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MOTION OF THE ANGULAR MOMENTUM VECTOR IN BODY

COORDINATES FOR TORQUE-FREE DUAL-SPIN SPACECRAFT

Joseph V. Fedor

ABSTRACT

A solution is developed for the motion of the angular momentum vector in body coordinates
for torque-free, asymmetric dual-spin spacecraft without and, for a special case, with enemy dissipa-
tion on the main spacecraft. Without enemy dissipation, two integrals can be obtained from the
Euler equations of motion. Using the classical method of elimination of variable, the motion
about the equilibrium points (six for the general case) are derived with these integrals. For small
notation angle, 0, the trajectories about the 9 a 00 and 0 a 18W points readily show the require-
ments for stable motion about these points. Also the conditions needed to eliminate stable motion
about the 8 = 180° point as well as the other undesireable equilibrium points follow directly from
these equations. These requirements are in agreement with C. Hubert (Reference 1).

For the special case where the angular momentum vector moves about the principal axis which
contains the momentum wheel, the notion of "free variable" azimuth angle is used. Physically
this angle must vary from 0 to 2A in a circular periodic fashion. Expressions are thus obtained for
the nutation angle in terms of the free variable and other spacecraft parameters. Results for this
can show that in general there are two separate trajectory expressions that govern the motion of
the angular momentum vector in body coordinates. If the relative angular momentum ratio, h/H,
satisfies certain inequalities (conditions), one trajectory can be eliminated from consideration.
Other expressions developed in the paper such as extreme values of the nutation angle in a cycle of

motion and permissible limits on a dimensionless momentum-energy parameter, H2 /2TC, reduces
to the classical results for spinning torque-free rigid body when the rotor angular momentum is
set to zero. Energy dissipation on the spacecraft is simulated by a liquid filled ring damper, and a
simple computer program has been generated that allows the user to determine the motion of the
angular momentum vector-in body coordinates for the special case. Typical trajectories are ex-
hibited. Also, for small nutation angles, a relationship is expressed between the free variable and
time, and a damping time constant is derived.
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MOTION OF THE ANGULAR MOMENTUM VECTOR IN BODY

COORDINATES FOR TORQUE-FREE DUAL-SPIN SPACECRAFT

1, INTRODUCTION

The attitude motion of dual-spin spacecraft has been examined in considerable detail (Ref-

erences 1-S, to mention a few) with various mathematical techniques. There appears to be a

lack, though, of a simple, direct analysis of torque-free, asymmetric dual-spin spacecraft attitude

motion, unencumbered with complicated mathematical details, that reveals the nature of the

motion and blends in with the well known classical results of spinning torque-free situation. It

is the intent of this paper to present such an analysis. First, the torque-free situation without

energy dissipation will be examined and then, for a special case, -energy dissipation in the form

of a liquid ring damper on the main spacecraft will be included.

2. ANALYSIS WITHOUT ENERGY DISSIPATION

Using a 1-2-3 principal axis coordinate system fixed in the spacecraft and with the origin

at the center of mass of the spacecraft, the angular momentum of the system, I9, can be written

as

(Awl
Iff	 Bw2

Cw 3 + h

where A, B and C are the principal moments of inertia, w 1 , w,, w3 are the components of the

angular velocity vector and h is the relative angular momentum of the wheel which is located on the

3 axis. A perfect control system is assumed which keeps the wheel speed constant and hence h.

The vector equation of motion can be written as

Ir+w X1T - 0
	

(1)

In scalar form, Equation 1 can be written as

Aral + (C B)ta2 W 3 + hw2 • 0	 (2)
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I

Bta2 +(A - Qw, w3 - hwt n 0
	

(3)

C443 + (B - A)w i w2 n 0
	

(4)

Muitiplyin3 Equation 2 by w t , Equation. 3 by w2 and Equation 4 by ws, adding and noting that

the resulting expression is an exact differential which can be integrated gives

Awi + BW2 + Cw3 s 2T a Constant	 (S)

Equation S is the rotational energy of the spacecraft with the momentum wheel not rotating and

it is a constant of the motion. Another constant of the motion, since the motion is torque-free,

is the magnitude of the angular momentum vector

(Awt)2 + (Bw2)2 + (Cw 3 + h)2 = H2 = Constant	 (6)

Note also, that because of the torque -free nature of the motion, the angular momentum vector is

fixed in space and can be used as a reference direction to ascertain external viewed motion.

Referring to Figure t which shows a general orientation of a unit angular momentum vector

in body fixed normalized momentum coordinates

3

1

Cw3 + h

M —
I

Bw=

H	 2 BODY FIXED
Awl s 	 t

^e I

`J

Figure 1. General orientation of a unit angular momentum
vector in body fixed normalized momentum coordinates.
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one can write

H • sin B cos a or m, = A sin 9 cos a	 (7)

H2 
= sin 6 sin a or w2 = B sin 9 sin a	 (8)

Cw 

H 
It c*s @ or W	

H cos - h	
(9)

The angle B is the conventional nutation angle and a is an azimuth angle. When the normalized

components of the angular momentum are substit ited in Equation 6, the conservation of angular

momentum equation, it will be found that this equation is satisfied exactly. This fact is used in

subsequent development.

The equilibrium points of the motion will now be obtained using the two integrals of mo-

tion and the method of elimination of variable. First Ara l will be eliminated which corresponds

to viewing the motion along tht 1 axis, then Bamz which corresponds to viewing the motion along

the 2 axis and finally Cw3 + h. Equation 9 is used to write the conservation of angular momen-

tum as follows

H2 = (Aw l)2 + (BW2)2 + H2 c052 0 	 (10)

and the rotational energy equation as

2
2T =Awl + B 2 + - C (cos 9 - Rt )2 	(1 t)

Where Rl = h/H, the relative angular momentum ratio of the rotor. w l can be eliminated by

multiplying Equation 11 by A and subtracting it from Equation 10, this gives the following

rr	 A	 l
k	 H2 - 2AT	 0 - A/B)(Bw 2)2 + H2 { cos29 - 

G 
(cos B - R i )2 }	 ( 12)

J

Now the expression in the braces can be written as a perfect square containing cos 9 and some

residual constant terms. Thus after some rearranging, Equation 12 becomes

3



2	 2	 2 \

	

(1 - A/B) (!(R— + (I - A/C) 	 B	 l • R R i + C I) - C (l3)
1C!	 C (Co	 /

where R2 is defined as

H2
2TC
	 (14)

As noted previously, Equation 13 represents motion projected on a plane normal to the I axis of

the body fixed coordinate system. It will be noted that the equilibrium point Is at

Rt
Cos 8 0  - CIA

cj2 - 0 (which implies a s 0 or w) and

A	 (C/A - 1)

R	
16)

C (C/A - 1 + R2) 

Now Equation 13 is a displaced conic section locus, and it can be either an ellipse or a hyperbola.

For an inertia distribution of: A < B < C, the coefficients  of the left side squared terms are pos-

itive and so closed path ellipse trajectories are possible about the equilibrium point for positive

right hand side, which requires that

A	 (C/A - 1)
R2	 C (C/A - 1 + R21)

In a similar manner for the 2 axis, one can derive the following expression

(I - B/A) A= 2 + (1 - B/C)cos e - -=-12 = - 	 I +
H/	

(	
1-CBl R

 
[R2 	

CB- I C r
	

i2

Again it will be observed, that for this axis the equilibrium point is at

Cos 8 M --- R—
I - C/B

W i . 0 (which implies ac - ter/2) and

R - B (C/B - 1)

	

2	 C (C(B I + R2)

4

(1S)

(17)

(18)

(19)

(20)



For the stated Inertia distribution, It can be seen from Equation 18 that one coefficient of the

squared terms on the left side is negative and so the motion about this point Is hyperbola in na-

ture. The slopes of the asymptotes in a plane normal to the 2 axis are given by

cos 9 - — R,	 --
1 - C/B	 C (B- A)

C

Acv 11	 A (C - B)

H/

These represent separatrices as projected on the I-3 plane. If the equilibrium point exists, then

the above implies that no closed path motion will take place about this point. Note further, that

these separatrices (right hand side) are identical to the simple spinning torque-free case (Reference 6)..

For the two equilibrium points just described, it is interesting to note that compared to the

simple spinning torqus-free case, the presence of a momentum wheel changes the location of

these equilibrium points only in the 8 direction and not in the azimuth (a) direction. Further,

as the relative angular momentum of the wheel increases from zero (note Equation 15 and 19)

the equilibrium points migrate toward the B n 00 or 180° points, and if the rotor momentum is

high enough as required by the following

RI > I 1 - C/A	 (22a)

and

R1 > I 1 - C/B I	 (22b)

the equilibrium points are eliminated (not realizable). This has implications for all attitude angle

acquisition which will be discussed somewhat more further on in the paper.

For motion as viewed along the 3 axis, Equation 11 is multiplied by C send Equation 10 is

subtracted from it which eliminates H 2 cos2 9 and gives the following intermediate result

(C/A - 1 XAW 1 )2 + (C/B - 1 XBw2)2 - H2(2R1 cos 9 - R2) _ 2TC - H2	(23)

S



Now Equation 10 can also be written as

tos 6	 t i -
I(Aw l )2 (Bw2)21 l/2

C
+	

)	 • (-4)Hz 
For 6 near zero, cos 6 can be approximated by

i [(Atj t )2 + (Bwz)2)

	

Cos 6 ft 1 - —	 (25a)

	

2	 H2

and for 8 near 180', cos 6 can be approximated by

1 [(AWi)2 + (B(02 )21

H2

Combining Equations 2Sa, b with Equation 23 and rearranging terms, one arrives at

[C/A - 1 + Rl 1 C 
H ^ + (CjB 1 + R t 1 H = [t/R= - 0 - R0 2 1 	(26)

for 8 near zero and

2	

C
B 2

[C/A - 1 - Ri1 
CAHr ^ # 

(C/B - I - Rt)	
H2) 

n 	 - 0 + Rc )2	 (27)
L72

for 6 near 180°. Equation 26 and 27 represent trajectory motion of the unit angular momentum

vector 1 1.1 one were to look along the positive or negative 3 axis. The equilibrium points are w,

wZ = 0 (which implies 6 .0 or x for any value of a) and

I
Rz a 

C 1
—	 (28)

for 6 * 0°, and

1
R2 = (1 R j2	 (29)

for 0 a 1800 . Examining Equations M and 27 further, one can conclude that for 6 near zero,

closed ellipse like motion is possible if

	

C/A 1 + Rl > 0	 (30a)

6



C/B I + Rt > 0

and
l

R2 < ('-

For 0 near 180• , a similar type of motion Is possible If

C/A t Rt > 0

C/B - I - Rt > 0

(30b)

(30c)

(31 a)

(31 b)

and

	

R2 < -	 (31 c)
(i + R1)2

2
Note that since T 2	 , for a given spacecraft moment of Inertia and angular momentum,

2
the 0 = 0° equilibrium point is a lower rotational energy point than the 0 n 180' point. Also, it

will be noted in Equation 27 that if the rotoR relative angular momentum is made large enough

(since physically C/A or C/B is less than 2) so as to make one coefficient negative, no closed path

motion is possible about the 9 = 180° points

To emphasize this condition, the following is written

	

R, > C/A - 1	 (32a)

or

Ri > C/B - l	 (32b)

which eliminates closed path motion about the 8 * 180° point. That is, if inequality 32a or 32b

is satisfied, then the motion about the 180° point is hyperbolic in nature. If both inequalities

are satisfied, then closed path motion is still possible provided that

F	 1
R > (l + Rr)2

If both inequalities are satisfied in an absolute value sense, the previously mentioned equilibrium

points about the 1 and 2 axes are eliminated and the only equilibrium points are at 8 . 0° and

7



180'. In this case R 2 is bounded by the fallowing

1	 1
(1^ S R= -! 5 

C 1
._	 (33)

Thus, without energy dissipation, depending upon the magnitude of the rotor relative angular

momentum, R t , there can be two, four or six equilibrium points for a given dual-spin spacecraft

moment of inertia configuration.

It is appropriate at this point to briefly consider energy dissipation. This implies that the

spacecraft rotational energy (T) is decreasing so that R2 approaches ( 1-- IR (Equation 33). If
t)

Rz were to approach 
0

+— R , this implies that T is increasing which is contrary to what Ref-

erence 8 has demonstrated. It is thus seen that the final steady state equilibrium is 0 a 0',

Summarizing briefly, when the appropriate inzqualities are satisfied leaving the B a 0' and the

180' point as possible equilibrium points, because the 180' point is at a higher rotational energy

level, this point is also eliminated in a sense that the momentum vector will not move to that

point with inexorable energy dissipation present. Ta g s leaves the 9 a 0' as the only remaining

equilibrium point. The above is important for all attitude acquisition as noted by Reference 1.

Another technical tibit can be noted from Equations 26 and 27. If the spacecraft were

captured about the @ . 0' point and it is desired to invert the attitude of the spacecraft, this can

be done by changing the rotor speed (R1 ) to a negative value so as to make the 9 w 0' po et a

higher energy point and correspondingly make the 0 : 1.80' a lower energy point. The above

mentioned discussion of energy dissipation would then apply again.

To add a geometric dimension to the analytic result, Figure 2 shows a sketch of the loci

of the angular momentum vector on a portion of a momentum ellipsoid for A < B < C with

three equilibrium points showing (total of six present).

8



1

2

3

Figure 2. Loci of the angular momentum vectorfor a dual-spin
spacecraft on a portion of a momentum ellipsoid for A < 8 < C
inertia distribution and h/H > 0.

3. ANGULAR MOMENTUM VECTOR MOTION ABOUT THE 3 AXIS

Attention will now be focused on the special but significant case where the angular momen-

tum vector moves about the principal axis that contains the momentum wheel. This will further

elucidate and quantify the attitude dynamics of dual-spin spacecraft. With this motion, the

azimuth angle that locates the transverse o omponent of the angular momentum vector must vary

from 0 to 2w in a periodic manner, This angle, ac, is piled a "free variable" and is treated as an

'	 independent variable in what follows.

As mentioned previously, when the normalized components of angular momentum (Equa-

tions 7, S and 9) are substituted into Equation 6, the conservation of angular momentum equa-

tion, it will be found that the equation is satisfied exactly. Substituting w l, CJ2, W3 into

9



Equation 3, the energy equation, and after some manipulation and definition of terms, results in

a quadratic expression for the nutation angle in terms of a

G1cos28 - 2R 1 cos 8 - G2 . 0	 (34)

where
C	 C

G 1 = 1 - A costa - B sin2 a	 (35)

G2 =•• Ri - Acosta 	- 9 sin2a
2

or

G2 n I - RY + G1 - 1	 (36)
R2

and, as before

H2
R1 = h/H, R2 = ITC

1,olving for cos 8 in Equation 34 gives

Rl :tRl + -GI G2cos 8 =	
G1	

(37)

It will be noted that because of the t sign, there are potentially two trajectories expressions for

the nutation angle, 8. The plus sign trajectory is an optional (possible) trajectory depending upon

Rl , the relative angular momentum ratio of the rotor. This is inferred from the inequalities in

Equations 32a, b. If Equation 32a or b is true, this implies R1 I > 1 at some azimuth points in
R1 + G 1 Gz	 I Gl

the cos 8 equation. The	
G

	 will always increase R 1/G 1 in the positive
1

sign trajectory and thus make the right hand side of Equation 37 even larger than tl, which, of

course, is not physically realizeable and thus eliminates that trajectory from consideration. For
1

the negative sign trajectory it is of value to let R 2 approach
Rl)2, G

2 goes to Gl - 2R1 and
(1 - 

the cos 8 expression reduces to



which is consistent Oth R t > G i or G 1 negative, and gives a value of 9 n 0° as it shouA

The extreme values of the nutation angle in a given cycle of a is of interest and they can be

obtained by differentiating Equation 34 with respect to a, solving for dal:
dB	 (C/A - C/B) sin a cos a sin 9
_
da	 Ri - G t cos 8	

(38)

and noting what values of a make 
da 

equal to zero. From Equation 38 it is readily seen that

this occurs when

a s 0, w, ft/2; for 9 any value,

It will also be noted that 
1 

is zero for
doi

8 = 0, ir; a any value

which, of course, are the equilibrium poihts. To ascertain if the extreme values are a maximum,

or: a minimum, the second derivative must be evaluated at the point. The second derivative, 
0doil

evaluated for sign is

d28	 (C/A - C/B)
sign -- =sign --	 cos 2 a sin O l a • 0	 (39)

dal	R1- G l cos8	 a = ?r/2

As is known, if the sign of the second derivative is negative, then the extreme value in a maximum;

if the sign is positive, then it is a minimum. Thus, for A < B < C and 8 less than 900 , the ex-

treme values, if they exist, are given by

cos 8	
Rl SQRT (Ri + (1 - C/Bx1/R2 Ri - C/ B)!	 (40)

max =	 1 - C/B

and

cos B	
R1 - SQRT (Ri+ (1 - C/Ax1/R2 R1 -C/A)I	

(41)min	 1 -C/A

11



For R, n 0, no rotor rotation, Equations 40 and 41 reduce to the classical values of

sin 6 m^	 = l - =--	 (42)
B G \C H2 2T

and

AC l	 l
j	

sin Bmin aV A - C C H2/2T	
(43)

as it should (Reference 6). It is of interest to note that for cos B to be real in Equations 40 and

41, the quantity in the square root sign must be greater or equal to zero, This requirement can

be manipulated into the following inequalities:

B	 (C/B - 1)

	

2	 C (R2 + C/B - 1)
and

A (C/A - 1)
	R2 	

C (Ri + C/A ->1)

which is consistent with previously derived bounds on Rz. For A < B < C and for motion about

the 9 = 00 point, it follows that R2 is bounded by the following relationship

B	 (C/B - 1)	 1

C (C/B - 1 + Rl) 5 
Rz S (^	 (44)

Notice that if R 1 = 0, then Equation 44 reduces to the classical result

B

C --5 R2 S I
or

HZ

B S 2T - C	 (45)

4. ENERGY DISSIPATION ON THE MAIN SPACECRAFT

The energy dissipation on the main spacecraft caused by a fluid ring damper will now be in-

cluded in the analysis in a simple manner. Reference 7 developed the optimized energy dissipation

of the damper per cycle of excitation and it is given by the following expression

r

12



(50)

&T = • 1,2 m a2 w2	(46)

where

m a mass of the fluid

a = radius of the ring damper

w = amplitude of excitation

Implied above is that the change (decrease) of spacecraft rotational enemy (Equation 5) is caused

by the dampen Reference 8 shows this to be valid. If the damper is put on the 2 axis, then

H
Ww2 B sin B sin a	 (47)

Now a cycle of excitation occurs when a goes from 0 to 2w, Dividing Equation 46 by 2w and

calling this 
d 

,we have

dT 
-1.2
 m a3 wz	 (48)

d a	 2T

Substituting Equation 47 into Equation 48 and symbolically carrying out the integration results in

	

T = To - 0,19 m a- H82
	

sin20 sin2 a da	 (49)
Q

Where To is the initial rotational energy of the spacecraft. Forming the dimensionless quantity

R2 = H2/2TC gives

R2o
R2 =

	

It -0,x,8 R20 Rs	 singe sin2a dal
 n	 .!

Where R20 is the initial value of R2 and

m a2 C

Rs =
B2

a dimensionless quantity containing damper and spacecraft parameters.

13



Now in most dynamic analyses, the initial Mutation angle is given and not R 20 . Using Equa-

tion 34, Rm can be calculated if the initial nutation angle, 0 0, initial azimuth angle, ac, and other

spacecraft parameters are specified. Thus,

I
i

20

	

	
(52

(G10 cos2 00 - 2R1 cos 00 + Ri G10 + 1) 

where

G10 = 1 - C
A 

c052 ao - C
B 

sin2a0

In using Equation 52, the maximum value of R 20 should be used (which occurs at ao = 0 or zr/2)

to circumvent square root of negative numbers when calculating the nutation angle. Square root

of negative numbers indicates thAt the trajectory is not realizable.

An interesting aside can be obtained by deriving a small nutation angle damping time con-

stant for the damper and spacecraft.. Using

I
cos 0	 i - 2 sin2e,

Equation 34 can be written as

singe	 0 - R 1 )2 - 1 /R2	 (53)

Gl - Rl

Substituting Equation 50 for R 2 into Equation 53, differentiating with respect to a to clear the

integral, canceling where appropriate and averaging over a cycle considering 8 quantities constant,

one obtains

d0	 -0.19 R3 0
— _	 (54)
da	 (2R1 + C/A + C/B - 2)

Now for 0 small, one can physically identify a with time by the following expression

a	 Xt	 (55)

where t = time and X is the body fixed nutation frequency given by

14



A = SQRT(h - (B - C) w3) (h +C- )_	
(56)

A	 B

where W3 is considered constant. Equation 56 was obtained from Equations 2 and 3 by consider-

Ing cu t and W2 varying sinusoidally with ht. Thus by proper substitutions In Equation 54, a

damping time constant can be determined

B2 (2R 1 + C/A + C/B - 2)
r n

0.19 m a2 Ch

Note that the numerator of the time constant contains the sum of the left hand side of the in-

equalities (Equation 30a, b) needed for stable motion about the 9 = 0 0 point. If the numerator

is close to zero (implying a short time constant) then the expression is not valid because the

basic assumption of slowly varying quantities is not true.

S. NUMERICAL RESULTS

For the special case where the angular momentum vector moves about the principal axis

that contains the momentum wheel, a simple computer program was generated to calculate nuta-

tion angle trajectories and other key quantities using the IBM Continuous System Modeling Pro-

gram (CSMP, Appendix A). The program inputs are: spacecraft moments of inertia, A, B, C,

relative angular momentum ratio of the rotor, R 1 , damping Pqr-ameter, R3 , and an initial azimuth

angle, *0 , and an initial nutation angle, 80, to specify the initial orientation of the momentum

vector. The program calculates R 2 and picks the trajectory (K = il) that will give an initial nu-

tation angle similar to the input value. The author choose this procedure over the classical

method specifying R2 and letting the nutation angle occur where it may. The initial nutation

angle has more physical meaning to the analyst than R 2 . As previously noted, care must be used

'	 in choosing ao to circumvent square root of negative numbers.

(S?)

The following spacecraft properties were used in the numerical calculations:

A = 91 mass units	 C/A = 1.1538
B = 100 mass units	 C/B = LOS
C = IOS mass units	 R3 a 0.0, 0.1

is



Figure 3 shows a polar plot of nutation angle versus the free variable cc for small motion about the

8 = 0° point, R, = 0.03, without and with damping. Motion is stable, periodic without damping

as expected, and tends toward zero with enemy dissipation.

Figure 4 shows a Cartesian plot of nutation angle versus the free variable a for R i = 0.03

and R3 = 0.1 for various initial nutation angles. It will be noticed that some curves so to the

B = 00 equilibrium point while others go to the 6 = 180 0 point. The local peaks an._; valleys of

the curves are mainly due to the asymmetric moments of inertia. Computer runs showed that

if 80 were greater than 127 0 , motion would be toward the 18V point. If 0 0 were less than 1270,

motion was toward the 8 = 00 point. It is interesting to note that 8 = 126.87° is the calculated

equilibrium point (Equation 19) near the 2 axis. The equilibrium point (9 = W or 180°) is ob-

viously not unique and the spacecraft can capture right side up or upside down (so to speak) de-

pending on the initial conditions.

Figure 5 shows what happens when R 1 is increased to 0.09. Only the curves for 80 ,. 135°

and 170° are shown, since the omitted curves went to the 8 = 0 0 point previously. It will be

observed that both curves now go toward the 8 = 00 point. By increasing R i to 0.09, the in-

equality of Equation 32b is satisfied and thus, motion about the 8 = 180° point moves hyper-

bolically away, toward the 8 = 00 equilibrium point with energy dissipation. Computer simula-

tions with energy dissipation have shown that when the negative sign trajectory (Equation 37,

K = -1 in the program) is present, invariably the motion is toward the 8 = 0 0 equilibrium point..

When the positive sign trajectory is present (K = t) invariably the motion is toward the 8 = 1800

equilibrium point.

6. SUMMARY

It is felt that the attitude dynamics for torque-free, asymmetric dual-spin spacecraft has

been developed in a straight forward and elementary manner. Analytic expressions have been

developed that give results that agree with previously published dual-spin results and that reduce

16



W
w^

r `^

h

^	 rr
e

^ o	 ^
M

K

M

N

r

b
r
ry

CO

co
0
li
Ma
oF
O
it

OG
w

e

ii

A
C
.s

Q

EH

fA

O`
yw

w

^yi
C
A
C
.s
V
C

O

sa
4
vi

^o

17



e

e

—I:N

^
O
f

4

^n

w
O

k

t^

0

6
u

sON

O
Q G

a

yw

uV
i

^i

YA
S

N

d
C
C

w
C
ar

z0
do

	 !V

N	 N	 ^	
M

a

=^^d03O ' 310NV NOULvi N

18



4

w

R	 7
O

^	 Q

^	 C

_	
g0

	

^	 n
;a o
^ W

	

l	
yw
V

A

le
 1

1	 y

N^0
C
a7

C

i	 Q

A

z

Al

4
q:

—I:

—1e

. 

-q04

N	 M

O	 O

p	 v

833NO30 310NM wouviRN

19



to classical results for torque-free spinning spacecraft. Thus, the neophyte analyst can study

dual-spin and spinning spacecraft attitude dynamics in a more or less uniform manner. The is-

sociated computer program allows the neophyte analyst to study dual-spin and simple spinning

attitude motion with and without damping.
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APPENDIX A

CSMP PROGRAM FOR MOTION OF THE ANGULAR MOMENTUM VECTOR

ABOUT THE AXIS THAT CONTAINS THE MOMENTUM WHEEL
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