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ABSTRACT

The development of valid creep fracture criteria is a major topic in cur-
rent ongineering research, Two path-independent integral parameters which show
some digree of promise as fracture criterisa are the C* and (AIQC integrals.

The fivst portion of the present work reviewsi the mathematical aspects of
these parameters. This is accomplished by deriviag geuneralized vector forms
of the parameter= using conservation laws which are valid for arbitrary,three-
dimensional, cracked bodies with crack surface tractions (or applied displace-
ments), body forces, inertial effects and large deformations. Two principal
conclusions are that (Az)c is a valid erack-tip parameter during nonsteady as
well as  steady-gtate creep and that (AE)C has an energy rate interpretation
whureas C% does not.

The development and applicataivn of fracture critevia often involves the
solution of boundary/initial value problems associated with deformation and
stresses in eithay laboratory specimens or actual components. Due to the power
of the finite element methoad in treating complex geometries and non-linearities,
i has often been used for this purpose. In the present work, an efficient,
small displasement, infinitesime} strain, displacement based finite element
model is developed for genaral elastic/plastic material behavior, For the
present numerical studies, this model fs speclalized to two dimensional plane
stress and plane strain and to nower law crecep comstitutive relations.

A mesh shifting/remeshing procedure is used for simulating crack growth.
The model is implemented with the quarter-point node technique and also with
specially developed, conforming, crack-tip singularity elements which provide

-n/{1+n)

for ther strain singularity assoclated with the HRR crack-tip field.

(1)
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Comparisons are made with a variety of analytical soluticns and alternate

numerical solutions tor a number of problems,
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SECTION I

INTRODUCTTON

Fracture Problems and Fracture Criteria: A Review

Characterizing the displacement, stress and strain fields associated
with stationary and propagating cracks in solids characterized by various
fidealized constitutive relations is one of the most important areas of study
in fracture mechanics, The importance of these studies is not only that we can
predict the stress or displacement fields in a cracked body, but also that
knowing the nature of such fields we cia possibly correlate observed fracture
behavior with some aspect of these flelds and thus arrive at valid fracture
criteria.

Criterin for Crack Gr~ :. Initiation

The two macroscopic aspects of fracture for which correlations are commonly
gought are the iInjtiation of crack growth and the rate of crack growth. The
most notable initiation correlations are with the elastic stress intensity
factor, KI’ for the elastic (and/or small scale yielding) case [1,2] and with

the J,~integral for cases in which plasticity may not be limited to the crack-

1
tip [3,4]. The conditions urider which these correlations are independent of-

geometry are discussed in the cited references. The critical values of K1 and
Jl for a given material are denoted KIc and ch. respectively. It is implied

by the use of the subscripts "I'" and "1" that these criteria are for the crack

-1 -
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opening mode (i.e., mode I). While similar criteria might be expected for the
sliding und tearing modes (i.e., modes LI and III), the experimental data for
such studies is lacking.

Both K1 and J. have been shown to be crack-tip field parameters and both

1
can be evaluated experimentally through encrgy considerations. The linear elas-
tic, mode 1 crack-tip field determined in [5] shows that the asymptotic crack-
tip ficlds are proportional to KI. Similarly, the asymptotic, mode I, crack-
tip fieclds for power-law deformation theory plasticity have been shown [6.7] to
depend upon the single parameters Jl.l In the case of small scaie yielding, KI
is easily related to the energy release rate, GI [8], which is a measure of the
potential energy decrease due to an increase in crack length, The quantity J1
has a similar potential energy interpretation in the case of deformation theory
plast icity, and becomes identical to GI for small scale ylelding of a stationary
crack.

In the foregoing discussion, the time dependence of the materfal's regponse
and of the applied loading is assumed to be negligible. For creep crack growth
these assumptions are no longer valid. We now consider crack growth initiation
in materials which exhibit creep behavior, Whilc a significant number of nreep
fracture experiments have been reported in the literature, it appears that the
primary interest has been to find a creep crack growth rate criterion as opposed
to an initiation criterion. As a result of this emphasis, many investigators
use notched specimens rather than precracked specimens and many do not report
data which could be useful in addressing the question of initiation. At

present there seems tu . some indication [9,10] that when precracked specimens

are used, the time required for creep crack growth initiation is negligible when

1 The deformation theory of plasticity precludes elastic unloading from an elastic-

plastic state and thus is mathematically equivalent to nonlinear elasticity. The
crack-tip fields associated with power-law deformation plasticity are commonly
referred to as HRR fields after the authors of references [6] and [7].

-2 -



compared to the life of the specimen. Tt should be understood that this is not
a universally acknowledged conclusion [11] and that further study is indinated,

As noted previously, the second macroscopic aspect of fracture for which
correlations with crack-tip fields are commonly sought is crack growth or propa-
gation, The following summarizes the development of criteria relating to this
aspect.

Criteria for Crack Propagation

Slow crack growth occurring under constant load implies that the matevial
response is time dependent and is generally classified as creep crack growth.
1f the material's time dependent nature is negligible under the subject con-
ditions, then it is assumed that crack growth requires an increase in applied
load. This latter case is typical of situations in which small scale yield
conditions are not met and for which Jl has been found to correlate with crack
growth initiation. The primary interest in this quasi-static mode of crack growth
is that for some materials and geometries, the increase in load carrying capacity
of the structure during quasi-static crack growth is significant. This implies
that design procedures can be developed to take advantage of this added margin
of safety. To justify such a procedure, however, there muast be some dependable
means of predicting the crack growth versus lbad behavior as well as predicting
at what load the crack becomes unstable (i.e., is no longer quasi-static). As

noted, J, 1s generally accepted as a valid initiation criterion for this problem.

1
For prediction of the subsequent growth, however, there ar¢ at least two proposed
criteria which appear to provide reasonable correlations with experimental data.
The first growth criterion can be stated as Jl-JLR(Aa)' where JlR(O) =Jie a?d
JlR(Aa) is assumed to be a material property which depends on the amount of

crack growth, a [12,13]. The subscript "R" denotes that this quantity

characterizes the material's resistance to cracking. While strong theoretical

-3 -
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arguments can be given as to why this criterion should not be valid (except
possibly fcr very limited amounts of crack growth [14]), it has been demon-
strated that reasonable predictions can result from the use of this criterion
for at least some classes of problems [12,15].

Lased on the theoretical objections to the use of JlR except for limited
crack growth, a second criterion which is based on the crack-tip deformation
has been proposed {16,17]. This criterion resuits from finite element simu-
lations of quasi-static crack growth experiments which indicate that the crack-
tip opening angle, CTOA (defined by the first finite element behind the crack-
tip) becomes constant during crack growth. Whereas the CTOA, so defined, is
clearly a mesh dependent quantity, the concept of crack-tip deformations becoming
constant with crack growth is physically meaningful. The procedure for applying
this criterion in finite element based predictions of crack growth behavior is

to use ch for initiation and J,  for crack growth prediction until the computed

1R
CTOA has become constant with crack growth. Continued growth is then governed

by this constant value of CTCA. Alternatively, u predetermined CTOA resistance
curve can be used throughout growth, Crack growth instability is assumed to oc=-

cur (for cither CTOA or J R as the criterion) when further increase in crack

1
length results in the criterion for growth being 2xceeded yithout further increase

in applied loading. The J,. and CTOA criteria appear to provide reasonable

1R
correlation of ductile slow crack growth behavior for a variety of materials,
geometries and load conditions [15,18,19].

Creep c¢rack growth generally becomes a concern when components are operated
at elevated temperatures. Whereas quasi-static crack growth can be on the orrder
of mm/sec, typical creep crack growth rates are on the order of um/sec. Compared

to elastic-plastic quasi-static crack growth, the problem of creep crack initia%ion

and growth is a relatively new area of study.

-4 -
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Numerous experimental studies have heen nndertaken with the purpose of
findirg a parameter which correlates with creep crack propagation rate., (See,
for cxample, the review article [20]) and [21-24]).) Most of these investigations
consider as candidate parameters, KI, some form of net section (or reference)
stress, and in more recent studies C*. The C* parameter is the steady-state
creep analogue of J1 (in the sense of [25]) in that the definition of C* {8 the
same as that for J1 except displacements and stralns are replaced by their res-
pective rates [26].

It is illustrated in Fig. 1.1 that the above three parameters can be expected
to correlate three distinctly different creep crack growth situations., In Fig.
l.1la, a crack and its associated ligament are shown for a material and geometry
which results in negligible creep strains everywhere except in the vicinity of
the crack-tip. This condition is analogous to that of small scale yielding in
elastic-plastic fractuze. Fig, 1l.lb represents a situation in which C* might
be considered an appropriate parameter. This situation is characterized (i) by
the body being essentially at steady-state ~veep conditions (yhich implies very
slow crack propagation) and (ii) by the creep-damage process-zone being local
to, and therefore controlled by, the crack-tip field. Fig. 1l.lc illustrates
the type of situation for which net section stress might be expected to contrsl
crack growth. In this case, tie main feature is the widespread creep damage
zone.

It is seen from Fig. 1.1 that intermediate situations can occur. For
example, suppose a particular material and geometry results in a crack -ropagation
rate such that elastic strain rates are not negligible compared to creep strain
rates (i.e., nonsteady creep) and at the same time, creep strains are no lonéer
localized to the crack-tip region. While neither K. or C* could be valid

I

parameters for this case, it appears reasonable to expect that crack growth
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rate is stil]l determined by the iocal crack-tip field since the creep damage
process zone is still assumed to be local to the crack-tip,

A parameter which {s apparently capable of spanning the gap betwuen KI
controlled gruizh and C* controlled growth has been introduced [27). This
parameter is referred to as (Ag)c and is defined by a path-independent vector
integral. A detailed discussion of a generalized C* (i.e., C*) and (Ag‘_)C
is given in Section II of this work with a principal result being tﬂét the
encrgy relationship commonly used for experimcntal measurement of C* does
not apply to C* but rather applies to the (Agpc parameter. This means thac
the experimental results are actually showing a correlation with (Az)c rather
than with C*. Based on the theoretical validity of (A_'!‘__)c as a crack-tip field
parameter for nonsteady as well as steady-staote creep and based on the mounting
experimental evidence that crack propagation rate correlates well with (Az)c.
it seems the creep crack growth rate problem is close to having a solution.

Motivation for the Present Work

In the following, we review previous studies to the extent required to
place the present study in perspective and briefly introduce the present work.,
The nonlinear nature of creep constitutive relations precludes analytical solu-
tions for either stationary or propagating cracks in a creeping material. For
stationary cracks in a power-law creep material, however, it is known that
the HRR fields are present in the vicinity of the crack-tip {26]. (Since the
singularity in creep strain rates is greater than that in the stresses, and thus
elastic strains, it follows that the HRR field exists at the crack-tip during
nonsteady as well as steady-state creep.) For propagating cracks, it appears that

the HRR fields no longer exist at the crack-tip, but that analytical tools exist to determine

B ol SRR

the fields which do exist [28,]9]. While knowledge of the crack-tip field is
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valuable, the solution of boundary value problems mast depend on numerical
methods. The finite element method, in particular, shows promise for sclving
ereep crack growth problems.

Only a few studies on finite element modeling of creep crack growth have
been reported, The earliest is apparently that of Chtani and Nakamura (30}.
This study simulated crack growth with a node-release technique and assumed a
critical crack-tip plastic strain criterion for creep crack growth. The rate
const itutive l.w contained an elastic term and a creep term based on the gen-
eralization of the .niaxial Norton power law.

Hinnerchs [3)] uses the Bodner-Partom constitutive law [32) and a node-
release technique for modeling crack growth. In this work, sevural candidate
criteria are examined by simulating crack growth experiments. Due to the ap-
parently limited crack growth (<0.5 mm), the short test durations (one hour)
and the lack of crack growth measurement data (which requires the development
of a so-called hybrid experimental-numcrical procedure to estimate the crack
growth history), it seems the general applicability of the conclusions from
this study are questionable. It also seems likely that the methods for evalu-
ating C* in this study are 1ncorrect1 and thus the conclusions concerning C¥*
should be regarded accordingly.

Ehlers and Riedel [33] have conducted a finite element analysis of a
stationary crack in a compact specimen. The primary emphasis in this study
is on the nature of the crack-tip field during the transition from the initial

elastic field to the steady-state creep field.

1 While the details of the numerical procedures for evaluating C* are not given
in [31), it appears that the W* term of C* (see Section II) is incorrectly in-
terpreted as a history dependent quantity as opposed to a quantity dependent
solely on the steady-state stress and strain rate.
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3 The strength of the HRR field during the transition period is determined
through fitting the noar tip equivalent stress field. The calculations use
efght~noded isoparametric elements with quarter-point elements being used at the
crack-tip so as to have an r~l/2 strain singularity, Creep crack growth and
creep crack growth criteria are not considered in this study.

The finite element equations forthe creep crack growth model being used in the
present study are derived from the principle of virtual work in Section III.
Section V presents the results of several analyres involving both stationary cracks
and propiagating cracks. The creep crack growth simuiation is via a mesh shifting/

remeshing procedure. Calculations are made using the quarter-point element tech-

nique as well as with a specially developed (Section[V) compatible element which

incorporates the HRR, r—n/(1+n)’ strain singularity,

An important aspect of the current work is the study of the (AE_)c parameter.,
In particular, the meaning of (A!)c, its relationship to C¥, and its calcula-
tion within the context of finite element analysis nc explored in depth.

A series of crack propagation calculations are combined with analytical and
experimental results in Section V to show that creep crack growth in 304 stain-
less steel at 650°C occurs under essentially steady-state creep conditions. This
implies ihat the crack growth rate for a given crack length and load can be
determined from a steady-state creep solution which does not depend on the
previous load and crack growth histories. This observation implies that

simple crack growth prediction methodologies may be developed.
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SECTION II

DERIVATION OF THE (Az)c"i AND C* INTEGRALS

Preliminaries

We shall consider problems which exhibit the following constitutive be-

havior:

n- 1
1J

We denote the cartesian coordinates of the undeformed body as x

+ (3/2)v(o ) (2.1)

c
1 1j 19 111 2’ kﬂ,
T Defining ay
as the rate of displacement (or velocity) of a material particle from the cur-

rent configuration, then is the symmetric part of the rate of displacement

—E & D, .
yj i} 13
pect to the current coordinates Yy where it is understood that YU X + Uy

®
is the tensor of instantaneous elastic moduli, We let Okz denote the

The gradient operator V. 1is with res-

gradient e (V u) v,

x“ijlcﬁ
corotational rate (or "Zaremba-Jaumann tate') of the Kirchhoff stress dij
3y

: . ¢ - - —n
where aij is related to che Cauchy stress Tid by oij JT11<J det[axn]). The

equivalent Kirchhoff stress 09/q is related to the deviatoric Kirchhoff stress

(m0,, =1/3 0 ) by o, (3/2)(0iJ ij 1/2.

94 ij kO 13

those of the familiar Norton's inw

The parameters Y and n are

. o \n
€eq ™ Y(Ueq)
were
™ .. » 1/2
€ q" [(2/3)¢1J€£j]

- 10 -

Vb i ST



AT RS e L e

BERERRREENEE £ a it

We will use the notation: (_) denotes a second order temsor; () implies

a vector; =B, ¢ 11 -} :A=B ., C 1l - B ;
a voctor; a = B . ¢ dmplies a, ijcj A By implies AiJ ikckd'

Also note that gtgzc implies 7715 c

- B, v .
Aij’ij C A 1k and v, B implies

A
Q
T
Rt}
i

A Conservation Law for Finite Elastic and

Nongteady Creep Material Behavior

The Jdiscovery of conservation laws and the possibility of deriving path-
independent integrals from these laws are not particularly recent occurrences as
discussed in [34]). However, the literature in this area has been rather piece-
meal and therefore difficult to assimilate. The recent work of Atluri {27] has
done much to unify and generalize this subject and is the basis for the following
presentation.

We will consider a very general conservation law which has been given by
Atluri, but will limit our discussion of this law to materials characterized
by (2.1). We will use cartesian coordinates exclusively. Note that by
special selection of material constants (i.e., y=0), (2.1) can be specialized
to elasticity. Alternatively, by assuming that the stresses are invariant with
time, (2.1) can be specialized to steady-state creep behavior.

In the following presentation, the current configuration (l.e., the config-
uration at time t) is the reference configuration. There may be initial stresses
existing for this reference configuration. If stresses do exist, then they are
assumed to satisfy the linear and angular momentum balance condition (i.e.,

equilibrium)

T
v . r ) M (
—t - p t (! t .—ta ) 0 LI I

where Pes gt and a, are the current mass density, body force vector and accel-

eration vector.

-1l -
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A conservation integral relation given by Atluri [27] for a zlosed volume
Vc (at the current time, t), which is free from singularities and any other

defects (which would preclude the application of the divergence theorem), is:

0 = th (2 80 - (1,0):8e - T, . ((x40e) . bg] (2.2)

- o (f-a) . Aeldv +f [n, . (#8t) - E] . Aads

t
St

+ ./; n .o (THAE) . (Ae-be)ds

e
In (2.2), At is the incremental first-Piola-Kirchhoff (nonsymmetric) stress
(At = [dy - de . d]/J), where Ag is the material increment of Kirchhoff stress.
The current mass density is denoted pt, and f and a are the body force and
acceleration vectors at time t+At, respectively. St and Se are the portions of

the boundary of Vt upon which prescribed tractions, g, are acting and at which

prescribed displacement gradients, Aé, exist, respectively. The current outward
normal to St or Se is n. The quantity AW, discussed in detail in [27), is the

incremental stress-working density in time At, and is given by:

AW = T:le + %AET:AS = Tihe + AU (2.3)
where
AU = %AgTzAg (2.4)

The validity of (2.2) is readily verified through the two identities [27]:

: VAW = ¥ (1:0e) + YU = ¥ 1:e (2.5)
: + U deit + V. Ae:dty
: s :
é and
: T
. . - [V | . : .
Fo oo [(x#de) . Bdel = [T, . (1+At)] . de + V. de:(1+4t) (2.6)
- 12 -
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the satisfaction of linear momentum balance in Vt:

V. . [xHt] +p (f-8) = 0 (2.7)

and the satisfaction of the boundary conditions:1

n, - [tHit] = t on S, (2.8)
be = be on S (2.9)

Note that identity (2.5) assumes that t ( the initial stress for the incre-
ment) is an explicit function of its position in Vt. The existence of AU
is shown and discussed in the work of Atluri (35].

Having the relation (2.2) it is now possible to specialize this relation
to finite elastic behavior cr to steady-state creep behavior. However, since
we are primarily interested in the path-independent integrals which can be ob-
tained from (2.2) we will postpone the specialization till after we have de-
rived the general path-independent integral (AE)C.

Path-Independent Integrals for Fracture Analysis

The conservation integral (2.2) is used [27] to obtain a path-independent
integral which is applicable to the analysis of cracks by considering a volume
Vc - V6 such as illustrated in Fig. 2.1. (Note that a two-dimensional case
is illustrated for simplicity). The use of the divergence theorem for the

region depicted in Fig. 2.1 results in (2.2) being rewritten

jr [n,84 - n_ . (THAt) . Aelds (2.10)
234

+ f [(-¥ 1):0e -p (f-a) . AeldV
V-V t t
3

lThe validity of (2.2) does not require S.+S,=dV_ where dV _denotes the surface
bounding V.. Therefore, th need not coincide with the boundary of the body
under consideration.

- 13 -
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+ fr EtAst»rj; n AWdS j;g_ hedS

12 45 t

- fS o, . (T48t) . Beds

. j (n M - n, . (T+8¢) . Belds = (&) ¢ (2.10)
r

€

In writing (2.10) it hus been assumed that Se+st-P12+P45, which implies that

r does not coincide with any exterior boundaries. This has been assumed

234
purely for convenience of notation, We have also used the notation I‘e - F165.

Noting that (2.10) contains two equalities, it can be verified by inspection
that (Ag)z depends on ¢ (or more generally FE) but that it does not depend

on the selection of T In this sense (Ag)z is path-independent (i.e.,

234°
independent of the selected far-field path). Following the reasoning of Atluri

(27}, we define (AT)c as the limit of (Al)z as € goes to zero.1

8 o Lt _
6D = f [n AW - n_ . (148t) . delds (2.11)
r

€

g ‘/': [_thw -n - (3+AE) . Aelds
234

Lt
+ 6*"%/ [(-¥,D):be - p (£-8) . Belav
V.-V

+ f _r}_tAWdS + f g_tAWdS - [ t . AgdS
, r r St

12 45

- fs n, . (T+it) . Aéds’(

lThe existence of the limit is shown in Appendix A.

- 4 -
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Fig. 2.1 Contours for applying the conservation law to
a two-dimensional, cracked body
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By defining (Ag)c as the limit of (Al): a8 € goes to zero, it is seen that

(A:g)c is entirely determined by the asymptotic near-tip fields. It will be
shown later that the converse to this statement is also valid when the near-
tip fields are the HRR fields. That is, it will be shown that (Ag)c entirely
determines the asymptotic near-tip fields.

Often it happens that only the first component of the vector quantity (Az_)c
is of interest. We will write the first component of (AI_)c as (ATl)c' Also,
the quantities ('_i’__)c and ('i‘l)c will often be used in place of (AI) and (8T

These quantities are related by

(% - Lt (AI)C
- At+0 At

-

(2.12)

.,

However, in the presentation of numerical evaluations of (ATl)c we use ('i‘l)c
as a convenient, approximate notation for (ATl)c/At.

We now consider two special cases of (2.11). For symmetrical deformation
about the 3 axis and cracks oriented along the Xy axis with traction free

crack surfaces, no body forces and negligible inertial effects, the first

component of (AT)  is

(ATl)c « LE f [nlAw - n,(r, +5t, )be,, ]dS (2.13)
r

0 33470
€

= /; [nlaw - ny (x”ﬂ\t“meﬂlds
234

Y
- ~Miiﬁe dv
3y ji
\' 1
t
Note that the limit of the volume integral has been written in its explicit.
form as a result of the arguments for the existence of this limit, given in

Appendix A. If, in addition to the above conditions, the strains are in-

finitesimal and the deformations small, then there is no need to differentiate

. 16 -



between x, and Yy At becomes identical to At and we have (recalling

i LR 1
Aeij £ BAuilayj):
Lt aAu1
wrp, = 1 fr [nu = nytry gy ) 5bias (2.14)

€

9du
- - ' -t
fr [nlAw n (w“«n ) 5 1ds

h] ji X,
234
./- -~*1 Ac dv
The replacement of Aeij by Aeij in the volume integral is made possible by
the symmetry of T and thus arij/Bxl.

Physical Interpretation of (AT)

It has been shown by Atluri [27], that the vector (AE_)c has the following
physical meaning. Let two bodies with non—propagatingl cracks be identical
except for the second body having an additional, arbitrarily directed, in-
finitesimal increment in crack length characterized by the vector dc. It is

assumed that both bodies experience identical load histories. Define total

potential energy increments corresponding to the time increment At as2
AE, = At{vl + AQl + 0Ky (2.15a)
AE, = sz + 09, + 8K, (2.15b)

for the first and second bodies, respectively. In (2.15), -A¢y is the incre-
mental work of external forces, AQ is the incremental stress-work and AK is
the increment in the kinetic energy. (It should be noted that AQ includes the

inelnstically dissipated energy.) Then

lAtluri [27] has shown that the 1/r singularity in kinetic energy, which is as-
sociated with dynamically propagating cracks, changes the interpretation.

2Note that sizn convention for AEl and AE
to conventional usage.

’ is opposite to [27) sc as to conform
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(A'I‘i)cbdc - -(AE2 - AEl) (2.16)

1
where b is the length of the crack froat,
If one is only interested in self-similar crack extension in the xl-direction,

then de, = de, = 0 and

2 3
AE, - AE
(L\ll)c bdcl (2.17)

Therefore, (Ag)c is relatud to the incremental potential energy difference
between two bodies which are identical except for an incremental crack length
difference dc.

Finite Elasticity and J

As noted previously, the constitutive law (2.1) can be specilalized to
elastic behavior by choosing Y to be zero. Therefnore, (AI)C ag defined by
(2.11) is a valid crack-tip characterizing parameter for general nonlinear
elasticity with finite strains, large deformation, body forces and inertial
effects. Howerver, the basic premise of elastic behavior is that the con-
stitutive relations are independent of the histories of deformation and stress.
This means that the constitutive relations can be derived from a potential.

For instance, a potential, U, exists for t, the first Piola-Kirchhoff stress,

such that
f -8 (2.18)

In the following, we consider the reference configuration to be the stress-free,
undeformed configuration at t=0, and therefore drop the subscript t for con-
venience. As a result of the existence of the relation (2.18), it is possible to
state two identities which are analogous to those of (2.5) and (2.6) for the rase
T20.

de
WU oe - B0 g, T (2.19)

- Bemn Bxl —
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Veolt.el=Y.tie+ Vet (2.20)
Similarly, the linear momentum balance (i.e., equilibrium) condition is now
Y.or+oe(f - a) =0 (2.21)

and the boundary conditions

n.t=tonS (2.22)
e=¢on (2,23)

Noting the similarity of equations (2.18) through (2.23) with (2.4) through

(2.9) it 1s easy to arrive at the following conservation law

o - [(}_J_U-y_.lg.g]-p(f_—g).g}dv (2.24)
\

+f [Q.Q-E].gds+fp_.g.(g-é)ds
S S

t e
Following the procedure used’'in deriving (Ng)c from (2.2) we apply the diver-

gence theorem to (2.24) for the volume V - VC and take the linit as . goes

to zero. The path-independent vector quantity resulting from this procedure will

be called J.

Lt f [nU-n .t . elds (2.25)
r

==f [RU -n .t . elds+ :f'O{f p(a - f) . edv
Fy34 V-ve

+j g_UdS+f _r_\_UdS—fE.gdS-f g.g.};ds:
f12 Fus S¢ Se
In writing (2.22) through (2.25) it is understood that o is the mass density

in the reference configuration, n is the unit normal in the reference configu-

ration, f are arbitrary body forces per unit mass, a is the absolute material

- 3N -
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acceleration, and E'ure prescribed tractions per unit undeformed area Sc.

We now consider several special cases of (2.25). If the problem being
considered involves a crack oriented along the Xy coordinate direction and is
loaded so that only mode I crack-tip behavior occurs, then J1 is of primary

interest and we have:

Lt §
Jl j; [nlu - nir.ije“]ds + ”Ol fv_v (n1 - fi,)eildv (2.26)
234 €
- js tieilds - j; “1:11{331‘13}
t e

If in addition the problem involves infinitesimal strains, small displacements

and traction-free crack surfaces, we have

- u au,
Jl r nlU - “irij '3’;‘1' ds + f p(a:l - f:i.) —B—xl dv (2.27)
234 1 \Y 1

where use has been made of the existence arguments of Appenix A in taking the
limit of the volume integral,
For elastic behavior and non-propagating cracks, Atluri [27] shows that

J has the meaning of energy release rate to a process zone VE in the sense that

DE
J bde, = - ’BEE dt (2.28)

where b is the length of the crack front,
DE Dy DR DK
L

—t €
bt " bt Tt T oo

and

DE_
7;?- dt = Eé(t + dt) - Ee(t)

For an elasto-dynamically propagating crack (i.e., singular kinetic energy)

Atluri [27] concludes that
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[DL"]
Jobde, = | == |ac (2.29)
AR T

where L( is the Lagrangian (i.e., Lc H K( - we - Qc) such that

DL, Dy, DR, DK,

e - " pt " D T D

Therefore, J, has the meaning of "rate of change of Lagrangian per unit crack

k
growth',
We now consider the special case of steady-state creep behavior.

Steady-State Creep and C*

It hag been shown that (Ag)c characterizes the crack-tip field for mat-
erials which exhibit creep behavior such as in (2.1). 1t is known that under
certain conditions of applied loading, the constitutive relation (2.1) can (after
long times) result in a steady-state. This steady-state is primarily charcter-

ized by the time independence of the stresses (i.e., AU = At , = 0). Specializing

1
(2.13) to steady-state conditions, we define the steady-state value of (Azi)c:

Lt

(1)) (g8 = €40 ; [ny7ygleyy - ny7yqheyy1d8 (2.30)
€
311,
- .ll‘ [nlrijAeiJ - njrjiAeil]dS - v 7%::'Aeijdv
t

Because (2.1) results in a power-law relation at steady-state, which is
analogous to the power law deformation-thmary plasticity (or essentially non-
linear elasticity), Goldman and Hutchinson [26] have suggested a path-independent

C% integral,

1
a‘i
X = X - .
Cl ./; nlw anij axl ds (2.31)

where

Wk = j“ T . de (2.32)
0
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The question of how CI and (ATL)cas are related, 1i¢ a natural one. Before

obtaining an equation relating Cf to (ATl)cns' however, the conservation integral

(2..) will be used to derive a generalized vector integral C%,
In specializing (2.2) to steady-state we note that now stress is a
function of the strain rate, and that stress increments are zero. Thus,

AW:T:Ae. Also we may write:
- ) - t :
j; (2,60 - (7,1):3elav jv T:7 Aedv

Thug, at steady-state, we may write (2.2) as: .

+f [gt.g—g_].Ag_dS+fg_t.g.(Ag-Ag)dS
] S
or equivalently, in rate form,

Q-.ﬂ U“&@“Et-Q@)'pQ' ) . éjav (2.33)
t

S S
t e
Using the symmetry of T ¥ note that:

T: é = T [ 1 (é éT)] - I:zté (2.34)

-

As a result of the incompressibility condition (é11 = (0) we have

. € m L é 2,35
IEAZEIL I SN (2,35)
€44
% = Y )
and W ./0 Tijdeij (2.36)

which leads to




A AW YD S 1

SWE (2.37)

Combining the results of the above manipulations we have:

Wk oW* aemn '
m

D = T
ayi aem ayi “

tMe

1"

W - T:9 8 (2.38)

v .
-t 'Ty

Using (2.38) and the divergence theorem while applying (2.33) to Ve -V, we

define the vector quantity (Qﬁ)e:

j; [n Wx - n .1 .elds - JI;I pt(‘_f_ - a) . édv ' (2.39)

il

. €
= * - *
j; [n W n_ . T. g]dS (C*)

If we define the limit of (_g_*)E as e*) to be C*, we have a quantity which
characterizes the crack-tip field and is independent of the seloction of P234.
Restricting our attention to problems involving symmetric deformations about
the x, axis and cracks oriented along the Xy axis, with traction-free crack

1
faces, no body forces and negligible inertia effects, we find that

Lt ‘ . €
Gl = &0 f (n Wk - m,7, 8,148 = (C) (2.40)
Pé
= U o ny g8 )8
234

In computing W#% it is convenient to invert (2.1), substitute the re-

sult into (2.36) and use the following identity to complete the integration:

1+n
d(¢e ) n l-n
eq - 2 ,1l4n . —_—, 4
de 3 ( n ) (eeq) n Eij (2.41)
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The result of this manipulation is:

0 o l4n
Wk = Iigk(y) (%eq) n (2.42)
P 1+n
or W I;;—y(oeq) (2.43)

\lat lons 1 * - 4
Relat ionship of (Tl)css and C1 for Steady-Stats Creep

Now we will relate Ci of (2.40) to the steady-state value of (ATl)c.

First we rewrite (2.30) in rate form as:

. . Lt . _ . , ]
(Tl)css €0 ] lnltijeij nJTjieil]dS (2.44)
€
' R
z & - . _ 131 .
=z j; (anijeij anjieillds j; Ty, eijdv
234 ¢ 1
Using the nutation W-Tijeij we have
(i) = fr (n )W = 078, )8 (2.45)
234

ot
- 3 & av
t
Noting that:

y . 1 ,. . .
W= Tijeij ) Tij -é-‘(eij + eji) - Tijéij (2.46)

it is seen that W is the rate of stress-working density, while W* is just a

mathematical potential for T:j. As a result of incompressibility we can writel
p S
1 14n
Y . 1+n lin ,. n \
=0 ¢ = y(o - (= é 2.47
eqteq = V(%o Q" &) (2.47)

as contrasted to W* of (2.42) and (2.43). Comparing the left equalities of

lThis result is only valid for steady-state creep and is obtained through the
substivution of the steady-state specialization of (2.1) into (2.46).
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i
2.40) and (2.44), it is scen that ('.l‘l)cas and CY are related by:
(1,) u Ok Lt n (Q - W)ds (2.48a)
1" cus 1 AU 1
Lt * n+l
- (O ~X ¢ N/
CY o+ =T er0 j; “l.(oeq) ds (2.480)

¢
Appendix B gives several numerical examples of relation (2.48) for two rather
extreme values of n.

1t is wow clear that C* and (AE)C are not equivalent quantities under
any cond it fon despite thedr being derivable from the same conservation lnwl. The
quant Lty (Al)o follows more directly from the conservation law and is the more gen-
cral quantity not only in that {t is applicable to nonsteady as well as steady-
stitte creep but also in that it 1s applicable to constitutive laws which are more gen-
eral than (2.1). The quuntity C* relies on the special property of (2.1) which allows
the existence of a potential W* for the stresses (tr'). Furthermore, since W% does
not have any physical meaning, whereas W has the meaning of stress-working density,
it {8 understandable that (AE)C has an energy interpretation whereas C% does not.
It is for this reason that it seems more appropriate to refer to experimental measure-

dB . , N
ments of - =— as measurements of (Tl)c as opposed to weasurements of Cg or J_.

da 1
The HRR Field

We now give the HRR field in terms of (ATl)c. Whereas similar relations

have been written in terms of Cf for steady-state creep [36], the relations in

terms of (ATL)Q will be valid for nonsteady creep as well as steady-state creep.

The HRR field as given in [37] but modified for creep by replacing vij and uy by

éij and ﬁt respectively, is:

1

Note that these equations are derived on the assumption that t4370 (i.e., creep
steady-state). Therefore, in order to have a well defined creep constitutive
lav we must have y#0 and n finite.
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s
[0 = v e 1 [3,,(0),3,(0)) (2.49a)
=
Py " vk £ §(© (2.49b)
A
“1 - ‘\rKnr“'H ﬁi(e) (2.49¢)

where Geq(O) has been normalized to have a maximum value of unity and K, and

Kf are amplitude factors which are related by
K o= (K)" (2.49d)
¢ 0 '

It can therefore be seen that the asymptotic crack-tip fields are entirely
determined when K, (or Kc) is known or specified. Combining (2.49a,b,c) with

the first equality of (2.24), using (2.49d) and rearranging, gives:

L 1
(ATl) ¢\t (171)c n+l
K ; S ..-..4. [~ o S arvend (2- 50)
o} 'YI.*AL YI*

wvhere I* is analogous to I defined by Eq. (24) of [6] except for the factor

i/ (w+l) multiplying the energy density term. To be explicit,

1 F
*,, [ e Y
I I+ ey . [acq(e)]

n+l

cos0do (2.51)

It is therefore seen that knowing the value of (Tl)C is equivalent to knowing
KU and thus is sufficient for defining all aspects of the asymptotic crack-tip

field during nonsteady creep as well as under steady-state creep conditions.



SECTION IIIL

DERIVATION OF FINITE ELEMENT EQUATIONS

Before stating the variational principle and deriving the finite element
equations, it is beneficial to illustrate the constitutive behavior to which
the finite element model is addressed.

Elastic/Viscoplastic Constitutive Relations

A rather general rate constitutive law proposed by Perzyna [38], can be

written in incremental form as:

de, . y
ij _ 1 . 1-2v of
= AT 4 + T Ark"aij + y<O(F)> aTij At (3.1)

where f, E and v are the elastic shear modulus, Young's modulus and Poisson's
1
. .1 = -
ratio, respectively, Tij ( Tij 3 Tkkdij) is the deviatoric stress and y is a
viscosity constant of the materdal. In writing (3.1) it is implied that

- & 4, VP
Aeij AEij Aeij

where Aeij and AeI? are the elastic and viscoplastic strain increments, res-

pectively. The yield function F(t eVp) governs the magnitude of the incremental

13’ 'k
viscoplastic strains through the function <$®(F)> where
0 for F <0

<d(F)> = (3.2)
O(F) for F > 0
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The relative magnitudes for the incremental viscoplastic strain components

1 v
14" This implies that Aeig, when con-

sidered as a vector in nine-dimensional stress space, is always directed along

are seen to depend on the factor 3f£/3r

.Vp
TR

By choosing F = f = oeq[ceq = (3/2(t

the normal to the surface f£(7

ANV

1543 ] such that Df/aTij = (3/2)

(rij/ueq)’ and choosing ¢(F) = (F)" we find that (3.1) becomes
Acij 1 1-2v n-1
[, ¢ N . 0 - v At
oM ATij + 55 Aikkdij + (3/")Y(Oeq) o (3.3)

This represents the special case of crecp behavior which is considered exclusively
in this scudy.2 It should be understecod, however, ;hat the finite element

model which is described below is applicable to the more general behavior rep-
resented by (3.1).

Derivation of Finite Element Equations

The finite element model is derived from the principle of virtual work

8 - t ds = 3.4
-/;, rijﬁcijdv j; tiéui 0 ( )
(e}

™ the present finite element analysis, we assume only infinitesimal defor-
mations and strains; hence there is no need to differentiate between the deformed

and undeformed configurations.

In writing (3.4) it should be noted that Tij are the stresses

existing at time t + At (where t is the current time), E; are the prescribed

tractions on S, at t + At, and 501[55 = (l./2)(<5ui +6uj 1)] are arbitrary
¥

13 3

»

compatible virtual displacements.
Following customary procedures we introduce the element displacement

stape functions which relate element displacement ui to element nodal

e sa——

lIt is common to choose fiZF in which case we have what is called an associative
law.

ZWhile (3.3) is known to deviate from real material behavior (especially for primary
creep) it is a widely used constitutive law and therefore has been adopted in the
present study.
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displacements {ql

u o= {u} = [N]{q}; GUi = (Su} = [N]{8q} (3.5)

We again use the customary notation wherein strain (and stress) components
are placed in one-dimensional arrays

{¢} = [B){q}; (8¢} = [B){8q} (3.6)
Substituting (3.5) and (3.6) into (3.4) and applying conventional procedures

for assembling element matrices into global matrices we have

‘eic [.j; fT}T[B]dv
e

- [ @ ms]){ Gaeo) = @ -

4]
(<]

Since {8q)} are arbitrary virtual nodal displacements, it follows that

2 u — A L
‘ele[f () Blav - f (CJT[N]dS]I z (p)T = ()7 (3.7)
ve S \

a
e

We now cxpress the stresses {1} at t + At in terms of the current
stresses, (T}I, and the incremental stresses corresponding to the time in-

crement At

(e} 2 Ledpyy = (ohy + (ard (3.8)

o
In (3.8) and in the following, the I and I+l subscripts designate the
ineremental solution with which the quantity is associated. Application of

the incremental elastic constitutive law results in

{c} = {r}I + [E}{ae ,} (3.9)

T+ el I+l

w {dp o+ (EJ{aed g = (Be )

Cvp 1+1]

where {d¢ }

vp 141 are the incremental viscoplastic scrains and [E] is the matrix




i
DUSES

g

of elastic constants. Substituting (3.9) into (3.7), taking the transpose,
and placing the known terms ou the right hand side we have the final form of

the finite element equations:

[K]{AQ}1+l - (T}I+l + (svp}Hl - {R}I (3.10)
where
Ky = 2 fv 81 e (B 1av (3.11)
e
» - L‘ T —
ir}IJrl ole j; [N] {t}1+1cls (3.12)
o]
e
)
{Svp}1+l- ele j; (B [L]{Ac }Iﬂdv (3.13)
e
5 T
(R}I = ole j; (B) {T}IdV (3.14)
(<)

The abeve volume integrals are evaluated in the current work by 2x2 Gauss
quadrature. The array (T} is input directly in terms of node point forces.

Solution Procedures

It should be noted that [K] of (3.10) is just the elastic stiffness
and therefore only needs to be formed and decomposed1 once. This results in
significant savings in the number of computations per time step as compared to
methods using stiffness matrices which must be reformed at each step (i.e.,
tangent stiffness methods). It should also be noted that the term {Svp}1+1

is computed from incremental viscoplastic strains {Ae:Vp}I_H which are esti-

mated,USing (T} and the material constitutive law (3.1). Only for the

lThe equations (3.10) are solved in the current work by the decomposition [K]=
(L1(D]{L]T where (D] is a diagonal matrix (the only nonzero entries are those
on its diagoral) and [L] is a lower triangular matrix (the only nonzero entries
are those below its dilagonal); see for example [39].
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special situation when the stresses do not change with time will this estimate
be exact. Having obtained the incremental nodal displacements {AQ}]+1 by

golving (3.10), one can casily find the total incremental strains {Ac} ia

141 ¥
the incremental analogue of (3.6). We now describe two procedures for ob-
taining (r)1+1.

The first and simpler method to obtain (t)1+1 is to substitute the esti-

mutud{Aevx} used in solving for {AQ} into (3.9). 1f one does this, then

T 141
it happens that

= {T}I+l ‘ (3.15)

I+1
Ry
and therefore (3.10) becomes for the next stepl
= {T}

+ (s } - {1} (3.16)

(K1 (aQ) vp’ I+2 I+1

I+2 1+2

= {ar}, ., + {Svp}I+2
This method was compared to the following method and was found to require smaller
time steps to achieve similar results.

Rather than using the estimated values of {Ava}1+l and (3.19) to
determine {T}I+l’ the constitutive relation (2.1) is integrated over the cur-
rent time step at each Gaussian quadrature point with the condition that total
strain {c¢! varies linearly with respect to time from {a}I to {€}1+l' (The
present study uses an Eulerian scheme with each time step being divided into
five subincrements.) The result of this procedure is better adherence to the
puostulated constitutive law at the expense of introducing a somewhat unequili-
brated stress state. The amount of disequilibrium depends on the accuracy of
the original estimate for the incremental viscoplastic strains and thus on the
time step size.

At this point one has two alternatives. The first {s to use the

1"I‘his procedure results in the current model reducing to that of Zienkiewicz
and Cormeau [40].
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viscoplast Lo strain increments obtained through the time integration procedure
as an improved cstimate and to re-solve (3.10) for the current time step. This
procedure would, after several iterations, result in a stress state which is
equilibrated to within some small user specified tolerance. With this type of
procedure the time steps could be as large as those used with tangent stiffness
methods. Further, it is reasonable to expect the solution to be at least as
accurate as Af a tangent stiffness method were used.1

The secoad alternative is to go immediately to the next time atep with
the understanding that the term {R}; in (3.10) results in the disequilibrium
from the Ith step being corrected in the I+l step. This feature is the result
of the virtual work statement (3.4) being writtcen in terms of total stress and
tractions rather than incremental quantities. Owing to this corrective nature
and to the diminishing returns Lue obtains from additional iterations, the

second alternatisc is used in the present study.

Regulation of Time Steps

The creep calculations use a variable time step size which is auto-
mat {cally regulated by the finite element program based on two criteria. The
first criterion is the maximum percent difference between the incremental
equivalent estimated creep strain and the incremental equivalent integrated
creep strain for all the Gauss points in the mesh:

Mepgr = B€onp (3.17)

Cl = Max

Acyr

The second criterion is the maximum ratio of incremental equivalent integrated

f
k
&
:
H

«

lThis procedure could actually be more accurate if similar constitutive law
integration procedures and equilibrium iterations are not performed with the
tangent stiffness procedure. Also, it has been shown [41] that many element
types become overly stiff when using the tangent stiffness method for modeling
constitutive behavior gpproaching incompressibility. This problem is not en-
countered with the current method.
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creep strain to the equivalent elastic strain:

v - - B
(,2 MuxE’\eINT 5] (3.18)
The user specified, maximum permissible values for Cl and 02 are Ei and E;,

respectively. The size of the next step is then obtained from

El 52
ACL+1 = AtI . Min 'é-; , E; (3.19)

Note that the initial time increment cannot be detzrmined from (3.19) and must

be specified by the user so as to satisfy the two step size criteria.

- o

In the present. study, the values of hl and 02 are 0.2 and 1.0, res-
pectively. With these values, it has been found that the initial time steps

are contreolled by E& while later time steps are controlled by Eé; The values

of CL and C2 are strongly affected by the mesh refinement since a finer mesh

results fn Gauss points being closer to the crack-tip and therefore having larger

stresses and strain rates. To determine the sensitivity of the solution to the
Sﬁleatim‘OfEa‘and Eé, a compact specimen was analyzed with the above criteria
and also with Ei and'E; being halved (i.e., Ei = 0.1 and Eé = 0.5). It was
found that the load point displacement differed by less than 0.5% for all

time and that the steady-state solutions were essentially identical., It there~
fore appcars these values of Ei and Eé are small enough to ensure that the

solutions to be discussed do not depend nn these step size criteria.




SECTION 1V

ELEMENTS FOR SINGULAR CRACK-TIP BEHAVIOR

This section describes and compares several two-dimensional crack-tip
gingularity elements. Perhaps the primary motivatioen for introducing singu-
lar crack-tip elements into finite element models s the significant savings in
computational expense. It is shown in Section V, for example, that 57 element

-1/2

model with elastic, r , singular elements results in a more accurate solution
than a non-singular 102 element model. The savings in CP time in this case is
greater than 50%. Generally, one must consider that some additional effort

iy required to develop and implement a special crack-tip element and that this
tends to offset the savings in CP time. It has been discovered, however, that
the very commonly used, eight-noded, isoparametric element can he made to

produce an r-l/2

strain singularity by merely shifting mid-side node locations
via the node definition input data [42,43). Therefore, a very convenient

means for modeling linear elastic crack-tip behavior exists. It has also been
shown [44)] that a 1l/r type strain singularity can be obtained with this element
type thus providing a suitable element for non-hardening plasticity problems.

For more general singularity behavior, such as the r_“/(n+l)

strain singularity
associated with the HRR crack-tip field of power-law plasticity or creep.
one m it resort to sepcially formulated elements.

In the following sections, we consider special elements for linear

s R e e
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elastic problem (r'"l/2 strain singularity) as well as special elements for
ptoblems involving the HRR, r-“/("+1), strain singularity. In discussing
these elements, an attempt is made to point out their advantages and dis-

advantages.

Elements for Lincar Elastic Materials

Although many special elements have been used for linear elastic frac-
ture analysis (see Atluri ([45] for review), we consider here only the eight-
noded isoparametric element. There are two basic forms in which the eight-
noded isoparametric element can be used as a linear elastic crack-tip element,

In the first form, the two midside nodes adjacent to the corner node located at
the crack-tip are shifted toward the corner node so that they occupy the quarter-
point of their respective sides. This form is illustrated in Fig. 4.1 by the
Type A crack-tip mesh. The second form in which the element can be used is
illugtrated in Fig. 4.1 by the Type B crack-tip mesh., In this form, the eight-
noded element is degenerated to a triangular element by defining two corner

nodes and their midside node to be the same node which is located at the crack

tip. Then the two midside nodes adjacent to the crack-tip corner node are
shifted to their quarter-points. It is important that only one node be used
at the crack-tip, as opposed to three superposed nodes, since the latter case
has been shown [44] to result in the l/r type strain singularity.

Barsoum [43,44] notes that numerical experimentation shows the degen-
erate triangular form yields more accurate results than the nondegenerate
eclement. He goes on to recommend that the four-sided configuration be abandoned
hased on the premise that the r—l/Z singularity exists only along the edges
of the element and also that the strain energy for this element becomes unbounded

if exact integration is used [44]. Ying [46], on the other hand, concludes

B e ke AR R

that the x-l/z singularity does exist within the four-sided element as well as

along its edges and that the strain energy for the element is bounded (and thus
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the element stiffness is well defined).

Apart from the above considerations, there are two aspects of the
degenerate Type B element which inherently make it preferable to the nondegenerate
#lement. The first is that the process of collapsing one side of the element
to coincide with the crack-tip results in the element local coordinates being
transformed into a form of polar coordinates. Since the element's shape
functions are defined in the element local coordinates it is to be expected
that angular bias will be much less apparent for this element type. '"he second
feature of the degenerate triangular element which makes it preferaﬁle is that
it is geometrically better suited for creating crack-~tip finite element
meshes of arbitrary refinement. Since the angular dependence of the near tip
solution is significant, this flexibility for increasing the mesh refinement
in the angular direction is important. Combining these two aspects with the
numerical e.idence c¢ited by Barsoum, it seems the triangular, degenerate
element is the better element for modeling the elastic crack-tip singularity.
For this reason, all g¢iarter-point element calculations in the present study
use the degenerate triangular form, In particular, the mesh configuration
Type B of Fig. 4,1 has been used exclusively.

Elements for Materials with HRR Crack-Tip Fields

In the previous section, we discussed crack-tip elements for linear
elastic material behavior, It has been seen that the standard eight-noded

1/2

isoparamatric element can be made to have the r strain singularity and thus
is useful for analysis of c¢racks in linear elastic materials. It can be shown
(see for example, Atluri [45]) that this isthe only singularity which this eight-

noded element can exhibit. However, it can also be shown that higher order

elements of the isoparametric family can result in singularities of the type

r~n/(n+1)’ provided n is an integer. If we denote the order of the isoparametric
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(1-t)/t

intarpolat fon as m, then singularvities of the type r can be obtained for

t an integer such that twm [45]. 1In terms of the HRR power law exponent n,

-n/(n+1)

this meuns we can have singularities of the type r where n in an integer

such that nsm-1,

Based on the above discussion, 1t can be seen that it is possible to
omploy lsoparametic elements as HRR crack-tip elements provided onc is satisfied
with Integer values of the power law exponent, n. By choosing the highcest value
of n which ane is interested in modeling, one can then program the n+l order
Lsoparamecrice elemerit. The problem with this approach is that values of n
for common materials can be as high as 20, This implies that one would need to
program an isoparametric element of order 21, While this is perhaps within
reason, ft will be shown that nonisoparametric elements can be derived which are
more veadily dmplemented,

Two Crack-Tip Elements from the Literature

In this discugsion of special elements we limit consideration to two-
dimensional, triangular elements with straight sides., The elements arce derived
in terms of the triangular polar coordinates (p,o) illustrated in Fig. 4.2

and which are related to the global cartesian coordinates (xi) by

1 2 1 1 3 2
®x . o= s - . =( ¢ - 4.1
Ryo= X + n{xl xi) + 2(0 + l)(x:,L xi)} (4.1)

In (4.1), the superscripts denote the node number. The crack-tip is assumed
to be lacated at node 1 (i.e., at p=0). The geometric mapping of (4.1) is
similar to eircular polar coordinates in that the transformation cannot be
inverted at p=0,

We now consider several choices for the assumed displacement fields

within the triangular region. The first choice is

1 A2 2
u (ry0) = uy p\(ui - ul) + %.(0 + l)(ui - o) (4.2)
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Tt can bhe seen that (4.2) is similar in form to (4.1) except that p is replaced
by r\(om\ﬁl) 0 ag to induce a singulacity in the displacement derivatives. The
throe-noded element vegulting from (4.1) and (4.2) is of the type proposed by
Tracey and Cook [47]. Inspection of (4.2) reveals that this element permits
rigid body translation but does not permit rigid body rotations or constant
straln modes, While problems exist for which this clement provides reasonable
results, the lack of rigid hody and constant strain modes make this an un-
degirable element for general anlaysis.

We now consider a straightforward procedure which allows an alternative
to (4,2) to be written which (1) provides all the rigid body modes as well as
all the constant strain modes, (11) results in the desired rA displacement be-
havior and (11i) results in compatible displaocement ficlds with adjacent
clements.  First note that we can be assured our assumed displacement field
containg atl ripid body and constant strain modes provided it can accomodate

the following gencral displacement ficld

v by s -, .,‘
up oAy bl‘l 4 ¢ X,y (4.3a)
Wy "+ ble + ¢yX, (4.3h)
where s bi and ¢, are constants, Clearly, ay and a, provide for rigid
tranglation medes, while bl and ¢y provide for constant strains, 11 and €nno
respectively. The constants ¢y and b, provide a rigid rotation if ¢y = -b, # 0
LY L

and a constant shear strain, ¢ if ¢y = b, # 0. If we substitute (4.1)

127

into (4.3) and regroup terms ye have the result

ug - u? + b{p + ciﬂu (4. 4a)
u, = ng + bgﬁ o C§DU (4.41)

Starting from (4,4), we can now proceed to add terms as desired with the
only condition being that we maintain ccmpatible displacements with neighboring

sinpgular and nonsingular elements



We now consider a general approach for establishing displacement shape
functions for triangular crack-tip elements. Since both displacement com-
ponents will follow the same form, we drop the subsceript for simplicity. We

now write

1 :
u(,0) = (14 o) f () o %(l - mf () (4.5)
with
A :
£,(0) = a, + b+ e p (4.6a)
L) = oa, 4+ bop 4o px (4.6Db)
"3 3 3 3 *

Inspection of (4.5) shows that on the element side 1-2,u(p,-1) = fz(p) and
on gide 1-3,u(p,l) = fa(p). It can also he scen that u(l,v) is linear on
gdde 2-3.  Since fz and £3 each have three unknowns, Lt follows that element
sides 1-2 and 1-3 must have three node¢., This means two new nodes must be
creoated,  Since the geometric properties of the element do wot depend on the
locations of these nodes thedr positions along the edges of the element are
arhitrary. In the following, however, we choose to place these nodes at the
midsides. 'These now nodes correspond to positions 4 and 5 in Fig. 4.2, De-
3

noting the nodal displacements by u’, j=1,5, we now use the following con-

ditions to determine the six unknowns in (4.6a) and (4.6h)
) ,
u(L,yv) = ul; u(l,-1) = u"; u(l,l) = u3 4.7)
[ [
1 %*,—l) = oy u(%—,l) S

The result is

2 ! :
a, = a, @ ul; b, = Wt -t - Cyi by = o - ot - ¢y (4.8)
] 4
o = 2u4 i ul - 2u” - u3 - ul
“ - J 1«
2 " TIN 3T T

Substituting (4.8) and (4.6) into (4.5) and defining the functions multiplying
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ui as Nz we have
5
u(p,v) = % Niui (4.9)
i=1
where
5 1, ) 5 55
Nl = 1 - P - E(p = p)’ N2 = tbl‘l,l’
5 55, .5 RS- TS R I
Ny = bV Ny = 91055 Ny = 9,0
with
p=2tt o
5 1.4 _ 5 1 .
5 _ L, A 5 .2 A
q}l. 3] B(p - p) ‘112 B<p = p)

By examination, it can be seen that (4.9) has terms similar to those of (4.4)
and thus can represent all the rigid body and constant strain modes. TFrom the
form of (4.5,6.8) it can be seen that the element must be compatible with
neighboring elements. Therefore, we have an element whihc satisfies all the
requirements which we originally stipulated. If the o in Fig. 4.2 and in (4.9)
is replaced by 20' - 1 we recover the form of the equations suggested by Stern
[48].

As a result of the appearance of pA in the shape functions for this
element, the integration involved in evaluating the stiffness matrix (particularly
the integration with respect to ) is not suited to Gauss quadrature. In [48],
Stern derives a special integration rule, which when combined with standard
Gauss quadrature for integration with respect to U, results in exact stiffness
integrations. Unfortunately, the expression (28) in [48] which specifies
the relative radial location of the quadrature points is apparently in error.

The corrected expression 1is as follows:
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L+ ) - zAxg"L =
X, ® X, = | ) ' (4.10)

L 2 .
) 20 - (1 + Mx

o -

where X, ante X, denote the values of poat which the sampling points are located.

The corresponding weights are then given by

Lo A1 L
7 % WAL
xl ) x\'l X (4.11)
172 X1
L -1 1
272 T A ]
A A1 ) (4.12)
S .

A A
This quadrature rule integrates terms of the type ¢, »  and 02 1 exactly.

Since the rule has four parvameters (x xe,wx,wz) and is only required to integ-

l)
rate three types of terms, the locations of the quadrature points are not
uniquely defined.  Seluction of x, according to the following cirterion results

in both the numerator and denominator of the bracketed term of (4.10) being

pusitive and thus results in a valid quadrature rule.

1
[l£§§l%] L=A <X, <1 (4.13)

Stern [48] presents a family of elements which are developed so as to
be compatible with surrounding nonsingular polynomial based elements of arhit-
rary otder., While it should he possible to verify that cach member of this
family does indeed satisfy the requirements which were discussed in deriving
the above element, this procedure provides little insight to the method for
deriving such eloments. In the next section, we generalize the procedure used
in arriving at (4.9) to derive an element which is compatible with quadratic
elements (e.g., eight-noded isoparametric elements).

Derivation of a New Crack-Tip Element

In this section we generalize the procedure used in the previous section
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to derive a crvack-tip element which (1) contains all rigid body and constant
stratn modes, (1i) results in compatible displacement fiwlds with neighboring
singular and nonsingular elements and (11i) results in an arbitrary strain singu-
larity at the crack-tip fo the type r\~1 (0=\-1),

We start in the same manner as before by writing the displacement field

in the form
) 2, . ] 1 ,
ulp,v) = (L-a )fl(p) + Eﬂ(o“l)fn(”) o+ ;u(q+l)f3(ﬁ) (4.14)

whore

: ! ‘ A
fi(n) ay § bin + e,n (4.15)

Noting that the form of (4.15) rvequires three displacementy being specified
along cach of three radial line segments {o= -1, v = 0, v = 1) we introduce
node points at locations 4 through 7 as 1illustrated in Fig. 4.2, At this
point it is seen that this procedure will result in an interior node. It
will be shown later that this node can be climinated in a number of ways.
Denoting the nodal displacements by uj, J=1,7 we now use the following

conditions to determine the nine unknowns in (4.14,15):

2; u(l,l) = u (4.16)

u(0,0) = uty u(l,-1) = u
1 4 1 5 v 6
uC,=1) = u’; u(EQL) = u”y u(l,0) =u

1 7
u(Eyo) =y

The result is

ay = a, = ay-= ul (4.17)
bL = 0 -y - cl; b, = u2 - u - . b3 = u3 - u1 - ¢y

ey = é{2u7 -u - ul); €y ™ é{Zu& - u2 - ul)

¢y ”'%(Zus -u - ul)
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with 3 = 21—\ -1

Substivuting (4.17) and (4.15) into (4.14) and defining the functions multiplying

uL as Ni we have
7
u(p,u) = § N,Zui (4.18)
j=1
whore
NZ = 1 - p -—~%3-(nA -p)
7 LI Y Y D S R
Ny = Opbps Ny = 0505 Ny = dy¥y
71T T T 1T
Ng = dq¥ys Noo= gyl Noo= by
with
7 I R Y B
‘bl L - a7 ‘:‘2 20‘(0 - 1); \})3 "é’\‘(u + 1)
2, A 7 1 ) A
N CANE)) Uy B[(l + R)p - p]

Inspection of the derived shape functions verifies that this element satisfies
all the requirements which we stipulated at the beginning of the derivation. It
was noted that this element has an interior node. While interior nodes are
generally avoided so as to reduce the bandwidth of the equations to be solved,
it seems that in the case of crack-tip elements the advantage of having additional
degrees of freedom in the vicinity of the crack-tip more than compensates for
the few additional equations which are involved.

We now consider several alternatives for eliminating the interior node
of this clement and note that onc of these results in the corresponding clement
of Stern [48]. We start by substituting (4.15) into (4.14); using the condition

that fl(O) = fz(O) = fg(O) and regrouping terms we can write

u(p,0) = la + b + clpAI (con't on next page) (4.19)
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1t should be understood that any arbitrary condition relating u7 to one, scveral
or all of uL through u6 will suffice to remove the interior node (i.e., node 7)
from the element relations. However, it seems more natural to eliminate the
node by the removal of one of the terms of (4.19). Noting that the first

two terms of the first square bracket and the first term of the second square
bracket represent the rigid body modes and constant strain modes, we are left
with four terms which can possibly be deleted so as to eliminate the interior
node,

If we choose to eliminate the term clpA by constraining ¢q to be zero
we gee from (4.17) that this implies u7 = %{u6 + ul). This choice would some~-
what defeat the objective of having singular displacement derivatives and thus
is not advisable. Furthermore, it is inconsistent to retain the higher order
terms opA and osz while not retaining pA. Note that the term opA cannot be
used to eliminate u7 since u7 does not appear in its coefficient (i.e., in

2

\
either c, or CB)' Therefore we are left with the terms czp and ¢ ¢ ', Either

2
of these terms can be chosen to eliminate u7, Stern's element [48) rorres-
ponds to the case in which the coefficient of 02p is set ddentically to zero,
0f the elements discussed above, only the seven-noded element has been
implemented in the present study. In Section V, this element is used for
elastic analysis as well as for creep analysis. The special quadrature rule

proposed by Stern [48] and summarized in (4.10) threough (4.13) has been used

exclusively in evaluating this element's stiffness.
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SECTION V

CREEP CRACK GROWTH COMPUTATIONS

Description of Problems

The creep crack growth analyses which will be presented in this chapter
deal with three distinct problems. The following sections introduce each
problem by describing the physical aspects such as geometry, loading
and material properties as well as by describing why the problem was selected
and what is hoped to be gained by its consideration.

All calculations in this chapter assume infinitesimal strains and small
deformations, The crack propagation calculations use quarter-point crack-tip
elements and a mesh shifting/remeshing procedure.

Problem I: Non-Staady Creep of a Compact Specimen

The compact specimen geometry was chosen for study bhecause of its wide-
spread use in fracture experiments and because numerical solutions for this
problem have appeared in the literature thus providing results with which to
compare, The dimensions of the specimen as well as the material properties
and applied loading (see Fig. 5.1) were chosen to coincide with those used
recently by Ehlers and Riedel [33]. The problem is used for a mesh ref inement
sensitivity study and for exploring various aspects of the ('i‘l)c and Ci con-
tour integrals during both nonsteady and steady-state creep.

Several finite element meshes have been uased in the analysis. All
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of these meshes employ two-dimensional, eight-noded, isoparametric elements.
The integrations for these elements are accomplished with 2x2 Gauss quadrature
and therefore only elements with straight sides are employed. As seen from
the meshes in Fig. 5, 2, the pin-loading hole 1is not modeled. In all models
the horizontal placement of the point load corresponds with the load line of the
ASTM standard geometry (x = 25,0 mm). The vertical position is y = 32.5mm.
A sensitivity study showed that shifting the load to y = 40 mm has virtually
no effect on the pertinent aspects of the solution,

Most of the meshes contain collapsed eight-noded isoparametric elements
at the crack-tip as 1illustrated in Fig. 6.2. In several calculations, the
midside nodes of these crack-tip elements are shifted to their quarter-points

1/2

so as to produce an r strain singularity at the crack-tip. Also, several

calculations are performed with a special conforming seven-noded, triangular

-n/(n+1)

element which imposes the HRR, r , type strain singularity. Table 5.1 iden-

tificu the meshes for which calculations are made and also gives the load point

displacement and Jl for the elastic solutions., These Jl values are compared to

those based on the expression for K. given by Srawley [49].

I
Problem IT: Constant Velocity Propagation in a Creeping Strip

This problem 1is concerned with a finite height, infinitely wide strip,
with a semi-infinite nrack., Loading consists of uniformly applied displacement
rates at the top and bottom edges. This problem has been chosen for two
reasons., First, since the strip is infinitely wide and the boundary conditions
do not change with time, the propagating crack-tip fields can be expected to

reach a “'convecting steady-state'

creep conditicn. Here we usc¢ the phrase
"eonvecting steady-state'" to mean that the field remains unchanged in time with
respect to a coordinate system which is centered at and moving with the crack-

tip. This terminology is used s0 as not to confuse this condition with the usual

steady-state creep condition in which material stress rates are zero.
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In tho convecting steady-state case, stress rates for material points
are not zero. As a result, C; cannot (in a strict sense) be a valid crack-tip
parameter. As should be clear from earlier discussions, ('i‘l)c is a valid
parameter at all crack speeds since it does not require material stress rates
to be zero. From a practical point of view, if the crack speed is low enough,
then one can expect CI to be a useful quantity. By varying the crack propagation
speeds for this problem over the range of velocities observed experimentally
(for a given material), it should be possible to determine if this range has
any portions in common with the range of velocities for which Ci is a useful
parameter.

The second reason for choosing this problem is that CI can be evaluated
analytically for the special case when the crack is stationary. This allows an
independent check on the finite element calculations and serves as a reference
for the analyses in which the crack is propagating. The analytical evaluation

of C* parallels the evaluation of J, for a similar elastic strip problem as

1 1
discussed by Rice [50]. (See Appendix E) It should be noted that C; has been
shown to be related to the steady-state value of ('i‘l)c and therefore it is
possible to obtain (‘i‘l)css for the stationary crack case from C; and equation
(R.1) of Appendix B. The direct evaluation of ('i'l)c in terms of either its in-
tegral representation or its energy representation requires knowledge of the
stresses in the region of the strip adjacent to the crack-tip and therefore is
not a trivial task.

The material properties used in this problem are representative of 304
stainless steel at 650°C. These material properties and the finite elemeat
discretization are given in Fig. 5.3. The mesh for this problem may at first
appear rather coarse; however, elastic and steady-state creep solutions obtained

with this mesh are sufficiently accurate to justify its use. The comparison

values and steady-state C* values with their analytic

of computed elastic J !

1
- 852 .
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values s gidven in Table 5,2,

Problem L1I: Creep Grack Groewth in Double-kdge-Crack dpecimens

The purpose of considering this problem is to apply the model tuv a
problem for which experimental data exdsts.  While much experdmental data has
boep reported dn the literature, most authors do not include sufficient in-
format fon to allow a numerical simulation of their experiments. The current
problem is based on the experdments of Koterazawa and Twata [51). The primary
reasons for selecting this work for study are that crack length versus time
histories were given and that the experiments were performed on 304 stainless
stoel for which high temperature clastic and creep properties were already
avallable.

The geometty of the experimental specimens is given in Fig. 5.4. The
finite eloment mesh for the caleulations ds shown dn Fig. 5.5 with contour
integral paths befng indicated by dashed lines. Tt can be seen that the mesh
takes advantage of the two planes of symmetry for the specimen and does not

modal the 60%noteh. The initial crack length indicated in Fig. 5.5 cerrosponds
to the noteh depth dn the specimen, ALl calculations for this specimen assume
plane stress conditions and use the matevial properties given in Fig. 5.3.
Blastic J‘ results for two crack lengths ave compared in Table 5.3 with those

(based on formulas for KI) from [52] and are seen to be in good agreement:,

Compact Specimen Analyses

The following describes several calculations for a compact specimen
during transition from an initial elastic state to one of steady-state creep.
The geometry, loading, materdial properties and other details were descrihed in

the first section of this chapter as Probelm I. We first consider results for

the 300 element mesh of Fig. 5.2 in terms of Cf and then (Tl)c' Then we addroess

1‘l\imluling, the notch would have required the mesh shifting subroutines to be
generalized.
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the topics of mesh refinement and the use of specisl crack-tip singularity ecle-

ments.

Caleulation of (’i‘i)C and Cf for Nonsteady Creep

i

Thie path-independence of (Ci)ﬁ during nonsteady crecp is 1llustrated
in Fig. 7.6 using results from the 300 element mesh, The & superscript
desipgnates the particular PZSA contour which is used, with ¢ being the
nondimensional distance from the crack-tip to the point where the contour
crpsses the crack plane, Therefore, & is zero at the crack-tip and has a
maximum value of unity when the contour is at the boundary of the specimep,
Valueg of (C’iﬁ)E are plotted as a function of time for nine values of £ ranging
from 0,03 to 0.92. It is seen that (Ci)g is largest for contours t¢lose to the
crack-tip (small ) and that as steady-statc is approached, the values from
all contours converge to Ci. The solution has essentially reached steady-
state at 300 hours. After 300 hours, the values of (Cifgfor all nine contours
are within 1.5 percent of their average value. Thisvalue of Ci, as well as
values from calculations with the other meshes, is given in Table 5.1,

Now we consider computed values of (fl)i as approximated by (ATL)Z/At'
The values of (ATl)z are obtained through the specialization of (2.10) to the

case of infiuitesimal strains, small defornations, symmetric mode T be‘avior

and traction-fiee surfaces:
¢ E)Aui
(AT)) 7 = fr [nlAw =gy, 400 5y ]dS (5.1)

234 >

1
art
-f ?—iimzi av
v -y 9% 1
t ¢
[

Since (Tl)c is the limit of (Tl)z as ¢ goes to zero, (&l)z is plotted as a
function of ¢ for several times (see Fig. 5.7). In this figure, ¢ is the

nondimensional size of VC and 1is measured in the same manner as £, the
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(Tl)é as a function of € for several times



nondimensional size of T The open points are the values of (Tl);, ags com-

234°
puted by (5,1), for nine contours in the 300 element model. The value of the
crack-tip parameter (’i‘l)c is given by the intersection of each respective curve
with the ¢ = 0 axis. Due to the large gradient in (Tl): for small ¢ 4t is

seen that the accuracy of any extrapolation based solely on these evaluations

of (’i’l)C (i.e,, open points) would be of questionable accuracy, except perhaps

near steady-state conditions. The solid points at ¢ = 0 in Fig. 5.7 have been
obtained using (2.14). It is seen that these values of ('i‘l)c appear to be reasonable
extrapolations of the curves of (’i‘l)g (5.1) thus giving some degree of confidence in their

acouracy. )
Path Independence of (Tl)c

Based on arguments put forth in eavlier portions of this paper, the
value of ('i'l)C obtained through (2.14) should be independent of the path

(i,e., ) which 1is used in its computation. This path-independence is

T234
illustrated by Fig. 5.8a where ('i?l)c is plotted as a function of the nondimen-
sional digtance of P234 from the crack~tip, &, for several times. GCenerally,
the path-independence is seen to be quite good. The largest deviation from
path-independence in this figure is for the intermediate time of 10.8 hours
with the difference between the extreme contour values being less than three
percent. To further emphasize this path-independence, (i?l)C is plotted as a
function of time in Fig. 5.6. As a result of its path-independence, ('i'l)c is
represented by a single curve., Interestingly, this curve is a straight line
for times before approximately 10 hours.

Riedel and Rice [36] have arrived at the following approximation for
Ku(which they call A(t) based on the assumed approximate path-independence of
JL during the initial portion of nonsteady creep:

2 2 L
. KJ(L = v )/n] o)
v L (n+d)yIt

(5.2)
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Comparing (5.2) with (2.50) one concludes that ('i‘l)c should behave like 1/t for
times when (5.2) is valid. 1In a log-log plot of (il)c versus time this would
result in a straight line with a slope of ~1. The straight line shown in Fig.
5.6 Ls dinclined from the horizontal by 40° and therefore has a slope of -0.84,
The current work has resulted in some evidence that Jl is approximately path-
independent during initial nonsteady creep but that 1its value tends to increase

with time. This tendency for J, to increase with time could explain the rather

1
significant departure of the current results from the behavior of (5.2).

Quarter-Point Singularity Element Calculation

We next consider the results of computations using 57 and 102 element

meshes with quarter-point singularities, The purpose of considering these less

refined meshes is to determine if the expense and effort in using the 300 element

model is necessary for obtaining accurate results. Table 5.1 summarizes the
results of these meshes for the limiting cases of purely elastic behavior
and steady-state creep behavior. For the elastic problem it is seen that the
results from these meshes agree with the 300 element mesh results to withir
one percent. At steady-state the 102 element model still agrees with the 300
element mesh (in terms of Ci) to within one percent while the 57 element
model now differs by approximately eight percent.

The contours used for the 57 Qnd 102 element mesh are indicated in Fig.
5.2. The 57 element mesh has four contours while the 102 element mesh has
eight. The path-independence of (il)c, as computed frow “2.14), is illustrated
for these two meshes in Fig. 5.8b and 5.8c. It is seen that the degree of
path-indepeﬁdence in both is similar to that observed for the 300 element mesh.
Since we have evidence that the 57 element mesh is less accurate than the other
meshes at steady-state, it appears that high quality of the path-independence

cannot generally be interpreted as meaning the solution is accurate.
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To determine the adequacy of the 57 and 102 element meshes for the non-
steady creep problem we now compare their ('i‘l)c histories with that obtained
with the 300 element mesh (see Fig. 5.9). The curve appearing in this figure
has been placed through computed points from the 300 element mesh. The results
of the 102 element mesh agree almost perfectly with this curve for timee between
0.2 hours and 16 hours., Prior to this period and after this period the results
fail below the curve by as much as 20 percent. While little can be said about |
the absolute accuracy of the calculations for early portions of nonsteady creep,
we know (based on Appendix B) that ('i‘l)c should agree numerically with Ci at
steady-state to within a few percent. Therefore it -can be said that the
values of ('fl)c from the 102 element mesh are significantly in error at steady-
state. Recalling that this model gave a steady~state value of Ci which ggree
quite well with the 300 element mesh results (see Table 5.1) it is perhaps sur-
trising that such a significant error in the steady-state value of (’fl)c gan
exist, To better understand the results of this model, (Tl)z is plotted as a
function of € in Fig. 5.10. It is noted from this figure¢ that the values of
(’i‘l)C based on (2.14) (i.e., the solid points) appear to be reasonable extrapo-
lations for times when the results are in agreement with the 300 element mesh
results. However, as steady-state is approached, it is seen that these solid
points no longer appear reasonable. If, however, one extrapolates the values
of (Tl)z to ¢ = 0 for the bottom two curves of Fig. 5.10, it is found that
these values of (il)c are in good agreement with the 300 element mesh results.

In comparing the equations for evaluating C{, (Tl)z and (Tl)c, it is
seen that (’i‘l)c is the only one of the three which involves an integration
over the crack-tip quarter-point elements. Based on this and the apparently
good accuracy of C{ and (il)z it is believed that the integration cwer

these elementg is the major cause of discrepancy in (’i‘l)c between the 102

and 300 element mesh calculations.
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The 57 element results do not compage favorably with the curve of Fig.
5.9 for any significant portion of the solution. For most times the valucs of
(fl)u fall below the curve with the percent difference ranging from 50 percent
at ¢ = 0,02 hr. to 15 percent at steady-state. Based on the discrepancy of Ci
indicated dn Table 5.1 and in the generally bad comparison of ('i.‘l)C in Fig.
5.9. it appears that the 57 element mesh with quarter-point singularity is not
suf ficlently refined for accurate creep calculations. This conclusion is per-
haps a bit unexpected considering the degree of accuracy which this mesh displayed
for the elastic probelm (see Table 5.1). The reason for this drastic change
of accuracy in going from elastic to creep behavior may be that the crack-tip

-n/(n+1) type be-

strain singularity (i.e., r_l/z) is inappropriate for the r
havior expected to exist during creep. This topic is addressed in the following.

HRR Bingularity Element Calculations

Based on the above observations, several analyses have been made using the
seven-noded variable singularity element described previously (Section IV). Tne
elastic solutions obtained with this element agree very well with those using
the quarter-point isoparametric element as can be seen from the entries of
Jl in Table 5.1. Also included in Table 5.1 are the quasi-steady-state values
of Ci. The dntroduction of the correct strain singularity for steady-state
areep (r—n/(n+1)) does not significantly affect the 102 dédlement mode's Ci but
does imporve that of the 57 element model.

The analyses which use the seven-node singular element have the same
singularity for the elastic solution and the subsequent creep solutions. At~

1/2 -n/(n+l)

tempts at changing the singularity from the clastic r to the r

value between the elastic and first creep solution have created numerical dif-
ficulties due to the disequilibrium introduced in the process. No attempt

at a gradual transition has been made.
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The (TL)Q results using the seven-noded singular ¢lement are shown in
Fig. 5.11. The solid curve represents the results of the 300 element wmodel.
The evaluation of (Tl)c 1s according to (2.14) with the numerical procedures
helng identical to those employed with the quarter-point clements exaept for
the contribution of the singular elements to the volume integral, For the
quarter-point clements, the stresses are assumed to be distributed lineraly with
respect to the local coordinates. The volume integral is then evaluated in
terms of quantities at the 2x2 Gauss ponts., For the seven-node element, linear
interpolation is used and in addition, several calculations are done assuming
radial dependence of the type 0 = a + b —/(l+n)‘ It can be sean from Fig. 5.11

that none of the calculations agree well with the 300 element results.

Bascd on this set of calculations, the general disagreement in ('i‘l)c
batween the singular crack-tip element models and the 300 element model does not
Appear to ba due to the strength of the singularity which is introduced at
the crack-tip. The general accuracy of C{ for all the solutions with either
elastic or crecp type strain singularitlies supports this view. Rather, it seems
likely that the difficulty in computing the volume integral of (2.14) stems from

the crack~tip elecment fields not satisfying the condition

L Te ATsa e D ;
Lt . i (c,l}) Ac (G,B)de e O (5.3)
¢~} - 3xl i

3
From the discuision of Appendix A it can be seen that if this condition is not
satisfied while at the same time the fields have the correct asymptotic (singu-
lar) radial dependence, then the volume integral of (2.14) does not exist,

It therefore appears that accurzte evaluation of ('i’l)c using (2.14)

cannot be accomplished if one uses crack-tip singular elements which provide
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for the satisfaction of condition (5.3). At this point, it appears that one must
use a rather refined non-singular mesh (such as the current 300 element mesh)

pr introduce special crack-tip elements which satisfy (5.3) in order to compute
&l)c accurately. The next section illustrates that for many probelms of
practical importance, a more attractive alternative may exist.

(il)z as a Crack-Tip Field Parameter

The previocus discussion has pointed cut some computational difficulties
involved with evaluating (Tl)c. It was concluded that these difficglties
are associated with the contirbution of the crack-tip singularity elements to the
volume integral of (5.1). It has been seen that deépite the elastic strain
singularity introduced by the quarter-point element scheme, the 102 element
mesh gives accurate values of C{. Assuming this reflects the general accuracy
of this solution, it is desirable to use this relatively inedpensive model as
opposed to using a very refined non-singular mesh or to introducing a special
crack-tip element which satisfies condition (5.3).

The effect of deleting the crack-tip singular elements from the volume
integral of (2.14) is shown in Fig. 5.12. Deleting these elements means that
we are in fact evaluating (Tl)z where V6 is the volume encompassed by the
crack~tip elements. We will denote this particular (il)z as (él)g. It will
be shown that depending on the relative size of the crack-tip elements and the'
proximity of the solution to steady-state conditiun, (fl)i is a good approxi-
mation to <T1)c'

The solid curve in Fig. 5.12 represents the results of the 300 element
mesh. The dashed curves are (fl)i in the case of the 57 and 102 element
meshes and is (Tl)z with € = 0.03 in the case of the 300 element mesh. The
crack-tip element sizes for the 57 and 102 element meshes are 10 mm and 2.5 mm

(or 20 and five percent of the ligament size), respectively,

I &
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The values of (Tl)i for the 102 element mesh coincide with the solid
. 8
cuve for times after about 30 hours. Therefore (Tl); is a valid, path indepen-

dent, crack~tip parameter for times after about 30 hours and for values of (’i’l)C

beginning at approximately 1.6 of the steady-state value. Fig. 5.6 shows that

C¥ is still significantly path- dependent at 30 hours and thus is not an acceptable

1
crack-tip parameter until much later.

The curve of (Tl)i, (¢ = 0.03), for the 300 element model seems to indi-

cate that the validity of (Tl)i can be expanded to earlier times by reduciny

the size of the quarter-po‘nt elements. For example, a § of three percent of the

ligament would apparently result in (fl)i being valid as early as seven hours and
for values of (Tl)g as large as 4,3 the steady-state value of (il)c. The curve of

’ S8 .
('1‘1)C for the 57 element mesh tends to approach the solid curve as steady-state is

approached but never acutally converges even at steady-state. This indicates that

this mesh is too coarse for (Tl)g to be a useful parameter.

Constant Velocity Propagation in a Strip

We now present some calculations for the cracked strip problem previously

referred to as Problem II. The geometry, loading and material properties for

this problem are summarized in Fig. 5.3. The purpose of this problem is to

determine how significantly the crack-tip fields are affected by crack propa-

gation velocities commonly observed in experiments. If for realistic crack

speeds, the crack-tip field is essentially the same as for a stationary crack,

then C* is path independent and characterizes the crack-tip fields. In any

1
case, ("i‘l)C is a valid parameter.

As noted previously, the steady-state CI values for the infinite strip

problem can be obtained analytically without much ditfficulty. (See Appendix E.)

Therefore, the procedure for this set of calculations 1s to select three values
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of Ci which span the range of values reported in the literature. The values
which have been chosen are 0.05, 5.0 and 50 N/mm,hr. Having these values, the
corresponding remote steady-state Tyy is determined as well as the edge dis-
placement which will result in the same remote elastic Tyy. These displacements
are applied to the model elastically at t = 0. The resulting values of J1 are
compared to the analytic values in Table 5.2. Next, the steady-state edge dis-
placement rates are determined. Using the elastic solution as an initial
state, the displacement rate, é, is applied until the model reaches steady-
state, The computed steady-state values of Ci are compated to theif analytic
values in Table 5.2. The next step is to determine an upper bound crack
velocity for each of the chosen values of Ci. The following formula is based

on the experimental data reported in [23,24] and represents data from center-

crack, double-edge-crack, single-edge-crack, compact, and round-bar specimen

types.
da _ * 1.173
dt “Cl (5.4)
where
1.68 . 1072 (upper bound)
u =

3.36 . 107 (average

Having reached steady-state, the crack is propagaced at the upper bound velocity
given by (5.4) until it is determined that a convecting steady-ctate has been
reached,

As noted previously, these calculations use the quarter-point crack-tip
element. The crack growth simulation is accomplished through a combination of
mesh shifting and remeshing as described in Appendix D. The nominal size of ~
the crack growth increments is 0.4 mm or two percent of the crack-tip element
width. For the highest velocity case (Ci = 50 N/mm.hr), this procedure re~

sults in crack growth at approximately every fifth solution step.
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Results for a Plane Strain Strip

The results of the plane strain strip calculation with Ci = 50 N/mm.hr
and %% = 1,65 mm/hr are given in Fig. 5.13. The values of (’i'l)c and C{ are
given for the portion of the calculation prior to steady-state as well as
during the crack propagation protion, The band represents the range of values
obtained from the four contours illustrated in Fig. 5.3. Both (’i’l)c and Ci
converge to the 50 N/mm.hr value at steady-state. During the crack propagation,
it is seen that ('i?l)c and C{ do not depart significantly from their steady-
state value. This means that this combination of loading and crack spcred
results in the crack-tip fields being essentially at steady-state conditions.
This in turn means that both ('i‘l)c {or (fl)c) and C} are valid crack-tip
field parameters.
A closer view of the crack propagation portion of these curves is given
in Fig. 5.14, The dashed curves braceting the initial portion of the solid
curves represent the degree of path-independence and continue to be representative
of the path-independence obse¢rved during the crack propagation steps. For both
(Tl)c and Ci, it is seen that the strip has essentially returned to its steady-
state condition prior to each crack growth increment. Tt is thought that the large
departure of (Tl)c (as compared to C{) is more representative of the nonsteadiness of
the crack-tip field, since the validity of Cf in general, and the numerical evalua-
tion of Wt (2.43) in particular, are based on the existence of steady-state conditions.
The effect of remeshing is seen at approximately eight hours. The
first two steps after the remeshing were found to result in rather erratic con-
tour integral values and are not indicated in these figures. The equilibrium
correction feature of the present model and the automatic time step regulati&n

procedure both act to quickly restore equilibrium at the crack-tip.

The propagation portion of the calculation with CI = 5 N/mm.hr and
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%%’- 0,111 mm/hr is given in Fig. 5.15, Here again it is scen that both (Tl)g
and Ci hav. converged to the analytical value of Ci (to within two percent, which
is also about the degree of path-dependence), Comparing these results with
those in Fig. 5.14 for the higher Ci and crack speed it is seen that steady-
state creep conditions were not reached until 12 hours as opposed to approximately
two hours in the previous case. Also, the return to the steady-state value after
mesh shifting takes more time (two hours compared to 0.25 hours)., However, when
compared to the time between crack growth steps (both use 0.4 mm) it 1s seen
that the lower velocity case return to steady-state well before the next growth
step oceurs. This result indicates that lower load levels and crack speeds
are inhevently closer to steady-state conditions. While this behavior may
seem intuitively correct, it should be kept in mind that these results depend
on the empirical formula (5.4) which is only valid for 304 stainless steel.
It remains to be seen 1if sim{lar behavior occurs in other materials.

A calculation has also been done for the case of 01-0.05 N/um.hr., As
a result of the large number of solution steps between crack growth steps, when
using the maximum velocity of 5 . 10-4 mm/hr, the calculations used a higher

velocity (5 . «10-3 mm/hr). Even at this unrealisitcally high velocity (for this

level of loading), the behavior is more steady-state-like than the case of CitS.ON/mm.
hr described above.

Results for a Plane Stress Strip

In both plane strain problems discussed above, the steady-state value of

(f )c is equal to C¥ to within the accuracy of the calculations. This is con-

1 1

sistent with the relationship akd comparison of Ci and steady-state ('i‘l)c given
in Appendix B. According to the approximate numerical values of this appendix,
there should aot be as close agi'eement between Cf and ('i’l)c in the case of

plane stress. The primary purpose of this analysis is to verify this predicted

behavior.
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For this plane stress analysis, Ci was chosen to be 50 N/mm . hr and

the crack was again propagated at 1.65 mm/hr. The remote Tyy, the steady-stato
displacement rate, 3, and the elastic displacement, §, are 171 MPa, 0.168 mm/hr
and 0.114 mm, respectively.

The results of this calculation are given in Fig. 5.16 and 5.17. It
it seen from these figures that (il)i does converge to a somewhat higher
value at steady-state then C{. The steady-state is seer from Fig. 5.17 to be
approximately 52 N/mm . hr which is higher than C* by four percent. While

1
this is a somewhat smaller difference than suggested by Appendix B,.the sign of
the difference is the same. In light of the approximate intugration used in
obtaining the numeri¢ values in the appendix, this discrepancy 1s within reason.
As expected, the general behavior for plane stress conditions is essentially the
same as for the previous plane strain analyses. Therefore, previous observations
concerning the steady-state nature of the crack-tip field during crack propa-

gation are unchanged by the shift to plane stress conditions.

Double-Edge-Crack Specimen Analysis

The following describes sueveral calculations and their results for the

problem previously referred to as Problem III. The geometry and firite element
mesh for the double-edge-crack specimen are given in Figs. 5.4 and 5.5, respec-
tively. The material properties are those of 304 stainlegs steel at 650°C and
are assumed to be the same as those used in the strip analyses. (See Fig.
5.3) Calculatiors have been made for remote applied stresses of 157 and 176 MPa.
The experimental, crack growth histories for these two stress levels are repro-
duced from [51) in Fig. 5.18. It is seen from these curves that the first two-
thirds of the specimen lives are characterized by crack velocities of less than
0,01 mn/hr compared to nearly 0.5 mm/hr as rupture is approached.

The primary purpose of the following calculations is tc verify the

conclusions which were reached in the prewviously described strin calculations;
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that is, that the crack-tip fields are essentially creep steady-state fields

even for the most rapid creep crack velocities. These calculations will be a

valid check because the input to the calculations is only the remote applied stress
and the measured crack velocity history, and does not in any way depend on experi-
mental determination of Ci or ('i‘l)c as did the strip calculations. In fact,
Koterazawa and Iwata do not report such measurements in [51].

Analysis of Initial, Low Velocity Crack Growth

This section describes the simulation of the initial portion of the
crack velocity histories given in Fig. 5,18. In all of these calculations, the
entire load is applied elastically at t = 0 and held constant throughout the
subsequent creep solution steps. The convergence of ('i’l)c and Cf to their
steady-state values is shown in Fig. 5.19, with the dashed lines in the Ci
plots denoting the degree of path-dependence. It is seen that steady-state
conditions are reached between a half and one hour after the load is applied.
(Table 5.3 summarizes the computational aspects of this portion of the calcu-
lation.) Therefore, it is seen by refereing to Fig. 5.18 that crack growth does
not begin in the two specimens until well after steady-state conditions are
reached. Since the current calculations asswie small displacements and infinitesi-
mal strains, and since only the strain and displacement magnitudes depend on time
once steady-state is reached, there is no reason to continue the numerical calcu-
lations to the crack initiation times indicated by the experimental results.
Therefore, the initial crack propagation is simulated at times after steady-state
cenditions are reached but much earlier indicated by the experiments.

The crack growth simulation results are shown in Fig. 5.19. The crack
increment size for this study was approximately 0.01 mm which is nominally 2:4
percent of the crack-tip element size. It can be seen fhat only one mesh shift

(i.e., crack growth step) was modeled. It is clear from this figure that the

time it takes for the specimen to return to steady-state is significantly less
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than the time to the next crack growth increment (indicated by dashed lines).
Therefore, the initial portion of the crack growth histories of Fig. 5.18 are
clearly occurring under essentially steady-state conditions and thus C{ as
well as ('i‘l)c are valid crack-tip parameters. Since an increase in Cf re-
sults in a more rapid return to steady-state conditions, the above conclusion
will remain valid for the initial constant velocity portions of the curves of
Fig. 5.18.

When crack growth occurs so slowly thct the crack-tip is essentially
at steady-state, the crack-tip field does not depend on the history of the
specimen. Therefore, assuming steady-state conditions continue to exist, it is
possible to skip to the final stages of crack growth without modeling the
intermediate crack growth. If it is found that crack growth is still slow
enough for steady-state conditions to exist, then it seems reasonable to expect
that the bevaivor at intermeiate crack lengths is also of a steady-state type.
The following describes the results of this procedure when applied to the
two double-edge-crack specimens.

Analysis of Final Stage of Crack Growth

To analyze the final stage of crack growth, the crack length is in-
creased to 2.75 mm and the process of applying the load elastically and creeping
to steady-state is repeated. Table 5.3 summarizes the computational aspects of
this process. The convergence of <Tl)i and C{ to their steady-state values is
shown in Fig. 5.20. Having reached steady-state, the cracks are grown at the
rate suggested by the last portion of the crack histories (Fig. 5.18) as shown
in Fig. 5.20. The significant increase in the frquency of mesh shifting (compared
to that in Fig. 5.19) due to the velocity increase makes the details of the .
curve difficult to distinguish in this figure. However, the time step size is

such that six or seven steps occur hetween each crack growth increment. Unlike

)
the strip problem, the values of (Tl)c and C* are clearly increasing during

1
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this crack propagation process.

It is necessary to determine whether this increase in the crack-tip
parameters is due to the crack-tip no longer being at steady-state conditions
or whether it is due to the increase in crack length. This is accomplished
by continuing the calculation without further crack extension. If the value
of the parameters do not change significantly with time, this means the increase
was largely due to the crack length increase and that crack growth is still
occurring under essentially steady-state conditions. Examination of the final
porticns of the curves of Fig. 5.20 shows that this is the case.

Based on this analysis; it appears that the conclusions reached as a
result of the strip calculations are still valid. Since, (i) the strip analy-
ses are much less expensive than this analysis of the double-edge-crack geometry,
(i1) the steady-state Qi for the strip is easily obtained analytically aud (iii)
the crack~tip purameters do not depend on crack length for the strip geometry,
it seems that similar studies for other materials and/or other temperatures could
most effectively be accomplished through the use of the strip geometry. The
need for such studies follows from the vast simplification of fracture analysis
and prediction which results 1if crack growth occurs under steady-state conditions.

More will be said about this point in the conclusions.
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SECTION VI

CONCLUSIONS

Yamuary of Results

A finite element model has been derived which is generally applicable
to viscoplastic material models. This model uses an initial strain approach
which reduces computation time spent on forming and decomposing stiffness
matrices and also cilrcumvents the problem of element jncompressiblity constraints,
Through special features, including a correction term in the finite element
equation, this model provides for improved adherence to the postulated constitu-
tive behavior (as compared tp the standard initial strain approach) and
allows time steps which approach in size those used in tangent stiffness
methods. The accuracy and efficiency of this model with eight-node isopara-
metric elements and the quarter-point crack-tip element approach have been
verified through several calculations for a compact specimen geometry and a
strip geometry. Also, a method of simulating crack growth througli shifting
of the quarter-point singularity elements and periodic remeshing has been
described and demonstrated.

It has been shown that despite the fact that C; characterizes the
crack-tip fields under steady-state creep conditions, it does not have an
energy or energy rate interpretation. A related path-independent integral

parameter (fl)c, however, does have the energy rate interpretation commonly
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attributed to Cg. Since experimentalists wae this energy interpretation to
correlate creep crack growth rates, it appears tha’ (";','1)c (as opposed to Gi)

1% gaining acceptance as a useful creep crack growth rate criterion . Further-
more, ('i‘l)c does not rely on the existence of steady-state creep conditions

and thus might be expected to be a valid criterion even if creep crack growth
should occur at rates which preclude the existence of steady-state creep
conditions at the crack-tip.

A creep crack growth simulation for 304 stainless steel has shown that
for realistic load levels and corresponding crack speeds the crack-tip field
is essentially at a steady~stat" creep condition., This means that for this
material, the propagating crack-tip field is largely unaffected by the
history of crack growth or the history of loading. This feature can greatly
reduce the analysis required for predicitng creep crack growth behavior

in a component as can be seen from the following suggested methodology.

We assume that the crack propagation speed %% is related to (’i‘l)css
(loe., - %%O through the power law suggested by experimental data [23,
247,

%& 3 u{(ijll)c:ss]fg (6.1

Nwxt we determine (e.g., by steady-state creep finite ¢lement analysis)
('.l‘l)CSS as a function of crack length., Because of the assumed steady-state

crack-tip behavior, this can be accomplished by considering several discrete
craclt lengths and then fitting a curve. No crack growth simulation procedures
are necessury. Combining (6.1) with this result provides the following
relationship between time and crack length:

a(e) ((rp 17°
t = — 88— da t (6.2)
a
[

where a, is the inirisl crack length and ty is the time when crack growth i{nitiates.
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The only unknowr quantity in (6.2) is the initiation time t1° If the initiation
time for creep crack growth is assumed to be negligible (as might be suggested
from the results of [9,10)) then (6.2) immediately provides the predicted crack
growth history.

vitek [11] does not consider t to be negligible based on several

i
experiments (compact and double-edge-crack specimens) on two CrMoV steels,
Using & dislocation model he further concludes that a measure of crack opening
displacement (COD) correlates well with the initiation of crack gr~wth in these
experiments, If the same conclusion is valid for 304 stainless steel, then

one can presumably predict t, based on a transient finite element analysis of
the initial flawed configuration and a critical value of COD. If initiation
occurs long after steady-state conditions are reached, it is then reasonable

to estirste t, using the rate of COD obtained from a steady-state finite

i
elenent solution. The use nf (6.2) and of the critical COD concept has not
been investigated in this study.

All of the creep calculations have used the constitutive law which is
obtained by generalizing the Norton constitutive law to three dimensions.
Whereas this law is a good representation of steady-state creep behavior, it
does not, in general, represent the primary stage of creenr. Future work shoula
include a study of other creep constitutive laws (such as that of Bodner and
Partom [32]). Also, the present model is derived on the assumption that dis-
placements are small and strains infinitesimal. The strains in the vicinity of
the crack-tip for the present calculations with 304 stainless steel material
properties arc on the order of 5-10% and therefore suggest that a finite
strain formulation may be more appropriate. A study should be undertaken to
examine this aspect of the model.

As noted previously, the creep crack growth prediction methodology

expressed in (6.1) and (6.2) has not been tested. A study to assess the
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utility of this methodology should therefore be undertaken. This study
ghould consider crack growth initiation as well a8 crack propagation and
should include a range of load levels and several specimen geometries, If
the methodology is found to be successful for constant applied loads, then

the study should be extended to consider more general load histories.
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APPENDIX A

Existence of Limits for Contour Integral Definitions

This appendix discusses the existence of the va;ious limits which have
been taken in defining (A?)C. (_'i_‘_)c and C*, In considering these limits, we
make use of the generally accepted result (see [6] for example) that the
strain energy density quantities W and & as well as the quantity W* behave
as 1/r in the vicinity of the crack-tip. This is assumed to be valid for
nonsteady as well as steady-state creep and also fo; the elastic state
existing at t = 0,

Based on the known asymptotic behavior at the crack-tin (i.e., the
HRR fields) the limitas of P€ cortour integrals for equations (2.11,13,14,25,30,
40,44) can be written in the following form provided one takes Pe as being a

circular contour centered at the crack-tip.

Lt 1,2 T
0 j; (-e-)f(a,e)ede = f_ﬂf(e)de (A.L)
€ ,

The nonsingular function ;(e,e) becomes equal to f£f(8) when the limit is taken
anc refle;ts the asymptotic nature of the HRR fields,

In the following we limit the discussion to symmetric problems involving
only mode I cracik-tip deformation. Further, we assume that crack surface trac-
tions and body forces are identically zero. With these conditions, we need only

consider (M’l)c and we can therefore rewrite (2.11)

- Lt - ) N
(ar) = 5 fr (08 - n (r,  + 8t Dhe,, 1ds (A.2)
€

C - ¢
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Now comidder the Timit of the vcuvv Intograt of (AD),  Inspection of this

integral shows that tt can bo put into the form:

¢ M A a e, ) edudo (A7)
¢ ) - 2
AR

ot
Mo b f:; l? .Il“(%og(r,u)dudr
where V; is o wmall civcular reglon venterad at the crack=tip and € s thae
intepral ovor the reglon Vt - Vé. The function g(x,0) iy a nonsingular
Punet fon which becomes g(u) dn the Limit as v goes to wmero, where g() {s
known dn terms of the HRR fields. Upon a fivst inspectdon of (A.3) one is
temptod fo eopelude that the ldmit does not exist since the integrand has
aonons integrable sloguwlasity at v o= Q. If, however, we look at the vight
cquality of (A.2) 4t 48 seen that this conclusion results in a contradivtion.
Sinve woe have shown that the limit of the integral on Fe dous exist (and
therefore (A2) vequires that the limit of the tegral over Vt = V_ must
exist). A ro-inspection of (A.3) shows that the only way for this apparent
contraction to ha resolved is 1f the g(r,0) of (A,3) has the following
propurty:
[ k!
f § (e, 0) do Mf g0 = 0 (A W),
1§ e s fE
If function g{n) 4is known explicitly for the linear clastic case and there-
fore (A.4) can be dirvectly verified. For the HRR field g(0) ie not known

explicitly and therefore (A.4) can only be verified numerically.
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tor infinditesimal strrain, nonlinear elasticity, the following relation

+

provides an altemative to verdfying (A.4) direclty

dey 3u Ju
- . L
f W‘l Azudv ; n Adﬁ M—AD ds njAU;lj Wiax as (A.5)
V-V, 234 r k
¢

The relation (A.5) (whiéh agsumes zero crack surface tractions and no body
fornes) illustrates that this volume integral of type (A.3) can be expressed
in terms of the contour integral of type (A.l). The relation (A.5) can be
verified through the divergence theorem, the linear momentum balance condition

and the following ddentities: \

I '._‘1 y ) aw . P) (G at;‘m) . a&Tmn (’)cmn
ka axk &tij acij mn axk Baij axk

" m!‘l‘.. A IS Ty A o
de i)
EN]

5 B ) acmn
X ‘ AUnm X, - A(,Tmn x,
: R k
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SPPENDIX B

Numerical PDifference Between (’ifl) '

and %
Ces )

The purpose of this appendix {s to give some oxamples to {llustrate
the numerical dif ference between ("i‘l)cm; and (‘..\t as glven by (2,48). Using
(2,80), (2.493) and (2.51), we have

¢t

Yo * “» il ’
Mlzvk.ésn - .% ] 4 Tlﬁ%ﬁ f \;rdq(())cosadu (8.1)
bR} -1y

The values tabulated in Table B.1 were computed approximpately from values of

T and ploty of Geq( W) gdven in [6] and should be viewed accordingly.

¥

L e

¢, " . " . of ," ’ *
Table B.1 Comparison of ('ll)c;mi and C¥

Plane Strain Plane Stroess
n=J3n= 13} n= 3n= 14
,m
(19) L,
L E88 5 ey 1,00 L1 1,14
a1

T a R e

It iy scen that for the range of n commonly encountered, (*i!l)ess and C’i are

numerically vacy similar for plane strain but differ sdgnificantly for plane

gtroess.
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APPENDIX C

Numerical Methods for Evaluation of Contour Integrals

The numerical procedures for evaluating J, as defined by (2.27), (AT])

1

as defined by (2.14) and CY as defined by (2,31) are “ascribed in the following.

[o

s %

In studying the contour integral paths indicated in the finite element
meshes of Figs. 5,2,3,5 (dashed lines) it is seun that the paths always pass
through the centers of elements as opposed to along their edges, This procedure
has heen adopted so as to benefit from the presumably more accurate solution
within the elements. Each element contour is divided into two segments with
the integration beiog accomplished by two point Gaussisn quadrature. All of
the integrations are performed in the element local coordinates.

The Jl-lntegrnl for Linear Elastic Analyses

The contouy integral poxtion of (2.27) involves the stresses, 1,,, and

1]

j/Bxl. Both of these quantities can be evalu-

ated at the required Gauss points through the element podal displacements and

the displacement derfvatives, du

simple manipulations with element matrices. In the current study, Jl is only
considercd as a parameter for linear elastic material behavior and therefore

J > .
U= “‘/")“’1;1““
The C§~Lutegrnl

The Gi integral of (2.31) consists only of a contour integral., The W*

of (2.31) {is evaluated using (2.43). The gradient rates are approximated by

¥

AN 240
i

Y
I R |
n Y "
uXL At axl
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and therefore are average rates for the ilncrement as opposed to the rates at

tive end of the {ncrement., The contour integration procedure for C{ is as
desceribed above and uses two point quadrature for each element segment. Whercas
stresses are easily computed at the raguired contour Gauss points in the elastic
case, the stresses must be computed incrementally in creep analyses and there-
fore stress information must be stored for each contour integration point

unless nongtandard element interpolations are used, In the present study,

the stresses at the contour Gauss points are interpolated from the 2x2 element
Gauss potnts through bilinear Lagrangian interpolation (in local coordinates),
thus eliminating the need for additional storage.

The ( Tl)cnlnhegrnl

In the evaluation of (2.14) 4t is understood that rij are the stresses
at the degluning of che time increment being considered. The procedures for
ovaluating the contour integral portion of (2.14) are the same as “sed in evalu-

ating C?. The incrmental stress-work density, AW, is computed from

AW = (vi-:l + 5 Mij){'\“u

‘“he stress derivative appearing in the area integral of (2.14) is evaluated
based on the 2x2 element Gauss ~oint values and the assumption that the stresses
arve distributed bilinearly with respect to element local coordinates. FElements
which are entirely within Vt are integrated with the usual 2x2 Gauss quadrature.
Elements which are only partially within Vc have each applicable quadrant {in-

tograted by one point Gauss quadrature.
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APPENDIX D

Simulation of Crack Extension

Modeling the propagation of a crack using the finite element method
requires some speclal procedure for representing the creation of new crack
surface. A common procedure is to relax the nodal forces at the crack-tip
node, thus in effect allowing the crack to extend to the next ntde along its
path of propagation. This relaxation process can be accomplished in one

time step but usually fis allowed to extend over several time steps due to the

iarge change in nodal forces which is inherent in the process. The major attrac-

tion of this node-release procedure is its simplicity. There are two draw-
backs of this procedure which resulted in an alternate procedure being adopted
in this study. The first is that the increment in crack growth is directly
determined by the nodal spacing in the mesh, therefore restricting the flex-
ibility one has in selecting a time step size, the mesh size and /or the
number of nodal force relaxation steps. The second and perhaps more important
drawback 1is that the method is not adaptable to models which use crack-tip
singularvity elements.

A typical mesh in the vicinity of a crack-tip is shown in Fig. D.l. The
region A represents the region being modeled by singular crack-tip elements
which in the present case remain centered on the crack-tip. The Type B
elements arve eight-noded isoparametric elements which distort so that the
region A can remain centered Jn the crack-tip. The sequence of element configu-
rations in Fig. D.1 illustrates the shifting/remeshing procedure used in [53,
54) and adopted here. The region A is moved by shifting nodes without altering

element connectivity until the Type B element ahead of the region A becomes

- 99 -

ek o s,



Cren

¥
tende 1

O Fovat ALITY

Fig. D.1 Example of mesh shifting/remeshing procedure
for simulation of crack growth

- 100 -




overly distored. At this point, the elements in the vicinity are redefined

so that further shifting is possible. It can be seen that this procedure allows
the increment i{n crack length to be arbitrarily small and does not involve
release of nodes in the same sense as for the previously described node-

release provedure,

The added flexibility afforded by this shifting procedure does require
some additional work. lYor example, in the creep crack growth application, nodal
displacements and element integration point stresses are interpolated. The
wethod of interpolation which is employed in this procedure is discussed next.

We consider that the solution at time t, has been obtained and we now
must Lind the solution at time cz. During the interval (cl,tz) the crack has

grown by an amount Aa. Since the crack growth simulation procedure requires

that nodes be shifted, and since the solution at t must be represented in terms

1
of nodal and Gauss point quantities for the shifted mesh, it is necessary to

submit the affected nodes and Gauss point to an interpolation =y fitting pro-
cedure,

The simplest interpo.stion procedure for nodal displacements and the one
used in [53,54] as well as for calculations in the present study is one which
directly uses the element shape functions. In this method, the nodal positions

for the mesh at t2 are located in the mesh at tl. Knowing which element

of the mesh at t. encompasses this new node position allows the immediate

1

caleulation of displacements by use of the element shape functions and the

nodal quantities for the mesh at t While this 1s a consistent procedure

10

for transferring the solution at tl to the mesh at tz.

that the transfer cannot be perfect. That this must be the case can be seen

it should be understood

by considering that spatial derivatives of displacements, etc., are not continu-
ous across element boundaries. Since the element boundaries change position

during the shifting process, points which had continuous derivatives at tl will
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have discontinous derivatives in the mesh at t2 and vice-versa.

When the mesh is shifted, the element Gaugs points are also shifted; this
means the Gauss points represent different material points before and after the
shift. In order that the new Causs point stresses accurately represent the cur-
rent stress state, it 1s necessary to interpolate stresses for the new Gauss
point locations using the old Gauss pofint values and locations. The procedure
for doing this is to assume the element stresses are distributed bilinearly with
respect to the element local coordinates., Then it becomes possible to use
bilincar Lagrangian interpolation polynomials and the 2x2 element Gauss point
stresses to interpolate within each element. For all creep crack growth
caleulations in this study, the crack growth increment sizes were chosen small

enough that the new Gauss point stresses for each shifted element were always

the result of interpolation within that same elment.
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APPENDIX K

Analytical Evaluation of Cq for the Strip Problem

This appendix briefly outlines the anlaytical evaluation of Ci for twu
infinite strip problems and then summarizes the results in tabular form,
The first strip problem is that which is illustrated in Fig. 5.3, We shall
refer to this problem as Case A. The second problem, or Case B, is similar
to Cuse A in every respect except the top and bottom edges of the strip are
"elamped”" rather than "on rollers'". These boundary conditions are summarized
as follows:

Case A: ﬂy(x,h) " ~ﬁy(x,~h) - (E.1)
rxy\x,h) “ rxy(x,ah) = 0
Case B: 0 (x,k) = -G _(x,-h) = § (E.2)
y y
ﬁx(x,h) = &x(x,uh) =0

“he crack surfaces are traction-free in both cases.

We can select a Ci&integral contour which allows Ci to be evaluated
quite éasilyml Consider a contour of rectangular ghape which coincides with the
top and bottom edges of the strip, extends far enough ahead of the crack-tip
80 as to be in a steady-state stress field which is unaffected by the presence
of the vrack-tip, and extends far enough behind the crack-tip so as to be in
stress~free material. We now evaluate CI, as defined by (2.31), through the
use of this contour. It can be seen that for both Case A and Case B, the

horizontal portions of the contour at y = + h do not contribute to the

1This procedure parallels that used by Rice (50] for the evaluation of Jl in
a similar elastic strip problenm,
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integial, nor does the portion in the stress-free material. /it the veritcal
portion of the contour ahead of the crack-tip, the only non-zero term is that
fnvolving W%, Therefore, it is seen that for both Case A and Case B we have

Gy = 2Wkh (E.3)

wiere WY {wplics W¥ existing far ahead of the crack-tip. Using the boundary
conditions (E.1) and (E.2) and the assumption of steady-state conditions, it
is possible to evaluate the remote steady-state stresses, Tid' Using (2.43) re-
sults dn W* and thus Ci. The results of this exzrcise are summarized in Table
K. L.

The corresponding linear elastic strip problem which is obtained by re-
placing the displacement rate boundary conditions by the corresponding dis-

placement boundary onditions has been treated in a similar manner. These re-

sults are also given in Table E,l.

»
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Table I .1 Analytical Solutions for the
Infinite Strip Problem

Steady-State Cresp Linear Elasticity

: n
hyfe\n b\l um+i)nintl  1/h) e 1/h\.
B(g)(’w) (5)["1'(%11)5 ] E(c)fyy a“dE(éz)J 1

Case A

plane strain (.%)n+1

g

fFum
>
i
<
N

plane stress <~g>”+1

P

plane strain *

fiﬂm
—-
)
<
™

*

i-v
(1+v)(1-2v)

L
This case does not have a steady-state solution since the
bounidary conditions require a volumetric strain rate.

- 105 ~



RSk e u it

P e o S s

(3]

(4)

[5]

(8]

(9]

[10]

[13]

REFERENCES

Srawley, J.E. and Brown, W.F., "Fracture Toughness Testing Methods",
ASTM STP 381, 1965, pp. 133-145. |

Brown, W.F. and Srawley, J.E., "Plane t%rain Crack Toughness Testing
of High Strength Metallic Materials", ASIM STP 410, 1966.

Begley, J.A. and Landes, J.D., "The J-InLegral as a Fracture Criterion”,
ASTM STP 514, 1972, pp. 1-20.

Landes, J.D. and Begley, J.A., "Test Results from J-Integral Studies:
An Attempt to Establish a J. Testing Procedure”, ASTM STP 560, 1974,
pp. 170-186. -

Westergaad, H.M., "Bearing Pressures and Cracks", J. Appl. Mech., 61, 1939,

pp. A49-53.

Hutchinson, J.W., "Singuiar Behavior at the End of a Tensile Crack in
a Hardening Material', J. Mech. Phys. Sol., 16, 1968, pp. 13-31,

Rice, J.R., Rosengren, G.F., "Plain Strain Deformation Near a Crack
Tip in a Power-Law Hardening Material', J. Mech. Phys. Sol., 16, 1968,
rp. 1-12,

Irwin, G.R., "Fracture Mechanics', Structural Mechanics, (Proceedings
of First Naval Symposium), Pergamon Press, 1960, pp, 557-594.

Nikbin, K.M., Webster, G.A. and Turner, C.E., "Relevance of Nonlinear
Fracture Mechanics to Creep Cracking', ASTM STP 601, 1976, pp. 47-62.

Hawper, M.P. and Ellison, E.G., "The Use of the C* Parameter in Predic-
ting Creep Crack Propagation Rates'", J. of Strain Analysis, Vol. 12,
Nov. 3, 1977, pp. 167-179.

Vitek, V., "A ‘fheory of the Initiaion of Creep Crack Growth", Int. J.
of Fracture, Vol. 13, No. 1, 19/7, pp. 39-50.

Shih, C.F. and Kumar, V., "Estimation Technique for the Prediction of
Elastic-Plastic Fracture of Structural Components cof Nuclear Systems,'
Contract RP1237-1, First Seminannual Report for Electric Power Research
Institute, General Electric Co., Report, 1979.

3

Zahoor, A. and Paris, P.C., "Ductile Tearing Instability of a Center-
Cracked Panel of an Elastic-Plastic Strain Hardening Material"”, Engng.
Materials and Technology, 103, 1981, pp. 4f -34.

- 106 -




ARY

]

{17]

(14)

[19]

(]

]

[a2)

BRY

Hutehinson, (LW and Pavis, P.C., "Stability Analysis of J-Controlled
Crack Growth!, ASTM STP 668, 1979, pp. 37-64.

Athara, 8., Machida, 5. and Kanazawa, T., "A Study on Unstable Ductile
Fravtwre, Advances In Fracture Reasearch, Vol. 5, Francois, b,, (Ed)),
Provceviings Fifth Intl. Gonf. on Fracture, Camnnes, 1981, pp. 2329-2336,

Ranninen, M.¥,, Hahn, G.T., Hroek, D., Stonesifer, R.B., Marchall, C.W.,
Ahvu~Sayed, 1.5, and Zahoor, A,, "Development of a Plastic Fracture
Methodology', Battelle _olumbus Laboratory Report to ERPL, Contract
601~1, March 1981,

Kapninen, M., Rybickd, E.F., Stonesifer, R.B., Broek, D., Rosenfield,
A.R., Marschall, C.W. and Hahn, G.T., "Elastic-Plastic Fracture Mechanics
for Two Dimens fonal Stable Crack Growth and Tnstability Problems", ASTM
STE 668, 1979, pp, 121-150.

Abou~-Sayed, 1.8,, Marschall, C.W. and Kanninen, M.F., "An Assecssment
of the Fracture Toughness Assoclated with Flat and Slant Crack Growth
in ASI3B Steel", Advances in Fracture Research, Vol. 1, Francois, D.
(BdLY, Procoedings Fifeh Intl, Conf. on ¥racture, Cannes, 1981, pp.
27204,

AbouwsSayed, I.8,, Broek, D, Forre, T.P. and Sconesifer, R.B., "Plane
Stress Fractuee under Biaxial Loading', Advances in Fracture Research,
Vol. 4, Francodis, D. (Ed.), Procecdings Fifth Intl. Conf. on Fracture,
Ganties, 1981, pp. 1707-1714.

Fu, 1L.8., "Ureep Urack Growth in Technical Alloys at Elevated Temperature -
A Review", Kogug. Fracture Mech., Vol, 13, 1980, pp. 307-330.

Landes, J.0, and Beglay, J.A., "A Fracture Mechanies Approach to Creep
Crack Growth', ASTM TP 890, 1976, pp. 128-148.

Branca, C.M. aad Radon, J.C., "Analysis of Creep Cracking by the J-Integ-
ral Concept", dngng. Aspects of Creep, Proa. Conf. at Univ. Sheffield,
qu Mt\((‘l’h ';,-’ @Lgsﬂ, pph (.3""1080

Ohj i, Ky, Ogura, K. and Rubo, §,, "rhe Application of Modified J-Integral
to Greep Crack Growth in Austentic Stainless Steel and Cr-Mo-V Steel,"
Foang, Aspects of Crueep, Proc, Conf. at Undv, Sheffield, I. Mech. E.,
1980, pp. 9-16.

Kotovazawa, R. ond Mord, T., "Applicability of Fracture Mechanics
Paramoters to Crack Propagation Under Creep Condition", J, ¥ngnp.
Materinly and Technology, Vol. 99, Series U, No. 4, 1977, pp. 298-305,

Hotf, N.J., "Approximate Analysis of Structures in the Prasence of .
Modurately Large Creep Deformations", Quart, Appl. Math., 12, 1954,
PR 49«55,

Goldman, N.L. and Hutchinson, J.W., "Fully Plastic Crack Problems:
The Center-Cracked Strip Under Plane Strain", Int. J. Solids Structures,

- 107 -

NSt <

i e o i A



(7]

| 28)

[20]

[Y0])

{33]

[34])

(35)

[36]

[37]

[38]

[39])

[40]

Atlurt, S.N., "Path-Independent Integrals in Firite Blastiicty

and Inelasticity, with Body Forces, Inertia, and Arbitrary Crack-
Face Conditions', Report No. CIT-CACM~SNA-81-8, Georgla Institute of
Technology, March, 1981, also Engng. Fracture Mech., (in press).

Riedel, H. and Wagner, W., "The Growth of Macroscoplc Cracks in Creeping

Materials", Advances in Fracture Rescarch, Vol. 2, Francoin, D. (Ed.),
Proceedings Fifth Intl, Conf. on Fracture, Camnnes, 1981, pp. 683-390,

Hui, C.Y. and Riedel, H., "The Asymptotic Stress and Strain Field Near
the Tip of a Growing Crack under Crecp Conditions", Brown University
inginecering Report MRL E-117,

Oobtani, R. and Nakamurva, S., "Crack Propagation in Creep (Finite Element
Analysis)", Journal of the Society of Materials Science, Japan, Vol.
25, No, 275, 1976,

Hinnerichs, T.D., Viscoplastic and Creep Crack Growth Analysis by the
rinite Klement Method, doctoral dissertation, Adr Force Institute of
Technology, 14980,

Bodner, S.R. and Partom, Y., “Constitutive Equations for Elastic-
Viscoplastic Strain Havdening Materials", J. Appl. Mech., 42, 1975,
pp. J85-389,

Bhlers, R. and Riedel, H., "A Finite Element Analysis of Creep Deformation

fn a Specimen Containing a Macroscopic Crack", Advances in Fracture
Research, Vol. 2, Fracture, Cannes, 1981, pp. 691-698.

Knowles, J.K. and Sternberg, E., "On a Class of Conservation Laws in
Linearized and Pinite Elastostatics", Archive for Rational Mechanics
and_Analysis, Vol. 44, No. 3, 1972, pp. 187-211.

Atluri, S.N., "On Some New Gencral and Complementary Energy Theorems
for the Rate Problemsé of Finite Strain, Classical Elastoplasticity",
J. of Structural Mechanics, Vol. 8, No. 1, 1980, pp. 61-92.

Riedel, H. and Rice, J.R., "Tensile Cracks in Creeping Solids', Brown
University Report B(11-1) 3084464 to U,S. Dept. of ¥nerpy, 1979.

Hutchinson, J.W,, "Plastic Stress and Strain Fields at & Crack Tip",
J. Mech. Phys. Solids, Vol. 16, 1969, pp. 337-347.

Perzyna, P., "Fundamental Problems in Viscoplasticity", Advan. Appl.
Mech., 9, 1966, pp. 243-377.

Bathe, K.J, and Wilson, E.L., Numerical Methods in Finite Element
Analysis, Prentice-Hall, 1976.

Zienkiewicx, 0.C. and Cormeau, I.C., "Viscoplasticity - Plasticity and
Croep in Elastic Solids - A Unified Numerical Solution Apprach",
Int. J. for Num. Meth. Engng., 8, 1974, pp. 821-845.

- 108 -

B bR W



il R P

[48]

[4u)

[50]

[54]

Nagtegall, J.C., "arks, D.M. and Rice, J.R., "On Numerically Accurate
Finite Element Solutions in the Fully Plastic Range', Comp. Meth, in
Appl. Mech, and FEngng., 4, 1974, pp. 153-177,

Heashell, R.D. and Shaw, K.G., "Crack Tip Finite Elements are Unneces-
wary", Int. J. Num. Meth. Engng., 9, 1975, pp. 495-509,

Bursoum, R.5,, "On the Use of Iseparametric Finite Elements in Linear
Fracture Mechanies", Int. J. Num, Meth. Fngng., 10, 1976, pp. 25-37.

Barsoum, R.S., "Triangular Quartor-Point Elements as Elastic and Perfectly-
Plastic Crack Tip Klements", int. J. for Num, Meth, Engng., 11, 1977,
pp. B5-98,

Atluri, S$.N., "Higuer Order, Specdal, and Singular Elements, Chapter
4," State of the Art Surveys in the Finite Element Method, Eds., AK.
Noor and W, Pilkey, ASME special pub., to appear {n 1981,

Ying, L.A., "A Note on the Singularity and the Strain Energy of Singular
Elements", Int. J. for Num. Meth., Engng., 1981, (in press).

Tracey, D.M. and Cook, T.S., "Analysis of Power Type Singularities
Using Finite Rlements", Int. J. for Num, Meth. Engng., 11, 1977, pp,
12261233,

Stern, M., "Familics of Consistent Conforming Elements with Singular
Derivative Fields", Int. J. for Num, Meth. Engng., 14, 1979, pp. 409-42],

Srawley, J.F., "Wide Range Stress Intensity Factor Expressions for
ASTM K399 Standard Fracture Toughness Specimens", Intl. J. Fracture,
12, 19706, pp. A75-476.

Rice, J.R,, "A Path Independent Integral and the Approximate Analysis
of Strain Concentration by Notches and Cracks", J. Appl. Mech., 1968,
pp. 379-386.

Koterazawa, R. and Jwata, Y., "Fracture Mechanics and Fractography of
Creep and Fatigue Crack Propagation at Elevated Temperature", J. of
Enpng. ard Technology, 98, 1976, pp. 296-304.

Tata, H., Paris, P.C. and Irwin, G.R., The Stress Analysis of Cracks
Handbook, Del Research Corporation, Hellertown, Pennsylvania, 1973,

Nishioka, T. and Atluri, S.N., "Numerical Modelling of Dynamic Crack
Propagation in Finite Bodies, by Moving Singular Elements, Part T -
Theory", J. Appl. Mech., ASME, Vol. 47, No. 3, Sept. 1980, pp. 570-576.

Nishioka, T. and Atluri, S.N., "Numerical Modeling of Dynamic Crack
Propagation in Finite Bodies, by Moving Singular Elements, Part II -
Results™, J. Appl. Mech., ASME, Vol. 47, No. 3, Sept. 1980, pp. 577-583.

- 109 -



R o G g, 1, i

March 1981

GEORGTIA INSTITUTE OF TECHNOLOGY
Atlanta, Georgia 30332

BRIEF BIOGRAPHLCAL SKETCH
ATLURT, SATYA N. -~ Regents' Professor of Mechanics
Center for the Advancement of

Computational Mechanics
School of Civil Engineering

Formal Fducation

Sc¢. D, Acrvonautics and Astronautics, M.I.T,, Cambridge, MA 1969

Academic Experience

Teaching and Professional Experience

Georglia Institute of Technology

a) Regents' Professor of Mechanics 1979 - present
b) Professor of Engineering
Science & Mechanics 1977 - 1979
¢) Assoclate Professor of Engineering
Science & Mechanics 1974 - 1977
University of Washington
Assistant Professor of Aeronautics &
Astronautics 1971 - 1974
Boston University
Invited guest lecturer, Aerospace Engineering 1970
Massachusetts Institute of Technology 1966 - 1971

Additional Academic Experience

Jan. 1979 - Aug. 1971 --~ Lecturer (continuum vibrations)
Boston University

June 1971 - Aug. 1971 --- Visiting Scientist, M.I.T,

June 1971 - Sept. 1971 -- Faculty participant, Cardiovascular Research
Programme, Center for Bioengineering, College of Medicine, University
of Washington




ATLURL, SATYA N.

Other Professional Activities

Reviewer for various academic journals (such as the AIAA Journal; ASME
Journal of Applied Mechanics; ASTM Special Technical Publications; Int.
Jnl. of Solids & Structures; Int., Jnl. Num.-Meth, in Engg; Journal of
Sound & Vibration; Jnl. of Computers & Structures; Int. Jnl. of Fracture
and others); and reviewer for research proposals to agencies such as NSF,
ARO-NRC, etc.

Scientific and Professional Societies

American Academy of Mechanics (Nominated to be a Fellow, 1981)

American Society of Mechanical Engineers

American Institute of Aeronautics and Astronautics

American Association for the Advancement of Science

Sigma X4

Society for Natural Philosophy

Chairman Elect, ASME Committee on Computation in Appliad Mechanics

Member, Panel of Independent Experts on Structures, Federal Aviation Admin.

Honors and Awards

Gold Medal for Excellence in Engineering College 1964
Andhra University
Roll of Honors of the Indian Institute of Science 1966

Bangalore, India
Mentioned in several Who's Who




Publications

(A) Books (as editor/contributor)

(1)
(2)

(3)

(4)

(5)

- P

T T T e R

N. Perrone and S.N, Atluri, Editors, Nonlinear and Dynamic Frac-

ture Mechanics AMD Vol. 35, ASME, N.Y., 1979, 215 p. (Also contrib-

utor of article no, 3, pp 37-67).

S.N. Atluri, "Higher-order, Special, and Singular Finite Elements"
Chapter 4 in Finite Element Methods (Ed. by A.K. Noor & W. Pilkey)
Published by the American Society of Mechanical Engineers, 1980, 84 p.

S.N. Atluri, "On Rate Principles for Finite Strain Analysis of
Elastic and Inelastic Nonlinear Solids", in Recent Researches on

Mechanical Behavior of Solids, (Edited by the Committee on Recent .

Researches) Univ. of Tokyo Press, 1979, pp 7%-109.

S.N. Atluri, (Editor and Contributor) Part II, Finite Element

Methods in Handbook of Finite Elements,McGraw-Hill, N.Y., (In

Preparation).

S.N. Atluri, 0.C. Zienkiewicz, and R.H. Gallagher, Hybrid and Mixed

Finite Element Methods, John Wiley & Sons, London, (In Preparation).

-

sy

i ORI



ey

(8)

Papers Published in Journals and Other Archival Literature

(H

(2)

(3

(%)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

Atluri, S.N.,, "A New Assumed Stress Hybrid Finite Element Model
for Solfd Continuua", AIAA Journal, Vol. 9, No. 8, pp 1647-1649,
1971,

Atluri, S.N., "A Perturbation Analysis of Nonlinear Free Flexural
Vibrations of a Circular Cylindrical Shell", Int., Jnl. of Solids
& Structures, Vol, 8, pp 549-571, 1972,

Atluri, S.N,, and Pian, T.H.H., "Theoretical Formulations of
Finite Element Methods in Linear-Elastic Analysis of General
Shells'", Journal of Structural Mechanics, Vol. 1, No. 1, pp 1-43,
1972.

Atluri, S.N., "Further Studies on an Assumed Stress Hybrid Finite
Element Model for Solid Continuua", Zentralblatt Fur Mathematik,
Vol. 269, p. 521, 1972,

Atluri, S.N., "On the Inverse Problem of Natural Vibration of
Flastic Shells", Shock and Vibration Digest, Vol. 6, pp
380-383, 1972.

Atluri, S.N., and Pian, T.H.H,, "Finite Element Analysis of Shells
of Revolution by Two Doubly-Curved Quadrilateral Elements", Journal
of Structural Mechanics, Vol. 1, No. 3, pp 393-4l6, 1973.

Atluri, S.N., Kobayashi, A.S., and Cheng, J.S., "Mechanics of Brain-
Tissue Fragility", 1973 Biomechanics Symposium, AMD Vol, 2, ASME,
N.Y., pp 103-105, 1973.

Atluri, S.N., "On the Hybrid Stress Finite Element Model in the
Incremental Analysis of Large Deflection Probelms", Intl. Jnl. of
Solids & Structures, Vol. 9, pp 1177-1191, 1973.

Atluri, S.N., "Non-Linear Vibrations of a Hinged Beam Including
Nonlinear Inertia Effects", Journal of Applied Mechanics, ASME,
Vol. 40, No. 1, pp 120-127, 1973. '

Atluri, S.N., and Gordon, J.T., "Influence of Large Amplitudes and
Boundary Conditions on the Supersonic Flutter of Cylindrical Shells",
Proceedings of the 4th Canadian Congress of Applied Mechanics, May

1973, Montreal, Canada, pp 555-559.

Atluri, S.N., "Advances in Applied Mechanics", Journal of the
Franklin Institute, (C.S. Yih, Editor), Academic Press, May 1973,
(a review),

Atluri, S.N., "On the Hybrid Stress Model in Linear Elastic Dynamic
Analysis'", AIAA Journal, Vol. 11, No., 7, pp 1028-1032, 1972.

Atluri, S.N., "Author's Closure: Non-linear Vibrations of a Hinged
Beam Including Non=linear Inertia Effects'", Journal of Applied
Mechanics, 40(3), Series E, pp 221-223, 1973. '




(14)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

Acluri, S.N., and Gordon, J.T., "Non-linear Flutter of a Circular
Cylindrical Shell", Developments in Theoretical and Applied Mech-
anices, Vol. 7, Catnolic University of American Press, (Chi and
Heller, Editors) pp 285-304, 1973.

Atluri, S.N., Kobayaphi, A.S,, and Nakagaki, M., "Application of

an Assumed Displacement Hybrid Finite-Element Procedure to Two-
Dimensional Probelms in Fracture Mechanics, ATAA Paper No. 74-390,
Proceedings of ATAA/ASME/SAE 15th SDM Conference, Las Vegas, Nevada,
pp 220-231, 1974.

Deak, A.L., and Atluri, S.N., "The Non-linear Stress Analysis of
Laminated Shells by the Hybrid Stress Finite Element Methods',
Computational Methods in Non-linear Mechanics, University of
Texas at Austin Press, pp 79-89, 1974,

Atluri, S.N., "Finite-Element~Perturbation Analysis of Non-linear
Dynamic Response of Elastic Continuua", Proceedings of the 1974
International Conference on Finite Element Methods in Engineering,
University of New South Wales, Sydney, Australia, pp 581-597, 1974,

Atluri, S,N., Cheng, 7.S., and Kobayashi, A.S., "Brain Tissue
Fragility", A Finite Strain Analysis by a Hybrid Finite Element
Model", Journal of Applied Mechanics, Trans. ASME, Vol. 42, Series
E, No. 3, June 1975, pp 263-269.

Atluri, S.N., Kobayashi, A.S., and Nakagaki, M., "Stress Intensity
Factors of Cracked Orthotoropic Plates", in Proceedings of the
Conference on the Fundamental Aspects of the Deformation and
Fracture of Composite Materials, Battle Seattle Research Center,
Seattle, February 1975.

Atluri, S.N., "Rotationally Symmetric Bending of Orthotropic
Conical Shells: Transverse Shear and Couple-Stress Stress-Couple
Effects'", Developments in Mechanics, Vol. 8, University of Oklahoma
Press, pp 53-71, 1975. "

Atluri, S.N., Kobayashi, A.S., and Nakagaki, M., "An Assumed Dis-
placement Hybrid Finite Element Model for Linear Fracture Mechanics',
International Journal of Fracture, Vol. 11, No. 2, pp 257-271, 1975.

Atluri, S.N., and Deak, A.L.,, "Nonlinear Stress Analysis of Pneumatic
Structures", Proceedings of the 5th Canadian Conference on Applied

Mechanics, University of New Brunswick, Canada, pp 645-647, 1975.

Atluri, S.N., and Deak, A.L., "Integral Equaticn Solution of Three-
Dimensional Nonhomogeneous Elasticity Problems", Proceedings of 5th
Canadian Congress of Applied Mechanics, University of New Brumswick,

Canada, pp 41-43, 1975,

Atluri, S.N., "On Hybrid Finite Element Models in Sonlid Mechanics',

in Advances in Computer Methods for Partial Differential Equations,
(R. Vishnevetsky, Edltor), AICA, Rutgers University, pp 346-356, 1975.
(invited article), .

B s B i o st i B



e LR

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

Acluri, S.N,, Kathiresan, K., and Kobayshi, A.S., Three-Dimen-
sional Linear Fraccure Mechanics Analysis by a Displacemeat Hybrid
Finive Element Model", Paper No. L-7/3, Proceedings of 3rd
International Conference on Structural Reactor Mechanics in

Technology, University of London, Vol. 1, 13, pp 1975.

Atluri, S.N., Kobayashi, A,S., and Nakgaki, M., "A Finite
Program for Fracture Mechanics Analysis of Composite Material',
Fracture Mechanics of Composites, ASTM STP 593, American Society
for Testing and Materials, pp 86-98, 1975.

Atluri, S,.N., Kobayashi, A.S., and Nakagaki, M,, '"Fracture Meghanics
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Initially Stressed lat Plate", Journal of Sound and Vibration,
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Atluri, S.N., and Nakagaki, M., "Analysis of Plane Fracture
Problems Involving Large-Scale Yielding: A Displacement Hybrid
Method", Proceedings of 12th Annual Meeting of the Society of
Engineering Science, University of Texas at Austin, pp 66-67, 1975,
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anics Analysis", Proceedings of 12th Annual Meeting of the Society
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ment Incremental Method", Developments-in Theoretical and Applied

Mechanics, Vol. 8, Proceedings of the 8th SECTAM, Virginia Polytech-

nic and State University, Blacksburg, Va., pp 206-224, 1976.
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Proceedings of the 17¢h AIAA/ASME/SAE Structures, Structural

Dynamics and Materials Conference, Valley Forge, Pa,, pp 140-152,

1976,

Atluri, S.N,, and Kath.resaii, K., "On a 3-D 'Singularity-Element'
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Engineering Science, Vol, I, NASA CP-2001, pp 267-276, Nov. 1976.

Atluri, S.N., Kathiresan, K., Nakagaki, M., and Kobayshi, A.S.,
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by a Three-Dimensional Displacement Hybrid Finite Element Method',
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Element Incremental Analysis", Pressure Vessel Technology, (Part
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Tong, P., and Atluri, S,N,, "On Hybrid Finite Element Techniques
in Crack Analysis", Proceedings of International Conference on
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Atluri, S.N., "On the Formulation and Application of Refined Num-
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Proceedings of International Symposium on Innovative Numerical
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Atluri, S.N., "Hybrid Crack Elements", Proceedings of Joint
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ment Finite Element Model for Nonlinear-Elastic and Elastoplastic
Analyses", Proceedings ATAA 18th Structures, Structural Dynamics
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Norway, pp 3-41, L977, (invited feature article).
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Atluri, S,N,, Nakagaki, M., Kathiresan, K., Rhee, H.C,, and

Chen, W.H., "On Hybrid Finite Element Models for Linear and Non-
linear Fracture Analyses", in Numerical Methods in Fracture
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Grannell, J.J., Quinlan, P.M.. Atluri, S$.N., and Fitzgerald, J.E.,
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# (76) Murakawa, H., and Atluri, S.N., "Finite-Strain Plasticity Compu-
tations Based on a New Complementary Rate Principle", 16th Annual
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(invited paper). ‘
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Nishioku, T., and Atluri, S.N., "Efficient Computational Techniques
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Journal of Pressure Vessel Technology, 1980), (invited paper).

Nakagaki, M., and Atluri, S.N., "Elastic-Plastic Analysis of
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Nishioka, T., and Atluri, S.N., "Assumed Stress Finite Element
Analysis of Through Cracks in Angle-Ply Laminates", AIAA Journal,
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Nishioka, T,, Stonesifer, R.B,, and Atluri, S.N., "Moving
Singularity-Finite-Element Modeling of Fast Fractuve in Finite
Bodies" "Generation" and "Propagation' Studies", in Numerical
Methods in Fracture Mechanics, (Editors: D,R.J, Owen and A.

Luxmoore) Proceedings in 2nd International Conference on Numerical
Methods in Fracture, Swansea, U,K,, June 1980, pp =~ s 1980,

(in press).

Nishioka, T., and Atluri, S.N., "Multilayer-Stress-Hybrid-Finite-
Element Method for Fracture Analysis of Angle-Ply Laminates', in
Numerical Methods in Fracture Mechanics, (Editors: D.R.J, Owen
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Numerical Methods in Fracture, Swansea, U.K,, June 1980, pp -
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International Conference on Future Trends in Nonlinear Structural

Mechanics, George Washington University, Washington, D.C., pp 11-18,
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1981).

Nishioka, T., and Atluri, S.N., "Analysis of a Propagating Central
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on Analytical & Experimental Fracture Mechanics, Rome, Italy,
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Nishioka, T., and Atluri, S.N., "Fracture Analyses of Angle-Ply
Laminates", in Proceediqgg of Fifth .nternational Conference on
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Atluri, S.N., and Nishioka, T., "Dynamic Fracture Analyses: A
Translating - Singularity Finite Element Procedure", in Proceedings
of Fifth International Conference on Fracture, Cannes, France,
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Atluri, S.N., Bratianu, C., and Murakawa, H., "Recent Studies on
Hybrid Finite Elements in Solids & Fluids, Proceedings of 17th
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Nishioka, T., Stonesifer, R., and Atluri, S.N., "An Evaluation
of Several Moving Singularity Finite Element Models for Fast
Fracture Analysis", Engg. Fracture Mechanics, 1981, Vol. 15, No.
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Vijayakumar, K., and Atluri, S.N., "An Embedded Elliptic Flaw in
an Infinite Solid, Subject to Arbitrary Crack-Face Tractions",
Journal of Applied Mechanics, Trans. ASME, Vol. 48, No. 1, pp
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Bratianu, C., and Atluri, S.N., "A Stress-Hybrid Finite Element
Method for Stokes' Flow", Letters in Heat and Mass Transfer,
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Bratianu, C., and Atluri, S.N., "A Hybrid Finite Element Method
for Incompressible Flow: Part I - Formulation and Numerical
Studies", Computer Methods in Applied Mechanics and Engineering,
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Ying, L-a, and Atluri, S.N., "A Hybrid Finite Element Method

for Incompressible Flow: Part Il - Studies of Convergence and
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Bratianu, C., Atluri, S.N., Rust, J.H., "Hybrid and Mixed Methods
for Fluid Flow", Proceedings of American Nuclear Society Annual
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Bratianu, C., Atluri, S.N., Rust, J.H., "Hybrid Finite Element
Studies of Some Lubrication Problems', Journal of Lubrication,
Trans. ASME, 1981, (to appear).

Vijayakumar, K., and Atluri, S.N., "An Embedded Elliptical Crack
in an Infinite Solid", in Proceedings of XVth International Congress
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p. 95, August 1980, (abstract only), (also in Proceedings of 17t
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Annual Mecting of Society of Engineering Science, Atlanta, GA, Dec.
1980), (invited paper).

Nishioka, T., and Atluri, S.N., "Numerical Analysis of Fast Fracture
in Different Test Specimens: Simulation and Prediction Studies",
Engg. Fractyjie Mech., 1981, (to appear).

Nishioka, T,, and Atluri, S.N., "A Major Developuwent Towards a
Cost-Effeciive Alternating Technique for Fracture Analysis of
Reactor Vessels'", Trans. 6th Int. Conf. on Structural Mechanics
in_Reactor Technology, Paper G-2/1, Paris, France, 1981, (to
appear).

Atluri, S.N., Murakawa, H,, and Bratianu, C., 'Use of Stress Functions
and Asymptotic Solutions in FEM Anualysis of Linear and Nonlinear
Continuua', in New Concepts in Finite Element Analysis, ASME AMD

Vol. 44 (Editors: T,J.R. Hughes, etc.), pp 11-28, 1981,

Nishioka, T., and Atluri, S.N., "Analysis of Cracks in Adhesively
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Dynamics and Materials Counference, Atlanta, GA, April 1981 pp 1-5,
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Murakawa, H., and Atluri, S.N., "Finite Deformations, Finite
Rotations and Stability of Plates: A Complementary Energy-
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Structures, Structural Dynamics and Materials Conference, Atlanta,
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Rhee, R.C., and Atluri, S.N,, "Hybrid-Stress Finite Element
Analysis of Through-Crncka in a Plate in Bending', Intl. Jnl.
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Atluri, S.N., "Hybrid Finite Element in Fluid Flow Problems",
in Proceedings of Conference on Mathematics of Finite Flements
and its Applications, (£ditor: J.R. Whiteman), Brunel University,
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Nishioka, T., and Atluri, S.N., "A Simple 2-D Estimation Method for
Stress-Intensity Factors for Through Cracks in Angle-Ply Laminates",
Engineering Fracture Mechanics, 1981, (in press).

Nishioka, T., and Atluri, S.N., "Simple 2-D Estimaf.ion Procedure
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Fukuchi, M., and Atluri, S.N., "Finite Deformation Analysis of
Shells: A Complementary Energy-Hybrid Method", in Nonlinear
Finite Element Analysis of Shells, ASME AMD Vol. 48, (Ed.
Hughes), ASME, pp 233-249, 1981.

McGowan, J.J., and Atluri, S.N., "Damage Tolerant Design of Panels
with Surface Cracks, A Study of Lower Bound Flaw Shapes', Advances
in Aerospace Structures and Materials, ASME AD-01, 1981, pp 293-299.

Reed, K.W., and Atluri, S.N., "Viscoplasticity and Creep: A
Finite Deformation Analysis Using Stress-Based Finite Elements",
Advances in Aerospace Structures and Materials, ASME AD-0l, pp

Kobayashi, A.5., Atluri, S.N., Cheng, J.S., and Emergy, A.¥.,
Love, W.J., "Elastic-Plas*ic Analyses of a Three-Point Bend
Specimen and a Fracturing Pipe", invited contributions,
U.S.-Japan Seminar and Elastic-Plastic Fracture, Hyama, Japan,

Nov. 1979.

Rhee, H.C., and Atluri, S.N., "On the Accuracy of Finite Element
Solutions of Problems with Traction Boundary Conditions, Int.
Jnl. of Applied Mathematical Modslling, Vol. 5, pp 103-108, 1981.

Bratianu, C., and Atluri, S.N., "Studies of FEM Analysis of
Fluid Flow Using Velocity - Pre-sure Formulation', Intl. Jnl.
of Applied Mathematical Modelling, 1981, (to appear), (invited
paper).

Atluri, S.N., Tong, P., and Murakawa, H., "Recent Studies in
Hybrid and Mixed FEM in Continuum Mechanics", in Hybrid and
Mixed FEM, (Ed.: S.N. Atluri, 0.C. Zienkiewicz, and R.H.
Gallagher), John Wiley & Sons, 1981, (to appear).

Bratianu, C., Ying, L-a., and Atluri, S.N., "Hybrid Elements
for Fluid Flow", 3rd International Conference on Finite Elements
in Fluid Flow, Tokyw, Japan, 1981, (to appear).
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(130)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

Rubenstcin, R., and Atluri, S.N., "Objectivity of Incremental
Constitutive Relatious over Finite Time Steps in Computational
Finite Deformation Analyses:, Computer Methods in Applied Mechanics
Engineering, 1982, (in press).

Stonesifer, R.B., and Atluri, S.N., '"On a Study of the (Ag)c and
C* Integrals for Fracture Analysis under Non-Steady Creep", Engg.
Fracture Mechanics, 1981 (in press).

Stonesifer, R.B., and Atluri, S.N., "Moving Singularity Creep
Crack Growth Analysis with the (AT) and C* Integrals", Engineering
Fracture Mechanics, 1981, (in preusy.

Nishioka, T., and Atluri, S.N., "Finite Element Simulation of
Problems in Dynamic Fracture Mechanics", Translations of Japanese
Society of Mechanical Engineers, 1982 (in press).

Atluri, S.N., "Alternate Stress and Conjugate Strain Measures, and
Mixed Variational Formulations Involving Rigid Rotations, for Compu-
tacional Analyses of Finitely Deformed Solids, with Application to
Plates and Shells-Part I: Thoery'", Couputers & Structures,

1982, (to appear). '

Nishioka, T., and Atluri, S.N., "Analytical Solution for Embedded
Elliptical Cracks, and Finite Element Alternating Method for
Elliptical Surface Cracks, Subjected to Arbitrary Loading",
Engineering Fracture Mechanics, 1982, (to appear).

Nishioka, T., and Atluri, S.N., "Integrity Analyses of Surface

Flawed Aircraft Attachment Lugs: A New, Inexpensive, 3-D Alternating
Method', Proc. 22nd AIAA/ASME/ASCE/AHS Structures and Materials Conf.,
New Orleans, LA, 1982, (to appear).

Nishioka, T,, and Atluri, S.N., "Finite Element Simulation of Fast
Fracture in Steel DCB Specimen'", Engg. Fracturs Mechanics, 1981,
(in press).

Nishioka, T., and Atluri, S.N,, "A Method for Determining Dynamic
Stress Intensity Factors from COD Measurements at the Notch
Mouth Opening in Dynamic Tear Testing", Engg. Fracture Mechanics,
1981, (in press).

Atluri, S.N., "Hybrid and Mixed FEM in Fluid Mechanics", 3rd Int.
Conf. on Finite Elements in Water Resources, University of Hannover,
W. Germany, June 1982 (to appear).

Nishioka, T., and Atluri, S.N., "Analyses of Semi-Elliptical Surface
Cracks in Cylindrical Pressure Vessels Using New Finite Element-
Alternating Method", Proc. 1982 Pressure Vessels and Piping Conf.,
Orlando, FL, May 1982, (to appear).

Perl, M., and Atluri, S.N., "Dynamic Crack Propagation in a Very
Ductile Material', Engg. Fracture Mechanics, 1982 (to appear).
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(142)

(143)

(144)

(145)

(146)

(147)

Reed, K.W., and Atluri, S.N., "Generalization of Viscoplastic
Constitutive Equations for Very Large Srains', Proc. Int. Conf.
on Constitutive Laws for Engg. Materials: Theory and Application,

Univ. of Arizona, 1982 (to appear).

Nakagaki, M., and Atluri, S.N., "Analysis of Fatigue Growth of
Cracks Near Cold-Worked Fastener Holes", 1982 ASME Pressure
Vessels & Piping Conf., June-July 1982, (to appear).

Atluri, S.N., "Current Studies in Inelastic, Dynamic, and 3-D
Fracture Analysis'", Proc. U.S.-Japan Seminar on Fracture Tolerance

Evaluation, Honolulu, Hawaii, Dec. 1981, (in press).

Atluri, S.N., Reed, K.W., and Stonesifer, R.B., "Stress and Fracture
Analyses Under Elasto-Plastic and Creep: Some Fundamental Develop-
ments and Computational Approaches", Proc. Symp. on Nonlinear
Constitutive Relations for High Temperature Applications, University
of Akron, OH, May 1982, (to appear). ' v

Karamanlidis, D., and Atluri, S.N., "A Novel Family of Mixed-
Hybrid Finite Elements for 3-dimensional Large Deformation
Dynamic Analysis', 2nd Int. Symp. on Advances and Trends in
Structural and Solid Mechanics, Wash., DC, Oct. 1982, (to appear).

Wells, C.H., Nair, P.K., and Atluri, S.N., "Limitations of the
Fracture Mechanics Approach to Determining Rotor Integrity", in
Safety and Integrity Analyses of Turbine Rotors, EPRI, 1982, (in

press).




s

(¢)

Research Reports

(Several of the archival papers published were first issued as grant/
contract reports. These are not included here.)

(1)

(2)

(3)

(4)

(5)

(6)

(7

(8)

(9)

(10)

(1

(12)

(13)

“"PETROS 3: A Finite-Difference Program and Analysis for Large
Elastic, Plastic Dynamically Induced Deformation of Multilayer,
Variable Thickness Shells," U.S. Army Ballistic Research Labora-

tory Report, August 1970 (with E.A. Witmer, J.W. Leech, and L. Morine)
and M.I.T. ASEL TR-152-3, 1970, 330 pages.

"Non-linear Stress Analysis of Loaded Rolling Aircraft Tires', AFFDL-
TR-73-130, Vol. 1, Wright-Patterson AFB, OH, 1973 (with A.L. Deak).

"Head Injury Studies", Final Contract Report to NIH, Contract No.
NIH-NINDS-72-2325, Dept. of Mech. Engg., University of Washington,
Seattle (with A.S. Kobayashi and S. Cheng).

"Static Analysis of Shells of Revolution Using Doubly-Curved Quad-
ralateral Elements Derived from Alternate VAriational Models", Space
and Missiles Systems Organization, Norton Air Force Base, CA, SAMSO
TR-69-394, June 1969, Also Aeroelastic and Stuuctures Research
Laboratory, M,I.T., ASRL TR-146-147, 190 pages,

"The Stress Analysis of Loaded Rolling Aircraft Tires', AFFDL-TR-
73-130, Vol. 1, Wright-Patterson AFB, OH, 1973, 300 pages.

"Static Analysis of an Aircraft Tire'", Mathematical Sciences North-
west Report, August 1972, 200 pages (with A.L. Deak).

"Analysis of a Rolling Aircraft Tire", Mathematical Sciencecs North-
west Report, July 1972 (with A.L. Deak).

"On Solutions for Rotationally Symmetric Bending of Conical Shells",
University of Washington, Department of Aeronautics and Astronautics,
Report 71-1, 1971,

"Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in
Mode I and Mode II Conditions', Scientific Report, NASA Graant NSG-1351,
Sept. 1977, 40 pages (with M. Nakagaki).

"The Edge~Function Method", Scientific Report, NSF Grant, ENG
76-16418, March 1978: GIT Report SCEGIT-78-169: ESM-78-1; 66 pages
(with D.M, Quinlan, J.E. Fitzgerald).

"Finite Element Elastic-Plastic Analysis of Cracks', Scientific
Report, AFOSR Grant 74~2667, AFOSR-TR-78-41; GIT-ESM-78-2; 42 pages.

"Stress Analysis of Automobile Tires'", Final Report to General "ire
& Rubber Company, 200 pages, April 1978, (with S. Chandrashekara).

"Homogeneous and Bi-Material Crack Elements for Analysis of Solid
Rocket Motor Grains', Vol. 1, Edwards Air Force Base AFRPL-TR-78-
286, Se¢pt. 1978 (with K. Kathiresan) 200 pages.
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(14)

(15)

(16)

(17)

"Homogeneous and Bi-Material Crack Elements for Analysis of Solid
Rocket Motor Grains", Vol, II, AF RPL-TR-78-287, Sept. 1978 (with
K. Kathiresan), 280 pages.

"Fatigue Crack Growth in Modes I and IT Spectrum Loading' NASA-
CR-78-123. (with M, Nakagaki) Oct. (978, 98 pages.

"Noz~-Flaw: A Computer Program for Direct Evaluation of K-Factors
for Pressure-Vessel Nozzle Corner Cracks", (with R, Bausz, J.W.
Bryson, K. Kathiresan) NUREG/CR-1843/ORNL/NUREG/CSD/TM-18, (Prep.
for U.S. Nuclear Regulartory Comm. by Oak Ridge Natl. Labs), Nov.
1980, 52 pages,

"Boundary Element Methods (BEM) and Combination of BEM-FEM"
(with J.J. Grannell) GIT-CACM-SNA-79-16, 84 pages, 1979,

.
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(D) Papers Presented at International and National Conferences

(1)

(2)

(3

(4)

(5)

(6)

(7

(8)

)

(10)

. (11)

"Nonlineatr Free Oscillation of Shells", Regional Meeting of
Society of Industrial and Applied Mathematics, November 1971,

Ellensburg, WA

"Nonlinear Oscillations of a Hinged Beam Including Nonlinear Inertia
Effects', ASME Joint National and Western Applied Mechanics Con-

ference, June 26-29, 1972, University of California, San Diego.

"Influence of Large Amplitudes and Boundary Conditions on the Super-
sonic Flutter of a Cylindrical Shell", presented at the 4th

Canadian Congress of Applied Mechanics, May 28-June 1, 1973
Montreal, Canada.

Mechanlcs of Brain Tissue Fragility', ASME Special Symposium on
Biomechanics: National Summer Conference on Applied Mechanics,

June 20-22, 1973, Atlanta, GA.

"Nonlinear Flutter of a Cylindrical Shell", 7th SECTAM, Catholic
University of America, March 1974.

"Application of an Assumed Digplacement Hybrid Finite Element
Model to Two-Dimensional Problems in Fracture Mechanics"
AIAA/ASME/SAE 15th SDM Specialist Conference, Las. Vegas, NV,
April 1974,

"An Assumed Displacement Hybrid Finite Element Model for Linear
Fracture Mechanics", presented at the 7th U.S. National Congress
of Applied Mechanics, Boulder, CO, June 1974.

"Finite Element Program for Fracture Mechanics Analysis of
Composite Materials'", presented at ASTM Symposium on Fracture of
High Modulus Fibers and their Conposites, Natioal Bureau of

Standards, Gaithersburg, MD, Sept. 25, 1974 (invited).

"Stress Intensity Factors of Crasked Orthotropic Plates",
Conference on the Fundamental Aspects of the Deformation and
Fracture of Composite Materials, Battelle Seattle Research
Center, Seattle, Feb, 22-24, 1975.

"Brain-Tissue Fragility: A Finite Strain Analysis by a Hybrid
Finite Element Method", American Society of Mechanical
Engineers: Applied Mecharics Western Conference, University of
Hawaii, March 25-27, 1975.

"Rotationally Symmetric Bending of Orthotropic Conical Shells:
Transverse Shear and Couple Stress-Stress Couple Effects",

14th Midwestern Mechanics Conference, University of Oklahama,
Norman OK, March 23-25.

"Three-Dimensional Cracked Elements', AFRPL Edwards Air Force Base,
CA, Contract Research Review, Caltech, Pasadena, May 8-, 1975 (inyited).




(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

"Boundary Integral Equation Formulation for Three-Dimensional
Elasticity Problems with Body Forces', 5th Canadian Congress of
Applied Mechanics, New Brunswick, Canada, June 1975 (with A.L, Deak).

"Nonlinear Stress Analysis of Pneumatic Structures', f7h Canadian
Congress of Applied Mechanics, New Brunswick, Canada, June 1975,

(with A.L. Deak).

"Finite Element Approximation in Solid Mechanics', four lectures
at the University of Tennessee Space Institute, Tullahoma, Nov.
10-15, 1975.

"Large~Scale Yielding Fracture Mechanics', at the Committee E-24
Meeting, 9th National Symposium on Fracture, University of

Pittsburgh, Aug. 25-27, 1975 (invited).

"Analysis of Two-Dimensional Problems Involving Large-écale
Yielding", 12th Annual Meeting of the Soclety of Engineering

Science, Austin, TX, Oct. 1975.

"An Assumed Displacement Hybrid Finite Element Model for Three~
Dimensjonal Linear Fracture Mechanics Analysis', 12th Annual
Society of Engineering Science Meeting, University of Texas at

Austin, Oct, 1975,

"Hybrid Elements for 3-D Fracture'", Specialist Work Shop on 3-D
Fracture Analysis, organized by AFOSR/NASA/ERDA/DOT, Battelle
Columbus Labs., Columbur, OH (invited).

"Post-Yield Analysis of a Three-Point-Bend Fracture Test Specimen",
8th Southeastern Conference on Theoretical and Applied Mechanics,

VPI and SU, Blacksburg, VA, April 20-30, 1976.

"J-Integral Estimation Procedures for Strain-Hardening Materials",
at ATAA/ASHME/SAE, Structures, Structural Dynamics, and Materials
Specialist Conference, Valley Forge, PA, May 5-7, 1976.

"On a 3-D Singularity Element for Computation of Mixed Mode Stress
Intensities", 13th Annual Society of Engineering Science Meeting,
NASA-Langley, Hampton, VA, Nov. 1976.

"Fracture Analysis Under Large-Scale Plastic Yielding Conditions',
10th U.S. National Conference in Fracture, American Society for
Testing and Materials, Aug. 20-25, 1976, Philadelphia, PA.

"On Hybrid Stress Analysis of Laminated Shells by the Hybrid
Stress Finite Element Model', presented at International Con-
ference on Computational Methods in Nonlinear Mechanics, Univer-

sity of Texas at Austin, Sept. 1974.

"On Hybrid Stress and Hybrid Displacement Models in Solid and
Fracture Mechanics", AICA International Symposium on_ Computer
Methods for Partial Differential Equations, Lehigh University,
Bethlehem, PA, June 1975 (invited paper).




(26) "Finite Flement Analysis of Cracks Between Dissimilar Media',
NATO Advanced Siudy Institute on Continuum Mechanics Aspects of
Geodynamics and Rock Fracture Mechanics, Reykjavik, Iceland,
Aug. 11-20, 1974 (invited),

(27) "Finite Element-Perturbation Analysis on Nonlinear Dynamic Response
of Elastic Continuua', invited presentation at the 1974 International
Conference on Finite Element Methods in Engineering, Syiney, Aus-
tralia, Sept. 1974.

(28) '"Three-Dimensional Linear Fracture Mechanics: Analysis by a
Displacement Hybrid Finite Element Model", invited presentation
of the 3rd International Conference on Structural Mechanics in
Reactor Technology, University of London, Sept. 1975, (with
K., Kathiresan and A.S. Kobayashi).

(29) "Stress Analysiz of Cracks in Elasto-Plastic Range", (with M.
Nakagaki), 4th Quadrennial International Conference on Fracture,
University of Warerloo, Ontario, Canada, June 1977, '

(30) "Stress Intensity Factors for Surface Flzws in Pressurized Cylinders",
(with K. Kathiresan), 3rd International Congress on Pressure Vessel
Technology, Tokyo, Japan, April 1977.

(31) "Fracture Initiation in Plane Ductile Fracture Problems", 3rd In-
ternational Congress on Pressure Vessel Technology, Tokyo, Japan,
April 1977.

(32) "On Hybrid Techniques for Fracture Analysis", (with P. Tong),
International Conference on Fracture Mechanics and Technology,
Hong Kong, March 1977 (invited).

(33) '"On the Formulation and Application of Rational Numerical Methods
for Problems with Nonremovable Singularities', International Sym-
posium on Innovative Numerical Methods in Engineering Science,
Paris, France, May 1977 (invited).

(34) "Edge Function Method for Three-Dimensional Stress Analysis'!,
(with P.M. Quinlan and J.E. Fitzgerald), at International Sym-
posium on Innovative Numerical Methods in Lngineering Science,
Paris, France, May 1977 (invited).

(35) "Fracture Analysis of Structures Under Combined Mode Loading",
2nd ASCE Engineering Mechanics Specialist Conference, Rayleigh,
N.C., May 1977, (invited).

(36) "Stress Analysis of Cracks in Elasto-Plastic Range", 4th Inter-
national Conference on Fracture, University of Waterloo, Canada,

June 1977,

(37) '"Outer Surface Flaws in Pressure Vessels, 4th International
Conference on Structural Mechanics in Reactor Technnlogy, San
francisco, CA, August 1977.




(38)

(39)

(40)

(41)

(42)

(43)

(46)

(47)

(48)

(49)

(50)

(51)

"Through Flaws in Plates in Bending"”, 4th International Con-
ference on Structural Mechanics in Reactor Technology, San
Francisco, CA, Aug. 1977.

"Hybrid Finite Element Models in Nonlinear Solid Mechanics",
Intemational Conference on Finite Elements in Nonlinear Solid
and Structural Mechanics, Geilo, Norway, August 30-September 1,
1977 (invited).

"Analysis of Stable Crack Growth in Ductile Materials", 9th
SAMPE National Conference, Atlanta, GA, Oct. 1977. (invited).

"Surface Flaws in Plates', l4th Annual Meeting of Society of
Engineering Science, Lehigh University, Nov. 1977.

"A Finite Element Analysis of Stable Crack Growth - I", ASTM
National Symposium on Elastic-Plastic Fracture, Atlanta, GA,
Nov., 1977.

"Hybrid Finite Element Models in Linear and Nonlinear Fracture',
International Conference on Numerical Methods in Fracture,
Swansea, U.K., Jan., 1978, (invited).

"Bi-Material Fracture", 1978 Joint AFOSR/AFRPL Rocket Propulsion
Research Meeting, Edwards Air Force Base, CA, March, 1978 (invited).

"Elastic-Plastic Analysis of 3-D Cracks', 1978 Joint AFOSR/AFRPL
Rocket Propulsion Research Conference, Edwards Air Force Base,
CA, March 1978, (invited).

"Stress Analysis of Typical Flaws in Aerospace Structural Camponents",

19th ATAA/ASME Structures, Structural Dynamics and Materiale Con-

ference, Bethesda, MD, March 1978,

"Edge-Function Method for 3-D Elasticity", 8th U.S. National
Congress (Quadrennial) on Applied Mechanics, UCLA, Los Angeles,
June 1978,

"Boundary-Discretization Method Using Edge Functions", International

Conference on Recent Advances in Boundary Element Methods, Univer-

sity Southampton, U.K., July 1978 (invited).

“"Complementary Energy Principles and Finite Strain Problems",
Symposium of the International Union of Theoretical and Applied
Mechanics on Variational Methods; Evanston, IL, Sept. 78, (invited).

"Numerical Modelling of Nonlinear Behavior of Soft Biological
Materials', International Conference on Applied Numerical
Modelling, University of Madrid, Spain, Sept. 78, (invited).

"On the Use of Stress Functions and Asymptotic Solutions in Solid
and Structural Mechanics', Symposium on Future Trends in Computer-
ized Analysis of Structures's, Washington, DC, Nov. 78, (invited).
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(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

"An Efficient Assumed Stress Finite Element Method for Analysis
of Angle-Ply Laminates'", 15th Mecting of Society of Engineering
Sctence, Univ, of Florida, Dec. '78,

"Finite Elasticity Solutions Using Hybrid Finite Elements Based
on a Complementary Energy Principle", ASME Winter Annual Meeting,
San Francisco, Dec. '78.

"Influence of Flaw Shapes on Stress Intensity Factors for Beltline
Cracks', National Congress on Pressure Vessel Technology, San
Francisco, June 1979,

"Finite Elasticity Solutions Using Hybrid Finite Elements Based

on a Complementary Fnergy Principle II. Incompressible Materials",
1979 Joint Applied Mechanics, Fluids Conference, Niagara Falls,

New York, June 1979.

"Finite Element Methods for Finite Strain Plasticity Problems in
Metalforming", International Conference on Computational Methods
in Nonlinear Mechanics, (sponsored by NSF) Austin, TX, March 1979,
(invited).

"Analytical Modelling of Surface Flaws", Fracture Research Sym-
posium, SESA, Annual Meeting, San Francisco, June 1979, (invited).

"Computational Methods for Engineering Fracture Analyses', Inter-
national Conference on Fracture Mechanics in Engineering, Bangalore,

India, March 1979, (invited).

"Nozzle-Vessel-Intersection Cracks Under Thermal Shock', Inter-
national Conference on Structural Mechanics in Reactor Technology,
W. Berlin, Aug. 1979, (invited).

"Hybrid Finite Element Methods for 3-D and Nonlinear Fracture Prob-
lems", Engineering Applications of the Finite Element Methods,
Det Norske Veritas, Havik, Norway, June 1979, (invited).

"Complementary Energy and Finite Strain Plasticity", Advances in
Theory and Practice of Finite Element Methods, Centennfal CeZebration

of Chalmers University of Technology, Goteberg, Sweden, Aug. 1979,
(invited).

"Static/Dynamic Analysis of Crack Propagation', 3rd ASCE Engineering
Mechanic¢s Specialty Conf., Univ. of Texas at Austin, Sept. 1979,
(invited).

"Finite Strain Plasticity Computations", Society of Engineering
Science Annual Meeting, Nerthwestern Univ., Evanston, IL, Sept.

1979 (invited).

"Selection of Finite Element Bases', Specialist Workshop on Finite
Elements, Washington Univ., St. Louis, MO, Nov. 1979, (invited).




(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

"Numerical Modeling of Nonlinear and Dynamic Crack Propagation",
Symp. on Nonlinear and Dynamic Fracture, ASME WAM, Dec. 79,

(invited).

"Stress Analysis of Holes in Composite Laminates', 2ist AIAA
Structures, Structural Dynamics and Materials Conference, Seattle,
WA, May 1980,

"Dynamic Propagation of a Central Crack in a Finite Panel”,
Int. Conf. on Analytical and Experimental Fracture Mechanics,
Rome, Italy, June 1980, (invited).

"Use of Stress Functions and Asymptotic Solutions in FEM Analysis
of Continuua'", Symp. on New Concepts in FEM, 1981 Summer Annual
Mechanics Meeting, Boulder, CO, June 1981, (invited).

"Recent Studies in Hybrid FEM for Solids and Fluids", Society
of Engineering Sci. Meeting, Atlanta, GA, Dec. 1979, (invited).

"An &mbedded Elliptical Flaw Subject to Arbitrary Loading, in an
Infinite Medium', 15th Int. Congress on Theoretical and Applied
Mechanics, IUTAM, Univ. of Toronto, Aug. 1979,

"Edge-Funct.ion Method for Buried Cracks'", 2nd Int. Symp. on
Innovative Numerical Analysis in Engineering, Montreal, Canada,
June 1980, (invited).

‘An Analyxis of and Some Observations on Dynamic Fracture in an
Impact Specimen', 1981 Pressure Vessels and Piping Conf., Denver,
€0, June 1981, (invited).

"Finite Defrymation Analysis of Shells, A Complementary Energy-
Hybrid Approach', Symp. on Nonlinear Finite Element Analysis
of Shells, ASME, WAM, Nov. 81, (invited).

"Recent Studies on Dynamic, Inelastic, and 3-D Fracture Analysis",
U.S.-Japan Seminar on Damage Tolerance Evaluation, Hanolulu,
Hawaii, Dec. 81, (invited).
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(E)

lnvited Seminars and Colloquia in U.S. and Abroad

(1)

(2)

(3)

(4)

(

(6)

(7

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(1

»

)

"PFinite FElement Analysis of Shells", Department of Aerospace
Iingineering, University of Maryland, July 1969,

"Analysis of Large Amplitude Elastoplastic Dynamics of Shk2lls",
M.I.T., May 1970,

"Philosophical Implications of the Theory of Relativity", M.I.T.,
December 1970,

"Nonlinear Oscillations in Certain Elastic Systems', Indian
Ingtitute of Technology, Kanpur, September 1971.

"Recent Developments in Finite-Element Theory', Department
of Aeronautical Engineering, Indian Institute of Science,
Bangalore, September 1971.

"Helicopter Ground Resonance", Department of Aeronautics and
Astrovautics, University of Washington, October 1971,

"What an Applied Mechanician Can Do in Medicine", Center for
Bioengineering, University of Washington, February 1972.

"Peristaltic Pumping", Center for Biloengineering, School of
Medicine, University of Washington.

"Nonlinear Oscillation in a Circular Cylindrical Shell", Depart-
ment of Mechanfcal, Mechanics and Aerospace Engineering, Illinois
Institute of Technology, May 1973.

"Dynamic Stability of a Shell in Supersonic Flow'", Department of
Theoretical and Applied Mechanics, University of Illinois-Urbana,
Champaign, June 1973,

"Analysis of a Rolling Aircraft Tire", Research and Development
Jenter, General Tire and Rubber Company, Akron, OH, Aug. 9, 1974.

"Computational Methods in Fracture Mechanics', National Aeronautical
Laboratory, Bangalore, India, Aug. 21, 1974,

"Elastic-Plastic Fracture Mechanics", Department of Aeronautics,
Indian Institute of Science, Bangalore, India, Aug. 21, 1974,

"Perturbation Methods in Nonlinear Flutter', Department of Aerc-
nautics, Indian Institute of Science, Bangalore, India, Aug. 30,
1974,

"Sinpular Perturbation Methods in Shell Theory", lecture at Short
Courgse on Singular Perturbation in Methods, University of Tennessee
Space Institute, Tullahoma, TN, Nov. 4-8, 1974,




(16) "Finite Element Approximation in Solid Mechanics", four lectures
at Short Course on Approximate Methods in Engineering and Applied
Sciences, University of Tennessee Space Institute, Tullaboma, TN,
Nov., 10-14, 1975,

(17) "Computational Fracture Mechanics", College of Engineering, Boston
University, Boston, MA, Feb. 24, 1976.

(18) "Novel Methods for Analysis of Singularity Problems", University
College of Cork, Irelund, Jan. 78,

(19) "Approximate Methods of Analysis", 4 lectures, University of
Tennessee Space Institute, Tullahoma, TN, March 78,

(20) "Recent Developments in Finite Flement Methods", 4 lectures, M.1.T.,
July 78.

(21) "Numerical Methods in ¥racture Mechanics", University College,
Cork, Ireland, Aug. 1979.

(22) "Finite Strain Inelasticity Analysis Via Complementary Energy",
Center for Computational Mechanics, Washington University,
St. Louis, MO, Jan 80.

(23) "Selection of Finite Element Basis'", Center for Computational
Mechanics, Washington University, St. Louis, MO, Nov. 1980,

(24) "Dynamic Fracture Analysis", Dept, Mechanical Engg., University
of Washington, Seattle, WA, May 1980.

(25) "Path~Indipendent Integrals in Fracture Mechanics", National
Tsing-Hua University, Hsirnchu, Republic of China, Taiwan,
May, 1981.

(26) "Rate Complementary Energy Principles for Finite Element Analysis
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