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A satellite experiment, designed to measure potential charging of typical

thermal-control materials at near geosynchronous altitude, was flown as part

^1 of the Spacecraft Charging at High Altitudes (SCATHA) program. Direct obser-

vations of charging of typical satellite materials in a natural charging

event (> 5 keV) are presented. The results show some features which differ

significantly from previous laboratory simulations of the environment.
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16 INTRODUCTION

Laboratory simulations of physical processes are as integral part of

space experiments and research. However, the question arises as to how the

simulation results compare to the results obtained outside of the controlled

laboratory environment. Sometimes models tan bridge the gap and provide some

measure of the validity of the laboratory method. Electrical charging of

typical spacecraft materials in the near geosynchronous environment is one

such phenomenon for which considerable efforts of laboratory simulations and

modeling techniques are becoming evident.

During geomagnetic substorms, a satellite at high altitudes can become

immersed in a hot, tenuous plasma. Average energies of electrons can reach 5

to 10 keV and ions; factors of 2 to d higherz The man gnitude of the charging

(i.e., potential attained) that results is a function of the current balance

:from primary charged particle sources and secondary sources including solar

induced photoelectrons. Usually, the photoelectrons are of sufficient inten-

sity to offset significant charging due to the environmental electrons in the

keV energy region and therefore most reported cases of spacecraft charging

occur in the eclipse of the earth. However since most spacecraft are con-

structed from both conductors and a variety of insulators, differential

charging can occur even in the presence of soles UV

Most of the statistical results of spacecraft charging were derived from

measurements observed on the implications Technology Satellites (ATS 5 and

6). 1)2) Their results indicate a rather significant probability of spar,•ecraft

	

'	 charging events. It ranges between 15% to 209 for 1000 to '8000 V charging

potentials as inferred from spectrum -shifts in the charged particle environ—

i

	

i	 1

3



2

went.

Although laboratory simulations of material charging play an important

role, extrapolation from the ground based programs to space applications in-

volves many simplifying approximations. Consequently, in order to understand

how to properly predict spacecraft charging in the high altitude regions of

the earth's magnetosphere, a ,point NASA-Air Force program termed SCATHA

(„pacecraft Charging At The High Altitudes) was implemented in 1975 with the

major source of 'space data to be furn. ghed by the USAF ,pace Test Program

(STS) 78-2 satellite. 3) Part of the experiment payload on P78-2 was the

Satellite Surface Potential Monitor (SSPM) deaigned to measure currents and

potentials of ! typical" spacecraft materials. A brief instrument description

follows this section while a complete description of the SSPM payload can be

found in a USAF _pace and Missile System Organization SAMSO report.3)

For the first time, measurements of spacecraft material charging in a

geomagnetic substorm event are presented. These results contain a number of

interesting and unexpected features when compared with measurements from

laboratory studies using typical charged partio le beams to simulate the envi-

ronment.



	

'	 11. INST12l1 ENTATION

The SSPH was one of the engineering experiments aboard the USAF P78-2

satellite launched into near synchronous orbit 30 January 1979. Each of three:

SSPM instruments contained four electrostatic field-metaro designed to measure

the potentials from material surfaces mounted at :fixed positions above the

sensors. The electric field between a surface and the sensor is modulated by

a pair of tines vibrating at 700 Ht. The resultant AC signal is amplified and

demodulated to provide both the amplitude and the polarity of the field.

Positive and negative currents flowing through the sample materials are col-

lected on the metalization backing and sent to an electrometer circuit. All

measurements are digitized, accumulated, and read out every second. The

current and voltage data are accumulated for 1.0 sec and 0.25 sec, respective-

	

a
	 ly.

These insulating materials are typically 5 mils thick with aluminum

backing the Kapton, silver backing the Teflon and in the ease of the quartz

fabric mounted on Teflon, a hole was cut through the entire Teflon backing so

that the electric field from the fabric would reach the sensor. The collec-

ting area for the current was determined by the size of the sample. For the

currents shown in Figure 2, the area of collection is approximately 160 cm20

Two sizes of samples were flown on the SSPM payload. With the exception of

Kapton, all samples were approximately 13 cm square. In addition to the

standard smaller samples, one Kapton sample of approximately 29 cm square

(SSPM-2) was flown to examine the scaling effects of charging.

In order to make voltage measurements in space, a back surface technique

was used by removing a small area of metalization from the back surface of
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spacecraft thermal-control materials (typical sntel.lite blankaLo have the

dielectric exposed to the environment and a thin layer of metal on the back

surface). An etched hole in the back metalixation, of approximately 0.6 cup,

was located directly over the electrostatic sensor to measure the electric

field from the dielectric material. To a first approximation, the difference

between a front surface charging profile and the SSPM back surface charging

profile would be due to the different charging time constants. The charging

time for the front surface of those insulators is of the order of minutes,

while that of the back surface is the order of tens of seconds.

The SCATHA satellite is cylindrical in shape. On orbit it rotates along

its symmetry axis, The 'VVA-1 and SSPM-2 instruments are mounted with the

surface normal perpendicular to the satellite spin axis. The SSPM-2 instru-

ment is approximately 180° from the SSPM-1. The SSPM--3 instrument is mounted

with the surface normal along the spin axis. During normal operating condi-

tions, the SSPM-1 and SSPM-2 instruments rotate in and out of the sun every 30

sec while the SSPM-3 remains in the spacecraft shadow. A reference band made

from conductive gold plated aluminum encircles tho entire lower portion of the

spacecraft so 50% is always illuminated and provides a potential referenced to

that produced by solar W secondary emission during charging events when

shadowed conductors can also change potential.



lIZ, RESULTS

Results from a natural charging event near local midnight on 24 April

1979 are shown in Figure 1, Composite voltage-time profiles from aluminized

Kapton samples mounted on all throe SSpM instruments are plotted versus Uni-

vernal Time (UT), Kapton (-1) 4) and Kapton (-2) represent voltage profiles

entering and exiting the sun approximately 180° out of phase with each other

due to the physical location of the instruments. Kapton (-3) measurements are

made in the shadow of the spacecraft. Teflon (-3) and quartz (-3) are two

other insulating samples flown on the shadowed SSPM-3,

Charging profiles in Figure 1 for Kapton (-1) and (-2) represent only the

potential over thu electrostatic sensor located beneath the center of each

sample. Since this time interval represents only three minutes, front surface

equilibrium conditions are not yet achieved. In fact, laboratory calibrations

between front and back surface potentials during monoenergetic electron bom-

bardment indicates that equilibrium is not reached over the entire front

surface for the order of tens of minutes. In the space environment where the

electron d.sMri.butions extend over a wide energy range, a continuous charging

and discharging is occurring due to the production of secondary electrons with

yields greater than one caused by incident electrons with energies just above

the surface potentials. The same effect has been observed in the laboratory

by slowly reducing the energy of the incident beam, thereby discharging the-

front surface voltage by secondary emission.

Figure 1 shows that the potentials on Teflon and quartz fabric are sigvii-

ficantly higher than thooe of Kapton. Since initial turn on of the SSPH

experiments in February, 1979, the Teflon sample has acquired a large negative.

5
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Fig. 1. Charging potentials of spacecraft materials during the natural
charging event on April 24 0 1979 at * geosynchronous altitudes
near local midnight. The top two curves are negative voltages
produced when the sample enters the shadow of thn satellite
indicated by +. The + symbols indicate entering the sun. The
three bottom curves are for dielectric samples totally in shadow.
Voltage-offsets of a -2000 and -200 should be subtracted from
Teflon and quartz to determine the true charging from low energy
electrons.
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signal which varies from hundreds of volts to a few kilovolts. The quartz

sample also has an offset of the order of 10% of the Teflon value. We believe

this offset is the result of energetic electrons penetrating into the bulk of

the Teflon, which in the absence of solar W, have very limited mobility. The

offsets prior to this charging event were - 2000 V and - 200 V for the Teflon

and the quartz fabric on Teflon backing respectively.

Perhaps one of the most interesting observations is the high voltage

level (N 3.5 kV) that quartz fabric reaches during this charging event. From

the results of previous ground simulation studies, this sample was not expec-

ted to charge significantly above a few hundred volts in the natural. environ-

ment . 5) Recent laboratory electron-beam charging experiments indicate that

quartz fabric exhibits an unusual charging/discharging behavior. At high beam

densities ^^ inn/ ^tu2 .̀i . the sample charges up rapidly but also di ncharoea

rapidly. At Lower beam densities ( N IOpA/cm2 ), quartz fabric can be charged

to a few kilovolts for a long period of time when bombarded with 6 to 12 keV

electrons. These energetic primary electrons in time will also cause the

sample to discharge. Preliminary analys,s!^ of laboratory data indicate that

quartz fabric is charging initially like a capacitor, i.e., the charging time

constant is independent of incident electron energy but highly dependent on

primary beam current. At the discharging stage, higher incident currents and

lower electron energies tend to discharge the sample more rapidly.

Sample voltages and currents from the SSPM-1 are shown in Figure 2 plot-

ted on a logarithmic scale. Kapton (-1) voltages were shown previously in

Figure 1. In addition to the voltages from a gold plated conductor and opti-

cal solar reflecting (OSR) mirrors, bulk currents are also shown for each of

these three samples. At the top of Figure 2, the SSP14-1 solar aspect angle is

plot-tied to show when the angle between the instrument normal and the satel-

7
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1.ite-sun line approaches 90' from sunlight and shadow. The arrows are posi-

tioned at these times for a convenient reference. To a First approximation,

the current is the time derivative of the charging voltage if the front our-

face and back matalization of the samples can be thought of as simple

capacitor plates. Only the gold plate is electrically isolated from the

current collecting surface and truly acts like a capacitor in vacuum. The

charging currents of the Kapton and OSR samples in Figure 2 snow a more

complicated current-voltage dependence for the following reasons. 	 The

charging time constant of the total front surface is larger than that required
	 a.

to charge the unmetalized hole at the center of the insulating samples.

Therefore the maximum current is really proportional to the maximum time

derivative of the total surface charging potential. Only when the potential

at the center of each sample and the total surface potential change with time

in a similar fashion will the current profile agree with the time derivative

of the voltage plotted in Figu^ : _s 1 and 2. This condition occurs only when

the samples enter sunlight where the solar W flux is intense enough to

obscure the effects of differing time constants. It is interesting to note

that the Kapton sample continues to measure positive current even when the

potential drops to zero which probably is a measure of the photoelectron

current emitted from the surface.
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IV. DISCUSSION

The first natural charging event analysis from USAF satellite P78-2 using

the SSPM experiment has shown a number of very inte.esting results. Without a

detailed analysis of the particle environment at this time and equilibrium

conditions to occur, a complete description of this charging event cannot be

made. Nevertheless, the relative charging values of different typical space-

craft materials can be evaluated for this single event. Of the insulators on

the SSPM-3 instrument, Kapton shows the lowest charging potential (- 1600V).

Quartz fabric charges to at least 70% of the potential of Teflon which charges

to at least -440OV. Whether or not these ratios vary much from event to event

will require mor 
P 

analysis.

In addition to the interest of modeling a multi-material object in a

substorm plasma, spacecraft designers and engineers should be interested in
v

these preliminary results since the quartz fabric was primarily developed as a

spa ••. stable thermal control material and to reduce discharge effects. 5) Its

secondary emission and conductivity properties were thought to effectively

reduce differential charging from electron bombardment at geosynchronous

altitudes. 6) Previous laboratory results have shown that quartz fabric only

charges to low values (< 200 V) when bombarded with monoenergetic electron

beams up to - 10 keV. Our laboratory results suggest that the induced dis-

charge mechanism, responsible for maintaining the surface of the material at

low potentials, involves the formation of a positive charge layer in the

fabric. This region is formed as a function of time by the emission of secon-

dary electrons from the fabric which acts as a porous material with a large

surface to volume ratio.

11
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