The object of this invention is to provide the method of altering the size of tetrafluoroethylene tubing which is only available in limited combination of wall thicknesses and diameter. The method includes the steps of sliding the tetrafluoroethylene tubing (12) onto an aluminum mandrel (20) and clamping the ends of the tubing to the mandrel by means of clamps (24). The tetrafluoroethylene tubing and mandrel are then placed in a supporting coil (25). The supporting coil with the mandrel and tetrafluoroethylene tubing are then positioned in an insulated steel pipe (28). The steel pipe is normally covered with a fiber glass insulator to smooth out temperature distribution therein. The entire structure is then placed in an oven which heats the tetrafluoroethylene tubing which is then shrunk by the heat to the outer dimension of the aluminum mandrel. After cooling the aluminum mandrel is removed from the newly sized tetrafluoroethylene tubing by a conventional chemical milling process.

4 Claims, 3 Drawing Figures
FIG. 1

FIG. 2

STEP 1: ASSEMBLE ALUMINUM TUBE INTO TETRAFLUOROETHYLENE SLEEVE AND CLAMP ENDS

STEP 2: INSERT ASSEMBLY OF STEP 1 INTO SUPPORTING COIL

STEP 3: INSERT ASSEMBLY 2 INTO INSULATED STEEL SLEEVE

STEP 4: OVEN HEAT ASSEMBLY 3 TO SHRINK TETRAFLUOROETHYLENE AROUND ALUMINUM TUBE

STEP 5: REMOVE TETRAFLUOROETHYLENE COATED ALUMINUM TUBE AND CHEMICALLY MILL OUT THE ALUMINUM TUBE

STEP 6: BOND TETRAFLUOROETHYLENE TUBE TO GASKET MEMBER AND INSERT FLEXIBLE SPRING
PRECISION HEAT FORMING OF TETRAFLUOROETHYLENE TUBING

ORIGIN OF THE INVENTION

The invention described herein was made in the performance of work under a NASA contract and is subject to the provisions of Section 305 of the National Aeronautics and Space Act of 1958, Public Law 85-568 (72 Stat. 435; U.S.C. 2457).

DESCRIPTION

Technical Field

Our invention relates to the method of forming tetrafluoroethylene tubing and particularly to forming the tetrafluoroethylene tubing to a desired size from commercially available size tetrafluoroethylene tubing.

In forming tetrafluoroethylene tubing, it is necessary that the tubing be made as thin as possible so that it is not stiff, as thick tetrafluoroethylene tubing becomes brittle and would break when used in certain sealing applications. Prior art seals, such as rubber, when subjected to certain temperature and other conditions, become hard and brittle and cannot be compressed, resulting in cracking of the rubber. In certain applications, the seal must be subjected to a wide variety of temperature ranges, as from minus 129 degrees Celsius to plus 176 degrees Celsius. Such temperature ranges are typically encountered in the payload cargo door of an aircraft and conventional sealing materials have been found to be almost useless.

BACKGROUND ART

The prior art, U.S. Pat. Nos. 3,567,259; 3,856,905; 3,967,991; 4,098,631; and 4,110,396 while relating to the extrusion processes in manufacture of conventional tetrafluoroethylene tubing to be sized so that the desired size spring 18 can be positioned therein. The free edges of the tubing 12 which are not bonded to the base 16 provides a sealing surface when a door (not shown) is positioned against the tubing 12. In one application conventional tetrafluoroethylene tubing having a diameter of 3.175 centimeters and a thickness of 0.010 centimeters is shrunk so that the final product has a 1.9 centimeters diameter and a thickness of 0.02 centimeters.

BEST MODE FOR CARRYING OUT THE INVENTION

Referring now to the drawing there is shown in FIG. 1, the tetrafluoroethylene tubing 12 constructed in accordance with the process of the present invention. As illustrated therein, the tubing 12 is bonded along an edge 14 to a base 16 typically formed of silicon rubber. A spring 18 is positioned within the tubing 14. The spring 18 is inserted into the tubing after the desired size of the tubing has been formed by the process of the present invention. The spring 18 provides the desired stiffness required in a sealing operation.

Typically, the present process enables a conventionally sized tetrafluoroethylene tubing to be sized so that the desired size spring 18 can be positioned therein. The free edges of the tubing 12 which are not bonded to the base 16 provides a sealing surface when a door (not shown) is positioned against the tubing 12. In one application conventional tetrafluoroethylene tubing having a diameter of 3.175 centimeters and a thickness of 0.010 centimeters is shrunk so that the final product has a 1.9 centimeters diameter and a thickness of 0.02 centimeters.

Referring now to the steps of the process as illustrated in FIG. 2 and the structure of FIG. 3, conventional tetrafluoroethylene tubing 12 is placed over an aluminum mandrel 20. The tetrafluoroethylene tubing 12 has a diameter much greater than the outer diameter of the aluminum mandrel 20 as can be clearly seen in FIG. 3. The ends 22 of the tubing 12 are clamped by means of clamps 24 to the respective ends of the aluminum mandrel 20 to prevent actual longitudinal shrinking of the tubing 12 during the process. The clamped tubing 12 and the mandrel 20 are then placed into a supporting coil 25. The supporting coil 25 is made of continuous wound heavy aluminum or steel wire and is formed of a plurality of small diameter coil sections 26 at the ends of the coil structure. The small diameter coils also are used to interconnect large diameter coil sections 27. The small coil section inner diameter is sufficient to provide a loose fit of the tubing 12 and mandrel 20.

Where the aluminum mandrel 20 has a 1.9 centimeter outer diameter aluminum hollow tube, the tubing 12 is initially of 3.175 centimeters and is intended to be shrunk to the outer diameter of the aluminum mandrel. The large coil section 27 is of approximately 10 centimeters outer diameter. The supporting coil 25 and the clamped tubing 12 are then inserted into an approximately 10 centimeter inner diameter steel pipe 28. The large coil section 27 positions the clamped tubing in the pipe 28.

The steel pipe 28 normally is covered with an insulator such as fiber glass so as to smooth out temperature distribution in the pipe. A thermocouple 32 is normally connected so as to measure the temperature of the mandrel 20 during the tube shrinking process. The entire structure of FIG. 3 is then placed in an oven and heated from 15 minutes to approximately 1 hour at a temperature of approximately 330 degrees to 354 degrees Celsius. After the heating process has been completed and the tubing 12 has shrunk to an outer diameter of the aluminum mandrel 20, the supporting coil 25 together with the aluminum mandrel 20 are removed as a unit.
from the steel pipe \(28\). With the wire supporting coil \(25\) and the aluminum mandrel \(20\) removed from the oven, a fiber glass bolt of cloth is placed around the supporting coil \(25\) to enable the aluminum mandrel \(20\) and the newly shrunk surrounding tubing \(12\) to cool slowly.

Once the aluminum mandrel \(20\) and the tubing \(12\) have cooled, the aluminum mandrel can be removed from the interior of the shrunk tubing \(12\) by chemical milling. Typically, the chemical milling process utilizes a sodium hydroxide solution to remove the aluminum mandrel \(20\) as is conventional and forms no part of this invention. A solid rubber sleeve (not shown) is then inserted into the tubing \(12\). The rubber sleeve normally has the same dimensions as the spring \(13\) of FIG. 1. The tubing \(12\) is then bonded along its edge \(14\) to the base \(16\) as shown in FIG. 1. Finally, the rubber sleeve is removed and the spring \(18\) inserted in its place.

The foregoing temperature and shrinking process achieves the desired dimension of the shrunk tubing \(12\) without splitting thereof.

While tetrafluoroethylene tubing can be extruded by special processes to a limited combination of wall thicknesses and diameter, the present process enables wall/diameter combinations not amenable to extrusion which must be obtained by heat expansion alone or by heat expansion and subsequent shrinking if precise sizing and/or forming to special contours is required.

The foregoing and other advantages are obvious to those skilled in the art of precision heat forming of tetrafluoroethylene materials.

We claim:

1. A method for altering the size of tetrafluoroethylene tubing without splitting comprises the steps of:

 (a) sliding tetrafluoroethylene tubing onto an aluminum mandrel and clamping the ends of the tubing to the mandrel;
 (b) inserting tetrafluoroethylene tubing on said aluminum mandrel into a supporting coil;
 (c) inserting said coil with said tetrafluoroethylene tubing on said aluminum mandrel into an insulated steel pipe forming an assembly;
 (d) heating said assembly in an oven to a temperature in the range of approximately 330 to 354 degrees celsius for approximately 15 to 30 minutes to shrink said tetrafluoroethylene tubing to the size of said aluminum mandrels;
 (e) removing said tetrafluoroethylene tubing and aluminum mandrel and said coil from said pipe and allowing the tetrafluoroethylene tubing to cool slowly; and
 (f) removing said tetrafluoroethylene tubing from said mandrel.

2. The method in accordance with claim 1 wherein said coil with said tetrafluoroethylene tubing and said aluminum mandrel are removed from said oven after shrinking said tetrafluoroethylene tubing to the size of said mandrel and further slowly cooling said tetrafluoroethylene tubing by wrapping said coil in a fiber glass bolt of cloth.

3. The method in accordance with claim 1 wherein said tubing is bonded along an edge to a base of silicon rubber after removal of said tubing from said aluminum mandrel.

4. The method in accordance with claim 1 wherein the mandrel is removed from the tetrafluoroethylene by chemical milling.

* * * * *