General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
DOCUMENTATION FOR THE
MACHINE-READABLE VERSION OF A DEEP
OBJECTIVE-PRISM SURVEY FOR LARGE MEGELLANIC
CLOUD MEMBERS (NASA) 14 P. LC A02/RF A01
Unclas
CSCI 03A G3/89 09800

DOCUMENTATION FOR THE
MACHINE-READABLE VERSION OF
A DEEP OBJECTIVE-PRISM SURVEY
FOR LARGE MEGELLANIC CLOUD MEMBERS

FEBRUARY 1982
DOCUMENTATION FOR THE MACHINE-READABLE
VERSION OF A DEEP OBJECTIVE-PRISM SURVEY
FOR LARGE MAGELLANIC CLOUD MEMBERS

Wayne H. Warren Jr.

February 1982

National Space Science Data Center (NSSDC/
World Data Center A for Rockets and Satellites (WDC-A-R&S)
National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771
TABLE OF CONTENTS

Section 1 - INTRODUCTION ... 1-1
Section 2 - TAPE CONTENTS ... 2-1
Section 3 - TAPE CHARACTERISTICS .. 3-1
Section 4 - REMARKS AND REFERENCES .. 4-1
Section 5 - SAMPLE LISTING ... 5-1

LIST OF TABLES

Table

1 Tape Contents ... 2-1
2 Key to Alternate Designations .. 2-3
3 Notes to Catalog Data Records ... 2-4
4 Tape Characteristics ... 3-1
SECTION 1 - INTRODUCTION

This catalog contains 1273 proven or probable Large Magellanic Cloud (LMC) members, as found on deep objective-prism plates taken with the Curtis Schmidt telescope at Cerro Tololo Inter-American Observatory in Chile. The stars are generally brighter than about photographic magnitude 14 and are identified on charts published by Hodge and Wright (1967) and reproduced in the source publication (Sanduleak 1969). Approximate spectral types were determined by examination of the $580 \, \text{Å} \, \text{mm}^{-1}$ (at $H\gamma$) objective-prism spectra; approximate 1975 positions were obtained by measuring relative to the 1975 coordinate grids on the Uppsala-Mount Stromlo Atlas of the LMC (Gascoigne and Westerlund 1961), and approximate photographic magnitudes were determined by averaging image density measures from the plates and image-diameter measures on the "B" charts of Hodge and Wright (1967).

This document describes the machine-readable version of the LMC survey catalog. It is intended to enable users to read and process the tape file without problems or guesswork. A copy of the document should be supplied with any machine-readable version of the catalog.

SOURCE REFERENCE

Sanduleak, N. 1969, A deep objective-prism survey for Large Magellanic Cloud members, Cerro Tololo Inter-American Observatory, Contrib. No. 89.
A byte-to-byte description of the contents of the machine-readable catalog is given in Table 1. The suggested format can be modified depending upon usage, although data fields specified with A (character) formats only contain character data and alternate specifications cannot be used. Alternate specifications are given in parentheses.

<table>
<thead>
<tr>
<th>Byte(s)</th>
<th>Units</th>
<th>Suggested Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-7</td>
<td>---</td>
<td>I3, I4</td>
<td>Catalog number (NS): Declination zone in bytes 1-3 (sign always in byte 1), number in bytes 5-7 (byte 6 always blank).</td>
</tr>
<tr>
<td>8</td>
<td>---</td>
<td>A1</td>
<td>Suffix character "a", "b", or "c" in cases where more than one star has the same NS number. Blank otherwise.</td>
</tr>
<tr>
<td>9</td>
<td>---</td>
<td>A1</td>
<td>Asterisk if there is a note about this star in the published catalog. The notes are reproduced in Table 3 of this document.</td>
</tr>
<tr>
<td>10-15</td>
<td>---</td>
<td>I6 (A6)</td>
<td>Number in the Henry Draper Catalogue (HD); otherwise blank.</td>
</tr>
<tr>
<td>16</td>
<td>---</td>
<td>A1</td>
<td>Colon (:) if HD identification uncertain; otherwise blank.</td>
</tr>
<tr>
<td>17-23</td>
<td>---</td>
<td>I7 (A4, A3)</td>
<td>Number in the Cape Photographic Durchmusterung (CPD); blank for no CPD identification.</td>
</tr>
<tr>
<td>24</td>
<td>---</td>
<td>A1 (1X)</td>
<td>Reserved for CPD colon (:) , but no cases occur in the catalog.</td>
</tr>
<tr>
<td>25-26</td>
<td>hours</td>
<td>I2</td>
<td>Right ascension (\alpha), 1975.</td>
</tr>
<tr>
<td>27</td>
<td>---</td>
<td>1X</td>
<td>Blank</td>
</tr>
<tr>
<td>28-31</td>
<td>min</td>
<td>F4.1</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>32</td>
<td>---</td>
<td>1X</td>
<td>Blank</td>
</tr>
<tr>
<td>33-35</td>
<td>•</td>
<td>I3</td>
<td>Declination (\delta), 1975. Sign always in byte 33 (always negative).</td>
</tr>
<tr>
<td>36</td>
<td>---</td>
<td>1X</td>
<td>Blank</td>
</tr>
</tbody>
</table>
Table 1. (continued)

<table>
<thead>
<tr>
<th>Bytes(s)</th>
<th>Units</th>
<th>Suggested Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>37-38</td>
<td>'</td>
<td>I2</td>
<td>δ</td>
</tr>
<tr>
<td>39-44</td>
<td>---</td>
<td>A6</td>
<td>Spectral type (OP). Lower case characters are used for broad lines (n) and emission (e) symbols.</td>
</tr>
<tr>
<td>45-48</td>
<td>mag</td>
<td>F4.1</td>
<td>Photographic magnitude m_{pg} (always present).</td>
</tr>
<tr>
<td>49</td>
<td>---</td>
<td>A1</td>
<td>"v" if variable m_{pg}; otherwise blank.</td>
</tr>
<tr>
<td>50-61</td>
<td>---</td>
<td>12A1 (3A1)</td>
<td>or equivalent. Finding chart identification in source publication (Sanduleak 1969). When a star is identified on more than one chart, the numbers are separated by commas. (Identifications such as 45a, 45d are present).</td>
</tr>
<tr>
<td>62-85</td>
<td>---</td>
<td>24A1 (6A4)</td>
<td>Alternate identification designations for the star, separated by commas for multiple entries. Abbreviations for the numbers are given in Table 2 of this document. Otherwise blank.</td>
</tr>
<tr>
<td>Des.</td>
<td>Reference</td>
<td>Information Content</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>AL</td>
<td>Andrews and Lindsay (1964)</td>
<td>List of Hα emission stars</td>
<td></td>
</tr>
<tr>
<td>BBB</td>
<td>Bok, Bok and Basinski (1962)</td>
<td>Color-magnitude arrays for two associations</td>
<td></td>
</tr>
<tr>
<td>FDD</td>
<td>Fehrenbach, Duflot and Duflot (1965)</td>
<td>List of stars having very large radial velocities indicating LMC membership</td>
<td></td>
</tr>
<tr>
<td>HV</td>
<td>Hodge and Wright (1967)</td>
<td>List of Harvard variables</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Lindsay (1963)</td>
<td>List of Hα emission stars</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Feast, Thackeray and Wesselink (1960)</td>
<td>Spectroscopic and photometric data for known bright LMC members</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Henize (1956)</td>
<td>List of Hα emission stars</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Westerlund (1961)</td>
<td>Photometric data in several selected regions of the LMC. As an example of the notation, W10-46 means star 46 in Westerlund's table 10</td>
<td></td>
</tr>
<tr>
<td>Wo</td>
<td>Woolley (1968)</td>
<td>Proper motions for stars in a one square degree region</td>
<td></td>
</tr>
<tr>
<td>WS</td>
<td>Westerlund and Smith (1964)</td>
<td>A list of Wolf-Rayet stars</td>
<td></td>
</tr>
<tr>
<td>Zone</td>
<td>Star</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>-65°</td>
<td>20a</td>
<td>Easternmost star of unresolved pair on the chart.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>Westernmost of the three stars.</td>
<td></td>
</tr>
<tr>
<td>-66°</td>
<td>41</td>
<td>Brightest star in NGC 1769. See Woolley (1963) for positive identification.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>Easternmost of two brightest stars in NGC 1773.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>97</td>
<td>Westernmost of unresolved pair on chart. No. 98 is the other star.</td>
<td></td>
</tr>
<tr>
<td>-67°</td>
<td>19</td>
<td>Strong Balmer discontinuity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>Very strong Balmer discontinuity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>Excites large H II ring.</td>
<td></td>
</tr>
<tr>
<td>-68°</td>
<td>15</td>
<td>Westernmost star of unresolved pair on chart.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Double. Both components are OB stars.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Located just south of a much brighter late-type star.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>Strong Balmer discontinuity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>See chart by Westerlund (1961) for positive identification.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>K-line present.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>Should be deleted. Proven foreground star.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>Shows λλ 3811-34 (OVI) in emission.</td>
<td></td>
</tr>
<tr>
<td>-69°</td>
<td>25</td>
<td>Excites H II region.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36a</td>
<td>Double. Both components are OB stars.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76</td>
<td>South-trailing star.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>North-preceding star.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>147a</td>
<td>North-preceding star.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>148</td>
<td>May be late-type supergiant.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>209a</td>
<td>See chart by Westerlund and Smith (1964) for positive identification.</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. (continued)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Star</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>223</td>
<td></td>
<td>South-preceding star whose spectrum overlaps with that of star 224 to form HD 38029.</td>
</tr>
<tr>
<td>243</td>
<td></td>
<td>See Feast et al. (1960) for positive identification of this star and several WR stars which we could not detect because of the nebulosity in this region.</td>
</tr>
<tr>
<td>266</td>
<td></td>
<td>North-trailing star.</td>
</tr>
<tr>
<td>-70°</td>
<td>98</td>
<td>Brightest star in the cluster SL539 = HDE 269664.</td>
</tr>
</tbody>
</table>
SECTION 3 - TAPE CHARACTERISTICS

The information contained in Table 4 is sufficient for a user to read the machine version of the catalog. Statistics for the entire catalog are given in the table, but data which are easily varied from installation to installation, such as blocksize (physical record length), blocking factor (number of logical records per physical record), total number of blocks, tape density, and coding (EBCDIC, ASCII, BCD, etc.) are not included: these parameters should always be supplied if secondary tape copies of the catalog are transmitted to other users or installations.

| Table 4: Tape Characteristics. A Deep Objective-Prism Survey for LMC Members |
|---|-----------------|
| NUMBER OF FILES | 1 |
| LOGICAL RECORD LENGTH (BYTES) | 85 |
| RECORD FORMAT | FB* |
| TOTAL NUMBER OF LOGICAL RECORDS | 1273 |

* Fixed length blocks (physical records). Last block may be short.
SECTION 4 - REMARKS AND REFERENCES

The data, contained in Table III of Sanduleak (1969), were transcribed to data forms at the Astronomical Data Center, then punched to cards and verified at two separate locations. The resulting two card decks were transferred to disk and compared, corrected, and modified with the addition of the notes flags and extension to the 85-byte records. The catalog was then transferred to magnetic tape.

REFERENCES

Fehrenbach, Ch., Duflot, M. and Duflot, A. 1965, Journ. des Obs. 48, 185, 199.

Sanduleak, N. 1969, Cerro Tololo Inter-American Obs., Contrib. No. 89.

SECTION 5 - SAMPLE LISTING

The sample listing given on the following pages contains logical data records exactly as they are recorded on the tape. Groups of records from the beginning and end of each file are illustrated. The beginning of each record and the bytes within the record are indicated by the column heading index across the top of each page (digits read vertically).
Listing of Records from Tape File

Tape File Name: LBC Survey
Records: 1 to 30
Tape File: 24
Record Length: 85 Bytes
Input Vendor: WYS012

Column Heading

<table>
<thead>
<tr>
<th>Column Index</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
<th>Column 6</th>
<th>Column 7</th>
<th>Column 8</th>
<th>Column 9</th>
<th>Column 10</th>
<th>Column 11</th>
<th>Column 12</th>
<th>Column 13</th>
<th>Column 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECORD</td>
<td>1</td>
<td>-65</td>
<td>1</td>
<td>45.0</td>
<td>-65</td>
<td>3809</td>
<td>12.3</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>2</td>
<td>-65</td>
<td>2</td>
<td>56.0</td>
<td>-65</td>
<td>3409</td>
<td>12.6</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>3</td>
<td>-65</td>
<td>3</td>
<td>58.6</td>
<td>-65</td>
<td>0408</td>
<td>12.6</td>
<td>2.5</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>4</td>
<td>-65</td>
<td>4</td>
<td>58.6</td>
<td>-65</td>
<td>5209</td>
<td>12.2</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>5</td>
<td>-65</td>
<td>5</td>
<td>58.7</td>
<td>-65</td>
<td>4109</td>
<td>12.9</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>6</td>
<td>-65</td>
<td>6</td>
<td>59.0</td>
<td>-65</td>
<td>4209</td>
<td>13.2</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>7</td>
<td>-65</td>
<td>7</td>
<td>59.1</td>
<td>-65</td>
<td>3809</td>
<td>13.0</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>8</td>
<td>-65</td>
<td>7</td>
<td>59.1</td>
<td>-65</td>
<td>4609</td>
<td>12.6</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>9</td>
<td>-65</td>
<td>8</td>
<td>59.1</td>
<td>-65</td>
<td>4359</td>
<td>10.7</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>10</td>
<td>-65</td>
<td>9</td>
<td>59.2</td>
<td>-65</td>
<td>5109</td>
<td>12.3</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>11</td>
<td>-65</td>
<td>10</td>
<td>59.2</td>
<td>-65</td>
<td>4309</td>
<td>12.7</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>12</td>
<td>-65</td>
<td>11</td>
<td>-65</td>
<td>399</td>
<td>59.3</td>
<td>-65</td>
<td>4509</td>
<td>11.5</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>13</td>
<td>-65</td>
<td>12</td>
<td>59.4</td>
<td>-65</td>
<td>3909</td>
<td>13.3</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>14</td>
<td>-65</td>
<td>13</td>
<td>59.5</td>
<td>-65</td>
<td>4809</td>
<td>12.5</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>15</td>
<td>-65</td>
<td>14</td>
<td>59.5</td>
<td>-65</td>
<td>3709</td>
<td>12.6</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>16</td>
<td>-65</td>
<td>15</td>
<td>59.6</td>
<td>-65</td>
<td>5209</td>
<td>12.1</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>17</td>
<td>-65</td>
<td>16</td>
<td>59.7</td>
<td>-65</td>
<td>4709</td>
<td>11.6</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>18</td>
<td>-65</td>
<td>17</td>
<td>59.8</td>
<td>-65</td>
<td>4109</td>
<td>12.3</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>19</td>
<td>-65</td>
<td>17</td>
<td>59.9</td>
<td>-65</td>
<td>5109</td>
<td>12.8</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>20</td>
<td>-65</td>
<td>18</td>
<td>270931</td>
<td>-65</td>
<td>4009</td>
<td>50.0</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>21</td>
<td>-65</td>
<td>19</td>
<td>270940</td>
<td>-65</td>
<td>359</td>
<td>50.1</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>22</td>
<td>-65</td>
<td>20</td>
<td>270940</td>
<td>-65</td>
<td>410</td>
<td>50.1</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>23</td>
<td>-65</td>
<td>20</td>
<td>270940</td>
<td>-65</td>
<td>410</td>
<td>50.1</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>24</td>
<td>-65</td>
<td>21</td>
<td>50.1</td>
<td>-65</td>
<td>4409</td>
<td>13.9</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>25</td>
<td>-65</td>
<td>22</td>
<td>270952</td>
<td>-65</td>
<td>361</td>
<td>50.1</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>26</td>
<td>-65</td>
<td>23</td>
<td>50.1</td>
<td>-65</td>
<td>4009</td>
<td>13.4</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>27</td>
<td>-65</td>
<td>24</td>
<td>50.1</td>
<td>-65</td>
<td>4100</td>
<td>13.4</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>28</td>
<td>-65</td>
<td>25</td>
<td>50.1</td>
<td>-65</td>
<td>5000</td>
<td>13.4</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>29</td>
<td>-65</td>
<td>26</td>
<td>50.1</td>
<td>-65</td>
<td>5100</td>
<td>13.4</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td>30</td>
<td>-65</td>
<td>27</td>
<td>50.1</td>
<td>-65</td>
<td>5340</td>
<td>13.4</td>
<td>2.6</td>
<td>PDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>