system is disputed in the literature. They have been built
in various configurations for thirty years, but the human brain
shares some of the characteristics of these systems and provides
a valuable model. The approach of McCall et.al., with factors,
criteria, and metrics, has been extended. New factors and new
criteria have been defined. New metrics will be devised and val-
idated as the research described in this paper is continued.

J. Post
Boeing
5 of IS

BIBLIOGRAPHY

[I] Perils, A.; Sayward, F. ; Shaw, M. ; "Software Metrics",
MIT Press, 1981, includes 130 page annotated bibliography
on Software Metrics, compiled by Mary Shaw

[2] Post, Jonathan, and Bowen, Thomas P. "Interim Report for
Quality Metrics for Distributed Systems", Boeing Document
D180-26748-1, November 1981, prepared for RADC under contract
F30602-80-C-0330

[3] Henrick, John, "Performance Modeling of Distributed Computing
Systems: A Literature Search", Boeing Document 0182-1,0827-1
1 December 1981

[4] Post, Jonathan; "Software Systems Engineering", Boeing
Document D180-25488-5, January 1980, prepared for ASD USAF
under contract number F33657-76-C-0723

[5] McCall, J., Richards, P., Walters, G.; "Metrics for Software
Quality Evaluation and Prediction", Proceedings of the NASA/
Goddard Second Summer Engineering Workshop, September 1977

[6] McCall, J.A., Matsumoto, M.T., "Software Quality Metrics
Enhancements Final Report", prepared for RADC under contract
number F-30602-78-C-0216

[7] Enslow, Philip. H., "What is a 'Distributed' Data Processing
System?", Computer, January 1978, p.13-21

[8] LeLann, Gerard, "Distributed Systems -- Towards a Formal Approach,"
1977 IFIP Congress Proceedings, p.155-160

[9] Mauchley, John; Personal communication, Philadelphia, PA, June 1978

[10] Sperry, Dr.Roger; Personal communication, Caltech, 1973

[II] Weiner, Norbert, "Cybernetics", MIT Press, 1947

[12] Nelson, Theodor H., "Replacing the Printed Word", Information
Processing 80, Proceedings of the IFIPS Congress 1980,
North-Holland Publishing Co.

[13] Post, Jonathan V., "Quintillabit: Parameters of a Hyperlarge
Database", Proceedings of the 6th International Conference
on Very Large Databases, Montreal, 1-3 October 1980

[14] Post, Jonathan V., "Software Development and Maintenance
Facilities Guidebook", Boeing Document D180-25488-3, Sep. 1979,
Prepared for USAF ASD, Contract F33657-76-C-0723

[15] Lawler,R.L., "Software Quality Tradeoff Measurement", Proceedings
from the Fifth Annual Software Engineering Workshop, 24 Nov 1980,
Goddard Space Flight Center, NASA, Greenbelt, Maryland

J.POSt

Boeing
6 of IS

THE VIEWGRAPH MATERIALS
for the

J. POST PRESENTATION FOLLOW

J. Post
Boeing
7 of 15

USER-ORIENTED VIEW
OF PRODUCT QUALITY

SOFTWARE-ORIENTED
ATTRIBUTES WHICH
INDICATE aUALITY

ftUANTITATIVE MEASURES
OF ATTRIBUTES

Figure Software Quality Mode!

J.Post
Boeing
8 of 15

r\cc.C
D

Figure 2
Relationship of Criteria to
Software Quality

Factors

c01s_O
)

Q
J

•
!-

Z
 Q

II
II

*

*

J.P
ost

B
oeing

9 of 15

mouu
.X•+«•

T
-
l

reoJwV
.

reo(AOav>Co=1xuais_O
J

<
4-

2
 <

t-
(1) .,_
Z

 Q

II
II

*

*

J. P
ost

B
oeing

10 of 15

REASON REASONS FOR SELECTION OF
NO. DISTRIBUTED SYSTEMS

1 IMPROVE RESPONSE TIME
•CONCURRENCY OF DIAGNOSIS WITH NORMAL OPERATION
•ENHANCED DATA PARALLELISM
•MINIMIZE MEMORY/PROCESSOR COMMUNICATION TIME
•ALLOW OPTIMAL PARTITIONING OF WORKLOAD
•LOAD LEVELING
•REAL-TIME COORDINATION OF MULTIPLE SUBSYSTEMS
2 PROVIDE GREATER PROCESSING AND ACCESSING

CAPABILITIES
•AUTOMATIC JOB SEGMENTING
•PARTITIONING OF FUNCTIONALITY
•INCREASED VARIETY OF PROCESSING MODES
•RESOURCE UNIFORMITY
•SPECIALIZED HARDWAREi DATABASE MACHINE
•INTEROPERABILITY WITH EXISTING SYSTEMS
3 REDUCE COST
•LOWER COST TO UPGRADE (EXPANDABILITY)
•LOCAL ADMINISTRATIVE APPROVAL OF COMPONENTS
•NEW TOPOLOGICAL CONFIGURATIONS ON DEMAND
•LOWER INITIAL COST
•INCREASED PROCURABI LITY
•INCREASED DEPLOYABI LITY
•LOWER TOTAL WEIGHT
•LOWER TOTAL POWER CONSUMPTION
•NETOWRK TOPOLOGY OPTIMIZATION
•RESOURCE SHARING
4 REDUCE VULNERABILITY TO HARDWARE ERROR
•REDUNDANCY AT EACH NODE
•TOLERANCE TO NODE FAILURE
•TOLERANCE TO COMMUNICATIONS LINK FAILURE
•CAPABILITY FOR ISOLATING FAILED COMPONENTS
•DIAGNOSIS OF FAILURE TO LEAST REPLACEABLE UNIT
•REPAIR WITHOUT INTERRUPTION
5 REPLACE HARDWIRED LOGIC WITH MICROPROCESSOR
•RESOURCE UNIFORMITY
•RECONFIGURABILITY
•MACHINE INDEPENDENCE
•DELAYED COMMITMENT TO SPECIFIC NODE HARDWARE
•MULTIPLICITY OF VENDORS
•RECONFIGURABILITY THROUGH LOW-COST HARDWARE

r t
r -f
SI

ir
O

PI
CO
en

X

X

X

X

X

X

c
j-
'S.
- 1

(~

H

X

X

X

X

X
X
X

X
X
X
X
X

X
X

X
X

lr

r
H

X

X

X

X
X

X
X
X
X
X
X

X

X

n
m
X

w

-H

X

X
X

X
X
X

X

X

X
X
X
X
X

X

X

X

X
X
X

P"
tn
-rl

U)

r~
-\

X

X
X

X
X
X
X

X

P
O

R
T

A
3

r~
H

X

X

X

X

X

R
E

U
S

E
A

r-
H

X

X

X

X

X

X

X

X

rn

o

2:
o

X
X

X

X
X

X

X

X
X
X

X

X

r:
tn
n
Ul

I
H

X

X
X

X

X
X
X
X

X

X

X

X

1 1 1

H
m
CT
"JO

X
X
X

X

i
in
-JO

Id
1 -4

r~

X

X
X

X

X

X

X
X
X
X

tn
<=
XJ

U)

H
-c

X

X

X

X

X
X

X
X
X
X

X

X

Figure 3 Relationship Between Reasons, Rationales, and
System Quality Factors (page 1 of 2)

J.Post
Boeing
11 of IS

REASON REASONS FOR SELECTION OF
NO. DISTRIBUTED SYSTEMS

6 IMPROVE THRUPUT
•DISTRIBUTE JOBS TO SEVERAL NODES CONCURRENTLY
•EXPLOITATION OF UNIFORM INTERCHANGE MEDIA
•ENHANCED DATA PARALLELISM
•ENHANCED COMPUTATIONAL PARALLELISM
•OPTIMAL PARTITIONING OF WORKLOAD
• REDUCE LOAD ON HOST
•DISTRIBUTED OPERATING SYSTEM
•ELIMINATE MULTIPROGRAMMING
7 IMPROVE SURVIVABILITY
'SECURITY ON HIERARCHICAL NETV/ORK
o SYSTEM PROTECTION FROM OVERLOAD
• BACKUP REDUNDANCY
• RESTORATION/RECOVERY
• ENDURANCE/HARDENING
8 IMPROVE SENSOR PERFORMANCE
• DISTRIBUTED SENSORS
•DISTRIBUTED EFFECTORS
• INTELLIGENT SENSOR CLUSTERS
• DEPLOYABLE SENSOR ARRAYS
•CONCURRENT MULTI -SPECTRAL SCANNING
9 IMPROVE GEOGRAPHIC DISPERSION
•USER DISTRIBUTION
•GATEWAY TO NATI ONAL/ INTERNATI ONAL NETWORK
•GLOBAL C3I APPLICATIONS
•SPACE SYSTEMS NETWORKS
•NEED FOR MOBILE NODES
• NEED FOR DISTRIBUTED DATABASE MANAGEMENT
• ADAPTIVE ROUTING

[C
O

R
R

E
C

T
N

E
S

S

X
X

X

X

X

(M
A

IN
T

A
IN

A
B

IL
IT

Y

X

X

X
X

X

X

X
X

R
E

L
IA

B
IL

IT
Y

X

X
X

X
X
X
X

X
X

X
X

X
X
X

•n
r~
m
X
»-1

UJ

r~t-i
H
-<

X

X

X
X

X

X
X
X
X
X

X

X
X

1 T
E

S
T

A
B

IL
IT

Y

X

X

X

X

'u
f >
J)
•t
1*
U)t-*
i~
H
-<

X

X

X

IR
EU

SEABILITY

X

X

X

1 E
F

F
IC

IE
N

C
Y

X

X
X
X
X

X

X

X

X

X

1 U
S

E
A

S
IL

IT
Y

X

X

X

X

X
X

X
X
X

X
X
X

1 IN
T

E
G

R
IT

Y

X
X

X
X

X
X
X

X
X

•

1
IN

T
E

R
O

P
E

R
A

B
IL

IT
Y

X

X
X
X
X

! S
U

R
V

IV
A

B
IL

IT
Y

X

X
X

X
X
X
X
X

X
X

X

X
X

X

Figure 3 Relationship Between Reasons, Rationales, and
System Quality Factors (page 2 of 2)

J.Post
Boeing
12 of 15

ACTIVITY USER CONCERN ftUALITY FACTOR

DOES IT DO WHAT IT*S SUPPOSED TO? CORRECTNESS

PRODUCT
OPERATION

PRODUCT
REVISION

WHAT CONFIDENCE CAN BE PLACED IN
WHAT IT DOES?

HOW WELL DOES IT UTILIZE THE
RESOURCES?

HOW SECURE IS IT?

HOW EASY IS IT TO USE?

HOW WELL WILL IT PERFORM UNDER
ADVERSE CONDITIONS?

CAN IT BE REPAIRED?

CAN ITS OPERATION AND PERFORMANCE
BE VERIFIED?

CAN IT BE CHANGED?

CAN IT BE USED IN ANOTHER
ENVIRONMENT?

CAN IT BE USED IN ANOTHER
APPLICATION?

PRODUCT
TRANSITION CAN IT BE INTERFACED WITH ANOTHER

SYSTEM?

CAN ITS CAPABILITY BE EXPANDED?

CAN ITS PERFORMANCE BE UPGRADED
WITH NEW TECHNOLOGY?

* = NEW OR DIFFERENT

RELIABILITY

EFFICIENCY

INTEGRITY

USABILITY

SURVIVABILITY*

MAINTAINABILITY

VERIFIABILITY*

FLEXIBILITY

PORTABILITY

REUSABILITY

INTEROPERABILITY

EXPANDABILITY*

EVOLVABILITY*

Figure 4 Quality Life Cycle Scheme

J.Post
Boeing
13 of 15

*
=

N

ew
**

=
 D

iffe
re

n
t

z01-zI-I
u
.

U
l

P
I

zocrU
l

i-i— i
crC

J

KzU
l

crcrCJ
•

zocrU
.

ZonH
-

nCO
Z4crITU

l
o

•

1
-1

 Z
>

 o
O

 1
-1

cr
(-

0
-

4N
X

n

cj cr
X

•
-!

2
 ~

>^
^

U
l
Z

cr
4

4
 U

.

1
1

U
.

4
0

 •
-
•

in
 t-1-1

U
l

Z
X

 1
-1

L
—

U
l

O

I-
i

>
CO

O

ui cr
l- Q

-
•̂

i
«

 c
r

H
^

O

crr- o
4
 n1

-
U

l
4

cn or
o

 u
i

X
 O

.
H

- o

ozzI-I

ĉr

O
T

l—0
.

J-o-
—

—

-

toL
_

ft

|

-
^

u.U
l

C
O

U
l

PIôcrQ
.

xutjj

^U
l

cr4L
_

LL.
OC

O

•
P

I
U

l
U

l
X

h
-

1
-

4—

1

0

^n

to

to
u
i to

r
-

4

pq
U

l
M

P

Q

crH
~

Z

1
-

4

4
 C

J

U
l

X
C

O

C
J

O

n

X

X

£" *

toU
l

zU
l

I-I
L
-

C
J

zzoo

PI
zcnzoi-i

•
»
-

U
l

4
 c

r
or

4
U

l
2

a. 1-
0

 U
.

O
ui cn
z•-,

U
l

2

X

cr H
-

iii
l_

U

.

u
i o

0
 z

x
 o

°rX

<U

J
U

l' 0
-

cr
o

2
 U

l
1- i
U

.
r-

0cn
x1-

U
l
n

X

2

L
—

0

Zcr

in
 u

i
U

l
0

»-
z

13

a

(X
I C

J

cr
cn

1- cc
4

^P
I

U
l

U
l

cn u
0

0

x
 c

c
1- Q

.

>-1-_
j

i—
 i

pq4crU
l

a
.o

_
j

XC
OnXu.oU
l

crL
_

C
J

crin4U
l

P
I

n>Ocro.X
 C

O
0

Z

X

-J
2
 o

-^
U

J

O
o
:

o
4L
—

3

LL.
Z

O

n

co J—a.
u
i o

xL
-

X1
-

o

2

to

to
U

l
U

l
1

1
O

=
J

pq
P)

cr
z

1-
ui

4

>»
i

u
i

in
cn

ui
o

x

X

0

t-

C

J

t̂-cri

P̂
i

oZ

_

c
n

li ̂
i- 2
^
^

•"
^
^

^
j

U
.

•"*
5

 §

>
; zO

—M

"
"

.

O

^ ^
~

»

^
 c

/>
•

H
~H-*

™~
z

u
.
 3

U
l

U
J

«
 €

•>

H
*

^
>
•

tt
o

 o
oc i—
Q

tf>

I

-

o
 c

n

x
 ocn

U
l

U
l

cr
o

2
 c

r
r—

O

-
U

.
0

 U
l

cn cro
U

l
Z

X1- cro

o
 u

i
z

cn
o

U
l

1
- z

o
 u

i
pq

x

or
_i

1—

Z

n

t
-

0

 4
4

i-i

U
.

u
i 4

 c
n

cn o
r x

o

u
i z

x

a
- n

1
-

0

J

*L
_

l_
|

_
J

t
-
l

pq4crC
O

i_i
U

.
ZoC

J
U

l
cr

U
l

X1—
0

Z

X

X

*
 t-1—

 1

*~
t

^CP
I

U
l

U
l

u
i t-

cr
4

co cr
U

l
4

P
I a.U

l
U

l
to

X1- >-

U
l

_
l

Z

4

n
 C

J

or
co

u
i o

U
l

P
I oro

xC
J

>
-

X

_
J

2

4C

J
U

l
1
-1

or
x

2

4

1
-

O
C

li. C
O

0

0

in
 u

i
C

O
U

l
x
 u

i
l- o

r4

o
 inz

cn
o

I
.
I
 n

1- h-
3

 C
J

pq
z

^

,

—
 >

or
u.

1
-

U
l

4
 c

r .
4

 X
.

U
l

f.
U

l
in

 1
- l-

o

u
. to

X

0

 >
-

1—

in
cn

încnU
l

zP
I

U
l

1-pq•-•cr1-to•-•P
I

z^_jjzU
l

QU
l

.

I.I

*~^

C
O

t_
(

U
l

t
t

^
-

crU
l

U
l

P
IXC
J

X2U
l

crl-u.
ocnU

l
x1-oinU

l
1-=>cr

in
J—

U

l
1
-

C
J

4

4U

.
.ui cr
in

 u
i

o
 t-

X

Z

H
 «

>̂
_

ôzo1-Z
3
<

<U
-

ozo1—<zU
J
zU

J
_Jo_t_

,

n
r

ou
.U
J

^
^

ôn
r

a
.

X

^

"
9

n
 °

X
 <

->

*
 U

.
U

J

0

cr2
 Z

L
—

^
L
u

0

0
 jr

in
 4

U
l
Z

X

3

1
-

ZH

-l

O

I
-
I

Z

U
l
4

1
-

3

X

«
 K

-

C
C

2

1
-

Z

4
 0^

H
L
J

|-

cn u
0

Z

x
 r>

1- u.

toinU
l

zU
l

C
O

1—
 1

uzou

U
l

zu
.

ozc
r

nr
-
4L
J

cro

•
Z

U

J
•
i
ZU

l
U

l
X

C
O

C

J
4

tn

U
l

U
l

cr
l-

0

4

U
.

P
I

a.
L
J

O
p
i

n

Z

>

o

O

n

or
cn

a.
crU

J
x

>

C
J

X

_
l

2

oX

U
J

cr
U

.

r-
U

J
U

.
to

O

O

to
•

L
J

•
x

n
i

}.
•of

o
cn

cn
z

U
l

0
r
-

•
-

=3

C
O

pq cr
cr

>
r-

U

l
4
 c

r4
U

l
2

C
O

t-
0

 U
.

x

o

1- m

>̂-1-t-t_
i

»_i
pq4r
-

croQ
.

a
.3cn

U
l

X

'
1—u
.

ozo*
i

1-4Z4

*
a
.xU
l

U
l

PI1
-1
>ocr0
-

XC
J

t—
t

X2U
J

cr1
-
 Z

U
. 0

O
 I-

i
C

O

L
_

C
J

U
l Z

X

0

r-
 U

.

O
U

.
C

O

0

L
J

r
-
 Z

r>
 o

pq 11

cr 4

r
-

Z

4
 U

l
Z

U
l L

J
in

 _
i

o
 a

.
x
 z

r-
 •
-•

C
O

cnU
J

zU
l

>n1—a
.

11crC
J

C
O

U
l

P
I
li.U

J
C

O

inzoH
4

HC
J

zû.U
l

Xo1-Xr
-

C
J

4U
l

crPqU
l

p
i

n>Ocra.xC
J

3;3(

U
l

crl-u.
. otoL

J
Xr
-

OcnL
J

r
-

p̂qcr
•

r-
L
J

4

Zcr

u
i o

co
u.

o
 c

r
X

U

l
H

 a
.

^_r
-I

4orU
J
zL
J

C
9

U
l

X

in
z
 u

i
O

n1-

>
-

n

C
J

-1
Z

n

U
l

1
-

a
 ^

zU
l

-
a
. z

U
l

U
l

0
 I-10

in
 >

.
f~

 in
n

CO
u
i z

Z
 i-

i
n
 t
-

X

4

cr or
U

l LJ
1-

Q
.

U
l
0

ax
 ^

O
 L

O

x t~J
2

>

-
•

C
O

^*

U
l

C
O

cr
co LJ

1
-1

-4
u
. o

 cr
o

Q
.

pq
in

 z
 n

0

-
1

U
l C

J
x
 ~

-

l—

(/)
1-

ui
O

L
J
 n

Z

1
-

in
 z

^

L
J

0

0

l—
 or

cr
O

!-
*

P
3

>

r
-

or LJ o.

1- L
J
 n

4
 c

r o
4

 •>
•

U
l 2

 1
-

in
 f- 1

3
o

u
.

D
-

x
 o

 z
V

- in
 i

itÛ
l

uzU
l

azU
l

a.u
azT

crou.>-r
-

—
1

npq4a.4C
J

Zoncnz4d
.

XU
l

U
l

PIn>oora.

XC
J

X^U
l

orHLL.
OinU

l
xI-L
i.

•

0
 41

-
cn 4
U

l
P

I
t-=> PI
pq

z

orH~
co

1
- Z

4

0i_

i

LJ
r-

tO

C
J

o
 z

X

O

r-

U

.

*r
-

1-1i
*_«

pq4L
_

ZL
JZO4

P
I

4

Q^

J
 c

o
o
 u

"
 c

r
0
 1

3

°- u
.

C
J

*"
4

u

u
. ^

or
ft

L
J

.

L—

_

Z
 —

j

"
 U

l

U
l
u

P
I

o
I-
I
 ̂

>

1
.

«•*!
_
„

or
u

°
-

r
-

X

|
^
|

0^^

U
J

X

X

2
 1

-
1
,1

c
*

cr
I-

2
 U

l
1- 1-
U

.
4

O

I-
i

co
cra.

L
J

O

x
 c

r
h
-

0
-

a.

o
L
J

co
cr

U
l

4

3

(-

•
pq

4

tn

•—
 i

X
 L

J
cr

I-
--

1 —

r—
1
-

C
O

 H
-l

4

U

l -1
Z

 1
-1

LJ
«i pq

CO
1
-

4
o

=
) a

.
X

0

4

t-
c
r c

j

* >.H
-

1-1
_

j
i-i
pqn1-4a.*:0o

L
J

C
J

41
 ,

orU
l

l-znU
.

O

•
(0

L
J

Z
1
0

0

Z
J

iL—

L
J

4
X

H

L
-

ZU
l

or
o

0

L
J

u.
ora.

U
l

L
J

P
I

cr
•-•>

4

0

h
-

or
4

a.
P

I

X

P

I
u

 z
^

^
t

x2

-in
U

l
U

l
or

z
4

i— i

2

1
-

h-
=>

U
.

0
o

 o
r

to
•

LJ

10
X

-J

1-
o0

u
.

o
0

1
-
o

in

or
LJ

O
-

1
-

ra
or

pq
o

t
t

|j

crr—

O
4

 O
L4

L
J

P
I

(0

Z
0

4

X

r-
1-

to

1j.*L
.

I-
I

^
 J

4Zoz:z0C
J

F
ig

u
re

5

S

o
ftw

a
re

Q
u

a
lity

 C
rite

ria

D

e
fin

itio
n

s

J.P
o

st
B

oeing
14 of IS

zok-H

K*-i

*-«u_U
J

QZO1
-4

o:1,1L
_

~cr{
j

U
l

X^_zt^%cruZ«
 P

I
CO

U
l

••*

•-!

cr u.
O

 I-I
C

J
U

,
U

l
o
 a

.to
2u.
S

 x
«t-
^r
K

°1—

•

<
K

Z
U

l
U

U

l

«£ i
IM

 Q
-

Z
>

 to
 o

o

u
i cr

ee cr •-•
0
.

>
X

Z

X

t- U

J
C

J
«

•-•2
—

1
X

<

2
 to

 z
^
 o

U
l

Z

»
cr ui l-
4

Z

4

2

u
i cr

H
 cr ui

u. n o_
o

 r>
 o

tn a)lil
£

|

ui cr z
x

<
u- uiX

U

l
U

.
H

-
O

-
o

o
0
 -

1
in i-

ui
U

l
>

t- Z

Z

D
 0

 U
l

CO
i-i

•-
1
- H

cr 4

z

\- H
 U

l
H

 Z

Z
4

U

l
O

-
Z

0

U
l

U
l

-1
(O

-1

U

l
O

C

L
. >

X

Z

U

l
1
- «

«

•>-I—
1

pq<U
l

C
J

Q̂
£

H•

z^
*

zCOn<nU
l

PI%crou.•1z=>crou.U
l

1=1Qcr0
-

x
 z

0
 0

•-I I-I
^ 1—
*

 <l_
ui o
cr z
<%

 PI
t
i

u. *t
<o */>U

J
U

J
3

X
 O

f
1—

H

H

—

2

u, z
o
 oU

l
to

 H
U

l

51PQ

I-I
•-• H

?
Z

t S
4

U
,

U
l

U
l

tn -J
o

 ci-
X

Z

1- 1
•>-u•̂U

l
^_to1—

 1
in3
j

oo•

U
l

3TJ-u.ozon»-•41
-

ZU
l

zU
l

ld.z•1
l

_l~
1

u.U
l

PIH
H

>ocra.xunX2U
l

cr42U
.

otoU
l

x1—u.
•

0

P

I
U

l
to cr
ui *-*
5

5
p
,

U
l

i-i cr

E
l

^

°H

H

ui 1-
S

z

f-s•

totoU
l

f^JilJa.ôu•

|- _
r^4Xtr^<oz0I-H

H
-<h™U
l

zU
l

-Ia.yHU
l

1
-
oz0cra.xC

J
H

H

x2U
l

cr^(-
.

U
.

to
<=• 1-
10

zU

l
U

l
Z

X

U

l
1- aH

-l
u.

3
0

 c
0U
l

10
 £T

U
l

r™

U
J

=>
X

pqi-
cr o
1- l-
4
 Zcr

U
l

0
tn u.
0
 Z

x
 o

H
 o

•*U
l

oz<_)a.zou•

4o»-COzoc*
»-I—U

l
TC.
U

l
_la.z•izn4cr>-inz0C

J

XuX2U
l

cr<c
*

2
 <

n
H

Z

U
.

O
o

 *••
10

1-
3>

U
l

-1
x
 o

\- in
u. ui
0

-
I

m
to

<
U

l
I-

h"
C

t.
3
 U

l
pq

C
J

»-i
C

J
cr

<
t
u

.
4

O

U
l

U
l

tO

CD
o
 z

X

4
1- cr
•*>-h-nP
I

•-i
_14>•

toZo*
••

Ka.•-•crotnU
l

PItooo=>COpqz4Z^
3

ZU
l

PI1-4

>ocra.xoX2
•

ui to
cr

z
^C

^3

2
 *

-
H

 K
U_

4
0
 h

-
tn

zU
l

U
l

Z
X

 U
l

1
1

a.
u. z
o

 •-«
to d
U

l
Z

h-
4

D«
 1

0
•-• Z
cr

o
1- >-«
H

 1-
4

 C
JZ

U
l =>

tn U
.

0X
 U

,
-.

1- <="
•*>-(-cr4_
l

C
J

•

U
l

X1-z•-I

^1—I-Icr_̂i=>COztoU
l

PIi«fl5
gX
?

2
U

.
U

l
U

.
cr o
*̂

z
H
 °

u. *-*
o

t
-

to 4(—
U

l
Z

X
 U

l
1
- ZU

l
u. -J
o

 a
.z

in

»i
U

l
^—

O

=>
z

pq
4

cr
z

t-

0

h-
«-i

4
 t—t-t

U
l

Z
in 11
0

 U
.

X

U

l
1- 0
•*>-h—0nU
.

OU
l

a.to•

« y
z ^
^ !rf̂

i §ss§su. «y

i

PI
-"

U
l

§

^
 <

»-
^

S 3
o

^

«- ii!
U

l
^

ssgg?
i

s-" 0x
 *

*
 U

l

c
r
-

»
S

1-u.0

«

01 1
x

H
f
j

I-
5

u. =»
o

 "
•u.

tn
o

U
l

L

-_
i

r~

Z
=

3
0

PQ

i-i

S
5

t
z

4

U
l

*
z
 c

r
U

l
u
i

U
l

in _
i z

0

Q
.

Z

X

Z

4

1
- «

 Z
•>-u
-

l-l
o_la.z1— 1
tn•

jto •

^— t-•io

•
Z

to

r z
t; °
Z

n

s *~
U

!
-
•

_ PI
s

 z
t

°
U

.
c
j

w
 _i

0

4

•- 1 z
>

n

S
 x

?
 °

o-
z

X

Z

O

0

*H

Z
^

X2
 s:o

ui cr
cr

u.
^2̂

 >
-

l- cr
U

.
U

l
0

>

C
O

00
U

l
U

l
x
 cr

l-
0

u.
z

0

4

in
cr

U
l

U
l

U
—

^
3

r
^

H
rj

z
pq

=1
cr

in
t-

z
t-

o
4

*
i

U
l

4
to cr
o

 u
i

X
,Q

-
l- o
•

**h
-

ZU
l

>
-

Z
_
l

U
l

4
 <

0

I
z

Z

4

4
 Z

•

znÔntn•-•C
J

U
l

cra.PIU
l

cr•-•r>a)Ul
crU

l
Xt-U

l
PI•1>ocra.xuX2U

l
cr4i.O1
0

•
10

£
5

1- a.1-
U

. Z
J

0
 0

in
 pi

U
lz

l__

^
f

5
^

pq 10
*"^

Z
cr o
1
- n

1- l-
4

 4

U
l

3
tn

 cj
0

_
|

"2•>-u4crz>uu4•

U
.

Ozo••*
H4M

to

S
2
.

"
 Z

5

K

^

0u.

z c
r

=> £
Z

Q

.
^
-
t

z

z

«
 «

zS "
^
 3

T
u-

Si_
U

l
"^

2
g

S
£

^
£

S
°

i j;
*

0^r

U
J

2

4

2

*
 C

O
Hu.

•
o

 u
i

CO

Zn
U

l
1-

X1-
toz

U
.

n
o
 toto

in
ui

U
l

U
h~

^5
=)

cr
pq

o-
O

f.
.

1- to to
1
-

U
l Z

4
0

0
CE

>—
ui r>

 i-
to o

 u
o

to

 z
X

U

l 3
l-

cr u
.

•**tntoU
l

zU
l

>1JilA_LU
l
•

u.
o(-PIr>4PIz4_
|

Ocr»-oucr^—
 ̂

u.U
l

Pin>Ocra.XoX2U
l

•

4

H

^

^
^

2
 <

1
- 0

i.a
 P

I
to

z4
U

l
X

U

l
h-

<
£4

U
.

2
o
 HU

.
in «=•
ui co
5u,
«

 x
^^

r~

t?in
ui in
to ui
0

 <
->

X
 <

•*>-(-•i-inpqininU
l

uC
J

4•

U
.

O
t-o
 tr

z
 u

ipq
to z
U

l
3

0
 Z

PI1-
"

4
 V

I
X

•

1- «*̂

U
l

10
1- C

J
CO

•-•

>- 1-
to to>

^
4

 c
rU
l

1- t-
Z

0

U
l

4
in cr
U

l
4

cr
x

a. u
X

-1

C
J

4
1-̂

{_>

ĵ

%

I

•
-
!

(
/
>

i

c
o
 z

>•
o

U
l X

ft

CC. O
L

H

<
^̂

2
 u

i u
1- x

o

U
. 1—

_|

oen u.
ui

O

C

O
U

l
4

x

u
i cr

J
-

C

O

0

PI
K

u. ui in
0
 _

l

2

-

in
 o

to

U
l Z

^

1—

^

tr\
r^

3
t C

O
=>

u
pq cr PI
cr tn

to
l-

z>
 cr

H

o
4

U

l to
cr

tn
U

l n

U
l

in r>
 o

o
 a

) o
x

ui cr

1- cr Q
.

•»>-Hi_
l

4Z>1—cr*-*>•

U
l

Xl_ll_oCOz•icro^-•izoZ10z>1—4

'

|—

**
w

zo
U

 i-i

2
5

S
z

§
U

I
a. zZ

J
x
 cr

0
 I

-
n
 in

X

Z

2
 «

U
l

-
cr

•
4
 U

l
2

•

1
-

0
1

Uw
^^

otn
zo

U
l

>
-.

X
 |_

t-

4cr

u. ui
o
 a

.o
inU

l
o

r-
Z

S
4

*i t—
cr

z
H

U

l
H

Z

4
 Q

-O
U

l
-1

in ui
0

>

X

U

l
1- PI
•*>̂-f—n_
l

pqton>•

U
l

X1-u.oCOzt-tPIz4KcocrU
l

Qzr>U
l

C
J

z4XZU
l

XC
J

X2ucr2̂u.o

•
tn

U
l

cr
U

l
4

x

2

1-
1-u.

U
.

0
o
 in

in
ui

U
l

X
^_ |̂_
Z

J
m

u.

crH-
Z

h
-

0
4

n»
-

U
l

4
in cr
o
 u

i
x
 a

.
(-

0

•*>-_inpqninzU
J

XU
l

cra.z0o•

F
igure

5

S
oftw

are Q
u

ality
 C

rite
ria D

efin
itio

n
s

*
 = N

ew
** =

D
ifferen

t

J. Post
B

oeing
15 of 15

IDENTIFICATION AND EVALUATION

OF SOFTWARE MEASURES

David N. Card

"COMPUTER SCIENCES CORPORATION

and

GODDARD SPACE FLIGHT CENTER

SOFTWARE ENGINEERING LABORATORY

Prepared for the

NASA/GSFC

Sixth Annual Software Engineering Workshop

INTRODUCTION

The purpose of this presentation is to describe and demon-

strate a large-scale, systematic procedure for identifying

and.evaluating measures that meaningfully characterize one

or more elements of software development. The background of

this research, the nature of the data involved, and the

steps of the analytic procedure are discussed. The presen-

tation concludes with an example of the application of this

procedure to data from real software development projects.

As the tterm is used here, a measure is a count or numerical

rating of the occurrence of some property. Examples of

measures include lines of code, number of computer -runs,

person-hours expended, and degree of use of top-down design

methodology. Measures appeal to the researcher and the man-

ager as a potential means of defining, explaining, and pre-

dicting software development qualities, especially

productivity and reliability.

Measures may be classified into four groups as illustrated

by the software development model presented in Figure 1. It

shows these components: a problem, a solution-generating

process, the environment in which that process takes place,

and the solution (or software product). Measures can be

employed to characterize the components of this model and to

show their interrelationships. Some examples of appropriate

measures for each component are also shown in the figure.

The Goddard Space Flight Center (GSFC) Software Engineering

Laboratory (SEL) is engaged in an effort, part of which this

presentation describes, to develop a concise set of such

characteristic measures. The SEL and its activities are

discussed in more detail in Reference 1.

D.Card
CSC/GSFC
I o f 2 8

CO

o

U
l

22Ooc>zU
J

(A0
1

UOocQ
.

C
fl

U
J

ecoU
J

O

2
5

§5o
Z

1
3

H
 U

£
0

S
o

o

Q
)

T3Os4
JcOJaoiH0)>0)

Q(U4-1OC
fl

WOJS-l

•HEn

D
.C

ard
C

SC
/G

SFC
2 of 28

The approach to software measurement adopted in this presen-

tation is different from that generally followed. The usual

procedure is to select high-level "qualities" and then to

seek numerical criteria or measures of these qualities.

McCall (Reference 2) has developed a comprehensive system of

such qualities and appropriate measures. However, the goal

of the approach followed here is to identify the qualities

being measured by the data collected rather than to attempt

to associate measures with previously specified qualities.

The measures considered in this analysis are described in

the next section.

D.Card
CSC/GSFC
3 of 28

DATA DESCRIPTION

Clearly, the number of potentially useful measures is large;

the SEL has selected more than 200 for study. These meas-

ures cover the entire range of software development activity

as experienced by the SEL. However, the analysis described

here will focus on the relationships among measures of the

process and product components of the software development

model (see Figure 1).

Therefore, a data subset containing only the 60 measures

relevant to those two components was used. The measures (or

variables) used are listed in Table 1 (see Appendix A).

This list does not necessarily exhaust the possibilities for

measures in those areas; however, this group of measures is

believed to form a comprehensive set. The process measures

class is represented by three subclasses: methodology

(Table la) , tools (Table Ib), and documentation (Table Ic).

Note that the methodology class is further subdivided by

development phase into design, code, and test measures. The

product class (Table Id) includes size and resource measures,

The data used in this analysis were collected by the SEL

from 22 actual medium-scale, scientific software development

projects. Values for all these measures were determined for

each project. The values are ratings of the degree of use,

counts, or rates per line of code, as indicated in Table 1.

Degree-of-use process measures are expressed as relative

scores on a scale from zero to five. The exact derivation

of these scores will be explained in a forthcoming SEL docu-

ment (Reference 3).

D.Card
CSC/GSFC
4 of 28

ANALYTIC PROCEDURE

The 60 measures just described are not unique or inde-

pendent. Some may, in fact, measure the same or related

qualities. The object of the analytic procedure is to

identify the most basic set of qualities (or properties)

being measured by the group of 60. A "basic" quality is

defined to be one that is independent of all other such

qualities. This subset, then, defines the basic quality

characteristics describing the projects from which the data

were obtained.

The procedure to be proposed is "large scale." That is, it

is appropriate when a large number of measures (or vari-

ables) are to be evaluated. The researcher interested in

studying the relationships of only a few specific measures

can probably get better results from regression and hypoth-

esis testing techniques. Nevertheless, this procedure can

be useful as a screening tool for detecting confounding ef-

fects in the data before selecting other statistical tech-

niques.

The analytic procedure followed in this experiment has two

steps, as indicated in Figure 2. These are the application

-of a, test of normality to the candidate measures (data.) ,

followed by a factor analysis of those not rejected by the

test. The result of this procedure is a descriptive, rather

than a predictive, model of the data. The procedure iden-

tifies the descriptive factors common to the set of meas-

ures. Thus, the original measures are organized into a

number of groups (or factors) smaller than the number of

measures input to the procedure. These factors correspond

to the basic qualities sought for in the data. The steps of

this procedure are discussed in more detail in the following

sections.

D.Card
CSC/GSFC
5 of 28

60 MEASURES FOR
EACH OF 22

SOFTWARE PROJECTS

TEST OF
NORMALITY

1
I

ACCEPTED

REJECTED
MEASURES

FACTOR
ANALYSIS

FACTORS (n < 60)

Figure 2. Analytic Procedure

D.Card
CSC/GSFC
6 of 28

TEST OF NORMALITY

The test of normality analyzes the probability distribution.

of a measure. The observed values of each measure are dis-

tributed over some range. The normal distribution is

readily identifiable in Figure 3. The test of normality

will detect measures whose values are distributed in a pat-

tern significantly different from the normal. For example,

it would reject a measure with values clustered at one end

of the range (skewed) rather than distributed symmetrically

across it.

This is not a very powerful test. It will accept any ap-

proximately symmetrical distribution even' if that distribu-

tion is not truly normal. However, the test is important

because approximate normality of the data is an assumption

of step two, the factor analysis.

Six measures from the set of 60 rwere rejected by the test of

normality using the 0.05 level of significance. These are

measures of techniques for which insufficient examples of

use were available. Consequently, most projects had scores

of zero for these degree-of-use measures, a result that pro-

duced dramatically skewed distributions. They are

• HIPO Design Technique

• Verification and Validation Team (two measures)

• Requirements Language Tool

• Configuration Management Tool

• unit Development Folders

These measures could, however, be used in some other types

of analyses not considered here.

D. Card
CSC/GSFC
7 of 28

P(x)

Figure 3. Test of Normality

D.Card
CSC/GSFC
8 of 28

FACTOR ANALYSIS

The 54 remaining measures were included in the factor anal-

ysis. The goal of the factor analysis is to "discover" the

underlying structure of the data. Factor analysis hypoth-

esizes the existence of a set of statistically independent

"factors" that are not directly measurable by the experi-

menter. Measures (or variables) are the quantities that are

observed in practice. However, the apparent correlations

among measures can be interpreted to be due to their joint

correlation with common factors (see Figure 4). That is,

two or more measures correlated with the same factor will be

correlated with each other. The desirable result of a

factor analysis is the extraction of a smaller set of fac-

tors whose relationships are known (they are independent)

from the larger set of meas.ures whose relationships are more

complex.

Consider this example of the factor concept. The number of

errors in a piece of software and its mean time to failure

are measures related to reliability and are correlated with

each other. However, neither measure by itself is a full

description of reliability. Such things as the location of

the error and the severity of the failure must also be con-

sidered. Therefore, the reliability quality factor is not

directly measurable although a number of measurable vari-

ables are correlated with it.

A successful factor analysis will explain such groups of

related measures. Thus, each factor defined will correspond

to a distinct basic quality being measured by the original

set of variables. These qualities are the sources of varia-

tion (or differentiation) among the projects studied.

D. Card
CSC/GSFC
9 of 28

0)
•HCO

0UJ2

H

UJ
Z

OC
LU

DC
Q

O

Z

O

L
U

C
O

Q

>

Z

<
 -

5
 L
U

2
 C
C

t/)
<

w
 /
«

-J
W

03
CC

<

g

OCUJ

OZ

OOS

M-lO0)ocou0)(-1D

D
.C

ard
C

SC
/G

SFC
10 of 28

The principles of factor analysis are explained in detail in

the text by Harman (Reference 4). A number of software im-

plementations of factor analysis are available. The spe-

cific software used in this analysis was the principal

components factor procedure of the Statistical Analysis Sys-

tem (Reference 5).

D.Card
CSC/GSFC
11 of 28

SUMMARY OF RESULTS

Further analysis of the 54 process and product measures that

passed the test of normality produced a factor model con-

taining 5 factors that explained 77 percent of the variance

of the original measures. The meaning of each factor is

determined by examining the measures that are closely cor-

related with it. These factors and the amount of variance

accounted for by each are as follows:

• Methodology intensity (31%)

• Project Size (25%)

• Computer Usage (9%)

• Quality Assurance (8%)

• Change Rate (5%)

The variance associated with a factor is a measure of the

degree to which that factor differentiates among the pro-

jects (or cases) studied. Thus, it is a measure of informa-

tion content. A larger portion of the total variance could

have been accounted for by using a larger number of fac-

tors. The relationship of the number of factors to the var-

iance explained by the factor model is illustrated in

Table 2 of Appendix A. The interpretation of additional

factors is difficult because none of the original measures

are highly correlated with them. Therefore, they are not

included in this preliminary definition of the factor model.

The correlations of the original measures with the five fac-

tors are listed in Table 3 of Appendix A. Only correlations

greater than 0.526 (the 0.01 level of significance) are re-

produced. The measure showing the highest correlation with

a factor can be taken as the best estimator of that quality

factor from among the original measures included in the

analysis. These "best" estimators are indicated by as-

terisks in the tables.

D.Card
CSC/GSFC
12 of 28

Remember that, although the factors are mutually inde-

pendent, any given measure may be correlated with more than

one factor and/or with other measures. The factor model

does, however, identify the strongest relationships in the

data. Some specific observations are made below about each

of the factors defined by the analysis.

Factor 1 - The first and most powerful factor (Table 3a in

Appendix A) is highly correlated with degree-of-use process

measures; thus, this factor may be interpreted to represent

the degree to which formal methodology was applied during

development. The most strongly correlated measure, method-

ology reinforcement (the extent to which adherence to speci-

fied methodologies was enforced by management), supports

this interpretation. The strong correlation of so many

methodology, tool, and documentation measures with a common

factor suggests that simple regression and hypothesis test-

ing techniques are inappropriate for analyzing such effects

because of their inability to isolate the action of a single

technique from among the actions of other techniques.

Factor 2 - The second factor (Table 3b in Appendix A) is

clearly related to the size of the development effort and

product. its "best" estimator is person-hours. The corre-

lation of top-down coding with this factor illustrates the

descriptive, rather than predictive, nature of factor anal-

ysis. The proper conclusion based on this observation is

that more top-down coding tends to be used in small projects

than in large ones, not that top-down coding necessarily

reduces the size of a development effort.

D.Card
CSC/GSFC
13 of 28

Factor 3 - The third factor (Table 3c in Appendix A) con-

tains a number of measures related to the pattern of com-

puter usage. This factor indicates that the manner and

degree of computer usage reflect the use of certain develop-

ment tools and techniques. The "best" estimator of this

factor is top-down design.

Factor 4 - The fourth factor (Table 3d in Appendix A) has

only one measure, semiformal quality assurance, signifi-

cantly correlated with it. Thus, its meaning is difficult

to establish. However, a substantial amount of variance

(8 percent) is associated with this factor. The preceding

factor contained five variable.s but explained only slightly

more variance (9 percent). Thus, this factor and measure

deserve closer examination in future analyses.

Factor 5 - The last factor (Table 3e in Appendix A) clearly

describes the change rate. The interpretation of this fac-

tor is important since, as a consequence of the mutual inde-

pendence of factors, it is independent of the four factors

previously defined. Hence, methodology intensity, project

size, and computer usage do not appear to be related to each

other or to code stability (reliability), as measured by the

change rate.

Another feature of this model should be noted. Although

productivity was most strongly correlated with factor 4, it

was not significantly correlated with any factor. Produc-

tivity may still be related to specific methodologies but

not to the general factors just defined. Thus, the informa-

tion provided by this procedure about productivity and re-

liability is negative in this example because unrelated

qualities and measures were identified rather than related

ones.

D.Card
CSC/GSFC
14 of 28

CONCLUSION

The results presented here are preliminary. Conclusions

based on the factor model just developed may change as more

data become available and as the procedure is refined. How-

ever, the analysis has demonstrated its capacity to resolve

some important questions about the data. The conclusions

are as follows: the basic qualities being quantified by the

original measures can be identified and enumerated; their

relative importance or strength (in terms of percentage of

variance accounted for) can be established; and a "best"

estimator can be selected for each quality.

Therefore, we can define a concise set of quality measures

that meaningfully characterizes the process and product com-

ponents of the software development model and that can serve

as a framework for further research. These qualities and

associated measures can be studied in greater detail with

other techniques to determine their relationships to produc-

tivity and reliability more exactly. Hence, these results

are a first step toward defining, explaining, and predicting

software reliability and productivity in the SEL environment.

D.Caid
CSC/GSFC
15 of 28

APPENDIX A - SUMMARY OF FACTOR ANALYSIS

This appendix consists of a series of three tables that sum-

marize the factor analysis procedure described in the pre-

ceding discussion. Table 1 describes the measures evaluated

in this analysis. Table 2 identifies the variances asso-

ciated with factors. Table 3 lists the significant correla-

tions (at the 0.01 level of significance) of measures with

factors.

D.Card
CSC/GSFC
16 of 28

oQ
.

I-DQ
.

(UMaMITS0)
sOrHOT3O£-PQ)

rHQJ
nHX

!(dEH

U
J

QCU
J

U
JLUOCaLUQ

o -5
o.±
~

C
O

UJCO
CD UJ
<

u
D

O
CD OC
2

*
<

f-
-ID

1

«
S

S

S
r
f

In
 U

J

0
0

 J

c
S

^c/jco
u

j<
u

Q

£
§

fc
Q

y
tt

Z
 -J

 ̂
 T

 <
 U

2: £ll°g<
U

J
_
3
 *z

 e

u
j 5

rr

"
JO

C
C

C
U

J
O

S
O

O
C

C
C

C
-

1
.H

O
-
I

HU
J

£U
l

U2I2U
J

u
<

2O<NocO

2
2

2
2

2
2

2
2

O
 C

3 C
3 C3C3 (D

 (3 G
00 CO CO CO 00 CO C/5 00
u
j i m

 in
 ii| in

 in
Q

Q
Q

Q
O

Q
Q

O

in
 in

 m
 u

j (i| in
Q

Q
Q

Q
Q

Q
O

O
O

O
O

O
C

J
U

U
U

U
U

H
-I-H

J
-I-

0000000000
in

 111 in
 in

 in
H

H
H

-H
F

-

D
.C

ard
C

SC
/G

SFC
17 of 28

(/>
>

~

3

O

£
f

„

i a
h

!
! • S

§
(1)

—
\

3.
U

J U
J

LU

M
J

S

-3

H

o
O

O

C

C
3
^

U
.

g

C
C

<
3

X

Z
£

•3
o

S

O
D

Q
_

m
5

3
2

-
8

2

S
o

^
g

i
H

^

;,<

u

o
l =

 <
S

£
^

|^
3

g
o

g
z

g
^f§ggs<

g£S§
Q

c

c
r-J

^
?

d
iu

^
U

Jw
o

<

D
.C

ard
C

SC
/G

SFC
18 of 28

enm
m

CtJ
•••

£
</)

c

D

.2
"-

5
O

£
w

g

H
I

§
C

C

I
«

orH(U

s je
^s.sii

~

W
O

U
J

5
Z

m
^

-
%

{
*
:
5

^
X

?
J

^
^

Ir^
rz

H
c

D
.C

ard
C

S
C

/G
S

F
C

19 of 28

LU

o)3
-

II
"

S
2

8
|

| §
s

|-
w

o

S
 -

°
4J

^

L
U

<
-

g

_
|

u
.

f
2

§

S
 i

,

.
S

o
S

o

ft
Q

w

o
 3

o
<

a
i

n

2
§

£2
o

«

P
-

Q
.

0)
—

»
e-

c^
fc

>

^
oo

0)
• >

—
'

1-1X)ItEH

^

"
«
S

V

.
^

^
^

b
*
*

^

^

•<
*•

^
Z

^

Z
C

L
H

H
O

.
O

O
Z

3
O

D
.C

aid
C

SC
/G

SFC
20 of 28

03>HO4-1O<TJ
fax.p•HsT3d)
_M^-*(d
•HO00101
<0)Q)OCnj
•HM(0>>k 1*̂

rrl
T

2c<d030)3rH<d>0)tr-
•HW>

,
M

*

-
(dc•He•rH

rHOJMP
^

(NQ
)

rHX
I

(dEH

—

O
 r-

at
*- in

 —
 n

co O
 01

n
 d

 O
0)O

O
 co O

 C
M

—

01

C
M

 C
M

—

O

0
1

0
0

0

-'

O
l

—
 r-

—
-

C

M

O

CM O

en
01

•
•

10 O
 O

T
T

*•

CO

00

01

*7
CM

C

M

r̂
—

O

co

in
•

•
in

 O
 O

in,_

r-
01

 C
M

 in
r- n

 T
T

O
) O

 00
co

•
•

n
 o

 O
r-~

IP
 —

 in P)
CO

1

—

0
1
 O

 C
O

a

.
.

n
 o

 O
*jC

M

in
 O

 n
 co

»» in (P
u> o

r-

. in

.
.

in
 o

 O
coC

M

T
 01

 in
 in

in r- —
ffi O

 r-
n

•
•

ID
 O

 O
O^

>

o

to
 c

o
 O

CO

C
O

 T
'

C
M

O

 U
)

^

.

.

T

O

,
O

P
"

V

CM

r-
IO

 C
M

§
T

 in
CM

in
inO

 O
 O

nPI

—
 ID

 in in
co o

 O
p
-

P
I C

O
C

M

•
•

. 01 O
 O

•5toIS>
2

u
j

o
-v

a

-
2;

-'
"-

O

<
 2

 a
l—

>

 0
 O

0

2
-
 C

.
<
_
)

U
j

H
-

<

o
 e

r z
I
,

—
O

S
"
-

U
J

0
.

(J

- o
 o

 o
^
 o

 o
 o

O
 O

 O

8
 d

 -
od

O
 in

 —
 o

CM n
 o

 O
10 O

 O
in

•
•

in
 O

 *-
Od

01 T
 n

 0
1

—

r-

O
 01

01 O
 01

n

•
•

•in
 o

 O

o

CO

P
)

T

1C
•- in

 o
 01

oo O
 01

01
•

•
O

 O
 O

C
M

O

r-
—

 in C
M

—

—
 O

0
1

01
 O

 0
1

in
•

•
in

 o
 O

•
:

C
M

d

(C
 P

I r-
r-

—
 co O

 co
—

O

 O
l

r-
•

•
01 O

 O
nd

m
 P

) co o
—

 u> o oo
co o

 01

CM d d
rrd

^

f-

O
l

C
M

'
O

P

-
01 o 01
in

•
•

01 o
 O

^d

PI PI CM
 n

—
 O

 —
 u>

in O
 01

CM d

0

U3d

C
M

IB

P

I C
M

—
 LI —

 in
o
 o

 0
1

in
•

•
co O

 O
u>O1/1

2
uj

o
/v

"*

2£ J
*-

O

<

 Z
 c

|_

>

O

 O
r: 2

 - a
<
_

 >
U

J
—

<

U
 c

z

2

n

-

0

D

uj a
 u

•

03
.rH03>1
rHH

J
Cf—

i
(00)(-<

!•»- «
4-1C•H'd0)c•H(d4-10)j_l

1)SHQ)3C/3JHO4-1U<TJ
M

i
*T~(

Q
)>•H4H>
i1

ij™
n
co**
wEHO2

D
.C

ard
C

SC
/G

SFC
21 of 28

oHLUCCccoo

O-P0(0mmOJ<TJ
EH

CCD(/)<LU2

zo<N§g°
0

££3
ii1?2

s
S

<
°^cc>
c
-z

U
.O

LU
 —

5i2
(J

O

oooQZLULU

C
CLU>

W
£

£
s£

ccco^
Z

H
I

COz§

o§iHLUpoCC

3OQ̂O
LULU

i-hi
Z

0
<

^
§

C

CO
 ^

 L
U

U
jC

C
L

U

*ll <zzg
O

O
ccc/3a5
O

LU

 LU
L

uQ
Q

ea

V
)

H

1
 §

2
H

H

 L
U

<

Q
. C

C
£

E

t/>

£

"
W

LU

w
 U

J
g

L

U
C

C
•3

Q
C

3

ION (DOCI
EBOOKS
/SYSTEM
THLY PRO

<
/3

»
-

L
U

 Z

G
O

 Q o
u

jZ
5

§
Q

>
0
^

z
t

w
5

^
>

c
c

^
W

H
L

U
J

iJ
L

U
U

W
^

Q
<

D
S

r
-

co..CCOQLUACCOUNT

LUOZ<E<>• •
in

D
.C

aid
C

SC
/G

SFC
22 of 28

MO-P0(0t,flTable

LATION

UJCCccooMEASURE

o>COC/5h-UJNUMBER OFCOMPO

CDCOTOTALS MODULES

LO
CONEW MODULES
oCOMODIFIED MODULES

T
—
CDTOTAL LINES

CN
CDNEW LINES

x̂^̂

MODIFIED LINES CDNUMBER OF RUNS

CO
CDCOUJNUMBER OF CHANG

enZOpĤ
9PAGES OF DOCUMEr

CO
CDPERSON HOURS

COCOCOMPUTER HOURS

CO
CDDELIVERED LINES

COiniiTOP-DOWN CODING

.""X

unCMCCOu.QLLt
HZ

E: VARIANCE ACCOU

D
.C

a
rd

C
S

C
/G

S
FC

23 of 28

oHLUCCCCoa

cp
*00oo

CO
ur>

coi-iO-P0Oro0)
LUCCDCO<LJJ

LUOOOCOLUZCCDOIocLUoo

aCOLUaoaa.o

azCOLUHIO<m

ccH-ZLUOQO-)LUOLUCC

COza.COLUH

O
)•
 •

OCOLLaLUZDOOa<LUOzi
D

.C
ard

C
SC

/G
SFC

24 of 28

oPLLI
CCccoo

CD
C
O
•I

S-lo-Pu•oro(1)(0EH

LUOz<CCD

LUCCDCO<LU
Dd

oo• •

CCou.QLUh-DOOO<LUO

CCou.LU0)

uDOOCCQ.
LU

Oz

D
.C

aid
C

SC
/G

SFC
25 of 28

OpLUCCDCOU

CO
CO

inj-iO-P0Q)

QO
LUCCDCO<LUS

0LLOCOLU2

LUQOOLU2LLOCOLU

C
/)

LU
LU

in• •

CCOLLQLUh
-

2DOOO<LUO2<E

ZO
ZO

LUO2

D
.C

ard
C

SC
/G

SFC
26 of 28

REFERENCES

Computer Sciences Corporation, CSC/TM-81/6104, The Soft-
ware Engineering Laboratory, D. N. Card, et al., October
1981

Rome Air Development Center, RADC-TR-77-369, Factors in
Software Quality, J. A. McCall, P. K. Richards, and
G. F. Walters, November 1977

Computer Sciences Corporation, Evaluation and Applica-
tion of Subjective Measures of Software Development,
D. Card and G. Page (in preparation)

H. H. Harman, Modern Factor Analysis, Chicago: Uni-
versity of Chicago Press, 1976

J. T. Sail, et al., Statistical Analysis System User's
Guide, SAS institute, 1979

D.Card
CSC/GSFC
27 of 28

THE VIEWGRAPH MATERIALS
for the

D. CARD PRESENTATION WERE
INCORPORATED IN THE PAPER

D.Catd
CSC/GSFC
28 of 28

PANEL #3

SOFTWARE MODELS

B. Littlewood/A. Sofer, George Washington University
H. Sayani/C. Svoboda, Advanced Systems Technology Corporation

SOFTWARE MODELS:

A BAYESIAN APPROACH TO PARAMETER ESTIMATION IN THE

JELINSKI-MORANDA SOFTWARE RELIABILITY MODEL

by

Bev Littlewood, The City University, London, England
Ariela Sofer, The George Washington University, Washington, D.C.

Abstract

Maximum likelihood estimation procedures for the Jelinski-Moranda

software reliability model often give misleading answers. We show here

that a reparameterization and a Bayesian analysis eliminate some of the

problems incurred by MLE methods and often give better predictions on

sets of real and simulated data.

Practical difficulties in estimating the initial number of errors

N and the failure rate of each error cj) by the method of maximum like-

lihood are:

/\

1. N , the MLE of N , is occasionally infinite (i.e., the routines

s\ s\

for calculating N and 4> do not converge). Littlewood and

Verrall show that N is finite if and only if the regression

line of the interevent times t. vs. i has positive slope.

/\

2. A serious problem is that often N - n , the sample size, and

sometimes N = n . Thus the MLE predicts that the program is

perfect even when it is far from being so. Forman and Singpur-

y\ /\

walla have shown that N and <j> can only be trusted near the

end of debugging, i.e., when almost all failures have been

removed. Sofer

G. Wash. Univ.
lof 14

3. Even when these problems are not encountered, the results

obtained from the model are too optimistic; it predicts the

reliability to be greater than it really is.

In view of these deficiencies, we are led to consider a Bayesian

approach to the estimation problem. It seems plausible that it is easier

to correctly estimate the initial program failure rate A = N<(> than the
/\

initial number of bugs N , since small errors in (j) could lead to large

/\

errors in N . It is therefore plausible to reparameterize the model to

(A,(J>) instead of (N,<}>) .

: Using now the Bayesian approach, letting prior (A,<j>) = prior (A)*

prior (cf>) , where prior (A) and prior (cj>) are gamma distributed, and

using

Rn+l(t) "

t | A,cj>) post(A,<j) | t1 tn)dAdtj)

we obtain an explicit estimate of the program's current reliability.

Similarly, we can get in closed form the distributions of the number of

bugs remaining in the program, the number of bugs that have to be removed

in order to attain a given reliability, and the times between future

consecutive failures (provided they are well defined, i.e., the program

is not perfect) .

The quality of these estimations was examined for the special case

when A and <j> have an (improper) uniform prior distribution over

[0,<») (i.e., a noninformative prior distribution). The predictions were

examined both for real and for simulated sets of data. In all cases where

ML erroneously predicts the program to be perfect, the Bayesian method

gives a positive probability that the program is not perfect. Moreover,
Sofer

G. Wash. Univ.
2 of 14

since the predicted reliability is given in closed form, problems of

convergence of the computer program are not encountered.

To examine the quality of prediction, we use a goodness of fit pro-

cedure. Suppose that from the data t..,...,t we predict the distribu-

tion of T ,n , the time to next failure. We then observe t , .
n+1 ' n+1

Define U = Pr(T ., < t ,,) . If the model is correct, then U are
n n+1 n+1 n

uniform variables on (0,£) . We compare the sample c.d.f. of the u 's
n

with a line of unit slope which is the uniform c.d.f.

When applying the goodness of fit procedure to real data sets, the

Bayesian approach is almost always better than the MLE method. For the

simulated data, the goodness of fit procedure on the Bayesian estimates

give very good results; this, however, is not always true for the real

data sets.

There seems to be evidence that the J-M model is intrinsically opti-

mistic in its estimate of software reliability. This could be a conse-

quence of the assumption that all errors contribute equally to the failure

rate. A new model by Littlewood relaxes this assumption with the result

that earlier fixes tend to involve larger reductions in the failure rate

than the later ones. It can be shown that this model is less optimistic

than the J-M model and we hope to examine its performance on real and

simulated data in future work.

Sofer
G. Wash. Univ.
3 of 14

THE VIEWGRAPH MATERIALS
for the

B. LITTLEWOOD/A. SOFER PRESENTATION FOLLOW

Sofer
G. Wash. Univ.
4 of 14

JELINSKI-MORANDA model assumptions:

1. Successive inter-failure times Tj, T2, are independent.

pdf (tj I Xj) = Xj e~Vi

2. Xi = (N - i + 1)0 where

N is "initial number of faults" 0 is "contribution to program failure rate from each fault"

f.r

N0

(N-2)0

Note that
1. All fixes have same effect.
2. Same model by SHOOMAN and MUSA. Same assumptions

for NHPP model by GOEL-OKUMOTO.

time

Sofei
G. Wash. Univ.
5 of 14

There seems to be 3 problems with J-M:
A A

1. N occassionally infinite (0 = 0)

Nee. & Suff. conditions: "Regression line of t= versus i has negative slope"
(Littlewood, Verrall: 1981IEEETR)

This can also occur with simulated data from J-M with finite N, 0 ¥= 0,
A A.

However X = N0 is finite, non-zero.

2. Reliability predictions always(?) too optimistic
A

3. N usually too small, sometimes equal to sample size (i.e. program is "perfect")

Sofer
G. Wash. Univ.
6 of 14

Table 7.
Failure Intervals - System 3 System Test Phase

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

115,
o,
83,
178,
194,
136,

1077,
15,
15,
92,
50,
71,
606,
1189,
40,
788,
222,
72,

615,
589,
15,

390,
1863,
1337,
4508,
834,
3400,

6,
4561,
3186,
10571,
563,
2770,
652,
5593,
11696,
6724,
2546,

-10175,

1
1
3
3
3
3
3
3
3
3
3
3
6
8
8
18
18
18
18
26
26
26
27
30
36
38
40.
40
42
44
47
47
47
48
50
54
54
55
56

Sofer
G. Wash. Univ.
7 of 14

SYSTEM 3

FAILURE
NUMBER

2
3
4
5
6
7
8
9

1O
1 1
12
13
14
15
16
17
18
19
2O
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

A

N
ESTIMATED
FAILURES

999999
999999

5
6
8
7
8
12
19
55

999999
22
15
18
18
21
25
25
25
31
33
26
26
25
26
27
28
29
30
31
32
33
34
35
36
37
38

riMATED INITIAL MORANDA
MTTF

O.5750E+02
0.6600EK>2
O.5900E+O2
O.6480E+02
0.7275E+02
0.7884E+02
0.8845E+02
O.1196E+03
O. 1396E+03
O. 1609E+03
O. 1688E+03
0. 1387E+03
O. 1 125E+03
O. 130GE+03
O. 1306E+03
0. 1476E+03
O. 1G16E+O3
O. 1622E+O3
0. 1612E+O3
0. 18O7E+03
0. 1854E+03
0. 1609E+03
0. 1606E+03
0. 152OE+03
O. 1628E+03
O. 1764E+O3
0. 1876E+03
O.2023E+03
O.2182E+O3
O.2427E+03
O.2642E+03
O.2853E+03
O.3041E+O3
O.3248E+03
O.3519E+O3
O.3804E+03
O.4O73E+O3

PHI

0. 173913E-07
O. 151515E-O7
0.338983E-O2
0.257202E-02
0. 171821E-02
0. 181206E-02
0. 141318E-02
0.696972E-03
0.377017E-03
0. 112990E-03
0.592304E-08
0.327621E-03
0.592367E-03
0.425447E-03
0.425294E-03
0.322715E-03
O.247463E-03
0.246615E-03
0.248210E-03
0. 178535E-03
0. 163413E-03
0.239046E-03
0.239457E-03
O.263205E-03
0.236199E-03
0.210001E-03
0. 19O384E-03
0. 17O456E-03
O. 152766E-03
0. 132935E-03
O. 118265E-03
O. 1062O2E-03
O.967196E-O4
0.879556E-04
0.789439E-O4
O.710397E-O4
O. 64604 1E-O4

r'- Sofer
G. Wash. Univ.
8 o f l 4

How well does model perform?

Simplest problem is estimation of current reliability:

Given data tj , . . ., t j_ j , what can we say about T;?

What is cdf F; (:)?

Obtain ML estimates of N, 0, based on tj5 . . > tL-1 and use "Predictor distribution"

If prediction is "good"

A

Uj = Fj (Tj) is approx.

U(0,l). Examine Q-Q plots of realizations D,

Sofer
G. Wash. Univ.
9 of 14

EXAMPLE

Data: MUSA "System 1", range of i:30-129

Jelinski-Moranda: poor prediction, optimistic

Littlewood-Verrall: good prediction, slight pessimism

J-M

1.0

Sofer
G. Wash. Univ.
10 of 14

Bayesian J-M

Reparameterize to (X, 0) from (N, 0) where X = N0 "initial failure rate".

Assume:

prior (X, 0) = prior (X) • prior (0) where prior (X) and prior (0) are gamma distributed

Then "predictor distribution" is

F! (t) = P(Ti < t) = P(Tj < t | tj , . . . tj_j) = / P(Tj < t | X,0) post (X,0 1 1,. . Vr) dXd0

Reparameterization: Informal Justification

f.r

"TRUE LINE"Xj = (N-i+1)0

N

i, FAILURE NUMBER

Sofer
G. Wash. Univ.
11 of 14

For the case of uniform (improper) priors we get:

ik!(i -k)!
-

i-k+1

,_, a
where c ' =

and where ak j is the coefficient of x' Mn n (x + k) =]
' • k=i)

These coefficients are easily computed from the relation

If i K ~~ 1 i~" J K i^~ 7 *^*^
I*, jl fk. J J I 1 f^. yl i

I -t I \ /

DATA: MUSA "System 3", i=18. .37

J-M ML estimation of (N,0)
J-M Bayes, uniform (improper) priors on (X,

1.

Sofer
G. Wash. Univ.
12 of 14

Data: MUSA "System 1"
i = 30 129
J-M MLE (N,0)
J-M Bayes, uniform

prior (X,0)-
slightly better

Conclusion!

1. Bayes J-M seems always (?) better than MLE J-M, but sometimes only slightly.

2. Results on real data are always optimistic.

3. But on SIMULATED data from J-M model, Bayes is very good, ML poor

=> real data do not follow J-M model?

Sofer
G. Wash. Univ.
13 of 14

Hypothesis: Assumption of equal 0's is wrong. In fact <d's different.
Larger ones tend to be eliminated earlier:

f.r.

O

O

•

O "best fitting" linear
function (i.e. J-M).

J-M model f.r.

O

•

"true" f.r.

O

I

failure number

Sofer
G. Wash. Univ.
14 of 14

The Problem of Resonance
in

Technology Usage

OUTLINE

0. Introduction
1. Composite Case Study
2. Analysis of the Problem
3. Generalization of a Solution to the Problem
4. Conclusion

Hasan H. Sayani, Ph.D.
Cyril P. Svoboda, Ph.D.

Advanced Systems Technology Corporation
9111 Edmonston Road Suite 302

Greenbelt Maryland 20770

(301) 441-9036

H. Sayani
ASTEC
lof 18

ABSTRACT

Developers of information systems are bombarded with publicity releases

hawking a plethora of tools and techniques. Although vendors give the impression

that their product will lead to developer to the "promised land", they rarely are

able to deliver. The result is that information systems developers ride a roller-

coaster: rising to a peak of expectation and hope, only to plummet down the

track of reality, before beginning to climb up to yet another peak of hope. This

paper will analyze this situation from the authors' perspective, formed by using

various information system tools/techniques and by consulting with over ten

Fortune 500 firms and six government agencies.

A case study will be presented which draws together the issues raised in

three distinct cases. Obviously, the names of the organizations will be changed

as will any other information that might lead to identification. This case study

will show a typical progression from the selection of an analysis methodology (SA)

to the adoption of an automated tool for specification and documentation (PSL/PSA)

and the difficulty of fitting these into an existing life cycle development methodology.

The problem presented in the case study is similar to the problem of resonance:

over a period of time, the morale of system developers reels through a journey

over peaks of "hyped" expectations and down into valleys of depressing realizations.

In addition, management is weighed down with the pressures of short-term goals

and the burdens created by long ignored human factors, both of which entice •

management to press for "any" product rather than the "right" product. The

technology to which both developers and management often turn in desperation is

marked by desperate development and by the shallow experience of the developers.

Lastly, the mentality of those employing development tools and/or techniques is

H.Sayani
ASTEC
2 of 18

very often provincial, relegating various items to a rigidly determined set of

categories or hardware-driven.

The general approach to a solution is taken from a procedure for problem-

solving developed by Svoboda and Sayani (1980). In this procedure, the system

developer is encouraged to take time first to examine the problem before attempting

to solve it, defining its major dimensions and determining the evaluative criteria

to be used in assessing any proposed solution. Then the problem-solver uses

some visualization tactic suited to his/her cognitive style or suggested by an

organization's methodology. These visualizations are then elaborated on by

translating them into linguistic expressions, at various levels of formality or

precision. What is expressed needs to be reflected, so that the composer can

grasp the implications of what has been said from various points of view, with a

differing focus or scope. Although what has been said seems, on reflection, to

be what was intended, it needs next to be analyzed or evaluated against the

earlier determined criteria, in light of any constraints, within the scope of

resources available. Those specifications which do not "pass" the foregoing

evaluation must be modified and this expression-reflection-evaluation-modification

process must be repeated until the system has been completely specified and is

ready for construction and implementation. Before the development team congratulates

itself for a job "well-done", it should project which tool/technique ought next to be

selected and employed and what has been learned from the whole process of system

development that might give direction to the next effort.

If an organization does not employ such an approach in systems development,

it will eventually begin to experience the rollercoaster ride mentioned earlier. If

one does employ such an approach, the organization will be in a better position

from which to assess the intrinsic quality of its tools /techniques and their
H. Sayani
ASTEC
3 of 18

contribution to the successful development of information systems. Such an

approach would offer the basis for guiding an organization in the introduction,

facilitation and institutionalization of hew tools/techniques for the development

of future information systems.

H. Sayani
ASTEC
4 of 18

THE VIEWGRAPH MATERIALS
for the

H. SAYANI/C. SVOBODA PRESENTATION FOLLOW

H. Sayani
ASTEC
5 of 18

The Problem
of

Resonance
in

Technology Usage

Presented at Sixth Annual NASA
Software Engineering Workshop

December 2, 1981

Hasan H. Sayani, Ph.D.
Cyril P. Svoboda, Ph.D,

Advanced Systems Technology Corporation
9111 Edmonston Road Suite 302

Greenbelt Maryland 20770
(301) 4U1-9036

Copyright (c) 1981 by Advanced Systems Technology Corporation (ASTEC),
Greenbelt, Maryland.

All rights reserved. No part of this material may be reproduced in any form
or by any means, without permission in writing from ASTEC.

H. Sayani
ASTEC
6 of 18

CREDENTIALS

Corporate Objectives

— R & D in IS development process

— analysis, design, code generation and life cycle
management automation tools

-- engineering and human factors background

-- application of tools on projects

Corporate Experience

-- instruction and application of tools
- 23 courses, seminars & workshops on PSL/PSA,

methodologies, tools (ADL, ADS)

-- consultation with organizations using tools
(over iO Fortune 500 & major Government Agencies)
on all levels of organization
- executive
- management
- operational

— evaluation of usage of tools

H.Sayani
ASTEC
7 of 18

PREVIEW OF PRESENTATION

Composite Cose Study

— examination of organization background in
software development process

- recognition of need for formal techniques

— response to problem

-- result of piece-wise intro of tools

Analysis of Situation

Generalization Approach

Conclusion

H. Sayani
ASTEC
S o f l S

COMPOSITE CASE STUDY

Examination of Background in Software Development Process

— third generation of hardware

-- obsolete/poorly documented existing systems

-- high turnover/additions to systems people

— dissatisfied users viewing systems as:

- inadequate and costly
- in large backlog/overruns
- unintegrated

lure of effortless development via tools and
techniques

- "let's get on some bandwagon"

H. Sayani
ASTEC
9 of 18

RESPONSE TO PROBLEM

"Small is beautiful"

"Have Money - Wi l l Buy Tools"

— one for each phase of development life cycle

-- acquire tools

— train pilot group

H.Sayani
ASTEC
lOof 18

RESPONSE TO PROBLEM

Apply the Solution

-- result can range from
- success to disaster

Next Evolutionary Step

— pass on work from one phase to another, or

— have a second group use the same tool

— both of which are usually doomed to disaster

Backlash

-- build in-house

-- force fit a tool by outspoken advocate

— regress

H.Sayani
ASTEC
11 of 18

ANALYSIS OF SITUATION

Problem of Introduction

— reality rarely matches overall expectations

— never possible in isolation

- distortion between existing and new
techniques for each tool

difficulty of integration across life cycle
phases

H.Sayani
ASTEC
12 of 18

ANALYSIS OF SITUATION

Management "Baggage"

— short term goals

-- due-date versus quality

-- ignoring human factors

- career-path implications

- E & T budget

- management styles
authoritative
democratic
laissez-faire

H. Sayani
ASTEC
13 of 18

ANALYSIS OF SITUATION

Technology Growing Pains

— first generation of tools/techniques
- shallow experience

-- vendor myopia and user passivity

-- disparately developed
- no overall plan of action

— changing ground rules
- cost parameters (hardware/software ratios)
- rapidly changing base technologies

DBMS
A-I
Graphics

H. Sayani
ASTEC
14 of 18

ANALYSIS OF SITUATION

Field Immaturity

— failure to recognize commonalities
e.g., different types of systems

- engineering vs commercial

-- financial and legal community's effect

- capitalization
- protection (e.g., copyright/trade secrets)
- inability to keep UP with rate of change

— Governmental approach

- doesn't foster coordinated effort

H.Sayani
ASTEC
IS of 18

GENERALIZATION APPROACH

(Problem-Solving)

Problem Recognition

— postpone solution before understanding
— dimensions of problem
— developing criteria of judging solution

Visualization

-- cognitive style
— methodology
— merely a basis for further work
— not universal

Expression

— graphics
-- linguistic

- levels of formality

Reflection

— other than mere echo of expression
— other focus/ scope/ dimension

H.Sayani
ASTEC
16 of 18

GENERALIZATION APPROACH

(Problem-Solving)

Analysis/Evaluation

— comparing against criteria
— evaluate against constraints
— realization of resources available

Modification/Iteration

— sensitivity analysis
— impact projection

Solution

— determination^!
and > of product

— presentation J

Iteration

— where should next tool fit?
— what have we learned from experience?

H.Sayani
ASTEC
17 of 18

CONCLUSION

— User organization: "get your house in order"

— Articulate needs of tools/techniques

-- Set quality standards

— Evaluate existing tools/techniques

— Walk through whole development cycle scenario

— Introduce in a studied fashion

- deliverables
- career paths
- feedback
- support usage
- training

— Study the process as well as the problem

H. Sayani
ASTEC
18 of 18

PANEL #4

SOFTWARE METHODOLOGIES

H. Mills/M. Dyer, IBM
B. Jones, Hughes Aircraft Corporation
R. Hamilton, Bell Labs

Sixth Annual Software Engineering Workshop

Goddard Space Flight Center

December 2, 1981

Cleanroom Software Development

M. Dyer and H. D. Mills

The 'cleanroom1 software development process is a new IBM technical

and organizational approach to developing software with certifiable

reliability. Key ideas behind the process are well structured soft-

ware specifications, randomized testing methods and the, introduction

of statistical controls; but the main point is to deny entry for de-

fects during the development of software. This latter point suggests

the use of the term 'cleanroom1 in analogy to the defect prevention

controls used in the manufacture of high technology hardware.

The present state of the art in software development is to conceive

and design a system in response to perceived requirements, then test

the system with cases perceived to be typical to those requirements.

The result is frequently a system which works well against inputs

similar to those tested for, but one which is unreliable in unexpected

circumstances. In fact, the evidence obtained by such testing is

entirely anecdotal rather than statistical.

In the 'cleanroom1, we embed the entire software development process

within a formal statistical design, in contrast to executing selected

tests and appealing to the randomness of operational settings for

drawing statistical inferences. Instead, we introduce random testing

as a part of the statistical design itself so that when development

and testing is completed, statistical inferences can be made about

the future operation of the system.

M. Dyer
IBM
1 of 10

We believe there are several major benefits to such a procedure. One

benefit is derived from standard statistical procedures in which a

formal statistical design permits objective statements about properties

of the system. But it is believed that an even more important benefit

will arise from effects on the developers through the discipline of the

statistical design on their activities. In fact, we believe that develop-

ing systems under stringent statistical controls will induce significant

behaviour modifications on software developers.

Presently, when developers conceive early tests to check the correct

operation of a system, they are able to identify just those parts of

the system that will have to function correctly to pass those tests.

Therefore, they can develop systems in phases, and control the test-

ing such that the system under development is protected from unwanted

testing. As a consequence, system parts may be omitted or done per-

functorily since the choice of tests is under the control of the de-

velopers.

We have in mind a different circumstance in testing under statistical

control, namely, that from the outset tests are selected at random

out of an expanding (top down) hierarchy of operational test cases.

Therefore, the system designer must be prepared to deal with a growing,

but always coherent, set of eventualities. It is believed that this

circumstance, which may seem unfair or impossible at first glance, will

dramatically change the way software development is done, by forcing a

system approach top down rather than permitting bottom up pieces to be

conceived and built under the protection of developer-selected testing.

M. Dyer
IBM
2 of 10

THE VIEWGRAPH MATERIALS
for the

H. MILLS/M. DYER PRESENTATION FOLLOW

M. Dyer
IBM
3 of 10

CLEANROOM SOFTWARE DEVELOPMENT PROCESS

DEFINITION

TECHNICAL AND ORGANIZATIONAL APPROACH TO DEVELOPING
SOFTWARE PRODUCTS WITH CERTIFIABLE RELIABILITY

LOGICAL EXTENSION OF

O SOFTWARE RELIABILITY THEORY

O MODERN SOFTWARE ENGINEERING PRACTICES

o FUNCTIONAL ORGANIZATIONAL STRUCTURE

GOALS

O PRODUCT RELIABILITY

INITIALLY ADDRESS PRODUCTS IN THE RANGE OF 10-25K SLOCS

RELIABILITY TARGETS OF MTBF'S MEASURED IN MONTHS AND
YEARS

O STATISTICAL DESIGN

EXPECTATION OF CORRECT SOFTWARE DESIGNS

"BLACKBOX" TESTING OF SOFTWARE

TESTING FOR THE OPERATIONAL ENVIRONMENT

o PROCESS CONTROLS

SOFTWARE PRODUCT ENGINEERING FUNCTION

MANAGEMENT TO RELIABILITY COMMITMENTS

M. Dyer
IBM
}of 10

CLEANROOM SOFTWARE DEVELOPMENT PROCESS

RELIABILITY MODEL

O BASED ON SOFTWARE OPERATING FAILURES, NOT ERRORS IN THE CODE

O DIFFERS FROM HARDWARE MODELS, LOGICAL NOT PHYSICAL FAILURES

O REASONABLENESS-DEMONSTRATED USING PUBLISHED SOFTWARE
FAILURE DATA

STATISTICAL APPROACH

O INPUT/OUTPUT SPECIFICATIONS

o INPUT PROBABILITY DISTRIBUTIONS

O STOCHASTIC PROCESS INTRODUCED THROUGH RANDOMLY SELECTED RUNS

O MTBF STATISTICS DEVELOPED FROM CYCLE/FAILURE RATIO

O CERTIFICATION BASED ON FAILURE FREE EXECUTION INTERVALS,
NOT ERROR FREE CODE

M.Dyer
IBM
5 of 10

CLEANROOM SOFTWARE DEVELOPMENT PROCESS

CLEANROOM DEVELOPMENT METHOD

O STARTS WITH STRUCTURED SPECIFICATION

STATE MACHINE MODEL

o SOFTWARE DESIGN ENGINEERING PROCESS

MODERN DESIGN METHODS

FIRST TIME CORRECT PROGRAMS

O SOFTWARE PRODUCT ENGINEERING PROCESS

IDENTIFICATION OF PRODUCT INPUTS AND PROBABILITY
DISTRIBUTIONS

SOFTWARE INTEGRATION INTO PRODUCT FORM

COLLECTION/CORRELATION OF FAILURE STATISTICS (MTBF)

CERTIFICATION TO CUSTOMER

O SOFTWARE MANAGEMENT

RELIABILITY COMMITMENTS

PRODUCT VISIBILITY THROUGH MTBF MEASUREMENTS

M. Dyer
IBM
6 of 10

CLEANROOM SOFTWARE DEVELOPMENT PROCESS

DESIGN FUNDAMENTALS

MODERN DESIGN METHODS

STATE MACHINES AND FUNCTIONS

STEPWISE REFINEMENT AND CORRECTNESS PROOFS

DATA TYPING AND ABSTRACTION

PROCESS DESIGN LANGUAGE (PDL) DOCUMENTATION

MODERN IMPLEMENTATION METHODS

PROGRAM SUPPORT LIBRARIES

HIGH-ORDER PROGRAMMING LANGUAGES

STRUCTURED PROGRAMMING

REVIEWS AND INSPECTIONS

DESIGN INNOVATIONS

STATISTICAL DESIGN APPROACH

DESIGN ALWAYS EXPOSED TO RANDOMIZED OPERATING
INPUTS

EMPHASIS ON TOP-DOWN IMPLEMENTATION STRATEGY

ELIMINATION OF SOFTWARE DEBUGGING

FOCUS TESTING ON OPERATING ENVIRONMENT

FOCUS DESIGN ON CORRECTNESS

M. Dyer
IBM
7 of 10

CLEANROOM SOFTWARE DEVELOPMENT PROCESS

PRODUCT ENGINEERING STRATEGY

CERTIFICATION BY INDEPENDENT GROUP

TESTING FROM SOFTWARE SPECIFICATION WITH DESIGN
DETAILS HIDDEN

SEPARATION OF RESPONSIBILITIES AND INTERACTIONS

TEST DEVELOPMENT

ANALYSIS OF INPUT PROBABILITY DISTRIBUTIONS

STATISTICAL/DISCRETE INPUT VALUES

INITIALIZATION AND OUTPUT VALUES

CONCURRENCY CONSIDERATIONS FOR PERFORMANCE TESTS

TEST EXECUTION

SELECTION OF RANDOM INPUT SAMPLES

RECORDING OF FAILURE FREE EXECUTION MATERIALS

GENERATION OF MTBF STATISTICS

FAILURE DIAGNOSTIC SUPPORT

FAULT LOCALIZATION

REGRESSION TESTING

M. Dyer
IBM
8 of 10

CLEANROOM SOFTWARE DEVELOPMENT PROCESS

SOFTWARE DESIGN ENGINEER

O CREATES THE PRODUCT

O RESPONSIBILITY

IMPLEMENTATION OF AN APPROVED SPECIFICATION

DELIVERY OF CORRECT SOFTWARE TO THE PRODUCT ENGINEER

O OUTPUTS

SOFTWARE PRODUCT DESIGN

SOFTWARE PRODUCT CODE

SOFTWARE PRODUCT DOCUMENTATION

SOFTWARE PRODUCT ENGINEER

O CERTIFIES THE PRODUCT

O RESPONSIBILITY

, _ . - __. VALIDATION OF THE PRODUCT AGAINST THE SPECIFICATION

DELIVERY OF A CERTIFIED SOFTWARE TO THE CUSTOMER

O OUTPUTS

SOFTWARE PRODUCT TEST PLANS/PROCEDURES

SOFTWARE PRODUCT INTEGRATION. PLANS/PROCEDURES

SOFTWARE PRODUCT LIBRARIES

SOFTWARE PRODUCT TEST REPORTS

M. Dyer
IBM
9 of 10

CLEANROOM SOFTWARE DEVELOPMENT PROCESS

TOOL REQUIREMENTS

LIBRARY SYSTEM

DESIGN DOCUMENTATION

PRODUCT CODE

CERTIFICATION TEST SAMPLES

STATISTICAL MODEL

MTBF CALCULATIONS

TREND ANALYSES

SOFTWARE UTILITIES

TEST SAMPLE BUILD

TEST EXECUTION CONTROL

DATA COLLECTION/REDUCTION

M. Dyer
IBM
10 of 10

SELECTING A SOFTWARE DEVELOPMENT METHODOLOGY

Robert E. Jones
Hughes Aircraft Company

Fullerton, CA

This paper describes the "Integrated Software Development Methodology (ISDM)" which is
being accomplished by Hughes Aircraft Company, Software Engineering Division, in Fullerton,
California and is sponsored by the Air Force Wright Aeronautical Laboratories, Flight Dynamics
Laboratory at Wright Patterson AFB, Dayton, Ohio under Contract F33615-80-C-3614.

. The ISDM project is currently in progress and its purpose is to study in detail state-of-the-art
analytical techniques for the development and verification of digital flight control software and
produce a practical designer-oriented development and verification methodology.

SCOPE

The scope of this project is limited to the study of existing tools and analytical techniques
and the production of a practical ISDM guidebook. The methodology selected is adapted to flight
control software, but is also applicable to most real time software developments.

The problem of evaluating the complete system is called validation, while the problem of
checking the software at each stage of the design process is called verification. This project is
concerned with verification.

The effectiveness of the analytic techniques chosen for the development and verification
methodology will be assessed both technically and financially. Technical assessments analyze the
error preventing and detecting capabilities of the chosen technique in all of the pertinent software
development phases. Financial assessments describe the cost impact of using the techniques,
specifically, the cost of implementing and applying the techniques as well as the realizable cost
savings. Both the technical and financial assessment will be quantitative where possible. In the
case of techniques which cannot be quantitatively assessed,qualitative judgemerits will be ex-
pressed about the effectiveness and cost of the techniques. The reasons why quantitative assess-
ments are not possible will be documented.

BACKGROUND

The design of digital flight control systems has been the role of the control engineer rather
than the computer or software specialist. Research into software design and verification has been
the role of very specialized software experts. The results of this research have not always been
practical in helping the flight control system designer with his tasks. Many tools and techniques
are too complex to adapt to the flight control problem. Other tools are too expensive to main-
tain and operate for the flight control problem.

R Jones
Hughes
1 of 14

SUMMARY OF OBJECTIVES AND RESULTS

The objectives and results being discussed here reflect those individual objectives and accom-
plishments to date.

Metrics

The development of metrics which can be applied to assess the design quality was one of our
first objectives. The effort was to be directed toward predictive metrics with the intention of
producing metrics which can be used by a flight control systems engineer to determine the quality
of the design produced and the likelihood of a successful implementation.

The metrics are being developed to aid in predicting such things as how many errors are
likely, how long it will take to test, how long it will take to correct an error, etc.

One of the results is that a set of concepts which provide the foundation for the ISDM metrics
has been developed. The equations which will be used as the basis of procedures to calculate pre-
dictors for the testability, reliability and flexibility have also been defined.

Guidebook

The overall objective is to create an integrated set of techniques and tools which are usable
by a digital flight control systems engineer for development of a DFCS. Primary emphasis is to be
on those activities involved in generating the DFCS software requirements specification, performing
the software design, and verifying the software design through software integration.

The guidebook represents the bulk of the output from this project and will be the most
visible. Emphasis must be placed on generating a document that is clear, understandable, and
usable while fulfilling its intended role of a guidebook.

The results thus far have produced a draft guidebook that is ready to be applied during the
experiment. The guidebook goes beyond the explanations of the tool and technique description
and use. There are discussions regarding the development environment and major issues of DFCS
software development. These are included to provide a backdrop for the actual application of the
tools and techniques.

As a result of numerous reviews on various versions of the draft guidebook, there now exists,
a solid foundation from which to build. This building will occur as a result of the experiment. As
different techniques are applied and as data is collected and analyzed, the guidebook will be up-
dated. The guidebook will be maintained in a dynamic fashion, being changed as dictated by the
experiment results.

Experiment

Having selected candidate analytic techniques and having organized these techniques into a
guidebook, there remains the problem of objectively and quantitatively assessing the value of these
techniques in producing a reliable flight control software system. For this reason, an experiment
will be conducted in which a small sample flight control system will be developed using the ISDM
guidebook.

R.Jones
Hughes
2 of 14

The experiment will begin with the specification and progress through all software develop-
ment phases. For each phase, an experiment will be conducted in which the analytic techniques
and tools described in the guidebook will be applied. The resources expended in the application
will be monitored and errors detected will be monitored and summarized.

In each of the development phases of the experiment, two classes of activity will take place.
The first class of activities will be the actual application of the techniques in the ISDM guidebook
to produce software. The second class of activities will be collection and analysis of the data
pointing out the effectiveness of each technique, the impact of each technique on the overall
schedule, the cost to prevent/detect errors, and the impact of errors on the total development
effort.

Results thus far include the development of the experiment plan. This document is a de-
tailed description of the activities which will occur. The plan includes the following factors to be
considered in evaluating the guidebook:

1. Usability by a flight control engineer,
2. Cost to use,
3. Quality of the result and software.

The plan delineates the following data to be captured:

1. Errors,
2. Cost,
3. System documents,
4. Subject comments.

CONCLUSION

The ISDM project has just started in the second phase, the experiment. Although it is too
early to provide firm conclusions, we are already starting to see some indications of not only which
tools/languages may be useful, but also identify distinct weaknesses. The experiment will help to
proye.out these preliminary "feelings" and provide quantification, at least when applied to metho-
dologies for specific applications.

R. Jones
Hughes
3 of 14

THE VIEWGRAPH MATERIALS
for the

B. JONES PRESENTATION FOLLOW

R. Jones
Hughes
4 of 14

(/)UJzoDZ
L
L
l

A•min

R
. Jones

H
ughes

5 of 14

LUZ(DDZ

OLUCOLUQC

Q

-

<

 <

L
L

nm

R
.Jo

n
es

H
ughes

6 of 14

U
)UJXo3XU
J

oLLJ

00
O

5oU
)

QCOOo00U
J
gDCDQ

.
gU

J
>U

J
O

U
J

§QCUJCLXU
J

OU
L

OODOZoo

zgoU
J

U
J

oQCoOCQCU
J

ozU
J U

J
H

->

3P3°
it m
<

 L
L

U
J U

J

0
)

OQCU
J

5zo55U
J

Oo.OU
J

U
J

O

CO<IjU
J

QCoZ(ftOoso

U
J

U
JU

J

5g3
&

d
 u

j
<

 u
.

U
j u

j

U
J

CD<(0DsaCOozU
J

22OOUJQC

>QD(0QCUJZfiCli-CCoLLU
J

ccQZU
J

52OoUJQC

II
R

.Jones
H

ughes
7 of 14

LUX(DDZccoLUOOLUODCa.

R
.Jones

H
ughes

8 of 14

UJzoDZ

COU
J

zoU
J

QCU
J

Q
.

CO

COoo

ot
o

COLUOZoUJ

LUzoO
 U

J

s
i

3
-

Q
Q

oD•••

LUDOLU(J0OC0
.

L
L

O
--

z0h
-

o.OC0COU
J

O

%^j^QCOQ
.

C
u

COL
L

OOHa.ocoCOU
J

Q

0U
l

1-oU
l

LUCOOCoOCOCU
l

L
L
0COLUo.^

COOCDQU
l

o0OCOLU
l

>U
J

OC

COUJCOzo.OCUlz

COoo

U
l
oOCH

I

U
l
DgzzoUJozoozoUlOCoLLoUJoUlLUzCOUloOCD.oCOUJOC

UJozoUJK-ozooozCODOCOLLCOUJZUJO5o
C

O

6m6

R
. Jones

H
ughes

9 of 14

(0LUztr<M
l

DCLU0
.

XLU

XCOao(DCOD2LUI-COCOLUa.5Z
D

0
)

QCQ

COooQCOLLCOLU

QCOLLCOZLU

O

^̂
B̂

—
 ™
 —

O
-
O

QOQCOOLUQC

OoooCOLUoDCDQQCOOLUQC

LUCOT,QLT,OLUOLUOLULUOCODCOQCQCLUOQCOOLUQC

COCOLUZLUOLULLLLLULUDOÔLUXOOLUs<z
R

. Jones
H

ughes
10 of 14

U
)

UJxoDxOODCCLQLU
J

DCU
J

a.XU
J

=
ii oc

R
. Jones

H
ughes

11 of 14

0
)UJzo3ZU
J

U
J

ccU
J

(0(0U
J

> ACCURACY

az<&_jCOCOôoCOLUg33a

APPLICATION

LUDazzoUJ L_r̂OoLL0I-cooo

CUMENTATIC

OQ\LUCC<f,LLOCOLLOf
!
••̂-JDa

CQU
J

CC

U
J

LLCO

CO

C
D

<

C
O

2

S

1

00XLULL

oI

R
.Jones

H
ughes

12 of 14

enIdIo3XCOoo

COCO0oCDZccH

JMD ACCURACY

<(0(/>UJUJ _h-OUJLLU,LJLJ

^
 ̂
X
,
Oo00UJQ'DCD

s.p:-jCO<QL<OZgoUJKUJOccoccccUJ

1— •ccoa.OLDCOo<h-zLU2DOOO

R
. Jones

H
ughes

13 of 14

0)LUXoDLUK>OQLU5C
L

h-•"»EXPERIMEIN

UJUJ _J0.K-
•

aO0

RESULTS

LU<̂̂UJ

ZUJ•51
2UJND IMPROV

LU£•̂•
M

^ ^̂
•̂
B

OoUJDC

IDEBOOK

DOoco-J<p

R
.Jones

H
ughes

14 of 14

Development Techniques for Generic Software

Richard L. Hamilton

Bell Laboratories
Holmdel, New Jersey 07733

1. INTRODUCTION

In developing the first version of a generic implementation of X.25,

Levels 2 and 3, we examined three development techniques: table-driven

finite state machine implementation, an integrated testing environment,

and top-down design. While not designed as an experiment, we monitored

the project closely and compared the product with other implementations

of X.25 at Bell Laboratories to evaluate potential benefits and

penalties.

2. TECHNIQUES

2.1 Finite State Machine

A finite state machine (FSM) is a powerful tool for both specifying and

implementing protocols. This technique was used in the X.25

specification and has been discussed in the literature[1,2,3,4]. A

table-driven implementation of the FSM was chosen to facilitate changes

and simplify coding. We were interested in what effect this technique

would have on program size, speed of execution, coding time, and

debugging time.

2.2 Testing Environment

Contrary to common practice, we made a testing environment before

coding. The complexities of a communications protocol, especially

X.25, require careful attention to the problems of verifying that an

R. Hamilton
Ben Labs
I o f 2 0

implementation of that protocol does in fact perform correctly. In

addition, we felt that the process of verification should start as

early as possible in the development process. The testing environment,

which runs under the UNIX* operating system, let us test the FSM and

its tables very early in the coding process. We were able to integrate

new modules easily and test them thoroughly using this tool.

2.3 Top Down Design

In designing and implementing a solution, we followed a top-down

approach. This made it possible to have a "running" version at all

times, with unwritten modules replaced by dummy routines. This was not

rigorously followed in coding because it was often more sensible to

code all of the routines that performed one function even if that meant

coding some low-level functions early. Doing this still let us always

have a running version, but simplified testing.

3. MEASUREMENTS

Our main method for evaluating these techniques was comparison with

existing implementations of X.25 at Bell Laboratories. We measured the

size and execution speed of both our implementation and the existing

ones and ran some simple complexity metrics.

* UNIX is a Trademark of Bell Laboratories

R. Hamilton
Bell Labs
2 of 20

We used the testing environment to help modify and transport existing

implementations of both Level 2 and Level 3 to a new environment, which

gave us the opportunity to compare our versions with the existing ones

in terms of the ease of making modifications. We kept a log of program

bugs found and the effort it took to fix them, for all of the

implementations, and tried to characterize the types of problems found.

4. CONCLUSION

A combination of a table-driven finite state machine realization, a

comprehensive testing environment, and a top-down approach was used to

produce an implementation of X.25, Levels 2 and 3. In comparison with

other, ad hoc, X.25 implementations, we found that our solution ran as

much as 20% faster, but was about 35 to 40 percent bigger. We were

able to explain all but 11% of that difference in terms of added

function or added flexibility. A McCabe complexity metric showed

little difference between the implementations.

Comparison of time spent debugging showed that our approach was

superior to the ad hoc methods, both in terms of number of errors

detected and time taken to correct those errors. Even so, the testing

environment was shown to be a significant aid in debugging the other

implementations when compared to other testing techniques. Although

not intended as a controlled experiment, the data collected during

development support using these techniques in similar circumstances.

R. Hamilton
Bell Labs
3 of 20

REFERENCES

[1] Bochmann, Gregor V., "A General Transition Model for Protocols

and Communication Services," IEEE Transactions on Communications,

vol. COM-28, no. A, April 1980.

[2] Bochmann, Gregor V. and Tankoano Joachim, "Development and

Structure of an X.25 Implementation," IEEE Transactions on

Software Engineering, vol. SE-5, no. 5, September 1979.

[3] Bochmann, Gregor V. and Carl A. Sunshine, "Formal Methods in ,

Communication Protocol Design," IEEE Transactions on

Communications, vol. COM-28, no. A, April 1980.

[A] Danthine, Andre A. S., "Protocol Representation with Finite-State

Models," IEEE Transactions on Communications, vol. COM-28, no. A,

April 1980.

R. Hamilton
Bell Labs
4 of 20

THE VIEWGRAPH MATERIALS
for the

R. HAMILTON PRESENTATION FOLLOW

R. Hamilton
BeD Labs
5 of 20

00U
J

U
J

DZI

H
-

Q

L
L

LU

Oy
Hi

^°
m

L

U

Om
cnm

a

>

Q
LJJ
Q

R
. H

am
ilton

B
ell L

abs
6 of 20

«g4-»
•=

o

men

0)(A

»-zU
J

a.O_jiuU
J

a10CNJ

X

o0

ilii3
 a

CJ)
«*-

c

o
<G

^_j

JT

^
O

w

<D
«

(!)Ea.
c

o
'43

<D

0)
<1)

O<QO

I -fe
.£

C

O
1
.

T
3

"O

1
2

•?

<l>

H
I

OLLJ

cdO

<0oa.

JD"5raS

a

.Q"x.VLJL
oR
. H

am
U

ton
B

eO
 L

abs
7
 of 20

S-
o>*C/>

0)

=
8«

U
J

Q
-

C
O

CLU
J

Q

R
. H

am
ilton

B
eD

 L
abs

8
 of 20

zoocOiiCMIL
I

_
J

O(0

>cUJ

R
. H

am
ilton

B
efl L

abs
9
 of 20

h-zLUoDC*•>LUOC/3
i,yh-i9csl-JU

J
>LU

T
J

C

m

Y
'

a
-

tn

S
r*

F™

^r
^*

Q

L
. 13

-»-
O

) oo
3

O

 0
)

3

R
. H

am
ilton

B
eU

 L
abs

10 of 20

LUZ

CD
.>

O

•5
•

•
i

<
'-2CO

LU

h
-

X

O
.

©

•

II

LJ_

R
. H

am
ilton

BeO
 L

abs
11 of 20

LUsLJJ

LOC
\j

X

R
. H

am
ilton

B
ell L

abs
12 of 20

LU<LLI

COU
J

R
. H

am
ilton

B
en L

abs
13 of 20

R
. H

am
ilton

B
eU

L
abs

14 of 20

U
J

»j

n: ^
(*?

LJ
<

-jIT

'
sg|,

_,|
** -"i

•'!&**5

"' 6
m

~

,"""
X

!Z

o
.

•*w
.«

Tj«
-

J""*™
" "

j,̂

U
L

1A-
CC,
H

I

R
. H

am
ilton

B
ell L

abs
15 of 20

O
il

13\ -
Qjl*

 i J.UV

L
L

ccou_

ITIVES

5E0
.

01-1-PACKE

PQ_
l

U
J

LU«
J

I -?

S

f' :f"

R
.H

am
ilton

B
eU

 L
abs

16 of 20

LLJ
LU

0

O
z

z
LLI

vo
LU

a:
£

cc
LLJ

?

L
U

LL
^-

U
_

t

"
*
"

t

Q

Q

LUO

L
L

I
L

U
6

Q

Q
o

o
£

"

O

<

£
>

O

0

^
Q

LL. o

-^
LL

O

)
in

en
O

O

C

O

O

*t>
C

M
Q

/}
_
.

._
. .

^_

(\j
L

iJ

w

w
"-*

U

J
U

J
z

z

C

•
C

"™

"

2
1

 i
!! 1

 P
g

A

o

g

£

o

LU
•

•

L
U

•

•

R
. H

am
ilton

B
eU

 L
abs

17 of 20

=
g

*
*

Q

"»

«i

(/'••
°~

w

.-

H

*
»

2

^

«
• c

v

^
^
^

8
 I. "g

LU
£ £ 8

£ § 3
* - "§

:i
g

^
c

o
g

h
.o

>
|=

^
y
j

<
/>

r

£
 ~

i':
!''

i
i

ii
it

5
 ?

 £r

,2
-

£

C

»M

z
S

-

2

w
's. o

-
e

-

Q

'^

Q

*
* ^
^

v
>

3

C

<t
(£>

U

5

<t
oO

<O

~O

,2

*
~

S
S

^
o

g
£

V

3
o .y - 0

l
-
C

O
l
f
i

H
O

&
O

O

J
J

i
"
0

X
f
l
O

l
f
i

X
^

-
i
O

c

^
>

.
LLJ

<
£
>

h
-

U
J

C
O

L
f>

t
S

'
C

H
-

ir
tu

3

h
-
^

o
i

F
^

n
j

en
<« —

0
£

o

g
1 .y

g* .9
a. £ £

^^
%

_
^™

 -
^^

^w
|^

<2
c

rti
*5

c

N

"x

«

j
.'«

*

j
U

J

«

^

u

 O

U

U
J

0
.

-
s

z
 i

R
. H

am
ilton

B
ell L

abs
18 of 20

0")
1Ufr!

O
t*

-
C

0

tf
ift

O

<
7
)

O

W
1)

tf)
O

U
U

C
M

O
li-

C
N

C

\
T—

 T—

^f-
O

J
C

D

'DC
*~

w

LUU
,

^
&

y.:.
»

.
S

o
l

«

5
/> i,

£
£. j» u.

»s e
<

u®
e

O
-

S
-

^
^

o
,

^
^

1
^

g

|

P-J
5 * s * I

S ̂
 S 5 «

eg
f

5
t

»
e

^
c

:
"

w
C

e
-

t
:

'
-

,
c

*2
o

J;;;
!

=
e

S
g

j
5

«
e

i
—

•-

~

"
U

"
^

.
c

E
t

n

•
^

'^
^

'S
'C

B
'^

-
J

1
3

§
f

I
"

S
O

l
-

b

^
-

f
l

C
O

Z
l

-
O

<

7
^

„
?

J
*

*
*

»
S

*
*

4
*

«

t
3
 5

I
1
3

-
D

._

O

<

j
^

Tt i
<

"<

I"

**

0
3

R
. H

am
ilton

B
eD

 L
abs

19 of 20

0>
k.0)

V
 ^w

—

co

CO
o

H

5

o

-
Z

c
\J

ro

LJJ
O

w

>
s

"^
.2

'̂

uj
in

cr
DC

C
O

O

LU

"
"

I
I

I

LJJ
jM

•g
^

g

Q
>

E

y
a

o
</>

o

R
. H

am
ilton

B
ell L

abs
20 of 20

Alphabetical Listing of Attendees and Their Affiliations

Arnold, Robert
Bachman, Portia
Bailey, John W.
Barrett, Curtiss C.
Basili, Vic
Batz, Joe
Bell, John F.
Boggs, R. B.
Bond, Jack
Boone, Dave
Borochoff, Robert
Boward, Stephanie
Bowe, Peggy
Brenneman, Dale
Card, David N.
Carpenter, Lloyd
Carson, John H.
Cephas, Arnold P.
Cheuvront, S. E.
Chumura, Louis
Clarson, John
Clements, Paul
Church, Vic
Cook,John
Copperthite, Robert
Corrigan, Paul
Cortez, Romo V.
Cruickshank, Robert D.
Cunningham, H. Conrad
Daniels, Herman
Boehm-Davis, Deborah
Decker, William
Dickenson, Charles
Dinatale, Vincent

-Diskin,Dave
Duncan, Ray
Dyer, Michael
Eiserike, Howard
Eng, Eunice
Eslinger, Sue Ellen
Eisenhardt, George H.
Fischer, Kurt
Forman, Ernest H.
Fuchs, Art
Gaertner, Ken
Gary, J. Patrick
Giammo, Carol A.
Goel, Amrit L.
Golden, John R.
Goodson, Al

Univ. of Maryland
NASA/GSFC
GE
NASA/GSFC
Univ. of Maryland
DOD
Action
NRL
NASA
CSC
Nat'l Lib. Med.
Sachs/Freeman
Lockheed
HUD
CSC
NASA/GSFC
G.W.
NASA/GSFC
CSC
NRL
Stromberg-Carlson
NRL
CSC
NASA/GSFC
Action
CTA
NASA/HQ
IBM
Gen. Dyn.
SASC
GE
CSC
USDA
IBM
Census Bureau
CSC
IBM
NASA/GSFC
NASA/GSFC
CSC
Logicon Inc.
CSC
G.W.
NASA/GSFC
NSA
NASA/GSFC
DCA/CCTC
Syracuse Univ.
Rochester Inst. Tech.
NASA/GSFC

A-l

Green, Art
Green, Tony
Grossman, Robert
Hamilton, Richard
Hanlin, Richard
Hannan, Sue K.
Hansan, Kevin
Herring, Ellen
Hilmer, Doug
Hiller, Donald
Hocking, Daniel
Hough ton, Raymond C., Jr.
Howarth, Daniels
Howell, Carol
Hull, Larry G.
Humphrey, William B.
Hutchens, Dave
Jamieson, Lillian
Jones, Antonio L.
Jones, Robert .
Judge, Robert
Jun, Linda
Kallmeyer, Fred W.
Karl, John K.
Kartatzke, Owen
Kell, Veronica
Kelly, A.
Knaus, Rodger
Knight, John C.
Koschmeder, Lou
Kruesi, Betsy
Kurihara, Tom
Kurzhals, Peter R.
Kown, Y.R.
Larson, Robert A.
Leader, Karen
Leibowitz, Steve
Lichtenstein, Arleen
Lin, Tsu H.
Laubenthal, Nancy
Maione, Anthony
Mark, Marilyn
Mazzuchi, Thomas
McGarry, Frank
McGarry, Mary Ann
McPhee, John
Medeiros, Edward J.
Meick, Douglas
Miles, Tim
Mills, Harlan
Mishoe, Jim
Modlin, Mark

CSC
NSA
HUD
Bell Labs.
NASA/GSFC
GE
IBM
NASA/GSFC
Census Bureau
Lib. of Congress
AIRMICS
NBS
USDA
NASA/GSFC
NASA/GSFC
DOTY
Univ. of Maryland
NASA/GSFC
CSTA
Hughes
IBM
NASA/GSFC
NASA/GSFC
NASA/GSFC
NASA/GSFC
NASA/GSFC
INSCOM
Nat'l Lib. Med.
Univ. of Virginia
NASA/GSFC
GE
DOT
NASA/GSFC
CSC
USDA
HTRI
Lib. of Congress
SDC
USDA
NASA/GSFC
NASA/GSFC
NASA/GSFC
G.W.
NASA/GSFC
IITRI
Dept. of Commerce
CSC
Lib. of Congress
Dept. of Commerce
IBM
IITRI
Social Security Adm.

A-2

Moe, Karen
Mohanti, Siba
Motley, Ron W.
Musa, John
Nadelman, Matthew
Napjus, Chris
Neill, David
Nelson, Bob
Neuwann, A. J .
Oesterricher, Charles
Oldson, Dennis
Ondrus, Paul 3 .
Ostrand, Tom
Page, Jerry
Parker, Donald
Penny, Leonie
Peters, Karl
Phenneger, Milton
Pietras, John
Pinsky, Sylvan
Plett, Michael
Post, Jonathan
Postak, John N.
Posthuma, Bill
Province, Phillip E.
Ratte, George
Redwin, Sam
Reynold, Paul
Roeder, John H.
Rowe, William
Rupolo, Vince
RyIand, Jim
Sandson, Mark
Savolaine, Cathy
Sauble, George R., Jr.
Sayani, Hasan £3.
Scheffer, Paul

- Schlenoff, Marvin -
Schneck, Paul
Schneider, Richard
Schwenk, Bob
Schultheisz, Robert
Sheppard, Sylvia B.
Selby, Richard
Shimer, John
Shukla, P.
Siegel, Mark E.
Singpurwalla, N.D.
Sloger, Marcia
Smart, Leslie
Smith, Gene
Smith, Luther G.

NASA/GSFC
Mitre Corp.
IBM
Bell Labs.
csc
NSA
NASAIGSFC
NASAICSFC
NBS
Mitre Corp.
SachslFreeman
NASAIGSFC
Sperry-Univac
CSC
N ASA/GSFC
USDA
csc
CSC
Mitre Corp.
Social Security Adm.
CSC

I Boeing Aerospace
DOTY
NASAlGSFC
CSC
USDA
Mitre Corp.
Univ. of Virginia
NASA/GSFC
Social Security Adm.
Bankers Trust Co.
Social Security Adm.
CTA
Bell Labs.
NASA/GSFC
AS TEC
Martin Marietta

- Social Security Adm.
N ASAICSFC
NASA/GSFC
N AS A/GS FC
Nat'l Lib. Med.
GE
Univ. of Maryland
NS A
CSC
Dept. Media Lib. Instr'l Systems
G.W.
USD A
Univ. of D.C.
NASA/GSFC
Fed. Reserve Bank of Richmond

Snyder, Glen
Sofer, Ariela
Gloss-Soler, Shirley
Sorkowitz, Alfred R.
Sos, John Y.
Soyer, Refik
Stanke, Edward C.
Starbird, Thomas
Stark, Mike
Stevenson, T.Q.
Suddith, Steve
Sokieski, Stanley
Sullivan, William
Svoboda, Cyril
Szulewski, Paul
Tesaki, Keiji
Tippett, James
Truss, Vivian
Truszkowki, Walt
Turner, Chris
Vandegrift, Shia Lu
Voight, Susan
Waligora, Sharon
Walton, Barbara A.
Wamser, Ray
Weaver, Alfred
Weiss, Dave
Will, Ralph
Williams, Clifford
Wong, Alice A.
Youman, Charles
Zelkowitz, Marv

CSC
G.W.
IITRI
HUD
NASA/GSFC
G.W.
Martin Marietta
JPL
NASA/GSFC
USDA
CSTA
NASA/GSFC
Dept. of Commerce
ASTEC
Draper Lab
NASA/GSFC
NSA
IITRI
NASA/GSFC
IITRI
USDA
NASA/Langley
CSC
NASA/GSFC
McDonald Douglas
Univ. of Virginia
NRL
NASA/Langley
DOTY
FAA
Cey Enterprises
Univ. of Maryland

A-4

BIBLIOGRAPHY OF SEL LITERATURE

Anderson, L., "SEL Library Software User's Guide," Computer
Sciences-Technicolor Associates, Technical Memorandum, June
1980

Bailey, J. W. and V. R. Basili, "A Meta-Model for Software
Development for Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering,
New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Basili, V. R., "The Software Engineering Laboratory: Objec-
tives," Proceedings of the Fifteenth Annual Conference on
Computer Personnel Research, August 1977

Basili, V. R., "Models and Metrics for Software Management
and Engineering," ASMS Advances in Computer Technology,
vol. 1, January 1980

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1980

Basili, V. R. , Tutorial on Models and Metrics for Software
Management and Engineering, New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

Basili, V. R. and J. Beane, "Can the Parr Curve Help with
the Manpower Distribution and Resource Estimation Problems?"
Journal of Systems and Software, volv 2, no. 1, 1981

Basili, V. R. and K. Freburger, "Programming Measurement and
Estimation in the Software Engineering Laboratory," Journal
of Systems and Software, vol. 2, no. 1, 1981

Basili, V. R. and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop; Qual-
ity Metrics, March 1981

Basili, V. R. and T. Phillips, "Validating Metrics on Proj-
ect Data," University of Maryland, Technical Memorandum,
December 1981

B-l

Basil!, V. R. and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

Basili, V. R. and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

Basili, V. R. and M. V. Zelkowitz, "Operational Aspects of a
Software Measurement Facility," Proceedings of the Software
Life Cycle Management Workshop, September 1977

Basili, V. R. and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

Basili, V. R. and M. V. Zelkowitz, "Measuring Software De-
velopment Characteristics in the Local Environment," Com-
puters and Structures, August 1978, vol. 10

Basili, V. R. and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering, New York: Com-
puter Societies Press, 1978

Church, V. E. , "User's Guides for SEL PDP-11/70 Programs,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Data and Analysis Center for Software, Special Publication,
NASA/SEL Data Compendium, C. Turner, G. Caron, and
G. Brement, April 1981

--, Special Publication, A Comparison of RADC and NASA/SEL
Software Development Data, C. Turner and G. Caron, May 1981

Freburger, K. , "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F. , "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978)

B-2

Mapp, T. E., "Applicability of the Rayleigh Curve to the SEL
Environment" (paper prepared for the University of Maryland,
December 1978)

Miller, A. M., "A Survey of Several Reliability Models"
(paper prepared for the University of Maryland, December
1978)

National Aeronautics and Space Administration, Special Pub-
lication, NASA Software Research and Technology Workshop,
L. B. Holcomb and J. H. Bredekamp, March 1980

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F. and D. Weiss, "Concepts Used in the Change Report
Form," Goddard Space Flight Center, Technical Memorandum,
May 1978

Perricone, B. T., "Relationships Between Computer Software
and Associated Errors: Empirical Investigation" (paper pre-
pared for the University of Maryland, December 1981)

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A. and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Software Engineering Laboratory, SEL-76-001, Proceedings
From the First Summer Software Engineering Workshop, August
1976

--, SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry et al., May 1977

--, SEL-77-002, Proceedings From the Second Summer Software
Engineering Workshop, September 1977

--, SEL-77-003, Structured FORTRAN Preprocessor (SFORT),
B. Chu, D. S. Wilson, and R. Beard, September 1977

--, SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

--, SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. O'Neill,
S. R. Waligora, and C. E. Goorevich, January 1978

B-3

--, SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

--, SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

--, SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S. Wilson, B. Chu, and G. Page,
September 1978

--, SEL-78-005, Proceedings From the Third Summer Software
Engineering Workshop, September 1978

--, SEL-78-006, GSFC Software Engineering Research Require-
ments Analysis Study, P. A. Scheffer, November 1978

--, SEL-79-001, SIMPL-D Data Base Reference Manual, .
M. V. Zelkowitz, July 1979

--, SEL-79-002, The Software Engineering Laboratory; Rela-
tionship Equations, K. Freburger and V. R. Basili, May 1979

--, SEL-79-003, Common Software Module Repository (CSMR)
System Description and User's Guide, C. E. Goorevich,
S. R. Waligora, and A. L. Green, August 1979

--, SEL-79-004, Evaluation of the Caine, Farber, and Gordon
Program Design Language (PPL) in the Goddard Space Flight
Center (GSFC) Code 580 Software Design Environment,
C. E. Goorevich, A. L. Green, and F. E. McGarry, September
1979

--, SEL-79-005, Proceedings From the Fourth Summer Software
Engineering Workshop, November 1979

--, SEL-80-001, Configuration Analysis Tool (CAT) Functional
Requirements/Specifications, F. K. Banks, C. E. Goorevich,
and A. L. Green, February 1980

--, SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDLAR) System Description, W. J. Decker,
C. E. Goorevich, and A. L. Green, May 1980

--, SEL-80-003, Multimission Modular Spacecraft Ground Sup-
port System (MSS/GSSS) State^of^the-Art Computer System/
Compatibility Study, T. Weldon, M. McClellan, P. Liebertz et
al., May 1980

B-4

--, SEL-80-004, System Description and User's Guide for Code
580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan et al., October 1980

--, SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

--, SEL-80-006, Proceedings From the Fifth Annual Software
Engineering Workshop, November 1980

--, SEL-80-007, An Appraisal of Selected Cost/Resource Esti-
mation Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

--, SEL-81-001, Guide to Data Collection, V. E. Church,
F. E. McGarry, D. N. Card et al., September 1981

--, SEL-81-002, Software Engineering Laboratory (SEL) Data
Base Organization and User's Guide, D. C. Wyckoff,
D. N. Card, V. E. Church et al., September 1981

--, SEL-81-003, Software Engineering Laboratory (SEL) Data
Base Maintenance System (DBAM) User's Guide and System De-
scription, D. N. Card, D. C. Wyckoff, V. E. Church et al.,
September 1981

--, SEL-81-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page et al., September 1981

--, SEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, D. N. Card et al., September
1981

- -_., SEL - 81 - 00 6 , ̂ Software Engineering Laboratory (SEL) Docu-
ment Library (DOCLIB) System Description and User ' s'Gufide,
W. Taylor and W. J. Decker, December 1981

--, SEL-81-007, Software Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green
et al., February 1981

--, SEL-81-008, Cost and Reliability Estimating Models
(CAREM) User's Guide, J. F. Cook and F. E. McGarry, February
1981

--, SEL-81-009, Software Engineering Laboratory Programmer
Workbench Phase 1 Evaluation, W. J. Decker, A. L. Green, and
F. E. McGarry, March 1981

B-5

--, SEL-81-010, Performance and Evaluation of Independent
Software Verification and Integration Process, G. Page and
F. E. McGarry, May 1981

--, SEL-81-011, Evaluating Software Development by Analysis
of Change Data, D. M. Weiss, November 19-81

--, SEL-81-012, Software Engineering Laboratory, G. 0.
Picasso, December 1981

--, SEL-81-013, Proceedings From the Sixth Annual Software
Engineering Workshop, December 1981

--, SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

Weiss, D. M. , "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science, New York:
Computer Societies Press, 1979

Zelkowitz, M. V. and E. Chen, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedings of
the Fifth International Conference on Software Engineering,
New York: Computer Societies Press, 1981

B-6

