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CONTROL OF LARGE SPACE STRUCTURES AND
ASSOCIATED PRECISION-POINTED PAYLOADS

By

S.M. Joshi*
ABSTKACT

Stability and .robustness of a two-level control system for large space
structures were investigated. In particular, the effects of actuator/sensor
nonlinearities and dynamics on the closed-loop stability were studied and
the problem of control-systems design for fine-pointing of several
individually pointed payloads mounted on a large space platform was

examined. A composite controller was proposed and was stable and robust.
-INTRODUCTION

-The basic problems 1n attitude control of large space structures
(LSS)--in the context of control of relatively rigid coaventional space-
craft—have been known for several years and have been formally brought into
focus recently. Because of the pointing requirements, it is necessary Lo
have LSS closed~loop, rigid-body bandwidth higher than a number of struc-
tural modal frequencies, A practical controller can be designed to actively
control only a few of the infinite structural modes. Stability of the
closed-loop system depends heavily on the innerent structural damping,

-particularly -in the uncontrolled- or--residual-modes_(Joshi._and_Groom, 1979)..
Inherent damping ratios are difficult, if not impossible, ‘to predict.
Therefore, it is highly desirable to increase the structural damping of LSS
using . secondary or damping enhancement controllev. Because of the lack of
accurate knowledge of the structural parameters, the ideal controller should
be robust; that is, the closed-loop system should be stable regardless of
parameter inaccuracies. This report considers a control system consisting

of a primary and a secondary coantroller, The secondary controller

*Research Associate Protfessor, Department of Mechanical Engireering and
Mechanics, Old Dominion University, Norfolk, Virginia 23503.
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enhances modal damping of the structural modes while the primary controller

controls the rigid-body attitude and, possibly, some structural modes.

The literature on LSS damping enhancement proposes concepts such as
direct-velocity feedback controller (Balas, 1979) and member dampers
(Canavin, 1978) which use collocated actuators and sensors to provide
velocity feedback that results in guaranteed Lyapunov stability. Such
controllers are robust (i.e., the closed-loop system is stable regardless of
parameter inaccuracies), assuming linear and infinite-bandwidth actuators
and sensors. In this report, the effects of actuator/sensor dynamics as
well as nonlineatitie? are discussed for systems employing velocity
feedback,

Secondary control (i.e., damping enhancement) can also be accomplished
using several Antular Momentum Control Devices (AMCDs), An AMCD (Anderson
and Groom, 1975) consists of a rotating thin rim suspended in three or more
noncontacting electromagnetic actuator stations and spun by a noncontacting
~spin-motor. The resulting closed-loop system is asymptotically stable. and.
robust under certain conditions. A primary..attitude_control._system that
used- torque-actuators- and collocated attitude and rate sensors was then
consideéred and was stable (and robust) with linear, instantaneous actuators
and sensors. The effect of actuator/sensor dynamics on the _primary

controller was investigated,

One
platform
payloads

_payloads

of the LSS concepts with significant potential is a large space
that houses several individually pointed payloads. Possible
include communications, astronomy, earth resources, and weather

that would otherwise be installed in indi ridual orbiting

satellites.

The greatest advantage of using large multimission space

platforms is that the shortage of available orbital slots for communication
and other satellites at geosynchrorous altitudes could be alleviated.
Another advantage of this concept is the cost savings-of using smaller
ground tcrminals and common payload support equipment (e.g., power,

cryogenics, and data link to ground).

Fine-pointing accuracy requirements for payloads mounted on such plat-

forms are expected to be stringent. Therefore, control-systems design for

such systems is complex and challenging. The entire system consists of two

subsystems: The base platform with an attitude that is controlled, but not
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with great precision; and precision-pointed structures (PPS) that require
highly accurate, individual fine-pointing. A large space platform (LSP) is
basically a large flexible space structure; therefore, the stability of the
closed-loop system with reduced-order controllers cannot, in general, be

guaranteed because of control and observation "spillovers," even when the

required closed-loop bandwidth is reiatively-lowi—The-stability-problem. is. _.

further compounded by the interaction of the PPS-pointiang control inputs and

the LSP structural modes,

A linearized mathematical model was developed for the LSP/multiple-PPS
system, there each PPS is mounted on two degree-of-freedom (DOF) gimbals;
(i.e., an elevation and a lateral gimbal). A composite LSS/PSS control law

was obca%ned with guaranteed stability aad robustness.
LSS CONTROL: SECONDARY CONTROLLER STABILITY INVESTIGATION

-Seccndary -Controller-Using Velocity Feedback

The LSS considered in~this-paper—are-represented-by a.finite-order

"modal- model" giveu by:
Ax + Bx + Cx = Yf (1

where x represents the modal amplitude vector for rigid-body as well as
structurai modes, and f represents the generalized force vector. Consid~
ering a large plate-like or platform~type structure, the rigid-body modes of
interest are rotations about x and y axes, which are the two orthogonal
in-plane axes. For this case, x = (asT, qT)T, where a = (65}“8g5r denotes
the rigid-body attitude vector, and q 1s the nq-dimensional modal ampli-
tude vector. A, B, C are symmettiic matrices with A > 0 (positive definite),
B> 0, C: 0 (positive semidefinite), and y 1is the (nq + 2) x e "mode
shape'" matrix which is determined by the values of the mode shapes at the

actuator locations,

For analyzing the secondary controller using velocity feedback, consid-

er only the flexible part of the model given by:

e ey
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Qe+ Dy +h =0T ' (2)

2
where D-» DT > 0 represents the inherent damping matrix and A = diag (m] .

'”22""#ﬂn'2)' W being.the natural frequency of mode i ("diag ( )"

. q
denotes a diagonal matrix). And f is assumed to consist only of applied

torques. The attitude rate vector (assuming collocated actuators and

sensors) due to flecible parts excluding sensor noise is 3iven by:

Yo ®q . (3)

Consider the feedback control input:

fe Ky = K - (4)

.where Kr a K;T > 0 is the n_ x n, rate feedback-gain matrix. Assuming infi~

£ £
nite-bandwidth linear actuators and seasors, the-closed-loop system .giveun by
equations (2) and (4) is Lyapunov-stable if K. > 0, and is asvmptotically.
stable if K. > 0 and (A, $T) is controllable (Aubrun et al., 1979).

This controller is robust (stable regardless of parameter inaccuracies and
number of wodes in the model). However, the stability is no loager
guaranteed when the actuators and sensors have finite bandwidth and possibly

nonlinear characteristics., The following sections address these problems.

Ef fect of Nonlinear Actuator/Sensor Characteristics

Assuming that the signal path containing seasors and.actuators has

time-invarient nonlinearities as shown in the block diagram of Figure 1, the

actual control input is given by:

f a .?a{ xrvs(a)} =¥ (o) _ (5)

where
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o = 0&, o =K¥ (o) S (6)
a r s .-

¥ and ¥ represent tne actuator and sensor nonlinearities and are
a s

(ngx 1) vector-valued fuactions of vector arguments. The ith component

?a of ?a is a function only of the corresponding component of oa. The
i : .
same holds for Ys. Also, let ?a(U) = ?3(0) = 0. Considering the worst

case with D = 0, the closed-loop system is given by:
q+hqg+é¥ (0)=0 Q)
q q a'la

i
Consider first the case with linear sensors and nonlinear actuators:

THEOREM 1. a. In the case of linear sensors, the origin of the system
of equation (7) is stable if K> 0 and oa"xr-lva(oa) 3> 0. b. Te origin

is asymptotically stable ia the large (ASIL) if K. >0, aaTKr'lYa(oa) >0
foro, * 0 and (A, ¢T) is controllable.

Proof. Consider a Lyapurnov function:
'T.
Ve qTAq +q9q 8)

a. 1t can be proved that:

. T
a -1
v Zaa Kr ?a(aa)c 0 9)

b. Ia this case, 6 < 0 except possibly when aa e 0. It can Se shown that

that Og | 3 0 except at the orlgin' gince (A' OT)Q is controliable. If

Ky is diagonal, the nonlinearities merely have to be confined to the
first and the third quadracts as shown in Figure 2 (i.e., owa,(o) > 0,

i
o ¢ 0, for ASIL). The effect of nonlinearities in both sensors and actu-

ators is considered next.

THEOREM 2. If K = diag (K , K ,..., K ), and oy (o) > 0, o9 (c) >0
r ry 0 rn a; s,
for o 2 0, then the origin of the claosed-loop system of equation (75 is

stable if K., > 0, and 1s ASIL if, in addition, (4, 3T) is

controllable.
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Proof. Proceeding as in the proof of THEOCREM 1, it can be shown that:

1 Y
° .f o 1
v=--)aa v, (o) _
Toim] i i i Y (0.) | K
8. 1 r,
1 1

The rest of the proof is similar to that of THEOREM 1.

Ef fect of Actuator and Sensor Dynamics

Assuming the sensors ard actuators are lincar but have finite band-

width, -he closed-loop equations can be written as:

q+ D; +Aq = o ¢ {10a)
a a
x *Ax +BU (102).
a a a a a .
U = K 4q (10d)
a

where X U are ax 1 and ng x 1, actuator/sensor (combined) state and

input vectors, and Aa’ Ba, Ca are the system 'input and output matrices,
withk A; being strictly Hurwitz. The steady-state gain is unity; that

is:

ca=-lB = -1 (11)
a a 3

With instantaneous actuators/sensors, the system is guaranteed to be
asymptotically stable (AS) if K. > 0 and (A, ¢T) is coatrollable. (For
linear systema, AS and ASIL are equivalent.) However, it may be unstable
when the actuators/sensors have dynamic charscteristics as in equation (10).

Suppose the actuator/sensor system equation can be represented by:

ux 2 Ax +B Y (12)
a 4 a aa
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where u is a small positive scalar. If the closed-loop system with
perfect actuators/sensors is AS, it can be shown that the trajectory with
finite bandwidth is 0(y) ciose to the trajectory with perfect actuators/
sensors (Chow and Kokotovic, 1976). This result implies that if the actua-
tor/sensor bandwidth is sufficiantly high, the closed-loop system would be
-AS;- -‘cwever, it-does-not-provide-a-method-for-determining_a-quantitative.

measure of p that will guarantee stability.

The mulcivariable stability protlem of equation (10) does not appear to
lend itself to uscful generic solutioms. It is therefore instructive to
investigate at this point the single~input, single-output (SISU) system. 1In
this case, nf = 1 in equation (10), and Kr is a scalar. Let Ga(s) denote
the transfer function that represeats the combined actuator/sensor dynamics.
In order to consider the worst case, let D = 0. It is assumed for simplici-
“ty that LSS has no repeated modal frequencies and no-pole-zero-cancellations
(i.e., controllability). The following results offer some imsight into

actuator,sensor bandwidth requirements.

THEOREM 3. The system of_equation_(10) .is AS_for_sufficiently small

“Ke >0 iff (if and only if) the phase d5(w) of Gg(jw) is such that
=90° < 0a(w) < 90° for w = wj, i = 1,2,...,0q.

"Proof. The proof can be established by examining the rovot—locus—angles of

departure at the LSS open-loop poles, which are at #jyi, 1 = l,2,...,nq_

It is clear that for unrealistic actuators/sensors this condition
cannot be satisfied for an infinite number of undamped structural modes.
In reality, however, some inherent damping is .iways present and it is
generally-higher—for-higher-frequency modes.

1f Ga(S) has no finite zeros and o no real pules at g = 0. the

a

closed-loop system is AS for sufficiently small Ky > @ iff, denoting the

largest ; by wM:

o >w tan("/2n ) (13)
a M a

Table 1 shows the miniuum oa/wM required for stability for different

Na. The above results use only the infrrmation about the LSS modal fre-
quencies. However, considerable additional investigation is necessary in

this area to obtain more-useful results, especially for the multivariable
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Table 1. Actuator/seasor bandwidth requiremencs “or -velocity feedback.
A Srder rrlx:e“”r 2 3 4 5 6 7 8
o Jw, >
. 0 1 1.73 2.48- 3.09- 3.76- 4.37 . 5.07

(Min. Re?'d.)
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case. Perhaps newly emerging techniques such as multivariable "frequency-
doain metheds (Postlethwaite and MacFarlane, 1979) may be useful in these

investigations,

Secondary Controller Using AMCDs

The use of an AMCD for damping_erhancement was proposed dy Joshi and
Groom (1980a, 1980b). The use of several AMCDs for secondary control was
inveszigated by Joshi ('980). The AMCDs considered are assumed to have
relatively small rim diameters (about 2 w) and are therefore rigid. Elec-
tromagnetic force actuators and rimproximity sensors used for the AMCDs
exhibit a higﬂ dégree of linearity in the operating vange and have band-
widths of several hundred Hz, Therefore, the AMCD actuators and sensors can

be assumed to be linear and instantaneous.

The control system configuration .consists—of- several -AMCUs -distributed.
on the LSS. As shown in Figure 3, each AMCD consists of a rotating thin .im

suspended in three or more noncontacting electromagnetic force actuators

‘which can exert the commarnded forces in the c-direction. A z-axis rim prox-

imity sensor, which measures the relative displacement batween the rim 2nd

the LSS, is installed at the location of each actuatcer.

The complete linearized equations of motiun were developed by Joshi

(1981a). Consider the control law given by:

£, = K6 + K& (14)
A P r

where f, and & represent £ x 1 vectors of actuator forces and prox-
imity sensor outputs for all AMCDs. Where £ 1is the total number of AHCD

actuators, K, and Kr denote £ x £ symmetric gain matrices. The

closed~loop svstem state vector consists of z and 2z, where

T T T T
S a0, Ca, el,...,sv) (15)

T
z=(a ,a
8 v

a)

wherea = (0a , Ga )T represents the attitude vector of the ith AMCD rim
i i i
(v = number of AMCDs) and ¢; represents the z-axis displacemant of the

ith AXCD rim center relative to the corresponding point fixed to LSS. It

.
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was proved (Joshi, 198la) that the clogsed-loop system is stable if K >0,
Kr > 0, and is AS if (1) Kp >0, Kr > 0; (2) the LSS structural model is
stabilized; (3) the total z~axis angular momentum of the AMCDs is nonzero;
and (4) LSS has no undamped structural modes at twice the AMCD spin

frequencies. The secondary controller using AMCDs is stable and robust.

.The _amount of damping enhancement--in-different-modes—will-depend on the

value of the mode shapes at the actuator locations, [If several AMCDs are
distributed on the LSS, structural damping of a number of modes can be
enhanced. The hardware required for this type of secondary controller is

within the reach of present-day technology (Groom and Terray, 1978).
LSS CO»TROL:. PRIMARY ATTITUDE CONTROL SYSTEM

The secondary system increases modal damping-and-thus-.controls-the
shape of the LSS. It also aids in primary controller design by reducing the
effects of "spillover" (Balas, 1978). A primary attitude control system
using instantaneous torque actuators and attitude and rate sensors is

considered first.

Primary Controller Using Collocated Actuators/Senscrs

Assuming that primary attitude control is accomplished using a (>1),
two-axis torque actuators distributed on the LSS, the LSS equations of

motion (without secondary controller) are given by:
Ax ¢+ Bx ¢ Cx = IT (16)

where T 1is the m x 1 torque vector., For collocated attitude sensors,
the total attitude vector (including the contributions of rigid-body and

flexible modes) 1s given by:

a «T x (17)

Consider the control law:

T= -(Gpot . Crut) . (18)

13
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where G, and G, are symmetric matrices.. It can be proved that the
closed-loop system--equations (16) and (18)--is AS if Gp >0, Ge >0,

and (C, ') is controllable. It is of interest to note that the control law
of equation (18) minimizes a linear quadratic (LQ) performance index (with
infinite terminal time), which has a state-control, cross-penalty term in
~addition-to-quadratic-penalties—on—the—state -and—the—control-vectors:— (The—
proof can be obtained in a manner similar to Joshi, 128la.) The controller
is AS regardless of parameter inaccuracies. However, the stability is not
guaranteed if the actuators/sensors have yinite banduidth., Consider the
SISO case of a single torque actuator and collocated attitude and rate
sensors., Assuminyg that the LSS does not have repeated modal frequencies
(except at the origin), that (A, OT) is controllable, and that-G —=-kg ,

Gr - kgr (gp. 8 k are positive scalars), the foliowing results can bz

obtained (pruvided that 4,(0) = 0).
DESIGN OF STABLE CONTROLLERS FOR LSS

THEOREM 4. For the system given by equations (16) and (18), the closed-loop
poles—-corresponding to the structural modes have negative real parts for

arbitrarily smail k > 0 iff

- <¢ (w,) <130° -9 (19)
z, a i z;

for i = 1.2,...,nq, where Ozi = arc tan (wigr/gp).
Proof. The proof can.-be obtained by examining- the-root-locus -anglas of
departure at £}y, The actuator/sensor dynamics do not affect the angles

of departure for the poles at the origin.
1£ Ca(s) has no zeros and o, has no poles at s-= o the system
i8 AS if arc tan (wi’aa) > -ez /na for 1 = l.2....,nq. Further investiga-

. . . i. .
tion is needed in order to obtain useful results in the area. Also, the

effect cf nonlinearities in primary actuators/sensors needs investigation.

14
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Primary Controller Using Noncollocated Actuators/Sensors

The stability of the closed-loop system is no longer guaranteed for
this case, even with perfect actuators and sensors. This is because of
control and observation “spillovers" (Balas, 1978). For the noncollocated
case, the primary controller design can be accomplished using wethods based
on linear-quadratic Gaussian (LQG) control theory. Joshi and Groom (1979)
presented and discussed several methods based on LQG theory. Of these-
methods, the modified truncation or model-error sensitivity suppression
(MESS) method, which was first proposed by Sesak, Likins, and Cordadetti
(1979) was rfound to be the most promising. In this method, the effect of
control .input on-selected residual modes is included in the performance
function in a éuasi-static sense, The resulting reduced-order linear
quadratic optimal regulator problem has a term that modifies the control-
weighting matrix in the performance index. A modified state estimstor can
also be designed in a similar manner. A more detailed discussion can be
found 1a (Sesak, Likins, .and Cordadetti, 1979). Mume-ical results-for-a
large, thin, completely free, Ilat plate (for the collocated and:

noncol!located cases) are given by Joshi (198la).

Primary Attitude Control Using AMCDs

The AMCDs used for the secondary controller can be used simultaneously
for actuation of the primary attitude controlier. Primary attitude control
is accomplished by torquing against the AMCD angular momenta. In this dual
conttol mode, however, the relative rot:tion angles between LSS and AMCDs

(i.e., a, “a. i=s1,2,..,,v) cannot be cr~ntrolled simultaneocusly wirth LSS
i
rigid~body attitude ag., Joshi (1981) presented a method of structuring

the position feedoack goin matrix Ky in such a manner that the closed-

loop secondary system with the state vector consisting of ci. ei, a, -a
i
(i =1,2,...,v) is guaranteed Lyapunov-stable. Additional force commands

can be superimposed on the electromagnetic actuators in order to produce the
desired primary attitude control torques tor controlling ag. It an
attituce and a rate sensur 1s placed on-the LSS at the nominal pdsitxon of
the center of each AMCD, this configurdtion would apyroximate collocated
point-torque actuators and attitude/rate sensors, and should have the asso-

ciated stability and robustness properties. In this configuration, the

15
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-AMCDs must have sufficiantly large momenta in order to exert the magnitude
of torques required to achieve the desired rigid-body bandwidth without
exceeding the electromagnetic actuator gap limits, Scparate AMCDs may also
be used for primary control actuation. For orbital application it will be
necessary to gimbal the AMCDs_for-primary-controller- actuation.

LSP/MPPS MATHEMATICAL MOLEL

The first step toward the solution of the problem of simultaneous
control of LSP atti%ude and PPS fine-pointing was to derive a linear
mathematical model for the system consisting of LSP and precision-pointed
pavloads. Each payload (PPS) is rigidly mounted on a lateral gimbal which
is- attached to an elevation gimbal. Each elevation gimbal is_rigidly
attached to the LSP. &Each elevation gimbal can rotate about the LSP x-axis,
and each lateral gimbal can rotate about the y-axis of the corresponding
elevation gimbal, Each gimbal also has a torquer., (The roll treedom of
payload is not considered in this analysis.) The LSP attitude is assumed to
“be controlled.by a torque actuators--distributed on-the-LSP. The
mathematical codel derived below assumes that each PPS is rigid, and is
-treated as a point mass—-for the purpose of LSP structural model computation.
The LSP/¥PPS model derived via Lagrangian formulation has the following

form:

Ax + Bx + Cx = I'f : (20)

wvhere

T.T
X = (08' 88' Ws. @lo °2.-..'°P' 61. 62.'--|ep. q ) (21)

wvhere os' 68, vs (which will be denoted by the vector as) are the LSP
rigid-bodv roll, pitch, and yaw angles (about x, vy, z axes). The relative
aégles between each elevation gimbal and LSP are S1+-++s5p (to be denoted
by 4)i aad €ys+-413p (to be donoted by 8) are the lateral gimbal angles.
The fgq x 1 LSP modal amplitude vector is q.

16
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1@ A A3 ' -
3%x3 I
A=Ay (‘“22)‘,,,p A23 ‘ 0 (22)
A3l A32 (A33)p :
: 0 n xn -
S I "q q ]
The Aij matrices are appropriately dimensional submatrices
olo
B=jf—-|— (23)
0 | D
1
D= DT> g

which is the n x n large space structure (LSS) inherent damping matrix.
q
° . (24)
A -
A =~ diag (mz, w?, w? ) (25)
1 2

wvhere ;i denotes the ith modal frequency of the LSP. Assuming that the
LSP is controlled by m two-axis (x and y) torque actuators,

T T T T
£=s{T,T,...,7, T , T ,...,Te , T T veoT, (26)
( 17 2777 e’ e’ e p’ u’ w2’ lp)

T .
vhere T, = (T 0 T .) represents the ith LSP control torque vector and
i X yi

Ti’ 11i represent the i;h elevation and lateral gimbal torquer torques.
| T T
L2seennlz2 | ~e| ,"€1,...,~¢] Tl ez....,-Tip e2
01, 20:+4901,2
—-——..—-—-——l —————— l———-—-—————_—
= 0 I 0 (27)
n o |
-——_.—-_—l —————— }——-*-_‘-——
Y 0 1
| I P*p
T l T l T
| ] | v, ] -vy T, )
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where r‘i = T} (4 ) is the transformation matrix for rotation % about
oi

x-axis, where ¢,; = nominal angle of the ith gimbal relative to the LSP.

. Then x 2m
k q T
mode shape matrix for LSP torque sctuator locaticns is denoted by ¢ . -

The 3 x 1 unit vector in k-direction is denoted by e

“The nq %x p matrices of wmode shapes (in x and y directions) at the

elevation gimbal locations are WI and W;-

Td = diag (T,,(2,2), T),(2,2),..., TIP(Z,Z)I (28)

Sensor Outputs

It is assumed that m attitude ani rate sensors are collocated with
the LSP control torque actuators. The LSP attitude sensor output for the 3

ith sensoar is given by:

¢ - s
8 - ) 4
Yei ® - *¥q 29)
s ..

<

i - L . .
where ¥ denotes the 2 x nq submatrix of ¢ corresponding to ith sensor
location. Assuming that each payload has its own attitude and rate seasor,

it can be shown that the (2-vector) output of the ith payload attitude

sensor is given by:

cog 3 . 0] cos® 0 -sin® [6 <9 .J
oi 1 oi oif] s xi
ypi- - * ) T 1.
0 U Si 0 1 0 69 . vyiq (30) 4
¥
s

vhere eoi is the nominal gimbal angle for the 1th lateral gimbal. CGimbal

angles &; and 9; are also measured. They denote ’he incremental

gimbal angles about (s,{ and B845i) in this linearized analysis.
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CONTHOL SYSTEMS SYNTHESIS FOR LSP/MPPS

Control Law I: Decentralized Control

In this method, the LSP attitude and the PPS attitude are controlled
independently. The LSP attitude and vibration control can be accomplished
using a two-level controller with collocated actuators and sensors. Each
PPS control system is designed independently and incorporates feedback only
of the PPS attitude and rate signals in order to generate the gimbal torquer
torque commands. An ?xqunation of the A matrix in equation (22) indi-~
cates chat strong couplings exist not only between the LSP and all the PPSs
but also beween the PPSs themselves. Additional coupling, including that
due to LSP flexibility, would also be introduced oy the feedback control
law, Since the masses of individual PPSs can be- large (i.e., of the-same
order as the LSP mass), overall instability may occur for this type of

decentralized control law.

Control Law- I1I: Robust Ccmposite Contral

The sensor outputs described above can be combined in the following

manner:

T T . ¢
z, = [ySl. ysz.....y;ml (1)

where Yei is the LSP attitude measurement equation (29) at the ith LSP

-sengor- location.

2 = lai, zgz;---.zgpl _ (32)
where

Zp; =2, -secd (o, ¢ sind v,) | ' (33)
On expansion it can be seen that:

Zp, =0, - (o 0¥ Q) _ ‘ (34) .
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_ T T T -
23 = (23,, 232.-n.4-3pl (35)

vhere

2; . =20 -9 . ~(36)—
i i pi
It should be noted that LSP yaw angle measurement (yg) is required to

generate z2. Denoting

t = (z}, z;, z})r : } : 37)

it can be shown that:
T -
zo[ x (38).
-Congider the control law:

fo Kz -Kz - . o (39)
P T

vhere 'Ky gnd Kr are symmetric matrices.

THEOREM 5. If Kp > 0 (positive definite) and Kr > U (positive semidefi-
nite), thean the closed~loop systea given by equations (Z0) and (39) (but

-excluding the LSP yaw angle ¢5) 1s stable in the sense of Lyapunov.

Proof. The proof is similar to that of THEOKEM 1 in (Joshi, 198lb).

The controller is robust because it aasures.s:ability regardless of

parameter inaccuracies and number of structural modes in the LSP model.
NIMERICAL RESULT3--LSP/PPS CONTROL

In order to investigsate the two controllers discussed, a finite element
model of a 100~ft. = 100~ft. x Q.l-in, completely free, aluminum plate was
used to represent & large space platform. Two payloads, with masser equal.

to that of the LSP, were assumed to be located at ditferent points on the

20
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LSP. The payloads were assuned to be nominally pointing at targets 45° and
-45° respectively about the inertial x-axis, and 0° about the y-axis of the
elevation gimbals for this stimulstion. The LSP was assumed ts be control-
led by three torque actuators {each two-axis) collocated with attitude and
rate -sensors.. For the. purpose of this analysis, the LSP structural model
was not modified by adding point masses at PPS locations, the purpose being
only to demonstrate the methods rather than to obtain accurate numerical
results. The objective was to get L3P rigid-body, closed-loop bandwidth of
about 0.05 rad/sec with dacping ratio of about 0.707, and flexible mode
damping ratio of at least 103 (zern open~loop damping assumed). The PPS
_closed-loop bandwidth was required to be 1 rad/sec with 0.707 damping. The
closed~loop eigenvalues rfor the two controllers were obtained for various
attitude and rate gains (assumed to be diagonal matrices) for LSP and PPS..
When the PPS gains were raised (for obtaining the required 1 rad/sec closed-
loop bandwidth for the PPS loop), a structural mode was driven unstable in
the decentralized controller for PPS bandwidth greater thaa 0.13 rad/sec.
The .composite controller was next used. In this case, PPS bandwidth of 1
rad/sec was obtained without significantly affecting any of the structural
@modes. Work is_ currently in progress ia order to fully evaluate the per-

-formance of the contrallers.

CONCLUDING REMARKS - . - . _

The effects of sensor and actuator nonlinearities and'dyéamics'bn the
stability of the two-level controller were investigated. The secondary -
controller was shown to be tobust in the preseénce of sgctor-type,:memorye»
less sensor/actuator nonlinearities. Further- investigation is heeded for )
(1) the effects of nonlinearities on the primary controller, aad (2) the
effects of sensor/actuator dynamics for the multi-input, multi-output case
(for both the primary and the secondary coatrollersi. Two types of
controllers--a decentralized controller and a robust composite controller--
vere considered for the control of LSP/MPPS system. The robust composite
controller offers significant promise. The .performance of the controllers

i8 current.y under investigation,
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