
METHODOLOGY EVALUATION:

EFFECTS OF INDEPENDENT VERIFICATION

AND INTEGRATION ON ONE CLASS OF

APPLICATION

Jerry Page

COMPUTER SCIENCES CORPORATION

and

GODDARD SPACE FLIGHT CENTER

SOFTWARE ENGINEERING LABORATORY

Prepared for the

NASA/GSFC

Sixth Annual Software Engineering Workshop

zo
o

o
U

J
V

)

U
.U

.

LU
H

O
.

oQdXw

fcguj Q

•̂
M

(D
O

U
J

2
T

<
u
j Q

U
J

<
U
j

O

J.P
age

C
S

C
Io

f4
7

Viewgraph 1: Title

One area of study in the Software Engineering Laboratory

(SEL) is methodology. This presentation describes the

effects of an independent verification and integration (V&I)

methodology on one class of application, v&l is the name

that we will use for what some call independent verification

and validation (iv&V) and others call verification and vali-

dation (V&V). "One class of application" means the develop-

ment of solutions for a set of similar problems

(ground-based support for satellite operations) that are

developed in the same computing environment—simply put, a

specific problem in a specific environment.

Goddard Space Flight Center, SEL-81-104, "The Software En-
gineering Laboratory" (Software Engineering Laboratory
Series), D. N. Card et al., February 1982.

J. Page
CSC
2 of 47

LU(fl

33
iS

iiB c-

-.?~
i

-
 «

•

-5

. -I s

•13

•?S =

I

T
'

J. Page
C

SC
3 of 47

Viewgraph 2: Resource Profiles

Why use a V&I methodology? Why have we experimented with a

V&I methodology? To introduce V&I methodology, let me show

you resource profiles for four real projects developed for

the Goddard Space Flight Center (GSFC) by Computer Sciences

Corporation (CSC) and monitored closely by the SEL. These

resource profiles show technical hours charged to the proj-

ects by week. Technical hours are those hours charged by

the programmers and the first-line managers. First-line

managers are those managers who make decisions, set prior-

ities, and solve problems daily, as opposed to higher level

managers who receive weekly or less frequent progress re-

ports. Tnese resource profiles also do not include service

charges, which amount to approximately 13 percent of the

hours charged to a project. Service hours include those

hours charged by librarian, secretarial, technical, publica-

tions, and data technician support groups.

In these profiles, design activity starts at the far left-

hand side and continues throughout the project at decreasing

levels. The first vertical line indicates the conclusion of

a series of requirements analysis and critical design re-

views. It is the point at which implementation and corre-

sponding testing are allowed to begin. The second vertical

line is the point at which implementation (coding) is sup-

posed to be complete and system testing starts. The third

vertical line is the point at which the software is supposed

to be ready (for operation) and acceptance testing starts.

The fourth vertical line indicates the end of acceptance

testing and the beginning of maintenance (by another group).

Most people who measure software products apply many meas-

ures to the software product from the point at which it en-

ters the maintenance and operation (M&O) phase. We do too,

but since we have no responsibility for the software once it

J.Page
CSC
4 of 47

is transferred to the maintenance group and because it is

more difficult to collect data through another group, we

apply many of our measures one or two phases earlier, i.e.,

from the beginning of acceptance testing or from the begin-

ning of system testing.

As you can see from three of these four profiles (excluding

the one in the upper left-hand quadrant), the peak effort is

at the start of acceptance testing. Some of the reasons

that the peak effort occurs at that point are

• All the projects grow between 15 and 40 percent

after the start of implementation because of re-

quirements escalation.

• These projects cross two or three funding periods.

This puts some constraint on how much work can be

done in any one funding period.

• Management problems exist. The profile in the

lower left-hand.quadrant shows the application of

the "mythical man-month."

• There is a hard deadline (launch of a satellite).

• The computers are not very reliable (6- to 8-hour

mean time to failure).

We know_ what we are doing during that peak effort (the peak

at the third vertical line). A large fraction of our work

there is correcting errors.

It is commonly accepted that the cost to correct an error

approximately doubles as it enters each new phase of the

development life cycle. For example, if an error originates

in the requirements phase (the phase preceding design) and

if that requirements error gets designed, the cost to cor-

rect the error during design will be one to two times more

than to correct the error in the requirements phase. If the

designed requirements error gets implemented, the cost to

J. Page
CSC
5 of 47

correct the error during implementation will be two to four

times more than to correct the error in the requirements

phase. If the implemented requirements error enters the

system testing phase, the cost to correct the error will be

four to eight times more. If the implemented requirements

error enters the acceptance testing phase, the cost to cor-

rect the error will be 8 to 16 times more. If it enters the

M&O phase, the cost to correct the error will be 16 to

32 times more (for one simplified example, see Figure 1).

The same progression holds for errors that originate in de-

sign and implementation. Therefore, during the M&O phase,

even implementation errors are costly to correct; they cost

four to eight times more to correct during the M&O phase

than during the implementation phase.

We do not need a general hypothesis to know that it costs

more to correct errors in the later stages of development.

Our own data collected over the last 5 years shows that some

increase occurs in the cost of correcting errors from one

phase of development to the next. SEL data shows that (re-

gardless of error type) the average error discovered during

the acceptance testing phase costs more to correct than the

average error discovered during the system testing phase and

that the average error discovered during the system testing

phase costs more to correct than the average error dis-

covered during the implementation phase. The increase in

the average effort to correct the average error from one

phase to the next varies from project to project, but it

frequently approximates a doubling of effort.

Common sense indicates that there will be cost increases for

changes to the evolving product as development progresses

through the life cycle. Certainly, in this environment

there are several transfers of responsibility: from the

requirements team to the development team, from the

J.Page
CSC
6 of 47

CD

O

O
H

-

t sujuu r—0
0

L
U

0
2

OCCOCCCCLULUO

C
LU

COuuLUQOO

<IO_
C

O
LUGCOaLU
Q

C

ens-io3-Pmoenenc•H-Pu0)S-l

-p0)ouQ)

tn•Hfa

CD
C

O

C
O

CM

£
0

0
^

H

O

C
h
-

,
C

C
^&

5
m

L
u

O
 X

C
C
 O

L
L

J.P
age

C
SC

7 of 47

designers to the implementers, from the implementers to the

testers, and finally, from the development team to the main-

tenance team. These are -not complete transfers of responsi-

bility; instead, the team size increases or decreases at

different points in the development life cycle. Because a

system is never 100-percent completely or accurately docu-

mented and because few people can instantaneously absorb the

content of the documentation, new team members will require

additional time to become familiar with the system. There-

fore, functions will increase in cost when new members or

groups become responsible for them.

Since the average development team size is six members, pre-

maturely removing one member from the team always affects

the schedule adversely. If the schedule cannot be adjusted

(adjustments are more difficult late in the life cycle

because of launch deadlines), then a replacement member must

be added to the team. This replacement increases cost and

it does not solve the schedule problem completely unless the

replacement individual is more productive than the individ-

ual who was replaced.

We know that we have to improve our methodology, both in

management and development practices, to move error-

correction efforts earlier into the development life cycle,

closer to the commission of the errors.

We know this from the advocates of V&I methodology, from our

own SEL data, and from common sense. To save money, we must

move the peak effort away from the start of acceptance test-

ing (the third vertical line in the resource profile) and

nearer to the design phase (between the first and second

vertical lines in the resource profile) . For example, we

spend approximately 30 percent of our dollars for system and

acceptance testing (the area between the second and fourth

vertical lines). If 50 percent of that expenditure is for

J.Page
esc
8 of 47

error correction (15 percent of dollars), then by moving

that error-correction effort into the implementation phase,

we will reduce the cost of that effort by approximately

one-half; i.e., we will save approximately 7.5 percent of

our development cost.

J.Page
CSC
9 of 47

"T
S

h*

.1:

•i- .
«

J:s

-
_
 4

*

8
.

I":
c

•

•ic

c

•

8-1?

-
T

l

J. Page
C

SC
10 of 47

Viewgraph 3; Scaled Resource Profiles

These resource profiles are scaled so that the start of ac-

ceptance testing is 1 on the x-axis. The technical hours

spent each week (the y-axis) are scaled by the developed

lines of code (in thousands). The scaled resource profiles

show technical hours per thousand lines of developed code by

fraction of development life cycle. The unsealed resource

profiles (see viewgraph 2) show technical hours by week of

development life cycle.

J. Page
CSC
11 of 47

LO3

LLJ

oCCLUHU
J

C
L

OLULUQ

DESIGN, IMPLEMENT, TEST, DOCUMENTHARTER:

0

RE: SCIENTIFIC, GROUND-BASED, NEAR-REAL-TIME
INTERACTIVE GRAPHIC

85% FORTRAN, 15% ASSEMBLER MACROS

<tOu.OU
J

Q
.

h-

ANGUAGES:

«
j

OWXHiXo5COLO
*

enQZ?iDQlACHINES:

2

CTERISTICS: AVERAGE HIGH LOW

enLO
•

toLO'

X2
<

0

ROCESS CHAR

DURATION (M

0
.

o
i

tooCOOCLULL.EFFORT (STAFI

^
^
uoooor-U

J
NV

)

LO
 CO

r̂
 C

N
O

JC
O

CO

O

•

*
^

 C
N

o
o•

•

If) (0DEVELOPED
DELIVERED

IE EQUIV.)

2

STAFF (FULL-T

en oo
•

•
*~

C

O
 P

>

q
 e

n
<o co rx

t—

r—

^! P
If) O

 ̂
»—

f—(A

AVERAGE
PEAK
INDIVIDUAL:

KPERIENCE

r
"̂

U
JAPPLICATION

o
 en
•

•
LO

 CM

LO

O

(6 LO

0
0

O

LO

^u.u.c/3MANAGERS

TECHNICAL

EIENCE

EL
UOVERALL EXPI

od rx

q
q

«—

r-

O
 If)

O
 0

0
r—

U
.

LUC/5
MANAGERS
TECHNICAL

J. Page
C

SC
12 of 47

Viewgraph 4; Development Environment

I will talk about four projects today. Two went into opera-

tion about 2 years ago; the other two went into operation

about 3 months ago. A V&I methodology was applied to the

last two. The last two projects will be labeled V&I 1 and

V&I 2 on the following viewgraphs. The projects that became

operational 2 years ago will be labeled Past 1 and Past 2.

Date Past 1 Past 2 V&I 1 V&I 2

Development
start

Maintenance
start

Operation
start

M&O end

May 1978

Oct. 1979

Feb. 1980

Active

June

Aug .

Oct.

Sept.

1978

1979

1979

1980

Oct.

June

Aug.

1979

1981

1981

Active

Oct. 1979

May 1981

Aug. 1981

Active

This viewgraph shows the average value of each development

characteristic and the high and low values of the develop-

ment characteristics from 12 projects in one class of appli-

cation. The high or the low values themselves do not

represent one project but show the most and least of any

characteristic attributed to any of the 12 projects. The

four projects that I will talk about are included in these

statistics.

What is our development environment like? Our development

teams design, implement, test, and document software that is

scientific, ground-based, near-real-time, and interactive

graphic. The software is 85 percent FORTRAN, 1 percent as-

sembler, and 14 percent assembler macros. The assembler

macros are required for the graphics capability. The soft-

ware is developed on the IBM S/360-75 and -95, which are

batch oriented with a timesharing option (TSO).

This is an operations environment, not a development envi-

ronment. In this environment, the developers have access to

J.Page
CSC
13of47

the IBM S/360-95 via a Remote Job Processing (RJP) terminal

and via TSO terminals. The developers use the IBM S/360-75

primarily in programmer-present blocks of time for integra-

tion and system testing via a graphics device. The IBM

S/360-95 is the primary day-to-day satellite operations ma-

chine. When a hardware failure occurs, the developers lose

access to the machine via the RJP and TSO terminals and must

immediately relinquish their programmer-present time (if

they have it) on the IBM S/360-75 so that operations activ-

ities can continue with minimal interruption. Since

programmer-present blocktime is scheduled weekly and since

the schedule is usually fully booked, IBM S/360-95 hardware

failures always affect the development schedule adversely,

especially late in the development life cycle.

In addition, the IBM S/360-75 is the primary satellite

launch and launch-simulation operations machine. It is not

unusual to have launches monthly, and frequently they are

delayed on a day-by-day basis for 1 to 2 weeks or on a

week-by-week basis for 2 to 4 weeks. When this happens,

additional simulations are scheduled and/or additional mis-

sion planning machine time is required. Again, the devel-

opers must - relinquish scheduled programmer-present

blocktimes.

We estimate that 20 to 40 percent of scheduled programmer-

present blocktime is lost because of hardware failures on

both machines and because of launch delays. When frequent

hardware failures and launches occur during the later stages

of a development project, you can see how they can contrib-

ute significantly to the peak effort at the start of accept-

ance testing because of the need to make up lost machine

time to complete the development project on schedule.

On the average, the development process takes 15.6 months,

requires 8 staff-years of effort, develops 57,000 lines of

J. Page
CSC
14 of 47

code, and delivers 62,000 lines of code. Some amount of old

code is used in each of these projects. The average staff

size is 5.4 people and peaks at 10 people (full-time equiva-

lents) . Fourteen individuals are usually involved; this

figure includes the first-line managers, i.e., those mana-

gers who make decisions, set priorities, and solve problems

on a daily basis. For this application, on the average, the

managers have 5.8 years of experience and the technical

staff has 4 years. The technical staff includes the mana-

gers (approximately 30 percent). The managers have 10 years

of professional experience overall, and the technical staff

has 8.5 years of professional experience.

J. Page
CSC
IS of 47

I-LU§ELU0
.

XLLJ3^

U
J

OCCa.|5HU
J

Q2U
J

a.U
J

Q2"̂U
J

OO

Q(0(0U
J
u0cca.zU

J

a.OU
J

U
J

O

LUOCCOLU

(IGUITIES AND

EDCOzU
JREQUIRE

Z0pLoU
J

a.U
J

U
J

COLUOC0U
J

Q

COz0pHU
J

OCa.tfMISINTEI

CO3_
j

1 1DESIGN 1

U
J

COU
J

OCoU
J

Q

G FAULTS
ZPOLUOCOC0CJu.OCOooLUCOU

J
OCoU

J
Q

D ACCEPTANCE

ZSU
J

COCOCOST OF
TESTING

UJ
COU

J
OCoU

J
Q

F FAULTS

OOCU
J

ooCO^
^
^
mEARLY Dl

U
J

COccoz

0zh-CLLUCCItOCO°
0QUALITY

OPERATI

LUCOin!••
OCoz

o0HE
lPRODUC

ZH-Z§

J.P
age

C
SC

16 of 47

Viewgraph 5; V&I Experiment

Why use a V&I methodology? It has often been claimed that

the use of a V&I team would solve some of our problems.

What we want to know from this experiment is "Does the use

of an independent V&I team improve our development process

and product?" To test this hypothesis, we will apply seven

measures. These measures, however, are not completely inde-

pendent of each other. They measure, in different ways, the

occurrence of two basic properties:

1. When errors are discovered earlier, they are less

costly to correct.

2. The use of a V&I methodology helps to discover er-

rors earlier.

The seven measures with explanations follow.

1. Decrease requirement's ambiguities and misinterpre-

tations. This will save time and money, especially in later

stages of development. Overall, these are the most expen-

sive errors to correct because requirements are the starting

point for the development life cycle.

To evaluate this measure, the development error data that is

collected by the SEL from the development and V&I teams from

the start of implementation through the completion of ac-

ceptance testing will be examined. In this experiment, the

use of a V&I methodology is not expected to reduce the de-

velopment error rate; rather, it is expected to help dis-

cover errors earlier. If the use of a V&I methodology

provides this benefit, a larger fraction of requirements

errors will be detected during the design phase, in which

the SEL has no formal process for recording errors, and

therefore, fewer requirements errors (a smaller percentage

J.Page
CSC
17 of 47

of total errors) will remain to be discovered during the

formal reporting period. Compared with the past proj-

ects, a 50-percent decrease in the percentage of require-

ments errors reported by the development and V&I teams will

be a clear indication of success for this measure. In addi-

tion, since the V&I team will pursue the resolution of un-

specified and ambiguous requirements, fewer of these

requirements problems are expected in the later stages of

development.

2. Decrease design errors. This will save time and

money in later stages of development. Design errors are the

second most expensive to correct.

To evaluate this measure, the development error data will be

used to compute the percentage of the design errors that are

complex design errors. Complex design errors are many-

component errors, whereas simple design errors are single-

component errors. A component is a subroutine or shared

block of code. Simple design errors are frequently related

to (1) wrong assumptions about data values and structures,

e.g., integer versus real variables, 2-byte versus 4-byte

variables, location in buffer, or length of a format;

(2) lapses in memory, e.g., missing items (declarations,

dimensions, subscripts, statements, or counter incrementers)

or incorrect variable names (not misspellings); or (3) in-

correct interpretation of computations, e.g., wrong sense of

direction (sign operator), factors of 2 or root 2, or wrong

order of steps. Complex design errors are frequently

Formal error reporting for development is keyed to machine-
readable code that, in this environment, is the executable
source code. Therefore, formal error reporting occurs only
from the start of implementation through the completion of
acceptance testing. Maintenance error data is collected
from the maintenance group in a slightly different form.

J.Page
CSC
18 of 47

related to interfaces and operational considerations and,

therefore, they affect modules (several components). Since

interfaces and operational aspects receive more scrutiny and

high-level attention, they are more likely to be discovered

during design reviews, which for the most part occur outside

the formal error reporting period. The simple design er-

rors, which are found in the detail of the design, are less

likely to be found by a small V&I team (approximately

15 percent of development effort). If the use of a V&I

methodology helps to discover complex design errors ear-

lier, a larger fraction of the complex errors will be de-

tected during the design phase, and therefore, fewer complex

design errors (a smaller percentage) will remain to be dis-

covered during the formal reporting period. Compared with

the past projects, a 50-percent decrease in the percentage

of complex design errors reported by the development and V&I

teams will b-e a clear indication of success for this measure.

3. Decrease the cost of correcting errors. According

to those who advocate the use of a V&I methodology and from

our own SEL data, we know that correcting errors one life

cycle phase earlier will produce a significant savings.

To evaluate this measure, the relative cost of correcting

errors before and after acceptance testing started will be

computed. If the use of a V&I methodology reduces the

cost of correcting errors, the developers will spend less

effort per error in the later stages of development. Com-

pared with the past projects, a 20- to 25-percent reduction

Here, the relative cost of correcting errors is computed by
tabulating the effort to correct errors (reported by the
development teams) in each phase, computing the percentage
of error-correction effort that occurred in each phase, and
then dividing the error-correction effort percentage of each
phase by the corresponding percentage of errors found in
that phase.

J.Page
CSC
19of47

in the relative cost of correcting errors after acceptance

testing started will be a positive indication of success for

this measure. Maintenance error data that is collected by

the SEL from the maintenance groups will also be used.

4. Decrease the cost of system and acceptance

testing, if the first three items occur, less effort will

be required in these phases.

To evaluate this measure, the percentage of the development

cost'required to complete system and acceptance testing will

be computed. If the use of a V&I methodology helps to

discover errors closer to the phase in which they origi-

nated, (1) the development teams will spend less time cor-

recting errors during system testing and the system tests

will be completed sooner, reducing the cost of system test-

ing and (2) the development teams will need only to prepare

for and to demonstrate the acceptance tests, reducing the

cost of acceptance testing. Compared with the past proj-

ects, a smaller percentage of development cost for system

and acceptance testing will be a positive indication of suc-

cess for this measure. If the cost is less than the average

cost for this application, it will be a clear indication of

success.

5. Increase the early discovery of errors. This will

save time and money in later stages of development as stated

aoove. It will also improve the reliability of the software

or at least improve confidence in the reliability of the

software, since error rates will be less (or the mean time

The development cost is computed by weighting the hours
charged to a project by the different responsibilities of
the personnel assigned to the project. A manager's hours
are multiplied by 1.5; a programmer's hours are multiplied
by 1.0; support service personnel's hours are multiplied by
0.5.

J.Page
CSC
20 of 47

between failures will be greater) in the later stages of

development. To evaluate this measure, the development and

maintenance error data will be used to compute the percent-

ages of errors that were discovered before and after accept-

ance testing started. If the use of a V&I methodology helps

to discover errors earlier, most of the errors will be dis-

covered before acceptance testing starts. Compared with the

past projects, a 50-percent reduction in the percentage of

errors discovered after acceptance testing started will be a

clear indication of success for this measure.

6. Improve the quality of the software put into opera-

tion. This will decrease maintenance costs. In general,

the use of a V&I methodology will be most beneficial in the

M&O phase, since systems with lifetimes greater than 1 or

2 years usually have maintenance costs that range from 30 to

100 percent of the development cost.

To evaluate this measure, the software and maintenance error

data will be used to compute the error rate for the M&O

phase. If the use of a V&I methodology improves the quality

of the software put into operation, the error rate in the

M&O phase will be smaller compared with the error rates of

the past projects. An error rate less than the average er-

ror rate (0.5 to 0.6 errors per thousand lines of developed

code) for .this application will be a positive indication of

success for this measure.

7. Maintain productivity and cost. Adding another

interaction for the development team will slow them down and

will, therefore, reduce their productivity.and increase the

cost of development. However, if requirements and complex

design errors are reduced, if the cost of correcting errors

is reduced, and if the time spent on system and acceptance

testing is reduced, those reductions should offset the cost

of interaction between the development and V&I teams.

J. Page
CSC
21 of 47

Therefore, productivity and development costs should remain

the same. We do not expect to offset the cost of the V&I

team completely, but optimistically speaking, we hope to.

To evaluate this measure, the software and the weighted work

hours charged to the projects by the development teams will

be used to compute (in staff-months) the cost of 1000 lines

of developed code. A cost less than or equal to the average

cost (1.7 staff-months per thousand lines of developed code)

for this application will be a clear indication of success

for this measure. That is to say, an average cost for the

development team .plus an added cost for the V&I team is a

clear indication of success; the development teams will have

maintained productivity despite the interaction with the V&I

team.

By one calculation, the cost of interaction with the V&I

team is estimated to be 10 percent of the development ef-

fort. Therefore, if the development teams are average in

performance and require only the average cost even though

they are interacting with a V&I team, the use of a V&I meth-

odology will have effected approximately a 10-percent sav-

ings in development cost. If the use of a.V&I methodology

works well, i.e., if the first six measures show positive

indications of success, then the combined cost of the devel-

opment and V&I teams will be close to the average cost of

development for this application. Since the cost of the V&I

effort will be approximately 15 percent of the development

effort and the estimated cost of interaction with the V&I

teams is 10 percent, a combined cost of the development and

V&I teams that is near the average development cost will

indicate approximately a 25-percent savings in development

cost (15 percent real savings).

J.Page
CSC
22 of 47

CCO

U
J

Xo

MENTS AND DESIGN
*ATE SYSTEM TESTING
ISTENCY END TO END

U
I

*•?

(/J

VERIFY REQUIR
PERFORM SEP/
VALIDATE CON
FIX NOTHING
REPORT ALL

CTERISTICS:tOCESS CHAR)

EE0
.

C
O

r-r-CODURATION (MONT

15-18 PERCENT OF DEVELOPMENTEFFORT aLUSTAFF (FULL-TIME

*~. °
^

C

O

C

O

AVERAGE
PEAK
INDIVIDUALS

RIENCE

U
JAPPLICATION EXP

u.u.

MANAGERS
TECHNICAL STA

U
J

O2

OVERALL EXPERIE
»
- 0

0L
L

MANAGERS
TECHNICAL STA

AS DEVELOPMENT TEAMS, BUT IN DIFFERE
•

C
C

<
f

AME CONTRACTOI
PERATIONAL ARE-

C
O

O

J.P
age

C
SC

23 of 47

Viewgcaph 6; V&I Team

What did we expect the V&I team to do in this experiment?

The V&I team was supposed to

• Verify requirements and design.

• Perform separate system testing

• Validate the consistency from start to end (from

requirements to product)

• Fix nothing

• Report all findings

The V&I process lasted 14 to 16 months and required an ef-

fort of 16 to 18 percent of the development effort. The

process required an average of 1.1 people and peaked at

3 people (full-time equivalents). Six individuals were in-

volved, including the first-line managers. The application

and overall experience of the technical staff was similar to

that of the development teams (viewgraph 4); the managers,

however, had a little more experience.

The V&I.team was associated with the same contractor as the

development teams but came from a different operational area.

Next, we will examine the results of the experiment.

J.Page
CSC
24 of 47

U
JZ

U
JZ

C
O

O
w

o

COU
J

—
I

mo

0>

si2
8

°

28;

CM

to

te
(Ad

8°

.
"•C

fl

0U
J

e

C
N

5

2U
J

<
i

i
i

to

X

v

rm

I

I

LUCC5o
COU

J
o

f-
C

M

UJCCDCO<U
J

UJCCDCO<U
J

5

i
i

i
i

i
r

S

S

v

f»

S

«-

S«O
U

U
3

M
O

X
 _

i"2u
8°a.S

i

fe

dLUCC

I
I

3

S
i

i
i r

o

o

o

o
V

C

O

C
M

t-

CO

0>

(A
 O

Z
z

8°"-W
J

dU
l

oc

r
i

i
i

r
i

r
S

8

8- 5
8

8 2
S

U
O

U
U

3J.P
age

C
SC

25 of 47

Viewgraph 7; Measure 1 - Requirements Problems and
Measure 2 - Design Flaws

This viewgraph shows the breakdown, by percentages, of all

the requirements and design errors detected from the start

of implementation through the end of acceptance testing.

1. Requirements Errors

Expectation:

For requirements errors, we expect to see a 50-percent

decrease in the percentage of requirements errors.

Findings:

From the bar graphs, you can see that the percentage of

requirements errors for both V&I projects was reduced 84

to 90 percent compared with the past projects. In addi-

tion, very few requirements remained unspecified in the

later stages of development. Hence, there were very few

late surprises in terms of requirements problems com-

pared with the past projects.

Conclusion;

The use of a V&I methodology did significantly decrease

requirements ambiguities and misinterpretations.

2. Design Errors

Expectation;

For design errors, we expect to see a 50-percent de-

crease in the percentage of complex design errors. Com-

plex design errors are those involving many components.

Simple design errors are single-component errors. A

component is a subroutine or a shared block of code.

F i nd i ng s;

From the bar graphs, you can see that the percentages of

complex design errors for the V&I projects are 26 and

J. Page
CSC
26 of 47

23 percent of the total design errors. It is a little

less for the two past projects (23 and 18 percent).

Conclusion;

The use of a V&I methodology did not decrease complex

design errors.

J. Page
esc
27 of 47

CM
U

J
1/5

<LLLLO

toU
)

ccU
J

>OO
C

O
<M

C
N

(A

LU
esoo

<0
.

CCD(0<U
J

rves
oC

M
CM

oo

C/)CC
CCUJ

J.P
age

C
SC

28 of 47

Viewgraph 8; Measure 5 - Early Discovery of Faults

This viewgraph shows the percentage of errors of the total

that were found after acceptance testing started.

Expectation;

We expect to see a 50-percent reduction in the percentage of

errors found after acceptance testing starts.

Findings;

You can see that for the two V&I projects there was a slight

decrease (less than 30 percent) in the percentage of errors

found after acceptance testing started.

.Conclusion:

The use of a V&I methodology did not sigificantly increase

the early discovery of errors.

Additional Data;

The percentage of errors found in each phase is as follows:

Phase Past 1 Past 2 V&I 1 V&I 2

After Acceptance Testing 18.2 23.0 15.6 17.5
Started

Before Acceptance Testing 81.8 77.0 84.4 82.5
Started

Maintenance and Operation 3.4 . 5.3 5.0 6.9

Acceptance Testing •— 14.8 17.7 10.6 I0v6

System Testing 14.8 4.8 8.2 18.9

Code/Unit Testing 67.0 72.2 76.2 63.6

This viewgraph and viewgraphs 9 through 11 contain M&O data

through November 20, 1981. The length and status of the M&O

phases are as follows:

M&O Phase Past 1 Past 2 V&I 1 v&I 2

Months

Status

25

Active

14

Complete

5

Active

6

Active

J.Page
CSC
29 of 47

Except for project Past 2, which has ended, the results pre-

sented in viewgraphs 8 through 11 can only become worse with

further operation. However, the results are not expected to

change appreciably because of the characteristics of the

environment. Typically, in this environment, 95 to 100 per-

cent of the postacceptance error corrections and enhance-

ments occur during the first 6 months of M&O. For example,

the supposedly last-planned modification of the source code

for both V&I projects occurred a few days before

November 20, 1981.

After the first 6 months of M&O, typically, the software is

changed only to support a degradation in satellite hardware

performance, e.g., failure of a primary sensor. However, to

support a launch, the software is engineered to support

these types of contingencies but not always accurately

enough for day-to-day operation. Since the usual lifetimes

of these projects range from 1 to 3 years, the users must

weigh the cost of extensive development to support serious

or critical degradation in satellite hardware performance

with the benefit to be gained during the expected (and usu-

ally shortened) life of the satellite. For example, about a

year ago, the satellite of project Past 1 (25 months M&O)

had a critical hardware failure that seemed to end the proj-

ect prematurely; -however, relatively simple modifications to

the software allowed the users to keep the satellite active

in a degraded mode of operation.

J.Page
CSC
30 of 47

C
O

IXCN

(N5

oo0
0
•

CN

CDZ(JU
J

ccccoou.OCOoo

CNC/5
CM

0
0r
•̂

«N

C
O

LUCCD(0<LU

IU
l•

CM

Io
•

CM
IT)

siis*
Z

Z

tuu.

J. Page
C

SC
31 of 47

Viewgraph 9; Measure 3 - Cost of Correcting Flaws

This viewgraph shows the relative cost of correcting errors

found after acceptance testing started. This number is the

ratio of the fraction of effort required to correct the er-

rors that occurred after acceptance testing started to the

fraction of errors that occurred after acceptance testing

started. For example, if 50 percent of the effort to cor-

rect errors was expended after acceptance testing started

and if that effort was needed to correct 5 percent of the

errors, this number would be 10.

Expectation: . ''

We expect to see a 20- to 25-percent lower relative cost to

correct errors after acceptance testing starts.

Findings:

From the bar graphs, you can see that the relative cost to

correct errors after acceptance testing started was the same

as that for the past projects. The relative cost to correct

errors before acceptance testing started was approximately

0.5. This indicates that the cost to correct errors after

acceptance testing started was "between 4.4 and 4.9 times

more costly than the cost to correct errors before accept-

ance testing started.

Conclusion;

The use of a V&I methodology did not decrease the cost of .

correcting errors in the acceptance testing and M&O phases

combined.

J. Page
CSC
32 of 47

Additional Data:

The relative cost of correcting errors in each phase is as

follows:

Phase Past 1 Past 2 V&I '1 V&I 2

After Acceptance Testing 2.78 2.76 2.88 2.76
Started

Before Acceptance Testing 0.60 0.47 0.59 0.63
Started

Maintenance and Operation 4.85 4.53 4.09 3.54

Acceptance Testing 2.31 2.23 2.31 2.26

System Testing 1.00 1.09 1.30 1.08

Code/Unit Testing 0.47 0.43 0.58 0.49

These figures, in part, validate the common belief (advanced

_by proponents of V&I methodology) that errors are more ex-

pensive to correct when they are discovered later in the

development cycle. You can also see from these figures and

from the figures in the previous viewgraph that the results

are different for different phases; but, remember that we do

not have responsibility for the maintenance phase, and data

is more difficult to obtain from the group who has responsi-

Dility. Therefore, we measure things one or two phases ear-

lier, i.e., during acceptance testing or system testing.

The relative cost of correcting errors in the M&O phase was

less for the V&I projects mainly because of fewer require-

ments errors in that phase. The past projects had at least

twice as many requirements errors in that phase.

J. Page
CSC
33 of 47

LLI

LUO<a.LUOo<oLU

LUXccLU2LUa.OLU

2

in
° g
§ 3
<

b*

LU
ro

I
I

OoLUGCDU
)

<LU

2PLUI-LU
C

N

CM

U

M
-

2

^

<

M

a

z

z

a

<
 E

CMdv

o
 1

2

..

P 5
S3 &
H

I
H
 a

2

X

2
 «

^ "*
a
 a

o
 >

o
 <

O
)

PSO• ^

CVJ
9
)

COzaE
2

M

O

C
M

w

a
H

I
>

Q

<

CM

I-W<OLIa.

IT
I

I
I

I
I

I
I

I
O

Irt

L
O

L
O

O

IT
J

M

C
M

«
-

O

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

in

o

in
r*

LO

CM
1

I

1S
O

O
 ±

N
3
IA

Id
O

1
3
A

3
a

 dO
 %

J. P
age

C
SC

34 of 47

Viewgraph 10: Measure 4 - Cost of System and Acceptance
Testing

This viewgraph shows the cost for time spent in various de-

velopment calendar phases (not activity phases). Design

activity takes place in the design calendar phase, in the

code/unit testing (implementation) calendar phase, and even

in the system and acceptance testing calendar phase. De-

tailed SEL data shows that design activity ranges from 30 to

45 percent of the development effort. On the average, how-

ever, only 23 percent of the development effort occurs dur-

ing the design calendar phase, i.e., the phase in which only

design-related activity is performed. The remaining design

activity is performed primarily during the implementation

phase because requirements change, previously missing infor-

mation is acquired, and design errors exist. Since it is

not unusual to receive requirements changes during the sys-

tem and acceptance testing phases, since some previously

missing information may be acquired during these phases, and

since design ,errors are also discovered in these phases,

some design activity occurs here, too.

This viewgraph also contains the average cost for each phase

and the highest and lowest cost for each phase for the

12 projects in our sample. The high or low costs themselves

do not represent the cost of one project but show the most

and least money spent for the various phases by any of the

12 projects.

Expectation;

We expect to see a reduction in the cost of the system test-

ing and acceptance testing phases.

Findings;

On the average, we spend 29 percent of our dollars on system

and acceptance testing. You can see that one V&I project

was below the average (26.6 percent) and the other, above

J. Page
CSC
35 of 47

(31.1 percent) . Together, they were equal to the average.

Both were less than our two projects from the past.

Conclusion;

The use of a V&I methodology did not significantly decrease

the cost of system and acceptance testing.

Additional Data;

We do not have responsibility for the maintenance phase.

Our best estimate is that the maintenance costs for the faur
\

projects are about 15 percent of the development costs. The

V&I projects had approximately 16- to 18-percent overheads,

to pay for the V&I effort.

J. Page
CSC
36 of 47

ecLUQ
.

O

LUcctoLUOH-aiCOLUDCD(0<LU

LUOH
I

H

V
)

U
J

I-U
J

Oz<a.LUOO

LULU

V
)

LUzDU
J

QO<J

I
T

ICM

CM

i
i

i
i

i
i

i
i

i
i

i
r

CM
o

co

<
e

T

pg

to ro

to ro

3-a.
in »-
(N

 C
M

LU!
O

O
lQ

 >J
/saoaa3

o
o
ia

 M
/suoaaa

S
S

o

J. Page
C

SC
37 of 47

Viewgraph 11; Measure 6 - Quality of Software

This viewgraph shows the errors per thousand lines of devel-

oped code for various calendar phases. What is important

here is the M&O phase.

Expectation;

We expect to see an error rate in the M&O phase less than

the average error rate for this application.

Findings;

From the bar graphs, you can see that the error rates for

the two V&I projects are not better than the error rates for

the two past projects. The average error rate in the M&O

phase is between 0.5 and 0.6 errors per thousand lines of

developed code; both V&I projects had error rates higher

than the average.

Conclusion:

The use of a V&I methodology did not improve the quality of

the software put into operation.

Additional Data;

Error rates from the other phases are important track rec-

ords. Hypothetically, let us say that projects Past 1 and

V&I 2 were developing the same product. If we measured the

acceptance testing error rates, we would see that both had

error rates of 1.4 errors per thousand lines of developed

code. We would not be able to tell too much about the proj-

ects from that viewpoint. However, if we examined those

projects' error rates before acceptance testing, we would

see that project Past 1 had a preacceptance testing error

rate of 7.9 and project V&I 2 had a preacceptance testing

error rate of 10.6. From this, we may be able to predict

the worse M&O phase error rate for project V&I 2.

J. Page
CSC
38 of 47

fxO
0
0
CM

CMCMOZ

OO

UJZccUJ>O3

UJoCC
»

U4
>

to
 <

OZCD

CD
r̂

<

o

1

O

2
 >
2
 <

oOCM
*

to

*~
cc

z

CC
•

CD
^

O
 C
D

cc
>

0.

<

in
CM

o
*

•

•

•

•
CM

«
-

f
-

t
-

t
-

O
O

1Q
 >

l/S
H

!N
O

IA
J-d

d
V

±
S

J. Page
C

SC
39 of 47

Viewgraph 12; Measure 7 - Productivity/Cost

This viewgraph shows the cost (in staff-months) per thousand

lines of developed code (K DLOC).

Expectation;

We expect the V&I overhead costs to be an add-on cost to our

average development cost.

F i nd i ng s ;

Because of the interaction with the V&I team and some other

problems, we drove the productivity of the development teams

to the low end of our productivity range. Together, the two
V&I projects were about 85 percent more expensive than our

two past projects. Since the quality of the products was
not any better (see viewgraph 11), an 85-percent increase in

cost for the same product is a very expensive penalty to

pay. The cost of the development part of 'the V&I projects

(2.2 staff-months per K DLOC) was approximately 30 percent
higher than the average development cost (1.7 staff-months

per K DLOC). This is three times as large as the estimated
cost of interaction with the V&I team.

Conclusion:

The use of a V&I methodology is expensive.

J. Page
CSC
40 of 47

O

H2U
J&l EXPERIMI

^ ^
^
^

u.OWH
-

U
J

OC

U
J

>ZLUQLUCODU
J

<ZU
J

goU
J

Z2OUL

MEASURE

- —
 ,-

FOUND
COLUE

g
D

oQUIREMENTS AMBIG
D MISINTERPRETATK

L
U

2
O

C
<

2LUi DECREA!

LU

OOCj

SIGN FLAWS

LUO

CREASE II

U
J

QO2

CO§• •ST OF CORRECTING F

OO

—
 2

-CREASE II

U
J

QO2

ST OF SYSTEM AND
CEPTANCE TESTING

0
0

0
<

2U
J

CO. DECREA!

^
H

gCO

COD

RLY DISCOVERY OF F

Û
J

2U
jL INCREAS

^
^

gCO

K_DQ
.lALITY OF SOFTWARE

ERATION

ODUCTIVITY
t+-r

-30.
ccC

do
Q.C.

2
.•i

u
ju

t/\ *
^
 0

=
Is

CO
O

C
f

<

0
;

u
j

u
j :

E

O
f

O
i

n̂̂
j

2

0

0

5
2

-i

01

i MINUS

5
3

;
*Q

U
oA

^

O
c
c

S
t

N

1 i
: Q

.o0
)

U
J

5

J. P
age

C
SC

41 of 47

Viewgraph 13; Results of V&I Experiment

From the data we have used, which includes resource data,

error data, and the software, we have found that a V&I meth-

odology provided

1. A large decrease in requirements ambiguities and

misinterpretations. There were very few late surprises in

terms of requirements problems, and the number of require-

ments errors reported was significantly less than for the

past projects.

2. No decrease in design errors. The fraction of com-

plex design .errors was similar to that of the past projects.

3. No decrease in the cost of correcting errors. The

relative cost of correcting errors that occurred after ac-

ceptance testing started was the same as that for the past

projects.

4. A small decrease in the cost of system and accept-

ance testing. One V&I project had a system and acceptance

testing cost less than the average system and acceptance

testing cost; the other V&I project was above the average

cost. However, both V&I projects -had costs below the costs

of the past projects used in the comparison.

5. A small increase in early discovery of errors. For

both V&I projects, the percentage of errors that occurred

after acceptance testing started was less than the percent-

age of errors that occurred after acceptance testing started

for the past projects.

6. No improvement in the quality of software put into

operation. The error rates in the M&O phase for both V&I

projects were higher than the average error rate for soft-

ware put into operation for this class of application.

7. A decrease in productivity and an increase in

cost. Because, in part, the interaction of the V&I and

J. Page
CSC
42 of 47

development teams lowered productivity and because there was

not a savings in correcting errors, the cost was high.

We scored a plus with the first measure (requirements prob-

lems) ; zero with the next five measures; and a double minus

with the last measure (productivity/cost).

J. Page
CSC
43 of 47

111v>

toX
U

l

U
J

zO

tc<
LL
O

(0(/>U
J

OO

o
1

ULJ
zH

o"•

LLJ

U
J

ccdLUCC
3

•
H

D
0—

 U
J

0
-2

<
0

i-EE
co 5;
EEz
U

. U
l

w

"
 x

a
$

~
w

 w
O

<

<

5
 g

 g
I

I
I

U
.

00

_
(/>

uj
3

h
-H

-
H

 u
j

C/>
CC

I- I-
Z

Z

t&
 ^&

C3 C5

•••
E

 E
U

J
U

J
z
 z

h-
K

-

I
I

U
J

J. Page
C

SC
44 of 47

Viewgraph 14; Summary

For our first application of a V&I methodology in this en-

vironment

• V&I did not improve the process

• V&I was very expensive

• V&I was a management headache

To qualify this, our experience with many methodologies has

been as follows:

• The first time a methodology is applied, mistakes

are made (and we made many mistakes), and many of

the potential benefits or advantages of the method-

ology are not realized.

• The second time a methodology is applied, there is

a tendency to overcompensate for the things that

you did worst the first time, and the methodology

still does not work as well as it potentially could.

• The third time a methodology is applied, you lower

your expectations somewhat or modify them, and you

home in on what is right for your environment.

In general, development teams are at the bottom of the totem

pole in this environment. Because they work in an opera-

tions environment, they have low priority for accessing the

machines. They have adversary relationships with the

analysis/requirements team, the team that conducts accept-

ance testing, the people who schedule computer time, the .

computer operators, the programmer assistance center, and

the customer. The V&I team members, who are like a develop-

ment team but do not design or implement, have the same ad-

versaries. Placing a V&I team in this environment creates

another adversary for both the development team and the

development-like V&I team. The manager who monitors both

teams (the customer) has twice as many complaints, computer

J. Page
CSC
45 of 47

problems, priority decisions, schedule problems, cost prob-

lems, reporting problems, and conflicts to deal with. The

V&I experiment was a management headache.

However, we believe that we know what changes are needed and

how to moderate them to make the use of a V&I methodology

more cost effective in this environment for

• The right size effort

• The right reliability requirement

Most of our projects require 8+4 staff-years of effort. We

believe that a V&I methodology will be cost effective in the

10- to 12-staff-year range and that cost savings will be

achieved for larger efforts. All our completed projects

have been for ground-based software, but we have started to

develop some onboard (flight) prototype systems. For these

systems, which have a more stringent reliability require-

ment, we believe that a V&I methodology will be cost effec-

tive for 5- to 6-staff-year efforts. In both these cases,

we believe that a V&I effort of approximately 15 percent of

the development effort is sufficient for our work.

J. Page
CSC
46 of 47

