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P	 ABSTRACT

The development of valid creep fracture. criteria is a major topic in cur-

rent engineering research. Two path-independent integral parameters which show

some de^gree of promise as fracture criteriii are the C* and (A.1) 
C 

integrals.

The first portion of the present work reviewti the mathematical aspects of

these parameters. This is accomplished by deriving generalized vector forms

of the parametero using conservation laws which are valid for arbitrary, three-

dimensional, cracked bodies with crack surface tractions (or applied displace-

ments), body forces, inertial effects and large deformations. Two principal

conclusions are that (AT) 
C 

is a valid crack-tip parameter during nonsteady as

wvl.l as stoady-state creep and that (.\10, has an energy rate interpretation

wh4areas C* does nut.

The development and applicatiun of fracture criteria often involves tile

solution of boundary/initial value problems associated with deformation and

stresses 
in 

etth san Laboratory specimens or actual components. Due. to the power

of the finite element	 In treating complex geometries and non-linearities,

It. has often been used for this purpose. In the present work, an efficient,

small <Iisplacement, infinitesimel, grain, displacement based finite element

model is developed for general elastic/plastic material behavior. For the

present numerical studies, this model is specialized to two dimensional plane

stress rand plane strain and t,- newer law creep constitutive relations.
I

A mesh shifting/remeshing procedure is USCIO for Simulating crack growth,.

The: 	 is implemented with the quarter-point node technique and also with

specially developed, conforming, crack-tip singularity elements which provide

for the r	 strain singularity associated with tile IIRR crack-tip field.
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SECTION I

INTRODUCTTON

Fracture Problems and rracture Criteria: A Review.

CharacteriAing the displacement, stress and strain fields associated

with stationary and propagating cracks in solids characterized by various

idoaliced constitutive relations is one of the moat important areas of study

in fracture mechanics. The importance of these studies in not only that we can

predict the stress or displacement fields 
in 

a cracked 1,oety, but also that

knowing the nature of such fields we caa possibly correlate observed fracture

behavior wiLb, some arspect of these fields and thus arrive at valid fracture

criteria.

Critcrio4 for Crack Gri- , ' . Initiation

The two macroscopic aspects of fracture for which correlations tire commonly

sought are the initiation of crack growth and the rate of crack growth. The

most notable Initiation correlations are with the elastic stress intensity

factor, KV for the elastic (and/or small scale yielding) case (1,2] and with

tile j 
I- 

integral for cases in which plasticity may not be limited to the crack

tip (3,41. The conditions under which these correlations are independent of.

geometry are discussed in the cited references. The critical values of K 
I 

and

1 1 for a given material. are denoted K 
Ic 

and Jlc . respectively. It is implied

by the use of the subscripts "I" and 'T' that these criteria are for the crack
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g liding and tearing modes (i.e., modes II and III), the experimental data for

such studies is lacking.

Both K  and J  have been shown to be crack-tip field parameters and both

can be evaluated experimentally through energy considerations. The linear elas-

tic, mode I crack-tip field determined in (51 shows that the asymptotic crack-

tip fields are proportional to KI . Similarly, the asymptotic, mode I. crack-

tip fields for power-law deformation theory plasticity have been shown (6.71 to

depend upon the single parametera J 1 . 1 In the case of small scale yielding, K 

is easily related to the energy release rate, G I (8], which is a measure of the

potential energy decrease due to an increase in crack length. The quantity J1

has a similar potential energy interpretation in the ease of deformation theory

plasticity, and becomes idant.ical to G I for small scale yielding of a stationary

crack.

In the foregoing discussion, the time dependence of the material's response

and of the applied loading is assumed to be negligible. For creep crack growth

these assumptions are no longer valid. We now consider crack growth initiation

in 'materials which exhibit creep behavior, While a significant number of ^reep

fracture experiments have been reported in the literature, it appears that tki,e

primary interest has been to find a creep crack growth rate criterion as opposed

to an initiation criterion. As a result of this emphasis, many investigators

use notched specimens rather than precracked specimens and many do not report

data which could be useful in addressing the question of initiation. At

present there seems L,	 some indication (9,101 that when precracked specimens

are used, the time required for creep crack growth knitiation is negligible when

1 The deformation theory of plasticity precludes elastic unloading from an elastic-
plastic state and thus is mathematically equivalent to nonlinear elasticity. The
crack-tip fields associated with power-law deformation plasticity are commonly
referred to as HRR fields after the authors of references (61 and (71.
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E	 compared to the life of the specimen. It should be understood that this is not

a universally acknowledged conclusion [11) and that further study is indir.ated.
i

As noted previously, the second macroscopic aspect of fracture for which
S'

correlations with crank-tip fields are commonly sought is crack growth or propa-

gation. The following summarizes the development of criteria relating to this

aspect.

Criteria for Crack propagation

Slow crack growth occurring under constant load implies that the material

response is time dependent and is generally classified as creep crack growth.

If the material's time dependent nature is negligible under the subjecs„ con-

ditions, then it is assumed that crack growth requires an increase in applied

load. This latter case is typical of situations in which small scale yield

conditions are not met and for which J 1 has been found to correlate with crack

growth initiation. The primary interest in this quasi-static mode of crack growth

is that for some materials and geometries, the increase in load carrying capacity

of the structure during quasi-static crack growth is significant. This implies

that design procedures can be developed to take advantage of this added margin,

of safety. To justify such a procedure, however, there muast be some dependable

means of predicting the crack growth versus load behavior as well as predicting

at what ,load the crack becomes unstable (i.e., is no longer quasi-static). As

noted, J 1 is generally accepted as a valid initiation criterion for this problem.

For prediction of the subsequent growth, however, there ar:o at least two proposed

criteria which appear to provide reasonable correlations with experimental data.

The first .growth criterion can be stated as J 1MJ lR (Qa), where J 1R (0) - Jlc and

J 1R (Qa) is assumed to be a material property which depends on the amount of

crack growth, a [12,13]. The subscript "R" denotes that this quantity

characterizes the material's resistance to cracking. While strong theoretical

- 3



arguments can be given as to why this criterion should not be valid (except

possibly for very limited amounts of crack growth 114)), it has been demon-
	 d

strated that reasonable predictions can result from the use of this criterion

for at least some classes of problems (12,15).

Cased on the theoretical objections to the use of 
J 
1 except for limited

crack growth, a second criterion which is based on the crack-tip deformation

has been proposed [16,17]. This criterion results from finite element simu-

lations of quasi-static crack growth experiments which indicate that the crack-

tip opening angle, CTOA (defined by the first finite element behind the crack-

tip) becomes constant during crack growth. Whereas the CTOA, so defined, is

clearly a mesh dependent quantity, the concept of crack-tip deformations becoming

constant with crack growth is physically meaningful. The procedure for applying

this criterion in finite element based predictions of crack growth behavior is

to use J lc for initiation and 
J1R 

for crack growth prediction until the computed

CTOA has become constant with crack growth. Continued growth is then governed

by this constant value of CTGA. Alternatively, v predetermined CTOA resistance

curve can be used throug uut growth. Crack growth instability is assumed to oc-

cur (for either CTOA or J 
1 

as the criterion) when further increase In crack

length results in the criterion for growth being exceeded without further increase

in applied loading. The J 
1 

and CTOA criteria appear to provide reasonable

correlation of ductile slow crack growth behavior for a variety of materials,

geometries and load conditions (15,18,19).

Creep crack growth generally becomes a concern when components are operated

at elevated temperatures. Whereas quasi.-static crack growth can be on the order

of mm/sec, typical creep crack growth rates are on the order of pm/sec. Compared

to elastic-plastic quasi-static crack growth, the problem of creep crack initiation

and growth is a relatively new area of study.

- 4 -



Numerous experimental, studies have been P ►ndertaken with the purpose of

4	 finding a parameter which correlates with creep crack propagation rate. (See,

for example, the review article (201 and [21-24).) Most of these investigations

consider as candidate parameters, K I , some form of net section (or reference)

stress, and in more rncent studies C*. The C* parameter is the steady-state

creep analogue of J 1 (in the sense of [251) in that the definition of C* is the

same as that for J 1 except displacements and strains are replaced by their res-

pective rates [26).

It is illustrated in Fig. 1.1 that the above three parameters can be expected

to correlate three distinctly different creep crack growth situations. In Fig.

1.1a, a crack and its associated ligament are shown for a material and geometry

which results in negligible creep strains everywhere except in the vicinity of

the crack-tip. This condition is analogous to that of small scale yielding in

elastic-plastic, "racturc. Fig. l.lb represents a situation in which C* might

be considered an appropriate parameter. This situation is characterized (i) by

the body being essentially at steady-state 'veep conditions (which implies very

slaw crack propagation) and (ii) by the creep-damage process-zone being local

to, and therefore controlled by the crack-tip field. Fig. 1.1c illustrates

the type of situation for which net section stress might be expected to contra l

crack growth. In this case, the main feature is the widespread creep damage

zone.

It ib seen from Fig. 1.1 that intermediate situations can occur. For

example, suppose a particular material and geometry results in a crack propagation

rate such that elastic strain rates are not negligible compared to creep strain

rates (i.e., nonsteady creep) and at the same time, creep strains are no longer

localized to the crack-tip region. While neither K  or C* could be valid

parameters for this case, it appears reasonable to expect that crack growth

- 5 -
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rate is still determined by the local crack-tip field since the creep damage

process zone is still assumed to be local to the crack-tip.

A parameter which is apparently capable of apanning the gap between K1

controlled grc::s::hh and C* controlled growth has been introduced (27). This

parameter is referred to as (AT) c and is defined by a path-independent vector

integral. A detailed d iscusaaion of a generalized C* (i.e., C*) and (AT) c

is given in Section 11 of this work with a principal result being that the

energy relationship commonly used for experimental measurement of C* does

not apply to C* but rather applies to the (AT) c parameter. This means that

the experimental results are actually showing a correlation with (AT) c rather

than with C*. Saved on the theoretical validity of (AT) c as a crack-tip field

parameter For nonsteady as well as steady-state creep and based on the mounting

experimental evidence that crack propagation rate correlates well with (4y) co

it seems the creep crack growth rate problem is close to having a solution.

Motivation for the Present Work

In the following, we review previous studies to the extent required to

place the present study in perspective and briefly introduce the present work.

The nonlinear nature of creep constitutive relations precludes analytical so4l u-

tions for either stationary or propagating cracks in a creeping material. For

stationary cracks in a power-law creep material, however, it is known that

the HRR fields are present In the vicinity of the crack -tip '261. (Since the

singularity in creep strain rates is greater than that in the stresses, and thus

elastic strains, it follows that the HRR field exists at the crack-tip durim g

nonsteady as well as steady-state creep.) For propagating cracks, it appears that

the HRR fields no longer exist at the crack-tip, but that analytical too Is exist to determine

the fields which do exist [28,]9). While knowledge of the crack -tip field is
z

r

a,.
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valuable, the solution of boundary value problems must depend on numerical.

methods. The finite element method, in particular, shows promise for salving

creep crack growth problems.

Only a few studies on finite element modeling of creep crack growth have

been reported. The earliest is apparently that of rhtani and Nakamura 130).

This study simulated crack growth with a node-release technique and assumed a

critical crack-tip plastic strain criterion for creep crack growth. The rate

constitutive 1.,, contained an elastic term and a creep term based on the gen-

uralization of the ,,-iiaxial Norton power law,

itinnerchs 13,111 uses the Bodner-Partom constitutive law (321 and s node-

release technique for modeling crack growth. In this work, sev+zral candidate

criteria are examined by simulating crack growth experiments. Due to the ap-

parently limited crack growth (<O.5 mm), the short test durations (one hour)

and the lack of crack growth measurement data (which requires the development

of a so-called h;l-rid experimental-numerical procedure to estimate the crack

growth history), it seems the general applicability of the conclusions from

this study are questionable. It also seems likely that the methods for evalu-

ating C* io this study are incorrect  and thus the conclusions concerning C*

should be regarded accordingly.

Ehlers and Riedel (33) have conducted a finite element analysis of a

stationary crack in a compact specimen. The primary emphasis in this study

is on the nature of the crack-tip field during the transition from the initial

elastic field to the steady-state creep field.

1 While the details of the numerical procedures for evaluating C* are not given
in (311, it appears that the W* term of C* (see Section II) is incorrectly in-

terpreted as a history dependent quantity as opposed to a quantity dependent
solely on the steady-state stress and strain rate.

- 8 -



'I'he strength of the HRR field during the transition period is determined

through . •̀ itting the i;.^^r tip equivalent stress field. The calculations use

eight-noded isoparametric elements with quarter -point elements being used at the

crack-tip so as to have an r-1/2 strain singularity. Creep crack growth and

creep crack growth criteria are not considered in this study.

The finite element equations forthe creep crack growth model being used in the

present study are derived from the principle o% virtual work in Section M.

Section V presents the results of several analyses involving both stationary cracks

and propagating cracks. The creep crack growth simu,.nton is via a mesh shifting/

remeshi.ng procedure. Calculations are made using the quarter-point element tech-

nique as well as with a specially developed (Section CV) compatible element which

incorporates the KRR, r n/(l+n) , strain singularity.

An important aspect of the current work is the study of the (AT) c parameter.

In particular, the meaning of CAT) c , its relationship to C1, and its calcula-

tion within the context of finite element analysis r explored in depth.

A series of crack propagation calculations are combined with analytical and

experimental results in Section V to show that creep crack growth in 304 stain-

less steel at 6500C occurs under essentially steady-state creep conditions. This

implies R,:at the crack growth rate for a given crack length and load can be

determined from a steady-state creep solution which does not depend on the

previous load and crack growth histories. This observation implies that

simple crack growth prediction methodologies may be developed.

lf
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SECTION II

DERIVATION Or THE (AT) G , J AND CO INTEGRALS

Preliminaries

We shall consider problems which exhibit the following constitutive be-

havior:

cif + c - Li^tcRak + (3/2)1'(o ea )
n-laid
	(2.1)

We denote they cartesian coordinates of the undeformed body as x i . Defining 6i

as the rate of displacement (or velocity) of a material particle from the cur-

rant configuration, then ^i,, is the symmetric part of the rate of displacement
T	

aui ,l

gradient ei .. (Viii)	 8y	 ij + iJ ij . The gradient operator V,t is with res

peyct to the current coordinates y i where it is understood that y i . x3 + ui.

Lijlc£ is the tensor of instantaneous elastic moduli. We let bk i denote the

corotatlonal rate (or "7.aremba-Jaumann rate") of the Kirchhoff stress ai9

aywhere a,, is related to the Cauchy stress r	 by a id . JTij(J-det[8xm)). The
i	 ii	 n

equivalent Kirchhoff stress a eq is related to the deviatoric Kirchhoff stress

ij ( w rr ii - 1/3 alckaii) by oeq . (3/2)(alai^)1/2. The parameters Y and n are

those of the familiar Norton's law

eq - Y(aeq)n

were

eq ® 1(2/3)Fiiii91
1/2

- 1p
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We wil l use the notation: ^_) denotes a second order tensor; (_) implies

a vector; q ti 	implies a, 0 B C
i
 ; A- P . g implies A

ij	
B ik C kjDB 

k
A:11 - A 11	 Also note that V B:C implies 	 C	 and V . B implies

ij ij	 a Y 
i 

jk	 _t

i)yi

A Conservation Law for Finite Elastic and

Nonsteady Creep Material Behavior

The iiscovery of conservation laws and the possibility of deriving path-

Indupandent integrals f rom these laws are not particularly recent occurrences as

disvass(;d in [34). However, the literature in this area has been rather piece-

meat and therefore difficult to assimiL ►te. The recent work of Atluri [ 27] has

done much to unify and generalize this subject and is the basis for the following

presentation.

Wt., will consider a very general conservation law which has been given by

Atluri, but will limit our discussion of this law to materials charat : terized

by ( 2 .1). We will use cartesian coordinates exclusively. Note that by

special selection of material constants (i.e.. y-0), (2 . 1) can be specialized

to elasticity. Alternatively, by assuming that the stresses are invariant with

time, (2.1) can be special ized to steady -state creep behavior.

In the following presentation, the current configurat.',,on ( Le., the config-

uration at time 0 is the reference configuration. There may be initial stresses

existing for this reference configuration. If stresses do exist, then they are

assumed to satisfy the linear and angular momentum balance condition (i.e.,

equilibrium)

+ p
t
	 - At	 0

t 't	 ; i W i

where p t ,  f 
t 

and at 	 the current mass density, body force vector and accel-

aration vector.

- 11 -
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A conservation integral relation given by Atluri [27) for a closed volume

V  (at the ctw ent Mime, t), which is free from singularities and any other

detects (which would preclude the application of the divergence theorem), is:

U
	 f

(V AW - (Vtr):Ag	 V	 [(1;+At) . Ae]	 (2.2),t

t

- P t (f-a)	 Ae)dV +f [n^	 (T+At) - c)	 AadS
fS

t

+
 fI

t . (T+At) . (Ae-Ae)dS
e	

.	 "

In (2.2), At is the incremental first-Piola-Kirchhoff (nonsymmetric) stress

(At - [Ay - Ae . dl /J), where Ao i s the material, increment of Kirchhoff stress.

The current mass density is denoted p t , and f and a are the body force and

acceleration vectors at time t+At, respectively. S t and Se are the portions of

the boundary of V  upon which prescribed tractions, t, are acting and at which

p,.,escribed displacement gradients, Ae, exist, respect ively. The current outward

normal to S t or S e is n t . The quantity AW, discussed in deta;il in (27), is the

incremental stress-working density in time At, and is given by:

AW - T:Ae + 2 tT :Ae 2 T:Ae + AU	 (2,3)

where

All - AtT :Ae	 (2.4)

The validity of (2.2) is readily verified through the two identities [27]:

V t AW - Vt (T:Ae) + VtAU = VtT:e
	

(2.$)

+ Vt Ae:T + VtAe: AtT

and

vt . [( T+At) . Ael - [V .(T+At), . Ae + Vt Ae:(T+At) T	(2.6)

- 12 -



the satisfaction of linear momentum balance in V t :

Vt . [T+Atj + p t (f-a) - 0	 (2.7)

and the satisfaction of the boundary conditions:1

!It	 [T+dt J n t on S t	 (2.8)

Ae	 Ae on S
e	

(2.9)
" 

Note that identity (2.5) assumes that T ( the initial stress for the incre-

ment) is an explicit function of its position in V t . The existence of AU

is shown and discussed in the work of Atluri (35).

Having the relation (2.2) it is now possible to specialize this relation

to finite elastic behavior er to steady-state creep behavior. However, since

we are primarily interested in the path independent integrals which can be ob-

tained from (2.2) we will postpone the specialization till after we have de-

rived the general path-independent integral (AT) C'

Path-Independent Integrals for Fracture Analysis

The conservation integral (2.2) is used [27] to obtain a path-independent

integral which is applicable to the analysis of cracks by considering a volume

V 
	 V  such as illustrated in Fig. 2.1. (Note that a two-dimensional case

is illustrated for simplicity). The use of the divergence theorem for the

region depicted in Fig. 2.1 results in (2.2) being rewritten

Jr

	 [ntAW - -nt . (T+At) . Ae]dS
	

(2.10)

I

+[(-V °r):Ae -p (f-a) . AejdV
Vt-VE. ^t "	 t

The validity of (2.2) does not require S t+S c)Vt where 3V t denotes the surface
bounding V t . Therefore, 

aVt 
need not coincide with the boundary of the body

under consideration.

- 13 -



+ r n AWdS + f
r
 n ewds -	 t-. Aeds

Jk
r L2 	 45	

fS

fS
(T+dt) A;dS

 
e

jr [ntAW - n•t . (T+At) . Ae]dS = (AW
J e

(2.10)

In writing (2.10) it hu g been assumed that Se+Stur12+r45 , which implies that

r234 
does not coincide with any exterior boundaries. This has been assumed

Purely for convenience of notation. We have also used the notation r c ` r165'

Noting that (2.10) contains two equalities, it can be verified by inspection

that (AT)E depends on c (or more generally r E ) but that it does not depend

on the selection of 
r234' 

In this sense (AT)^ is path-independent (i...e.,

independent of the selected far-field path). Following the reasoning of Atluri

[27], we define ( AT) c as the limit of (AT)^ as c goes to zero.l

(AT)c	 0 f (ntAW - nt . (T+At) . Ae]dS	 (2.11)

r
E

E+
 

fr

(atAW - nt . (T+Ac) . ee]dS

23 4 	y

o
[ (-VT):Qe - a t (f-8) . Ae]dV
fV -VE

+ r n
t	 .1	 -
AWdS + r n

t 
AWdS - f t AedS

J	 --
r12	 r45	 St

- fS
nt . (T+At) . AedS(

 
e

1The existence of the limit is shown in Appendix A.
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Fig. 2,1 Contours for applying the conservation law to

a two - dimensional, cracked body
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By defining (Ax) c as the limit of (AT)f as a goes to zero, it is seen that

(AT) c is entirely determined by the asymptotic near-tip fields. It will be

shown Later that the converse to this statement is also valid when the near-

tip fields are the HRR fields. That is, it will be shown that (AT) c entirely

determines the asymptotic near-tip fields.

Often it happens that only the first component of the vector quantity (AT)c

is of interest. We will write the first component of (AT ) c as (AT 1 ) c . Also,

the quantities (T) c and (T 
1)c 

will often be used in place of (AT) c and (AT 1)c",

These quantities are related by

Lt (AT) c
(T` c	 At+O	 At	

(2. a,2)

However, in the presentation of numerical evaluations of (AT 1 ) c we use (Tl)c

as a convenient, approximate notation for (AT 1)c/Jt.

We now consider two special cases of (2.11). For symmetrical deformation

about the x  axis and cracks oriented along the x  axis with traction free

crack surfaces, no body forces and negligible inertial effects, the first

component of (AT) c is

(AT )c= ,Lt f [ n 1AW - n^ (T j i+At j i) Ae i1 J dS
	

(2.13)

C

= f

r

(n 1AW - ni(.Tji+Atji)Aeil)dS

234

fV 

'i

 
ay^-^-Ae^ idv

t

Note that the limit of the volume integral has been written in its explicit,

form as a result of the arguments for the existence of this limit, given in

Appendix A. If, in addition to the above conditions, the strains are in-

finitesimal and the deformations small, then there is no need to differentiate

16



(2.14)

k	 r

between x i and y i , A t^ 
i 

becomes identical to AT 
ii 

and we have (recal

Aeij .. 
DAu i 

/ay i):

Lt	
BAu

(ATl)c 
M 

t a fr  [ n iAw - n^(T^i+,AT^i) axe jds

fr aA

[n 1AW - nj (T j 
i
+AT j

 i) 3x i]dS

234

DT i

V 3x AcijdV
t

The replacement of Aeij by Ac 
ii

in the volume integral is made possible by

the symmetry of 
T 
ij and thus aT 

ij 
/)x l'

Physical. Interpretation of (AT)c

It has been shown by Atluri [27), that the vector (AT) c has the following

physical, meaning. Let two bodies with non-propagating I cracks be identical

except for the second body having an additional, arbitrarily directed, in-

finitesimal increment in crack length characterized by the vector de. It is

assumed that both bodies experience identical load histories. Define total

potential energy increments corresponding to the time increment At as 

AEl = Agi1 + AS21 + AK 
	

(2.15a)

AE  = A^2 + AQ2 + AK 	 (2.15b)

_

for the first and second bodies, respectively. In (2.15), -A^ is the incre-

mental work of external forces, ASI is the incremental stress-work and AK is

the increment in the kinetic energy. (It should be noted Oat AQ includes the

inelastically dissipated energy.) Then

	

r	 lAtluri [271 has shown that the 1/r singularity in kinetic energy, which is as-
sociated with dynamically propagating cracks, changes the interpretation.

2Note that sign convention for AE  and AE  is opposite to [27) so as to conform
to conventional usage.

	

[.
	 - 17 -



T	 3U
t	

3e
(2.18)

(AT i ) cbdc i a -(AE 2 - A81)

where b is the length of the crack front.

If one is only interested in self-similar crack

	

then dc. 2 t* 	 - 0 and

A82	AE 

	

(`^ ^^1 ) c	 bdcl

	

1'herefure (A- c) is re	 d tlit 	 o the incremental

	

0 
	

--a, .._.

between two bodies which are identical except for an incremental crack length

difference dc.

Finite Elasticity and J

As noted previously, the constitutive law (2.1) can be specialized to

elastic behavior by choosing y to be zero. Therefore, (AT) c as defined by

(2.1.1) is a valid crack-tip characterizing parameter for general, nonlinear

elasticity with finite strains, large deformation, body forces and inertial.

effects. Howerver, the basic premise of elastic behavior is that the con-

stitutive relations are independent of the histories of deformation and stress.

This means that the constitutive relations can be derived from a potential.

For instance, a potential, U, exists for t̀ , the first Piola-Kirchhoff stress,

such that

In the following, we consider the reference configuration to be the stress-free,

undeformed configuration at t-0, and therefore drop the subscript t for con-

venience. As a result of the existence of the relation (2.18), it is possible to

state two identities which are analogous to those of (2.5) and (2.6) for the rase

T=O.

3e

VU -
De 3xOU	 n - 

Ve: tT
mn	 1

(2.19)

- 18 -



and

V	 (	 ej	 V . t.e + Ve:tT 	(2.20)

Similarly, the linear momentum balance (i.e., equilibrium) condition is now

11 r. + p (f - a) - 0	 (2.21)

and the boundary conditions~

n . t - t on S t 	(2.22)

e - t on ^' e	(2.23)

Noting the similarity of equations (2.18) through ( 2.23) with ( 2.4) through

(2.9) it is easy to arrive at the following conservation law

0
 - J

(VU - V	 (t	 ej - A(f - a) . e)dV	 (2.24)
V

+ r (n	 t - tj	 !pdS + f n . t	 ( - e)dSJ St _	 --	 e

Following the procedure used ' in deriving ( AT) c from (2.2) we apply the diver-

gence theorem to (2.24) for the volume V - V  and take the linit has t., goes

to zero. The path-independent vector quantity resulting from this procedure will

be called J.

J- Lt

fr
(nU - n	 t	 ejdS	 (2.25)

	

 [RU - n . t	 ejdS +	
C
Lt

+0 1 
	 p(a - f) . edV

fr fV _V
234	 E

+^. nUdS 
+ fr	

nUdS -
fS	

t . edS - n	 .	 t
fS

rl2 45 t C
I"

In writing ( 2.22) through ( 2.25) it is understood that o is the mass density

in the reference configuration, n is the unit normal in the reference configu

ration, f are arbitrary body forces per unit mass, a is the absolute material—	 —

4

k

- 0 -



acceleration, and t are prescribed tractions per unit undeformed area St.

We now consider several special ca ges of (2.25). If the problem being

cunsidered involves a crack oriented along the x  coordinate direction and is

loaded so that only mode I crack -tip behavior occurs, then J 1 is of primary

interest and we have:

Jl	
f	

[niU nit s a 1 Ids + L nf f ^ ^	
)
	 (ai - fi)ei1dV
	 (2.26)

23G	 V-Vc

Is t ieilds - 
fS

niti,' ejidS
.1 te

If in addition the problem involves infinitesimal strains, small displacements

and traction-free crack surfaces, we have

2u 	aur
Jl fr	 nlU - 

niri^ 
a dS + J P(ai - fi) 

axi 
dV	 (2.27)

234	 1	 v	 l

where use has been made of the existence arguments of Appenix A in taking the

limit of the volume integral„

For elastic behavior and non-propagating cracks, Atluri, [ 271 shows that

J has the meaning of energy release rate to a process zone V
E 
in the sense that

DE
J<<bdck - - U dt	 (2.28)

where b is the length of the crack front,

DC	 DtD Q DKc

Dt -	 Dt * Dt + Dt

and

DE
---- dt . E (t + dt)	 C (t)
Dt	 e	 E

For an el.asto-dynamically propagating crack (i.e., singular kinetic energy)

Atluri 1271 concludes that

- 20 -



DL
ikbdc k "' I 

J

where L ,, is the Lagrangian (i.e.

DL ,	D^	 DR	 DKE

bt . - bt.	 Dt + Dt

Therefore, J  has the meaning of "rate of change of Lagrangian per unit crack

growth".

We now consider the special case of steady-state creep behavior.

Steady-State Creea and C*

It hae been shown that ( AT) c characterizes the crack-tip field for mat-

erials which exhibit creep behavior such as in (2.1). it is known that under

certain conditions of applied loading, the constitutive relation (2.1) can (after

long times) result in a steady-state. This steady-state is primarily charcter-

3ed by the time independence of the stresses (i.e., AU - Atji - 0). Specializing

(2.13) to steady-state conditions, we define the steady -state value of (AT1)c:

(AT )	 • Lt f [n TAe
ij

- n TiAeit]dS	 (2.30)1 css	 C+OI'	 1 ij 
C

'Ti• •^^	 [nlTijAeij - nj TjiAe il ]dS - 
fv ayj 

AeijdV

234	 t

Because (2.1) results in a power -law relation at steady-state, which is

analogous to the power law deformation - tIYmary plasticity ( or essentially non-

linear elasticity), Goldman and Hutchinson ( 26] have suggested a path-independent

C integral,

('	 au
C = J [n W* - 

n^Tii axi dSr	 1

where

^i
W* a J

O

Tijdkii

(2.31)

(2.32)

- 21 -



and	 W*	
ij 

T' do ijI
which leads to

(2.36)

The question of how C*
1
 and (AT1 )

css 
are related, is a natural one. Befoi

obtaining an equation relating Q to (AT
1cgs

however, the conservation
1 

(2.-,) will be used to derive a generalized vector integral C*.

In specializing (2.2) to steady-stale we note that now stress is j

function of the strain rate, and that stress increments are zero. Thus,

6W -.T:Ae. Also we may write:I

f
[V	 AW - Q x):Ae]dV	 T:V AedV

V 
t	

t	 t
	 f`r 

t '
	

t I

Thus, at steady-state, we may write (2.2) as:

r (1: (V Ae) - V
t 

. (T.Ae) - P t (f - a . Ae1dV

	

V t
	
t 

+ f [n . T	 AedS + f pt	(Ae - Aj)dS

	

S t t
	

S 

e

or equivalently, in rate form,

	

f Q 
t

[T:	 6) - V 
't . 

( 1.6) - P t (f - a) . 6)dVV 

t

+	 6dS + f	 dsS

t	 e

Using the symmetry Of T u note that:

j:V e AM T:V	
+	 AA

t[
 I ,
2

As a result of the incompressibility condition (rii CA 0) we have

T; 17 - As r':V
t-	 I _t

(2.33)

(2.34)

(2.35)
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T' (2.37)

Combining the results of the above manipulations we have:

VFW* =
a1r	 *	

a
aW	

aW—	 T':Vt
amn

T:V *A (2.38)
yi	 yiMn

Using (2.38) and the divergence theorem whale applying (2.33) to V - VC , we

define the vector quantity (C*)C:

fr
[ntW* - nt	.	 T .e]dS

"	 "

At(f - a)	 . edV (2.39)

234 Vt-VE

+ n W*dS + (	 n W*dS - f
S
 t. edS - f

S n
	 T. gas

f
l2	 r45	 t	 e

fr [n
tW* - pt . T . 6]dS = (C*)c

 E

If we define the limit of (C*) E as E+0 to be C*, we have a quantity which

characterizes the crack-tip field and is independent of the selection of r234'

Restricting our attention to problems involving symmetric deforwations about

the x 1 axis and cracks oriented along the x 1 axis, with traction-free crack

faces, no body forces and negligible inertia effects, we find that

C* = E 0 f [ n
1 
W* - n i T3iei1 ]dS = (C*)e

r
E

(2.40)

fEn 
1 
W* - n  116il]dS

l;.	 r234

In computing W* it is convenient to invert (2.1), substitute the re-

sult into (2.36) and use the following identity to complete the integration:

l+n

`	 d (_ E eq n	 2l+n	 1 n

dE	
3 ( n ) (E eq ) n Eij	 (2.41)

ij

b

- ':1 -
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The result of this manipulation is:

1+n

W*	 14-n(Y)^^(eq) n

Ur	 W* . 
].fn Y( o eq )

1+n	 (2.43)

Relationship of) 
css 

and C* for Steady-State Creep

Now we will relate Ci of (2.40) to the steady -state value of (AT )c.

ki.rst we rewrite (2.30) in rate form as:

(T1)css	 c
Lt

 0 	 [nITii ii - 
n
i 

r jieil jdS 	 (2,,44)
I

E

DT

f ln lT ij e ij - nj Tji6J dS - f ---yi-^- ei^dV

234	 t

Using the notation 4-T 11 6 11 we have

(Tl ) css	 fr	
(n1W	 nj T ieil )dS	 (2.45)

234

aTi
- fV a--Y - e dV

 t
Noting that:

W a T ij eij ° T ij 2 ( ei1 + eji)	 'r ii 	 (2.46)

it is seen that W is the rate of stress-working density, while W* is just __a

mathematical Potential for Ti
j

. As a result of incompressibility we can writel

1	 l+n

W	
peq ^ eq	 Y(Qeq) 1+n	 (1)n 

(ceq) 
n	

(2.47)

as contrasted to W* of (2.42) and (2.43). Comparing the left equalities of

This result is only valid for steady-state creep and is obtained through the
substitution of the steady-state specialization of (2.1) into (2.46).
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('µ. 0) and (2.4 1 ), JLL Ls seen that (i
1, )css 

and C* are related by: 1

	

6
l ) CBS 

a C* + Lt f	 W)dS	 (2.48a)

	

1	 00 

	

+ JL
lat 	)n+1 

dS	 (2.48b)f
r	

e q

Appendix 11 g ives several numerical examples of relation (2.48) for two rather0

extrotile Values Of 11 .

It t q it-ow clear that C* and (AT) 
c 

are not equivalent quantities under

,iny coiikl It ion despite their being derivable f rom the same conservation law The,

qtoinLity (AT) 
C' 

follows more directly Prow the conservation law and is the more gen-

crat quatitity not only'in that it is applicable to nonsteady as well as steady-

store eveop but also in that it is applicable to constitutive laws Oich art , moi;e gon-

cral. than (21 .1.). The quant1ty G^* relies 
on the special property of (2.1) which allows

tine vx1srvncu of 
a 

potential. W IV for the stresses (-r'). Vurthermore, since W* (toes

not havo Lilly physical meaning, whereas W has the meaning of stress-working density,

it J[s understandable that 00 
c 
has an energy interpretation whereas C* does not.

It is for this reason that it seems more appropriate to refer to experimental measure-

of	
11aA

	

 
11S 

meas	
euremnts of, (' I s	 a) c a opposed to measurements of Q or J

I	 I'

The HRR Field

We now give the HRR f ield in terms of (AT 
I 
) r . Whereas similar relations

have been written 
in 

terms of C* for steady-state creep [361, the relations in
I

terms of (AT 
I ) C 

will be valid for nonsteady creep as well as steady-state creep.

VI C HRR fieLd as g iven, in r371 but modified for creep bv rct)laciniz ( 	 and u by

Lj and Ci 
t 

respectively, is:

Lott' that these equations are derived oil the assumption that r ij -0 (i.e., creep

;toady-state) . Therefore, in order to have a well defined creep constitutive
Law we must have YOU and n f inite.

MR
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- I

eq	 17 

rn+l
 (a 

ii 
(0),Oeq(0)l
	

(2.49x)

-n

I	
I I +.,^	

(0)i, 
ij . 

yK 
t." 
r	

^ij

i1, ;= yK C r	 (0)

(2.49b)

(2.49c)

where 3 eq (0) has been normalized to have a maximum value of unity and K
U 

and

K k, are amplitude factors which are related by

K L = (K 0) 
n	

(2.49d)

It can therefore be seen that the Risymptotic crack-tip fields are entirely

(leturminod when K a (or K C ) is known or specified. Combining (2.49a,b,c) with
I 

the first equality of (2-1 4), using (2.49d) and rearranging, gives:

	

1 -	1
(AT.) C

	

) ) n+1	 n+l
K	 (2.50)
U __ (	

-Y I)k )

%diere I* Is analogous to I defined by Eq. (24) of [6] except for the factor

n/(n+1) multiplying the energy density tern. To be explicit,

I + 1
1+1	

(a 
eq , 

n+l cosOdO	 (2.51)

It Is therefore seen that knowing the value of (i 
1) C 

is equivalent to knowing

Ku and thus is sufficient for defining all aspects of the asymptotic crack-tip

field during nonsteady creep as well as under steady-state creep conditions.
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SECTION III

DERIVATION OF FINITE ELEMENT EQUATIONS

Before stating the variational principle and deriving the finite element

equations, it is beneficial to illustrate the constitutive behavior to which

the finite element model is addressed.

Elas t ic/Viscoplastic Constitutive Relations

A rather general rate constitutive law proposed by Perzyna [38], can be

written in incremental form as:

AEij _
	 AT, + 13^v AT k, 6 ij + Y<W)> 

^Tf 
At	 (3.1)2p	 i^ ij

where u, E and v are the elastic shear modulus, Young's modulus and Poisson's

ratio, respectively, Tip (=T	 - 3 T kt ^6 i^) is the deviatoric stress and Y is a

viscosity constant of the material.. In writing ( 3.1) it is implied that
evp

AE ij c AE ij + AEij

where Aee and Acv are the elastic and viscoplasti ,c strain increments, res
pectively. The yield function r(T

ij
,EVP) governs the magnitude of the incremental

viscoplastic strains through the funct,ton 00)> where

0	 for E < 0

(D(F) for F > 0

-27-



The relative magnitudes for the incremental. viscoplastic strain components

are seen to depend on the factor 3f /DT ij . 1 This implies that AC 
v

, when con-
ij

sidered as a vector in nine-dimensional stress space, is always directed along

tho normal to the surface f(Tij,tkp).

By choosing F	 f m oeq [oeq	 (3/2(T T j )
1/2 ) 

such thatf/3T ij a (3/2)

(raj /ueq ), and choosing (D(F) _ (F) n we find that (3.1) becomes

A(. ij
 . 1 

ATf 
+ 1-2v 

AT d	 + (3/3)Y(a )n-1T, At	 (3.3)2p	 ij	 3E	 kk ij	 eq	 ij

This represents the special case of creep behavior which is considered exclusively

in this study. 2 It should be undervtrod, however, that the finite element

model which is described below is applicable to the more general behavior rep-

resented by (3.1) .

])err ivatiu n of Finite Element Equations

The finite element model is derived from the principle of virtual work

f
T ij dc ij dv - f ri du idS - o
	

(3.4)

0

N the present finite element analysis, we assume only infinitesimal defor-

mations and strains; hence there is no need to differed tiate between the deformed

and undeformed configurations.

In writing (3,,4) it should be noted that Tij are the stresses

existing at time t + At (where t is the current, time), t i are the prescribed

tractions on S  at t + At, and Su i [6fij a (1/2)(6u i j+duj 
iH 

are arbitrary
9	 f

compatible virtual displacements.

Following customary procedures we introduce the element displacement

shape functions which relate element displacement u  to element nodal

It iscommon to choose fEF in which case we have what is called an associative
law -

2While (3.3) is known to deviate from real material behavior (especially for primary
creep) it is a widely used constitutive law and therefore has been adopted in the
present study.
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displacements (q)

ui - (u) - [N)(q); Su i - (5u) - [NI(6q)	 (3.5)

We again use the customary notation wherein strain ( and stress) components

are placed in one-dimensional arrays

((.) - [H1(g1; (Sr.) - [BI(6q)	 (3.6)

Substituting (3.5) and (3.6) into (3.4) and applying conventional procedures

for assembling element matrices into global matrices we have

^ ('t )T[g)dVel.e L fV e

f

S
(t} [N)dS]l^ ele

(Sq) j #" tF)
T (6Q) - 0

t e

Since Dq) tire arbitrary virtual nodal, displacements, it follows that

cIc L f ( ,r) T [BIdV	 J	 (t;)T[N]dS]l t-: (F )T - (0) r 	(3.7)

e	 S^^
e

We now 'express the stresses (T) at t +lit in terms of the current

stresses, (T) 1 , and the incremental, stresses corresponding to the time in-

crement ;At:

(r) ", (r)1+1 a ( T ) i + (AT) 1+l	
(3.8)

In (3.8) and in the following, the T and 1+1 subscripts designate the

ntal solution with which the quantity is associated. Application of

remental elastic constitutive law results in

(r)T+1 - {T) l + [g]{ACel)1+1	
(3.9)

ea ( T ) i + [r)[(Ac)1+1
	

(Ac vp
) +1)

vp )
1+1 

are the incremental v scoplastic strains and [i;] is the matrix

- ?n, -



of elastic constants. Substituting (3.1) into (3.7), taking the transpose,

and placing the known terms osi the right hand side we have the final form of

the finite element equations:

(KJ 
(AQ) 1+1 ^ {T}1+1 + {Svp)l+1 	 (k) 1 	(3.10)

where

[Kl	 eE	
(BIT[B][B]dV	 (3.11)
e fV

e

{f) I+1	 el	 ,l	 [N]T{t}I
+1c1S	 (3.12)

So
e

(Svp)X+1 . ele 
fV 

(B)T[ElOevp)1+1dv	
(3.13)

e

(R)1 
m 
ele J	

[B]T('r dv	 (3.14)
v
e

Thu above volume integrals are evaluated in the current work by 2x7 Gauss

quadrature. The array (T) is input directly in terms of node point forces.

So lution Procedures

It should be noted that [K] of (3.10) is just the elastic stiffness

and therefore only needs to be formed and decomposed  once. This results in

significant savings in the number of computations per time step as compared to

methods using stiffness matrices which must be reformed at each step (i.e.,

tangent stiffness methods). It should also be noted that the term {Svp}1+l

is computed from incremental viscoplastic strains (Ac 
vp

} 1+' which are esti-

mated rasing (2) 1 and the material constitutive law (3.1), only for tho
4

The equations (3.10) are solved in the current work by the decomposition [Kl=
[L][D][L] T where [D] is a diagonal matrix (the only nonzero entries are those
on its diagonal) and [L] is a lower triangular matrix (the only nonzero entries
are those below its diagonal); see for example [39].

Y
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special situation when the stresses do not change with time will this estimate

be exact. Having obtained the .incremental nodal displacements (AQ)
1+1

 by

solvinf ('3.1(x), one can easily find the total incremental strains 
(A(,)1+1 

via

ttiv incremental analogue of (3.6)	 We now describe two procedures for ob-

taining t1)1+1.

Tho first and simpler method to obtain 
(t)1+1 

is to substitute the esti-

mated tAc 
V I) 

)1+1 used in solving for 
(AQ)1+1 

into (3.9). If one does this, then

it happens that

(R)1+1 - (T)1+1	 (3.15)

and therefore (3.10) becomes for the next step 

(K)(AQ)1+2 - (T) 1:+2 + (Svp ) 1+2 - (T)1+1	 (3.16)

- fAT)
1+2 + (Svp)1+2

This method was compared to the following method and was found to require smaller

tinio steps to achieve similar results.

Rather than using the estimated values of (Ae vp )
1+1 

and (3.19) to

detormi.ne ft) Z+1 , the constitutive relation (2.1) is integrated over the cur-

rent time step at each Gaussian quadrature point with the condition that total

strain (0 varies linearly with respect to time from (t) Z to 
(C)1+1. 

(The

prosent study uses an Eulerian scheme with each time step being divided into

five. subinc.rements.) Tile result of this procedure is better adherence to the

postulated constitutive law at the expense of introducing a somewhat unequili-

"	 brag d stress state. The amount of di,sequi,l,ibrium depends on the accuracy of

the original estimate for the incremental viscoplastic strains and thus on the

time step size.

At this point one has two alternatives. The first is to use the
7

This procedure results in the current model reducing to that of Zienkiewicz
and Gormeau [40].
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visc:oplas ► ic: strain increments obtained through the time integration procedure

as an improved estimate and to re-solve (3.10) for the current time step. This

procedure would, after several, iterations, result in a stress state which is

equilibrated to within some small user specified tolerance. With this type of

procedure: the time steps could be as large as those used with tangent stiffness

methods. Further, it is reasonable to expect the solution to be at least as

accurate as ^,.f a tangent stiffness method were used.1

The second. alternative is to go immediately to the next time atep with

the understanding that the term ( R) I in (3.10) results in the disequilibrium

from the Ith step being corrected in the 1+1 step. This feature is the result

of the virtual work statement (3.4) being written in terms of total stress and

tractions rather than incremental quantities. Owing to this corrective nature

and to the diminishing, returns one obtains: from additional iterations, the

second alternat ic. is used in the present study.

Rc.Il;u111tion of Time Steps

The creep calculations use a variable time step size which is auto-

matically regulated by the finite element program based on two criteria. The

first criterion is the maximum percent difference between the incremental

equivalent estimated creep strain and the incremental equivalent into ;rated

creep strain for all the Gauss points in the mesh:

G 1 =Max A CST - 
(^EI

N`f

A` INT

(3.17)

The second criterion is the maximum ratio of incremental, equivalent integrated

This procedure could actually ke more accurate if similar constitutive law
integration procedures and equilibrium iterations are not performed with the
tangent stiffness procedure. Also, it has been shown [41] that many element
types become overly sti',ff when using the tangent stiffness method for modeling
constitutive behavior approaching incompressibility. This problem is not en-
countered with the current method.
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creop strain to the equivalent elastic strain:

— E]
C
2	

r
Max 

TNT (3.18)

Tile user specified, maximum permissible values for C 1
 

and C 2
 
are C 1

 
and C2,

respectively. The size of the next step is then obtained from

At 
1+1 'm 

At 
I * 

Min 
Cl ' -̂C	

(3.19)
P1 2

2

Note that the initial time increment cannot be determined from (3.19) and must

be specified by the user, so as to satisfy the two step size criteria.

In the present study, the values of 
C1 

and C 2
 
are 0.2 and 1.0, res-

pectively. With these values, it has been found that the initial time steps

are controlled by Cl
 
while later time steps are controlled by C2

. 
The values

of C 1
 

and C 2
 
are strongly affected by the mesh refinement since a finer mesh

results iii Causs points being closer to the crack-tip and therefore havin3 larger

stresses and strain rates. To determine the sensitivity of the solution to the

selection of _Cl and C 2 ,a compact specimen was analyzed with the above criteria

and also with C 1
 

and C 2
 
being halved (i.e., C C 0.1 and C

2 0 
0.5). It was

found that the load 'point displacement differed by less than 0.5% for all

time and that the steady-state solutions were essentially identical. It there-

fore appears these values of C l
 
and C 2

 
are small enough to ensure that the

solutions to be discussed do riot depend r.,)n these step size criteria.
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SECTION IV

ELEMENTS FOR SINGULAR CRACK-TIP BEHAVIOR

This section describes and compares several two-dimensional crack-tip

singularity elements. Perhaps the primary motivation for introducing singu-

lar crack—tip clements into finite element models 1,s the significant savings in

computational expense. It is shown in Section V, for example, that 57 element

Model, with elastic, r-1/2 , singular elements results in a more accurate solution

than a non-singular 102 element model.. The savings in CP time in this case is

greater than 50%. Generally, one must consider that some additional effort

is required to develop and implement a special crack-tip element and that this

tends to offset the savings in CP time. It has been discovered, however, that

the very commonly used, eight-noded, isoparametric element can he made to

produce an r- 
1/2 

strain singularity by merely shifting mid-side node locations

via the node definition input data [42,431. Therefore, a very convenient

means for modeling linear elastic crack-tip behavior exists. It has also been

shown [44] that a 1/r type strain singularity can be obtained with this element

type thus providing a suitable element for non-hardening plasticity problems.

For more general singularity behavior, such as the r-it/(ct+l) strain singularity

associated with the HRR crack-tip field of power-law plasticity or creep,

one a. , tt resort to sepcially formulated elements.

In the following sections, we consider special elements for linear

'	 - 34 -
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elastic problem 
(r-l/2 

strain singularity) as well as special elements for

problems involving the 11RR, r
-n/61+0

, strain singularity. In discussing

these elements, an attempt is made to point out their advantages and dis-

advantages.

Clements for Linear Elastic Materials

Although many special elements have been used for Linear elastic frac-

ture analysis (see Atluri (45) for review), we consider here only the eight-

noded isoparametric element. There are two basic forms in which the eight-

noded ;isoparametric element can be used as a linear elastic crack-tip element.

In the first form, the two midside nodes adjacent to the corner node located at

the crack-tip are shifted toward the corner node so that they occupy the quarter-

pulnt at their respective sides. This form is illustrated in Fig. 4.1 by the

Type A crack-tip mesh. The second form in which the element can be used is

illustrated in Fig. 4.1 by the Type B crack-tip mesh. In this form, the eight-

noded element is degenerated to a triangular element by defining two corner

nodes and their midside node to be the same node which is located at the crack

L41. Then the two midside nodes adjacent to the crack-tip corner node are

shifted to their quarter-points. It is important that only one node be used

at the crack-tip, as opposed to three superposed nodes, since the latter case

has been shown (441 to result in tale 1/r type strain singularity.

Barsoum [43,441 notes that numerical experimentation shows the degen-

crate triangular form yields more accurate results than the nondegenerate

element. Ile goes on to recommend that the four-sided configuration be abandoned

based on the premise that the r -1/2 singularity exists only along the edges

a	 of the element and also that the strain energy for this element becomes unbounded

if exact integration is used (441. Ying [46), on the other hand, concludes

that the 
r_1/2 

singularity does exist within the four-sided element as well as

along its edges and that the strain energy for the element is bounded (and thus

Fol
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the element stiffness is well defined).

Apart from the above considerations, there are two aspects of the

degenerate Type B element which inherently make it preferable to the nondegenerate

element. The first is that the process of collapsing one side of the element

to coincide with the crack-tip results in the element local coordinates being

transformed into a form of polar coordinates. Since the element ' s shape

functions are defined in the element local coordinates it is to be expected

that angular bias will be much le gs apparent for this element type. "he second

feature of the degenerate triangular element which makes it preferable is that

it is geometrically better suited for creating crack-tip finite element

meshes of arbitrary refinement. Since the angular dependence of the near tip

solution is significant, this flexibility for increasing the mesh refinement

in the angular, direction is important. Combining these two aspects with the

numerical evidence cited by Barsoum, it seems the triangular, degenerate

element is the better element for modeling the elastic crack -tip singularity.

For this reason, all ^.,&T:ter-point element calculations in the present study

use the degenerate triangular form. In particular, the mesh configuration

Type B of Fig. 4.1 has been used exclusively.

Elements for Materials with HRR Crack-Tip Fields

In the previous section, we discussed crack-tip elements for linear

elastic material behavior, It has been seen that the standard eight-noded

isoparametric elem^,̂ nt can be made to have the r- 
1/2 

strain singularity and thus

is useful for analysis of cracks in linear elastic materials. It can be shown

(see for example, Atluri [451) that this isthe only singularity which this eight-

nod ed element can exhibit. However, it can also be shown that higher order

elements of the isoparametric family can result in singularities of the type

r-n/(n+l ) ^ provided n is an integer. If we denote the order of the isoparametric

- 37 -



Intorpolation Lis m, then singularities of the type r 
(1-0/L 

can be obtained for

t all integor Such that t•Ill [45]. In teniis of the HRR power law exponent n,

this moaaa we can havo singularities of the type r- n/ (n+1) where n in an integer

such that, n,,m-1.

Basod oil the above discussion, U can be seen that it is possible to

0111ploy Isoparaillatic elements as 111112 crack-tip elements provided one Is satisfied

with Intoger values of the power law exponent, n. By choosing 
the 

highest value

of n which .inc is interested in modeling, one can then program t1 ► e n+1 order

isoparamotric element. The problem with this approach is that values of n

for common tnatz;trials can be as high its 20. This implies that one would need to

pi.%,gram an isoparametric element of order 21. While this is perhaps within

reason, LL wil] be shown that nonisoparametrie elements can be derived which are

inure readily imp.-emented,

Two Cz.ack-Tip Elements from the Literature

In this discussion of special elements we limit consideration to two-

dilliensional, triangular eloments with straight sides. The elements ;Are derived

in torms of the triangular polar coordinates ((),o) illustrated in Fig. 14.2

and which are related to the global cartesian coordinates (x i) by

Xi = x Ii + o (x2 _ x I ) 4- l ( U + 1) (x31 _ X2)
I	

1	
2	 1

(4.1)

In (4.1), the superscripts denote the node number. The crack-tip is assumed

to be located at node I (i.e., at p-0). The geometric mapping of (4.1) is

similar to circular polar coordinates in that the transformation cannot be

inverted at 1)-0.

We now consider several choices for the assumed displacement fields

within the triangular region. Tile first choice is

I
u	 u +	

IN (u 2
	 1 ) + 2(0 +	 (u 3	 u2)
u(4-2)

	

I	 1 
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It can ho soon that (4.2) is similar in form to (4.1) excerpt that 0 is replaced

by r (0 , 10 so as to induce a singularity in the displacement derivatives. The

Woo-nodod elomont resulting from (4.1) and (4.2) is of the type proposed by

Tracey and Cool: 147). inspection of (4.2) reveals that thi s element permits

rigid body translation but does not permit rigid body rotations or constant

:strain modes. While problems exist for which this element provides reasonable

results,, the lack of rigid body and constant: strain modes make this an un-

desirable element for generra:t anl,aysts.

We now consider a straightforward procedure which allows an alternative

to (4.2) to be written which (:i) provides all. the rigid body modes as well as

all. theconstant strain modes,	
A

' , (i:L) re^su,lt:s in the desired r displacement 'bey-

h:aviuv and (ii.i) results in compatible displacement fields with adjaacent.

vlvmvntm. First neater that we caan be assured our assumed displacement field

contains raft rigidid body and constant strain mode's provided it can accomodate

the .following general displacement fuel.

ul. M a  + blxl + aIx2
	 (4. 3a)

02 U a2 + b 2 x l + c 2 x 2 	(4.3b)

where ail b  and c  are constants, Clearly, a l and a 2 provide for rigid

translation modes, while b  and c 2 provide for constant strains, v,, and c„f,

respectively. The constants c  and b 2 provide a rigid rotation if c l M A	 Q

and a constant shear strain, c, l2 , if cl * b 2 ¢ U. If we substitute (4.1)

into (4.3) and regroup terms we have the result

u l M a► + b P + `'] t^to	 (4. 4a)

U2 W a* + b?* a .+, A Po	 (4 .4b)

Starting from (4.4), we can now proceed to add terms as desired with the

a
	

only condition being that we maintain compatible displacements with neighboring

singular and nonsingular elements

4,-

I

1:1,



We now consider a general approach for establishing displacement shape

funot ion ; for triangulate vrack-tip elements. Since Math displacement com-

ponents will follow the name form, we drop the nubav rapt for simplicity. we

now write

00,u) - ^^(1 +• Of '; (0) + ^(1
	

ct)f(0)	 (4.5)
2

with

r, P) - a2 +- b 2 0 + C20
	

(4.6a)

` V3 (o) - ;a 3 +- 1) o +. c 1,

tnSpOeLion of (45) :shows that on the element s ide 1-2,u(p,-1.) M f 2 (p) and

on side l-3,u(p,1) = f 3 ( p ) . It can also be peen that u(1,,u) is liveur on

lido 2-3. Since f 2 and f3 each have throo unluiownw, it follows that element

skies 1	 and 1-3 must have three nodo . This mean, two new nodes must; be

croatod. Since the geometric properties of the element do not depend on the

locations of those nodes their positions along the edges of the element are

aria Urary. In the following, however, we choose to placer these nodes at the

midsides. These now nodes correspopd to positions 4 and 5 in Fig. 02. De-

noting the nodal displacements by u J , J=].,a, we now use the following con-

ditiuns to determine the six unknowns in (4.6a) and (4.6io)

u(O ".))	 u 1 ; u(1,-1,) = u ; u(1,l)	 u 3	(4.7)

Tho result is

a^	 a 3 " u 1 ; b z = u`" - u`1 - c ^; i^ 3 = u 3 - u l - c 3	(4.8)
a

r	 ^

2u 4 - t ► 2 - t, 1̂'	 2u5 - u 3 - u1
`"2 ^	 2.1,-\ - l,.

	 H	
-3 ^
	 2 1-\ a 1.

Substituting (4.8) and (4.6) into (40) and defining the function's multiplying
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i.	 "i
u as N 5 we have,

J
N^^:i (4.9)

where

N ^ 1 _ A -	 (FA A. - 
P) ; NZ a J^51I'5;

N2 	 2^^2; NS m x,1,2; N5	 ^2^2

8	 2
1 ,\ - l

with

^ 1 = 2(1 - Cr) ^2 = 2(.l + ti)

V 12 y 2(f'X - a)

By examination, it can be seen that (4.9) has terms similar to those of (4.4)

and thus can represent all the rigid body and constant strain modes. From the

form of (4.5,6.8) it can be seen that the element must be compatible with

neighboring elements. Therefore, we have an element whicc satisfies all the

requirements which we originally stipulated. If the a in Fig. 4.2 and in (4.9)

is replaced by 20'' - l we recover the form of the equations suggested by Stern

[.48).

As a result of the appearance of p  in the shape functiotzs for this

element, the integration involved in evaluating; the stiffness matrix (particularly

the integration with respect to P) is not suited to Gauss quadrature. In [48),

Stern derives a special integration rule, which when combined with standard

Gauss quadrature for integration with respect to a, results in exact stiffness

integrations. Unfortunately, the expression (28) in (48) which specifies

the relative radial location of the quadrature points is apparently in error.

The corrected expression is as follows:

^42-



X
L	 2,\ x^ -',]

X, = Ax (4.1

where x 
I 

pane, x ,2
 
denuLe the values of o at which the sampling points are located.

The corresponding weights are then given by

2	 +,1	
(4.11)

TO	 X

	

1 2 	1

	

'2	 1A.

2	 X-1	 X
x x	 x

1,	 2

This quadrature rule integrates terms of the type 0, 0A 
and f) 2X-1 exactly.

Sake the rule has four parameters (xVX 21 WIN 2 ) and is only required to integ-

rate Mee typos of terms, the locations of the quadrature points are not

uniquely defined. Seloction of x. according to the following cirteriun result.,

in both the numerator and denominator of the bracketed term of (4.10) being

posLLivo and thus results in a valid quadrature rule.

illy	 x21

Stern (48J presents a family of elements which are developed so as to

bo comp Atible with surrounding nonsingular polynomial based elements of arbit-

rary order. While it should be possible to verify that each member of this

famiLy does indeed satisfy the requirements which were discussed in deriving

tho above element, this procedure provides little insight to the method for

deriving such elements. In the next section, we generalize the procedure used

in arriving at (4.9) to derive an element which is compatible with quadratic

elements	 eight-noded isoparametric elements).

Derivation of a Now Crack-Tip Element

In this section we generalize the procedure used in the previous section
- 43 -



C1 U j(2 u7 - u6 - ul); C2 = J(2 u4 	u2 - ul)

C3 0 (2u
r
^ - u 3 - ul)

to Oortvc a crack-tip element which (I) contains all rigid body and constant,

strain modes, (ii) results in compatthle displacement fields with nvighhoring

singular and nonsingular elements and (iii) results in an arbitrary strain singu-

l ar Lty at the crack-Up fo the typo r.	 (0011).

We start in the same manner as Wore by writing the displacement f told

in the form

whore

u(qu) m (L- 0 )f W # 2 (̂0-1) 0 (o) + Y OU f 3(0)	 (4.14)

f IG)	 a  .i. b i ►1 + C i
► ^ a
	(4.15)

Noting that the form of (4.15) requires three displaccmentv bay ing specified

along each of throe radial line segments (o n -1, j m 0, 0 - 1) we Introduce

node points at locations 4 through 7 as illustrated in bill. 4.2. At this

point it is seen that this procedure will result in an interior node. It

will be shown later that this node can he eliminated in a number of ways.

Donoting the nodal displacements by u j , J=1,7 we now use the following

conditions to determine the nine unknowns in (4. 14,15):

u(0,0)	
u1; 

u(1,-Q - u 2 ; u(1, l) - u3

C
u( ,_1)	 u ; u(^,1) - u`'; u(l,O) e u6

u(1 ,O) = u7

The result is

a l	 a 2	 a 3 	u 1.

b l	 u 6 -u
l

-c, l ; b 2 = u 2 -u l -c 2 ; b3mu3-ul'-e3

(4.16)

(4.1,7)
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w ith	 ;4 = ') I-\ - I

SubstituLlng (4.17) and (4.15) into

u i as N7
7 we have

7	
1

u(j),u) - E N 
i 
U

iml

where

7
N I . I - o

	

N 7
	 7 7

1) 2 2

	

N3

7	
7qJ7

	

5	 1

77 
N 

7	 7

'3
4)
2'	 4	 2

7 7	
N 
7	

4)
7

4)
'd

1 2	 7	 1 1

7
N 
3

7
N 
6

with

	

7	 2	 7 . I

	

1.	 2	 3

	

1,4 7	
^(1)X71
 -
	

2	
T((1 +

1 

Inspection of the derived shape functi

I I the 	 I	 #_ wh ich 	f- 4 - I . I.
 ^

was noted that this element has an interior node. While interior nodes are

generally avoided so as to reduce the bandwidth of the equations to be solved,

it seems that in the case of crack-tip elements the advantage of having additional

degrees of freedom in the vicinity of the crack-tip more than compensates for

the few additional equations which are involved.

We now consider several alternatives for eliminating the interior node

of this element and note that one of these results 
in the corresponding element

of Stern (48]. We start by substituting (4.15) into (4.14); using the condiCion

that f (0) - f 2 (0) 	 f,1 (0)  and regrouping terms we can write

u(o,o) - (a + b 
I 
P + c 

I P 

X 
I	 (con's on next page)	 (4.19)

- 45 -



-4b-

+ 61M	 b )ta 
+ (c3 -
 c2 )o

2( 1^,^	 b  

	
(;). 
	

c3

It should he understood that any arbitrary condition relating u 7 to one, several

or all. of u  through u  will suffice to remove the interior node (i.e., none 7)

from the element relations. However, it seems more natural to eliminate the

node by the removal of one of the terms of (4.19). Noting that the first

two terms of the first square bracket and the first term of the second square

bracket represent the rigid body modes and constant strain modes, we are left

with four terms which can possibly be deleted so as to eliminate the interior

node.

If we 0wose to eliminate the term c l pX by constraining c 1 to be zero

we sec from (4.17) that this implies u 7 m 2( u 6
 + u l). This choice would some-

what defeat the objective of having singular displacement derivatives , and thus

is not adv:tsable. Furthermore, it is i,nconuistent to retain the higher order

terms ap p and a 2 p A
 while not retaining p

A
. Note that the term op t cannot be

used to eliminate u 7 since u 7 does not appear in its coefficient (i.e., in
^,

either c 2 or c 3 ). Therefore we are left with the terms a2  and a 
	

Either

of these terms caa be chosen to eliminate u 7 , Stern's element (48) Torres

ponds to the case in which the coefficient of a l p is set identically to zero.

Of the elements discussed above., only the seven-noded element has been

implemented in tale present study, In Section V, this element is used for

elastic analysis as well as for creep analysis. The special quadrature rule

proposed by Stern [48) and sununarized in (/i,.10) through (4.13) has been used

exclusively in evaluating this element's stiffness.

r	 +



SECTION V

CREEP CRACK GROWTH COMPUTATIONS

Description of Problems

The creep crack growth analyses which will be presented in this chapter

de;,il with three distinct problems. The following sections introduce each

i)r ,)blt,m by describing the physical aspects such as geometry, loading

and material properties as well as by describing why the problem was selected

and what is hoped to be gained by its consideration.

All calculations in this chapter assume infinitesimal strains and small

deformations. The crack propagation calculations use quarter-point crack-tip

elements and a mesh shifting/remeshing procedure.

Problem 1: Non-Stoady Creep of a Compact Specimen

The compact specimen geometry was chosen for study because of its wide-

spread use in fracture experiments and because numerical solutions for this

problem have appeared in the literature thus providing results with which to

compare. The dimensions of the specimen as wall as the mater1al properties

and applied loading (see Fig. 5.1) were chosen to coincide with those used

recently by Ehlers and Riedel [33). The problem is used for a mesh refinement

sensitivity study and for expluring various aspects of the (t )
c
 and C* con-

1

tour integrals during both nonsteady and steady-state creep.

Several finite element meshes have been uased in the analysis. All

- 47 -



Or PUOK r	 ,M. vy K

^y

P=2.07 KN/mm
P	 E=150,000 Wo

=0,3
60mmi +	 r 16'MPJ slnr

32.5mm	 5

25mm	 50mm ---•I
100 mm

ice!_••

60mm

P

125 mm

—01.
X

Fig. 5.1 Compact specimen geometry, loading
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of these meshes; employ two-dimensional, eight-noded, isuparametric elements.

Tile integratiuns for these elements are accomplished with 2x2 Gauss quadrature

and therefore only elements with straight sides are employed. As seen from

the meshes in Fig. 5, 2, the pin-loading hole is not modeled. In all models,

the horizontal placement of the point load corresponds with the load line of the

ASTM standard geometry (x . 25.0 nun). The vertical position is y 	 32.5mm.

A sensitiv.tty study showed that shifting the load to y . 40 mm has virtually

no effect on the pertinent aspects of the volution.

Most of the meshes contain collapsed eight-noded i,soparametric elements

at the crack-tip as illustrated in Fig. 6.2. In several calculations, the

midside nodes of these crack-tip elements are shifted to their quarter-points:

so as to produce an r-1/2 strain singularit y at the, crack-tip. Also, several.

calculations are performed with a special conforming seven-noded, triangular

element which imposes the HRR, r-n/(n+1), type strain singularity. Table 5.1 iden-

t1flou thu inashcs for which calculations are shade and Also gives the load Point

displacement and J 1 for the elastic solutions. These J 1 values are compared to

those based on the expression for K  given by Srawley (49].

Problem II; Constant Velocity Propagation in a Creeping,, Strip

This problem is concerned with a finite height, infinitely wide strip,

with a semi-infinite crack. Loading consists of uniformly applied displacement

rates at the top and bottom edges. This problem has been chosen for two

reasons. First, since the strip is infinitely wide and the boundary conditions

do not change with time, the propagating crack-tip fields can be expected to

reach a 'convecting steady-state" creep condition. Here we use the phrasa

"convecting steady-state" to mean that the field remains unchanged in time with

respect to a coord,tnate system which is centered at and moving with the crack

tip. This terminology is used so as not to confuse this condition with the usual

i	 steady-state creep condition in which material stress rates are zero.
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55 elements;
198 nodes
384 d,o. f,

57 elements:
200 nodes
388 d,o,f,
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a. The 55 (square crack tip elements) and 57 (triangular
crack tip , elements) element me es

1
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1

b, The 102 element mesh (331 nodes; 642 d. o, f. )

c, The 300 element mesh (941 nodes; 1840 d,o.f, )
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Fig. 5.2 Finite element meshes for the compact specimen

(contour integral paths are indicated by dashed lines)
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In th, convecting steady-state case, stress rates for material points

are not zero. As a result, Ci cannot (in a strict sense) be a valid crack-tip

parameter. As should be clear from earlier discussions, (T 1 ) c is a valid

parameter at all crack speeds since it does not require material stress rates

to be zero. From a practical point of view, if the crack speed is low enough,

thin one can expect Ci to be a useful quantity. By varying the crack propagation

speeds for this problem over the range of velocities observed experimentally

(for a given material), it should be possible to determine if this range has

any portions in common with the range of velocities for which Ci is a useful

parameter.

The second reason for choosing this problem is that Ci can be evaluated

analytically for the special case when the crack is stationary. This allows an

independent check on the finite element calculations and serves as a reference

for the analyses in which the crack is propagating. The analytical evaluation

of Ci parallels the evaluation of J 1 for a similar elastic strip problem as

discussed by Rice [50]. (See Appendix E) It should be noted that Ci has been

shown to be related to the steady-state value of (T 1 ) c and therefore it is

possible to obtain ( T 1 ) cGS for the stationary crack case from Ci and equation

(li.l) of Appendix B. The direct evaluation of (T 1 ) c in terms of either its in-

tegral representation or its energy representation requires knowledge of the

stresses in the region of the strip adjacent to the crack-tip and therefore is

not a trivial task.

The material properties used in this problem are representative of 304

stainless steel at 65000. These material properties and the finite elemrut

discretization are given in Fig. 5.3. The mesh for this problem may at first

appear rather coarse, however. elastic and steady-state creep solutions obtained

with this mesh are sufficiently accurate to Justify its use. The comparison

of computed elastic J 1 values and steady-state Ci values with their analytic
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values is given In ;Cable 562.

i'ruh lee III: (yty Crack Crc wth in C)uub 10-10d

The purpose of oonsidorNg this problei

problem fur which experimental data exists. While much experimental data has

htjm reported in the literature, mast authors do not include sufficient in-

format,ioo to allow a numerical simulatiun of their experiments. The current

problQm is based on the experiments of Kuterar,awa and Twata [511. The primary

reasons for selecting this work for study are that crack longth versus time

histories were given and that the experiments were performed on 304 stainless

stool fur which high temperature e.'.lastic. and creep properties were already

available.

The {.ii3oITot>ry of the oxpo imootal, specimens is given in Fig. 5.4. The

Kinito olument mesh for the calculations in shown in Fig. 5.5 with contour,

inLegral paths being indicated by dashed lines. It can be seen that the mesh

takes advantage of the two planers of Symmetry ,fo:r the specimen and does not

model, the 60 0notch. I The initial crack length indicated in Fig. 5.5 corresponds

to the notch depth in the specimen. All calculations ac this specimen assume

place wtrems conditions and use the material properties given in Fig. 5.3.

Elastic J ,l results for two crack ,lengths are compared in 'rabic 5.3 with those.

(based on formulas for K T ) from [521 and are seen to be in good agreement.

Compact Specimen Analyses

The following describes several. calculations for a compact specimen

during transition From an initial elastic state to one of steady-state creep.

The gQometry, loading, material properties and other details were described in

the first sec.ti.on, of this chapter as Probelm 1. We first consider results for

the 300 element mesh of Fig, 5.2 in terms of Q and then (T l„) c . `Chen we address

l Modeling the notch would have required the mesh shifting subroutines to be
generalized.
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1 • 	i

the topic-4 of mosh refinement and the use of special crack-tip .singul

men ts.

r10 I ' l ut (,on o,f ti 	 c "I ON for Nonsteady Creep

Tlm Path-independence of (C*) ` during nonsteac{y creep is illustrated

in Fig. 5.6 using results from the 300 element mesh. The ^, supersaript

designates the particular x234 contour which is used, with t, being the

nondimensional distance from the crack-tip to the point where the contour

ti:russes the crack pl.at' ► e. Therefore, t, is zero at the crack -tip and has a

maxbuum value of unity when the -contour is at the boundary of the specimop

Values of (Q) ' are plotted as a function of time for nine values of t ranging

from 0.03 to 0.92. It is seen that (C*) rl is largest for contours close to the

clack-tip (small ^) and that as steady-stato is approached, the values from

all contours converge to Q. The solution htas essentially reached steady-

state at 300 hours. After 300 hours, the values of (C )^ for all nine contours

are within 1.5 percent of their average value. This value of C*, as well as

values from calculations with the other meshes, is given in Table 5.1.

Now we consider computed values of (T l)^ as approximated by (ATi)^/Qt.

The values of (AT l )C are obtained through the specialization of (2.10) to the

case of infinitesimal strains, small defor,nations, symmetric mode I be l avior

and traction-free surfaces:

fMu

(A`1'l)G	 JI	
.nlAW	 n^('r ii + Ar id ) ^ x	 dS	 (5. 1)

234

r	 — A c dV
J Vt-Vc D x 1
	 i

,Since (T l) c is the limit of (T 1) as c goes to zero, (T l)e is plotted as a

function of t for several times (see Fig. 5.7). In this figure, t: is the

nundimensional size of V c and is measured in the same manner as r., the

r	
-59-
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nondimensional, size of 1'234 . The open points are the values of (+ )", as com-

puted by (5,1), for nine contours in the 300 element model. The value of the

crack-tip parameter (T 1) c is given by the intersection of each respective curve

with the r:	 0 axis. Due to the large gradient in (T l ) C for small c it is

seen that the accuracy of any extrapolation based solely on these evaluations

of (+ 1, )
c 

(i.e,, open points) would be of questionable accuracy, except perhaps

near steady-state conditions. The solid points at C a 0 in Fig. 5,7 have been

obtained using (2.14). It is seen that these values of (T 1 ) c appear to be reasonable

extrapolations of the curves of( T 1 )C (5.l) thus giving some degree of confidence in their
accuracy.
Path Independence of (f 

1)
C

Rased on arguments put forth in earlier portions of this paper, the

value of ( T 1 ) c obtained through (2.14) should be ;independent of the path

(Le., 1'234 ) which is used in its computation. This path-independence is

,illustrated by Fig. 5.8a where (T1 ) c is plotted as a function of the nondimen-

siona.l distance of x234 from the crack-tip, C, For several. times. Generally,

the path-independence is seen to be quite good. The largest deviation from

path-independence in this figure is for the intermediate time of 10.8 hours

with the difference between the extreme contour values being less than three

percent. To further emphasize this path-independence, (T 1) c is plotted as a

function of time in rig, 5.6. As a result of its path-independence, (T1 ) c is

represented by a single curve. Interestingly, this curve is a straight line

for times before approximately 10 hours.

Riedel and Rice (361 have arrived at the following approximation for

K (which they call A(t) based on the assumed approximate path-.independence of
Ll

J 1, during; the initial portion of nonsteady creep:

w 
K2 i	 v2) /r 	 n1

Ku	
( n+:A) 

y 1t (5.2)
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Comparing (5.2) with (2.50) one concludes that ( Tl) c should behave like J./t for

tune's when (5.2) is valid. In a log-log plot of (T 1 ) c versus time this would

result in a straight line with a slope of -1. The straight line shown in Fig.

5.6 is inclined from the horizontal. by 400 and therefore has a slope of -0.84.

The current work has resulted in some evidence that J  is approximately path-

independent during initial nonsteady creep but that its value tends to increase

with time. This tendency for J l to increase with time could explain the rather

significant departure of the current results from the behavior of (5.2).

(Quarter-Point Singularity Clement Calculation

We next, consider the results of computations using 57 and 102 element

meshes with quarter-point singularities. The purpose of considering these less

refined meshes is to determine if the expense and effort in using the 300 element

model is necessary for obtaining accurate results. Table 5.1 summarizes the

results of these meshes for the limiting cases of purely elastic behavior

and steady-state creep behavior. For the elastic problem it is seen that the

results from these meshes agree with the 300 element mesh results to within:

one percent. At steady-state the 102 element model still agrees with the 300

element mesh (in terms of C1) to within one percent while the 57 element

model now differs by approximately eight percent.

The contours used for the 57 and 102 element mesh are indicated in Fig.

5.2. The 51 element mesh has four contours while the 102 element mesh has

eight. The path-independence of (T I) c , as computed frot, "2.14), is illustrated

for these two meshes in Fig. 5.8b and 5.8c. It is seen that the degree of

path-independence in both is similar to that observed for the 300 element mesh.

Since we have evidence that the 57 element mesh is less accurate than the other

meshes at steady-state, it appears that high quality of the path-independence

cannot generally be interpreted as meaning the solution is accurate.

I
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To determine the adequacy of the 57 and 102 element meshes for t

steady creep problem we now compare their (TI) c histories with that obtained

with the 300 element mesh ( see Fig. 5.9). The curve aPpearing in this figure

has been placed through computed points from the 300 element mesh. The results

of the 102 element mesh agree almost perfectly with this curve for times between

0.2 !tours and 16 hours. Prior to this period and after this period the r as•alts

fail below the curve by as much as 20 percent. While Little can be said about

the absolute accuracy of the calculations for early portions of nonsteady creep,

we know ( based on Appendix B) that (TL
 )
c should agree numerically with Ci at

stegidy-state to within a few percent. Therefore it , can be said that the

values of 61 ) c from the 102 element mesh are significantly in error at steady-

state. Recalling that this model gave a steady-state value of Ci which .iâ .gree

quite well with the 300 element mesh results (see Table 5.1) it is perhaps sur-

j.rising that such a significant error in the steady -state value of (t 1) c ,pan

exist. To better understand the results of this model, (T 1)^ is plotted as a

function of E in Fig. 5.10. It is doted from this figure that the values of

(T 1 ) c based on (2.14) (i.e., the solid points) appear to be reasonable extrapo-

lations for times when the results are in agreement with the 300 element mesh

results. However, as steady-state is approached, it is seen that these solid

points no longer appear reasonable. If, however, one extrapolates the values

of (T1)c to E = 0 for the bottom two curves of Fig. 5.10, it is fot+nd that

these values of (T1) c are in good agreement with the 300 element mesh results.

In camparing the equations for evaluating C1, (T 1 ) E and	 )CO(T1 	 it is

seen that(T 1) c is the only one of the three which involves an integration

over the crack-tip quarter-point elements. Based on this and the apparently

good accuracy of C and (T 1)E it is believed that the integration over

these elements is the major cause of discrepancy in (T 1 ) c between the 102

and 300 element mesh calculations.
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k

,rhe, 57 clement results do not compare favorably with the curve of Fig.

5.9 for arty significant portion of the. solution. For most times the valuc;s of

fall below they Curve with the percent difference ranging from 50 percent

at	 0.02 hr. to 1.5 percent at steady-state. Based on the discrepancy of C**

indicated in `'ablit 5.1 and in the generally bad comparison of (Tl ) c in rig.

5.9, it, appears that the 57 element mesh with quarter-point singularity is not

sufficiently refined for accurate creep calculations. This conclusion is per

flaps a bit un-cxpec,ted considering the degree of accuracy which this mesh displayed

for the elastic, probu;lm (see Table 5.1) . The reason for this drastic change

of accuracy in going from elastic, to creep behavior may be that the crack.--tip

strain singularity (i.e., r-1/2 	 n/(n+l) typeis inappropriate for the r	 t e be-

havior expected to exist during creep. This topic. is addressed in the following.

tlf8lt $ .n lazig'l.ement Calculations

Based on the above observations, several analyses have been made using the

seven-noded variable singularity element described previously (Section IV). T'ne

elastic solutions obtained with this element agree very well with those using

the quarter-pol.nt isoparametric element as can be seen from the entries of

`ll in Table 5.1. Also included in Table 5.1 are the quasi-steady-state values

of C*. The introduction of the correct strain singularity for steady-state

creep	 `n/(n+:L	
g	 y	 .p (	 ) } does not si nifa^.cantl affect the 102 element mode ' s Cl but

dues i.mporve that of the 57 element: model.

The analyses which use the seven-node singular element have the same

singularity for the elastic solution and the subsequent creep solutions. At-

tompts at changing the singularity from the elastic r- 1/2 to the r-n /( ►^+l)

value between the elastic and first creep solution have created numerical dif-

ficulties clue to the disequilibrium introduced in the process. No attempt

at a gradual transition has been made.
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The (i 
I ) C 

results using the seven-noded singular clement are shown in

Fig. 5.1.1. The solid curve represents the results of the 300 element model.

The evaluation of (! 
I ) c 

Is according to (2.14) with the numerica) procedures

boing Identical to those employed with the quarter-point elements except for

the contribution of the singular elements to the volume integral. For the

quarter-point elements, the stresses are assumed to be distributed lineraly with

respect to the local coordinates. The Volume integral is then evaluated in

terms of quantities at the 2x2 Gauss poets, For the seven-node elemunt, linear

interpolation is used and in addition, several calculations are done assuming

radial dependence of the type (Y - a + b - / 
(1+n)	

It can be so-!in from Fig. 5.1x.

that none of the calculations agree well with the 300 element results.

Based oil this set of calculations, the general disagreement in (T 1 )c

between the singular crack-tip element models and the 300 element model does not

ype,ar, to t5c due to the strength of the singularity which is introduc d at

tb,o crack-tip. 
The 

genoral accuracy of C'*
I 
for all. the solutions with either

elastic or creep type strain q ingula,1JtIes supports this view. Rather, it seems

Ukety that the difficulty in computing the volume integral of (2.14) stems from

the crack-tip element fields not satisfying the condition

Lt "I ""i-i(c'(1) Ac U,OdO - 0	 (5.3)
-00
f Dx

From 
the 

disct,^;;slon of Appendix A it can be seen that if this condition is not

satisfied while at the same time the fields have the correct asymptotic (singu-

lar) radial dependence, then the volume integral of (2-14) does not exist.

It therefore appears that accurate evaluation of 	 )c using (2.14)

cannot be accomplished if one uses crack-tip singular elements which provide
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for the satisfaction of condition (5.3). At this point, it appears that one must

use a rather refined non-singular mesh (such as the current 300 element mesh)

or introduce special crack-tip elements which satisfy (5.3) in order to compute

0 1 )
c 
accurately. The next section illustrates that for many probelms of

practical importance, a more attractive alternative may exist.

( T1) c as a Crack-Tip Field Parameter

The previous discussion has pointed out some computational difficulties

involved with evaluating (T 1) c . It was concluded that these difficulties

are associated with the contirbution of the crack-tip singularity elements to the

volume integral of (5.1). It has been seen that despite the elastic strain

singularity introduced by the quarter-point element scheme, the 102 element

mesh gives accurate values of C*. Assuming this reflects the general accuracy

of this solution, it is desirable to use this relatively inexpensive model as

opposed to using a very refined non-singular mesh or to introducing a special

crack-tip element which satisfiessatisfies condition (5.3) .

The effect of deleting the crack-tip singular elements from the volLnae

integral of (2.14) is shown in Fig. 5.12. Deleting

we are in fact evaluating ( T1)C where V
C
 is the vol

crack-tip elements. We will denote this particular

be shown that depending on the relative size of the

these elements means that

ime encompassed by the

(T1 )
6
 as (T1 )

6
. It will

crack-tip elements and the

proximity of the solution to steady-state condition, (T )6c is a good approxi-

mation to (T1)c'

The solid curve in Fig, 5.12 represetts the results of the 300 element

mesh. The dashed curves are ( T1)6 in the case of the 57 and 102 element

meshes and is (T 1 ) E with E = 0.03 in the case of the 300 element mesh. The

crack-tip element sizes for the 57 and 102 element meshes are 10 mm and 2.5 mm

(or 20 and five percent of the ligament size), respectively.
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The values of ('I'l ) c for the 102 element meats coincide with the soli4
t5

euvo for times after about 30 hours. Therefore (T i)G is a valid, path indo

dent, crack-tip parameter for times after about 30 hours and for values of (T 1)c

beginning at approximately 1.6 of the steady-state value.. Fig. 5.6 shows that

Q is still significantly path- dependent at 30 hours and thus is not an acceptable

crack-tip parameter until much later.

The curve o f (T I ) c , (r - 0.03), for the 300 element model, seems to indi-

cate that the validity of (T l}6 can be expanded to earlier times by reducing

the size of the quarter-po4nt elements. For example, a d of three percent of the

ligament would apparently result in (T l)6 being valid as early as seven hours and

for values of ( Tl) as large as 4.3 the steady-state value of ( T l) c . The curve of

•	 ^S(`l" l ) c tor the 57 element mesh tends to approa-li the solid curve as steady-state is

approached but never acutal.ly converges even at steady-state. This indicates that

this mesh is too coarse for (Tl) c to be a useful, parameter.

Constant Velocity .propagation in a Strip

We now present some calculations for the cracked strip problem previously

referred to as Problem IY. The geometry; loading and material. properties for

this problem are summarized in Fib. 5.3. The purpose of this problem is to

determine how significantly the crack- tip .fields are affected by crack propa-

gation velocities commonly observed is experiments. If for realistic crack

spends, the crack-tip field is essentially the same as for a stationary crack,

then C* is path independent and characterizes the crack-tip fields. In any

case:,	 )c is a valid parameter.

As noted previously, the steady-state C* value s for the infinite strip

problem can be obtained analytically without much difficulty. (See Appendix E.)

Therefore, the procedure for this set of calculations is to select three values
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of C* which span L• he range of values reported in. the literature. The values

which have been chosen are 0.05, 5.0 and 50 N/mm,hr. Having these values, the

corresponding, remote steady-state °ryy is determined as well as the edge dis-

placement which will result in the same remote elastic T yy . These displacements

are applied to the model elastically at t - 0. The resulting values of J 1 are

compared to the analytic values in Table 5.2. Next, the steady-state edge dis-

placement rates are determined. Using the elastic solution as an initial

state, the displacement rate, i , is applied until the model reaches steady-

state, The computed steady-state values of C* are compar„ed to their analytic

values in Table 5.2. The next step is to determine an upper bound crack

velocity for each of the chosen values of Q. The following formula is based

oil the experimental data reported in (23,24) and represents data from center-

crack, double-edge-crack, single-edge-crack, compact, and round-bar specimen

types.

d	
a C* 1'.173
	

(5.4)

wh er e

1.68 . 1,0-2 (upper bound)
a

-3
3.36 . 10	 ,average

Having reached steady -state, the crack is propagated at the upper bound velocity

given by (5.4) until it is determined that a convecting, steady-;etate has been

reached,

As noted previously, these calculations use the quarter -point crack-tip

element. The crack growth simulation is accomplished through a combination of

mesh shifting and remeshing as described in Appendix D. 'The nominal size of

the crack growth increments is 0.4 mm or two percent of the crack-tip element

width. For the highest velocity case (C** - 50 N/mm.hr ), this procedure re-

sul.ts in crack growth at approximately every fifth solution step.
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Results for a Plane Strain Strip

The results of the plane strait ► strip calculation with C*	 50 N/mm.hr

and La 	 1.65 mm/hr are given in Fig. 5.13, The values of ('Tl) c 
and C* are

dt

given for the portion of the calculation prior to steady-state as well as

during the crack propagation protion. The band represents the range of values

Ì .

	

	obtained from the ,four contours illustrated in 'Fig. 5.3. Both(T l )
c
 and C*

converge to the 50 N/mm.hr value at steady-state. During the crack propagation,

I
it is seen that (T 1) c and C do not depart significantly from their steady-

state value. This means that this combination of loading and crack spixed

results in the crack-tip fields being essentially at steady-state conditions.

This in turn means that both 0 ) c (or (Tl) c) and C* are valid crack-tip

f ield parameters.

A. closer view of the crack propagation portion of these curves is given

in Fig. 5.14. The dashed curves br,aceting the initial portion of the solid

curves represent the degree of path-independence and continue to be representative

of the path.-independence observed during the crack propagation steps. For both

('r1 ) c and C*, it is seen that the strip has essentially returned to its steady-

state condition prior to each crack growth increment. It is thought that the large

departure of ('I l ) c (as compared to Ci) is more representative of the nonsteadness of

the crack-tip field, since the validity of C in general, and the numerical evalua-

tion of W* (2.43) in particular, are based on the existence of steady-state conditions.

The effect of remeshing is seen at approximately eight hours. The

first two steps after the remeshing were found to result in rather erratic con-

tour integral values and are not indicated in these figures, The equilibrium

correction feature of the present model and the automatic time step regulation

procedure both act to quickly restore equilibrium at the crack-tip.

The propagation portion of the calculation with C . 5 N/mm.hr  and
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i

dt	
0. 111 mm/hr is given in Fig. 5.15, Here again it is sewn that both ('rl)c

and C* hav,. converged to the analytical value of C* (to within two percent, which

is also about the degree of path-dependence). Comparing these results with

the ae in Fig. 5,.14 for the higher C*r and crack speed it is seen that steady-

state creep conditions were not reached until 12 hours as opposed, to approximately

two hours in tb.e previous case. Also, the return to the steady-state value after

mesh shifting takes more time (two hours compared to 0.25 hours). However. when

compared to the time between crack growth steps (both use 0.4 mm) it is seen

that the lower velocity ease return to steady- state well before the next growth

stop occurs. This result indicates that lower load levels and crack speeds

are inherently closer to steady-state conditions. While this behavior may

seem intuitively correct, it should be 'kept in mind that these results depend

on the empirical formula (5.4) which is only valid for 304 stainless steel.

It remains to be seen if similar behavior occurs in other materials.

A calculation has also been done for the case of C*l°0.05 N/i+um.hr. As

a result; of the large number of solution steps between crack growth steps, when

using the maximum velocity of 5 . 10 -4 mm/hr, the calculations used a higher

velocity (5 . 10-3 mm/hr). Even at this unrealisitcally high velocity (for this

level of loading), the behavior is more steady-state-like than the case of C1=5.0N/mm.
hr described above.

Results for a Plane Stress Strip.

In both plane strain problems discussed above, the steady-state value of

(Tl}c is equal to C* to within the accuracy of the calculations. This is con-

sistent with the relationship avid comparison of C* and steady-state 0 ) given
1 .e

v Appendix B. According to the approximate numerical values of this appendix,

there should not be as close agi,,eement between C* and cr l ) c in the case of

plane stress. The primary purpose of this analysis is to verify this predicted

behavior.
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For this plane stress analysis, C* was chosen to be 50 N/mm hr and

the crack was again propagated at 1.65 mm/hr. The remote r ,
yy 

the steady-state

` displacement rate, S, and the ela9tic displacement, 6, are 171 MPa, 0.168 nun/hr

and 0.114 nun, 'respectively.

The results of this calculation are given in Fig. 5.16 and 5.17. it

ib seen from these figures that(Tl) c does converge to a somewhat higher

value at steady-state then Ci. The steady-state is see,1 from Fig. 5.17 to be

i	 approximately 52 N/mm . hr which is higher than Ci by four percent. While

this is a somewhat smaller , difference than suggested by Appendix B, the sign of

the difference is the same. In light of the approximate integrat on used in

obtaining the numeric values in the appendix, this discrepancy is within reason.

As expected, the general behavior for plane stress conditions is essentially the

same as for the previous plane strain analyses. Therefore, previous observations

concerning the steady-state nature of the crack-tip field during crack propa-

gation are unchanged by the shift to plane stress conditions.

Double-Edge-Crack Specimen Analysis

The following describes ,ieveral calculations and their results for the

problona previously referred to as Problem 111. The geometry and finite element

mesh for the double-edge-crack specimen are given in Figs. 5.4 and 5.5, respec-

tively. The material properties are those of 304 stainless steel at 650 0C and

.are absuYned to be the same a$ those used in the strip analyses. (See Fig.

5.3) Calculations have been made for remote applied stresses of 157 and 176 Mpa.

The ex,^,peri.mental, crack growth histories for these two stress levels are repro-

duced from [511 in .Fig. 5.18. It is seen from these curves that the first two-

thirds of the specimen lives are characterized by crack velocities of less than

0.01 mm/hr compared to nearly 0.5 mm/hr as rupture is approached.

The primary purpose of the following calculations is to verify the

conclusions which were reached in the previously described stria calculations;

J
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that is, that tho crack-tip fields are essentially creep steady-state fields

even for the most rapid creep crack velocities. These calculations will be a

valid check because the input to the calculations is only the remote applied stress

and the measured crack velocity history, and does not in any way depend on expeei-

mental, determination of C* or (T 1) c as did the strip calculations. In fact,

Koterazawa and Iwata do not report such measurements in (51).

Analysis of Initial, Low Velocity Crack Growth

This section describes the simulation of the initial portion of the

crack velocity histories given in Fig. 5.18. In all of these calculations, ithe

entire load is applied elastically at t = 0 and held constant throughout the

subsequent creep solution steps. The convergence of (T t ) c and Ci to their

steady-state values is shown in Fig. 5.19, with the dashed lines in the C*

plots denoting the degree of path-dependence. It is seen that steady-state

conditions are reached between a half and one hour after the load is applied.

(Table 5.3 summarizes the computational aspects of this portion of the calcu-

lation.) Therefore, it is seen by refereing to Fig. 5.18 that crack growth does

not begin in the two specimens until well after steady-state conditions are

reached. Since the current calculations asstkme small displacements and infinitesi-

mal strains, and since only the strain and displacement magnitudes depend on time

once steady-state is reached, there is no reason to continue the numerical calcu-

lations to the crack initiation times indicated by the experimental results.

Therefore, the initial crack propagation is simulated at times after steady-state

conditions are reached but much earlier indicated by the experiments.

-	 The crack growth simulation results are shown in Fig. 5.19. The crack

increment size for this study was approximately 0.01 mm which is nominally 2.4

percent of the crack-tip element size. It can be seen that only one mesh shift

(i.e., crack growth step) was modeled. It is clear from this figure that the

time it takes for the specimen to return to steady-state is significantly less

6r
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than the time to the next crack growth increment (indicated by dashed lines).

Therefore, the initial portion of the crack growth histories of Fig. 5.18 are

clearly occurring under essentially steady-state conditions and thus C1 as

well as (Tl)
c
 are valid crack-tip parameters. Since an increase in CI re-

sults in a more rapid return to steady-state conditions, the above conclusion

will remain valid for the initial constant velocity portions of the curves of

Fig. 5.18.

When crack growth occurs so slowly that the crack-tip is essentially

at steady-state, the crack-tip field does not depend on the history of the

specimen. Therefore, assuming steady-state conditions continue to exist, it is

possible to skip to the final stages of crack growth without modeling the

intermediate crack growth. If it is found that crack growth is still slow

enough for steady-state conditions to exist, then it seems reasonable to expect

that the bevaivor at intermeiate crack lengths is also of a steady-state type.

The following describes the results of this procedure when applied to the

two double-edge-crack specimens.

Analysis of Final , Stage of Crack Growth

To analyze the final stage of crack growth, the crack length is in-

creased to 2.75 mm and. the process of applying the load elastically and creeping

to steady-state is repeated. Table 5.3 summarizes the computational aspects of

6
1	 this process. The convergence of(T1) c and C to their steady-state values is

shown in Fig. 5.20. Having; reached steady-state, the cracks are grown at the

rate suggested by the last portion of the crack histories (Fig. 5.18) as shown
4

I	

in Fig. 5.20. The significant increase in the frquency of mesh shifting (compared

to that in Fig. 5419) due to the velocity increase makes the details of the

curve difficult to distinguish in this figure. However, the time step size is

such that six or seven steps occur between each crack growth increment. Unlike

. 5
the strip problem, the values of(Tl )

c
 and Cl are clearly increasing during
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this crack propagation process.

It is necessary to determine whether this increase in the crack-tip

parameters is due to the crack-tip no longer being at steady-state conditions

or whether it is due to the increase in crack length. This is accomplished

by cont inuL.L the calculation without further crack extension. If the value

of the parameters do not change significantly with time, this means the increase

was largely due to the crack length increase and that crack growth is still

occurring, under essentially steady-state conditions. Examination of the final

portions of the curves of Fig. 5.70 shows that thjs is the case.

Based on this analysis; it ap pears that the conclusions reached as a

result of the strip calculations are still valid. Since, (i) the strip analy-

ses are much less expensive than this analysis of the double-edge-crack geometry,

(ii) the steady-state r* for the strip is easily obtained analytically acid (iii)

the crack-tip parameters do not depend on crack length for the strip geometry,

it seems that similar studies for other materials and/or other temperatures could

most effectively be acccmplished through the use of the strip geometry. The

uct^d for such studies follows from the vast simplification of fracture analysis

and prediction which results if crack growth occurs under steady-state conditions.

More will be said about this point in the conclusions.
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SECTION VI

CONCLUSIONS

'"jmmary of Results

A finite element model has been derived which is generally applicable

to viscoplastic material, models. This model uses an initial strain approach

which reduces computation time spent on forming and decomposing stiffness

matrices and also circumvents the problem of element i,ncompressiblity constraints.

Through special features, including a correction term in the finite element

equation, this model provides for improved adherence to the postulated constitu-

tive behavior (as compared to the standard initial strain approach) and

allows time steps which approach in size those used in tangent stiffness

methods. The accuracy and efficiency of this model with eight-node isopara-

metric elements and the quarter-point crack-tip element approach have been

verified through several calculations for a compact specimen geometry and a

strip geometry. Also, a method of simulating crack growth through shifting

of the quarter-point singularity elements and periodic remeshing has been

described and demonstrated.

It has been shown that despite the fact that C1 characterizes the

crack-tip fields under steady-state creep conditions, it does not have an

energy or energy rate interpretation. A related path-independent integral

parameter (T I ) c , however, does have the energy rate interpretation commonly
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attributed to C*. Since experimentalists vae this energy interpretation to

correlates creep crack growth rates, it appears than (T l ) c (as opposed to C*)

is gaining acceptance as a useful creep crack growth rate criterion . Further-

more, (TI) c does not rely on the existence of steady-state creep conditions

and thus might be expected to be a valid criterion even if creep crack growth

should occur at rates which preclude the existence of steady-state creep

conditions at the crack-tip.

A creep crank growth simulation for 304 stainless steel, has shown that

for realistic load levels and corresponding crack speeds the .,rack-tip field

is essentially at a steady-,sta g: creep condition. This means that for this

material, the propagating crack-tip field is largely unaffected by the

history of crack growth or the history of loading. This feature can greatly

reduce the analysis required for predicitng creep crack growth behavior

in ,a component as can

We assume that

dG(1, c, , - dE) throughdt

241,

be seen from the following suggested methodology.

the crack propagation speed dt is related to (Tl)cgs
Lb e power law suggested by experimental data [23,

d	 G 
(T 1) ess J

	
(6.l)

Nwxt we determine (e.g., by steady-state creep finite element analysis)

(T 	 as a function of crack length. Because of the assumed steady-state

crack--tip behavior, this can be accomplished by considering several discrete

crac'!c lengths and then fitting a curve. No crack growth simulation procedures

are necesstlry. Combining (6.1) with this result provides the following

relationship between time and crack length:

a(t) 
G(xl)ess)

°3

a
0

where a  is the iv i.rial crack length and t i is the time when crack growth initiates.
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Li me znjxi aL 1onThe only unknown quantity in (6.2) is the initiation time ti.

time for creep crack growth is ausuMed to be negligible (as might be suggested

from the results of [9,101) then (6.2) immediately provides the predicted crack

growth history.

Vitek (11] does not consider t i to be negligible based on seveval

experiments (compact and double-edge-crack specimens) on two CrMOV steels.

Using n dislocation model he further concludes that a treasure of crack opening

displacement (COD) correlates well with the initiation of crack gr,*"Wth in these

experiments.. If the same conclusion is valid for 304 stainless steel., then

one can presumably predict t i based on a transient finite element analysis of

the initial flawed configuration and a critical value of COD. If initiation

occurs ,Long after steady-state conditions are reached, it is then reasonable

to e9tirr to t i using the rate of COD obtained from a steady-state finite

element solution. The use of (6.2) and of the critical COD concept has not

been investigated in this study.

All of the creep calculations have used the constitutive law which is

obtained by generalizing the Norton constitutive law to three dimensions.

Whereas this law is a good representation of steady-state creep behavior, it

does not, in general,, represent the primary stage of creel. V3ture work should

include a study of other creep constitutive laws (such as that of Bodner and

Partom (321). Also, the present model is derived on the assumption that 4is-

placements are small and strains infinitesimal. The strains in the vicinity of

the crack-tip for the present calculations with 304 stainless steel material

properties are on the order of 5-10% and therefore suggest that a finite

strain formulation may be more appropriate. A study should be undertaken to

examine this aspect of the model.

As noted previously, the creep crack growth prediction methodology 	

1
expressed in (6.1) and (6.2) has not been tested. A study to assess the
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utility ot this methodology should therefore be undertaken. This study

should consider crack growth initiation as well as crack propagation and

should include a range of 104d levels and several, specimen geometries. If

the methodology is found to be successful for constant applied loads, then

the study should be extended to consider more general load histories.
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APPENDIX A

Existence of Lim',ts for Contour Integral Definitions

This appendix discusses the existence of the various limits which have

been taken in defining (4'^) c , (T) c and C*. In considering these limits, we

make use of the generally accepted result (see (6) for example) that the

strain energy density quantities W and W as well as the quantity W* behave

as 1/r in the vicinity of the crack -tip. This is assumed to be valid for

nonsteady as well as steady-state creep and also for the elastic state

existing at t = 0.

Based on the known asymptotic behavior at the crack-tip (i . e., the

HkR fields) the lim ,ta of r  contour integrals for equations ( 2.11,13 , 14,25,30,

40,44) can be written in the following form provided one takes r  as being a

circular contour centered at the crack-tip.

Lt

E o J r 
(E	 L))f(E,e)Ede	 f(0)de	 (A.
 f ^r
E.

The nonsingular function f(e,A) becomes equal to f ( 0) when the limit is taken

anc reflects the asymptotic nature of the HRR fields.

In the following we limit the discussion to symmetric problems involving

only mode I crack-tip deformation. Further, we assume that crack surface trac-

t	 tions and body forces are identically zero. With these conditions, we need only

consider (AT l ) c and ve can therefore rewrite (2.11)

(AT 1) _ o f(n1 AW - n^ (T i + At e i) oe^l Ids	 (A.2N
r E

L-Z



1, t
1. °+• k ► l)

fv ^V
t	 t

It
C + l,t

K ill
cV

(A.'► )
x

11

^^ n

k
F

(11 AW •- n^(t^ t •4 A t. )ActilIds

t234

I,t ^ 
1 l
. ^_ ,Aci	 dVti^

	 v t '.'v
	 3y,
	

i j

Now eonolklor the lImit of the Vt -v C t lit c"gr-, I of (A."), inttpoctioll of thit'1

int k%ral tihuwo that tt can be put: into the form:

None o V t it; it :m;11 t oircta ar region o entc red at the vvark= tlp and ( is thii

11togrol ovor the ro l'oll V tw - vt'. 'rhe ,font.tion g(r,O) iiv a nons:ingtilar..

luttrt f,011 1.0111401, 11ck. 011lcqt g(0) in the l,i.mlt, at1 r: goes to zero, whore, g(t1) Is

kimm 0 taui• ll1a o f 010 HRR f.t c±'IAS	 tlpoll it fi,rat i,nttpootion of (A.;l) one i.1

r omp.t od ,Vo ("onr l..udo char t,hv. lituit cloos not cixit:4, w0c;o the intogrand has

.1 11011- Lilt vgrnh to "411180ari,ty at r W l?. It, 40wovror, wet nook tit, the r1ght

vvit'tl i Ly of (A,2) It to ocken that thin (+ollol tis ion rouiA l t s in a Contradict foil.

.^l.nce wl` h;t^'t' 111t1Gtn that tile 11111i,t of they i.nt:egrtal. on V, clo gs exist (and

t 1wroCor y (A.2) 'requi.r:cio that the. l..ialit, Of thcx tottogral over Yt - V^ tt►uat

axis, , A ria-Inspeot icon of (A.3) t4huws that the only way for thin appnront

(,ont,raotion to bo rot4olvod is if the` 91'0-01) of (A.3) has the following

p rop or ty ..

f;	 11

0)ctcl 	 ,t	 ( i1 ) ct11	 t1
	

(A.4)
,rte	 ^r

If (mietton g(0) t known explicitly for thcl l,inoar cl.;astic case and Chore-

fore± (A..4) can ho d1rectly vi^ ri.ficd. Vc tlttl NRit fiolcf ^(C1 ) 11; Prot, known
F

axpl.io it l,y and there fore (A.4) can only he verified numerically.
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Vul: infinitesimal st'raln, nonlinear elasticity, the following relation
1	

1,
provldv8 

an altt-,*rnative to verifying (A.4) direelty

Du

 

Jeri	 3u
A	 (IV	 Aai dS -	 n Acr --A d9	 (A. 5)

JV-V 
Dx 
	
f

n^  ^i ax k	 f	
()x k

t^	 234	
rc	 i

Tho reLation (A.5) (which assumes zero crack surface tractions and no body

ror,,.os) illustrates that this volume integral of type (A.3) can, be expressed

fil tenlw of the contour integral of type (A.1). The relation (A.5) can be

vertfteJ through t1w divergence theorem, the linear momentum balance condition

and tho following identities:

w	 k tact	 !'mi	 mn

Dx 
k	

Ox 
k 

)C 
i^) 

DC 
ii	

Inn Dx 
k	 ii 

ox 
k

A	 T
mn

A	
Inn

5 x	 11111 ),x.	 mn —5 x
it.	 k
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'WPENDIA 4

NuIllortcal Difference 110tweell ('1, ) 	 and 
(,I*I V88	 I

The purpono of 0 ► 3, appondIx Is to give some example" to illustrate

tho numorteat difference between 
(TI)coo 

anti C* as given by (2.48). Us 1,ng
 1

(2,50), (2.49a) and (2.51), 
we have

vr I
+ 

(11+-1) 1 f 
oq 0 oo 9 t)d t)

Tho valtios tabtilatcd in Tablo 14.1 wore computod Lip)roximately from valu s of

I and plot4 of e- q (o) given in (6) and sho"'Id be viewed acocrdingly.

Table 4.1 Comparison of 0'	 and C*
I one I

Plane Strain	 11111no Struss

n - 3 n-- 13	 n " 3 11 - 3"1

0. 018 1.00	 1.11 1,14

It 14 livell that for the range of it k"ollimonly oncallitte tied,and C* are
I Cos	 I

w ►morical! 'y very Similar for plan et strain but diffow, vAgntficantly for plane

t4 t r c,4 s -
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I	 APPENDIX C

Numerical Methods for Evaluation of Contour Inte-grals

The numericat procedures for evacuating J 
I 

as defined by (2.27), (Nr 
I ) C

as defined by (2.14) and C* as defined by (2,31) are -l escribed in the following.
1

(',(,noval Procedures

In studying the contour integral paths indicated in the finite element

meshes of Figs. 5.2,3,5 (dashed lines) it is sn^en that the paths always pass

throogh the centers of elements as opposed 
to 

along their edges. This procedure

has been adopted so as to benefit front the presumably more accurate solution

within the elements. Each element contour is divided into two segments with

tho integratiot ► being accomplished by two point Ga ►issiol quadrature. All of

the integrations are performed in the element local coordinates.

The J I- 
Integral for Linear Elastic Analyses

The contotir integral portion- of (2.27) involves the stresses, rij, and

this	derivatives, Du i / ',)x 
V 

Both of these quantities can be evalu-

tated at the. raqw1red Gauss points through theelententsiodal displacements and

slinple manipulations with element matrices. In the current study, J
1 

is only

c, ► nsidered as a parameter for linear elastic material. behavior and therefore

11 - (112)o ii 'ij

The O-Ditegral
I --

The C* integral of (2.31) consists only of 
a contour integral. The W*

I

of (7.31) is evaluated using ( 2.43). Tit o gradient rates are approximated by

4NU

Dx	 At Dx
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and there0ro are average rates for the increment as opposed to the rates at

tKe and of the increment. The contour Integration procedure for C* in as

dcs;k rll)vd above 
and uses two point quadrattir y for each element segment. Whereas

,4trt s ssott tire easily computed at the ro q,-airod contour Gauss points in the elastic

casio, Lho strosses must be computed incrementally in creep analyses and there-

fore stress information must be stored for each contour integration point

unleas nuilstandard element interpolations are twed. In the present study,

tlio g trosses at Ole contour Gauss points are interpolated from tile W element

Gauss poinLa through bilinear Lagrangian interpolation (in local coordinates),

Hitis elini 3O1,ating the, tired for additional storage.

The ( T 
I 
)c-Integral

1 1, the ova i vation of ( 2 .14) it is undorstood that t	 are the stressesI	 IL	 I	 cif

at the beginning of the time increment being considered. The procedures for

ovalkiating 
the 

contour integral portion of (2.14) are the same as .1 sed in evalu-

atiag C A . Tile itlermental atress-work density, AW, is computed from

,W	 V +	 A,rjj	 ij	 Ij

;4U:C*Ss derivative appearing in the area Integral of (2.14) is evaluated

basoJ oil tho 2x2 olettiont Gaus q -)Int values and they. assumption that the stresses

are distrJAmted bilinearly with respect to element local coordinates. E I emen t 9

which are OtAirely within V 
t 

are integrated with they usual 2x2 Gauss quadrature.

Elements which are only partially within V 
t 
have each applicable quadrant in-

tegrated by one point Gauss quadrature.
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APPENDXX D

Simulation of Crack Extension

Modeling the propagation of a crack using the finite element method

requires some special procedure for representing the creation of new crack

surface.  Acommon procedure is to relax the nodal forces at the crack-tip

nodo, thus in effect allowing the crack to extend to the next n;de along its

path of propagation. This relaxation process can be accomplished in one

time step but usually is allowed Lo extend over several time steps due to the

large change ir, nodal forces which is inherent in the process. The major attrac-

tion of this node-release procedure is its simplicity. There are two dr3w-

backs of this procedure which resulted in an alternate procedure being adopted

In this study. The. first is that the increment in crack growth is directly

doGerttiined by the nodal spacing 
in 

the mesh, therefore restricting the flex-

ibility one has in selecting a time step size, the mesh size and /or the

nUIVber of nodal force relaxation steps. The second and perhaps more important

drawback is that the method is not adaptable to models which use crack-tip

singularity elements.

A typical mesh in the vicinity of a crack-tip is shown in Fig. D.I. The

region A represents the region being modeled by singular crack-tip elements

which in the present case remain centered on the track-tip. The Type B

elemonts are eight-noded Isoparametric elements which distort so that the

region A can remain centered in the crack-tip. The sequence of element configu-

rations in Fig. D.1 illustrates the shifting/remeshing procedure used in (53,

I	 ^54) and adopted here. The region A is moved by shifting nodes without altering

element connectivity until the Type B element ahead of the region A becomes
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Fig.  D.1 Example, of mesh shif ting/reineshing procedure
for simulation of crack growth
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overly distored. At this point, the elements in the vicinity are redefined

so that further shifting is possible. It can be seen that this procedure allows

the increment in crack length to be arbitrarily small and does not involve

release of nodes in the same sense as for the previously described node-

release procedure.

The added flexibility afforded by this shifting procedure does require

some additional work. For example, in the creep crack growth application, nodal

displacements and element integration point stresses are interpolated. Tito,

trethod of Interpolation which is employed in this procedure is discussed next.

We consider that the solution at time t, has been obtained and we now

must find the solution at time t 2 . During the interval (titt 2 ) the crack has

grown by kin at-aunt Aa. Since the crack growth simulation procedure requires

that nodes be shifted, and since the solution at t 
I 
must be represented in terms

of nodal and Gauss point quantities for the shifted mesh, it is necessary to

submit the affected noetes and Gauss point to an interpolation >-, fitting pro-

ceduro.

The simplest interpo,' ,(,tion procedure for nkhdal displacements and the one

used ill (53,54) as well as for calculations in the present study is one which

directly uses the element shape functions. In this method, the nodal positions

for the mesh at t 2 are located in the mesh at t 1 . Knowing which element

of the mesh at t 1 encompasses this new node position allows the immediate

calculation of displacements by use of the element shape functions and the

noda'.1 quantities for the mesh at t I . While this is a consistent procedure

for transferring the solution at t 1 to the inesh at t 2 , it should be understood

that the transfer cannot be perfect. That this must be the case can be seen

by considering that spatial derivatives of displacements, etc., are not continu-

ous across element boundaries. Since the element boundaries change position

during the shifting process, points which had continuous derivatives at t 1 will
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have discontinous derivatives in the meeh at t 2 and vice-versa.

1411(in, the ►110811 is shifted, the element Gauss points are also shifted; this

means the Gauss points represent different material points before and after the

411lfto In order that the now Gauss point stresses accurately represent the cur-

rent stress state, it is necessary to interpolate stresses for the new Gauss

point locations using the old Gauss point values and locations. The procedure

for doing this is to assume the element stresses are distributed bilinearly with

respect to the element local coordinates. Then it becomes possible to use

bilinear Lilgrangian interpolation polynomials and tile 2x2 element Gauss point

stresses to interpolate within each element. For all creep crack growth

calculations in 
this study, the crack growth increment sizes were chosen small

enough that the new Gauss point stresses for each shifted element were always

Oe result of interpolation within that same el...iment.
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APPgNDTX, E

Analytical Evaluation of C* for the Strip Problem

This appendix briefly outlines the anlraytical evaluation of C* for ;;v

1nfLnite strip problems and then summarizes the results in tabular form.

The first strip problem is that which is illustrated in Fig. 5.3. We shall

refer to this problem as Case A. The second problem, or Case ll, is similar

to Case A in every respect except the top and bottom edges of the strip are

"clamped" rather than "on rollers". These boundary conditions are summarized

as roLl,ows:

Case A;	 6 (x',h) -	 (x, -11) "°	 {C.1)

`rxy (x,	 xy(.x,

Case Bt uy (x,h) 	 y(x,-h) q S	 U.2)

6  (x, h) - ux(.x, _ti)	 0

"'he crack surfaces are tract oa-free in both cases.

Wo can select a C*-integral contour which allows C* to be evaluated

quite oastly. I Consider a contour of rectangular rhape which coincides with the

top and bottom edges of the strip, extends far enough ahead of the crack-tip

so as to be in a steady-state stress field which is unaffected by the presence

of the crack-tip, and extends far enough behind the crack -tap so as to be in

str ess-fr y c material.. We now evaluate C**, as defined by (2.31) , through the

use of this contour. It can be seen that for both Case A and Case ti, the

horizontal portions of the contour at y . ± h do not contribute to the

This procedure parallels that used by nice (501 for the evaluation of J1 in
a similar elastic strip problem.
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AM

intVg)4 '-.!. O nor doi l li the portion ill the stress-free material. ht the veritcal

portion of the contour ahead of the crack-tip, the only non-zero term is that

Involving W*. Theroforv, it is seen that for both Case A and Case B we have

C* - 2W*1►

w l icvo W* Implivs W* existing far ahead of the crack-tip. Using 
the 

boundary

conditions (E.J.) and (E.2) and the assumption, of steady-state conditions, it

is possible to evaluate the remote steady-state stresses, T 
ii, 

Using (2.43) re-

suIL8 
in 

W* and , thus C*. The results of this exarcise are summarized in Table
DO	 I

1.111 . 1.

The corresponding linear elastic strip problem which is obtained by re-

placing the displacement rate boundary conditions by the corresponding di&t-

placement boundary onditions has been treated in a similar manner. These re-

salts nre also given in Table E,l.



Table L.1 Analytical Solutions for the
Infinite Strip Problem

Steady-State Creep	 Linoar Elasticity

h )I oo ^n h)[,	 —n+i	 i /h\ T 00 and 1 
h

k-yYJ	 ^_2,, _ihP	 Ek-6) yy	 E(b 2)J1
B	 r	

6 
Q 

1 
In+1\

Case A

pin" e 0 +" nom

	

1.0 1  --w	 1	 1	 1

	

plane strain	
2 Vn+1	 2	 1

4)	 63	 I-V
2

Case B

	plane stress	
" 

n+1	 2	 1
(13) ,	 VF_3	 1-V 2

plane strain 1-V
T1—+v-71 - 2v

This case does not have a steady-state solution since the
boundary conditions require a volumetric strain rate.
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(invited paper).

(78) Atluri, S.N., and Kathiresan, K., "Influence of Flaw Shapes on
Stress Intensity Factors for Pressure 'Vessel Surface Flaws and
Nozzle Corner Cracks", ASME Preprint 79-PVP-65, U.S. National
Congress_ on Pressure Vessels and Ppin_Z,- ,San Francisco, July
1919, 11. pp (also Journal of Pressure vosse
ASME, Vol. 102, pp 278-286, 19801*	

-,•

(79) Atluri, S.N., and Kathiresan, K., "Stress-Intensity Factor
Solutions for Pressure Vessel Nozzle Corner Cracks", Intl.
Journal. of Pressure Vessels and Piping, Vol. 8, pp 313-322,  1980,
(invited paper).	 ,

(80) Kathiresan, K., and Atluri, S,N., "Natural Shaped Flaws at Nozzle
Corners with Pressure Loading and Thermal Shock", in Pressure Ves-
sel Technology, Proceedings_ of_4th International Conference oti
Pressure Vessel Technology,London,-U.K., May 19-28, 1980), ASME,
N.Y., 29 pp, 1980. (also Ins-t.' Mech. Engineers, London, U,K., Vol.
C28/80, pp 163-168, 1980).

(81) Atluri,. S.N., "On Some New General. and Complementary Energy
Theorems for the hate Problems of Classical, Finite Strain Elasto-
Plasticity" , Journal of Structural Mechanics, Vol. 8, No. 1, pp
36-66, 1980.

(82) Murakawa, H., and Atluri, S.N., "A Consistently Formulated Assumed
Stress Finite Element Method for Finite-Strain Elasto-Plastic
Analysis", in Proceedings lntl. Conf. on Finite Element Methods
in Nonlinear Problems, University of Roorkee, India, pp 126-135,
Oct. 1979.

(83) Rhee, H.C., and Atluri, S.N., "On the Accuracy of Finite Element
Solutions of Plate Bending Problems with Traction Boundary Condi-
tions", in Proceedings of 3rd International Conference on Finite
Elements in Water Resources, Oxford, Ms., pp 7.79-7.89, May 19-23,

(84) Bratianu, C., and Atluri, S.N., "On the Accuracy of Finite Element
Solutions of Navier-Stokes Equations Using a Velocity Pressure
Formulation", Proceedings 3rd International Conference on Finite
Elements in Water Resources, Oxford, Ms., pp 4.92-4.101, May 19-23,
1980.

w	(85) Nishioka, T., and Atluri., S.N., "Stress Analysis of Holes in Angle-
Ply Laminates: An Efficient Assumed Stress "Special Hole-Element"
Approach", AIAA Paper No. 80-0711, 21st AIAA/ASME/ASCE/AHS Structures,
Structural Dynamics and Materials Conference, Seattle, Wash., pp
295-302, May 11-1,4,1980.



4

(86) Nit;hioka, T., and Ar1t ► rt, S.N., "Numerical; Modeling of Dynamic
Crack Propagation in Finite Bodies, by Moving, Singular Elements,
Part I - Formulations", ASME Journal, of Applied Mechanics, Vol,

47, No. `l, pp 570-577, 1980,

(87) NishLoka, T., and Atluri., S.N., "Numerical Modeling of Dynamic
Crack Propagation in Finite Bodies. by Moving Singular Elements.
Part 1:1 - Results !', ASME Journal ofA wlied Mechanics, Vol. 47,
No. 3, pp 577-583, 1980.

(88) Nishioki., T., and Atlur.i, S.N., "Efficient Computational Techniques
for the Analysis of Some Problems of Fracture in Pressure Vessels
and Piping", ASME PVP-80-370 ASME Century" Two Technology Con-
ference, Pressure Vessels and Piping Division, Aug. 1980, (also
.Journal of Pressure Vessel. Technology, 1980), (invited Paper). 	 4

(89) Nakagaki, M., and Atluri, S.N., "Elastic-Plastic Analysis of
Fatigue Crack Closure in Modes I and 11", AIAA Journal, Vol, 18,
No, 9, pp 1,110-1118, 1980.

(90) Nishioka, T,, and Atluri, S.N., "Assumed Stress Finite Element
Analysis of Through Cracks in Angle-Ply Laminates", AIM Journal,
Vol, 18, No. 9, pp 1125--1132, 1980.

(91) Nishioka, T,, Stonesifer, R.B., and Ataluri, S.N., "Moving
Singularity-Finite-Element Modeling of Fast Fracture in Finite
Bodies" "Generation" And "Propagation" Studies", in Numerical
Methods in Fracture Mechanics, (Editors , D.R.J. Owen and A.
Luxmoore) Proceedings in 2nd International Conference on Numerical
Methods in Fracture, Swansea, U.K., June 1980, pp 	 -	 , 1980.
(in press) .

(92) Nishioka, T., and Atluri., S.N., "Mul.tilayer-Stress-Hybrid-Finite-
Element Method for Fracture Analysis of Angle-Ply Laminates", in
Numerical Methods in Fracture Mechanics, (Editors: D.R.J. Owen
And A. Luxmoore), Proceedings in 2nd International Conference on
Numerical Methods in Fracture, Swansea, U.K., June 1980, pp -

,198;1980, (in press).

(93) Atluri, S.N., Murakawa, H., Reed, K.W., and Rubeustein, R., "Finite
Strain Inelasticity, Complementary Energy, and Finite Elements:'
Some Recent Computational Studies", in Proceedings of U.S.-Europe
Workshop on Finite Elements in Nonlinear Structural Mechanics,
Ruhr.-University, Bochum, West Germany, July 1980, (invited paper).

(94) Atlu'.ri, S.N., Murakawa, H., and Reed, K.W., "Stability Analysis
Via it New Complementary Energy Principle", in Proceedi,nss_ of 2nd
International Conference on Future 'Trends in Nonlinear Structural
Mechanics, George Washington University, Washington, D.C., pp 11-18,
1980, (also in Journal of Computers And Structures, Vol. 13, pp 11-18,
1981).	 - - -

(95) Nishoka, 'T., and Atluri, S.N., "Analysis of a Propagating Central.
Crack in a Finite Plate", in Proceedings of 'International Conference.



on Analytical & Experimintal Fracture Mechanics, Rome, Italy,
June 23-27, 1980, (invited paper).

(96) Nishloka, T., and Atluri, S.K. "Fracture Analyses of Angle.-Ply
Laminates", in Proceedings of Fifth international Conference on
Fracture, ICF-5, Cannes, France, 15x1, (in press).

(97) Atluri, S.N., and N shioka, T., "Dynamic Fracture Analyses: A
Translating - Singularity Finite Element procedure", in Proceedings
of 'Fifth International. Conference on Fracture, Cannes, Franca,
1981, (in press).

(98) Atluri, S.N., Brat ianu, C., and Murakawa, H., "Recent Studies on
Hybrid Finite Elements in Solids & Fluids, Proceedings of l7th
Annual. Society of Engineering Sciences Meeting, Atlanta, 1980,
(extended abstract), (invited lecture).

(99) Nishtoka, T., Stonesifer, R., and Atluri, S.N., "An Evaluation
of Several Moving Singularity Finite Element Models for Fast
Fracture Analysis", Engg. Fracture Mechanics, 1981, Vol;.. 15, No.
1-2, pp 205-218 0 1981.	 ^^.

(100) Vijayakumar, K., and Atluri, S.N., "An Embedded Elliptic Flaw in
an Infinite Solid, Subject to Arbitrary Crack--Face Tractions",
Journal of Applied Mechanics, Trans. ASME, Vol,. 48, No. 1, pp
88-97, 1981.

(101) Bratianu, C., and Atluri,, S.N., "A Stress-Hybrid Finite Element
Method for Stokes' Flow", Letters in Neat and Mass Transfer,
Vol. 7, pp 227-233, 1980.

(102) Bratianu, C., and Atluri, S.N., "A Hybrid Finite Element Method
for Incompressible Flow: Part I - Formulation and Numerical
Studies", Computer Methods in Applied Mechanics and Engineering,
(to appear), 1981.

(103) Ying, Wa, and Atluri., S.N., "A Hybrid Finite Element Method
for Incompressible Flow: Part 11 - Studies of Convergence and
Stability", Computer Methods in Applied Mechanics and Engineerin&,
(to appear), 1981.

(104) Bratianu, C., Atluri, S.N., Rust, J.H., "Hybrid and Mixed Methods
for Fluid Flow", Proce.edings of American. Nuclear Society Annual,
Conference, Washington, DC, Nov. 1980, (invited extended abstract).

(105) Bratianu, C., Atluri, S.N.,. Rust, J.H., "Hybrid Finite Element
Studies of Some Lubrication Problems", Journal, of Lubrication,
Trans. ASME, 1981, (to appear).	 w

(106) Vijayakumar, K., and Atluri, S.N., "An imbedded Elliptical Crack
in an Infinite Solid", in Proceedings of XVth International Congress
of Theoretical and Applied Mechanics, University of Toronto, Canada,
p. 95, August 1980, (abstract only), (also in Proc lyin so l.Wh
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Annual Meeting of Society of Engineering Science, Atlanta, GA, Dec.
1980), (invited paper).

(107) Nishuka, T., and Atluri, S.N., "Numeriical. Analysis of Fast Fracture
in Different ,. Test Specimens: Simulation and Prediction Studies",
Engg. ractt j .e Mech., 1981., ( to appear).

(108) Nishiuka, T., and Atluri, S.N., "A Major Development Towards a
Coat- Effr;ctive Alternating Technique for Fracture Uialysis of
Reactor , Vessels `", Trraano. Pith Int. Conf. on Structural Mechanics
In Reactor Technology, Paper G-2/1, Paris, France, 1981, (to
appear).

(:109) Atluri,, S.N., VbArakava, H., and Uratianu, C., "Use of Stress Functions
and Asymptotic Solutions in FEM Analysis of Linear and Nonlinear
Continuua", in Nev Concepts in Finite Element Analysis, ASME AMD
Vol. 44 (Editors: T.J.R. Hughes, etc.), pp 11 -28, 1981.

(110) Ni,shioka, T., and Atluri,
Bonded Metallic Laminates
I''EW, Proceedings of 22nd
Dynamics and Materials Col
1981.

S.N., "Analysis of Cracks in Adhesively
by h 3-Dimensional Assumed Stress Hybrid
1,'.IAA/ASME/ASCE/AtIS Structures, Structural.

itference, Atlanta, GA, April, 1981 pp 1 -5,

(111) Murakawa, H., and Atluri, S.N., "Finite Deformations, Finite
Rotations and Stability of Plates: A Complementary Energy-
Finite Element Analysis", Proceedings of 22nd AIAA/ASME/ASCE/AIIS
Structures, Structural Dynamics and Materials Conference, Atlanta,
GA, April. 1981, pp 7- 15, 1981.

(112) Rhee, R.C., and Atluri, S.N., "Hybrid-Stress Finite Element
Analysis of Through-Cracks in a Plate in Bending". Intl.. Jnl.
of Numerical Methods in Engineering, 1981, (to appear).

(113) Atluri., S.N., "Hybrid Finite Element in Fluid Flow Problems"
in Proceedings of Conference on Mathematics of Finite Elements
and its Applications, (Edi.tor 	 J.R. Whiteman), Brunel. University,
England, April. 1981, (to appear), (invited special, lecture).

(114) Atluri, S.N., "Hybrid Finite Element Analysis of Constraint Problems
in Elasticity", in Proceedings of International Symposium on

(115) Quinlan, P.M., Grantaell, J.J., and Atluri, S.N., "Edge-Function
. ,;ethods for Elliptical Cracks in Prismoidal Bodies'", in Proceed
of 2nd International Symposium on Innovative Numerical Analysis
in En^pineering, Montreal, Canada, June 1980, (28 PP)•

(1:17) Nishioka, T., Part., M., and Atluri, S.N., "An Analysis of, and Some
Observations on, Dynamics Fracture in an Impact Test Specimen,"
ASME Paper No. 81-PVP-18, ASME Summer Conf., Denver CO, June 1981,
(invited paper) (also to appear in ASME Jnl. of Pressure Vessel.
Technology)



(118) Atluri, S.N., "Path-Independent Integrals in Finite Elasticity
and Inelasticity with Body Forces, Inertia, and Arbitrary Crack-
Face Conditions", En-gg. Fracture Mechanics, 1981, (in press).

(119) Nishioka, T., and Atluri, S.N., "Stress Analysis of Holes in Angle-
Ply Laminates: An Efficient Assumed Stress "Special-Hole-Element",
Approach and a Simple Estimation Method", Computers and Structures,
1981, (in press) .

(120) Nishioka, T., and Atluri, S.N., "A Simple 2-D Estimation Method for
Stress-Intensity Factors for Through Cracks in Angle-P17 Laminates",

Engineering Fracture Mechanics, 1981, (in press).

(121) Nishioka, T., and Atluri, S.N. , "Simple 2-D Estimation Procedure
for Stress-Concentration Around Holes in Laminates", Jnl. of
Composite Materials, 1981, (in press).

(122) Fukuch, M., and Atluri, S.N., "Finite Deformation Analysis of
Shells: A Complementary Energy-Hybrid Method", in Nonlinear
Finite Element Analysis of Shells, ASME AMD Vol. 48, (Ed.
Hughes), ASME, pp 233-249, 1981.

(123) McGowan, J.J., and Atluri, S.N.; "Damage Tolerant Design of Panels
with Surface Cracks, A Study of Lower Bound Flaw Shapes", Advances
in Aerospace Structures and Materials, ASME AD-01, 1981, pp 293-299.

(124) Reed, K.W., and Atluri, S.N., "Viscoplasticity and Creep: A
Finite Deformation Analysis Using Stress-Based Finite Elements",
Advances in Aerospace Structures and Materials, ASME AD-01, pp

211-221, 1981.

(125) Kobayashi., AX,  Atluri, S.N., Cheng, J.S., and Energy, A.F ,
Love, W.J. , ' 1 21ast is-Plas h is Analyses of a Three-Point fiend
Specimen and a Fracturing Pipe", invited contributions,

U.S.-Japan Seminar and Elastic-Plastic _Fracture, Hyama, Japan,

Nov. 1979.

(126) Rhee, N.C., and Atluri,, S.N., "on the Accuracy of finite Element
Solutions of Problems with Traction Boundary Conditions, Int.
Jnl. of Applied Mathematical Modelling, Vol. 5, pp 103-108, 1981.

(127) Bratianu, C., and Atluri, S.N., "Studies of FEM Analysis of
Fluid Flow Using Velocity .- Pre-sure Formulation", Intl. Jnl.
of Applied Mathematical Modelling, 1981, (to appear), (invited

paper) .

(128) Atluri, S.N., Tong, P., and Murakawa, H., "Recent Studies in
Hybrid and Mixed FEM in Continuum Mechanics", in Hybrid aQ
Mixed FEM, (Ed.: S.N. Atlor , O.C. 2i.enkiewicz, and R.H.
Gallagher), John Wiley & Sons, 1981, (to appear).

(129) Bratianv, C., Ying, L-a., and Atluri, S.N., "Hybrid Elements
for Fluid Flow", 3rd International Conference on Finite Elements
In Fluid Flow, Tokyo, Japan, 1981, (to appear).



(130) Rubenstein, R., and Atluri, S.N., "Objectivity of Incremental
Constitutive Relations over Finite Time Steps in Computational
Finite Deformation Analyses:, Computer Methods in Applied Mechanics
Enng veering, 1982, (in press)

(131) Stonesif.er, R.B., and Atluri, S.N., "On a Study of the (AT) and
C* Integrals for Fracture Analysis under Non-Steady Creep " , cEngg.
Fracture Mechanics, 1981 (in press).

(02) Stonesifer, R.R., and Atluri, S.N., "Moving Singularity Creep
Crack Growth Analysis with the (AT) and C* Integrals", Engineering
Fracture Mechanics, 1981, (in pres^s^.

(133) Nishioka, T., and Atluri, S.N., ""Finite Element Simulation of
Problems in Dynamic Fracture Mechanics", Translations of Japanese
Society of Mechanical Engineers, 1982 (in press).

(134) Atluri, S.N., "Alternate Stress and Conjugate. Strain Measures, and
Mixed Variational Formulations Involving Rigid Rotations, for Compu-
tational Analyses of Finitely,,Deformed Solids, with Application to
Plates and Shells-fart I; Thoery", Computers b Structures,
1982, (to appear).

(135) Nishioka, T., and Atluri, S.N., "Analytical Solution for Embedded
Elliptical. Cracks, and Finite Element Alternating Method for
Elliptical Surface Cracks, Subjected to Arbitrary Loading",
Engineering Fracture Mechanics, 1982, (to appear).

(1.36) Nishioka, T., and Atluri„ S.N., "Integrity Analyses of Surface
Flawed Aircraft Attachment Lugs: A New, Inexpensive, 3-D Alternating
Method", Proc. 22nd AIAA/ASME /ASCE/AHS Structures and Materials Conf.
New Orleans, LA, 1982, (to appear).

(137) Nishioka, T., and Atluri, S.N., "Finite Element Simulation of Fast
Fracture in Steel DCB Specimen", Engg. Fracture Mechanics, 1981,
(in press).

(138) Nishioka, T., and Atluri, S.N., "A Method for Determining Dynamic
Stress Intensity Factors from COD Measurements at the Notch
Mouth Opening in Dynamic Tear Testing", Engg. Fracture Mechanics,
1981, (in press).

(139) Atluri, S.N., "Hybrid and Mixed FEM in Fluid Mechanics", 3rd Int.
Conf. on Finite Elements in Water Resources, University of Hannover,
W. Germany, June 1982 (to appear).

(140) Nishioka, T., and Atluri, S.N., "Analyses of Semi-Elliptical Surface
Cracks in Cylindrical Pressure Vessels Using New Finite Element-
Alternating Method", Proc. 1982 Pressure Vessels and Piping Conf.,
Orlando, FL, May 1982, (to appear).

(141) Perl, M., and Atluri, S.N., "Dynamic Crack Propagation in a Very
Ductile Material.". Engg. Fracture Mechanics, 1982 (to appear).
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Reed, K.W.,
Constitutive
on Consttut

and Atluri, S.N., "Generalization of Viscoplastic(142)
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(143) Nakagaki., M., and Atluri, S.N., "Analysis of Fatigue Growth of
Cracks Near Cold-Worked Fastener Holes", 1982 ASME Pressure
Vessels & Piping Conf., June-July 1982, (to appear).

(144) Atluri, S.N., "Current Studies in Inelastic, Dynamic, and 3-D
Fracture Analysis", Proc. U.S.-Japan Seminar on Fracture Tolerance
Evaluation, Honolulu, Hawaii, Dec. 1981, (in press).

(145) Atluri, S.N., Reed, K.W., and Stonesifer, R.R., "Stress and Fracture
Analyses Under Elasto-Plastic and Creep: Some Fundamental Develop-
ments and Computational Approaches", Proc. Symp. on Nonlinear
Constitutive Relations for High Temperature Applications, University
of Akron, OH, May 1,982, to appear).

(146) Karamanlidis, D., and Atluri., S.N., "A Novel Family of Mixed-
Hybrid Finite Elements for 3-dimensional. Large Deformation
Dynamic Analysis", 2nd Int. Symp. on Advances and Trends in
Structural and Solid Mechanics, Wash., DC, Oct. 1982, (to appear).

(147) Wells, C.H., Nair, P.K., and Atluri,, S.N., "Limitations of the
Fracture Mechanics Approach to Determining Rotor Integrity", in
Safety and Integrity Analyses of Turbine Rotors, EPRI, 1982, (in
press).
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(C)	 Research [reports

(Several of the archival papers published were £irett issued as grant/
contract reports. These are not included here.)

(1) "METROS 3; A Finite-Difference Program and Analysis for Large
Elastic, Plastic Dynamically Induced Deformation of Multilayer,
Variable Thickness Shells," U.S. Army Ballistic Research Labora-
tory Report, August 1970 (with E.A. Witmer, J.W. Leech, and L. Morine)
and M.I.T. ASEL TR-152-3, 1970, 330 pages.

(2) "Non-linear Stress Analysis of Loaded Rolling Aircraft Tires", AFFDL
TRH- 73-130, Vol. 1, Wright-Patterson AFB, OH, 1973 (with A.L. Deak).

(3) "Head Injury Studies", Final Contract Report to NIH, Contract No.
NIH-NINDS-72-2325, Dept. of Mech. Engg., University of.Washington,
Seattle (with A.S. Kobayashi. and S. Cheng).

(4) "Static Analysis of Shells of Revolution Using Doubly-Curved Quad-
ralateral Elements Derived from Alternate VAriational Models", Space
and Missiles Systems Organization, Norton Air Force Base, CA, SAMSO
TR-69-394, June 1969. Also Aeroelast c and Structures Research.
Laboratory, M.I.T., ASRL TR-146-147, 190 pages.

(5) "The Stress Analysis of Loaded Rolling Aircraft Tires", AFFDL-TR-
73-130, Vol. 1, Wright-Patterson AFB, OH, 1973, 300 pa8es.

(6) "Static Analysis of an Aircraft Tire", Mathematical Sciences North-
west Report, August 1972, 200 pages (with A.L. Deak).

(7) "Analysis of a Rolling Aircraft Tire", Mathematical Sciences North-
west Report, July 1972 (with A.L. Deak).

(8) "On Solutions for Rotationally Symmetric Bending of Conical Shells",
University of Washington, Department of Aeronautics and Astronautics,
Report 71-1, 1971.

(9) "Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in
Mode I and Mode II Conditions", Scientific Report, NASA Grant NSG-1351,
Sept. 1977, 40 pages (with M. Nakagaki).

(10) "The Edge-Function Method", Scientific Report, NSF Grant, ENG
76-16418, March 1978; GIT Report SCEGIT-78-1696 ESM-78-1; 66 pages
(with D.M. Quinlan, J.L. Fitzgerald).

(11) "Finite Element Elastic-Plastic Analysis of Cracks", Scientific
Report, AFOSR Grant 74-2667, AFOSR-TR-78-41; GIT-ESM-78-2; 42 pages.

(12) "Stress Analysis of Automobile Tires", Final Report to Geleral '-,'ire

^t	 ^+ Rubber Company, 200 pages, April 1978, (with S. Chandrashekara).

(13) "Homogeneous and B-Material Crack Elements for Analysis of Solid
Rocket .Motor Grains", Vol. 1, Edwards Air Force Base AFRPL-TR-78-
286, Sdpt. 1978 (with K. Kathiresan) 200 pages.
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(1.4) "Homogeneous and Bi-Material Crack Elements for Analysis of Solid
Rocket Motor Grains", Vol. 11, AF RPL-TR-78-287, Sept. 1978 (with
K. Kathresan), 280 pages.	

i

(15) "Fatigue Crack Growth in Modes x and 11 Spectrum Loading" NASA-
CK-78-123. (with M. Nakagaki) Oct. 1978, 98 pages.

(16) "Noz-Flaw: A Computer Program for Direct Evaluation of K-Factors
for Pressure-Vessel. Nozzle Corner Cracks", (with R. Bas;6, J.W.
Bryson, K. Kathiresan) NUREG/CR-1843/ORNL/NUREG/CSD/TM-18, (Prep.
for U.S. Nuclear Regulartory Comm. by Oak Ridge Natl. Labs), Nov.
1980, 52 pages.

(17) "Boundary Element Methods (BEM) and Combination of BEM-FEM"
(with J.J. Grannell) G7T-CACM-SNA-79-16, 84 pages, 1979.

}t



(17)	 P,kpcsrs Presented at International and National Conferences

(1) "Nonlinear Free Oscillation of Shells", Regional Meeting of
Society!of Industrial and Applied Mathematics, November 1:971,
Ellensburg, WA

(2) "Nonlinear Oscillations of a Hinged Beam Including Nonlinear Inertia
Effects", ASME Joint National. and Western Applied Mechanics Con-
ference, June 26-29 1972, University of California, San Diego.

(3) "Influence of Large Amplitudes and Boundary Conditions on the Super-
sonic Flutter of a Cylindrical Shell", presented at the 4th
Canadian Congress of Applied Mechanics, May 28-June 1, 1973,
Mo-ntreal, Canada.

(4) Mechan.►.cs of Brain Tissue Fragility", ASME Special Symposium on
Hiomechanics: National Summer Conference on Appliedied Mechanics,
June 20-22, 1973, Atlanta, GA.

(5) "Nonlinear Flutter of a Cylindrical Shell", 7th SECTAM, Catholic
University of America, March 1974.

(6) "Application of an Assumed Displacement Hybrid Finite Element
Model. to Two-Dimensional Problems in Fracture Mechanics",
A1AA/ASME/SAE 15th SDM Specialist Conference, Las.Yegas, NV,
April 1974.

(7) "An Assumed Displacement Hybrid Finite Element Model, for Linear
Fracture Mechanics", presented at the 7th U.S. National Congress
of Applied Mechanics, Boulder, CO, June 1974.

(8) "Finite Element Program for Fracture Mechanics Analysis of
Composite Materials", presented at ASTM Symposium on Fract
High Modulus Fibers and their Composites, Na,tfoal Bureau o
Standards, Gaithersburg, MD, Sept. 25, 1974 (invited).

(9) "Stress Intensity Factors of Cra,°ked Orthotropic Plates",
Conference on the Fundamental A3pects of the Deformation a
Fracture of Composite Materials, Battelle Seattle Research
Center, Seattle, Feb. 22-24, 1975.

(10) "Brain-Tissue Fragility: A Finite Strain Analysis by a Hybrid
Finite Element Method". American Society of Mechanical
Engineers: Applied Mecha^r:ics Western Conference, University of
Hawaii, March 25-27, 1975.

(11) "Rotationally Symmetric Bending of Orthotropic: Conical Shells:
Transverse Shear and Couple Stress-Stress Couple Effects",
14th Midwestern Mechanics Conference, University of Oklahoma,
Norman OK, March 23415.

(12) "Three-Dimensional, Cracked Elements", AFRPL Edwards Air Force Baste,
CA, Contract Research Review, Caltech, Pasadena, May 8-9, 3.975 (invited).



"

(13) "Boundary Integral Equation Formulation for Three-Dimensional
Elasticity Problems with Body Forces", 5th Canadian Congress of
Applied Mechanics, New Brunswick, Canada, June 1975 (with A.L. Deak).

(14) "Nonlinear Stress Analysis of Pneumatic Structures", s %;h Canadian
Con ress of Applied Mechanics, New Brunswick, Canada, June 1975,
(with A.L. Deak)

(15) "Finite, Element Approximation in Solid Mechanics", four lectures
at the University of Tennessee Space Institute, Tullahoma, Nov.
10-15, 1975.

(16) "Large-Scale Yielding Fracture Mechanics", at the Committee E-24
Meeting, 9th National Symposium on Fracture, University of
Pittsburgh, Aug. 25-27, 1975 (invited).

(17) "Analysis of Two-Dimensional Problems Involving Large-Scale
Yielding", 12th Annual Meeting of the Society of Engineering
Science, Austin, TX, Oct. 1975.

(18) "An Assumed Displacement Hybrid Finite Element Model for Three-
Dimensional Linear Fracture Mechanics tnalys s", 12th Annual
Society of ingineering Science Meeting, University ofTexas at
Austin, Oct. 1975.

(19) "Hybrid Elements for 3-D Fracture", Specialist Work Shop on 3-D
Fracture Analysis, organized by AFOSR/NASA/ERDA/DOT, Battelle
Columbus Labs., Columbus, OH (invited).

(20) "Post-Yield Analysis of a Three-Point-Bend Fracture Test Specimen",
8th Southeastern Conference on Theoretical. and Applied Mechanics,
VPI and SU, Blacksburg, VA, April 20-30, 1976.

(21) "J--Integral. Estimation Procedures for Strain-Hardening Materials".
at AIAA/AaME/SAE, Structures, Structural Dynamics, and Materials .
Specialist Conference, Valley Forge, PA, May 5-7, 1976.

(22) "On a 3-D Singularity Element for Computation of Mixed Mode Stress
Intensities", 13th Annual Society of Engineering Science Meeting,
NASA-Langley, Hampton, VA, Nov. 1916.

(23) "Fracture Analysis Under Large-Scale Plastic Yielding Conditions",
10th U.S. National Conference in Fracture, American Society for
Testing and Materials, Aug. 20-25, 1976, Philadelphia, PA.

(24) "On Hybrid Stress Analysis of Laminated Shells by the Hybrid
Stvess Finite Element Model", presented at International Con-
ference on Computational Methods in Nonlinear Mechanics, Univer-
sity of Texas at Austin, Sept. 1974.

(25) "On Hybrid Stress and Hybrid Displacement Models in Solid and
Fracture Mechanics", AICA International Symposium on Computer
Methods for Partial Differential Equations, Lehigh University,
Bethlehem, PA, June 1975 (invited paper).

r



Analysis", (with P. Tong),(32)

(2f)) "rinite Element iinalysis of Cracks Between Dissimilar Media",

NATO Advanced Study Institute on Continuum Mechanics Aspects of
Goodynamics and Rock Fracture Mechanics, Reykjavik, Iceland,
Aug. 11-20, 1974 (invited)

(27) "Finite Klement-Perturbation Analysis on Nonlinear Dynamic Response
of Elastic Continuua", invited presentation at the 1974 International
Conference on Finite Element Methods in Engineering, Sydney, Aus-
tralia, Sept. 1974,

(28) "Three-Dimensional Linear Fracture. Mechanics; Analysis by a
Displacement hybrid Finite Element Model", invited presentation.
of the 3rd 'International Conference on _Structural_Uechanics in

F

Reactor Technology, University of Lon 	 , (wit
K. Kathiresan and A.S. Kobayashi,).

(29) "Stress AnalysiM of Cracks in Elasto-Plastic Range", (with M.
Nakugaki), 4th Quadrennial International Conference on Fracture,
University of Waterloo, Ontario, Canada, June 1977

(30) "Stress Intensity Factors for Surface Flv,;,rs in Pressurized Cylinders",
(with K. Kathiresan), 3rd International Congress on Pressure Vessel
Technology, 'Tokyo, Japan, April 1977.

(31) "Fracture Initiation in Plane Ductile Fracture Problems", 3rd In-
ternational Congress on Pressure Vessel Technology, Tokyo, Japan,

April 1977.

(33) "on the Formulation and Application of Rational Numerical, Methods
for Problems with Nonremovable Singularities", International Sym-
posium on Innovative Numerical Methods in Engineering Science,
Paris, France, May 1977 (invited).

(34) "Edge Function Method for Three-Dimensional Stress Analysis",
(with P.M. Quinlan and J.E. Fitzgerald), at International. Sym-
posium on Innovative Numerical Methods in Lngineering Science,
Paris, France, May 1977 (invited).

(35) "Fracture Analysis of Structures Under Comhi.ned Mode Loading",
2nd ASCE Engineering Mechanics Specialist Conference, Rayleigh,
N.C., May 1.977, (invited).

(36) "Stress Analysis of Cracks in Elasto-Plastic Range", 4th Inter-
national Conference on Fracture, University of Waterloo, Canada,,

June 1977.

"OuterQuter Surface Flaws in Pressure Vessels4th International

Conference on Structural. Mechanics_ in Reactor Technology , San
Francisco, CA, August 1977. 	 -



(38) ""'Through Flaws in Plates in. Bending", 4th International Con-
ference on Structural Mechanics in Reactor Technology, San
Francisco, CA, Aug. 1977.

(39) "Hybrid Finite Element Models in Nonlinear Solid Mechanics",
International Conference on Finite Elements in Nonlinear Solid
and Structural Mechanics, Geilo, Norway, August 30-September 1,
1977 (invited).

(40) "Analysis of Stable Crack Growth in Ductile Materials", 9th
SAMPE National Conference, Atlanta, GA, Oct. 1977. (invited).

(41) "Surface Flaws in Plates", 14th Annual Meeting of Society of
Engineering Science, Lehigh University, Nov. 1911.

(42) "A Finite Clement Analysis of Stable Crack Growth - I",, ASTM
National Symposium on Elastic-Plastic Fracture, Atlanta, GA,
Nov. 1977.

(43) "Hybrid Finite Element Models in Linear and Nonlinear Fracture",
International Conference on Numerical Methods in Fracture,
Swansea, U.K., Jan., 1978, (invited).

(44) "Bi-Material Fracture", 1978 Joint AFOSR/AFRPL Rocket Propulsion
Research Meeting, Edwards Air Force Base, CA, March, 1978 (invited).

(45) "Elastic-Plastic Analysis of 3-D Cracks", 1978 Joint AFOSR/AFRPL
Rocket Propulsion Research Conference, Edwards Air Force Base,
CA, March 1978, (invited).

(46) "Stress Analysis of Typical Flaws in Aerospace Structural Components",
19th AIAA/ASME Structures, Structural Dynamics and Material,€ Con-
ference, Bethesda, MD, March 1978.

(47) "Edge-Function Method for 3-D Elasticity", 8th U.S. National,
Congress (Quadrennial) on Applied Mechanics, UCLA, Los Angeles,
June 1978.

(48) "Boundary-Discretization Method Using Edge Functions", International
Conference on Recent Advances in Boundary Element Methods, Univer-
sity Southampton, U.K., July 1978 (invited).	

w

(49) "Complementary Energy Principles and Finite Strain Problems",
Symposium of the International Union of Theoretical and Applied
Mechanics on Variational Methods; Evanston, IL, Sept. 78, (invited).

(50) "Numerical Modelling of Nonlinear Behavior of Soft Biological
Materials", International Conference on Applied Numerical
Modelling, University of Madrid, Spain, Sept. 78, (invited).

(51) "On the Use of Stress Functions and Asymptotic Solutions in Solid
and Structural Mechanics", Symposium on Future Trends in Computer-
ized Analysis of Structure.s's, Washington, DC, Nov. 78, (invited).
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(52) "An Nfficient Assumed Stress Finite Element Method For Analysis
of Angle-Ply Laminates", 15th Meeting of Society of Engineo
Science, Univ. of Florida, Dec. '78.

(53) "Fitifte Elasticity Solutions Using Hybrid Finite Elements Based
on a Complementary Energy Principle", ASME Winter Annual Meeting,
Stn Francisco, Dec. 078.

(54) "Influence of Flaw Shapes on Stress Intensity Factors for Beltline
Cracks", National Congress on Pressure. Vessel. Technology, San
Francisco, June 1979.

(55) "Finite Elasticity Solutions Using Hybrid Finite Elements Based
on a Complementary Energy Principle 11. Incompressible Materials",
1979 Joint Applied Mechanics, Fluids Conference, Niagara Falls,
New York, June 1979.

(56) "Finite Element Methods for Finite Strain Plasticity Problems in
Metalforming", International. Conference on Computational Methods
in Nonlinear Mechan cs,(sponsored by NSF) Austin, TX, March 1979,
(invited).

(57) "Analytical Modelling of Surface Flaws", Fracture Research Sym-
posium, SESA, Annual Meeting, Sari Francisco, June 1979, (invited).

(58) "Computational Methods for Engineering Fracture Analyses", Inter-
national Conference on Fracture Mechanics in Engineering, Bangalore,
India, March 1979, (invited).

(59) "Nozzle-Vessel-Intersection Cracks Under Thermal Shock", Inter-
national Conference on Stru tural Mechanics in Reactor Technolo
W. BerlinAug.ugAug. 1979, (invi _JN

(60) "Hybrid ':ini.te Element Methods for 3-D and Nonlinear Fracture Prob-
lems", Engineering Applications of the Finite Element Methods,
Det Norske Veritas, Havik, Norway, June 1979, (it ►vi.ted).

(61.) "Complementary Energy and Finite Strain Plasticity", Advances in
Theo	 and Practice of Finite Element Methods, Centennial. Ce.ebration
of Chalmers University of Technology, Goteberg, Sweden, Aug. 1979,.
(invited) .

(62) "Static/Dynamic Analysis of Crack Propagation", 3rd ASCE Engineering
Mechanics Specialty Conf.., Univ. of Texas at Austin, Sept. 1979,
(invited).

(63) "Finite Strain Plasticity Computations", Society of Engineering
Science Annual Meeting, Northwestern Univ. Evanston, IL, Sept.

1979 (invited).

(64) "Selection of Finite Element Bases", Specialist Workshop on Finite
Elements, Washington Univ., St. Louis, MO, Nov. 1979, (invited).
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(65) "Numerical Modeling of Nonlinear and Dynamic Crack Propagation",
Symp. on Nonlinear and D)mamic Fracture, ASME WAM, Dec. 79,
(invited).

(66) "Stress Analysis of Holes in Composite Laminates", 21st AIAA
r	 Structures, Structural Dynamics and Materials Conference, Seattle,

WA, May 1980.

(67) "Dynamic Propagation of a Central Crack in a Finite Panel",
Int. Conf. on Analytical and Experimental Fracture Mechanics,
Rome, Italy, June 1980, (invited).

(68) "Use of Stress Functions and Asymptotic Solutions in FEM Analysis
of Continuua", Sap. on New Concepts in FEM, 1981 Summer Annual
Mechanics Meeting, Boulder, CO, June 1981, (invited).

(69) "Recent Studies in Hybrid FEM for Solids and Fluids", Society
of Engineering Sci. Meeting, Atlanta, GA, Dec. 1979, (invited).

(70) "An Embedded Elliptical Flaw Subject to Arbitrary Loading, in an
Infinite Medium", 15th Int. Congress on Theoretical and Applied
Mechanics, IUTAM, Univ. of Toronto, Aug. 1979.

(71) "Edge-Function Method for Buried Cracks", 21W Int. Symp. on
Innovative Numerical Analysis in Engineering, Montreal, Canada,
June 1980, (i.tivited).

(7?.)n Aiialy K i s of and Some Observations on Dynamic Fracture in an
Impact Specimen", 1981. Pressure Vessels and Piping Conf., Denver,
CO, June 1981, (invited).	 3

(73) "Finite Defr+nration Analysis of Shells, A Complementary Energy-
Hybrid Approach", Symp. on Nonlinear Finite Element Analysis
of Shells ., ASME, WAM, Nov. 81, (invited).

(74) "Recent Studies on Dynamic, Inelastic, and 3-D Tracture Analysis",
U.S.-Japan Seminar on Damage Tolerance, Evaluation, Honolulu,
Hawaii, Dec. 81, (invited).

r
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(l:)	 invited Seminars and Col loquia in U.S. and Abroad

(1) "Finite, Element Analysis of Shells", Department of Aerospace
Vngineering, University of Maryland, July 1969.

(2	 "Analysis of large Amplitude Elastoplastic Dynamics of Sh,.^lls%
M. I. T., May 1.970.

(3) "Phtlosoph i.cal Implications of the Theory of Relativity", M.I.T.,
lleoember 1970.

(4) "Nonlinear Oscillations in Certain Elastic Systems", Indian
Institute of Technology, Kanpur, September 1971.

(5) "Rec,,nt Developments in Finite-Element Theory", Department
of Aeronautical. Engineering, Indian Institute of Science,
Bangalore, September 1971.

(6) "}Ielivoptcr Ground Resonance", Department of Aeronautics and
A.strooautics, University of Washington, October 1971.

(7) "What an Applied Mechanician Can Do in Medicine", Center for
Bioengineering, University of Washington, February 1972.

(8) "Peristaltic Pumping", Center for Bioengineering, School. of
Medicine, University of Washington.

(9) "Nonlinear Oscillation in a Circular Cylindrical Shell,", Depart-
ment of Mechanical, Mechanics and Aerospace Engineering, Illinois
Institute of Technology, May 1973.

(10) "Dynamic Stability of a Shell. in Supersonic Flow", Department of
Theoretical and Applied Mechanics, University of Illinois-Urbana,
Champaign, June 1978.

(11) "Analysis of a Rolling Aircraft Tire", Research and Development
Canter, General Tire and Rubber Company, Akron, Oil, Aug. 9, 1974.

(12) "Computational Methods in Fracture Mechanics", National Aeronautical
Laboratory, Bangalore, India, Aug. 21, 1974.

(13) "blasti,c-Plastic Fracture Mechanics", Department of Aeronautics,
Indian Institute of Science, Bangalore, India, Aug. 21, 1974.

(14) "Perturbation Methods in Nonlinear Flutter", Department of Aero-
nautics, Indian Institute of Science, Bangalore, India, Aug. 30,
1974..

(15) "Singular Perturbation Methods In Shell Theory", lecture at Short
Course on Singular Perturbation in Methods, University of Tennessee.
Space Institute, Tullahoma, TN, Nov. 4-8, 1974.
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( 6) "I-'init+.i Element Approximation in Solid Mechanics", four lectures
at Short Course on Approximate Methods in Engineering and Applied
Sciences, University of Tenn nsee Space Institute, Tullahoma, TN,
Nov., 1.0-14, 1975.

(17) "Computational Fracture Mechanics", College of Engineering, Boston
University, Boston, MA, Feb. 24, 1976.

(18) "Novel Methods for Analysis of Singularity Problems", University
College of Cork, Ireland, Jan. 78.

(19) "Approximate Methods of Analysis", 4 lectures, University of
Tennessee Spade Institute, Tullahoma, TN, March 78.

(20) "Recent Developments in Finite Klement Methods", 4 lectures, M,1;.T.,

July 78.

(21) "Numerical. Methods in Vracture Mechanics", University College,
Cork, Ireland, Aug. 1979.

(22) "Finite Strain Inelasticity Analysis 'Via Complementary Energy",
Centex for Computational Mechanics, Washington University,
St. Louis, MO, Jan 80.

(23) "Selection of Finite Element Basis", Center for Computational.
Mechanics, Washington University, St. Louis, MO, Nov. 1980.

(24) "Dynamic Fracture Analysis", Dept. Mechanical Engg., University
of Washington, Seattle, WA, May 1980.

(25) "Pathµlndopendent Integrals in Fracture Mechanics", National
Tsing-liva University, Hsinchu, Republic of China, Taiwan,
May, 1981.

(26) "Rate Complementary Energy Vrinci:ples for Finite Element Analysis
of Finite Elasticity", National Taiwan University, Taipei,
Republic. of China, Taiwan, May 1981.

(27) "Path-Independent Integrals in Fracture Mechanics", Rutgers
University, N.J., July 1981.

(28) "Path- Independent Integrals in Fracture Mechanics", Naval.
Research Laboratory, Washington, DC, Oct. 1981.

"
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