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CONTROL OF LARGE SPACE STRUCTURES AND

ASSOCIATED PREClSION-POlNTtD PAYLOADS

Sy

S.M. Joshi* |
i

ABSTRACT j

j
i

Stability and .robustness of a two-level control system for large space i

structures were investigated. In particular, the effects of actuator/sensor i

nonlinearities and dynamics on the closed-loop stability were studied and .

the problem of control-systems design for fine-pointing of several i
i

individually pointed payloads mounted on a large space platform was >

examined. A composite controller was proposed and was stable and robust. '

INTRODUCTION , i

-The basic problems in attitude control of large space structures \
-i -

(LSS'):—in the context of control of relatively rigid conventional space- j

craft"—have been knowr. for several years and have been formally brought into

focus recently. Because of the pointing requirements, it is necessary t-o

have LSS closed-loop, rigid-body bandwidth higher than a number of struc-

tural modal frequencies. A practical controller can be designed to actively

control only a few of the infinite structural modes. Stability of the

closed-lop.n iysten depends heavily on the innerent structural damping,

-particularly -in the uncontrolled- or--residual-modes-.(Joshi._and— Groom,—197.9)._ 1
'«

Inherent damping ratios are difficult, if-not impossible, to predict. '

Therefore, it is highly desirable to increase the structural damping of LSS

using .• secondary or damping enhancement controller. Because of the lack of

accurate knowledge of the structural parameters, the ideal controller should j

be robust; that is, the closed-loop system should be stable regardless of |

parameter inaccuracies. This report considers a control system consisting j

of a primary and a secondary controller. The secondary controller I

*Research Associate Professor, Department of Mechanical Engineering and !
Mechanics, Old Dominion University, Norfolk, Virginia 23308. '*
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enhances modal damping of the structural modes while the primary controller

controls the rigid-body attitude and, possibly, some structural modes.

The literature on LSS damping enhancement proposes concepts such as

direct-velocity feedback controller (Balas, 1979) and member dampers

(Canavin, 1978) which use collocated actuators and sensors to provide

velocity feedback that results in guaranteed Lyapunov stability. Such

controllers are robust (i.e., the closed-loop system is stable regardless of

parameter inaccuracies), assuming linear and infinite-bandwidth actuators

and sensors. In this report, the effects of actuator/sensor dynamics as

well as nonlinearities are discussed for systems employing velocity

feedback.

Secondary control (i.e., damping enhancement) can also be accomplished

using several Annular Momentum Control Devices (AMCDs). An AMCD (Anderson

and Groom, 1975) consists of a rotating thin rim suspended in three or more

noncontacting electromagnetic actuator stations and spun by a noncontacting

-spin-motor. The resulting closed-loop system is asymptotically stable, and.

robust under certain conditions. A primary— attitude— cont.rol_s-ystem--that-

used torque-actuators and collocated attitude and rate sensors was then

considered and was stable (and robust) with linear, instantaneous actuators

and sensors. The effect of actuator/sensor dynamics on the_primary

controller was investigated.

One of the LSS concepts with significant potential is a large space

platform that houses several individually pointed payloads. Possible

payloads include communications, astronomy, earth resources, and weather

.payloads that would otherwise be installed in indi ridual orbiting

satellites. The greatest advantage of using large multimission space

platforms is that the shortage of available orbital slots for communication •

and other satellites at geosynchronous altitudes could be alleviated. {

Another advantage of this concept is the cost savings of using smaller • |

ground terminals and common payload support equipment (e.g., power, j

cryogenics, and data link to ground). -i

Fine-pointing accuracy requirements for payloads mounted on such plat- '

forms are expected to be stringent. Therefore, control-systems design for

such systems is complex and challenging. The entire system consists of two

subsystems: The base platform with an attitude that is controlled, but not
1



with great precision; and precision-pointed structures (PPS) that require

highly accurate, individual fir."-pointing. A large space platform (LSP) is

basically a large flexible space structure; therefore, the stability of the

closed-loop system with reduced-order controllers cannot, in general, be

guaranteed because of control and observation "spillovers," even when the

required closed-loop bandwidth is relatively'low;—The-stabi-lity-probleou is._ _

further compounded by Che :nteraction of the PPS-pointing control inputs and

the LSP structural modes.

A linearized mathematical model was developed for the LSP/multiple-PPS

system, uhere each PPS is mounted on two degree-of-freedom (OOF) gimbals; j

(i.e., an elevation and a lateral gimbal). A composite LSS/PSS control law

was obtained with guaranteed stability and robustness.

LSS CONTROL: SECONDARY CONTROLLER STABILITY INVESTIGATION > }
, i

\
Secondary-Controller-Us ing Velocity Feedback ', j

S
The LSS considered in"this~paper-are--represented-by a~finice-order . J

"modal- model" given by:

Ax + Bx * Cx « Yf (1)

j

where x represents the modal amplitude vector for rigid-body as jell as

structural modes, and f represents the generalized force vector. Consid-

ering a large plate-like or platform-type structure, the rigid-body modes of

int-erest are rotations about x anJ y axes, which are the two orthogonal

in-plane axes. For this case, x •= (a , q ) , where a «> (* ","9'-) denotes
s s s s

the rigid-body att i tude vector, and q is the nq_dimensional modal ampli-

tude vector. A, B, C are symmetric matrices with A > 0 (positive def in i te) ,

B > 0, C :• 0 (positive semidefinite), and Y is the (n + 2) x n "mode
q f

shape" matrix which is determined by the values of the mode shapes at the

actuator locations.

For analyzing the secondary controller using velocity feedback, consid-

er only the flexible part of the model given by:



q * Dq— «
T

* f (2)

T Z

where D-" D > 0 represents the inherent damping matrix and A •» diag (u)j ,

u>22 , ...̂ ,1 -2), w . being -the natural frequency of mode i ("diag ( )"

denotes a diagonal matrix). And f is assumed to consist only of applied

torques. The attitude rat» vector (assuming collocated actuators and

sensors) due to flexible parts excluding sensor noise is .jiven by: \

(3)

Consider the feedback control input:

f = -K y - -K *q
r r r

(4)

-where K » K > 0 is the n x n rate feedback-gain matrix. Assuming infi-

nite-bandwidth linear actuators and sensors, the-closed-loop- system -giveu-by_

equations (2) and (4) is Lyapunov-stable if Kj, > g, anj £s asymptotically,

stable if KT > 0 and (A, *T) is controllable (Aubrun et al. , 1979).

This controller is robust (stable regardless of parameter inacc-jracies and

number of modea in the model). However, the stability is no longer

guaranteed when the actuators and sensors have finite bandwidth and possibly

nonlinear characteristics. The following_sections address these problems.

! -1

i '
;•

Effect of Nonlinear Actuator/Sensor Characteristics

Assuming that the signal path containing sensors and actuators has

Jime-invarienc nonlinearities as shown in the block diagram of Figure 1, the

actual control input is given by:

T s
(o )
a a

(5)

where
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*q. 0 « K ? (o) . (6)
^' a r s

V and ¥ represent rne actuator and sensor nonlinearities and are
a s
(nf * 1) vector-valued functions of vector arguments, the ith component

f of Y is a function only of the corresponding component of o . The
a. a a

same holds for V . Also, let ? (0) «• "? (0) • 0. Considering the worst
s a s

case with D = 0, the closed-loo'p system is given by:

q * Aq * * '''â a* ™ ° ^^

Consider first the case with linear sensors and nonlinear actuators:

THEOREM I. a. In the case of linear sensor*, the origin of the system

of equation (7) is stable if K > 0 and <f TK 'll? (o ) > 0. b. The originr a r a a

is asymptotically stable ia the large (ASIL) if Kf > 0, 0a
TK

r~
l f

a(°a> > 0

for oa * o and (A, $ ) is controllable.

Proof. Consider a Lyapunov funct ion:

T «T*
V ~ q Aq * q q (8)

a. It can be proved that :

V - 2a TK -|*0(o ) < 0 (9)3 r « «

•
b* In this case. V < 0 except possibly when a « 0. It can be shown thata

that oa * o except at the origin, since (A, *
T)a is controllable. If

*r is diagonal, the nonlinearities merely have to be confined to the

first and the third quadrants as shown in Figure 2 (i.e., <3'b (a) > 0,
ai

0*0, for ASIL). The effect of nonlinearities in both sensors and actu-

ators is considered next.

THEOREM 2. If K • diag (K , K ,..., K ), and 00 (o) > 0, 0* (<J) > 0
r r: r2 rnf a. s

for o * 0 , then the origin of the closed-loop systea of equation (?; is

stable if Kri > o, and is ASIL if, in addition, (A, *T) is

controllable.



i 3

Figure 2. Sector-type nonlinearity.
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I Proof. Proceeding as in the proof of THEOREM 1, it can be shown that:

V <V
1

r.
i

The rest of the proof is similar to that of THEOREM I.

Ef fec t of Actuator and Sensor Dynamics

•Assuming the sensors and actuators are linear but have f ini te band-

width, :.he closed-loop equations can be written as:

q * Dq + Aq - * f

f ° C x
a a

UOa)

(lOb)

x -Ax •»• B Ua a a a a
(lOc)

u • -K *
a r

(Uld)

where x , U are n x 1 and n * 1, actuator/sensor (combined) state and

input vectors, and A , B , C are the system input and output matrices,
a & a

with Aa being strictly Hurwitz . The steady-state gain is unity; that
is:

(11)

With instantaneous actuators/sensors, the system is guaranteed to be

asymptotically stable (AS) if K^ > Q and (A, *T) is controllable. (For

linear systems, AS and AS1L are equivalent.) However, it may be unstable

when the actuators/sensors have dynamic characteristics as in equation (10).

Suppose the actuator/sensor system equation can be represented by:

UX "Ax * B 'Ja a a a a (12)



where u is a small positive scalar. If the closed-loop system with

perfect actuators/sensors is AS, it can be shown that the trajectory with '\

f in i t e bandwidth is 0(y) close to the trajectory wi th perfect actuators/

sensors (Chow and Kokotovic, 1976)- This result implies that if the actua-

tor/sensor bandwidth is su f f i c i en t l y high, the closed-loop system would be '. •

•AS;- --.owever, it-does-not-provide-a-method-for-detertnining-a_quantitat-i.ve~ J ,'

measure of p that w i l l guarantee s tabil i ty. ! J
i !

The multivariable stability protlea of equation (10) does not appear to , j

lend itself to useful generic solutions. It is therefore instructive to i
j j

investigate at this point the single-input, single-output (SISU) system. In i ;

this case, n » 1 in equation (10). and K is a scalar. Let G (s) denote ' !
f r a i -I

the transfer function that represents the combined actuator/sensor dynamics. • >]

In order to consider the worst case, let D » 0. It is assumed for simplici- j J
i i

ty that LSS has no repeated modal frequencies and no-pole-zero-cancellations '

(i.e., controllability). The following results o f f e r some insight into •

actuator/sensor bandwidth requirements. '
;

THEOREM 3. The system of_equation_(lO). . is .AS_for_suf.f iciently small

"Kr > 0 iff (if and only if) the phase *a(
u) of G a( ju) is such that

-9°* < «a(u) < 90° for u = u>i , i = 1,2 nq.

"Proof. The ptoof can be established by examining the root-locus-angles of

departure at the LSS open-loop poles, which are at t jui, i " l , 2 , . . . , n q i

It is clear that for unrealistic actuators/sensors ' this condit ion

cannot be satisfied for an infini te number of undamped s t ruc tura l modes.

In reality, however, some inherent damping is Always present and it is

general-ly-higher-for-higher-frequency modes.

If G (s) has no f i n i t e zeros and n no real pules at s » -0 , the
a a a

closed-loop system is AS for s u f f i c i e n t l y small Kr > Q i f f , denoting the

largest ui by UM:

a > u. , ' tan(ff/2n ) (13)
a M a

Table 1 shows the miniuuo o /u required for stability for different
a M

na. fhe above results use only the information about the LSS modal fre-

quencies. However, considerable additional investigation is necessary in

this area to obtain more useful results, especially for the multivariable



Table 1. Actuator/sensor bandwidth requirements 'or-velocity feedback.

Actuator/Sensor
Order n

(Min. Req 'd . ) 0 1 1.73 2.48- 3.09- 3.-76- 4.37. ..5.0.7

i 4

' I

}

10



case. Perhaps newly emerging techniques such as mul'tivariable "f requency-

dcoain methods (Post lethwaite and MacFarlane, 1979) may be useful in these

investigations.

Secondary Controller Using ArtCDs

The use of an AMCD for damping enhancement was proposed by Joshi and

Grooo (1980a, 1980b). The use of several AMCDs for secondary control was

investigated by Joshi C.980). The AMCDs considered are assumed to have

relatively small rim diameters (about 2 in) and are therefore rigid. Elec-

troaagnetic force actuators and rim-proximity sensors used for the AMCDa

exhibit a high' degree of linearity in the operating /ange and have band-

widths of several hundred Hz. Therefore, the AMCD actuators and sensors can

be assumed to be linear and instantaneous. I
t

Ths control system configuration -consists-of- several -AMCDs-distributed- !

on the LSS. As shown in Figure 3, each AMCD consists of a rotating thin .is .

suspended in three or more noncontacting electromagnetic force actuators

which can exert the commanded forces in the ^-direction. A z-axis rim prox-

imity sensor, which measures the relative displacement between the no and

the LSS, is installed at the location of each actuator.

The complete linearized equations of motion were developed by Joshi !

(1981 a). Consider the control law given by: i
i

f . " K 5 + K 6 (14) !A p r ;

where f^ and 6 represent i x 1 vectors of actuator forces and prox-

imity sensor outputs for all AMCDs. Where £~ is the total number o f~AMCD j
i

actuators, Kp an<j Kr denote I x I symmetric gain matrices. The !

closed-loop system state vector consists of z and z, where i

T T T T T T '
Z H (V °ai " as ..... 'V el""'ev )

where a * (* ,8 ) represents the attitude vector of the tth AMC.O rim
d . tl • a •
i i i

(v * number of AMCDs) and E £ represents the z-axis displacemant of the

itb AMCD rim center relative to the corresponding point fixed to LSS. It

11



MAGNETIC
ACTUATORS
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Figure 3. AMCD/LSS configuration.
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was proved (Joshi, 19Hla) that the closed-loop system is stable if K_ > Q,

K > 0, and is AS if (1) K > 0, K > 0; (2) the LSS structural model isr p r
stabilized; (3) the total z-axis angular momentum of the AMCDs is nonzero;

and (4) LSS has no undamped structural modes at twice the AMCD spin

frequencies. The secondary controller using AMCDs is stable and robust.

.The -amount of damping enhancement- in-di-f ferent-modes-wrl I depend on the

value of the mode shapes at the actuator locations. If several AMCDs ar<?

distributed on the LSS, structural damping of a number of modes can be

enhanced. The hardware required for this type of secondary controller is

within the reach of present-day technology (Groom and Terray, 1978).

LSS COMROL:. PRIMARY ATTITUDE CONTROL SYSTEM

The secondary system increases modal damping -and-thus-controls-the

shape of the LSS. It also aids in primary controller design by reducing the

effects of "spillover" (Balas, 1978). A primary attitude control system

using instantaneous torque actuators and attitude and rate sensors is

considered first.

Primary Controller Using Collocated Ac tuators/ Sensors

Assuming that primary attitude control is accomplished using m (>1),

two-axis torque actuators distributed on the LSS, the LSS equations of

motion (without secondary controller) are given by:

Ax * Bx «• Cx - FT (16)

where T is the m x I torque vector. For collocated a t t i tude sensors,

the total attitude vector (including the contributions of rigid-body and

flexible modes) is given by:

a « FT x (17)

Consider the control l aw:

-(C a «• C a ) . (18)p t r t

13



u

where Cp an(j gr are symmetric matrices.- It can "b'e proved that the j

closed-loop systen—equations (16) and (16)—is AS if Gp > Q, GT > 0, !

and (C, F) is controllable. It is of interest to note that the control law )

of equation (18) minimizes a linear quadratic (LQ) performance index (with j

inf ini te terminal t ime) , which has a state-control, cross-penalty term in !

~addrtion~to-quadratic-penalties-on-the-state and-the-control-vectors^— (The— j
j

proof can b«. obtained in a manner similar to Joshi, I981a.) The controller j

is AS regardless of parameter inaccuracies. However, the s tabi l i ty is not j

guaranteed if the actuators/sensors have iinite bandwidth. Consider the <

SISO case of a single torque actuator and collocated att i tude and rate j

sensors. Assuming that the LSS does not have repeated modal frequencies j

(except at the origin)., that (A, # ) is controllable, and that~G ~"~kg , )

G "kg (g , g , k are positive scalars), the fol lowing results can be j
r r p r I

obtained (provided that $a(o) •* 0).

DESIGN OF STABLE CONTROLLERS FOR LSS

THEOREM 4. For the system given by equations (16) and (18), the closed-loop

poles-corresponding to the structural modes have negative real parts for

arbitrari ly small k > 0 iff

-4 < * ( « . ) < 180* - * (19)
Z. a , Zi

for i • l,2,...,n , where $ • arc tan (w.g /g ).
q z£ i r P

Proof. The proof can be obtained by examining the root-locus angles of

departure at tjj^. The actuator/sensor dynamics do not affect the angles

of departure for the poles at the origin.

If G Os) has no zeros and n has no poles at s-° -o , the system
a a a

is AS if arc tan (u.'o ) "> -$ /n for i • l,2,...,n . Further investiga-i a zi a q
tion is needed in order to obtain useful results in the area. Also, the

effect ct nonlinearities in primary actuators/sensors needs investigation.



Primary Controller Using Noncollocated Actuators/Sensors

The stability of the closed-loop system is no longer guaranteed for

this case, even with perfect actuators and sensors. This is because of

control and observation "spillovers" (Balas, 1978). For the noncollocated

case, the primary controller design can be accomplished using methods based

on linear-quadratic Gaussian (LQG) control theory. Joshi and Groom (1979)

presented and discussed several methods based on LQG theory. Of these-

methods, the modified truncation or model-error sensitivity suppression

(MESS) method, which was first proposed by Sesak, Likins, and Cordadetti

(1979) was found to be the most promising. In this method, the effect of

control -input on-selected residual modes is included in the performance

function in a quasi-static sense. The resulting reduced-order linear

quadratic optimal regulator problem has a term that modifies the control-

weighting matrix in the performance index. A modified state estimator can

also be designed in a similar manner. A more detailed discussion can be

found in (Sesak, Likins, .and Cordadetti, 1979). Numerical results tor a

large, thin, completely free, flat plate (for the collocated and

noncollocated cases) are given by Joshi (198la).

Primary Attitude Control Using AMCDs

The AMCDs used for the secondary controller can be used simultaneously

for actuation of the primary attitude controller. Primary attitude control

is accomplished by torquing against the AMCO angular momenta. In this dual

control mode, however, the relative rotation angles between LSS and AMCDs

(i.e., a -a , i " l,2,...,v) cannot be controlled simultaneously with LSS

rigid-body attitude as. Joshi (1981) presented a method of structuring

the position feedoack gsin matrix Kp in 8ucn a manner that the closed-

loop secondary system with the state vector consisting of c., £., a - a
i

(i • l,2,...,v) is guaranteed Lyapunov-stable. Additional force commands

can be superimposed on the electromagnetic actuators in order to produce the

desired primary attitude control torques tor controlling as. It an

attituce and a rate sensur is placed on the LSS at the nominal position of

the center of each AMCD, this configuration would approximate collocated

point-torque actuators and attitude/rate sensors, and should have the asso-

ciated stability and robustness properties. In this configuration, the



•AMCDs oust have sufficiently large momenta in order to exert the magnitude

of torques required to achieve the desired rigid-body bandwidth without

exceeding the electromagnetic actuator gap limits. Separate AMCDs may also

be used for primary control actuation. For orbital application it will be

necessary to gimbal the_AMCDs-for-pr-imary-controller actuation.

LSP/MPPS MATHEMATICAL MOUEL

The first step toward the solution of the problem of simultaneous

control of LSP attitude and PPS fine-pointing was to derive a linear

mathematical model for the system consisting of LSP and precision-pointed

payloads. Each payload (PPS) is rigidly mounted on a lateral gimbal which

is-attached to an elevation gimbal. Each elevation gimbal is-rigiJly

attached to the LSP. Each elevation giabal can rotate about'the LSP x-axis,

and each lateral gimbal can rotate about the y-axis of the corresponding

elevation gimbal. Each gimbal also has a torquer. (The roll freedom of

payload is not considered in this analysis.) The LSP attitude is assumed to

be controlled.by Ji torque actuators-distributed on the LSP. The

mathematical nodel derived below assumes that each PPS is rigid, and is

treated as a point mass-for the purpose of LSP structural model computation.

The LSP/MPPS model derived via Lagrangian formulation has the following

form:

Ax * Bx * Cx " Pf (20)

where

« - U8, e f l , *8, < > , , $2 <y 81. o2 ep, q ) (21)
\

whete $ , 9 , ^ (which w i l l be denoted by the vector a ) are the LSP
8 8 S S

rigid-body roll, pitch, and yaw angles (about x, y, z axes). The relative

angles between each elevation gimbal and LSP are $1»••••»? (to be denoted

by $); aodal,..,,Qp (to ^e demoted by 6) are the lateral gimbal angles.
nq x I LSP sodal amplitude vector is q.

16



3 X 3
12

A32 (A33) pxp

(22)

The A., matrices are appropriately dimensional subcutrices

To I ol

' • ! •
(23)

which is the n x n large space structure (LSS) inherent damping matrix.
<J <J

U4)

A « diag (oi2 , u2, w2 )
1 2 n<l

(25)

where ui denotes the ith modal frequency of the LSP. Assuming that the

LSP is controlled by m two-axis (x and y) torque actuators,

f • (T , T ,...,T . T , T Te . T , T ,...T. )
12 m e i ea p t i 12 *p

(26)

where T • (T . T ) represents trie ith LSP control torque vector and
i xi yi

T., T. . represent the ith elevation and lateral gimbal torquer torques.

T 112»2 12K2 -e, ,-ti -ei

* * I ,

0 | I
' P*P
|

0 i
1

i -«

| -T,,T«...

0
1

1 p*p
T

| -<• T1 .• ,

( 2 7 )

17



where Ti . a I, ($ .) is the trans format ion matrix for rotation $ . about
'i ' 01 01

x-axis, where $o^ • norainal angle of the ith gimbal relative to the LSP.

The 3x1 unit vector in k-direction is denoted by e. . The n * 2m
k q T

mode shape matrix for LSP torque actuator locations is denoted by $ .

'The n x p matrices of aode shapes (in x, and y directions)' at the
1 Y T

elevation gimbal locations are 4> and $ .

diag lTn(2,i), T12(2,2) T, (2,2)) (28)

Sensor Outputs

• It is assumed that n atti tude anJ rate sensors are collocated wi th

the LSP control torque actuators. The LSP att i tude sensor output for the

ith sensor is given by:

v .• si (29)

where 0 denotes the 2 * n submatrix of 4> corresponding to ith sensorq
location. Assuming chat each payload has its own attitude and rate sensor,

it can be shown that the (2-vector) output of the ith payload attitude

sensor is given by:

cos 3 . 0
01

9 .

cos 9.0 -sin 9 ."
01 01

.
xi

9 *
s (30)

where 9 . is Che nominal gimbal angl« for the ith lateral gimbal. Global

angles $i and 0i are also measured. They denote me incremental

giiabal angles about ($oi and 9oi) i" th«» linearized analysis.
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i
ii

CONTKOL SYSTEMS SYNTHESIS FOR LSP/MPPS

!
|

Control Law I: Decentralized Control ;

In thi* method, the LSP attitude and the PPS attitude are controlled i

independently. The LSP attitude and vibration control can be accomplished \

using a two-level controller with collocated actuators and sensors. Each

PPS control system is designed independently and incorporates feedback only

of the PPS attitude and rate signals in order to generate the gimbal torquer

torque commands. An examination of the A matrix in equation (22) indi-

cates chat strong couplings exist not only between the LSP and all the PPSs

but also between the PPSs themselves. Additional coupling, including that

due to LSP flexibility, would also be introduce*! oy the feedback control

law. Since the masses of individual PPSs can be large (i.e., of the-same

order as the LSP mass), overall instability may occur for this type of

decentralized control law.

i \
Control Law II: Robust Composite Control

The sensor outputs described above can be combined in the following

manner:

where y . is the LSP attitude measurement equation (29) at the ich LSP
si

sensor- location.

where

Z2 • » 2$ - sec 9 . ($ . «• sin 6 . 4> ) (33)
'l 1 01 pi 01 8

On expansion it can be seen that :

Z2 . - $ . - ( $ » * . q) (34).
* i i s xi
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where

Z- «. 28 . - 6 ~(36) —
' i i pi

It should be noted chat LSP yaw angle measurement (̂ 9) £8 required Co

generate 22 . Denoting

, T T T.T .
i • (z , i , z ) (37)

it can be shown that:

« - TTx (38).

-Consider the control law:

f » -K r - K't (39)
P r

where Kp an<j nr are symmetric matrices.

THEOREM 5. If K > 0 (positive definite) and K > 0 (positive senidefi-
P r

n i t e ) , then the closed-loop systeo given by equations UO) and (39) (but

excluding the LSP yaw angle ^i8) is stable in the sense of Lyapunov.

Proof, the proof is siailar to that of THEOREM 1 in (Joshi, 19blb).

The controller is robust because it assures s tab i l i ty regardless of

parameter inaccuracies and nunber of structural modes in the LSP oodel.

NUMERICAL RESULTS—LSP/PPS CONTROL

In order to investigate the two controllers diacusseJ, a f in i te element

model of a 100-fc. « 100-ft. * O.l-in. completely free, aluminuo p la te was

used to represent a large space platform. Two payloads, with masser equal ,

to that of th« LSP, were assuaed to be located at d i t f e r e n t points on the
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LSP. The payloads were assumed Co be noninally poincing at targets 45* and

-45* respectively about the inertial x-axis, and 0* about the y-axis of the

elevation gimbals for this stimulation. The LSP was assumed to be control- '

led by three torque actuators (each two-axis) collocated with attitude and ,

rate sensors.- For the.purpose of this analysis, the LSP structural model i

was not modified by adding point masses at PPS locations, the purpose being !

only to demonstrate the methods rather than to obtain accurate numerical I
}

results. The objective was to get LSP rigid-body, closed-loop bandwidth of 1

about 0.05 rad/sec with damping ratio of about 0.707, and flexible mode i
i

damping ratio of at least 10i (zero open-loop damping assumed). The PPS \

closed-loop bandwidth was required to be 1 rad/sec with 0.707 damping. The ;

closed-loop eigenvalues for the two controllers were obtained for various ;

attitude and rate gains (assumed to be diagonal matrices) for LSP and PPS.

When the PPS gains were raised (.for obtaining the required 1 r.id/sec closed-

loop bandwidth for the PPS loop), a structural mode was driven unstable in • - -

the decentralized controller for PPS bandwidth greater than O.ld rad/sec.

The-composite controller was next used. In this case, PPS bandwidth of 1

rad/sec was obtained without significantly affecting any of the structural

nodes. Work is.currently in progress in order to fully evaluate the "per-

formance of the controllers.

CONCLUDING REMAPKS -

The effects of sensor and actuator nonlinearities and dynamics on the

stability of the two-level controller were investigated. The secondary
*.

controller was shown to be robust in the presence of sector-type,- memory? . j

less sensor/actuator nonl inear i t ies . Further inves t igat ion is needed for j

(1) the e f f ec t s of nonlineari t ies on the primary controller , and (2) the j

e f f e c t s of sensor/actuator dynamics for the mul t i - inpu t , railti-output case " \

( fo r both the primary and the secondary cont ro l le rs ) . Two types of ]
\

controllers--a decentralized controller and a robust composite controller-- j
-t

were considered for the control of LSP/.HPPS system. The robust conpositts j

controller offers significant promise. The performance of the controllers j
I

is currently under investigation. j
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