NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
THERMAL MONITORING, MEASUREMENT, AND CONTROL SYSTEM FOR A VOLATILE CONDENSABLE MATERIALS (VCM) TEST APPARATUS

By R. E. Ives
Materials and Processes Laboratory

April 1982

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama
Thermal Monito\(\text{r}\)ing, Measurement, and Control System for a Volatile Condensable Materials (VCM) Test Apparatus

This report describes a unique thermal monitoring and control concept for a Volatile Condensable Materials (VCM) test apparatus where electric resistance heaters are employed per VCM test specification JSC SP-R-0022A or ASTM standard test method E-595-77. The technique is computer-based, but requires only proportioning ON/OFF relay control signals supplied through a programmable scanner and simple quadric power controllers.

System uniqueness is derived from automatic temperature measurements and the averaging of these measurements in discrete overlapping temperature zones.

Overall control tolerance proves to be better than \(\pm 0.5^\circ\text{C}\) from room ambient temperature to \(150^\circ\text{C}\). Using precisely calibrated thermocouples, the method provides excellent temperature control of a small copper VCM heating plate at \(125 \pm 0.2^\circ\text{C}\) over a 24 hr test period. For purposes of unattended operation, the programmable computer/controller provides a continual data printout of system operation. Real-time operator command is also provided for, as is automatic shutdown of the system and operator alarm in the event of malfunction.

This system has been incorporated into the MSFC Materials and Processes Laboratory VCM Test Facility located in Building 4711.

16. ABSTRACT

Prepared by Materials and Processes Laboratory, Science and Engineering

17. KEY WORDS

18. DISTRIBUTION STATEMENT

Unclassified -- Unlimited
ACKNOWLEDGMENTS

The author gratefully acknowledges the efforts of Messrs. William A. Wall, Leland K. Swaim, Evan S. Howell, and Ollie B. Toney, III, for technical support in bringing this effort to a successful conclusion.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>I.</th>
<th>INTRODUCTION</th>
<th>..</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.</td>
<td>VCM TEST SYSTEM</td>
<td>..</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>A. General</td>
<td>..</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>B. Test Hardware</td>
<td>..</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C. Test Measurement and Control Instrumentation</td>
<td>..</td>
<td>5</td>
</tr>
<tr>
<td>III.</td>
<td>COMPUTER CONTROL AND MONITOR SYSTEM</td>
<td>..</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>A. General</td>
<td>..</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B. System Interface Technique</td>
<td>..</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>C. Control System Functions</td>
<td>..</td>
<td>11</td>
</tr>
<tr>
<td>IV.</td>
<td>RESULTS AND CONCLUSIONS</td>
<td>..</td>
<td>13</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>..</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>APPENDIX A – LIST OF EQUIPMENT</td>
<td>..</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>APPENDIX B – INTERFACE DESIGN DETAIL</td>
<td>..</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>APPENDIX C – CONTROL SYSTEM OPERATIONAL DETAIL</td>
<td>..</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>APPENDIX D – SOFTWARE THERMOCOUPLE LINEARIZATION</td>
<td>..</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>APPENDIX E – PROGRAM FLOW CHART</td>
<td>..</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Typical VCM test station (cross section)</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>VCM system operation timeline</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Thermocouple plan</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>Hot and cold plates, close-up views</td>
<td>6</td>
</tr>
<tr>
<td>5.</td>
<td>Hot and cold plate support and vacuum system</td>
<td>7</td>
</tr>
<tr>
<td>6.</td>
<td>Constant temperature cold water bath</td>
<td>8</td>
</tr>
<tr>
<td>7.</td>
<td>Lab data acquisition system with controller</td>
<td>9</td>
</tr>
<tr>
<td>8.</td>
<td>System block diagram</td>
<td>10</td>
</tr>
<tr>
<td>B-1.</td>
<td>Typical heater control circuits</td>
<td>17</td>
</tr>
<tr>
<td>B-2.</td>
<td>Prototype interface chassis</td>
<td>18</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Thermocouple Usage</td>
<td>12</td>
</tr>
<tr>
<td>2.</td>
<td>Typical Monitor Printout Data</td>
<td>12</td>
</tr>
<tr>
<td>3.</td>
<td>Unattended Computer Control/Monitor Functions</td>
<td>13</td>
</tr>
<tr>
<td>C-1.</td>
<td>Thermal Equivalences</td>
<td>19</td>
</tr>
</tbody>
</table>
TECHNICAL MEMORANDUM

THERMAL MONITORING, MEASUREMENT, AND CONTROL SYSTEM FOR A VOLATILE CONDENSABLE MATERIALS (VCM) TEST APPARATUS

I. INTRODUCTION

To implement a 24 hr unattended Volatile Condensible Materials (VCM) test facility operation within the Marshall Space Flight Center's Materials and Processes (M&P) Laboratory, a combined zone temperature control system and test monitor was developed by the M&P Laboratory Support Branch. Temperature control precision obtained by this unique system proved to be well within the stringent tolerance of ±1°C at 125°C for 24 hr as imposed by VCM test specification JSC SP-R-0022A, "Vacuum Stability Requirements of Polymeric Materials for Spacecraft Application."

The test apparatus is designed to have four independently operated electrical cartridge heaters mounted within a copper block, or hot plate, containing three special holders for material test specimens. Six strategically placed calibrated thermocouples are also mounted in this hot plate. A zone-averaging method of temperature monitoring and heater control is employed, whereby the hot plate surface is mapped into separate, overlapping thermal areas or zones. Each zone is monitored by one or more thermocouples and controlled by at least one cartridge heater. Each specimen holder is in turn affected by one or more of the monitor/control zones.

Thermocouple reading, dynamic averaging, and heater control is performed by a Hewlett-Packard (H-P) digital data acquisition system (DAS). The DAS is outfitted with the necessary peripheral interface electronics to match its calculated error signals with four proportional heater controllers which were developed in-house. The DAS is also programmed to monitor and average nine other thermocouples located within a nearby condensing (cold) plate required by the VCM specification. All thermocouple values can be linearized and printed out individually following (1) defined time periods, (2) the operator's manual command, or (3) detection of out-of-tolerance readings. The DAS also tags this data with date and time and terminates the test if programmed logic dictates. Under normal test conditions, the DAS continually flashes the last read temperatures onto its display. Once each hour, all thermocouple temperatures are printed out. Thus, a minimum of data printout is necessary to verify a successful 24-hr test run.

Not only does the accuracy of the digital control system developed for this application exceed that of a typical analog system, but it can also prove more cost effective in the long run. Details of the VCM test apparatus, the control concept, and the interfacing electronics are covered in the succeeding sections and appendices to this report.
II. VCM TEST SYSTEM

A. General

The general test procedure outlined in the referenced JSC SP-R-0022A document has now become an approved ASTM standard material test method E-595-77, "Total Mass Loss and Collected Volatile Condensable Materials from Outgassing in a Vacuum Environment." The test procedure requires the heating of candidate material test specimens, by highly controllable means, to a temperature which will evaporate the volatiles of interest. As many of the volatiles as possible are collected nearby the heated specimens by condensing the volatiles on a cold plate containing precisely weighed metal discs (collectors). Figure 1 shows a cross section of a typical VCM specimen test station.

A test run consists of elevating the test specimens to a defined temperature in 1 hr or less and holding them at that temperature for a defined time under high vacuum conditions of approximately 10^{-6} torr. Currently, the defined test temperature is $125 \pm 1^\circ C$, and the defined time at temperature is 24 hr. The cold plate and its collectors are maintained at $25 \pm 1^\circ C$ for the duration of the test.

At the conclusion of the 24-hr period, the heaters are turned off and the specimens are allowed natural, uncontrolled cooling to ambient temperature. The cold plate collectors are precisely weighed before and after controlled specimen heating, and the difference in these weights becomes a measure of the volatiles lost by the test specimens. This test method is primarily a screening technique for spacecraft materials. Actual characterization of any collected volatiles is not a test goal.

In preparing for a test run, and before test specimens are installed, a thorough manual cleaning and vacuum bake of all critical hardware within the vacuum system is essential. To this end, a 4-hr equipment bakeout at a nominal 150$^\circ C$ was ascertained by the equipment developers to be adequate. This bakeout temperature is just below the point at which certain structural resins used in the test system assembly might, of themselves, outgas or break down. The overall system operation timeline is shown in Figure 2.

![Figure 1. Typical VCM test station (cross section).](image-url)
B. Test Hardware

VCM system test equipment will be considered separately from the monitor and control operation which is described in Section III and detailed in the appendices. The system hot plate consists of a solid copper block, approximately \(20.3 \times 2.5 \times 2.5\) cm (\(8 \times 1 \times 1\) in.), which offers good thermal conductivity and predictable thermal inertia. Three large holes bored in this block accommodate the specimen holders. Four smaller holes hold four 120 V, 125 W, electric cartridge heaters. Six calibrated copper-constantan (Type T) thermocouples are also located in this block, within appropriately drilled holes, between each specimen location and an adjacent heater [Fig. 3(a)]. The block is firmly supported within a laboratory-type vacuum bell jar by a thermally isolated fixture. All electric leads, having vacuum compatible insulation, are brought out of the chamber through a multi-pin vacuum connector.

The system cold plate, or condenser plate, consists of a second, thinner, copper block mounted upon the same fixture which supports the hot plate. This block is approximately \(20.3 \times 7 \times 0.63\) cm (\(8 \times 2.75 \times 0.25\) in.). Three precision-machined condensing discs, or collectors, are attached to the front face of the block in a

![Figure 3. Thermocouple plan.](image)
manner so that each collector is directly opposite a hot plate specimen test station. Each collector mounting surface was properly prepared, and attachment hardware was carefully selected, to maintain good thermal contact with the block. Nine calibrated Type T thermocouples are also installed in this block (as in Fig. 3(b)), along with appropriate masks and baffles to control and direct molecular streaming. Soft drawn 1/4-in. copper tubing was brazed in a gentle loop-back pattern to the rear face of the block through which cooling water flows from an external water bath. The water bath unit is independently controlled to maintain a 25 ± 1°C cold plate temperature.

Figures 4(a) and 4(b) show closeups of the hot and cold plates. Figure 5(a) also shows both plates along with their mounting fixture and the vacuum feedthroughs. Figure 5(b) shows the laboratory-vacuum bell jar system by Vactronic Lab Equipment, Inc. Figure 6 shows the constant temperature water bath by Forma Scientific, Inc.

C. Test Measurement and Control Instrumentation

For efficient spacecraft material screening according to the VCM procedure, a high degree of automation is desirable. This includes unattended system management and a record of system behavior over the 24-hr test cycle. Either a desk-top programmable calculator or a computer having flexible input/output (I/O) capability is well suited as a system controller/monitor. Such a device allows automatic:

1) Scanning and reading of many thermocouple signals
2) Averaging of these readings in different sets at will
3) Linearization and conversion of the readings to equivalent temperatures for human operator convenience
4) Logical decision-making through easily modifiable software routines
5) Dynamic system control output based on rapid analytical results
6) Test cycle timing
7) Record printout of overall system operation.

Included in such a measurement and control software package can be emergency equipment shutdown procedures, monitoring of other related activities (with or without control outputs), and a variety of human operator conveniences. Unattended housekeeping functions can also be monitored and controlled such as emergency backup power equipment.

Industrial analog controllers appeared lacking in one or more respects for this particular control/monitor system development. Since a H-P model 3050B laboratory DAS with a model H-P 9821A desk-top programmable digital controller was already available with the desired capabilities, the prototype system development centered on it. The DAS and its controller is shown in Figure 7. A system block diagram is shown in Figure 8.
Figure 4. Hot and cold plates, close-up views.

a. Hot plate.

b. Cold plate.
a. Hot and cold plate support.

Figure 5. Hot and cold plate support and vacuum system.
Figure 6. Constant temperature cold water bath.
III. COMPUTER CONTROL AND MONITOR SYSTEM

A. General

Requirements for DAS software broadly include input and output signal management, decision making, and timing. Both the bakeout and test sequences of Figure 2 involve the same control elements: system power turn-on, clock start, ramp up to operating temperature within one hour or less, timed maintenance of the operating temperature to close tolerance, operator printouts of system behavior, and power turn-off. An emergency shutdown routine was deemed essential in the event equipment defects caused either an over-temperature or an under-temperature condition. Provisions were also made for possible future control of a proportioning flow valve in the cooling water and automatic monitoring and maintenance of a back-up battery/inverter power unit.

B. System Interface Technique

The H-P 3050B DAS scanner is equipped with normally-open (NO) double-pole single-throw (DPST) relays for output interface purposes. Therefore, interface circuitry was devised to convert this limited configuration into a pseudo-proportional controller for the four cartridge heaters. With appropriate interfacing, the scanner output relays can then be used to slightly step-change input power to each heater, independently. More specifically, the relay interface is wired to switch resistors in or out of the phase control circuits of four quadras (back-to-back silicon controlled rectifiers) supplying power to the four heaters. Thus, the firing angle of each quadra can be modified a predictable amount to either slightly reduce or slightly increase power delivered to its respective heater. Each heater sees the output of only one quadra through a step down transformer. This arrangement allows wide latitude in quadra triggering and stability for small power changes.
Computer logic is structured to anticipate all control action well ahead of time. Heater power control steps are established large enough to compensate for approximately ±10 percent power line voltage variations. However, the steps are also small enough to maintain test temperature tolerances. Complementary circuits implement differing equipment bakeout and specimen test temperatures, rapid initial temperature ramp up, and emergency power shutdown. Appendix A lists major components and equipment used in the control system. Appendix B further discusses interface design detail.

C. Control System Functions

The computer/controller is basically used to command three programmable instruments within the DAS: a digital clock and calendar unit, a digital voltmeter, and a multi-channel scanner having both low-thermal input channels and DPST relay output channels. Software functions consist of clocking (timing), thermocouple and auxiliary channel reading (input), data processing and error signal normalization (computation), and final equipment control (output). These functions are repeated in a cycle every 30 sec, which is a time duration offering the best results with minimum compromise due to equipment idiosyncrasies.

Throughout each 30-sec cycle, the controller displays the hottest thermocouple temperature last read from the hot plate and the last calculated average cold plate temperature. An audio alarm alerts the operator of any abnormal cold plate temperature since the cold plate is not presently computer controlled. To save central processor time, absolute thermocouple voltages, referenced to 150°F, are utilized for all internal decision-making operations. As an operator convenience, thermocouple readings are linearized and converted to equivalent temperatures for printout purposes only. Table 1 summarizes one common configuration for dynamically combining and averaging thermocouple inputs. Nomenclature for each thermocouple, heater, specimen, and collector in this table refers to Figure 3.

An option was incorporated in the software to print out individual thermocouple conversions, as well as averages, as a convenience during initial engineering development. However, linearizing temperatures and driving the printer are actions which slow the controller cycle time considerably and use excessive paper. Conversions and printouts are, therefore, limited to once each hour unless the operator requests them during any one clocking cycle by pressing a control (FLAG) key on the controller keyboard. The controller visual display does, however, continually convey relevant hot and cold plate temperature information which requires minimum algorithmic temperature conversion by the controller's central processor.

Certain file messages and questions for the operator, concerning equipment preparedness, occur at the start of the program after initialization. Following this step, an automatic check is made by the controller for the presence of proper data files (numerical constants, maximum and minimum temperature values for comparisons, linearization polynomial coefficients, etc.). Such operator interaction is a normal part of a system control program, and the software can be flexibly structured to suit the operator. Table 2 presents a typical operator initialization and information summary printed out before and during bakeout or test.
TABLE 1. THERMOCOUPLE USAGE

I. Hot Plate Heater and Sample Thermocouples
 A. Heater Temperatures for Control (with averaging)
 T/C 1 alone controls H1
 T/C (2 + 3)/2 controls H2
 T/C (4 + 5)/2 controls H3
 T/C 6 alone controls H5
 B. Sample Temperatures for Printout (with averaging)
 T/C (1 + 2)/2 gives T average for sample A
 T/C (3 + 4)/2 gives T average for sample B
 T/C (5 + 6)/2 gives T average for sample C

II. Cold Plate Collector Thermocouples
 T/C (7 + 8 + 9)/3 gives T average for Collector A
 T/C (10 + 11 + 12)/3 gives T average for Collector B
 T/C (13 + 14 + 15)/3 gives T average for Collector C

TABLE 2. TYPICAL MONITOR PRINTOUT DATA

<table>
<thead>
<tr>
<th>TITLE OF PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUESTIONS FOR OPERATOR RESPONSE</td>
</tr>
<tr>
<td>(E.G., IS THIS THE DESIRED PROGRAM? IS EQUIPMENT READY?)</td>
</tr>
<tr>
<td>DATE AND TIME COMPUTER TURNS POWER ON AND INITIAL</td>
</tr>
<tr>
<td>TEMPERATURES OF ALL T/Cs AND ZONE AVERAGES</td>
</tr>
<tr>
<td>DATE AND TIME "RAMP-UP" IS COMPLETE</td>
</tr>
<tr>
<td>AND MAIN CONTROL PROGRAM STARTS</td>
</tr>
<tr>
<td>TEMPERATURE DATA HOURLY OR ON OPERATOR DEMAND</td>
</tr>
<tr>
<td>EQUIPMENT STATUS MESSAGES</td>
</tr>
<tr>
<td>(E.G., COLD PLATE OUT OF SPEC; LOSS OF A T/C INPUT)</td>
</tr>
<tr>
<td>DATE AND TIME COMPUTER TURNS POWER OFF, AND FINAL</td>
</tr>
<tr>
<td>TEMPERATURES OF ALL T/Cs AND ZONE AVERAGES</td>
</tr>
</tbody>
</table>
IV. RESULTS AND CONCLUSIONS

A stable, steady-state hot plate temperature of 125 ± 0.2°C can be maintained by the system. The close tolerance is partly caused by the measurement and control of discrete, overlapping thermal zones throughout the copper block. This unique zonal concept is made plausible by today's small, inexpensive laboratory-type computer/controller. Such a controller, with appropriate peripheral components, can rapidly and automatically scan strategically placed precision thermocouples. These readings can then be used either single or in multiple group averages. Through software flexibility, control zones can even be dynamically changed, or redefined, to optimize system response to changing conditions throughout a test run.

Overall results of the control development exceeded expectations. Manual presetting of controls proved to be non-critical for achieving controllable temperature trends in the hot plate. Also, automatic stepped power proportioning adjustments by the quadric circuits are simple and effective. The temperature tolerance of ±0.2°C generally exceeds the precision of industrial thermostatic control techniques. Table 3 summarizes performance results for unattended computer control/monitor functioning.

TABLE 3. UNATTENDED COMPUTER CONTROL/MONITOR FUNCTIONS

<table>
<thead>
<tr>
<th>VCM Specification Items</th>
<th>Requirement</th>
<th>System Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Specimen test temperature</td>
<td>125 ± 1°C over 24 hr</td>
<td>125 ± 0.2°C automatic shutoff after 24 hr</td>
</tr>
<tr>
<td>2. Temperature ramp-up to test value</td>
<td>≤1 hr with overshoot ≤1°C</td>
<td>≤1 hr with overshoot ≤0.2°C</td>
</tr>
</tbody>
</table>

User Specification Item

| 3. Bakeout temperature | 150 ± 1°C for 4 hr | 150 ± 1°C automatic shutoff after 4 hr |

It has been shown that an effective and inexpensive pseudo-proportional controller can be fabricated from common electrical/electronic components using a simple design philosophy. Although the availability of a small computer/controller with I/O capability is requisite, small computer-based laboratory data acquisition systems are becoming quite commonplace for process control. Within this design philosophy, successful thermal measurement and control by dynamic averaging of thermocouples in discrete temperature zones has been demonstrated in a small VCM apparatus. The computer/controller allows convenient real-time and historical records of total system behavior throughout a test run in addition to unattended automatic operation.

It is concluded that the system is highly successful. The overlapping zonal averaging concept, plus associated computerized recordkeeping, can certainly be envisioned for other applications where precise temperature control, along with comprehensive operator assistance, is essential.
BIBLIOGRAPHY

APPENDIX A

LIST OF EQUIPMENT

1. Laboratory vacuum system, Vactronic Lab Equip., Inc., NY.
2. Vacuum gauges/power supplies, F. J. Cooke, Inc., CN.
3. Constant temperature water bath, Forma Scientific, Inc., OH.
4. Laboratory data acquisition system, Hewlett-Packard (H·P) Model 3050B containing: H-P Model 3490A programmable multimeter, and H-P Model 3495A programmable scanner.
5. Controller, Hewlett-Packard (H·P) Model 9821A.
7. Thermocouple reference junction, Hy-Cal Engineering, CA, 150°F "Ref-Cel" Model 205-T.
10. Power control relay, Potter & Brumfield Div. of AMF, Inc., IN, 24 VDC Model KRP11D.
12. Precision thermocouples, Medtherm Corp., AL, Type T, ±0.05°C at 125°C.
13. Quadric stepping relays, ES/Portland R805, hermetically sealed, can-type.
APPENDIX B

INTERFACE DESIGN DETAIL

Due to the scanner's actuator relay characteristics, a separate relay interface unit was constructed having several selectable relay options. Referring to Figure B-1 which shows a typical heater circuit, the two-key stepping resistors in each quadrae control loop are \(R_p \) and \(R_s \). The circuit resistance in each quadrae trigger control circuit is stepped down or up (respectively) from the nominal preset value required to allow approximate long-term stability of the hot plate at temperature goal (TGOAL) in Figure 2 under normal high-vacuum operating conditions. Since \(R_p \) and \(R_s \) are actually small multi-turn potentiometers, initial system calibration is straightforward.

Cost effectiveness is a major goal in most projects such as this one. Therefore, as many laboratory stock items as possible were employed: relays, sockets, switches, chassis of various sizes, transformers, cabling, etc. The only items requiring special local procurement were inexpensive 120 Vac Leviton No. 6681 quadrae controllers designed for a 600 W resistive load.

Since a quadrae is basically a triac accompanied by a matched trigger device in the same package, in normal operation its output contains a significant dc component. For this reason, a transformer T1 (Fig. B-1) used to step down the output voltage to the heater, must be able to withstand the extra \(I^2R \) heating which will result.

The rating of the transformers actually employed is 30 V/A on both the 24-V and 16-V taps. The effective ac power dissipation of each heater during normal system operation steps between 8 V/A and 18 V/A, while the extra \(I^2R \) heating in the T1 primary winding due to the dc component approximates 8 W. Therefore, the maximum total power handled by each transformer is well within its rating, and transformer core temperatures consistently remain within acceptable limits. The transformer reduction scheme yields precise power control at each transformer secondary over conveniently coarse quadrae power adjustment ranges at each primary. Reliable triggering and excellent stability of each quadrae is maintained.

A main power relay, \(K_6 \), and a ramping relay, \(K_5 \), for switching the 16-V and 24-V transformer secondaries, complete the complement of interface relays. Relay power supplies are independent of computer control and have their own manual power switch.

Figure B-2 shows an overview of the prototype interface chassis.
Figure B-1. Typical heater control circuits.
APPENDIX C
CONTROL SYSTEM OPERATIONAL DETAIL

The four electric cartridge heaters used in the VCM hot plate are controlled in such a way that, during operation, the heaters are neither completely OFF nor fully ON, unlike most thermostatically-controlled devices. Therefore, heat is continuously being introduced to the copper block to balance fixed losses during system operation. Heat losses are due mainly to surface radiation and conduction through the hot plate supports. Optimal quadrat control settings and stepping resistor values necessary to achieve thermal balance were empirically determined during system development. A nominal 125°C is maintainable in the copper hot plate with an effective voltage \(V_{\text{eff}} \) to each heater of approximately 12 Vac. For an optimal "step down" to lower heat, the \(V_{\text{eff}} \) to each heater is about 8 Vac. An optimal "step up" to higher heat yields a \(V_{\text{eff}} \) of about 16 Vac. Table C-1 reflects approximate conversion to equivalent heat input.

<table>
<thead>
<tr>
<th>Heater Power Modes</th>
<th>Approximate (V_{\text{eff}}) Meter Reading (Vac)</th>
<th>Approximate Heat Input Per Heater (Btu/min)</th>
<th>Approximate Total Heat Input To Four Heaters (Btu/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Heat</td>
<td>16</td>
<td>1.0</td>
<td>4</td>
</tr>
<tr>
<td>"Normal"</td>
<td>12</td>
<td>0.75</td>
<td>3</td>
</tr>
<tr>
<td>Low Heat</td>
<td>8</td>
<td>0.5</td>
<td>2</td>
</tr>
</tbody>
</table>

Under high-vacuum conditions and with a stable cold-plate temperature, ramp-up of the hot plate from ambient to test temperature (TGOAL of Fig. 2) takes between 40 and 50 min. This is well within the 1 hr required by the VCM test specification. The control system allows a linear ascent curve until a point about 4°C below TGOAL, where the ramp-up relay is dropped out. This action creates a gradual tapering off of the ascent curve as TGOAL is approached. When TGOAL -0.5°C is reached for the 125°C program, or TGOAL -1.0°C for the 150°C program, the computer "steps" the quadracs, in cooperation with normal thermal inertia, to stabilize the hot plate. During this stabilization period, the maximum temperature reached at any point in the hot plate has been measured as TGOAL +0.2°C. When a subtle downward temperature trend is sensed in the hot plate caused by heat being lost faster than the preset heater control settings allowed, automatic heater control commences. The master clocking cycle, either 4 hr or 24 hr, is automatically initialized upon detection of TGOAL anywhere in the hot plate following ramp-up relay cutoff.

The term \(V_{\text{eff}} \) reflects comparative measurements of the non-sinusoidal ac at each heater (due to the nature of quadrac output) by a standard ac voltmeter having a d'Arsonval movement. The meter proves more convenient than an oscilloscope during system calibration.
Although the control system can handle extreme long-term line voltage variations, the ±0.2°C tolerance may not always be maintainable. If, for example, excessive 120 Vac supply line voltage or an internal system defect were to cause the temperature to climb uncontrollably, the main power relay would be automatically de-energized. In the opposite case, if heater power were to become inadequate, even with all appropriate power called for, the ramp-up relay would again be energized. This action would essentially call for a new voltage reference (24 Vac instead of 18 Vac) from which the control system could continue to temporarily function. Under extended abnormal conditions, the operator would presumably abort the run and correct the deficiency. For a test run with no operator in attendance, the emergency power cutoff capability would (1) protect the specimens and the equipment from over-temperature and (2) terminate the test for extended under-temperature conditions.
APPENDIX D
SOFTWARE THERMOCOUPLE LINEARIZATION

Linearization of the Type T thermocouple readings, and conversion to equivalent temperatures, is accomplished using an active polynomial routine. This method saves much limited memory over a resident, passive "lookup" table. A ninth-order polynomial is used for high linearization accuracy. The polynomial takes the form:

\[T_{eq.} = k_0 + k_1 E + k_2 E^2 + k_3 E^3 + \ldots + k_9 E^9 \]

where \(T_{eq.} \) is the equivalent temperature in degrees Celsius, \(k_n \) are predetermined polynomial coefficients stored in memory, and \(E \) is either an individual or an average thermocouple voltage in millivolts.

In evaluating the terms of the polynomial by the computer/controller, significant central processor time is saved by avoiding the individual exponentiations involved. The terms are "nested" into a simpler and faster series of successive multiplications. The equation actually used is structured as follows:

\[T_{eq.} = k_0 + E(k_1 + E(k_2 + \ldots + E(k_8 + E k_9))) \ldots \]

This polynomial can easily be optimized, over the limited temperature range of interest here, to within ±0.1° C in conversion accuracy.
APPENDIX E
PROGRAM FLOW CHART

START

INITIALIZE AND CHECK FOR PROPER DATA FILE

TURN ON HEATER POWER VIA THE GPIB AND SCANNER

READ & STORE "CLOCK" DATE/TIME

IS THIS INITIAL START UP?

YES

"FLASH" LAST HOT OR COLD TEMPERATURE IN DISPLAY, DEPENDING ON FLAG STATUS

NO

HAS CLOCK LOOP TIME ELAPSED?

NO

YES

IS A PRINT OUT NEEDED? (DEPENDS ON FLAG STATUS)

NO

PREPARE FOR PRINTOUT; PRINT HEADING AND DATE/TIME.

INPUT HOT PLATE T/C VOLTAGES VIA THE HPIB & SCANNER & STORE IN BUFFER AREA

LOOP UNTIL SIX VOLTAGES ARE STORED
A

1. Initialize control relay output registers.

2. Average buffer voltages around one heater and compare with data file.

3. Are voltages proper for this portion of the "run" cycle? (YES or NO)
 - YES: Modify appropriate control relay output registers.
 - NO: Loop until all four heaters are checked.

4. Is emergency off needed? (YES or NO)
 - YES: (Go to "End").
 - NO: Modify "ramp up" relay output register for on or off depending on flag status.

5. Assure heater power relay output register ok for on.

6. Output byte series from relay output registers via the GPIB to the scanner relay decade for interface relay command.

7. Is a printout needed? (YES or NO)
 - YES: (Check flag status as before) (Go to "CPSCAN").
 - NO: (Go to "End").
SET FLAG

LOOP UNTIL ALL THREE DISCS ARE CHECKED

AVERAGE BUFFER VOLTAGES AROUND ONE SAMPLE

CONVERT AVERAGE TO EQUIVALENT TEMPERATURE (°C)

PRINT TEMPERATURE

LOOP UNTIL ALL THREE SAMPLES ARE COVERED

"CPSCAN" INPUT COLD PLATE T/C VOLTAGES VIA THE HPIB & SCANNER & STORE IN BUFFER AREA

LOOP UNTIL NINE VOLTAGES ARE STORED

AVERAGE BUFFER VOLTAGES AROUND ONE DISC-POSITION AND COMPARE WITH DATA FILE

IS AVERAGE "OUT OF SPEC"?

YES

SET FLAG

LOOP UNTIL ALL THREE DISCS ARE CHECKED

NO

CLEAR FLAG

(GO TO "CPSCAN")
C

IS A PRINTOUT NEEDED?
(CHECK FLAG STATUS AS BEFORE)

YES

CONVERT COLD PLATE DISC AVERAGES TO EQUIVALENT TEMPERATURE (°C)

PRINT TEMPERATURE

LOOP UNTIL ALL THREE DISCS ARE INCLUDED

"RAMPUP" CYCLE STILL BEING CALLED FOR?
(CHECK FLAG STATUS)

YES

HAS TOTAL "RUN" TIME ELAPSED SINCE "RAMP-UP" COMPLETED? (24 HOURS FOR A SAMPLE RUN, OR 4 HOURS FOR BAKE OUT)

YES

ALERT OPERATOR AND PRINT MESSAGE: HOT PLATE IS NOT AT NEEDED "RUN" TEMPERATURE IN THE 1ST HOUR.

(D)
D

"TVAL"

CONVERT AND STORE CORRECT TEMPERATURE VALUE FOR THE FLASHING DISPLAY REGISTER (DISPLAY FLASHES DURING "CLOCK" LOOP)

INCIDENT TIME REGISTERS FOR NEXT "CLOCK" LOOP CYCLE

ADJUST STATUS OF REMAINING FLAGS AS REQUIRED.

(IN RETURN TO "CLOCK")

(CALL UPON BOXES ON PREVIOUS SHEETS)

"END"

CLEAR CONTROL RELAY OUTPUT REGISTERS

TURN OFF HEATER POWER VIA THE GPIB AND SCANNER RELAY DECADE

PRINT TERMINATING MESSAGE

END
APPROVAL

THERMAL MONITORING, MEASUREMENT, AND CONTROL SYSTEM FOR A VOLATILE CONDENSABLE MATERIALS (VCM) TEST APPARATUS

By R. E. Ives

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

R. J. Schwinghem
Director, Materials and Processes Laboratory