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THREE-DIMENSIONAL SEPARATION AND REATTACHMENT

David J. Peake and Murray Tobak
Ames Research Center, NASA
Moffett Field, California 94305, U.S.A.

SUMMARY

One of the common ingredients of the inviscid-viscous interacting flow fields about bodies at angle
of attack is the predilection of the boundary layers growing around the body to detach from the leeward
surface along swept separation 1ines to form coiled vortex motions. In all cases of three-dimensional
flow separation and reattachment, the assumption of continuous vector fields of skin-friction lines and
external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental
constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of
three-dimensional separation may be construed as either a local or a global event, depending on whether
the skin-friction 1ine that becomes a 1ine of separation originates at a node or a saddle point. Adopt-
ing these notions enables us to create sequences of plausible flow structures, to deduce mean flow char-
acteristics, to expose flow mechanisms, and to aid theory and experiment where lack of resolution in
wind-tunnel observations or in the results from numerical computations causes imprecision in diagnosis.

1. INTRODUCTION

The separation of three-dimensional (3-D) turbulent boundary layers from the lee of flight vehicles
at high angles of attack results in dominant, large-scale, coiled vortex motions that pass along the body
in the general direction of the free stream. Such complex and highly interactive flow fields remain an
area of fluid mechanics and aerodynamics that is still beyond the reach of definitive theory or numerical
computation. If the aerodynamic design of a 1ifting vehicle with flow separation is to be successful over
the full range of fl1ight conditions, the vehicle must be controllable at all times and possess no unpleas-
ant changes 1n force and moment characteristics. To achieve these aims, the primary lines of separation
should remain symmetrically placed and preferably fixed on the body and give rise to symmetric vortices
to eliminate the development of potentially uncontrollable side forces and yawing moments. In fact, flow
separation in three dimensions is of vital significance to the entire spectrum of aerodynamic design, for
the skin-friction-Tine pattern containing swept lines of attachment, separation, and reattachment, in
association with a 1imited number of singular points, constitutes the skeleton structure around which the
elements of the entire flow field can be assembled (Ref. 1).

The obtainment of these skin-friction Tines (that is, the loci of the local skin-friction vectors)

has usually been attempted with oil-streak techniques on the surfaces of wind-tunnel models (Refs. 2-4),
where it has been customarily considered that a necessary condition for the occurrence of flow separation
is the convergence of oil-streak 1ines toward a particular 1ine. Whether this is-also a sufficient con-
ditfon is a matter of current debate. Of the many attempts to make sense of these oil-flow patterns, few
of the contending arguments have lent themselves to a precise mathematical formulation. Here, we wish to
draw attention to the hypothesis supplied by Legendre (Ref. 5) as being one that provides a mathematical
fraEew?rkfof gonsiderable depth. The ensuing discussion follows closely that given already by Tobak and
Peake (Ref. 6).

2. LIMITING STREAMLINES AND SKIN-FRICTION LINES

Legendre (Ref. 5) proposed that a pattern of streamlines immediately adjacent to the surface (in his
notation, "wall streamlines," but more conventionally termed "1imiting streamlines") be viewed as trajec-
tories having properties consistent with those of a continuous vector field, the principal one being that
through any regular (nonsingular) point there passes one and only one trajectory. On the basis of this
postulate, 1t follows that the elementary singular points of the field, namely the nodes, spiral nodes
(foci), and saddles (see Fig. 1) can be categorized mathematically. Hence, the types of singular points,
their number, and the rules governing the relations between them, can be said to characterize the pattern.
Flow separatfon in this view has been defined by the convergence of wall streamlines toward a particular
wall streamline that originates from a singular point of particular type, the saddle point. This view of
flow separation is not universally accepted, however, and situations exist in which a more nuanced descrip-
tion of flow separation appears to be required.

Addressing himself specifically to viscous flows, Lighthill (Ref. 7) tied the postulate of a con-
tinuous vector field to the pattern of skin-friction lines rather than to the limiting streamlines just
above the surface. Parallel with Legendre's definition, the convergence of skin-friction lines toward a
particular skin-friction line originating from a saddle point was defined as the necessary condition for
flow separation. [Note that in the above, the separation line is the asymptote of the adjacent skin-
friction lines and not the envelope, as Maskell (Ref. 1) had proposed.] More recently, Hunt et al.
(Ref. 8) have shown that the notions of elementary singular points and the simple rules that they collec-
tively obey can be extended to the flow above the surface in planes of symmetry, in projections of
conical flows (Ref. 9), 1n crossflow planes, and so on (see also Ref. 10). Further applications and
extensions can be found in the various contributions of Legendre (Ref. 11-13), Oswatitsch (Ref. 14), and
in the review article by Peake and Tobak (Ref. 4).

The question of an adequate, yet convincing, description of 3-D separated flow arises with especial
poignancy when one asks how 3-D separated flow patterns originate and how they succeed one another as the
relevant parameters of the problem (e.g., angle of attack, Mach number, and Reynolds number) are varied.
In a recent essay (Ref. 6), we suggested that we might answer this question by placing Legendre's hypoth-
esis (utilizing skin-frictfon Tines) within a framework broad enough to include the notions of topologi-
cal structure and structural stability (see Refs. 15, 16) coupled with arguments from bifurcation theory
(see Refs. 17, 18, 19). In the following, we shall try to show that the emergence of a description of 3-D
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separated flow about configurations at angle of attack will, in fact, be facilitated by this broader
framework. In so doing, we 1imit our attention to 3-D viscous flows that are steady in the mean.

3. HYPOTHESIS

The postulate that the skin-friction lines on the surface of the body are the trajectories of a con-
tinuous vector field can be interpreted mathematically as follows. Let (£, n, ) be general curvilinear
coordinates with (£, n) set as orthogonal axes in the surface and ¢ normal' to them. Let the length
parameters be hi(g,n) and hy(£,n). Except at singular points, it follows from the adherence condition
that very close lo the surface, the components of the velocity vector (uj, up) parallel to the surface
must grow from zero linearly with r. Hence, a particle on a streamline near the surface will have vel-
ocity components

dg ot
hy(esn) g5 = ¢ 57 (6:n,0) = -zwp(gsn) = gP(E,n)
and M

dn 3U2
hz(Em) dat =z a_c' (Ea“:o) Cw](im) = CQ(E:“)

where (w], wp) are the local orthogonal components of the surface vorticity vector. (Note that the sur-
face vortex lines that exist everywhere at right angles to the skin-friction 1ines are also trajectories
of a continuous vector field.) The specification of a steady flow allows (uj, up) to be independent of
time. With ¢ treated as a parameter and P and @ functions only of the coordinates, Eq. {1) is composed
of a pair of autonomous ordinary differential equations. Their form places them in the same category as
the equations studied by Poincaré (Refs. 20 and 21; an English translation of his complete works is given
in Rif. 22) in his classical investigation of the curves defined by ordinary differential equations.
Letting

T,

W] u ‘E‘ (Eanso)
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be components of the skin-friction parallel to £ and n, respectively, we have for the equation governing
the trajectories of the surface shear-stress vector, from Eqs. (1),

h,dg¢  h,dn
- (3)
' w‘
Alternatively, for the trajectories of the surface vorticity vector, the governing equation is
h,de  h,dn
- (4)
1 w2

4. SINGULAR POINTS

Singular points in the pattern of skin-friction lines occur at isolated points on the surface where the
skin-friction (TW1’ er) in Eq. (3) or, alternatively, the surface vorticity (wq, wp) in Eq. (4), becomes

identically zero. Singular points are classifiable into two main types: nodes and saddle points. Nodes
may be further subdivided into two subclasses: nodal points and spiral nodes (often called foci of attach-
ment or separation).

A nodal point (Fig. la) is the point common to an infinite number of skin-friction lines. At the
point, all of the skin-friction lines except one (labeled AA in Fig. 1a) are tangential to a single line
BB. At a nodal point of attachment, all of the skin-friction 1ines are directed outward away from the
node. At a nodal point of separation, all of the skin-friction lines are directed inward toward the node.
I the presence of axisymmetry, the node degenerates into a "star-like" or "source-like" form.

A spiral node or focus (Fig. 1b) differs from a nodal point in Fig. la in that it has no common tan-
gent Tine. An infinite number of skin-friction lines spiral around the singular point, either away from
it (at attachment) or into it (at separation). Spiral nodes of attachment occur generally in the presence
of rotation, either of the flow or of the surface, and will not be included in this study. In the excep-
tional case, the trajectories of the spiral node form closed paths around the singular point. The spiral
node is then called a center.

At a saddle point (Fig. 1c), there are only two particular lines, CC and DD, that pass through the
singular point. The directions on either side of the singular point are inward on one particular line
and outward on the other particular line. The remainder of the skin-friction 1ines take directions con-
sistent with the direction of the adjacent particular lines. As can be determined from Fig. 1c, the par-
ticular lines act as barriers in the field of skin-friction 1ines, making one set of skin-friction lines
inaccessible to an adjacent set.

For each of the patterns in Figs. la-lc, the surface vortex 1ines form a system of curves orthogonal
at every point to the system of skin-friction 1ines. Of all the possible patterns of skin-friction lines
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on the surface of a body, only those are admissible whose singular points obey a simple topological rule:
%he number of nodes ginc1ud1ng spiral nodes if present) must exceed the number of saddle points by two
see Refs. 7, 21, 23).

5. TOPOGRAPHY OF SKIN-FRICTION LINES

The singular points, acting either in isolation or in combination, fulfill certain characteristic
functions that Tlargely determine the distribution of skin-friction lines on the surface. The nodal point
of attachment is typically a stagnation point on a forward-facing surface, such as the nose of a body,
where the external flow from far upstream attaches itself to the surface. The nodal point of attachment
thereby acts as a source of skin-friction lines that emerge from the point and spread out over the sur-
face. Conversely, the nodal point of separation is typically a point on a rearward-facing surface; it
acts as a sink where the skin-friction 1ines that have circumscribed the body surface may vanish.

The saddle point acts typically to separate the skin-friction lines issuing from or entering into
adjacent nodes; for example, adjacent nodal points of attachment. An example of this function is 11lus-
trated in Fig 2a (Ref. 7) and in the skin-friction-1ine pattern on the cockpit windows of a Space Shuttle
model (Fig. 2b, courtesy of L. Seegmiller, Ames Research Center). Skin-friction lines emerging from the
nodal points of attachment are prevented from crossing by the presence of a particular skin-friction 1ine
emerging from the saddle point. Lighthill (Ref. 7) called this particular 1ine a line of separation, and
identified the existence of a saddle point from which the particular 1ine emerges as the necessary condi-
tion for flow separation. As the patterns in Fig. 2 illustrate, skin-friction lines from either side
tend to converge on the particular line issuing from the saddle point. However, the convergence of skin-
friction 1ines on either side of a particular 1ine occurs in situations in which a saddle point can
neither be seen nor can be rationally argued to exist. It can happen, for example, that a skin-frictfon
line, one of the infinite set of lines emanating from a nodal point of attachment, may become a 1ine
toward which others of the set converge.

In the following, we shall attempt to construct an appropriate physical description of flow separa-
tion by utilizing the notions already advanced and by appealing to the theory of structural stability and
bifurcation. Adopting a terminology that is suggested by the theoretical framework, we say that a skin-
friction 1ine emerging from a saddle point is a global 1ine of separation and leads to global flow sep-
aration. In the alternative case, in which the skin-friction 1ine on which other 1ines converge does
not originate from a saddle point, we shall identify the line as being a local line of separation,
leading to local separation. (When no modifier is used, what is said wilT apply to either case.)

The notion of local separation may be clarified by taking the example of the flow over a smooth
slender body of revolution that is inclined at a small angle of attack to a uniform oncoming stream. A
streamline in the oncoming flow attaches itself to the nose at the stagnation point and nodal singular
point of attachment. This is the source of the continuous pattern of skin-friction iines that emerge
from this point and envelop the body, ail of which disappear into a nodal point of separation at the rear.
Because of favorable pressure gradient in the circumferential direction, all the way from the windward
ray to the leeward ray, the skin-friction lines emanating from the nodal point of attachment sweep around
the sides of the body and converge on either side of the particular skin-friction 1ine running along the
leeward ray. This particular leeward skin-friction line, beginning at the node of attachment and finish-
ing at the node of separation, is hence a local separation line. It follows that a body of revolution
experiences flow separation at all angles of attack other than zero.

The converse of the 1ine of separation is the line of attachment, from which adjacent skin-friction
Tines diverge. Two lines of attachment are illustrated in Fig. 2a, emanating from each of the nodal
points of attachment.

The 1imiting streamlines, that is, the ones that pass very close to the surface, leave the proximity
of the surface very rapidly in the vicinity of a separation line. A simple argument due to Lighthill
(Ref. 7) 1llustrates the flow mechanism. Referring to Eq. (3), let us align (£,n) with the external
streamline coordinates so that 1y, and vy, are the streamwise and crossflow skin-friction components
respectively. If n is the distalce betwgen two adjacent 1imiting streamlines (see Fig. 3) and h {s
the height of a rectangular streamtube (being assumed small so that the local resultant velocity vectors
are coplanar and form a linear profile), then the mass flux through the streamtube is

where p is the density and 0 the mean velocity of the cross section. But the resultant skin friction
at the wall is the resultant of rw] and Ty or

_ u
Tw =u 572
so that
- Tth
i
Hence,
N hznrw
m=— = constant
v
yielding
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Thus, as the line of separation is approached, h, the height of the limiting streamline above the
surface, increases rapidly. There are two reasons for this increase in h: first, whether the 1line of
separation is global or local, the distance n between adjacent 1imiting streamlines falls rapidly as
the limiting streamlines converge toward the 1ine of separation; second, the resultant skin-friction =,
drops toward a minfmum as the 1ine of separation is approached and, in the case of the global line of sep-
aration, actually approaches zero as the saddle point is approached.

Limiting streamlines rising on efther side of the line of separation are prevented from crossing by
the presence of a stream surface stemming from the line of separation itself. The existence of such a
stream surface is characteristic of flow separation; how it originates determines whether the separation
is of global or local form. In the former case, the presence of a saddle point as the origin of the
global line of separation provides a mechanism for the creation of a new stream surface that originates at
the wall. Emanating from a saddle point and terminating at nodal points of separation (either nodes or
spiral nodes), the global line of separation traces a smooth curve on the wall which forms the base of the
stream surface, the streamlines of which have all entered the fluid through the saddle point. We shall
call this new stream surface a dividing surface. The dividing surface extends the function of the global
1ine of separation into the flow, acting as a barrier separating the set of 1imiting streamlines that have
arisen from the surface on one side of the global line of separation from the set arisen from the other
side. On its passage downstream, the dividing surface rolls up to form the familiar coiled sheet around a
central vortical core. Because it has a well-defined core, we use the popular terminology, calling the
flow in the vicinity of the coiled-up dividing surface a vortex.

Now we consider the origin of the stream surface characteristic of local flow separation. We note
that if a skin-friction line emanating from a nodal point of attachment ultimately becomes a local line of
separation, then there will be a point on the line beyond which each of the orthogonal surface vortex lines
crossing the line is shaped concave facing downstream. At this point, the skin-friction along the line
has become locally minimum. A surface, starting at this point and stemming from the skin-friction line
downstream of the point, can be constructed that will be the locus of a set of 1imiting streamlines origi-
nating from far upstream; this surface may also roll up on its development downstream.

This section concludes with a discussion of the remaining type of singular point, the spiral node
{also called focus). The spiral node invariably appears on the surface in company with a saddle point.
Together they allow a particular form of global flow separation. One leg of the (global) line of separa-
tion emanating from the saddle point winds into the spiral node to form the continuous curve on the sur-
face from which the dividing surface stems. The spiral node on the wall extends into the fluid as a
concentrated vortex filament, while the dividing surface rolls up with the same sense of rotation as the
vortex filament. When the dividing surface extends downstream, it quickly draws the vortex filament into
its core. In effect, then, the extension into the fluid of the spiral node on the wall serves as the
vortical core about which the dividing surface coils. This flow behavior was first hypothesized by
Legendre (Ref. 11), who also noted (Ref. 12) that an experimental confirmation existed in the results of
earlier experiments carried out by Werle (Ref. 24). Figure 4a shows Legendre's original sketch of the
skin-friction 1ines; Fig. 4b is a photograph illustrating the experimental confirmation. The dividing
surface that coils around the extension of the spiral node (Fig. 4c) will be termed here a "horn-type
dividing surface." On the other hand, it can happen that the dividing surface to which the spiral node
is connected does not extend downstream. In this case the vortex filament emanating from the spiral node
remains distinct and is seen as a separate entity on crossflow planes downstream of its origin on the
surface.

6. CHARACTER OF DIVIDING SURFACES

We have seen how the combination of a spiral node and a saddle point in the pattern of skin-friction
lines allows a particular form of global flow separation characterized by a horn-type dividing surface.
The nodal points of attachment and separation may also combine with saddle points to allow additional
forms of global flow separation, again characterized by their particular dividing surfaces. The character-
istic dividing surface formed from the combination of a nodal point of attachment and a saddle point is
illustrated in Fig. 5a. This form of dividing surface typically occurs in the flow before an obstacle
(see Fig. 34 in Peake and Tobak, Ref. 4}, or near the nose of a blunt body at a very high angle of attack
(see Fig. 81 in Peake and Tobak, Ref. 4). In the example illustrated in Fig. 5, it will be noted that the
dividing surface admits of a point in the external flow at which the fluid velocity is identically zero.
This is a three-dimensional singular point, which in Fig. 5a acts as the origin of the streamline running
through the vortical core of the rolled up dividing surface.

The characteristic dividing surface formed from the combination of a nodal point of separation and
a saddle point 1s 11lustrated in Fig. 5b, again a form of global separation. This form of dividing sur-
face often occurs in nominally two-dimensional separated flows such as in the separated flow behind a
backward-facing step (see Fig. 24 in Tobak and Peake, Ref. 25) and the separated flow at a cylinder-flare
junction (both two and three dimensional; compare Figs. 47 and 48 in Peake and Tobak, Ref. 4). We note
in both Figs. 5a and 5b that the streamlines on the dividing surface have all entered the fluid through
the saddle point in the pattern of skin-friction lines.

Finally, in Fig. 5¢c the form of dividing surface materializing at a typical local separation is
sketched. Here the eruption of the fluid from the surface, and hence the commencement of the dividing
surface, occurs not from a nodal point of separation nor from a saddle point of separation, but from a
regular (nonsingular) point on the surface where the surface vortex lines crossing a particular skin-
friction 1ine change curvature from concave facing upstream to concave facing downstream. At this point
the skin-friction lines adjacent to the one particular skin-friction 1ine begin to converge rapidiy toward
this particular 1ine, the local separation line. The departure of the fluid from the vicinity of the sur-
face again results in a tight coiling of the dividing surface and the adjacent external flow streamlines.



7. TOPOLOGY OF STREAMLINES IN TWO-DIMENSIONAL SECTIONS OF.THREE-DIMENSIONAL FLOWS

Results reported by Smith (Refs. 9, 26), Perry and Fairlie (Ref. 10), and Hunt et al. (Ref. 8), have
made it clear that the rules governing the behavior of skin-friction 1ines may be adapted and extended to
yleld similar rules governing the behavior of the flow field itself. This is possible when we construct
two-dimensional sections of the three-dimensional flow, for example, crossflow planes and streamwise
planes of symmetry, which are especially useful for flows around bodies at angle of attack. In particular,
Hunt et al. (Ref. 8) have noted that if

v = [ulx,y,2z4)s v(X.¥:20)s WiX,Y,24)1

is the mean velocity vector, whose u,v components are measured in a plane z = Zo = constant, above a
surface situated at y = Y(x;z5) (see Fig. Gg, then the mean streamlines in the plane are the solutions of

dx _d '
.4 ®

which are a direct counterpart of Eq. (3) for skin-friction lines on the surface. For a streamwise plane
of symmetry w(x,y,zo) = 0, then the streamlines defined by Eq. (5) are identifiable with particle path
1ines in the plane when the flow is steady, or with instantaneous streamiines when the flow is unsteady.
Note, however, that if an arbitrary, two-dimensional section of the flow is chosen, Eq. (5) will not nec-
essarily represent the projections of the three-dimensional streamlines on to that plane z = z;.

In any case, since [u(x,y), v(x,y)] is a continuous vector field V(x,y), with only a finite number
of singular points in the interior of the flow at which V = 0, it follows that nodes and saddles can be
defined in the plane just as they were for skin friction Tines on the surface. Nodes and saddles within
the flow, excluding the boundary y = Y(x32z5), are labeled N and S, respectively, and are shown in their
typical form in Fig. 6. The only new feature of the analysis that is required is the treatment of singu-
Tar points on the boundary, y = Y(x,zg). Since, for a viscous flow, V is zero everywhere on the boundary,
the boundary is 1tself a singular Tine in the plane z = z,. Singular points on the 1ine occur where the
component of the surface vorticity vector normal to the plane z = z, is zero. Thus, for example, it is
ensured that a singular point will occur on the boundary wherever it passes through a singular point in
the pattern of skin-friction 1ines, since the surface vorticity is identically zero there. As introduced
by Hunt et al. (Ref. 8), singular points on the boundary are defined as half-nodes N' and half-saddles
S' (Fig. 6). With this simple amendment to the types of singular points allowable, all of the previous
notions and descriptions relevant to the analysis of skin-friction lines carry over to the analysis of
the flow within the plane.

In a parallel vein, Hunt et al. (Ref. 8) have recognized that just as the singular points in the pat-
tern of skin-friction Jines on the surface obey a topological rule, so must the singular points in any of
the sectional views of three-dimensional flows obey topological rules. Although a very general rule
applying to general bodies can be derived (Ref. 8), we 1list here only those special rules that will be
useful 1n subsequent studies of the flow past wings and bodies at angle of attack. In the five topological
rules listed below, we assume that the body is simply connected and immersed in a flow that is uniform far
upstream.

1. Skin-friction 1ines on a three-dimensional body (Rels. 7, 23):
- Z ; =2 6
EN S (6)

2, Skin-friction Tines on a three-dimensional body B connected simply (without gaps) to a plane
wall P that efther extends to infinity both upstream and downstream or is the surface of a torus:

Z-Z)
3. Streamlines on a two-dimensfonal plane cutting a three-dimensional body:
1 1 -
(EN 1 EN-) - (zs 1 25,) . ®

4. Streamlines on a vartical plane cutting a surface that extends to infinity both upstream and
downstream:

=0 (7)
P+B

1 1 -
(:E:N * E'IE:N-) - <:E:5 * E'IE:S-) =0 )
5. Streamlines on the projection onto a spherical surface of a conical flow past a three-dimensional

body (Ref. 9):
(ZN . EN') . (23 vl Es.) - 0 (10)
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8. TOPOLOGICAL STRUCTURE AND STRUCTURAL STABILITY

How, then, do 3-D separated flow patterns originate and how do they succeed one another as the rel-
evant parameters (e.g., angle of attack, Reynolds number, and Mach number) are varied? Our approach to
dealing with this question will be offered in physical terms, although our definitions should be compati-
ble with whatever set of partial differential equations is assumed to govern the fluid motion. Specifi-
cally, we shall apply definitions of topological structure and structural stability to the properties of
skin-friction-1ine patterns, since in so doing, we shall be able to utilize experimental oil-streak pat-
terns directly.

A pattern of skin-friction lines on a given part of the body surface is a map (called a "phase
portrait” by Andronov et al., Ref. 16) of the surface shear-stress vector. Two maps have the same topo-
logical structure if the paths in the first map are preserved in the second. This may be visualized by
imagining a map of skin-friction lines on a deformable sheet of rubber. Disallowing folding or tearing
of the sheet, every deformation is a path-preserving mapping. A topological property is then defined as
any characteristic of the map that stays invariant under all deformations. The number and types of singu-
lar points and the existence of paths connecting the singular points are examples of topological prop-
erties. The set of all topological properties of the map describes the topological structure.

Let us also define the structural stability of a map relative to a parameter «; for instance, a may
be the angle of attack. The map is said to be structurally stable at a given value of a if the map re-
sulting from a very small change in o has the same topological structure as the initial one. Structur-
ally stable maps of the surface shear-stress vector then have two properties in common: first, the singu-
lar points in the map are all elementary singular points (i.e., simple nodes or saddles); and second,
there are no saddle-point-to-saddle-point connections in the map.

In speaking of the stability of the viscous/inviscid flow external to the surface, we shall find it
necessary to distinguish between structural stability and asymptotic stability of the fiow. The defini-
tion of structural stability follows from that introduced in reference to the map of the surface shear-
stress vector. An external flow is called structurally stable relative to o if a small change in that
parameter does not alter the topological structure (e.g., the number and types of 3-D singular points)
of the external 3-D velocity vector field. Asymptotic stability is defined as follows: Suppose that
the fluid motions evolve according to time-dependent equations of the general form

up = G(u,a) (1)

where o again is a parameter. Solutions of G(u,a) = 0 represent steady mean flow of -the kind we have
been considering. A mean flow up 1is an asymptotically stable flow if small perturbations from it (at
fixed o) decay to zero as time t - ». When the parameter o« {is varied, one mean flow may persist (in
the mathematical sense, that it remains a valid solution of G{u,a) = 0) but become unstable to small dis-
turbances as « crosses a critical value. At such a transition point, a new mean flow may bifurcate from
the known flow. A characteristic property of the bifurcation flow (such as, e.g., a transverse velocity
component) that was zero in the known flow takes on increasing values as the parameter increases beyond
the critical point. Finally, we shall find it convenient to distinguish between local and global charac-
teristics of the instabilities. We shall call an instability global if it permanently alters the topolog-
jcal structure of either the external 3-D velocity vector field or the map of the surface shear-stress
vector. We shall call an instability local if it does not result in an alteration of the topological
structure of either vector field.

This distinction between local and global events suggests why we distinguish between local and global
lines of separation in the pattern of skin-friction Tines. If an (asymptotic) instability in the flow
field does not alter the topological structure of the map of surface skin-friction lines, then the con-
vergence of skin-friction Tines on to one (or several) particular skin-friction line(s) can only be a
local event. Accordingly, we label the particular lines local lines of separation, and these will usually
all stem from a node of attachment (the stagnation point) on a forward facing part of the body. If, on
the other hand, an instability (asymptotic of structural) of the flow field does change the topological
structure of the skin-friction-1ine map, thus resulting in the emergence of a saddle point in this pattern,
then this is construed as a global event insofar as the skin-friction-l1ine map is concerned. Accordingly,
we label the particular skin-friction line emanating from the saddle point a global line of separation.

9. BIFURCATION

The bifurcation phenomenon alluded to in the discussion of Eq. (11) is conveniently displayed on a
bifurcation diagram, two examples of which are shown in Fig. 7. Flows that bifurcate from the known flow
are represented by the ordinate 1y, which may be any quantity that characterizes the bifurcation flow
alone. Stable flows are indicated by solid lines, unstable flows by dashed 1ines. Thus, over the range
of o where the known flow is stable, y 1is zero, and the stable known flow is represented along the
abscissa by a solid line. The known flow becomes unstable for all values of a larger than oc, as the
dashed 1ine along the abscissa indicates. New mean flows bifurcate from a = a. either supercritically
or subcritically. :

At a supercritical bifurcation (Fig. 7a), as the parameter « 1is increased just beyond the critical
point ag, the bifurcation flow that replaces the unstable known flow can differ only infinitesimally from
it. The bifurcation flow breaks the symmetry of the known flow, adopting a form of lesser symmetry in
which dissipative structures arise to absorb just the amount of excess available energy that the more sym-
metrical known flow no longer was able to absorb. Because the bifurcation flow initially departs only
infinitesimally from the unstable known flow, the structural stability of the surface shear-stress ini-
tially is unaffected. However, as o continues to increase beyond o the bifurcation flow departs sig-
nificantly from the unstable known flow and begins to affect the structural stability of the surface shear
stress. Ultimately a value of « 1is reached at which the surface shear stress becomes structurally un-
stable, evidenced either hy one of the elementary singular points of its map becoming a singular point of
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(odd) multiple order or by the appearance of a new singular point of (even) multiple order. An additional
infinitesimal increase in the parameter a results in the splitting of the singular point of multiple
order into an equal number of elementary singular points. Thus there emerges a new structurally stable
map of the surface shear-stress vector and a new external flow from which additional flows ultimately will
bifurcate with further increases of the parameter.

At a subcritical bifurcation (Fig. 7b), when the parameter is increased just beyond the critical
point o, there are no adjacent bifurcation flows that differ only infinitesimally from the unstable
known flow. Here, there must be a finite jump to a new branch of flows that may represent a radical
change in the topological structure of the external flow and perhaps in the map of the surface shear-
stress vector as well. Further, with ¢ on the new branch, when o i{s decreased just below o¢, the
flow does not return to the original stable known flow. Only when « {s decreased far enough below ¢
to pass ag {Fig. 7b) is the stable known flow recovered. Thus, subcritical bifurcation always implies
that the bifurcation flows will exhibit hysteresis effects.

This completes a framework of terms and notions that should suffice to describe how the structural
forms of three-dimensional separated flows originate and succeed each other. The following section is
devoted to illustrations of the use of this framework in two examples involving supercritical and sub-
critical bifurcations.

10. SUPERCRITICAL AND SUBCRITICAL BIFURCATIONS
10.1 Blunt Body of Revolution at Angle of Attack

Let us first consider how a separated flow may originate on a slender round-nosed body of revolution,
as one of the main parameters of the problem, angle of attack, is increased from zero in increments. We
adopt this example to i1lustrate a sequence of events in which supercritical bifurcation is the agent
leading to the formation of large-scale dissipative structures.

At zero angle of attack (Fig. 8a) the flow is everywhere attached. A1l skin-friction 1ines originate
at the nodal point of attachment at the nose and, for a sufficiently smooth slender body, disappear into
a nodal point of separation at the tail. The relevant topological rule, Eq. (6}, is satisfied in the
simplest possible way (N =2, S = 0),

At a very small angle of attack (Fig. 8b) the topological structure of the pattern of skin-friction
Tines remains unaltered. All skin-friction lines again originate at a nodal point of attachment and dis-
appear into a nodal point of separation. However, the favorable circumferential pressure gradient drives
the skin-friction 1ines leeward where they tend to converge on the skin-friction 1ine running along the
Teeward ray. Emanating from a node rather than a saddle point and being a 1ine onto which other skin-
friction 1ines converge, this particular line qualifies as a local line of separation according to our
definition. The flow in the vicinity of the local 1ine of separation provides a rather innocuous form of
Tocal flow separation, typical of the flows leaving surfaces near the symmetry planes of wakes.

As the angle of attack is increased further, a critical angle o¢ 1s reached just beyond which the
external flow becomes Tocally unstable. Coming into play here is the well-known susceptibility of
inflexional boundary-layer velocity profiles to instability (Refs. 27-29). The inflexional profiles
develop on crossflow planes that are slightly inclined from the plane normal to the external inviscid
flow direction. Called a crossflow instability, the event is often a precursor of boundary-layer transi-
tion, typically occurring at Reynolds numbers just entering the transitional range (Refs. 30, 31).
Referring to the bifurcation diagrams of Fig. 7 and identifying the parameter o« with angle of attack,
we find that the instability occurs at the critical point o, where a supercritical bifurcation
(Fig. 7a) leads to a new stable mean flow.

Within the local space influenced by the instability, the new mean fiow contains an array of dissi-
pative structures. The structures, illustrated schematically in Fig. 8c, are initially of very small
scale, with spacing of the order of the boundary-layer thickness. Because they resemble an array of
streamwise vortices having axes slightly skewed from the direction of the external flow, the structures
will be called vortical structures. The representation of the structures on a crossflow plane in Fig. 8c
is intended to be merely schematic; nevertheless, the sketch satisfies the topological rule for stream-
lines in a crossflow plane, Eq. (8). As illustrated in the side view of Fig. 8c, the array of vortical
structures is reflected in the pattern of skin-friction 1ines by the appearance of a corresponding array
of alternating lines of attachment and (local) separation. Because the bifurcation is supercritical,
however, the vortical structures initially are of infinitesimal strength and cannot affect the topologi-
cal structure of the pattern of skin-friction lines. Therefore, once again, these are local lines of
separation, each of which leads to a Tocally separated flow that is initially of very small scale.

At Reynolds numbers typical of those at which boundary-layer transition occurs, the production of
longitudinal vortices within the rapidly skewing three-dimensional boundary layer appears on not only
blunt body shapes but on pointed configurations also. Figure 9a, for instance, shows evidence of struc-
tures on the surface of a hemisphere cylinder at an angle of attack of 19°; the striations are formed by
the scouring effect of the longitudinal vortices on the sublimation material. Fig. 9b shows evidence of
the longitudinal vortices on a circular cone at an angle of attack of 5° as evidenced in an oil-flow
pattern (see also Figs. 180-182 in Peake and Tobak, Ref. 4).

Although the vortical structures are initially all very small, they are not of equal strength, being
immersed 1n a nonuniform crossflow. Viewed in a crossflow plane, the strength of the structures increases
from zero starting from the windward ray, reaches a maximum near halfway around, and diminishes toward
zero on the leeward ray. Recalling that the parameter ¢ in Fig. 7 was supposed to characterize the
bifurcation flow, we find it convenient to let ¢ designate the maximum crossflow velocity induced by the
largest of the vortical structures. Thus, with further increase in angle of attack, ¢ increases accord-
ingly, as Fig. 7a indicates. Physically, y 1increases because the dominant vortical structure captures
the greater part of the oncoming flow feeding the structures, thereby growing while the nearby structures
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structures diminish and are drawn into the orbit of the dominant structure. Thus, as the angle of attack
increases, the number of vortical structures near the dominant structure diminishes while the dominant
structure grows rapidly. Meanwhile, with the increase in angle of attack, the flow in a region closer to
the nose becomes subject to the crossflow instability and develops an array of small vortical structures
similar to those that had developed farther downstream at a lower angle of attack. The situation is
illustrated on Fig. 8d. We believe that this description is a true representation of the type of flow
that Wang (Refs. 32, 33) has characterized as an "open separation." We note that although the dominant
vortical structure now appears to represent a full-fledged case of flow separation, the surface shear-
stress vector has remained structurally stable so that, in our terms, this is still a case of a local flow
separation.

With further increase in the angle of attack, the crossflow instability in the region upstream of
the dominant vortical structure prepares the way for the forward movement of the structure and its associ-
ated local 1ine of separation. Eventually an angle of attack is reached at which the influence of the
vortical structures is great enough to alter the structural stability of the surface shear-stress vector
in the immediate vicinity of the nose. A new (unstable) singular point of second order appears at the
origin of each of the lTocal 1ines of separation. With a slight further increase in angle of attack, the
unstable singular point splits into a pair of elementary singular points — a spiral node of separation and
a saddle point. This combination produces the horn-type dividing surface described earlier (Fig. 4) and
illustrated again in Fig. 8c (see Figs. 11 and 12 in Werl&, Ref. 34). We now have a global form of flow
separation. A new stable mean flow has emerged from which additional flows ultimately will bifurcate with
further increase of the angle of attack.

10.2 Asymmetric Vortex Breakdown on Slender Wing

In contrast to supercritical bifurcations, which are normally benign events, beginning as they must
with the appearance of only infinitesimal dissipative structures, subcritical bifurcations may be drastic
events, involving sudden and dramatic changes in flow structure. Although we are only beginning to
appreciate the role of bifurcations in the study of separated flows, we can anticipate that sudden large-
scale events, such as those involved in aircraft buffet and stall, will be describable in terms of sub-
critical bifurcations. Here we cite one example where it is already evident that a fluid dynamical phe-
nomenon involving a subcritical bifurcation can significantly influence the aircraft's dynamical behavior.
This is the case of asymetric vortex breakdown which occurs with slender swept wings at high angles of
attack.

We leave aside the vexing question of the mechanisms underlying vortex breakdown itself (see Ref. 35),
as well as its topological structure, to focus on events subsequent to the breakdown of the wing's
primary vortices. Lowson (Ref. 36) noted that when a slender delta wing was slowly pitched to a suffi-
ciently large angle of attack with sideslip angle held fixed at zero, the breakdown of the pair of
leading-edge vortices, which at lower angles had occurred symmetrically (i.e., side by s1de§. became
asymmetric, with the position of one vortex breakdown moving closer to the wing apex than the other.
Which of the two possible asymmetric patterns was observed after any single pitch-up was probabilistic.
Once established, however, the relative positions of the two vortex breakdowns would persist over the
wing, even as the angle of attack was reduced to values at which the breakdowns had occurred initially
downstream of the wing trailing edge. After identifying terms, we show that these observations are per-
fectly compatible with our previous description of a subcritical bifurcation (Fig. 7b).

Let us denote by Ac the difference between the chordwise positions of the left-hand and right-hand
vortex breakdowns and let Ac be positive when the left-hand breakdown position is the closer of the two
to the wing apex. Referring now to the subcritical bifurcation diagram in Fig. 7b, we identify the
bifurcation parameter ¢ with Ac and the parameter o with angle of attack. We see that, in
accordance with observations, there is a range of a, a < a., in which the vortex breakdown positions can
coexist side by side, a stable state represented by |[Ac| = 0. At the critical angle of attack ac, the
breakdowns can no longer sustain themselves side by side, so that for o > ar the previously defined
stable state [ac| = 0 {is no longer stable. Immediately beyond o = ac there are no adjacent bifurca-
tion flows, and |ac| must jump to a distant branch of stable flows; this represents the sudden shift
forward of one of the vortex breakdown positions. Further, with ]ac| on the new branch, as the angle
of attack is reduced |ac| does not return to zero at ac but only after o has passed a smaller value
ag. All of this is in accordance with observations (Ref. 36). At any angle of attack at which |ac|
can be nonzero under symmetric boundary conditions, the variation of ac with sideslip or roll angle
must necessarily be hysteretic. This also has been demonstrated experimentally (Ref. 32). Further,
since Ac must be directly proportional to the rolling moment, the consequent hysteretic behavior of the
roliing moment with sideslip or roll angie makes the aircraft susceptible to the dynamical phenomenon of
wing-rock (Ref. 38).

11. CONCLUSION

Holding strictly to the notion that patterns of skin-friction lines and external streamlines above
bodies at angle of attack reflect the properties of continuous vector fields enables us to characterize
the patterns on the surface and on particular projections of the flow (the crossflow plane, for example)
by a restricted number of singular points (nodes, saddle points, and spiral nodes). It is useful to
consider the restricted number of singular points, and the topological rules that they obey, as compo-
nents of an organizing principle: a flow grammar whose finite number of elements can be combined in
myriad ways to describe, understand, and connect the properties common to all steady, three-dimensional,
viscous, separated flows. Introducing a distinction between local and global properties of the flow
resolves an ambiguity in the proper definition of a three-dimensional separated flow. Adopting the
notions of topological structure, structural stability and bifurcation gives us a framework in which to
describe how three-dimensional separated flows originate on bodies and how they succeed each other as the
relevant parameters of the problem, for example, angle of attack, are varied.
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Figure 9. Evidence of streamwise vortices on blunt and sharp configurations
at angle of attack.
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