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MOTION OF THE ANGULAR MOMENTUM VECTOR IN BODY

COORDINATES FOR TORQUE-FREE DUAL-SPIN SPACECRAFT
Joseph V. Fedor
ABSTRACT

A solution is developed for the motion of the anigular momentum vector in body coordinates
for torque-free, asymmetric dual-spin spacecraft without and, for s special case, with energy dissipa-
tion on the main spacecraft. Without energy dissipation, two integrals can be obtained from the
Euler equations of motion. Using the classical method of elimination of variable, the motion
about the equilibrium points (six for the general case) are derived with these integrals. For small
nutation anele, 8, the trajectories about the 8 = 0° and 6 = 180° points readily show the require-
ments for stable motion about these points. Also the conditions needed to eliminate stable motion
about the 8 = 180° point as well as the other undesireable equilibrium points follow directly from
these equations. These requiremenis are in agreement with C, Hubert (Reference 1).

For the special case where the angular momentum vector moves about the principal axis which
contains the momentum wheel, the notion of “‘free variable’’ azimuth angle is used. Physically
this angle must vary from 0 to 2 in a circular periodic fashion. Expressions are thus obtained for
the nutation angle in terms of the free variable and other spacecraft parameters. Results for this
case show that in general there are two separate trajectory expressions that govern the motion of
the angular momentum vector in body coordinates. If the relative angular momentum ratio, h/H,
satisfies certain inequalities (conditions), one trajectory can be eliminated from consideration.
Other expressions developed in the paper such as extreme values of the nutation angle in a cycle of
motion and permissible limits on a dimensionless momentum-energy parameter, H? /2TC, reduces
to the classical results for spinning torque-free rigid body when the rotor angular momentum is
set to zero. Energy dissipation on the spacecraft is simulated by a liquid filled ring damper, and a
simple computer program has been generated that allows the user to determine the motion of the
angular momentum vector'in body coordinates for the special case. Typical trajectories are ex-
hibited. Also, for small nutation angles, a relationship is expressed between the free variable and
time, and a damping time constant is derived.
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MOTION OF THE ANGULAR MOMENTUM VECTOR IN BODY
COORDINATES FOR TORQUE-FREE DUAL-SPIN SPACECRAFT

1, INTRODUCTION

The attitude motion ot dual-spin spacecraft has been examined in considerable detail (Ref-
erences 1=5, to mention a few) with various mathematical techniques. There appears to be a
lack, though, of a simple, direct analysis of torque=-free, asymmetric dual-spin spacecraft attitude
motion, unencumbered with complicated mathematical details, that reveals the nature of the
motion and blends in with the well known classical results of spinning torque-free situation. It
is the intent of this paper to present such an analysis. First, the torque-free situation without
energy dissipation will be examined and then, for a special case, energy dissipation in the form

of a liquid ring damper on the main spacecraft will be included.

2. ANALYSIS WITHOUT ENERGY DISSIPATION
Using a 1-2-3 principal axis coordinate system fixed in the spacecraft and with the origin

at the center of mass of the spacecraft, the angular momentum of the system, ﬂ', can be written

Aw
;i (Bw; )
Cw, +h

where A, B and C are the principal moments of inertia, w,, w,, wy are the components of the

i mi— ot » 3 T W Tom——— W MW wE e

angular velocity vector and h is the relative angular momentum of the wheel wh{cl}_h locatﬁg on ih;

Yo v w——

yove

3 axis. A perfect control system is assumed which keeps the wheel speed constant and hence h.

The vector equation of motion can be written as
H+oxM =0 )
In scalar form, Equation 1 can be written as

Aw; +(C=-Blwywy +hwy; = 0 )




Mz +(A 'C)U|w3 - hw, = 0 ()]

Cay + B-Aww; =0 4

Multiplying Equation 2 by w;, Equation 3 by w; and Equation 4 by wj, adding and noting that
the resulting expression is an exact ditferential which can be integrated gives

Aw? + Bw} +Cw} = 2T = Constant (5)

Equation § is the rotational energy of the spacecraft with the momentum wheel not rotating and
it is a constant of the motion. Another constant of the motion, since the motion is torque-free,

is the magnitude of the angular momentum vector
(Aw;)? + (Bwy)? + (Cwy +h)? = H2 = Constant (6)

Note also, that because of the torque-free nature of the motion, the angular momentum vector is

fixed in space and can be used as a reference direction to ascertain external viewed motion.

Referring to Figure 1 which shows 4 general orientation of a unit angular momentum vector

in body fixed normalized momentum coordinates

c@, +h

-2 BODY FIXED

Figure 1. General orientation of a unit angular momentum
vector in body fixed normalized momentum coordinates.
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one can write

AWI H

— = sinf cosa orw; = — sin 6 cos @)
H A

Bw,

—== sinf sina orw; = — sinf sin«a (8)
H B

Cwy +h Hcos@ - h

= 030 orwy = 9

C

The angle 8 is the cunverntional nutation angle and « is an azimuth angle. When the normalized
components of the angular momentum are substit:ited in Equation 6, the conservation of angular
momentum equation, it will be found that this equation is satisfied exactly. This fact is used in

subsequent development.

The equilibrium points of the motion will now be obtained using the two integrals of mo-
tion and the method of eliminatinn of variable. First Aw; will be eliminated which corresponds
to viewing the motion along the¢ 1 axis, then Bw, which corresponds to viewing the motion along
the 2 axis and finally Cw; + h. Equation 9 is used to write the conservation of angular momen-

tum as follows .
H? = (Aw;)? + (Bw;)? + H2cos?6 (10}

and the rotational energy equation as
H?
2T = Aw? + Bw3 = (c0s -R,)? (an
Where R; = h/H, the relative angular momentum ratio of the rotor. w; can be eliminated by
multiplying Equation 11 by A and subtracting it from Equation 10; this gives the following

A
H2 - 2AT = (1 - A/BXBw,)? + H? {eosze - o (cos6 - R,)z} (12)

L

Now the expression in the braces can be written as a perfect square containing cos & and some

residual constant terms. Thus after some rearranging, Equation 12 becomes

1
:
|



|A/B)(B°”)2+| A/C(O R‘)z-' R(H- Rf) Al as
(- g/ TN TR R RVt aaa/ Te)

where R, is defined as

HZ
R, » — (14)
2TC

As noted previously, Equation 13 represents motion projected on a plane normal to the | axis of

the body fixed coordinate system. It will be noted that the equilibrium point is at

R
086 = e, (15
1-C/A
w3 = 0 (which implies « = 0 or x) and
A C/A -1
R, « ) (16)

S CCA-1+RY
Now Equation 13 is a displaced conic section locus, and it can be either an ellipse or a hyperbola.
For an inertia distribution of: A < B < C, the coefficicnts of the left side squared terms are pos-
itive and so closed path ellipse trajectories are possible about the equilibrium point for positive

right hand side, which requires that

(C/A-1)
(C/A-1+R)

R, > A an
27 ¢

In a similar manner for the 2 axis, one can derive the following expression

(1 = B/A) (A“")zm a/c:)( g - —2 )2 . [R 1+ Rf) B] (18)
H ) " T-cB R,"( cB-1/ ¢

Again it will be observed, that for this axis the equilibrium point is at

o a (19)
sl = ,
1-C/B
w; = 0 (which implies « = tx/2) and
B C/B~-1
R, (/ ) 20)

" CEB-1+R)




For the stated inertia distribution, it can be seen from Equation 18 that one ccefficient of the
squazed terms on the left side is negative and so the motion about this point is hyperbola in na-

ture. The slopes of the asymptotes in a plane normal to the 2 axis are given by

(mo 1 -l::l/n)

C (B-A)
- - 2n
(Am) A (C-B)
H

These represent separatrices as projected on the 1=3 piane. If the equilibrium point exists, then
the above implies that no closed path motion will take place about this point. Note further, that

these separatrices (right hand side) are identical to the simple spinning torque-free case (Reference 6).

For the two equilibrium points just described, it is interesting to note that compared to the
simple spinning torque=free case, the presence of a momentum wheel changes the location of
these equilibrium points only in the  direction and not in the azimuth (a) direction. Further,
as the relative angular momentum of the wheel increases from zero (note Equation 15 and 19)
the equilibrium points migrate toward the 0 = O:’ or 180° points, and if the rotor momentum is

high enough as required by the following

Ry > |1=-C/A| (22a)
and

R, >11-C/B| (22b)

the equilibrium points are eliminated (not realizable). This has implications for all attitude angle

acquisition which will be discussed somewhat more further on in the paper.

For motion as viewed along the 3 axis, Equation 11 is multiplied by C und Equation 10 is

subtracted from it which eliminates H2cos20 and gives the following intermediate result

(C/A = 1XAw;)? + (C/B = 1XBw,)? - H2(2R,cos § - Rf) = 2TC - H? (23)

T T T T W TR 1Y TP Ty AR ORI 17



Now Equation 10 can also be writte as

24 21\ 112
s = & (l . [Awy)? + (Buwy) l) (24)
H? .
For 0 near zero, cos 6 can be approximated by
1 [(Aw))? + (Bw,y)?
cos a1 - HAW * (Buwy)) (252)
2 H?
and for 6 near 180°, cos & can be approximated by
1 [(Aw;)? + (Bw,)?
088 ~ -1+ MA@+ (Bu,)T) (25b)
2 H2
Combining Equations 25a, b with Equation 23 and rearranging terms, one arrives at
A@l 2 sz 2
[C/A«1+R,] - +(C/B-1+R,] T) = [1/Ry = (1 = R;)?) (26)
for 6 near zero and
Awl)z (aw,)z r ]
{C/A-1-R -] +[{C/B=1-R;j] {™=] |[— = (] +R()? 27
(c/ .I(H (c/ 05 LRz( 1) (27)

for 6 near 180°. Equation 26 and 27 represent trajectory motion of the unit angular momentum
vector if one were to look along the positive or negitive 3 axis. The equilibrium points are w, =

W, = 0 (which implies 6 = 0 or x for any value of &) and

R B comemr—— 28
: TR (28)
for @ = 0°, and
R ! (29)
PR

for @ = 180°. Examining Equations 26 and 27 further, one can conclude that for @ near zero,

closed ellipse like motion is possible if

C/A-1+R; > 0 (302)




C/B-1+R, > 0 (30b)

and
l
R < ——— 300
2 < - Ry (30c)
For 0 near 180°, a similar type of motion is possible if
C/A-1-R; > 0 (31a)
CB-1-R, >0 (31b)
and
1
Ry € e, (3l¢
? U R )

Note that since T = for a given spacecraft moment of inertia and angular momentum,

H?
2R;C’
the @ = 0° equilibrium point is a lower rotational energy point than the 8 = 180° point. Also, it
will be noted in Equation 27 that if the roio: relative angular momentum is made large enough
(since physically C/A or C/B is less than 2) so as to make one coefficient negative, no closed path

motion is possible about the 8 = 180° point.
To emphasize this conditior, the following is written

R, > C/A-1 (323)
or
R, > C/B-1 (32b)

which eliminates closed path motion about the & = 180° point. That is, if inequality 32a or 32b
is satisfied, then the motion about the 180° point is hyperbolic in nature. If both inequalities
are satisfied, then closed path motion is still possible provided that

1

R, > ——
27 4R

If both inequalities are satisfied in an absolute value sense, the previously mentioned equilibrium

points about the | and 2 axes are eliminated and the only equilibrium points are at 8 = 0° and




180°. In this case R, is bounded by the following

l
(1=R,)?

SR g (33)

(1 +R)?
Thus, without energy dissipation, depending upon the magnitude of the rotor relative angular

momentum, R;, there can be two, four or six equilibrium points for a given dual-spin spacecraft

moment of inertia configuration.

It is appropriate at this point to briefly consider energy dissipation. This implies that the
(Equation 33), If

spacecraft rotational energy (T) is decreasing so that R, approaches a ‘R ¥
- K

"—l—";, this implies that T is increasing which is contrary to what Ref-

(1 +R))

erence 8 has demonstrated. It is thus seen that the final steacy state equilibrium is 6 = 0°,

R, were to approach

Summarizing briefly, when the appropriate insqualities are satisfied leaving the 8 = G° and the
180° point as possible equilibrium points, because the 180° point is at a higher rotational energy
level, this point is also eliminated in a sense {hat the momentum vector will not move to that
point with inexorable energy dissipation present. Tiiii leaves the 6 = 0° as the only remaining

equilibrium point. The above is important for all attitude acquisition as noted by Reference 1.

Another technical tibit can be noted from Equations 26 and 27. If the spacecraft were
captured about the @ = 0° point and it is desired to invert the attitude of the spacecraft, this can
be done by changing the rotor speed (R,) to a negative value so as to muke the 6 > 0° point a
higher energy point and correspondingly make the 6 = 180° a lower energy point. The above
mentioned discuuio!; of energy dissipation wouid then apply again.

To add a geometric dimension to the analytic result, Figure 2 shows a sketch of the loci
of the angular momentum vector on a portion of a momentum ellipsoid for A < B < C with

three equilibrium points showing (total of six present).




SEPARATRIX

W/

Figure 2. Loci of the angular momentum vector for a dual-spin
spacecraft on a portion of a momentum ellipsoid for A<B<C
inertia distribution and h/H > 0.

3. ANGULAR MOMENTUM VECTOR MQTION ABOUT THE 3 AXIS

Attention will now be focused on the special but significant case where the angular momen-
tum vector moves about the principal axis that contains the momentum wheel. This will further
elucidate and quantify the attitude dynamics of dual-spin spacecraft. With this motion, the
azimuth angle that locates the transverse omponent of the angular momentum vector must vary
from O to 2x in a periodic manricr, This angle, a, is called a “free variable” and is treated as an

independent variable in what follows.

As mentioned previously, when the riormalized components of angular momentum (Equa-
tions 7, 8 and 9) are substituted into Equation 6, the conservation of angular momentum equa-

tion, it will be found that the equation is satisfied exactly, Substituting w,, w;, wy into

I T I
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Equation §, the energy equation, and after some manipulation and definition of terms, results in

a quadratic expression for the nutation angle in terms of «

G,coszo - 2R1 cos 0 - Gz =0

where
C C
G, = | - — cosla~ — sin2a
A B
1 C C
Gy = — «R?} - — costa - — sin?a
R, A B
or

Lo
Gy =— =R} +G, -1

. R;
and, as before
H2
Ry = h/H Ry, & ==
1 = WH, R, 27C

“9olving for cos 6 in Equation 34 gives

G,

cosf =

(34)

(35)

(36)

37

It will be noted that because of the ¢ sign, there are potentially two trajectories expressions for

the nutation angle, 8. The plus sign trajectory is an optional (possible) trajectory depending upon

R;, the relative angular momentum ratio of the rotor. This is inferred from the inequalities in

R
Equations 32a, b. If Equation 32a or b is true, this implies —G—l- > 1 at some azimuth points in

Vv Rf +G,G, 1
the cos 0 equation, The ——

component will always increase R,/G, in the positive

1
sign trajectory and thus make the right hand side of Equation 37 even larger than %1, which, of

course, is not physically realizeable and thus eliminates that trajectory from consideration. For

the negative sign trajectory it is of value to let R, approach
|
the cos 6 expression reduces to

R, - V(R -G

cosf = = ]
G,

10

1
m, G, goes to G; ~ 2R, and

o
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which is consistent with R; > G; or G, negative, and gives a value of 6 = 0° as it shou'd.

The extreme values of the nutation angle in a given cycle of « is of interest and they can be

obtained by differentiating Equation 34 with respect to «, solving for -:-Z-

. dé . (C/A - C/B) sin « cos a sin 8

(38)
da R1 - Gl cos §

and noting what values of a make :—:‘ equal to zero. From Equation 38 it is readily seen that

this occurs when
a = 0,7 tx/2;for 0 any value,
. ~ df
It will also be noted that a is zero for

0 = 0,r;aany value

which, of course, are the equilibrium points. To ascertain if the extreme values are a maximum,

v 26
o7 a minimum, the second derivative must be evaluated at the point. The second derivative,%;? ,
evaluated for sign is
d29 (C/A - C/B) .
cos 2asinl)gmg (39)

sign — = sign
R R, - G, cosé a= 2

As is known, if the sign of the second derivative is negative, then the extreme value in a maximum;
if the sign is positive, then it is a minimum. Thus, for A < B < C and @ less than 90°, the ex-
treme values, if they exist, are given by

R; - SQRT [R? + (1 - C/BX1/R, - R} - C/B}}
1-C/B

o i 08 O max

and

R, = SQRT [R? + (1 - C/AX1/R; - R} - C/A)]

41) -
1-C/A @0

cos Opmin =

11

-

40) -



For R; = 0, no rotor rotation, Equations 40 and 41 reduce to the classical values of

B-C\C HY)T
and
/ AC /(1 1
{ o - | s = e—
) infmin =/ ATC (c Hz/zr) “

as it should (Reference 6). It is of interest to note that for cos § to be real in Equations 40 and
41, the quantity in the square root sign must be greater or equal to zero. This requirement can

be manipulated into the following inequalities:

B (C/B-1)
Rz “E’ 2
(R} +C/B-1)
and
A C/A -1
R, > A _CA-D

C (RE+C/A~1)
which is consistent with previously derived bounds on R;. For A <B < C and for motion about

the 6 = 0° point, it follows that R, is bounded by the following relationship

B (C/B-1) R, < (a4
C (C/B-1+RY) — 2 = (1-Ry)?
Notice that if R, =0, then Equation 44 reduces to the classical result
2 SR 51
C 2
or
BS i sC (45)
2T

4. ENERGY DISSIPATION ON THE MAIN SPACECRAFT
The energy dissipation on the main spacecraft caused by a fluid ring damper will now be in-
cluded in the analysis in a simple manner. Reference 7 developed the optimized energy dissipation

of the damper per cycle of excitation and it is given by the following expression

12




AT = - 1.2 ma? W2 (46)
where
m = mass of the tluid
a = nadius of the ring damper

w = amplitude of excitation

Implied above is that the change (decrease) of spacecraft rotational energy (Equation §) is caused

by the damper. Reference 8 shows this to be valid. If the damper is put on the 2 axis, then
W= W, --B-sinOSina (47)

Now a cycle of' excitation occurs when a goes from O to 2x, Dividing Equation 46 by 2x and
. . daT
calling this Ta’ we have
aT =12

da e

m a? w3 (48)
Substituting Equation 47 into Equation 48 and symbolically carrying out the integration results in
H?
T = Ty -0.19 ma? B fq sin20 sin?a da (49)
0

Where T, is the initial rotational energy of the spacecraft. Forming the dimensionless quantity

R; = H2/2TC gives

Ry
R, = (50)
[l - 028 RyR, /.a sin20 sinla da]
0
Where Ry is the initial value of R, and
R ma2C .
3 B N

a dimensionless quantity containing damper and spacecraft parameters.

13




Now in most dynamic analyses, the initial niutation angle is given and not Ryy. Using Equa-
tion 34, Ry can be calculated if the initial nutation angle, 6, initial azimuth angle, ay, and other
spacecraft parameters are specified, Thus,

|
. .
(Gygcos?dy - 2Ry cos 8y + R} =Gy + 1)

Ry (52)

where

G | = = 2 — sin2
s - cos‘ag - sincqa
10 A B 0

In using Equation §2, the maximum value of Ry should be used (which occurs at a = 0 or 7/2)
to circumvent square root of ne,ative numbers when calculating the nutation angle. Square root

of negative numbers indicates that the trajectorv is not realizable.

An interesting aside can be obtained by deriving a small nutation angle damping time con-

stant for the damper and spacecraft. Using
1
cosf ~ | - ? sin20,

Equation 34 can be written as

(1 -R)? - 1/R,
G, - R,

sin2d (53)

Substituting Equation 50 for R, into Equation 53, differentiating with respect to « to clear the
integral, canceling where appropriate and averaging over a cycle considering 6 quantities constant,

one obtains

do -0.19 R, 6
— = (54)
d« (2R, +C/A+C/B-2)

Now for 6 small, one can physically identify o with time by the following expression

a & At ‘ (55)

where t = time and A is the body fixed nutation frequency given by

14




(56)

A = SQRT [(h - (B - C) w,) (h + (C - )‘) w;)]

B
where w, is considered constant. Equation 56 was obtained from Equations 2 and 3 by consider-
ing w; and w, varying sinusoidally with At., Thus by proper substitutions in Equation 54, a

damping time constant can be determined

B2(2R, +C/A+C/B - 2)
T = (57
0.19 ma2 C\
Note that the numerator of the time constant contains the sum of the left hand side of the in-
equalities (Equation 30a, b) needed for stable motion about the 8 = 0° point. If the numerator
is close to zero (implying a short time constant) then the expression is not valid because the

basic assumption of slowly varying quantities is not true.

S. NUMERICAL RESULTS

For the special case where the angular momentum vector moves about the principal axis
that contains the momentum wheel, a simple computer program was generated to calculate nuta-
tion angle trajectories and other key quantities using the IBM Continuous System Modeling Pro-
gram (CSMP, Appendix A). The program inputs are: spacecraft moments of inertia, A, B, C,
relative angular momentum ratio of the rotor, R,, damping perameter, R3, and an initial azimuth
angle, ay, and an initial nutation angle, 8, to specify the initial orientation of the momentum
vector. The program calculates Ry and picks the trajectory (K = 1) that will give an initial nu-
tation angle similar to the input value. The author choose this proceduie over the classical
method specifying R, and letting the nutation angle occur where it may. The initial nutation
angle has more physical meaning to the analyst than R,. As previously noted, care must be used

in choosing aq to circumvent square root of negative numbers.

The following spacecraft properties were used in the numerical calculations:

A = 9] mass units C/A = 1.1538
B = 100 mass units C/B = 1.0
C = 105 mass units R; = 00,01

15




Figure 3 shows a polar plot of nutation angle versus the free variable a for small motion about the
0 = 0° point, R, = 0.03, without and with damping. Motion is stable, periodic without damping

as expected, and tends toward zero with energy dissipation.

Figure 4 shows a Cartesian plot of nutation angle versus the free variable « for R, = 0,03
and Ry = 0.1 for various initial nutation angles. It will be noticed that some curves go to the
0 = 0° equilibrium point while others go to the & = 180° point, The local peaks an. valleys of
the curves are mainly due to the asymmetric moments of inertia. Computer runs showed that
if 6 were greater than 127°, motion would be toward the 180° point. If 6, were less than 127°,
motion. was toward the @ = 0° point. It is interesting to note that @ = 126,87° is the calculated
equilibrium point (Equation 19) near the 2 axis. The equilibrium point (6 = 0° or 180°) is ob-
viously not unique and the spacecraft can capture right side up or upside down (so to speak) de-

pending on the initial conditions.

Figure 5 shows what happens when R, is increased to 0.09. Only the curves for 8, = 135°
and 170° are shown, since the omitted curves went to the & = 0° point previously. It will be
observed that both curves now go toward the 6 = 0° point. By increasing R, to 0.09, the in-
equality of Equation 32b is satisfied and thus, motion about the & = 180° point moves hyper-
bolically away, toward the 8 = 0° equilibrium point with energy dissipation. Computer simula-
tions with energy dissipation have shown that when the negative sign trajectory (Equation 37,

K = -1 in the program) is present, invariably the motion is toward the @ = 0° equilibrium point.
When the positive sign trajectory is present (K = 1) invariably the motion is toward the 6 = 180°

equilibrium point.

6. SUMMARY
It is felt that the attitude dynamics for torque-free, asymmetric dual-spin spacecraft has
been drveloped in a straight forward and elementary manner. Analytic expressions have been

developed that give results that agree with previously published dual-spin results and that reduce

16
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to classical resuits for torque=free spinning spacecraft, Thus, the neophyte unalyst can study

dual-spin and spinning spacecraft attitude dynamics in a more or less uniform manner. The as-

sociated computer program allows the neophyte analyst to study dual-spin and simple spinning

attitude motion with and without damping.

7.
1.
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APPENDIX A
CSMP PROGRAM FOR MOTION OF THE ANGULAR MOMENTUM VECTOR
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