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1.0 SUMMARY

This NASA Small Transport Aircraft Technology (STAT) Propul-
sion Study waz conducted to identify technology requirements and
define the research and development required for new commuter air-
cratt. The study was divided into three major tasks:

o Definition of baseline aircraft and propulsion systems

o Identification and assessment of potentially beneficial
advanced propulsion technologies and design features

o Recommendation of future research to develop and imple-
ment the beneficial technologies and features.

Definition of the takeoff gross weight (TOGW), performance,
and direct operating cost (DOC) for both a 30- and 50-passenger
airplane was established as follows for 198C technology levels:

30-Passenger 50-Passenger
Airplane Airplane
TOGW 13,747 kg (30.308 lbm) 19,434 kg (42,845 ltm)
SHP/Engine 1373.5 kW (1842 hp) 1811.3 kWw (2429 hp)
DOC for 100-nmi $0.097/seat nni $0.078/5eat nmi

Mission

Baseline engines representing current production technology
(e.g., TPE331-11) were defined as shown in Table I. Comparable
engine characteristics for 1985 technology derivative engines and
1990 technology engines are also shown in Table I. It was deter-
mined during the study that the potential benefit resulting from
advanced 1990 technologies is a reduction in DOC of approximately
20 percent.

The large potential DOC improvements identified in this study
warrants initiation of NASA-sponsored research and technology pro-
grams for appropriate components., This includes such items as
compressors, combustors, turbines, gas generators, and demon-
strator engines. NASA sponsorship of the integrated development
of these components with a demonstration in an experimental engine
program would provide the impetus for industry to undertake the
development and production of the STAT engines.
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2.0 INTRODUCTION

Commuter airlines are a rapidly growing segment of the
American aviation industry and increasad opportunities for growth
have been afforded under the provisions of the Airline Deregula-
tion Act of 1978. This growth may require new, higher-capacity
aircraf: with superior aerodynamics, modern structures, better
flight-control systems; and substantially-improved, fuel-
efficient, low-maintenance propulsion syscems.

At $0.264/1 ($1.00/g9al), fuel accounts for approximately
35 percent of the typical commuter DOC, and will account for more
than one-half of the DOC if fuel costs reach $0.528/1 ($2.00/gal).
Engine maintenance costs account for approximately 10 percent of
the DOC., NASA, in recognition of the importance of the propulsicn
system and its effect on DOC, sponsored this STAT study with the
general objective of identifying advanced propulsion system tech-
nologies that could improve the performance and economics of
current-technology commuter aircraft. The study was directed
toward hypothetical, all-new, 1990-time-frame engines, with com-
parisons against current-technology and mid-~1980's derivative
engines,

The STAT study was a l6-month effort divided into three major
tasks:

o Definition of baseline aircraft and propulsion systems

o Identification of potentially benefical advanced pro-
pulsion technologies and design features, and the
assessment of their benefits with respect to perform-
ance, weight, and cost

o Recommendation of future research to develop and demon-
strate the technologies and features that were identi-
fied as having significant potential,



3.0 DEFINITION OF BASELINES

Baseline commuter aircraft and missions were defined for the
study by the NASA-Ames Research Center to provide a benchmark for
evaluating advanced propulsion technology. Theaec aircraft repre-
sented existing airframe and propulsion-system technology.

3.1 Airplanes and Missions

The 30- and 50-paasenger ajirplanes were designed to the
requirements listed in Table II. As indicated, the airplanes were
designed for a 800-nmi mission, plus reserv~s; however, a 100-nmi
mission was also defined and was used for economic evaluations
per formed later in the study. The mission profiles are shown in
Figure 1.

The twn airplane configurations and their principal charac~
teristics are shown in Figures 2 and 3, The three views in these
figures are to tie same scale so that the relationship between the
two configurations can be seen. Additional details of the air-
plane designs, in the form of copies »f the computer printouts
provided by NASA-Ames, are contained in Appendix I.

An important part f the basecline airplane definitions was
the derivation of the s«isitivity of airplane characteristics such
as DOC, TOGW, empty weight (EW), block fuel and aircraft acquisi-
tion cost to engine SFC, weight, engine cost, maintenance cost,
and reliability. The sensitivities of DOC for the 30- and 50-
passenger airplane designs to engine SFC, weight, engine costs,
and maintenance costs are shown in Table III. These sensitivities
reflect an iterated design. For example, if engine SFC is
reduced, the new DOC represents a lower TOGW, EW, horsepower, etc.
These sensitivities indicate the strong influence of SFC, as is
subsequently presented in the discussion of DOC. Application of
these sensitivities shows that a l-percent change in DOC (approxi-
matelv) results from:

A 2-percent change in SFC

A 10-percent change in engine maintenance cost

An 18-percent change in engine weight

A 35-percent change in engine initial cost (not includ-
ing maintenance cost effect).

0000

3.2 Engines and Propulsors

The engines defined for the study were based on technology
levels equivalent to the 1980, 1985, and 1990 time periods. The
1980-technology engine is the Garrett Model TPE331-11 turboprop,
shown in cross section in Figure 4. The basic performance char-
acteristics of this engine are given in Table IV. The complete



TABLE II., BASELIN: ALRPULANE ASSUMPTIONS AND REQUIREMENTS.

o

(&)

!
Scaled versions of either existing turboprop engines or;
rer-. 2sentative hypotnetical equivalents. |

90.7 kg (200 1b) per passenger including baggage. |

2-man crew at 90.7 kg plus 1 flight attendant at 59 kgi
(130 1b) (per 5( passengers).

1.8 m (6 ft) minimum interior aisle height.

Minimum 8l.3-cm (32-inch) seat pitch, 45.7-cm (18-inch)
seat width between armrests, and 45.7-cm aisle width.

0.14 m3 (9 tt3) per passenger for easily loaded pre-
loaded baggage storage, plus carry-on baggage provision
of 50.8 cm x 50.8 cm x 27.9 cm (20 in., x 20 in. x
11 in.) per passenger; and garment storage area of
2.0 cm (0.8-inch) width per passenger.

One lavatory per 50 passengers.
34.5 kPa (5 psi) cabin pressurization minimum.

Maximum cabin interior noise level less than 85 4B
OASPL, and speech interference level of less than 65 dB.

Airframe design life of at least 30,000 hours and 60,000
takeoff and landing cycles.

Full design payload to be carried over a rang. of
600 nmi with instrument flight rules (IFR) reserves for
a 100-nmi alternate, and 45 minutes at naximum endurance
power at 3050-m (10,000~-ft) altitude.

Field length shall not exceed 1220 m (4000 ft) for a hot
day [305.4 K (90°F)) at sea level, per FAR 25.

Aircraft shall meet current Federal Aviation Regula-
tions (FAR) 36 Stage 3 noise limits minus 8 EPNAdB at all
measurement locations.

A cruise-speeld capability of at leasst 250 knots indi-
cated airspeed at 1830- throngh 3050-m (6000~ through
10,000-ft) altitudes, standard-day conditions.

A terminal area speed capability of at least 180 knots
indicated airspeed with jear and flaps extended in order
to stay with large jet aircraft.

A stall speed less than 93 knetcs in landing configura-
tions at maximum landing weight in order to qualify for
operations in Instrument Approach Category B zircraft
requirements.
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per formance characteristics plus weight and cost values were fur-
nished to NASA-Ames for incorporation in their airplane synthesis
program. The results of that incorporation are reflected in the
airplane design data given in Appendix I. The characteristics of
the Model TPE331-1]l were scaled to the horsepower requirements of
the 30~ and 50-passenger airplanes.

The 1985 derivative engine shown in Figure 5 was based on a
Garrett Model TPE331 growth study engine. The basic performance
characteristics of the 1985 derivative engine are given in
Table V. These performance characteristics were also scaled to
the horsepower requirements of the 30~ and 50-passenger airplanes.

Selection of the 1990 TAT technslogy engine was based on the
results of a cycle parametr.c study, as well as considerations of
weight, cost, fabrication complexity, and maintainability. For
this engine, only concentric-shaft, front-drive, free-turbine
engines were considered. 8Single-shaft and low-spool drive (com-
pressor booster stages on the output shaft) were considered later
in the program and are subsequently discussed. All engines in the
initial parametric study consisted of two-stage, centrifugal-
compressor configurations driven by single- or two-stage, cooled,
axial, gas-generator turbines, a reverse-flow annnular combustor,
and a two-stage, uncooled low-pressure (LP®) or power turbine. All
engines had a constant inlet corrected flow rate of 4.54 kg/s
(10 1bm/sec) at the cruise design condition. The parameters that
were varied were overall compression ratio (OCR) and turbine rotor
inlet temperature (TRIT). The schedule of efficiency versus pres-
sure ratio used for the two-stage centrifugal compressor and the
correlation of turbine efficiency with turbine work used for the
gas generator and power turbines are shown in Figure 6.

The results of the cycle parametric study are shown in Fig-
ure 7 in terms of thrust (propeller and jet) specific fuel con-
sumption (TSFC) and specific thrust, which is defined as the ratio
of propeller plus jet thrust to the inlet airflow rate. A propel-
ler having an efficiency of 0.842 was assumed. As indicated by
the dashed 1line in Figure 7, a fuel consumption penalty is
incurred if a single-stage, high-pressure (HP) turbine is used.
The flight condition at 518l1.6 meters (17,000 feet) was choser as
a compromise between the 100-nmi and 600-nmi cruise altitudes of
3658 and 6096 meters, respectively.

The cycle parametric showed that a TRIT of 2350°F was very
near optimum for all prassure ratius investigated and pressure
ratios between 16 and 20:1 yielded a TSFC variation of less than 1
percent. Weight, cost and complexity generally benefit from
selectinn of a lower pressure ratio for small differences in SFC.
Accordingly, an OCR of 16:1 and a TRIT of 2350°F were selected for
the 1990 engine cycle.

12
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The parametric analysis led to the definition of the 1990
STAT engine shown in Figure 8. The basic performance and cycle
characteristics for this engine based on off-design analysis are
given in Table VI for the sca-level takeoff and 3650-m (12,000-ft)
cruise conditions.

The performance, weight, cost, and maintenance characteris-
tics of these three engines were used with the airplane sensiti-
vities to compute the operating costs and benefits for t..e STAT
baseline airplane. Computation of the costs was based on equa-
tions furnished by NASA-Ames (as shown in Table VII) with two
exceptions. The engine maintenance costs were based on Garrett
experience with TPE331l engines in commuter service and on predic-
tions for derivative and advanced engines, The differences in
maintenance costs, shown in Table VI between the 1980 baseline,
the 1985 derivative, and the 1990 STAT engines are due princi-
pally to the design philosophy used for the engines. The 1980
baseline engine was originally designed for business or executive
aircraft, with the majority of maintenance activities to be per-
formed at factory-authorized repair and overhaul centers. The
1985 and 1990 engines were designed principally for commuter
transport applications, with the majority of maintenance activi-
ties, including major module replacement, to be performed by the
operators., As discussed subsequently, modular construction is the
principal contributor to the reduction in maintenance cost. The
maintenance burden was computed only for the airframe, since the
engine maintenance burden was included with the engine maintenance
cost. Propeller maintenance costs were initially based on the on-
condition maintenance cost factors furnished by Hamilton Standard
in propeller data packages prepared under Contract NAS3-22039.
These factors were subsequently revised, as discussed la:er, how-
ever the overall effect on DOC was not more than 0.1 percent. The
original and revised factors are given in Table VIII. It should
be noted that all costs referred to throughout this document are
in constant 1980 dollars.

The benefits of the 1985 derivative engine and the 1990 base-
line engine relative to the 1980 baseline engine for the 30- and
S50-passenger airplanes are shown in Tables IX and X, in terms of
the 100-nmi DOC. These benefits were estimated using the sensi-
tivities developed for the baseline aircraft and do not include
any benefits due to advarnced airframe technology. The 50~
passenger design used a scaied version as the 30-passenger engine,
and no adjustments were made for Reynolds number, clearance or
other size related effects. The 1985 derivative engine resulted
in a decrease in DOC of more than 10 percent for both the 30- and
50-passenger designs; and the 1990 technology engine resulted in a
DOC reduction of more than 15 percent relative to the 1980 tech-
nology configuration. Over half of the 15-percent improvement in
DOC due to the 1990 technology engine was the result of improve-
ments in BSFC. The improvement in BSFC is attributable primarily

17
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TABLE VII. S8TAT OPERATING COST EQUATIONS
(PURNISHED BY NASA-AMES) .

—

Uctilization s 2800 hr/yr I..surance rate = 1.5 percent
Depreciation period = 12 yr Residual value = 15 percent

DIREC. OPERATING COSTS (DOC), $/BLOCK-HOUR

(1) Plight crew = 2.5 x (max passenger seats)

(2) Fuel, oil, taxes = 0.156 x ($/gal x (block fuel/block time))
(3) Insurance = (5.357 x 10”%) x (total aircraft cost)

(4) Airframe maintenance:

Labor = 0,0115 x (whr°'575) x (rate/hr)
0.575)

s 0.0115 ‘"Ar0'575’ x (rate/hr + 10)

Material = 0,115 x (WAF

(5) Engine maintenance:*

Mission length, nmi 600 100
Afirplane Pax 30 50 30 50
1980 Baseline 47.64 56.70 63.64 75.58
1985 Derivative 20.80 25.61 27.78 34.14°

1990 STAT Technology 20.05 24,61 26.79 32.79

(6) Propeller maintenance = F(blades, TBO) per Hamilton
Standard

(7) Maintenance burden = 0.80 x (airframe labor + engine
labor)

(8) Depreciation = (2.53 x 10'5) X (total aircraft cost)
x (spare factor)
where: spare ctor = 1,08 for 30 seats
spare factor = 1.12 for 50 seats

INDIRECT OPERATING COSTS (IOC), $/BLOCK-HOUR

I0C = 0.8C x DOC + flight attendant cost

where: flight-attendant cost = $14.40/block-hou.
for 20 < seats < 50

*Garrett model baggd on TPE331

20




TABLE VIII. PROPELLER ON-CONDITION MAINTENANCE COST IN

$/7LT-HR PER $1000 ACQUISITION COST.

ORIGINAL* REVISED
Current Technology 0.0153 0.036
Advanced Technology, 3-way 0.0320 0.027
Advanced Technology, 4-way 0.0360 0.030
Advanced Technology, 6-way 0.0460 0.036

*Hamilton-Standard propeller data packages
prepared under Contract NAS3-22039

—

21



*3je1d1Te ayl 103 pIzIs se parrelsutun
1amod jjooyey ‘Kep piaepuels ‘Drjels [9A3T e3s 3je sot3sTIa3dRIRYD JUulbudy
€€8°0 €€8°0 ¥¥8°0 ¥V8°O - - - - o0C 3ATIET3H
L°9T- L°9T- 9°T1I1- 9°11- -- -- % ] o0a 77X
69- 6°9- 1°9- L°9- - - s . 1s0d
souevujUTeR
Z2°0+ 0+ 2°0+ 0+ -- - % ] 380D
L°0- L°0- 9°0- 9°0- - - ) ) 3ybrom
£€°6- €°6- S°y- S y- - -- ] L ods
autrased
woi3y D0d sV
0°I¥Z O°TVZ G°T¥T €°Z¥” 0N°0ET 0°0¢tT 8y 8y 38350
€29 9°28C [4:%] L°S6C 19L [A3 43 uqy [ | Iybram
ZyP°0 689Z°0 Z0S°0 ¥S0€°0 8SS°0 V6EE°O dy/(1y/mqy) IY-M%/5y4 odsd
Z08T B EPET €TBT ¥ 6SET TPBT 9 ELET dy My 1amodasI0OH
i3eys
sanieA SanTeA SIaNTeA SanTeA sanTeA SsanTeA satun s3tTun IS sSI33j2weied
‘3ISn) 1S ‘3Isny 1S *3Isn) IS K1ewcasn)d
auilbug auibua auibud
IVLS aAT3RAT DA autyased
0661 S86T 086T
"ANTIQIIV HIONISSYI-0f ¥04
NOISSIW Twu-090T NO nm%m.ma.uhwzmm ANIONT LVIS °“XI J18VYL

22




*33jei1diTe 3yl JIOJ pazZIS Se payreisurun
‘33mo0d 3jjoajyel ‘Aep piepuels O5T13e3IS [3A3T BIS B SOTISTIajdeIeyd autbudg,

8r8°0 89¥8°0 ¥68°0 ¥68°0 - - - -_— .uoa aArjeray
2°S1- T°ST- 9°0T1- 9°01- - - t % J0a *vX
6°G- 6°GS- L°G- L°G- - -~ 1) ) 3s0D
adueuajuren
1°0+ 10+ T°0+ 1°0+ - - ) 3s0D
6°0- €°0- 8°0- 8°0- - - % s JubroM
S°8- S°8- T°v- Z°v- -- - ) ) Jds
autrtosed
WO1I JOC 8V
T°8TIE T°8T1€¢ €°02C €°0Z€ O°¥OE O°¥OE $y 8 3s07)
¥Z8 9L°ELE 198 ¥S°06f (LZOYI LZ°0TS uqy by Jybram
CY¥°0 6892°0 CO0S°0 ©$SOE°0 8SS°0 v6€ce°0 du/(au/mgi) 1y-My/by Jasg
¥8EZ L LLLT 80¥Z 9°GS6LT 62¥Z €°T181 dy MY 1amodasion
3jeus
S3nNTeA S3NTPA S3NTPA SINTEA SSNTRA SanTeA sa3tun s3TUn IS sSi1d33wered
°3Isnd 1S *3sny IS *3Isnd 1S K1ewojsnr)
autbug sutbuy auibug
RA“A L 9AlI3RAT13Q auyraseq
0661 G861 0861

“ANVIJUIV YIONISSYd-0S ¥0d

NOISSIW TWUu-00T NO Q3ISVd SLIJANAY FANIONA IVIS

X J189vL

23



e g b 15

to higher pressure ratio and improved component efficiencies. A
cetailed breakdown of the contribution of cycle, component effi-
ciency and other improvements was not made due to the significant
configuration change between the 1990 technology engine (free tur-
bine, concentric shaft) and the 1980 baseline engine, (single
shaft).

Almost 440 percent of the DOC improvement is due to the lower
maintenance cost of the 1990 technology engine., As stated previ-
ously, the majority of the maintenance cost savinugys is due L0 the
modular engine design.

The DUC improvements resulting from the 1985 derivative
engine were split between the improvement in BSFC and maintenance
cost. 'The BSFC improvements were due solely to improvements in
component efficiencies as the cycles of the 1980 and 1985 engines
are almost identical.

An additional investigation was made to determine what
further benefits might result from considering scale effects
between the 30- and 50-passenger engines. A scale factor of 1.323
was used, based on the ratio of engine rated horsepowers. It was
found that because the actual geometric change was relatively
small (approximately l5-percent diameter increase), the combina-
tion of clearance and Reynolds-number effects resulted only in a
0.4-point increase in turbine efficiency. Although small, this
improvement results in a shaft-horsepower increase of slightly
over 0.5 percent at the cruise conditions, and an SFC reduction of
slightly over 0.3 percent, which translates to a DOC reduction of
about 0.2 percent.

The results of the DOC computations are presented as pie
charts in Figures 9 through 14. These charts show the total DOC
(in constant 1980 dollars) for the 30- and 50-passenger airplanes,
broken down by the elements given in the equations of Table VII
for the following conditions:

Fuel Fuel Engine Mission
Cost, Cost, Technology Length,
$/1 $/9al Base nmi
0.264 1.00 1980 600 & 100
0.2064 1.00 1985 600 & 100
0.264 1.00 1990 600 & 100
0.39%0 1.50 1980 600 & 100
0.390 1.50 1985 600 & 100
0.396 1.50 1990 600 & 100
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A comparison of these figures reveals several items that warrant
comment .

The heavy influence of SFC (block fuel) on DOC is apparent.
Wwith the fuel price at $0.264/1 ($1.00/gal), fuel cost represents
more than one-third of the total DOC. The strong influence of
fuel cost is also apparent. With the fuel price at $0.396/1
($1.50/gal), fuel cost represents approximately 45 percent of the
total DOC, and at $0.528/1 ($2.00/gal), although not shown herein,
the fuel cost exceeds 50 percent. The influence of engine tech-
nology is presented in Pigure 15, which shows that fuel costs
decline approximately 22 percent as the engine component efficien-
cies and cycle quality improves.

It is notable that engine maintenance costs are markedly
reduced from the 1980 baseline engine to the 1985 derivative and
the 1990 advanced engines, as indicated on Figure 16. This reduc-
tion is due to fully modular construction, provisions for on-the-
wing maintenance, repairable components, and component design
criteria which is consistent with the severe engine duty cycle
imposed by commuter operations. The TPE331-11 engine was
designed for the business/executive market where small fleet
sizes and maintenance organization necessitated return of the com-
plete engine to the factory or overhaul shops for overhaul at time
intervals set by the lower durability components. Where larger
fleets are maintained, more extensive maintenance organization can
hbe justified and direct maintenance costs can be reduced through
modular maintenance where only components requiring maintenance
are involved.

Repairability is a significant factor. For example, the 1985
and 1990 engines utilize inserted blades in all turbine stages
which allow only damaged blades to be i1eplaced.

The other major factor in reducing the maintenance cost of
the 1985 and 1990 engines was improved durability. The 1985 and
1990 engines are designed both for the stress rupture and low-
cycle-fatigue requirements of commuter operations.
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4.0 ADVANCED PROPULSION TECHNOLOGY AND DESIGN FEATURES

This section addresses the following elements of the study:

o Identification and evaluation of alternate component
technologies

o Evaluation of candidate design features

o Evaluation of alternate cycles and configurations

o Propulsion evaluation

4.1 Identification 2nd Bvaluation of Alternate Component Tech-
nclogies

The 1990 technology engine described earlier was the basis
for more detailed engine trade-off studies oriented specifically
towards alternate component technologies. In aselecting this con-
figuration, detailed trade-off studies were ..ot cerformed. The
engine, described in detail in a subsequent section does, however,
incorporate a significant amount of advanced technology. A large
number of alternate technologies were evaluated. All alternates
could bhe available in the 1990 time frame assuming successful
development. They do represent various levels of technical and
developmenc cost risk.

The evaluation of the alternate technologies was made with
respect to the 1990 technology engine., Therefore the benefits/
penalties are relative to a 1990 technology standard. No attempt
was made to evaluate the inherent technology benefits in the 1990
engine relative to the 1980 technology engine, except at the over-
all engine level. The large difference in configuration between
the 1990 and 1980 engine precludes a detailed comparison of this

type.
4.1.1 -scription of the 1990 Technology Engine

A cross section of the 1990 technology engine is shown in
Figure 8.

4.1.1.1 Compressor

The NASA Small Axial/Centrifugal Design Study program showed
that two-stage centrifugal compressors werc competitive with
axial/centrifugals and superior to single-stage <entrifugals and
multistage axials in the 10-l1b/sec inlet corrected flow class. At
16:1 design pressure ratio, the two-stages centrifugal selected has
an efficiency 3 points higher than current technology. This effi-
ciency improvement is due to advanced 3-D bliaf'ng and improved
clearance control.
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4.1.1.2 Combustor

The combustor is fabricated by rolling, stamping and welding
INCO 617. Thermal-barrier coatings for improved durability are
utilized, and the fuel injectors are the airblast atomizing type.

4.1.1.3 High-Pressure Turbine

The turbine is a two-stage cooled axial design. The inserted
blades are directionally solidified (DS) MAR-M 247. The super-
waspaloy disk is forged and machined. Advanced clearance control
techniques (passive) and 3-D blading provide an eff{iiciency that is
approximately 4 points higher than current technology.

4.1.1.2 Low-Pressure Turbine

The low-pressure turbine is a two-stage, uncooled, axial
design., The inserted solid DS MAR-M 247 blades have integral
shrouds.

4.1.1.5 Gene.al

The speed reduction (propeller) gearbox is integral to the
engine. A tnree-step reduction is utilized. Aircraft accessories
mount on the cast gearbox housing.

A digital electronic fuel control with hydromechanical backup
(and diagnostic and power management capabilities) was assumed.

4.1.2 Alternate Technology Evaluation

A larne r::mber of candidate advanced technology features were
evaluated. The initial list of candidates was screened and those
shown in Table XI were evaluated in more detail. The overall
results of the alternate technology evaluation are shown in Table
X1I. Each technology area is discussed below.

4.1.2.1 Compressor

The 3-D blade shapes utilized in the two-stage centrifugal
compressor entail expensive machining operations. Near net-shape
powder metal (PM) fabrication techniques offer a potentially less
expensive manufacturing metnod. Powder metal titanium and alumi-
num approaches were investigated. New PM aluminum alloys are
under development for use up to temperatures of 650°F which would
be appropriate for the first impeller. Use of aluminum rather
than titanium offers a reduction of 40-percent weight and 60-
percent cost. There is, however, a reduction of 30 percent in
life. The impact on DOC for the PM aluminum first-stage impeller
was approximately 1/2 of 1 percent. The PM titanium impeller does
not offer a weight decrease but its life is equivalent to the
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TABLE XII. ADVANCED TECHNOLOGY EVALUATION RESULTS

(100-nmi Mission)
$0.264/kl ($1.00/Gal) Fuel Cost

Percent DOC Percent Change
Change in Block Fuel
30 50 30 50
Pax Fax Pax Pax
Compressor
1 Powdered Aluminum PFirst- -0.07 -0.05 -0.04 0
Stage Centrifugal
2 Powdered Titanium Second- -0.22 -0.12 0 0
Stage Centrifugal
)3 8Single-Stage 12:1 +3.13 +2.87 +3.86 +3.47
Centrifugal
4 Two-Stage 20:1 Centrifugal | -0.30 -0.40 -0.81 -0.74
5 20:1 Axial-Centrifugal -0.88 -1.03 -2.44 -2.28
(4 and 5 Axial Stages)
6 20:1 Two-Spool Axial- -0.33 -0.62 -2.44 -2.27
Centrifugal
High-Pressure Turbine
7 Single~Stage HPT -1.21 -0.77 +0.38 +0.33
8 Uncooled [1477 K (2200°F), | +1.06 +0.79 +0.44 +0.35
CRS, MA 6000, sC)
109)
10 Tip Treatment ~-0.40 -0.42 -0.44 -0.46
1l Cooling Flow Modulation -0.40 ~0.42 ~0.44 -0.46
12 Active Clearance Control -0.43 -0.35 -0.48 ~-0.38
13 Net Shape PM Disk +0.11 +0,03 0 0
l4 1089 K (1500°F) Disk -0.09 -0.07 0 0
Alloy
Low-Presgure Turbine
15 Active Clearance Control -0.58 -0.58 -0.64 -0.63
16 Titanium-Aluminide +0.33 +0.23 0 0
Second Stage
17 sSingle-Stage LPT +0.65 +0.60 +1.27 +1.10
Gear box
18 Laser Hardened Gears -0.13 -0.11 0 0
19 Roller Gears +0.51 +0.45 +0.05 +0.04
20 Composite Housing +0.56 +0.39 +0.01 0
21 SPF/DB Gearbox +3.80 +3.06 0 0
Combusgtor
22 Machined Ring Burner +0.02 +0.02 0 0
23 Photo Etched Burner -0.15 -0.12 0 0
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machined titanium impeller. The reduction in cost relative to the
machined titanium impeller is 40 percent. The net effect on DOC
is a reduction of 0.1 to 0.2 percent. If a centrifugal compressor
is used in the engine, two-~stage centrifugal or axial/centrifugal,
it is recommended that PM titanium impellers be selected.

Reference to Table XII shows that the most attractive com-
pressor is a 20:1 pressure ratio axial/centrifugal. The single-
stage centrifugal offers lower acquisition cost, lower maintenance
cost and lower weight, but suffers a significant performance
penalty. The 20:1 two-stage centrifugal and the two spool 20:1l
axial/centrifugal both offer DOC benefits but do not offer as much
as the 20:1 single-spool axial/centrifugal. The improvement in
DOC is due primarily to an improvement in compressor efficiency (2
points higher than 20:1 centrifugal) and the effect of the higher
cycle pressure ratio. Weight contributes only a small DOC benefit
although the axial/centrifugal compressor is 25-percent lighter
than the two-stage centrifugal. As evaluated, the axial/
centrifugal compressor costs twice as much as the two-stage cen-
trifugal and increases the maintenance cost of the engine by 15
percent. The increase in maintenance cost was due primarily to
the higher cost of the component. If the cost penalty could be
reduced by 50 percent, the DOC benefit could be doubled.

4.1.2.2 High-Pressure Turbine

The largest improvement in the high-pressure turbine was due
to the substitution of a single-stage turbine for the two-stage
design. It should be noted, however, that the trade-off study was
performed for the engine utilizing a 16:1 pressure ratio, two-~
stage centrifugal compressor. A similar trade-off study for the
20:1 axial/centrifugal engine did not show a benefit.

The advantages of the single-stage turbine are:

8-percent reduction in engine weight
8.6-percent reduction in engine cost
6-percent reduction in maintenance cost
22-percent reduction in cooling flow

0000

There is a significant performance penalty. The substantial
increase in mean work coefficieint of the single-stage design
results in a 2 point loss in turbine efficiency.

Other significant technologies included tip treatment, cool-
ing flow modulation and active clearance control. The primary
factor in these technologies was the effect on fuel consumption,
through changes in component efficiency and cooling flow. There
were very small changes in weight, cost and maintenance but the
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effort required to quantify them was not warranted due to the
relative insensitivity of DOC to small weight, cost and mainte-
nance changes.

Advanced high strength directionally recrystallized PM and
cast single-crystal (SC) nickel-base alloys that will allow
uncooled turbine rotor inlet temperatures of 2200°F are currently
in an early stage of development. A trade study was made to deter~
mine whether an uncooled turbine was more attractive than a cooled
approach. Weight, cost and life of the uncooled turbine were all
adversely affected. If life were held constant, turbine weight
would increase significantly. The effect on performance was posi-
tive due to the elimination of blade and vane cocling but it was
offset by a decrease in turbine efficiency of 1 point due to the
hbigh taper ratio design required.

The use of higher temperature capability materials in the
turbine blades and vanes also had a disappointing result. The
major reason for the negative results was the very high cost pres-
ently predicted for the higher temperature materials. 1If costs
can be reduced, these materials would be more attractive.

A near net~-shape PM disk (Rene 95) and a dual-alloy disk were
investigated but offered little or no benefit. The disk environ-
ment is not severe enough to warrant use of these higher cost
approaches. Little or no disk cooling or weight reductions are
possible.

4,1.2.3 Low—-Pressure Turbine

The low-pressure turbine initially proposed for the 1990
technology engine benefited only from the addition of active
clearance control. Alternate materials such as titanium aluminide
in the second stage, and a substitution of a single-stage design
were not beneficial. The TiAl blades reduced the second-stage
blide weight by 50 percent, but resulted in a higher cost and
lower life.

4.1.2.4 Gearbox

Of the four alternate gearbox technologies investigated, only
laser-hardened gears offered a positive benefit. A re-evaluation
of the technology status of laser hardening resulted in the con-
clusion that it is not a 1990 technology item. Development of
this technology is quite advanced, and it should be ready to
transfer to production engines in a few years without large
expenditures of R&D funds.

Roller gears and traction drive were investigated as an
alternative to the conventional epicyclic gear train. Both
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approaches incur large weight penalties without offsetting cost,
performance or maintenance advantages.

Composites and superplastic forming and diffusion bonding of
titanium sheet (SPF/DB) were investigated for fabrication of the
gearboxes. Both offered significant weight and maintenance
advantages, but the composite gearbox was estimated to cost three
times the cast aluminum gearbox and the SPF/DB gearbox was esti-
mated to be 5 times more expensive.

4.1.2.5 Combustor

The two alternate combustor technologies investigated
yielded small improvements. The machined ring combustor liner
provides significant durability advantages (2x life) but at a 50-
percent cost increase. The increased liner life is due to the
elimination of hot spot due to sheet metal tolerances and the
elimination of double thicknesses. Machined ring combustors could
be selected for an advanced engine based on more detailed trade-
off studies.

The photoetched combustor allows the substitution of coarse
transpiration cooling for film cooling. Cooling passages and the
large number of cooling air orifices are photoetched into the
combustor liner. A photoetched burner would be 20-percent lower
in cost and have twice the life of a conventional burner,

4.2 Design Features

In addition to the advanced-technology items discussed above,
several engine design features were examined for their effect on
the baseline airplane. The design fratures examined are listed in
Table XIII. The selection of these features was based primarily
on discussions with commuter operators, whose consensus was that
engines designed for their use should be "as simple and maintain-
able as possible." Accordingly, since engine maintenance repre-
sents a significant portion of the commuters' operating cost,
design features related to maintenance received the greatest
emphasis in this portion of the study.

The design features that were specifically included or
assumed in the design of the 1985 and 1990 engine were:

o Modular design to permit on-the-wing replacement of
major component groups such as the gearbox, compressor,
HP turbine, and power turbine

o Repair capabilities, such as extra balance material on

high-speed rotors, threaded inserts to provide for
replacement of pulled or loose studs, welded rather than
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brazed assemblies, inserted rather than iantegral
blades, self-fixturing components to minimize tooling
costs

o Consolidated service and checkpoints to minimize the
number of inspection panels 2nd reduce ground-check
time; minimized lockwire requirements to permit checks
and services by flight crew:; provision of ample tool
clearance and elimination of special tools and fixtures
to conserve maintenance time and cost.

A separate analysis of each of the above features was not
performed. These features, together with the durability design
criteria resulted in the 55-percent reduction in maintenance cost
mentioned earlier. The basis for the 1985 and 1990 engine main-
tenance cost was a detailed maintenance estimate using the
Logistic Support Cost (LSC) computer model. Input to this model
is a detailed estimate of the labor and material cost of all
maintenance actions.

Other design fcatures that were considered qualitatively but
not included in the maintenance cost estimate were:

o Diagnostic systems that utilize engine-mounted sensors
to calculate and record engine health parameters such as
turbine temperature, power output, and SFC. Such sys-
tems can provide data for trend monitoring to allow rou-
tine servicing to be scheduled, as well as component
data to allow isolation of individual component perfor-
mance problems.

o Provision for adequate HP or LP bleed air to permit
optimization of the engine cycle for the aircraft pneu-
matic systems.

o Automatic power reserve, in the event of a one-engine-
inoperative (O£I) condition during takeoff to provide up
to 1l0-percent additional power from the remaining
engine,

o Engine operation as an auxiliary power unit (APU) by
locking the propeller and operating the gas generator to
provide bleea air. This would eliminate the need for
either an on-board APU or a ground cart. However, this
option has the disadvantages of high fuel consumption,
high-temperature core exhaust-gas impingement on the
stopped LP turbine, and noise.
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o Quick engine change (QEC) nacelle to permit rapid
removal and replacement of the complete propulsion sys-
tem. This system, illustrated in Figure 17, incorpo-
rates large removable external panels to expose the
engine. The engine and propeller are removed after dis-
connecting the fuel, electrical, engine-control system
lines, and four mounting bolts located at Station A.

o Electric or pneumatic starting modes are both feasible
for propulsion systems in the size class of this study.
Pneumatic systems are almost universally employed by the
larger carriers, while electric systems are prevalent in
general aviation. Electric systems require on-board
batteries, while pneumatic systems require either an on-
board APU or a ground cart. The choice must be made by
the individual commuter operator based on his experience
and resources.

o Flat rating and derating are options that affect engine
size, cost, and performance. While flat rating results
in an engine that provides relatively high power at
higher ambient temperatures, such an engine may actually
be larger than necessary and would have relatively
higher (and undesirable) SFC at the lower ambient temper
atures in the flat-rating regime. It may be better to
provide the smallest engine that will provide the
required power with minimum margin. Derating is a form
of providing margin for time-related performance
deterioration. A derating level of 5 percent is typi-
cal; however, the percentage can vary dJdepending on
experience and anticipated operating conditions. The
choice of these options and their levels is also an
operator decision.

These features were addressed in a qualitative fashion only
because it has been found that their benefit is highly dependent
on a particular operator's usage. To arrive at meaningful quanti-
tative results would require postulating route structures and an
overall fleet mix.

4.3 Evaluation of Alternate Cycles and Configurations

Parametric analyses of various configurations, staging
arrangements, and cycles applicable to an advanced engine were
performed to determine what performance improvements over the 1990
baseline engine might be achieved. The basic engine types
examined included a conventional free-turbine configuration and a
single-shaft configuration. 1In addition, a low-spool driven com-
pressor configuration was examined at discrete points. The
mechanical arrangements of these configurations are illustrated
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schematicallf in Figure 18. The variation of component arrange-
ments is indicated in Table XIV. For the free-turbine and single-
shaft versions, design-point cycle analyses were performed for an
OCR range from 10:1 to 20:1, and a TRIT range from 1477 K (2200°F)
to 1700 K (2600°F). Compressor efficiencies were modified as a
function of pressure ratio, as shown in Figure 19; turbine effi-
ciencies were modified as a function of turbine work, as shown in
Figure 20; and turbine cooling flows were scheduled as shown in
Figure 21. Candidate alternate advanced technologies discussed in
Section 4.2 are not included in the parametric evaluation with the
specific exception of the single-stage turbine, single-stage cen-
trifugal compressor and the 20:1 axial/centrifugal compressor.

The design point for these analyses was a cruise condition at
5180 m (17,000 £t), ISA. This condition, defined in Table XV, was
chosen as a compromise between the STAT 100~ and 600-nautical mile
cruise conditions, and was retained throughout the study as the
design condition for all subsequent performance comparisons.

The results of the parametric analyses are given in Fig-
ures 22 through 27 as curves of TSFC versus specific thrust (F/W).
For these parameters, thrust includes propeller thrust (for which
a propeller efficiency of 0.842 was assumed) and engine exhaust
jet thrust. As noted previously, F/W is defined as the ratio of
propeller plus jet thrust to the inlet airflow rate. These curves
show performance only for the two-spool and single-shaft engines.
A parametric analysis of this type was not performed for the low-
spool drive configuration. A single design point calculation was
performed for this configuration.

Figures 22 through 27 show, in general, that the minimum TSFC
occurs at the highest pressure ratios for a given TRIT, and at a
TRIT of approximately 1560 K (2350°F) for a given pressure ratio.
Exceptions to this trend occurred with the engines that employed a
single-stage centrifugal compressor, as shown in Figures 23 and
25. The minimum TSFC for these two engines occurred at pressure
ratios near 14:1, since at higher pressure ratios the single-stage
compressor efficiency (shown in Figure 19) falls well below those
of the other compressor types.

A summary of the parametric analysis is shown in Table XVI.
The first comparison shows engine at the cycle conditions chosen
for the initial 1990 technology engine cycle, i.e., 16:1 pressure
ratio and 2350°F. At these cycle conditions, the low-spool drive
(G) and the axial centrifugal compressor configuration are
superior to the two-stage centrifugal configuration which is the
initial 1990 technology engine configuration. The TSFC improve-
ment is in the order of 1 to 1.5 percent. The second comparison
shows performance at the minimum TSFC cycle for each configura-
tion. This comparison shows that the axial/centrifugal configura-
tion (C) is 3-percent better in TSFC than the two-stage centrif-
ugal configuration (A).
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COMPRESSOR ADIABATIC EFFICIENCY, PERCENT

¥ v L L

10 12 14 16 18 20

COMPRESSOR PRESSURE RATIO

Figure 19, Compressor Efficiency Variation.
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Figure 20. Turbine Efficiency Correlation.
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TABLE XV. PARAMETRIC ANALYSIS CONDITIONS.

Altitude

Ambient Temperature
Ambient Pressure

Flight Speed

Compressor Bleed Airflow
Accessory Power

Inlet Pressure Recovery

5180 m (17,000 ft)

255 K (~1.6°F)

52.7 kPa (7.65 psia)
291 KTAS (M=0.468)

5.4 kg/min (12 lb/min)
18.6 kW (25 hp)

0.995
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The performance benefit of the single low-spool drive engine
analyzed was judged insufficient to warrant further investigation
of this concept. The boosted or low-spool drive configuration is
a viable configuration for fixed wing aircraft but has stability
problems in a rotorcraft application. Adding compression stages
to the low spool could be considered for growth engines applicable
to fixed wing aircraft,

The primary result of the parametric investigations was to
indicate a choice between the two-stage centrifugal and the
axial/centrifugal compressor configurations and a pressure ratio
of 16:1 and 20:1. This choice was also identified in the advanced
technology evaluations where a complete evaluation of performance
weight and cost was performed and showed a l-percent DOC advantage
for the axial/centrifugal 20:1 configuration relative to the two-
stage centrifugal configuration at 16:1 pressure ratio. This
result is tempered by t:ie single-stage high pressure turbine
trade-off study. This trade-oft showed a 1 percent advantage for
the single-stage high pressure turbine in the 16:1 two-stage
centrifugal configuration. At the higher cycle pressure ratio, a
two-stage turbine is required.

4.4 Propulsors
4.4.1 Propellers

4.4.1.1 Baseline Technology

Propulsors considered for the two airplanes defined in this
study included only conventional propellers. Higher speed propel-
lers and prop-fans, as defined by Hamilton Standard in data pack-
ages prepared for the STAT program, were not considered since the
airplane cruise speeds selected by NASA-Ames were well within the
speed regimes of conventional propellers.

The characteristics of the propellers, as defined by NASA-
Ames for the 1980 baseline airplanes, are given in Table XVII,
and the criteria for selection of the number of propeller blades
are given in Figure 28. Evaluation of 3-, 4-, 5- and 6-bladed
propellers resulted in minimum DOC with 5-bladed units for both
the 30- and 50-passenger airplanes. Noise estimates were prepared
for the FAR Part 36 locations and for the near field (fuselage
surface). The noise levels were estimated with the methods given
in the Hamilton Standard STAT propeller data packages.

The FAR Part 36, Stage 3, noise limits minus 8 EPNAdB are also
indicated in Table XVII. As noted previously (Table I1I), these
levels were established as part of the baseline airplane perfor-
mance requirements. The 30~ and 50-passenger airplane noise
levels were estimated by methods defined in the Hamilton Standard
Red Book Supplement C, since the propeller design was based on
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parameters given in that document. Corrections to EPNL were made
according to the procedures given in the Advanced Technology Com-
muter Aircraft Propellers dataz package furnished by Hamilton
Standard. The iesults are given in Table XVII.

The near-field nojise levels at the fuselage surface show the
same trend as the far-field levels in that the 50-passenger air-
plane levels are lower than those of the 30-passenger airplane.
This is due to the greater diameter and the lower tip Mach number
of the larger propeller. Correspondingly, the 50-passenger air-
plane required less acoustic treatment than the 30-passenger air-
plane (482 kg (1063 1lb) versus 494 kg (1090 1lb).

4.4.1.2 Improved Technology

Numerous alternatives have been considered for improving pro-
pulsors. Some of these are listed in Table XVIII1 along with the
areas in which improvements are expected. The improvements that
result from these alternatives are summarized in Figure 29 for the
30-passenger airplane. These improvements are based on limited
information and are subject to slight variation depending on spe-
cific propeller designs. Similar improvements would be expected
for the 50-passenger, Machs0.47 airplane., A more detailed break-
down of the effects of propeller efficiency, weight, and costs on
the DOC for the 30- and 50-passenger airplanes is given in
Table XIX. The parameters are given in relative values, with a
current-technology propeiler used as a baseline. Relative DOC
values were determined from the airplane sensitivities furnished
by NASA-Ames. As shown in Table XIX, a DOC reduction of approx:i-
mately 4 percent is projected for the advanced STAT propeller con-
figuration.

4.4.2 Comparison to Turbofan Engine

A comparison of the 1990 turboprop engines to a 199¢ technol-
ogy turbofan was conducted to verify that the turboprop cycle is
the best solution for the STAT missions. The 1990 turbofan used
in the comparison is a result of Garrett studies. It is a high
bypass ratio, two-spool, concentric shaft design. A single-stage
fan producing a pressure ratio of 1.55 is driven by a four-stage
uncooled axial low-pressure turbine. The core 'ompressor 18 an
axial/centrifugal design which produces a pressure ratio of 15.3:1
and it is driven by a two-stage, cooled, axial turbine. The
engine utilizes a reverse-flow annular combustor and mixed exhaust
nozzle. Characteristics of the engine at the cruise condition of
3650 m (12,000 ft) and 0.452 Mach number are compared to the
characteristics of the 30-passenger 1990 technology engine in
Table XX. The turbofan was scaled to the thrust level of the
turboprop engine assuming 84-percent propeller efficiency.
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TABLE XVIII. PFPOPULSOR TECHNOLOGY IMPROVEMENT ALTERNATIVES

Anticipated Improvement In

Per formance Noise Weight

Airfoil Aercdynamics X X
Shank/Spinner Inte- X X

gration
Spar/Shell Construction X X X
Precision Synchrophasing
Aero Elastic Tailoring X X
Blade Number Optimi- X X

zation
Tip Sweep X X
Proplets

Counter-Rotation
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TABLE XX. TURBOFAN AND TURBOPROP CHARACTERISTICS COMPARISON.

3659M (12,000 ft), 0.455 Mach No
Installed, Cruise Power 0.84 Propeller Efficiency
30 PAX
1990
Turbofan Turboprop
Net Propulsive Force, 1lb 1479 1479
Thrust Specific Fuel Consumption, lb/hr/lb 0.56 0.421
Fan Pressure Ratio 1.55 -
Bypass Ratio 6.67 -
Core Pressure Ratio 15.4 . 15.2
Overall Pressure Ratio 23.5 15.2
Turbine Inlet Temperature, °F 2350 2350
Core Corrected Flow, lb/sec 10.22 9.65
Weight, 1b 546 623

The difference in fuel consumption between the turboprop and
the turbofan is 33 percent. This large difference in fuel con-
sumption would be offset to a degree by potentially lower airplane
drag, lighter engine system weight and lower airframe acoustic
weight. Engine acquisition and maintenance cost are expected to
be near equal. The high sensitivity of DOC to fuel consumption
and the relatively low sensitivity to weight, cost, and main-
tenance suggest that the turbofan ‘is not competitive with the
turboprop for short, low speed missions. At higher speeds and
altitudes and for longer missions, this comparison would warrant
more detailed investigation.

4.5 Final STAT Engine Selection

The major choice to be made in selecting the fin.! advanced
engine configuration is the type of compressor and tiue dJesign
pressure ratio. A l-percent improvement is possible if the 20:1
axial/centrifugal compressor is selected. On the other hand, if
the two-stage centrifugal compressor is retained, a l-percent
improvement is possible if a single-stage turbine is selected. 1In
the first case, the DOC benefits from reduced fuel consumption and
in the second case, the DOC benefit is due to reduced acquisition
and maintenance cost and lower weight. It is recommended that
both options should be pursued in research and technology programs.
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A component-by-component description of all advanced technology
features selected for the final 1990 engine configuration is given
below.

4.5.1 Compresor Section

Powder metallurgy (PM), near-set-shame, titanium centrifugal
compressor impellers a.e recommended for both stages of the two-
stage centrifugal and the centrifugal portion of the axial/
centrifugal compressor if that option is eventually selected.

The powdered aluminum first-stage impeller was not selected
due to its lower durability.

For the final engine definition the two-stage centrifugal
compressor will be retained to facilitate performance and config-
uration definition. However, since the differences between the
two-stage centrifugal and axial/centrifugal configurations is
relatively small, both options should be developed.

4.5.2 Turbine Section

The turbine selection will ultimately be determined by the
compressor selection. A 16:1 pressure ratio design could use the
single-stage HP turbine but the 20:1 pressure ratio design would
require the two-stage HP turbine. Tip treavment, active clearance
control, and cooling flow modulation are recommended for the final
configuration.

4.5.3 Combustor Section

Advanced combustor fabrication methods - machined ring or
photoetching - offer higher durability combustors. A combined
program addressing advanced fabrication methods, improved cooling
and thermal-barrier cocatings would be a ‘+*hwhile research tech-
nology objective.

4.5.4 Gearbox

Laser hardened gears were selected for the final version of
the engine. This technology is now in development and government
sponsorship of additional programs is not considered necessary.

4.5.5 Combined Technologies

The combined effect of these changes 1is summarized 1in
Table XXI. Three alternatives are shown. They are:

o Two-stage centrifugal with two-stage HP turbine

o Two-stage centrifugal with one-stage HP turbine
o) Axial/centrifugal with two-stage HP turbine.
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The overall benefit of advanced technology to the STAT air-
craft s approximately 20-perceiat reduction in DOC for the
3J0-passenger design. Almost 60 percent of this improvement is
due to component efficiency and cycle quality improvements. Most
of the remaining 40-percent reduction is due to improvements in
maintenance. Weight and acquisition cost did not have a large
influence.

The difference in DOC improvement between the three configu-
rations shown in Table XXI is approximately 1 percent. This dif-
ference does not warrant a definitive choice considering the level
of engine designs allowed within the scope of this study. As
stated previously, both axial/centrifugal and centrifugal com-
pressor technology programs should be pursued. Technology pro-
grams addressing one- and two-stage turbine designs should also be
implemented.

Appendix III provides detailed cycle and configuration data
and coff-design performance for the two-stage centrifugal (16:1
P/P), two-stage turbine configuration. Specific fuel consumption
would be approximately 1l.5-percent and 4.0-percent lower for
the two-stage centrifugal/one-stage turbine and the axial/
centrifuyal/two-gtage turbine configurations, respectively.

4.6 Benefit Assessment

An assessment of the benefits of the 1985 derivative engine
and the 1990 advanced engine was performed. For the benefit
assessment, the 1990 engine utilizing the two-stage centrifugal
compressor and the two-stage high-pressure turbine was used.
Factors considered were the engine SFC, weight, acquisition cost,
maintenance cost, the impact of the advanced technologies, and
the expected advantages of advanced propellers. The results of
this assessment are given in Table XXII for the 100-nmi mission.
(Since all economic evaluations were performed only for the
100-nmi mission, a similar assessment was not performed for the
600-nmi mission.) These results show that for the 1985 derivative
engine, a DOC ieduction of approximately 11 percent would be
achieved without the benefits of advanced technologies or advanced
propellers. It was not considered that either the advanced tech-
nologies or the advanced prcpellers would be sufficiently
developed for incorporation in the 1985 derivative engine.

However, for the 1990 advanced engine, a 21- to 23-percent
reduction in DOC is projected based on the use of the 1990 base-
line engine with improved components, advanced technologies and
the advanced propeller effects given in Table XIX. These benefits
are dependent upon appropriate research and technology efforts as
recommended in subsequent sections.

The final results of the benefit assessment are summarized in
Table XXIII. This table shows absolute values of DOC, block fuel,
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TABLE XXII. BENEFITS FOR 100-NMI MISSION*

Engine 1985 Derivative 1990 Advanced
Passengers 30 50 30 50
APercent DOC For:

SFC -‘05 -4.2 -9-3 -805
Weight -006 -100 "'0.7 —101
Acquisition Cost +0.2 +0.1 +0.2 +0.1
Maintenance Cost -6.7 -5.7 -6.9 -5.9
Advanced Technologies —— -— -2.5 -2.2
Advanced Propellers —— ——- -3.7 -3.9

Total ADO!, Percent

-1106 -10-8 "'2209 -2105

*Fuel Cost at $0.264/1

($§1.00/gal)

70




ORIGINAL PAGE
F POOR QUALITY

o

71

~$3e7100 086 IUPIIUCD UT $IS0D TTV (2L0M
1205 Tand (1€6/00°18) /99770
pue UOTSSTH POEIW 3Ods
- EPT ET Vy-zec6 [33¢) T.Noo.S »o L0993t CetL06°T1 coctEs ! ! waol |
ey »°9299 LLUesLY zoTEEL LyUzTES 0001x8 | 2811p81 H
;1Ussos 1-E618 ¥ £06S z°5L06 $°5859 0001%$ 3se310 |
- ! «290D d7GSISTAQ I¥EL-S
0-9TLY £°GLEE 1°69LY vl ] LTLEPE oootxs ! 1803 uO13TSIndIY suerdity
1°t08 K i14 z-90¢€ [ 2244 €80t [ 124 000T¥S 1805 uo13ysInbov b
€89 v sof ' 0OS -y7rz | €28 g€7cif ' 509 y oz e IR 44 s $°10¢ et . 6» IHN 001
(8424 9°n5ZT | €907  1°AEE | TOET £oLert | 09N gosTIY | €49¢ 9 9991 ! 8TLZ [ a3 244 qr | & s 009
' : 1ang ¥OOT4 UCTESTH
re-6L9 9y vy SE°IEL 02°29% 0" 948 L1324 4] 0s°1 965°0 ™R 00T
4°5LS €L 60Y 9229 19y e €EL 112841 29°1 92°0C IWN 001
[T 1, v I9r 18°1S¢L 12284 11 oy- 128 9" 86S 25°1 96€°0 NN 009
"% LS [X 981 11 69°6£9 L0 €SV €57 L6Y , ZET90S ! 00" 1 9270 Inm 009
: ! ! {e5/s 1ond 7% 1wz 31131
. gE/$ ‘(D00) 380D putriviado 32277 |
aanTes *0 T8 v TRA antep anyen IrTen WL antes WTRA anyep anten aniep tun jun u
isn3 s bS] ts 33D 15 RS L0 s isns 1§ . 0D 1s 3snd 143 :
; siabusssed suwt1digy
2% 3 5% % 3 7€
FIOGTLDY FATIGATISC iud3in) Abotouuoes wutbuz
‘§11JFMEN TYIOL lviS CIIIEX AV




engine and airplane acquisition costs, and 5-year ownership costs
for the three engine-technology levels and for the 30- and 50-
passenger airplanes. In addition, values of DOC which correspond
to those shown in Figures 9 through 14, are given for fuel costs
of $0.264/1 ($1.00/gal) and $§0.396/1 ($1.50/gal). As noted pre-
viously, the DOC's were calculated with the equation furnished
by NASA-Ames but using Garrett engine-maintenance costs.

The S-year ownership costs were estimated from a mission mix
that was developed from a variety of data included in References 1
through 6. This mission mix is based on commuter fleet projec-
tions, typical commuter city-pair mileages, and commuter passenger
mileage records. The mix assumes that during the decade following
incroduction of the STAT airplanes, the percentage of flights for
various stage lengths will chkange for the 30- and S50-passenger
airplanes; and that, at the end of the decade, a higher percentage
of the larger airplanes will assume the longer stage lengths.
This mission mix is illustrated in Figure 30, which shows the
assumed percentages of flights by 30- ¢nd 50-passenger airplanes
over varjous stage lengths for the current, derivative, and
advanced-technology level STAT airplanes.

4.6.1 Alternative Applications

The application of STAT engine technology to areas other than
commuter arcraft was also examined as a matter of course. Both
military and commercial options were considered. Future military
applications include rotary- and fixed-wing aircraft as well as
automotive applications such as wheeled and tracked vehicles. The
commercial market includes a broad mixture of aircraft, ground
transportation, and other applications. These are discussed
briefly below.

The core of the STAT engine is well suited as the basis for
military turboprop, turbofan, or turboshaft applications.
Turboprop- or turbofan-powered applications might include small-
to-medium size transport airplanes for use as intracontinental
cargo, passenger, or command carriers. Such transports could
relieve larger aircraft for the larger, higher-volume missions.
Turboshaft-powered applications might include medium-~-to-large
helicopters [4,500 to 13,600 kg (10,000 to 30,000 1b) gross
weight) designed as cargo or personnel carriers. Such helicopters
could include advanced rotorcraft such as X-wing or tilt-rotors
for the high-speed transport of small strike forces and their sup-
port equipment.

The numerous potential commercial markets that might utilize

the STAT core and component technology include turbofan-,
turboprop-, and turboshaft-engine applications. The improved
cycle, the advanced technologies, and the design improvements are
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features that may receive varied emphasis in the commercial envi-
ronment; however, minimum fuel and maintenance costs are require-
ments in the competitive commercial community. Specific applica-
tions could include:

(o]

o

74

General Aviation - Business and executive airplanes.

Rotorcraft - Conventional cargo and passenger heli-
copter 1in the 4,500 to 13,600 kg (10,000-1b to
30,000~-1b) gross weight class, single- and twin-
engines. New higher-speed rotorcraft including tilt-
rotors, compound helicopters, and the advancing-blade
concept.

Marine - Crew boats, hydrofoil passenger ferrys.

Stationary Plants - Continuous-duty power plants for
pumping or electrical generation; standby emergency
plants for hospitals or similar critical requirements.




5.0 RECOMMENDED FUTURE RESEARCH

5.1 Program Scope

Specific component-technology-development programs and an
overall demonstrator-engine program are recommended in order to
advance the small transport aircraft propulsion system technolo-
gies to a level of acceptable readiness for commercial development
by 1988. The overall program approach entails the integration of
the several component programs with the demonstrator-engine pro-
gram. The scope of the recommended program is shown in Table XXIV,
and the schedule for the major program elements is given in Fig-
ure 31. The program follows the traditional sequence, commencing
with the definition and design of the baseline engine to incor-
porate the advanced-technology components. Concurrently, the
advanced-technology components will be designed and tested in
full-scale component test rigs. Subsequently, HP-spool components
will be installed in the gas generator for further evaluation.
Since the bulk of the recommended advanced-technoclogy components
are gas-generator components, these items are critical to the
overall successful demonstration of the STAT engine. Similarly,
following separate component rig tests, the LP-spool components
will be combined with the gas generator to make up the complete
demonstrator engine, an2 additional tests will be performed to
demonstrate technology readiness for full-scale commercial devel-
opment. Propulsion-gystem an '_sis will be performed throughout
the program to provide a clear and continuous understanding of the
relationship between the propulsion system design tradeoffs and
overall airplane performance and costs.

5.2 Preliminary Design

The preliminary-design task will establish the baseline con-
figuration of the complete demonstrator engine. The engine cycle
will be defined and component sizes will be established to set the
design requirements of each of the STAT advanced-technology com-
ponents. The demonstrator-engine design will be based on a front-
drive, concentric-shaft, free-turbine, turboprop engine con-
figuration, as shown in Figure 32. The nominal takeoff power
rating for the engine will be approximately 1350 kW (1810 hp).

Design objectives will be established for each of the
advanced-technology components. These objectives, including per-
formance, weight, and manufacturing cost, will be compatible with
the overall engine technology required. The demonstrator engine
will be designed for ground testing only, and would not neces-
sarily have flight-weight or production-type components in all
areas. Components that do not involve the development of new
technology will be designed for maximum program economy, while
ensuring that the engine will be a representative demonstrator for
both steady-state and dynamic operation.
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TABLE XXIV. BSTAT EXPERIMENTAL PROGRAM SCOPE.

o Baseline Engine Definit.on

o Advanced Technology Component Development

PM Titanium Centrifugal Compressor
20:1 P/P Axial/Centrifugal Compressor
Single~Stage HP Turbine

HP-Turbine Tip Treatment

HP-Turbine Active Clearance Control

LP-Turbine Active Clearance Control

o Gas-Generator Development
o Demonstratur-Engine Development
o Propulsion-System Analysis
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5.3 Component Technology

As a result of the advanced-technology screening, two gas-
generator rnafigurations were identified that showed benefit with
respect o the baseline configuration. The first configuration
substitutes a single-stage HP turbine for the two-stage HP tur-
bine, and retains the 16:1 two-stage centrifugal compressor. The
second configuration suhstitutes a 20:1 pressure ratio axial/
centrifugal for the 16:! two-stage centrifugal compressor, but
retains the two-stage gas-generator turbine., A two-stage turbine
is requireé to drive the 20:1 compressor. Major uncertainties
exist in the following areas:

o Foreign-object-ingestion tolerance of the centrifugal
versus the axial/centrifugal compressor

o Manufacturing cost of the axial/centrifugal compressor

o Variable-geometry requirements of the axial/centrifugsl
compressor

o Shaft dynamics.

Another facet is the question of fuel cost. The tradeoff
studies reported herein assumed $0.264/1 ($1.00/gal) fuel cost.
Fuel-cost increases would favor the axial/centrifugal compressor
and the two-stage turbine as their benefit is attributable to
higher efficiencies. Further study is required to select an
approach, and would have to include detail design and manufac-
turing studies.

In order to define a program for the compressor and turbine,
and to enable a benefit analysis to be conducted, programs for
highest-risk compressor and turbine were defined; i.e., the axial/
centrifugal compressor and the single-stage turbine. These pro-
grams are representative of two-stage centrifugal compressor and
two-stage turbine programs; although it is expected that program
cost would be slightly less and could be accomplished in a shorter
period of time.

5.3.1 Compressor

Two compressor-technology programs are recommended:
(o} 20:1 pressure ratio axial/centrifugal compressor

o PM titanium centrifugal impellers.
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5.3.1.1 20:! Pressure Ratio Axial/Centrifugal Compressor

The objective ot the 20:1 pressure ratio axial/centrifugal
compressor program is to provide the technology for improving
engine cycle efficiency with the higher cycle pressure ratio,
while increasing the overall component efficiency over that of the
16:1 two-stage centrifugal compressor baseline design.

The program schedule for the 20:1 pressuie ratio compressor
design and evaluation is shown in Figure 33. 'The program is a
4-year, three-~phase effort tha:t provides for design modificatione
to optimize performance over a broad speed range. The initial
design phase for Build 1 will include a preliminary design to
define gas flow path, stage work split, stage presoure ¢atios, and
basic mechanical data required for the test rig design. Detail
design will include definition of blade and v#ne contours, aero-
dynamic loadings and losses, and disk and blade stresses and
vibration characteristics. Within this same time peviod, design
modifications of an existing test rig will be compli:ted, including
the definition of variable-geometry teatures ond instrimentation,

The initial test sequence will involve testing of the axial
and centrifugal compressors separately, followed oy an axial/
centrifugal compressor test. It is anticipated that all vane rows
in the axial compressor will be movable to provide fo. rapid opti-
mization of the design without time-consuming teardowns and
rebuilds. This variable-vane feature will also be utilized to
vary off-design performance characteristics of the axial compres-
sor to optimize part-speed efficiency. The centrifugal stage will
be tested with the inlet duct, simulating conditions from the
axial compressor.

Design modifications required from the first series of tests
will be defined and fabricated. The second series of tests will
again be the individual axial and centrifugal compressors, fol-
lowed by an axial/centrifugal compressor test.

Final design modifications will follow this test series. The
final te.t will only incorporate variable geometry in the axial
stages required for good part-speed performance. The tests will
be a complete mapping of the axial/centrifugal compressor to
demonstrate performaice goals,

5.3.1.2 Powder Metallurgy Centrifugal Impellers

The use of PM titanium for centrifugal impellers offers the
potential of a 25- to 40-percent reduction in component cost with-
out compromising performance or affecting engine we .ght. The cost
reduction is predicated on the successful development of fabrica-
tion processes that will permit the production of centrifugal
impellers in net shape, thus eliminating the complex and time-
consuming machining of the impeller blades. It is anticipated
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that a PM titanium impeller compressor could be used either in the
first- and second-stage of a two-stage centrifugal, or as the cen-
trifugal component of the 20:1 pressure ratio axial/centrifugal
compressor, discussed in the preceding section. In the latter
case, the cost benefit mentioned above would not be as great.

The objectives of the PM titanium compressor program are to
verify the potential production cnst advantage of the PM process
and to determine whether any peformance penalty results from pro-
ducing net-shape impellers with this process.

The program schedule for the PM titanium compressor program
is given in Figure 34. The program is a 32-month, seven-task
technical effort that draws on the materials technology currently
being developed by Garrett under U.S. Army sponsorship. The pro-
gram outlined in Figure 34 includes the design of the PM impeller
and its manufacturing tooling, and the testing of a conventional
3-D impeller machined from a titanium forging, followed by a com-
parison of the aerodynamic test datz and an evaluation of the
manufacturing costs of both impeliers.

The results of the performance and cost comparison will be
used to determine if any changes to the design or fabrication
methods are required prior to initiating gas generator tests.

5.3.2 Turbines

The HP tu.bine for the 1990 ha~2line engine is a two-stage,
cooled, axial configuration with forged machined hubs, cast
inserted directionally solidified (DS) Mar-M 247 blades, passive
clearance cosrtrol, and flow discouragers. The LP turbine is a
two-stage axial configuration with a cooled first-stage stator,
forged machined hubs, cast inserted uncooled DS Mar-M 247 bhlades
with integral shrouds, and passive clearance control. Of the 16
advanced-technology features examined for these turbines, the
following features are recommended for further research and devel-

opment.

o Single-stage HP turbine. - Results in reduced engine
cost and weight, and slightly increased SFC, with a
‘l1-percent reduction in airplane DOC (16:1 pressure ratio
only).

o HP-turbine tip treatment. - Results in reduced rotor tip
Teakage and improved efficiency, no impact on weight or
cost, with a reduction in airplane DOC.

o HP-turbine active clearance control. - Results in poten-

tial efficiency increase at the expense of an additional
cooling-air penalty and cost increase and an overall
reduction of airplane DOC.
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u

o Turbine cooling flow modulation. - Results in lower
cooling and Elow and lower SFC at cruise power.,

(o} LP-turbine active clearance control. - Results are simi-
Tar to those for HP turbline, with a somewhat greater
reduction anticipated in airplane DOC.

5.3.2.1 Single-Stage HP Turbine with Tip Leakage Control

The incorporation of a single-stage HP turbine offers the
advantages of reduced engine weight and cost with only a slight
efficiency penalty. 1In order to offset that penalty, it is con-
sidered desirable to include means for controlling tip leakage in
order to achieve an eificiency improvement. The program outlined
below includes the design and optimization of a 3-D, high-work,
single-stage, cooled, HP turbine with tip and shroud treatments to
minimize losses due to tip leakage. This program extends the work
already accomplished by Garrett and others with high-work, low-
aspect-ratio turbine (LART) stages and tip-leakage control
methods. This work includes the design and test of a LART stage,
and the modeling and testing of tip 2nd shroud treatment methods
in cascade rigs and turbine rigs.

The objectives of the single~stage HP turbine program are:
(1) to design and test a high-work, cooled, single-stage, HP tur-
bine that is optimized for minimum tip-leakage loss by the use of
blade-tip and casing treatment; and (2) to verify the cost and
weight advantages of the single-stage over a two-stage design with
respect to airplane DOC.

The program schedule for the single-stage HP turbine program
is shown on Figure 35. This program is a 3-year effort that
involves: (1) the design of a baseline high-work turbine stage;
(2) analysis and evaluation of various turbine-tip and shroud
treatments leading to the optimization of the turbine blade con-
figuration; (3) testing of the optimized blade stage; (4) analysis
of the stage anéd treatment performance; and (5) comparison of the
weight and cost of a production configuration with a two-stage
turbine. At the conclusion of this program, gas generator tests
would be initiated.

5.3.2.2 Turbine Active Clearance Control and Cooling Air Modula-
tion

Clearance-control schemes can result in improved engine per-
formance by reducing the turbine tip losses. However, these
schemes can alsc increase the complexity and cost of the engine by
introducing additional hardware and control functions. In addi-
tion, they can impose a cycle penalty since they employ bleed air.
The active clearance~control system recommended for STAT is an
ON-OFF system that would only be utilized during the cruise mode.
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In this system, interstage bleed air is manifolded to the turbine
casing through an on-off solenoid valve., During takeoff and climb
the valve is closed, allowing therm expension of the casing. At
start of cruise, the valve i{s opened, permitting relatively cooler
bleed air to impinge on the turbine outer structure, which con-
tracts to reduce the turbine tip clearance.

The objectives of the turbine active clearance control pro-
gram are to demonstrate the capability for controlling HP- or LP~
turbine tip clearance and to define the cycle, weight, and cost
penalties associated with incorporating such a system on a produc-
tion STAT engine.

The program schedule for the turbine active clearance-con.rol
program is shown in Figure 36, The program is a 12-month tech-
nical effort that includes the definition and design of one of
several configuration alternatives, fabrication of hardware,
modification of engine components, full-scale engine testing, and
evaluation of data. The engine tests would include operation over
a range of bleed-airflow rates to determine the relationship of
the clearance-control effectiveness to the bleed-air cycle
penalty.

Various concepts for modulating the amount of cooling flow to
the turbine have been proposed. It is proposed that the design
effort to mechanize a selected concept and analysis required to
assure fail-safe operation be combine? with the turbine tip treat-
ment task.

5.4 Gas Generator

The gas-generator task is structured to pe:mit early testing
of the baseline gas generator and, suksequently, to permit incor-
poration of advanced-technclogy components as the component tests
are completed. In this manner, problem areas will be revealed
early enough to implement corrective action prior to the full
demonstrator engine tests. The schedule for the gas generator
program is given in Figure 37,

After cocmpletion of the engine preliminary design, the detail
design of the baseline engine will be initiated. This will
include the baseline components for fhe P spool, and will also
include provision for subsequent modification to incorporate the
20:1 presssure ratio axial/centrifugal compressor and the single-
stage HP turbine. This design will also provide the workhorse
test engine for the PM titanium impeller and the HP-turbine active
clearance control, tip treatment and cooling flow modulation.

Hardware for two complete engines plus spares will be pro-

cured so that refurbishment can be accomplished as required during
the test program.
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The initial tests of the baseline gas generator will {nclude
performance checks and a 40-hour endurance test. Previous cexperi-
ence has shown that any significant performance deterioration due
to seal wear, differential thermal growth, or similar causes will
be revealed after the initial 40 hours of operation. These tests
will be completed prior to completion of the advanced-technology
component tests in sufficient time to prepare the gas generator
for the advanced component evaluations in the engine environment.

Since the gas generator will be used for detailed component
performance comparisons, the initial baseline assembly will
include extensive instrumentatiun to monitor engine health and to
obtain engine and component data. The baseline tests will include
evaluation of the following:

o) Green run (mechanical checkout)

o Overall engine performance (40-hourz endurance)
o Compressor per formance

o Combustor per formance

o HP-turbine per formance.

Following the baseline tests, the gas generator will be dis-
assembled for inspection. Any necessary refurbishing will be
accomplished, and the engine will be reassembled to begin the
advanced-technology test series. In this series, each of the
advanced-technology components will be tested individually so that
separate comparisons against the baseline can be made. The
advanced-technolngy component test series will include evalua-
tions of the foliowing:

o 20:1 pressure ratio axial/centrifugal compressor

o PM titanium compressor

o Single~-stage HP turbine with tip-leakage control

o HP-turbine active clearance control.

It is anticipated that a total of approximately 165 hours of
test time will be accumulated during the gas-generator tests, of
which approximately 50 hours will be accumulated during the base-
line test series. At the conclusion of the gas-generator tests,

the engine will be disassembled, inspected, and prepared for
assembly for the demonstrator engine teste.
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5.5 Demonstrator Engine

In conjunction with the gas-generator task, the demonstrator-
engine task will provide the means to advance the STAT propulsion
systems technologies to the level of acceptable readiness for com-
mercial development by 1988. The demonstrator-engine task couples
the gas generator with the L™ spool and gearbox to provide a
complete experime-rital test vehicle for STAT technologies, The
demonstrator-engine program schedule is given in Figure 38,

Detail design of the LP-spool components commences at the
conclusion of the gas-generator program. Advantage can thus be
taken of any low-spool modifications to the earlier preliminary
design that are indicated from the gas-generator tests, The
LP-spool detail design includes the LP turbine, LP shaft
and bearings, supporting structure and exnaust duct, and the out-
put gear system and gearbox.

Sufficient demonstrator-engine hardware wiil be procured to
build two comp.ete engines. 1In additon, spares of critical com-
ponents (such as the combustor, turbine vanes and blades, and bear-
ings) will be obtained in order to refurbish the engine as required
during the test program.

The initial assembly of the demonstrator engine will include
the baseline gas-generator components, the LP spool (without
clearance control), and the output gearbox. This assembly will
include only the instrumentation necessary to monitor the health
of the engine. A brief series of baseline tests will be performed
during which the operating characteristics of the LP spool will be
closely monitored and the overall performance of the engine will be
measured., The baseline tests include a green run, during wvhich
the mechanical operation and vibration characteristics of the
engine are checked; a 40-hour endurance test, during which pert-
formance at various powers from idle to fill-load is measured; and
throttle-response checks.

Following the baseline tests, the engine will be disassembled
for inspection and reassembled with instrumentation required to
measure the LP-turbine performance with active clearance control.
The active clearance-control test is the only advanced-technology
component test specifically applicable to the LP spool, and will
therefore be conducted as a separate test prior to conducting
additional advanced-technology tests.

The demonstrator-engine program has been structured to accom-
modate an additional series of advanced-technology tests. These
tests will be specified following the gas-generator tustg, and can
include any of the features tested with the gas genesrator or other
features that may be considered beneficial. Among these optional
features are:
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o Uncooled, single-crystal, HP-turbine blades

o Single-stage LP turbine

o} Higher temperature turbine disks

o High ¢ffectiveness turbine-cooling schemes.

Each of the features selected for the optional advanced-
technology tests will be evaluated individually against the base-
line configuration for their effects on overall engine performance
and for their ultimate effect on airplane DOC.

A total of 150 hours is expected to be accumulated during the
demonstrator-engine tests, of which approximately 50 nours will be
accumulated during the baseline tests,

5.6 System Analysis

As indicated in Figure 31, system analysis will be conducted
throughout the STAT experimenta’. program. These analyses will
include integration of updated component data into the engine per-
formance model, and incorporation of engine and component detail
design and test data intc the engine cost, weight, life, and main-
tenance characteristics. This updated engine data will also be
used in combination with current airplane-sensitiv.ty data to
re-evaluate airplane DOC. In these analyses, particular emphasis
will be given to the accurate assessment of acgqguisition and main-
tenance costs, since, in addition to fuel costs, these are prime
considerations to the aircraft owner/operator.

5.7 Benefit Analysis

A benefit/cost analysis was performed for each of the com-
ponent technology programs described in Section 5.3, above. These
analyses were performed for the 30-passenger, 1990 baseline air-
plane operating cover a 100-nmi mission. To devise a baseline
benefit/cost ratio, a fleet size of 250 airplanes was assumed,
operating for a period of 5 years with a utilization rate of
2500 hours per year and fuel cost of $0.264/1 (©1.00/gal). The
benefit/cost analyses were based on the ratio of the cost savings
anticipated for the incorporation of each individual technology
into the 1990 baseline engine to the anticipated development cost
to bring that technology to a level of acceptable readiness for
commercial development by 1988. The development cost used as the
denominator of the benefit/cost ratio is the development cost over
and above the cost to develop th- equivalent component in the 1990
baseline design. For example, 1n the case of the 20:1 pressure
ratio axial/centrifugal compressor, the cost used is the differ-
ence between the development cost of the 16:1 pressure ratio two-
stage centrifugal and the 20:1 pressure ratio axial/centrifugal
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compressors., The cost/beneiit ratio was then modified to reflect
its probability of success,

The method for assessing the probability of success is based
on a risk anzlvsis method used in other programs at Garrett for
NASA and is summarized in Tables XXV and XXVI.

The results of the benefit/cost analyses are shown in
Table XXVII. 1Included in this table are the performance, weight,
and cost factors used tc determine the effect of each technology
on airplane DOC. A cost/bunefit ratio of above 3:1 is considered
attractive when consideration is given to the payoff period
assumed (5 years), the fleet size (250 A/C), and the price of fuel
uzed [$0.264/1 ($1.00/gal)). All of the advanced-technology com-
porients exceeded a cost/'enefit ratio of 3:1 with the exception of
the PM titanium compress..r fabrication approach.

The benefit/cost analysis was extended to longer operational
periods, a large fleet size, ari higher fuel costs.

Specifically, the effects of a parametric variation of these
conditions; 1i.e., increase the fleet size to 1000 airplanes;
increase the time period to 20 years; and increase fuel cost to
$0.528/1 ($2.00/gal) were determined. The results, in the form of
a relative benefit/cost ratio, are shown in Figure 39 for the
30-passenger, 1990 baseline airplane operating over a 100-nmi
mission. This figure shows, as would be expected, that as each of
the parameters in increased, the relative benefit for a given
technology also increases; and as the normal life of an airframe
is approached (say 20 years), the relative benefit/cost ratio
approaches a 10-fold increase.
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6.0 CONCLUSIONS AND RECOMMENDATIONS

This report summarizes the results of the Small Transport
Aircraft Techrnology (STAT) Program. Turboprop engines in the
1200 to 1800 kW (1600 to 2400 hp) range were defined and evaluated
in 30- and 50-passenger airplanes defined by NASA-Ames. The
per formance, weight, and cost effects of these engines were
evaluated on the DOC of the airplanes. In addition, the effects
on the enygine performance, weight, and cost, and on the airplane
DOC of a series of advanced engine technologies were evaluated,
with the result that development programs for several of these
technologies are recommended for incorporation in an overall
engine development program for small transport aircraft,

Overall conclusions drawn from the STAT study orogran are:

o Advanced turboprop engines offer a 21- to 23-percent
decrease in airplane DOC relative to 1980 production

engines,

o In~orporation of engine design features tailored to
comnuter requirements contribute to lower maintenance
cost.

o Reduced mission fuel consumption and lower maintenance

costs are primary contributors to the reduced DOC.

o High-cycle technology (high pressure ratio and high tur-
bine temperature), even though more costly than low-
cycle technology, is supericr with respect to overall
operating cost.

o The large potential benefit of a 1990 advanced turboprop
engine relative to 1985 derivative engines (4 =~ 10% DOC)
provides satrong encouragement for NASA to sponsor
advanced research and development efforts oriented
toward commuter propulsion systems.
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APPENDIX I
COMPUTER PRINTOUTS OF AIRPLANE DEFINITIONS
(FURNISHED BY NASA-AMES RESEARCH CENTER)

O STAT 30-PAX Airplane Definition

O STAT 50-PAX Airplane Definition
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A/C
APU
BH
C/L
CRS
DB

DS
EPNdB
EW
FAR
FH

FOD
F/W
HP
HPC
HPT
IFR
I0C
ISA
KEAS
KTAS
LART
LP
LPC
LPT

NASA

APPENDIX II
SYMBOLS ANO ABBREVIATIONS

Aircraft

Auxiliary Power Unit

Block Hour

Centerline

Commercial Rapid Solidifying
Diffusion Bonding

Direct Operating Cost
Directionally Solidified
Effective Perceived Noise Decibel
Empty Weight

Federal Aviation Regulation
Flight Hour

Net Thrust

Foreign Object Damage

Specific Thrust, (Thrust per Unit Airflow)
Horsepower/High Pressure
High-Pressure Compressor
High-Pressure Turbine

Instrument Flight Rules

Indirect Operating Cont
International Standard Atmosphere
Knots Fquivalent Air Speed

Knots True Air Speed

Low Aspect Ratio Turbine

Low Pressure

Low-Pressure Compressor
Low-Pressure Turbine

Mach

Maximum Cruise Thrust

Maximum Climb Thrust

National Aeronautics and Space Administration



NMI
OASPL

OEIl
OEM
DAX
PLA
PM
P/P
PSIA
QEC
SC
SFC
SHP
SI
SLS
SPF
SSM
STAT
TBO
TO
TOGW
TRIT
TSFC
WA
WAF

AH
AH

Nautical Mile

Overall Sound Pressure Level
Overall Compression Ratio

One Engine Inoperative

Original Equipment Manufacturer
Passengers

Power Level

Powder Metal

Pressurc Ratio

Pounds Per Square Inch Absolute
Quick Engine Change

Single Crystal

Specific Fuel Consumption

Shaft Horsepower

International System of Units
Sea Level Static

Super Plastic Forming

Seat Statute Mile

Small Transport Aircraft Technology
Time Between Overhaul

Take-Off

Take-Off Gross Weight

Turbine Rotor lnlet Temperature
Thrust Specific Fuel Consumption
Airflow Rate

Airframe Weight

Efficiency

Baseline Efflciency

Enthalpy Change

Baseline Enthalpy Change

e T A e R S B n e T £ 3 e
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APPENDIX III
STAT ADVANCED ENGINE
CYCLE AND CONFITURATION DEFINITION

AND
OFF-DESIGN PERFORMANCE
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APPENDIX III

Table XXVIII defines the cycle and configuration or the 199¢C
Advanced Technology Engine. The characteristics shown are for an
installed engine in the baseline size (10 lb/sec inlet corrected
flow) the engine is comprised of a two-stage centrifugal compres-
sor producing a 16:1 pressure ratio, a reverse flow annular com-
bustor, a two stage cooled axial high-pressure turbine and a two
stage uncooled axial low-pressure turbine. Cycle assumption not
shown in Table I included:

- Afircraft accessory horsepower - 15 HP

- Alrcraft bleed extraction - 12 1b/min

- Leakage - 11/2 compressor exit
airflow

- Engine mechanical losses - 10 HP + 0.5% of
compressor HP

- Interturbine 8§ P/P - 2

- LD turbine exit losses & P/P - 1.5%

- Nozzle thrust coefficient - 0.93

Table XXIX shows flight envelope performance for the engine.
Performance is shown at the engine design point - 17,000 feet, 291
knots cruise power-and at sea level, 90°F, static conditions.

Performance is also shown for a range of altitudes, flight
velocities and power settings. Output power and fuel consumption
are based on gearbox output. Net jet thrust (FN) is the contribv
tion of the exhaust nozzle.

Figure 40 shows the effect of bleed air and accessory horse-
power extraction on the 1990 technology engine at three operating
conditions. Shown are the changes in shaft horsepower and spe-
cific fuel consumption as bleed airflow and/or accessory horse-
power loads are decreased from their nominal values (W = 12 1b
per min; HP = 15) to zero.
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ORIGINAL PAGE 18
of POOR QUALITY.

TABLE XXVILI

APPENDIX 111
CYCLK AND CONFIGURATION DEFPINITION
STAT AOVANCED ENGINE
INGFALLED PERFORNANCE
({10 lb/sec) Corte 8ize)

Altitude, N(PT)

Mach No,

Amrbient Temperature °C (°F)

Power Betting

Cycle Pressure Ratio

Turbine Inlet Temperature °C (°F)
Qutput Pover Kw (HP)

Brake Specitic Puel Consumption KG/w~h (LBM/HP-R)

0
0
15 (59)
O
16.1

1371 (2500)
1679 (2a52)
0.253 (0.416)

Net Jet Thrust (N (LB) (192)
Inlut Corrected Flow KG/8 (Lb/Bec) (10.1)
Inlet Plow KG/8 (Lb/Bec) (10.1)
Compressor

NO of Btages 2

Etficiency 0.831
MP_Turbine

No of Btages 2

Bfticiency 0.897

Corrected Bpecific Work (BTU/LB) (34.36)

Pressure Ratio 3.432

Chargeable Cooling Flow 8 HA 5.7
LP Turbine

No of Stages 2

Bfficiency 0.89%0

Corrected Specific Work (BTU/LB) (37.76

Pressure Ratio 3.999

Chargeable Cooling Flow § wA 1.0
Combustor

Pressure Dtop, AP/P 0.051

Combustion Bftficiency 0.995
Exhaust Nozzle Pressure Ratio 1.081
Dimensions

Engine Length -~ M (IN) 1.334(52.5)

Bngine Max Diameter - M (IN) 0.787(31.0)

Engine Weight - KG(LB)

282.6 (623)

17,000
0.468
-18.7 (-1.6)
MXCR
16.0
12868 (23%0)
1039 (1394)

0.239 (0.393)

(32)
(10.0)
(6.27)

0.831

2
0.895
(34.26)
3.436
5.7

2
0.892
(40.28)
4.477
1.0

0.05
0.995
1.10

1.334(52.5)
0.787(31.0)
282.6 (623)
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TABLE XXIX

APPENDIX III

STAT 1990 ENGINE

Altitude
17,000

SL 30°F

8L 59°F

Mach

0.4681

0

0

0.2

0.4

0.6

0.8

PLA
MCR
TO
TO

TO
MCR

TO
MCT
MCR

TO
MCR

MCT
MCR

SHP
1404
1902

2252
1726
1235
783
‘90

2288
2087
1885
1374
907
491
195

2447
2230
2016
1482
988
558
254

2704
2467
2239
1666

© 1124

674
357

3061
2807
2558
1914
1325

860

510

SFC
0.391
0.437

0.417
0.439
0.482
0.573
0.824

0.413
0.419
0.428
0.464
0.536
0.718
1.292

0.401
0.407
0.414
0.445
0.509
0.657
1.045

0.385
0.389
0.394
0.418
0.470
0.578
0.804

0.366
0.368
0.371
0.389
0.427
0.493
0.618

FN
32.3
158.1

192.3
147.5
109.6
77.1
50.4

120.2
104.9
90.5
57.8
31.7
12.4
1.6

60.4

-90.4
~112.9
-122.8
~-124.4

-120.8
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TABLE XXIX (Contd)
APPENDIX III
STAT 1990 ENGINE

Altitude

10,000
ISA

20,000
ISA

Mach PLA SHP
0.2 T 1770
MCT 1634

MCR 1490

1099

743

412

164

0.4 TO 1904
MCT 1754

MCR 1597

1186

809

465

211

0.6 TO 2118
MCT 1946

MCR 1772

1331

919

555

293

0.8 T™ 2398
MCT 2207

MCR 2019

1539

1078

688

413

0.2 TO "1316
MCT 1235

MCR 1146

878

608

360

147

0.4 TO 1428
MCT 1337

MCR 1237

SFC

0.408
0.412
0.418
0.448
0.508
0.662
1l.156

0.397
0.400
0.405
0.431
0.484
0.611
0.956

0.381
0.384
0.388
0.407
0.450
0.545
0.749
0.365
0.365
0.367
0.380
0.412
0.476
0.588

0.404
0.406
0.408
0.429
0.477
0.589
0.980

0.393
0.394
0.396
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TABLE XXIX (Contd)
APPENDIX III
STAT 1990 ENGINE

Altitude

20,000
ISA

30,000
ISA

Mach PLA SHP

0.4 946
663
401
184

0.6 T 1605
MCT 1499

MCR 1384

1059

757

472

247

0.8 TO 1830
MCT 1707

MCR 1576

1221

885

573

338

0.2 TO 908
MCT 865

MCR 816

652

460

281

111

0.4 TO 994
MCT 945

MCR 889

707

503

314

139

0.6 TO 1131
MCT 1072

4CR 1006

796

575

SFC

0.414
0.455
0.550
0.830

0.379
0.378
0.380
0.394
0.424
0.499
0.675

0.366
0.364
0.363
0.370
0.392
0.445
0.547

0.407
0.407
0.407
0.420
0.460
0.554
0.923

0.396
0.395
0.395
0.406
0.440
0.519
0.785

0.383
0.380
0.379
0.387
0.412
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TABLE XXIX (Contd)
APPENDIX III
STAT 1990 ENGINE
Altitude Mach PLA SHP
30,000 0.6 369
186
0.8 TO 1321
MCT 1239
MCR 1155
918
678
447
255
40,000 0.2 T 559
ISA MCT 532
MCR 500
392
261
132
18
0.4 TO 616
MCT 585
MCR 549
430
292
159
43
0.6 . TO 707
MCT 671
MCR 629
492
344
201
84
0.8 TO 837
MCT 786
MCR 731
578
417
259
136

SFC

0.473
0.644

0.368
0.367
0.366
0.366
0.382
0.426
0.527

0.419
0.419
0.420
0.438
0.495

0.672

2.791

0.406
0.405
0.406
0.421
0.468
0.601
1.341

0.392
0.389
0.389
0.399
0.433
0.524
0.828

0.375
0.374
0.374
0.376
0.396
0.456
0.603

FN

-18
-21

25
16

-15
-28
-36
=37

5
4

35
31
22
13

28
25
22
12

-3
-6

21
17
13

-12
-14

17
11

-9
-18
-23
-23
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SEA LEVEL 12,000 T 18A 17,000 FT ISA

STATIC M = 0.482 V = 201 KT8
TAKEOFF MAX. CRUISE MAX. CRUISE
T, = 2800°F T, 2760°¢ T, = 230%F
BASE SFC ~ 0.438 BASE SFC = 0.308 BASE SKEC = 0.502

% .

180

160-1
140+
120

100

SEA LEVEL 12,000 FY I18A 17,000 FT I8A
STATIC M = 0452 V = 201 KT8
TAKEOFF MAX. CRUISE MAX. CRUISE
T, = 2800°F T, = 2380°F T, = 2380°F
BASE SHP = 1902 BASE SHP = ﬂl‘“ BASE SHP = 1383

Figure 40. STAT 1990 Technology Engine Bleed-Air and

Accessory Load Effects.
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