NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
NOSS Altimeter Detailed Algorithm Specifications

D. W. Hancock, III
and
J. D. McMillan

March 1982

NASA
National Aeronautics and Space Administration
Goddard Space Flight Center
Wallops Flight Center
Wallops Island, Virginia 23337
NOSS Altimeter Detailed Algorithm Specifications

D. W. Hancock, III

NASA Goddard Space Flight Center
Wallops Flight Center
Wallops Island, Virginia 23337

and

J. D. McMillan

EG&G Washington Analytical Services Center
P. O. Box 476
Pocomoke City, Maryland 21851
NOSS ALTIMETER DETAILED ALGORITHM SPECIFICATIONS

by

David W. Hancock, III
NASA Wallops Flight Center
Wallops Island, VA 23337

and

James D. McMillan
EG&G Washington Analytical Services Center
P.O. Box 476
Pocomoke City, MD 21851

August 1981
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACRONYMS AND SYMBOLS</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>MANAGEMENT SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td>OVERVIEW</td>
<td>3</td>
</tr>
<tr>
<td>SUBSYSTEM DESCRIPTION</td>
<td>6</td>
</tr>
<tr>
<td>MODULE DESCRIPTIONS</td>
<td>36</td>
</tr>
<tr>
<td>OTHER CONSIDERATIONS</td>
<td>168</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>170</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>171</td>
</tr>
<tr>
<td>APPENDIX A TELEMETRY DATA DESCRIPTION</td>
<td>173</td>
</tr>
<tr>
<td>APPENDIX B FORTRAN ARRAY DESCRIPTION</td>
<td>183</td>
</tr>
<tr>
<td>Acronym</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>AAFE</td>
<td>Advanced Applications Flight Experiments</td>
</tr>
<tr>
<td>AGC</td>
<td>Automatic gain control</td>
</tr>
<tr>
<td>ALT</td>
<td>Altimeter</td>
</tr>
<tr>
<td>Cal</td>
<td>Calibration</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processor Unit</td>
</tr>
<tr>
<td>CW</td>
<td>Continuous wave</td>
</tr>
<tr>
<td>CZCS-2</td>
<td>NOSS Coastal-Zone Color Scanner</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>EU</td>
<td>Engineering Unit</td>
</tr>
<tr>
<td>FNOC</td>
<td>Fleet Numerical Oceanographic Center</td>
</tr>
<tr>
<td>GDR</td>
<td>Seasat Geophysical Data Record</td>
</tr>
<tr>
<td>GEOS</td>
<td>Geodynamic Experimental Ocean Satellite (GEOS-3)</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>LAMMR</td>
<td>Large Antenna Multichannel Microwave Radiometer</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean sea level</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOSS</td>
<td>National Oceanic Satellite System</td>
</tr>
<tr>
<td>PPF</td>
<td>NOSS Primary Processing Facility</td>
</tr>
<tr>
<td>PRF</td>
<td>Pulse Repetition Frequency</td>
</tr>
<tr>
<td>SACU</td>
<td>Synchronizer Acquisition Calibration Unit</td>
</tr>
<tr>
<td>S/C</td>
<td>Spacecraft</td>
</tr>
<tr>
<td>SCATT</td>
<td>Scatterometer</td>
</tr>
<tr>
<td>SDR</td>
<td>Seasat Sensor Data Record</td>
</tr>
<tr>
<td>Seasat</td>
<td>Seasat Spacecraft</td>
</tr>
<tr>
<td>SF</td>
<td>Seasat Sensor File</td>
</tr>
<tr>
<td>SSH</td>
<td>Sea-Surface Height</td>
</tr>
<tr>
<td>SWH</td>
<td>Significant Waveheight</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Determined</td>
</tr>
<tr>
<td>TM</td>
<td>Telemetry Mode</td>
</tr>
<tr>
<td>TWT</td>
<td>Traveling-Wave Tube</td>
</tr>
<tr>
<td>WFC</td>
<td>Wallops Flight Center</td>
</tr>
<tr>
<td>σ^0</td>
<td>Backscatter Cross-Section Per Unit Scattering Area</td>
</tr>
<tr>
<td>$[]$</td>
<td>Maximum Integer Function</td>
</tr>
</tbody>
</table>
INTRODUCTION

This document contains a detailed description of the NOSS altimeter algorithms and data sets. The algorithm/data set numbering scheme is

\[X.Y(S) - N \{n\} \]

X - Sensor
- A = Altimeter
- C = CZCS-2
- L = LAMMR
- S = Scatterometer

Y - Type
- A = Algorithm
- D = Data Set

S - Source (in this report, if the source is omitted from the reference number, the altimeter is the implied source)
- A = Altimeter
- C = CZCS-2
- L = LAMMR
- S = Scatterometer
- M = Mission contractor

N Level
- 1 = Level 1
- 2 = Level 2

\[n \] Algorithm/Data Set Number (as many levels of this number as needed may be used; e.g., \[X.Y(S) - N.n_1.n_2.n_3 \]).

Alternative algorithms or data are indicated by a letter after the number (e.g., \[X.Y(S) - 1.2A; X.Y(S) - 1.2B \]).

Note that many coefficients and table entries presented in this document are taken from the documentation of the Seasat software and are therefore subject to change as the NOSS instrument package is developed.
MANAGEMENT SUMMARY

The purpose of the NOSS Altimeter Detailed Algorithm Specifications is to document the details of the algorithms and data sets presented in the NOSS Algorithm Freeze Report, Volume 1 in a form suitable for 1) development of the benchmark software by the Data Processing and Analysis Section at NASA Wallops Flight Center and 2) delivery to the spacecraft contractor as a guide for coding the operational software.

This document was to be the result of a two-year algorithm development effort to completely define the NOSS operational software well in advance of launch. The NOSS program was cancelled after a six-month start on this report. Therefore the algorithms reported in detail are ones which are established altimeter processing. The algorithms which required some additional development before documenting for production have only been scoped. This was necessary since the required analysis effort was not funded. The following processing description is taken from the NOSS Altimeter Algorithm Specification (Ref. 1).

The level 1 processor converts the data to engineering units and applies first order corrections to the data for known instrument variations. Also level 1 quality control monitoring is done in the calibration module and the health status module. Both of these modules produce reports that require engineering evaluation. No calibration tables are automatically modified because users require a constant data set with updates only when significant changes have occurred. Required external inputs to level 1 are the spacecraft ephemeris data, the LAMMR update file, and world surface map data. Some of the table entries will be determined after post launch calibration experiments. The calibration trend file is an important internal file which allows for the analysis of altimeter characteristics over long periods. The resulting level 1 output file contains all altimeter data at full rate with all instrument applied corrections and status flags on instrument health. By removing the corrections and knowing the conversion factors the original level 0 data can be recovered if needed.

The level 2 processor provides quality geophysical measurements derived from altimeter parameters to oceanographic users. In addition, it will provide ice sheet measurements to the ice user community. Its output data rate and content will be compressed to (nominally) once per second. The altimeter parameters significant waveheight, wind speed and surface height, are basically direct calculations. Additional products will be ocean waveheight distribution skewness, dominant wavelength, significant slope, rain rate, ocean backscatter, and ice-ice boundary. Ice-sheet height, surface slope, and roughness will be calculated over ice sheets. In order to provide quality products some of the corrections require iterative processing and several external files are required as input to determine the best corrections. The parameters required from these files are the LAMMR level 2
pathlength correction, FNOC atmospheric pressure, LAMMR T_b, ionospheric electron density, solar and lunar ephemerides, geoid, and tide. The resulting level 2 output file contains only geophysical data and associated corrections. By maintaining the corrections on file an individual user may apply variations from his own research.

OVERVIEW

The background and objectives for the NOSS altimeter are defined in Reference 1. It is repeated here that functionally, the altimeter measures the spacecraft height above mean sea level (MSL), and the significant waveheight (SWH) and backscatter coefficient (σ°) of the ocean surface beneath the spacecraft (Ref. 2). The altimeter is a 13.56 GHz monostatic radar system that tracks in range only using a 1 m parabolic antenna pointed at the satellite nadir. Its high resolution, coupled with a high transmitted pulse rate of 926 Hz, permits the realization of 10 cm altitude precision.

The basic idea behind satellite altimetry is to utilize the highly stable platform provided by a spacecraft as a moving reference system from which vertical measurements to the ocean surface are made (Ref. 3). Referring to Figure 1, altimeter systems provide three measurements:

1. **Altitude** - The elapsed time between the time of transmission of an RF pulse of energy and its reception back at the altimeter, after having been scattered from the ocean surface below, is essentially a measurement of the height of the satellite above mean sea level. When merged with accurate orbital information, the results can be related to changes in mean sea level due to such spatially varying quantities as gravity anomalies and such time varying quantities as tides, winds, and currents.

2. **Return Pulse Shape (Waveform)** - The slope and duration of the leading edge of the return pulse can be related to the significant waveheight of the ocean surface below. In addition, through a deconvolution process, the surface height distribution can be recovered, including its skewness. It has been shown (Ref. 4) that skewness can then be related to such additional oceanographic parameters as dominant wavelength, swell/sea ratio, etc. Finally, the slope and duration of the trailing edge of the return pulse can be related to the attitude of the satellite (angle of the measurement axis with respect to the subsatellite point).

3. **Return Pulse Amplitude** - The amplitude of the return pulse, which is determined from the AGC used to normalize the incoming waveform, can be related to the backscatter coefficient (σ°) of the surface below, which in turn, can be related to wind speed over the ocean as well as certain ice related parameters.
Figure 1. Block Diagram Depicting Satellite Altimetry Concept and Potential Applications.
Key Assumptions

In the development of the altimeter processing algorithms, the following key assumptions have been made:

1. Because of the similarity between the proposed NOSS altimeter instrument and the Seasat altimeter instrument and because many of the altimeter algorithms required by the NOSS processing software were developed for Seasat and verified in an operational (although not real-time) environment, many of the Seasat altimeter algorithms have been adopted for use by the NOSS altimeter processing software.

2. The similarity between the NOSS altimeter and the Seasat altimeter permits the adoption of Seasat calibration and processing tables for use as a starting point in developing those tables for the NOSS altimeter. All tables and constants, whether determined from Seasat documentation, from documentation of other altimeter instruments (i.e., GEOS-3), or some other source, must be flexible until the final NOSS values are determined. A few of these table entries will not be defined until well after the launch of the spacecraft.

3. In order to facilitate the generation of the benchmark software by the Data Processing and Analysis Section of the Wallops Flight Center and because of the general acceptance of the FORTRAN language in the scientific community, all altimeter algorithms have been expressed in FORTRAN-like instructions. However, these instructions should not necessarily be assumed to be in optimum programming form.

4. All data required from the input files (i.e., ephemeris files, FNOC file, LAMMR level 2 file, etc.) must be available and current as the altimeter processing software requires it. Failure to supply any of the input files must not result in the abnormal termination of the altimeter processing software, but may produce degraded output products that will be flagged as such.

5. All input data files required by the altimeter processing software, as well as all output reports generated by the altimeter processing software, will be maintained at the PPF on data-storage devices for a minimum of one week on a daily rotating basis. The trend file and solar/lunar ephemeris file will be maintained for one year on a monthly rotating basis.

6. Because the spacecraft is designed to have two altimeters that, although physically similar, may have different electronic characteristics, all software must have the capability for processing two independent altimeters. This will require two sets of input tables, two sets of output reports, and documentation stating which of the two altimeters was used in taking the data.
7. The prefix "instrument," as used in this report, relates to the altimeter housekeeping parameters that are supplied directly from the spacecraft. For example, the "instrument voltage" is the altimeter voltage as detected by the spacecraft monitor.

8. All processing of altimeter data will be handled by using data stored record by record. This will mean that a level 0 input data record will be read into core and modified as the appropriate altimeter processing algorithms are accessed. After all modules have been processed, the data record will be transferred from core to the output file.

9. The following algorithms have only been scoped:
 - A.A-1.1.8 EU Rain Subcom
 - A.A-1.1.9 EU Waveform
 - A.A-1.3.3 Trend File Processing
 - A.A-1.4 Adaptive Resolution
 - A.A-1.5.1 Spacecraft Ephemeris Interpolation
 - A.A-1.5.2 Subsatellite Point Calculation
 - A.A-2.1 Contamination Processing
 - A.A-2.3.2 Waveform Altitude Correction
 - A.A-2.3.3 Waveform SWH Correction
 - A.A-2.3.4 Waveform SWH Bias
 - A.A-2.4 Atmospheric Corrections
 - A.A-2.6.3.1 Solar/Lunar Ephemeris Interpolation
 - A.A-2.6.4 EM Bias
 - A.A-2.7 Ice Sheet Height
 - A.A-2.8 Sea Ice
 - A.A-2.9 Quality Control

10. Subsystem interfaces are handled by the Mission Contractor so that the required data are colocated in time and space for meeting the requirements of the altimeter algorithms.

SUBSYSTEM DESCRIPTION

General

This section summarizes the logic of the altimeter level 1 and level 2 subsystem software. Included are the altimeter subsystem flow charts, a narrative description of each of the major modules, and a description of the subsystem interfaces with other PPF
software. Tables I and II provide an index to the level 1 and level 2 modules and data sets.

Figures 2 and 3 show the NOSS altimeter software subsystem for level 1 and level 2, respectively. Figures 4 and 5 are more detailed for level 1 and level 2, respectively, showing the submodules development status. The shaded submodules need more development and are not given in detail in this report. A brief description of each of the software modules follows in the Narrative Description, and Data Description. The Module Descriptions contain detailed descriptions of each of the modules, submodules, and data sets.

Narrative Description

The following paragraphs provide a general description of each of the major modules of the NOSS altimeter processing software, indexed by the algorithm reference numbers (see Tables II and III).

Level 1 Components

1. **1.1--Engineering Unit Conversion** - This module will convert the counts in the telemetry data stream to engineering (functional) units. The input to this module will be the raw (level 0) data in counts, and the output will be altimeter parameters and housekeeping data, expressed in engineering units, to be used by the other modules of the altimeter processing software.

The method of conversion to engineering units will vary with different parameters. Some conversions will simply require a table look-up or a temperature correction, whereas others will require the evaluation of a polynomial. It should be noted, however, that not all parameters in the telemetry stream require conversion to engineering units because some parameters are merely flags whose bits are used to determine a status or mode of operation.

2. **1.2--Level 1 Altitude Module** - This module will calculate certain sensor-related corrections to the altitude and automatic gain control (AGC). These corrections are performed in the following submodules: (1) 1.2.1--Altitude time-tag corrections; (2) 1.2.2--Altitude calibration zone bias; (3) 1.2.3--Altitude center-of-gravity offset; and (4) 1.2.4--Calibration mode bias. The altitude time-tag corrections are functions of track mode and altitude. The calibration zone bias will correct the altitude measurements to a common datum using information derived from data that are taken directly over laser tracking stations in the calibration area. The center-of-gravity offset will account for the location of the altimeter antenna with respect to the spacecraft center of gravity and the expenditure of the onboard fuel, and the calibration mode bias compensates for differences determined by comparing calibration mode data with preflight tables.
<table>
<thead>
<tr>
<th>Identifier</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules</td>
<td></td>
</tr>
<tr>
<td>A.A-0.0</td>
<td>Altimeter Main Driver</td>
</tr>
<tr>
<td>A.A-1.0</td>
<td>Level 1 Driver</td>
</tr>
<tr>
<td>A.A-1.1</td>
<td>Engineering Units Conversion</td>
</tr>
<tr>
<td>A.A-1.1.1</td>
<td>EU Date and Time</td>
</tr>
<tr>
<td>A.A-1.1.1.1</td>
<td>EU Bit Extraction</td>
</tr>
<tr>
<td>A.A-1.1.2</td>
<td>EU Altitude, SIR, and AGC</td>
</tr>
<tr>
<td>A.A-1.1.2.1</td>
<td>EU Polynomial Fit</td>
</tr>
<tr>
<td>A.A-1.1.3</td>
<td>EU Gate Amplitude</td>
</tr>
<tr>
<td>A.A-1.1.4</td>
<td>EU Status Extraction</td>
</tr>
<tr>
<td>A.A-1.1.5</td>
<td>EU Engineering Subcom #1</td>
</tr>
<tr>
<td>A.A-1.1.6</td>
<td>EU Engineering Subcom #2</td>
</tr>
<tr>
<td>A.A-1.1.7</td>
<td>EU Engineering Subcom #3</td>
</tr>
<tr>
<td>A.A-1.1.8</td>
<td>EU Rain Subcom</td>
</tr>
<tr>
<td>A.A-1.1.9</td>
<td>EU Waveform, CW, or Dump</td>
</tr>
<tr>
<td>A.A-1.2</td>
<td>Level 1 Altitude Correction</td>
</tr>
<tr>
<td>A.A-1.2.1</td>
<td>Time Tag Correction</td>
</tr>
<tr>
<td>A.A-1.2.2</td>
<td>Cal Zone Bias</td>
</tr>
<tr>
<td>A.A-1.2.3</td>
<td>Center of Gravity Offset</td>
</tr>
<tr>
<td>A.A-1.2.4</td>
<td>Cal Mode Bias</td>
</tr>
<tr>
<td>A.A-1.3</td>
<td>Cal Mode Driver</td>
</tr>
<tr>
<td>A.A-1.3.1</td>
<td>Cal 1</td>
</tr>
<tr>
<td>A.A-1.3.1.1</td>
<td>Cal Mode Statistical Accumulation</td>
</tr>
<tr>
<td>A.A-1.3.2</td>
<td>Cal 2</td>
</tr>
<tr>
<td>A.A-1.3.3</td>
<td>Trend Processing</td>
</tr>
<tr>
<td>A.A-1.4</td>
<td>Adaptive Resolution</td>
</tr>
<tr>
<td>A.A-1.5</td>
<td>Location Processing</td>
</tr>
<tr>
<td>A.A-1.5.1</td>
<td>Spacecraft Ephemeris Interpolation</td>
</tr>
<tr>
<td>A.A-1.5.2</td>
<td>Subsatellite Point Calculation</td>
</tr>
<tr>
<td>A.A-1.6</td>
<td>Health/Status Monitor Driver</td>
</tr>
<tr>
<td>A.A-1.6.1</td>
<td>HS 1-Day Trap-Up</td>
</tr>
<tr>
<td>A.A-1.6.1.1</td>
<td>HS Statistical Accumulation</td>
</tr>
<tr>
<td>A.A-1.6.2</td>
<td>HS n-Minute Wrap-Up</td>
</tr>
<tr>
<td>A.A-1.6.3</td>
<td>HS Status</td>
</tr>
<tr>
<td>A.A-1.6.4</td>
<td>HS Non-Subcom</td>
</tr>
<tr>
<td>A.A-1.6.5</td>
<td>HS Engineering Subcom #1</td>
</tr>
<tr>
<td>A.A-1.6.6</td>
<td>HS Engineering Subcom #2</td>
</tr>
<tr>
<td>A.A-1.6.7</td>
<td>HS Engineering Subcom #3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Sets</td>
<td></td>
</tr>
<tr>
<td>A.D-1.71</td>
<td>Trend File</td>
</tr>
<tr>
<td>A.D-1.72</td>
<td>EU Coefficient File</td>
</tr>
<tr>
<td>A.D(M)-1.81</td>
<td>Level 0 Date File</td>
</tr>
<tr>
<td>A.D(M)-1.82</td>
<td>Spacecraft Ephemeris File</td>
</tr>
<tr>
<td>A.D(M)-1.83</td>
<td>World Surface Map File</td>
</tr>
<tr>
<td>A.D(L)-1.84</td>
<td>LAMMR Update File</td>
</tr>
<tr>
<td>A.D(M)-1.85</td>
<td>Executive Parameter File</td>
</tr>
<tr>
<td>A.D-1.91</td>
<td>Calibration Report</td>
</tr>
<tr>
<td>A.D-1.92</td>
<td>Trend Report</td>
</tr>
<tr>
<td>A.D-1.93</td>
<td>Altimeter Diagnostics</td>
</tr>
<tr>
<td>A.D-1.94</td>
<td>Level 1 Output File</td>
</tr>
</tbody>
</table>
TABLE II. LEVEL 2 MODULES AND DATA SETS

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules</td>
<td></td>
</tr>
<tr>
<td>A.A-2.0</td>
<td>Level 2 Driver</td>
</tr>
<tr>
<td>A.A-2.1</td>
<td>Contamination</td>
</tr>
<tr>
<td>A.A-2.2</td>
<td>Data Compression</td>
</tr>
<tr>
<td>A.A-2.3</td>
<td>Waveform Module</td>
</tr>
<tr>
<td>A.A-2.3.1</td>
<td>Waveform Processor Driver</td>
</tr>
<tr>
<td>A.A-2.3.1.1</td>
<td>Derivative</td>
</tr>
<tr>
<td>A.A-2.3.1.1.1</td>
<td>Convolution</td>
</tr>
<tr>
<td>A.A-2.3.1.1.1.1</td>
<td>Surface Elevation Distribution</td>
</tr>
<tr>
<td>A.A-2.3.1.1.1.2</td>
<td>Flat Sea Response</td>
</tr>
<tr>
<td>A.A-2.3.1.1.1.3</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>A.A-2.3.1.1.1.4</td>
<td>Fast Fourier Synthesizing</td>
</tr>
<tr>
<td>A.A-2.3.1.2</td>
<td>Matrix Inversion</td>
</tr>
<tr>
<td>A.A-2.3.2</td>
<td>Altitude Correction</td>
</tr>
<tr>
<td>A.A-2.3.3</td>
<td>SWH Correction</td>
</tr>
<tr>
<td>A.A-2.3.4</td>
<td>SWH Bias</td>
</tr>
<tr>
<td>A.A-2.3.5</td>
<td>Waveform Products</td>
</tr>
<tr>
<td>A.A-2.4</td>
<td>Atmospheric Corrections</td>
</tr>
<tr>
<td>A.A-2.4.1</td>
<td>Rain Gate</td>
</tr>
<tr>
<td>A.A-2.4.2</td>
<td>Barotropic Effect</td>
</tr>
<tr>
<td>A.A-2.4.3</td>
<td>Ionospheric Correction</td>
</tr>
<tr>
<td>A.A-2.4.4</td>
<td>Dry Tropospheric Refraction</td>
</tr>
<tr>
<td>A.A-2.4.5</td>
<td>Wet Tropospheric Refraction</td>
</tr>
<tr>
<td>A.A-2.4.6</td>
<td>Radar Backscatter Coefficient</td>
</tr>
<tr>
<td>A.A-2.5</td>
<td>Wind and Radar Backscatter Driver</td>
</tr>
<tr>
<td>A.A-2.5.1</td>
<td>Radar Backscatter Coefficient</td>
</tr>
<tr>
<td>A.A-2.5.2</td>
<td>Wind Speed</td>
</tr>
<tr>
<td>A.A-2.6</td>
<td>Level 2 Altitude Correction</td>
</tr>
<tr>
<td>A.A-2.6.1</td>
<td>Geoid Height</td>
</tr>
<tr>
<td>A.A-2.6.1.1</td>
<td>Bilinear Interpolation</td>
</tr>
<tr>
<td>A.A-2.6.2</td>
<td>Tide Height</td>
</tr>
<tr>
<td>A.A-2.6.3</td>
<td>Solid Earth Tide Height</td>
</tr>
<tr>
<td>A.A-2.6.3.1</td>
<td>Solar/Lunar Ephemeris Interpolation</td>
</tr>
<tr>
<td>A.A-2.6.4</td>
<td>EM Bias</td>
</tr>
<tr>
<td>A.A-2.6.5</td>
<td>Sea Surface Height</td>
</tr>
<tr>
<td>A.A-2.7</td>
<td>Ice Sheet Height</td>
</tr>
<tr>
<td>A.A-2.8</td>
<td>Sea Ice</td>
</tr>
<tr>
<td>A.A-2.9</td>
<td>Quality Control</td>
</tr>
<tr>
<td>Data Sets</td>
<td></td>
</tr>
<tr>
<td>A.D-2.71</td>
<td>Geoid File</td>
</tr>
<tr>
<td>A.D-2.72</td>
<td>Tide File</td>
</tr>
<tr>
<td>A.D(M)-2.81</td>
<td>FNOC File</td>
</tr>
<tr>
<td>A.D(M)-2.82</td>
<td>Ionospheric Data File</td>
</tr>
<tr>
<td>A.D(M)-2.83</td>
<td>LAMMR Level 2 File</td>
</tr>
<tr>
<td>A.D(M)-2.84</td>
<td>LAMMR T File</td>
</tr>
<tr>
<td>A.D(M)-2.85</td>
<td>Solar/Lunar Ephemeris File</td>
</tr>
<tr>
<td>A.D-2.91</td>
<td>Level 2 Output File</td>
</tr>
<tr>
<td>A.D-2.92</td>
<td>Wind σ° Output File</td>
</tr>
</tbody>
</table>
Figure 2. Altimeter Subsystem Level 1 Flow Chart.
Figure 3. Altimeter Subsystem Level 2 Flow Chart.
Figure 4. Altimeter Level 1 Status Chart.
Figure 5. Altimeter Level 2 Status Chart.
Note that the time-tag corrections must be performed immediately after the engineering unit conversion so that all ephemeris data will be correctly interpolated in the location classification module.

3. **1.3--Calibration (Cal) Mode Module** - The altimeter processing software will monitor all calibration mode data in this module, which contains three submodules: (1) 1.3.1--Cal 1 processor; (2) 1.3.2--Cal 2 processor; and (3) 1.3.3--Trend File processor. The altimeter has internal calibration modes to detect changes in altitude, AGC, and other parameters attributable to aging, temperature, voltage fluctuation, etc. This mode will be employed for 60 seconds about once per day. The cal mode module will process the calibration mode data and generate calibration reports of comparisons with preflight nominal calibrations. These reports will require Mission Contractor interpretation of flagged changes to be significant enough to justify updates to the cal mode bias submodule tables.

The trend file processor is designed to identify long-range (one month to one year) trends in the calibration mode data. To this end, a file of trends will be automatically maintained by the altimeter processing software, and significant changes in altimeter parameters will be calculated and flagged. A human decision of the appropriate action to be taken to correct the flagged parameters will be required. It may take two to three weeks to verify that the characteristic is valid and, if valid, to implement a correction. Any faster changes will be detected by health status monitoring.

4. **1.4--Adaptive Resolution** - Adaptive resolution is a mode in which the altimeter has detected surface slope changes and automatically switched to a wider pulse width and different track constants to maintain lock. This will occur primarily over ice sheets and land. This module will correct time tags, AGC, and altitude in the adaptive resolution mode for offsets due to the selected pulse width and tracker characteristics. These corrections will make the level 1 output products consistent with the normal track mode. In addition, CW mode data will be processed in this module. Although CW is normally used for acquisition only, the system can be commanded to this mode for continued operation.

5. **1.5--Location Classification Module** - This module will classify the subsatellite point as either land, water, or ice based on a world surface map. The LAMMR subsystem will update the ice fields of the world surface map. In addition, this module will merge and interpolate the satellite ephemeris data in order to calculate the latitude and longitude of the subsatellite point and the spacecraft height above the reference ellipsoid.

6. **1.6--Health/Status Monitor** - This module will automatically monitor critical instrument parameters and set off system alarms when a potentially damaging or dangerous condition is observed. It will set quality flags for altitude, tem-
perature, voltage, and current to be output to the health/status monitor report
and to the level 1 output data file. The analysis of this output will require
Mission Contractor interpretation and interaction. The protection of the
altimeter will be the responsibility of the control center. This monitor will
be a backup of control-center decisions and will assist in early alert of
trends. The output should be reviewed daily.

Level 2 Components

1. 2.1--Contamination Processing - This module will classify the nature of the sub-
satellite point as either land, water, or ice. This classification, which is
derived from analysis of the altimeter data with a resolution of approximately
1 km, should not be confused with the classification performed in the location
classification module, which is derived from a world surface map that has a
resolution of approximately 10 km. The software will estimate the time and
location of land/water and ice/water interfaces. In addition, a flag will be
set to indicate if the data are appropriate for processing by the waveform
processor.

2. 2.2--Data Compression - The altimeter level 1 output data rate is 20 frames per
second. The data compression software will smooth the data to a selectable rate
(nominally once per second) and will edit nonproduction data modes such as
calibration mode, trigger kill, and standby. The rate is variable and selected
by the Project. The software will also calculate standard deviations for most
parameters for subsequent quality analysis.

3. 2.3--Waveform Module - This module will process waveform data in order to cal-
culate significant waveheight (SWH), attitude, and skewness, as well as altitude
corrections and certain ocean-wave parameters. The calculation of the SWH,
attitude, and skewness parameters requires an iterative calculation of a best-
fit solution to the waveform data that is described in Ref. 4. That calculation
is the convolution of the antenna pattern, surface distribution, and radar
pulse. If the solution fails to converge, then the SWH calculated onboard will
be used with backup table bias corrections to SWH and altitude.

4. 2.4--Atmospheric Module - This module will calculate the atmospheric corrections
to the spacecraft altitude and the radar backscatter coefficient. It will also
process data from the rain gate. The altitude corrections from this module
consist of the combined effects of ionospheric refraction, wet and dry tropo-
spheric refraction, and atmospheric pressure. The prime wet tropospheric re-
fraction correction will employ data from a file built by LAMMR algorithms.
FNOC data will be used when LAMMR data are not available.

The radar backscatter coefficient correction accounts for the effects of the
atmosphere on return power. This correction will be based on data from the...
LAMMR TB file and will use SCATT-supplied algorithms. The correction will not be applied until the validity of the LAMMR data has been established (after launch). The rain-gate processing detects the presence of rain at the sub-satellite point and is used for σ^o correction.

5. 2.5--Wind-Speed Module - This module will calculate the radar backscatter coefficient and the ground wind speed. The calculated radar backscatter coefficient (σ^o) is a function of AGC, altitude, and attitude, and the altimeter estimated wind speed is a function of σ^o. Note that the atmospheric correction to σ^o for rain will be applied before the wind speed is calculated.

6. 2.6--Level 2 Altitude Module - This module will correct the altitude measurements for electromagnetic (EM) bias, using derived coefficients that account for the difference between the radar-observed sea-surface height distribution and the geometrical sea-surface height. This module will also calculate the sea surface height and the altimeter residual. In order to calculate these two parameters, it is necessary to evaluate the geoid height, the ocean tide height, and the solid Earth tide height.

7. 2.7--Ice-Sheet Height - This module will be employed only over areas of ice interest. The altimeter data will be corrected for waveform shape changes that cause track-point shifts. This correction will be done by a software retracking process designed for ice-sheet processing.

8. 2.8--Sea Ice Products - This module computes the sea ice-related products mean-squared slope and percent smooth area. In addition, special retracking will be performed to reduce the noise on the altitude measurement over sea ice.

9. 2.9--Quality-Control Monitor - As a final step in the level 2 processing, the altimeter software will analyze the contents of the level 2 output file in order to classify the quality of the data. The data will be flagged as being of questionable quality when: (a) prescribed standard deviation tolerances are exceeded, (b) the number of rejected points in the various smoothing algorithms exceeds acceptable limits, or (c) operational threshold limits are exceeded.

Data Interface Descriptions (Summary)

This section describes the subsystem interfaces between the altimeter processing software and other NOSS PPF software. These interfaces are in the form of input files and output files and reports, which are described in more detail in (Ref. 1).

The subsystem interfaces are as follows:
(a) A.D-1.71--Trend File - To maintain a history file of the calibration mode data in order to assist in the identification of long-range trends in that data. The
file will be read from and written to by the trend file processor, A.A-1.3.2.

(b) A.D-1.72--EU Coefficient File - To provide engineering unit conversion coefficients for both altimeters. It is used to load the operating altimeter's coefficients into standard arrays for the data processing. The mission contractor is to supply this file.

(c) A.D(M)-1.81--Level 0 Data File - This file is supplied to the altimeter software by the Mission Contractor and contains all of the raw altimeter data in counts. Appendix A gives the expected altimeter telemetry contents.

(d) A.D(M)-1.82--Spacecraft Ephemeris File - This file is supplied by the Mission Contractor and contains the spacecraft ephemeris information needed to accurately identify the position of the spacecraft.

(e) A.D(M)-1.83--World Surface Map File - This file is supplied by the Mission Contractor and contains the locations of the land/water and ice/water boundaries. The file is updated by the LAMMR update file, A.D(L)-1.84.

(f) A.D(L)-1.84--LAMMR Update File - This file supplied by the LAMMR processing software is used to update the ice-field locations. The Mission Contractor will handle the interface between A.D(L)-1.84 and A.D.(M)-1.83.

(g) A.D(M)-1.85--Executive Parameter File - This file is used by the user to select various program options before starting job execution.

(h) A.D-1.91--Calibration Report - This report is generated by the altimeter processing software to summarize the calibration mode data for human interpretation to determine if any requirements exist to update parameter calibration tables.

(i) A.D-1.92--Trend Report - This report is generated to identify long-range trends in the altimeter data for human interpretation to determine if any requirements exist to update parameter calibration tables.

(j) A.D-1.93--Altimeter Diagnostic Report - This report is generated to identify altimeter parameters that have exceeded tolerances and require human interpretation to decide if the operational status of an altimeter must be modified.

(k) A.D-1.94--Level 1 Output File - This file is supplied by the altimeter processing software to the PPF for archiving, level 2 processing, and users. It contains all level 1 altimeter data. The Mission Contractor is responsible for the formatting of this file. Table III lists the contents of the altimeter level 1 output record. Also the data in Table A-2 are output once per second.

(l) A.D-2.71--Geoid File - It provides global geoid-height estimates to be written on the level 2 output file, A.D-2.91, which are used in the calculation of the altimeter residual, A.A-2.6.5. The file is read by the geoid height module, A.A-2.6.1. Numerous geoid models are currently available with more expected by the mid 1980's. Most of the geoid models that are currently accepted as the most accurate have been generated by, and are available from, GSFC.
TABLE III. ALTIMETER LEVEL 1 OUTPUT RECORD CONTENT*

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>8</td>
</tr>
<tr>
<td>Orbit number</td>
<td>2</td>
</tr>
<tr>
<td>Latitude</td>
<td>4</td>
</tr>
<tr>
<td>Longitude</td>
<td>4</td>
</tr>
<tr>
<td>Spacecraft altitude</td>
<td>8</td>
</tr>
<tr>
<td>Solar latitude</td>
<td>4</td>
</tr>
<tr>
<td>Instrument attitude</td>
<td>2</td>
</tr>
<tr>
<td>World classification</td>
<td>1</td>
</tr>
<tr>
<td>Zone flag</td>
<td>2</td>
</tr>
<tr>
<td>Altimeter number/mode</td>
<td>1</td>
</tr>
<tr>
<td>Health flags</td>
<td>6</td>
</tr>
<tr>
<td>Altitude</td>
<td>8</td>
</tr>
<tr>
<td>Altitude rate</td>
<td>4</td>
</tr>
<tr>
<td>Altitude error</td>
<td>4</td>
</tr>
<tr>
<td>SWH</td>
<td>2</td>
</tr>
<tr>
<td>AGC</td>
<td>2</td>
</tr>
<tr>
<td>Delta time</td>
<td>2</td>
</tr>
<tr>
<td>Delta altitude for CG</td>
<td>2</td>
</tr>
<tr>
<td>Delta altitude for CZ</td>
<td>2</td>
</tr>
<tr>
<td>Delta altitude for CM</td>
<td>2</td>
</tr>
<tr>
<td>Delta AGC for CM</td>
<td>2</td>
</tr>
<tr>
<td>Delta altitude for AR</td>
<td>2</td>
</tr>
<tr>
<td>Delta AGC for AR</td>
<td>2</td>
</tr>
<tr>
<td>TM words 12 to 93</td>
<td>164</td>
</tr>
<tr>
<td>Solar position vector</td>
<td>24</td>
</tr>
<tr>
<td>Lunar position vector</td>
<td>24</td>
</tr>
<tr>
<td>Spare</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>316</td>
</tr>
</tbody>
</table>

* Plus special record once per second (see Table A.2).
(m) A.D-2.72--Tide Height - It provides global ocean-tide height estimates to be written on the level 2 output file A.D-2.91, which are used in calculating the altimeter residual, A.A-2.6.5. The file is read by the tide height module, A.A-2.6.2. This comes from Government-furnished information developed by E. W. Schwiderski, Naval Surface Weapons Center, Dahlgren, Virginia.

(n) A.D(M)-2.81--FNOC File - This file is supplied by the Mission Contractor and contains meteorological data used in calculating altitude corrections.

(o) A.D(M)-2.82--Ionospheric Data File - This file is supplied to the altimeter software by the Mission Contractor and contains sunspot and solar flux data for calculating ionospheric refraction. Ref. 5 contains more detailed information.

(p) A.D.(L)-2.83--LAMMR Level 2 File - This file is supplied by the LAMMR processing software and contains data for calculating the wet tropospheric refraction altitude correction and the sigma-naught atmospheric correction.

(q) A.D(L)-2.84--LAMMR T_b File - This file is supplied by the LAMMR processing software and contains information relating to the sigma-naught atmospheric correction. Ref. 6 contains a more detailed description.

(r) A.D(M)-2.85--Solar/Lunar Ephemeris File - This file is supplied by the Mission Contractor and contains position vector of the sun and the moon as a function of time.

(s) A.D-2.91--Level 2 Output File - This file is supplied by altimeter processing software and contains all level 2 altimeter data in corrected geophysical form. The Mission Contractor is responsible for the formatting of this file. Table IV lists the contents of an output record.

(t) A.D-2.92--Wind/Sigma-Naught File - This file is supplied by the altimeter processing software to the SCATT and CZCS-2 subsystems and contains wind speed, sigma-naught, SWH, and rain-rate estimates. The Mission Contractor is responsible for the interface between the subsystems.

Common Description

Fortran-like code has been used to describe the algorithms. This lead to the definition of labeled commons for communication between the various submodules. The commons allow most variables to be readily available. These commons are described in detail by Tables V through X.
<table>
<thead>
<tr>
<th>Name</th>
<th>Length (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>8</td>
</tr>
<tr>
<td>Orbit number</td>
<td>4</td>
</tr>
<tr>
<td>Latitude</td>
<td>4</td>
</tr>
<tr>
<td>Longitude</td>
<td>4</td>
</tr>
<tr>
<td>Spacecraft altitude</td>
<td>8</td>
</tr>
<tr>
<td>Solar latitude</td>
<td>4</td>
</tr>
<tr>
<td>Instrument attitude</td>
<td>2</td>
</tr>
<tr>
<td>World classification</td>
<td>1</td>
</tr>
<tr>
<td>Zone flag</td>
<td>2</td>
</tr>
<tr>
<td>Altimeter number/mode</td>
<td>1</td>
</tr>
<tr>
<td>Quality flags</td>
<td>6</td>
</tr>
<tr>
<td>Contamination flag</td>
<td>2</td>
</tr>
<tr>
<td>Number of frames compressed</td>
<td>2</td>
</tr>
<tr>
<td>Altitude</td>
<td>8</td>
</tr>
<tr>
<td>Altitude standard deviation and total correction</td>
<td>4</td>
</tr>
<tr>
<td>Delta altitude corrections (16)</td>
<td>32</td>
</tr>
<tr>
<td>Atmospheric measurements</td>
<td>8</td>
</tr>
<tr>
<td>SWH</td>
<td>2</td>
</tr>
<tr>
<td>SWH standard deviations</td>
<td>4</td>
</tr>
<tr>
<td>Delta SWH corrections</td>
<td>4</td>
</tr>
<tr>
<td>Ocean backscatter σ^o</td>
<td>2</td>
</tr>
<tr>
<td>Delta σ^o correction/method</td>
<td>4</td>
</tr>
<tr>
<td>Wind speed</td>
<td>2</td>
</tr>
<tr>
<td>Rain rate/quality</td>
<td>4</td>
</tr>
<tr>
<td>AGC</td>
<td>2</td>
</tr>
<tr>
<td>AGC standard deviation</td>
<td>4</td>
</tr>
<tr>
<td>Rain gates 1 and 2</td>
<td>4</td>
</tr>
<tr>
<td>Waveform-derived amplitude</td>
<td>2</td>
</tr>
<tr>
<td>Waveform-derived baseline</td>
<td>2</td>
</tr>
<tr>
<td>Waveform-derived attitude</td>
<td>2</td>
</tr>
<tr>
<td>Skewness</td>
<td>2</td>
</tr>
<tr>
<td>Sea-surface height</td>
<td>2</td>
</tr>
<tr>
<td>Altitude residual</td>
<td>2</td>
</tr>
<tr>
<td>EM bias</td>
<td>2</td>
</tr>
<tr>
<td>Geoid height</td>
<td>2</td>
</tr>
<tr>
<td>Tide height</td>
<td>2</td>
</tr>
<tr>
<td>Solid-Earth tide</td>
<td>2</td>
</tr>
<tr>
<td>Ice boundary/quality</td>
<td>1</td>
</tr>
<tr>
<td>Mean square slope (sea ice)</td>
<td>2</td>
</tr>
<tr>
<td>Percent smoothness (sea ice)</td>
<td>2</td>
</tr>
<tr>
<td>Ice delta correction</td>
<td>2</td>
</tr>
<tr>
<td>Ice delta AGC correction</td>
<td>2</td>
</tr>
<tr>
<td>Ice-sheet slope</td>
<td>2</td>
</tr>
<tr>
<td>Ice-sheet roughness</td>
<td>2</td>
</tr>
<tr>
<td>Spares</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
</tr>
</tbody>
</table>
TABLE V. COMMON EXECUTION CONTROL (IEEXEC)

1. input data type
 - 0, process both level 1 & 2 (default)
 - 1, process level 1 only
 - 2, process level 2 only
2. year -1900 (i.e., 85)
3. rev number
4. number minutes for averaging period in Health Status Monitor (A.A-1.6)
5. compression period in hundredths of a second

TABLE VI. COMMON STATUS STATUS PARAMETERS (ISTAT)

1. command out to SACU
2. HV on
3. HV ready
4. TWT fault
5. parity
6. memory dump
7. rain processing enable
8. CAL I, II
9. mode command
10. status #1 bits 2 and 1
11. channel select
12. ATU mode
13. gate width
14. ACQ/TRK
15. chirp ACQ step
16. reacquire flag
17. \(\Delta H > T_{\Delta H} \)
18. chirp/cw
19. high voltage ON/OFF
20. TWT A fault reset
21. trigger kill
22. calibrate mode 1
23. calibrate mode 2
24. TWT heater ON/OFF
25. altimeter designator
26. program version
27. tracker type
28. resolution step
29. TWT fault override
30. LVPS current
31. AT number
32. acquisition constant index
33. track constant index
34. AGC threshold index
35. \(a, b \), and AGC acquisition
36. \(a, b \), and AGC track index
37. \(\Delta H \) gate width index
38. \(L_E-E_0 \) track index
39. height error index
40. \(L_E-E_0 \) acquisition index
41. waveheight curve offset
42. acquisition height offset
43. subtrack direction flag
44. zone flag
45. waveform processor convergence flag
46. }
TABLE VII. COMMON EUROF ENGINEERING UNIT CONVERSION

<table>
<thead>
<tr>
<th>EUC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. altitude</td>
<td>22. HSWS temperature</td>
</tr>
<tr>
<td>2. altitude rate</td>
<td>23. DFB temperature #1</td>
</tr>
<tr>
<td>3. altitude error</td>
<td>24. AT #1 temperature</td>
</tr>
<tr>
<td>4. SNH</td>
<td>25. AT #2 temperature</td>
</tr>
<tr>
<td>5. AGC word</td>
<td>26. ICU temperature</td>
</tr>
<tr>
<td>6. noise gate amplitude</td>
<td>27. SACU temperature</td>
</tr>
<tr>
<td>7. plateau gate amplitude</td>
<td>28. LVPS temperature</td>
</tr>
<tr>
<td>8. attitude gate amplitude</td>
<td>29. LVPS 38V current</td>
</tr>
<tr>
<td>9. transmit power</td>
<td>30. +28V S/C bus isolated</td>
</tr>
<tr>
<td>10. TNT beam current</td>
<td>31. +28V</td>
</tr>
<tr>
<td>11. TNT cathode voltage</td>
<td>32. +15V</td>
</tr>
<tr>
<td>12. TNT HVPS temperature</td>
<td>33. -15V</td>
</tr>
<tr>
<td>13. TNT collector temperature</td>
<td>34. +7V</td>
</tr>
<tr>
<td>14. receiver temperature</td>
<td>35. -9V</td>
</tr>
<tr>
<td>15. noise gate amplitude</td>
<td>36. +5V</td>
</tr>
<tr>
<td>16. plateau gate amplitude</td>
<td>37. -5.2V</td>
</tr>
<tr>
<td>17. attitude gate amplitude</td>
<td>38. +1.00V REF</td>
</tr>
<tr>
<td>18. transmit power</td>
<td>39. 0.657V REF</td>
</tr>
<tr>
<td>19. UCFM temperature</td>
<td>40. SACU PLO LOCK</td>
</tr>
<tr>
<td>20. DDL temperature</td>
<td>41. MTU temperature</td>
</tr>
<tr>
<td>21. DDL ASSY temperature</td>
<td>42. DFB temperature #2</td>
</tr>
</tbody>
</table>
TABLE VIII(a). COMMON HSCOM HEALTH STATUS VARIABLES

<table>
<thead>
<tr>
<th>Array</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z(I)</td>
<td>data to be averaged</td>
</tr>
<tr>
<td>ZL(I)</td>
<td>lower edit limits</td>
</tr>
<tr>
<td>ZU(I)</td>
<td>upper edit limits</td>
</tr>
<tr>
<td>ZE(I)</td>
<td>expected mean values</td>
</tr>
<tr>
<td>S1D(I,J)</td>
<td>summations of unedited points (1-day averaging)</td>
</tr>
<tr>
<td>S2D(I,J)</td>
<td>summations of unedited points squared (1-day averaging)</td>
</tr>
<tr>
<td>N1D(I,J)</td>
<td>number of unedited points (1-day averaging)</td>
</tr>
<tr>
<td>N2D(I,J)</td>
<td>number of edited points (1-day averaging)</td>
</tr>
<tr>
<td>ZMIND(I,J)</td>
<td>minimum unedited points (1-day averaging)</td>
</tr>
<tr>
<td>ZMAXD(I,J)</td>
<td>maximum unedited points (1-day averaging)</td>
</tr>
<tr>
<td>ZMD(I,J)</td>
<td>means (1-day averaging)</td>
</tr>
<tr>
<td>ZVD(I,J)</td>
<td>variances (1-day averaging)</td>
</tr>
<tr>
<td>ZSD(I,J)</td>
<td>standard deviations (1-day averaging)</td>
</tr>
<tr>
<td>S1M(I,J)</td>
<td>summations of unedited points (n-minute averaging)</td>
</tr>
<tr>
<td>S2M(I,J)</td>
<td>summations of unedited points squared (n-minute averaging)</td>
</tr>
<tr>
<td>N1M(I,J)</td>
<td>number of unedited points (n-minute averaging)</td>
</tr>
<tr>
<td>N2M(I,J)</td>
<td>number of edited points (n-minute averaging)</td>
</tr>
<tr>
<td>ZMINM(I,J)</td>
<td>minimum unedited points (n-minute averaging)</td>
</tr>
<tr>
<td>ZMAXM(I,J)</td>
<td>maximum unedited points (n-minute averaging)</td>
</tr>
<tr>
<td>ZMM(I,J)</td>
<td>means (n-minute averaging)</td>
</tr>
<tr>
<td>ZVM(I,J)</td>
<td>variances (n-minute averaging)</td>
</tr>
<tr>
<td>ZSM(I,J)</td>
<td>standard deviations (n-minute averaging)</td>
</tr>
<tr>
<td>NEWDAY</td>
<td>= 0 for same day</td>
</tr>
<tr>
<td></td>
<td>= 1 for new day</td>
</tr>
<tr>
<td>ZAL(I,J)</td>
<td>lower alarm limits</td>
</tr>
<tr>
<td>ZAU(I,J)</td>
<td>upper alarm limits</td>
</tr>
<tr>
<td>NCNT(K)</td>
<td>frame counters</td>
</tr>
</tbody>
</table>

For explanations of subscripts I, J, and K see Table IX(b)
<table>
<thead>
<tr>
<th>I</th>
<th>Explanation</th>
<th>I</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>spacecraft attitude</td>
<td>44</td>
<td>TWT HVPS temperature</td>
</tr>
<tr>
<td>2</td>
<td>altitude rate</td>
<td>45</td>
<td>TWT collector temperature</td>
</tr>
<tr>
<td>3</td>
<td>altitude error</td>
<td>46</td>
<td>receiver temperature</td>
</tr>
<tr>
<td>4</td>
<td>SWH</td>
<td>47</td>
<td>noise gate amplitude</td>
</tr>
<tr>
<td>5</td>
<td>AGC word</td>
<td>48</td>
<td>plateau gate amplitude</td>
</tr>
<tr>
<td>6</td>
<td>AGC gate amplitude</td>
<td>49</td>
<td>attitude gate amplitude</td>
</tr>
<tr>
<td>7</td>
<td>noise gate amplitude</td>
<td>50</td>
<td>transmit power (chirp mode)</td>
</tr>
<tr>
<td>8</td>
<td>transmit power (chirp mode)</td>
<td>51</td>
<td>transmit power (CW mode)</td>
</tr>
<tr>
<td>9</td>
<td>transmit power (CW mode)</td>
<td>52</td>
<td>UCFM temperature</td>
</tr>
<tr>
<td>10</td>
<td>TWT beam current</td>
<td>53</td>
<td>DDL temperature</td>
</tr>
<tr>
<td>11</td>
<td>TWT cathode voltage</td>
<td>54</td>
<td>DDL ASSY temperature</td>
</tr>
<tr>
<td>12</td>
<td>TWT HVPS temperature</td>
<td>55</td>
<td>HSWS temperature</td>
</tr>
<tr>
<td>13</td>
<td>TWT collector temperature</td>
<td>56</td>
<td>DFB temperature no. 1</td>
</tr>
<tr>
<td>14</td>
<td>receiver temperature</td>
<td>57</td>
<td>AT no. 1 temperature</td>
</tr>
<tr>
<td>15</td>
<td>noise gate amplitude</td>
<td>58</td>
<td>AT no. 2 temperature</td>
</tr>
<tr>
<td>16</td>
<td>plateau gate amplitude</td>
<td>59</td>
<td>ICU temperature</td>
</tr>
<tr>
<td>17</td>
<td>attitude gate amplitude</td>
<td>60</td>
<td>SACU temperature</td>
</tr>
<tr>
<td>18</td>
<td>transmit power (chirp mode)</td>
<td>61</td>
<td>LVPS temperature</td>
</tr>
<tr>
<td>19</td>
<td>transmit power (CW mode)</td>
<td>62</td>
<td>LVPS 38V current</td>
</tr>
<tr>
<td>20</td>
<td>UCFM temperature</td>
<td>63</td>
<td>+28V S/C bus isolated</td>
</tr>
<tr>
<td>21</td>
<td>DDL temperature</td>
<td>64</td>
<td>+28V</td>
</tr>
<tr>
<td>22</td>
<td>DDL ASSY temperature</td>
<td>65</td>
<td>+15V</td>
</tr>
<tr>
<td>23</td>
<td>HSWS temperature</td>
<td>66</td>
<td>-15V</td>
</tr>
<tr>
<td>24</td>
<td>DFB temperature no. 1</td>
<td>67</td>
<td>+7V</td>
</tr>
<tr>
<td>25</td>
<td>AT no. 1 temperature</td>
<td>68</td>
<td>-9V</td>
</tr>
<tr>
<td>26</td>
<td>AT no. 2 temperature</td>
<td>69</td>
<td>+5V</td>
</tr>
<tr>
<td>27</td>
<td>ICU temperature</td>
<td>70</td>
<td>-5.2V</td>
</tr>
<tr>
<td>28</td>
<td>SACU temperature</td>
<td>71</td>
<td>+1.00V REF</td>
</tr>
<tr>
<td>29</td>
<td>LVPS temperature</td>
<td>72</td>
<td>0.657V REF</td>
</tr>
<tr>
<td>30</td>
<td>LVPS 38V current</td>
<td>73</td>
<td>SACU PLO LOCK</td>
</tr>
<tr>
<td>31</td>
<td>+28V S/C bus isolated</td>
<td>74</td>
<td>MTU temperature</td>
</tr>
<tr>
<td>32</td>
<td>+28V</td>
<td>75</td>
<td>DFB temperature no. 2</td>
</tr>
<tr>
<td>33</td>
<td>+15V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>-15V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>+7V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>-9V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>+5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>-5.2V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>+1.00V REF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.657V REF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>SACU PLO LOCK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>MTU temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>DFB temperature no. 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Explanation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>altimeter no. 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>altimeter no. 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>HV on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HV off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>altimeter on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>standby</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>calibrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trigger kill (last command sent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>track 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>track 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>track 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>track 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TWT fault reset (last command sent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>test mode 1 (CW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>test mode 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>test mode 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>test mode 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>adapt. resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rain processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACQ/TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chirp mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CW mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trigger kill (SACU mode command)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TWT fault reset (SACU mode command)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TABLE IX. COMMON SENSOR LEVEL 1 PARAMETERS (WLEV1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>day of year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>seconds past midnight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>microseconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>altitude rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>altitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>altitude error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>SMH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>AGC word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>AGC gate amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>early gate amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>late gate amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>middle gate amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>gate normalization factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>noise gate amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>plateau gate amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>attitude gate amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>transmit power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>TWT beam current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>TWT cathode voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>TWT HVPS temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>TWT collector temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>receiver temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>noise gate amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>plateau gate amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>attitude gate amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>transmit power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>UCFM temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>DOL ASSY temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>HSWS temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>DFB temperature #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>AT temperature #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>AT #2 temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>ICU temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>SACU temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>LVPS temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>relay status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>bits 1 through 8 spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td>LVPS 38V current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td>+28V S/C bus isolated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>+28V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.</td>
<td>+15V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.</td>
<td>-15V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.</td>
<td>+7V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.</td>
<td>-9V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.</td>
<td>+5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.</td>
<td>-5.2V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.</td>
<td>+1.00V REF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.</td>
<td>0.657V REF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.</td>
<td>SACU PLO LOCK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.</td>
<td>MTU temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.</td>
<td>DFB temperature #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.</td>
<td>relay status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56.</td>
<td>bits 1 through 8 spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.</td>
<td>parameter select 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.</td>
<td>parameter select 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.</td>
<td>parameter select 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.</td>
<td>parameter select 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.</td>
<td>altitude acceleration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71.</td>
<td>modified julian date (uncorrected)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.</td>
<td>modified julian date (corrected)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.</td>
<td>time correction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.</td>
<td>year - 1900</td>
<td>154.</td>
<td>spare</td>
</tr>
<tr>
<td>121.</td>
<td>month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122.</td>
<td>day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123.</td>
<td>hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.</td>
<td>minute</td>
<td></td>
<td>159.</td>
</tr>
<tr>
<td>125.</td>
<td>second</td>
<td></td>
<td>160.</td>
</tr>
<tr>
<td>126.</td>
<td>altitude cal zone bias</td>
<td>127.</td>
<td>cal zone bias standard deviation</td>
</tr>
<tr>
<td>128.</td>
<td>altitude C.G. offset</td>
<td>129.</td>
<td>C.G. offset standard deviation</td>
</tr>
<tr>
<td>130.</td>
<td>altitude cal mode bias</td>
<td>131.</td>
<td>cal mode bias standard deviation</td>
</tr>
<tr>
<td>132.</td>
<td>AGC cal mode bias</td>
<td>133.</td>
<td>level 1 corrected altitude</td>
</tr>
<tr>
<td>134.</td>
<td>corrected AGC</td>
<td>135.</td>
<td>spacecraft attitude</td>
</tr>
<tr>
<td>137.</td>
<td>height above the reference ellipsoid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.</td>
<td>status #1</td>
<td>140.</td>
<td>status #2</td>
</tr>
<tr>
<td>141.</td>
<td>status #3</td>
<td>142.</td>
<td>status #4</td>
</tr>
<tr>
<td>143.</td>
<td>status #5</td>
<td>144.</td>
<td>AGC cal mode standard deviation</td>
</tr>
<tr>
<td>145.</td>
<td>Cal/Atten status</td>
<td>146.</td>
<td>altitude adapt. res. correction</td>
</tr>
<tr>
<td>147.</td>
<td>altitude adapt. res. correction standard deviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148.</td>
<td>AGC adapt. res. correction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>149.</td>
<td>AGC adapt. res. correction standard deviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151.</td>
<td>geodetic latitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>152.</td>
<td>longitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222.</td>
<td>waveform sample #63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>223.</td>
<td>rain subcom parameter #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>242.</td>
<td>rain subcom parameter #20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>orbit number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>altimeter number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>contamination flag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>compressed interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>mean compressed time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>compressed latitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>compressed longitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>mean compressed ellipsoid height</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>compressed solar latitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>mean compressed instrument attitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>number of attitude measurements used in compression interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>compressed zone flag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>compressed world classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>std dev compressed altitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>mean compressed altitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>" SWH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>" AGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>" delta time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>" delta altitude for Center Grav</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>" delta altitude for Cal Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>" delta altitude for Cal Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>" delta AGC for Cal Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>" delta altitude for Adap Res</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>" delta AGC for Adap Res</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>" AGC gate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>" early gate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>" late gate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>" middle gate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>mean compressed noise gate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>" plateau gate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>" attitude gate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
38. mean MTU temperature
39. mean DFB temperature
40. mean TWT collector temperature
41. spare
42. spare
43. spare
44. spare
45. std dev compressed altitude rate
46. " " " " error
47. " " " SWH
48. " " " AGC
49. " " compressed AGC gate
50. " " compressed early gate
51. " " compressed late gate
52. " " compressed middle gate
53. spare
54. std dev compressed noise gate
55. " " compressed plateau gate
56. " " compressed attitude gate
57. spare
58. compressed rain sub-comm 1 (mean)
59. " " " 2 "
60. " " " 3 "
61. " " " 4 "
62. " " " 5 "
63. " " " 6 "
64. " " " 7 "
65. " " " 8 "
66. " " " 9 "
67. " " " 10 "
68. " " " 11 "
69. " " " 12 "
70. " " " 13 "
71. " " " 14 "
72. " " " 15 "
73. " " " 16 "
74. " " " 17 "
75. " " " 18 "
76. " " " 19 "

<table>
<thead>
<tr>
<th>77.</th>
<th>compressed rain sub-comm 20 (mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>78.</td>
<td>" " " 1 (std dev)</td>
</tr>
<tr>
<td>79.</td>
<td>" " " 2</td>
</tr>
<tr>
<td>80.</td>
<td>" " " 3</td>
</tr>
<tr>
<td>81.</td>
<td>" " " 4</td>
</tr>
<tr>
<td>82.</td>
<td>" " " 5</td>
</tr>
<tr>
<td>83.</td>
<td>" " " 6</td>
</tr>
<tr>
<td>84.</td>
<td>" " " 7</td>
</tr>
<tr>
<td>85.</td>
<td>" " " 8</td>
</tr>
<tr>
<td>86.</td>
<td>" " " 9</td>
</tr>
<tr>
<td>87.</td>
<td>" " " 10</td>
</tr>
<tr>
<td>88.</td>
<td>" " " 11</td>
</tr>
<tr>
<td>89.</td>
<td>" " " 12</td>
</tr>
<tr>
<td>90.</td>
<td>" " " 13</td>
</tr>
<tr>
<td>91.</td>
<td>" " " 14</td>
</tr>
<tr>
<td>92.</td>
<td>" " " 15</td>
</tr>
<tr>
<td>93.</td>
<td>" " " 16</td>
</tr>
<tr>
<td>94.</td>
<td>" " " 17</td>
</tr>
<tr>
<td>95.</td>
<td>" " " 18</td>
</tr>
<tr>
<td>96.</td>
<td>" " " 19</td>
</tr>
<tr>
<td>97.</td>
<td>" " " 20</td>
</tr>
</tbody>
</table>

98. spare

99. mean compressed transmit power

100. std dev compressed transmit power

<table>
<thead>
<tr>
<th>101.</th>
<th>compressed waveform sample no. 1 (mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102.</td>
<td>" " " 2</td>
</tr>
<tr>
<td>103.</td>
<td>" " " 3</td>
</tr>
<tr>
<td>104.</td>
<td>" " " 4</td>
</tr>
<tr>
<td>105.</td>
<td>" " " 5</td>
</tr>
<tr>
<td>106.</td>
<td>" " " 6</td>
</tr>
<tr>
<td>107.</td>
<td>" " " 7</td>
</tr>
<tr>
<td>108.</td>
<td>" " " 8</td>
</tr>
<tr>
<td>109.</td>
<td>" " " 9</td>
</tr>
<tr>
<td>110.</td>
<td>" " " 10</td>
</tr>
<tr>
<td>111.</td>
<td>" " " 11</td>
</tr>
<tr>
<td>112.</td>
<td>" " " 12</td>
</tr>
<tr>
<td>113.</td>
<td>" " " 13</td>
</tr>
<tr>
<td>114.</td>
<td>" " " 14</td>
</tr>
<tr>
<td>115.</td>
<td>" " " 15</td>
</tr>
</tbody>
</table>
116. compressed waveform sample no. 16 (mean)

| Value | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |
compressed waveform sample no. 55 (mean)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
</tr>
<tr>
<td>64</td>
<td>1 (std dev)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>194. compressed waveform sample no. 31 (std dev)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195.</td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>196.</td>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>197.</td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>198.</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>199.</td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>200.</td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>201.</td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>202.</td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>203.</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>204.</td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>205.</td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>206.</td>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>207.</td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>208.</td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>209.</td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>210.</td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>211.</td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>212.</td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>213.</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>214.</td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>215.</td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>216.</td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>217.</td>
<td></td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>218.</td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>219.</td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>220.</td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>221.</td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>222.</td>
<td></td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>223.</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>224.</td>
<td></td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>225.</td>
<td></td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>226.</td>
<td></td>
<td></td>
<td>63</td>
</tr>
</tbody>
</table>

227. waveform processor rss of fit
228. spare
229. waveform processor convergence flag
230. waveform processor refined SWH estimate
231. waveform processor refined attitude estimate
232. waveform processor skewness estimate
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>233.</td>
<td>waveform processor waveform amplitude estimate</td>
</tr>
<tr>
<td>234.</td>
<td>waveform processor altitude correction</td>
</tr>
<tr>
<td>235.</td>
<td>waveform processor baseline estimate</td>
</tr>
<tr>
<td>236.</td>
<td>h</td>
</tr>
<tr>
<td>237.</td>
<td>SWH correction for SWH and attitude</td>
</tr>
<tr>
<td>238.</td>
<td>altitude correction for SWH, attitude and N</td>
</tr>
<tr>
<td>239.</td>
<td>spare</td>
</tr>
<tr>
<td>240.</td>
<td>std dev of SWH correction for SWH and attitude</td>
</tr>
<tr>
<td>241.</td>
<td>SWH Cal zone bias</td>
</tr>
<tr>
<td>242.</td>
<td>mean square slope</td>
</tr>
<tr>
<td>243.</td>
<td>Fresnel power reflection coefficient</td>
</tr>
<tr>
<td>244.</td>
<td>percent smooth area</td>
</tr>
<tr>
<td>245.</td>
<td>significant slope</td>
</tr>
<tr>
<td>246.</td>
<td>dominant wavelength</td>
</tr>
<tr>
<td>247.</td>
<td>dominant frequency</td>
</tr>
<tr>
<td>248.</td>
<td>dominant phase speed</td>
</tr>
<tr>
<td>249.</td>
<td>dominant wave number</td>
</tr>
<tr>
<td>250.</td>
<td>spare</td>
</tr>
<tr>
<td>251.</td>
<td>rain rate estimate</td>
</tr>
<tr>
<td>252.</td>
<td>rain rate quantity flag</td>
</tr>
<tr>
<td>253.</td>
<td>rain rate quality flag</td>
</tr>
<tr>
<td>254.</td>
<td>smoothed rain rate estimate</td>
</tr>
<tr>
<td>255.</td>
<td>std dev smoothed rain rate estimate</td>
</tr>
<tr>
<td>256.</td>
<td>atmospheric pressure at sea surface</td>
</tr>
<tr>
<td>257.</td>
<td>atmospheric water vapor at sea surface</td>
</tr>
<tr>
<td>258.</td>
<td>atmospheric temperature at sea surface</td>
</tr>
<tr>
<td>259.</td>
<td>FNOC data present flag</td>
</tr>
<tr>
<td>260.</td>
<td>altitude correction for barotropic effects</td>
</tr>
<tr>
<td>261.</td>
<td>std dev of altitude correction for bar. effects</td>
</tr>
<tr>
<td>262.</td>
<td>geomagnetic latitude</td>
</tr>
<tr>
<td>263.</td>
<td>Ec minimum</td>
</tr>
<tr>
<td>264.</td>
<td>Ec maximum</td>
</tr>
<tr>
<td>265.</td>
<td>Beta</td>
</tr>
<tr>
<td>266.</td>
<td>solar flux</td>
</tr>
<tr>
<td>267.</td>
<td>ionospheric refraction altitude correction</td>
</tr>
<tr>
<td>268.</td>
<td>std dev of ionospheric refraction altitude correction</td>
</tr>
<tr>
<td>269.</td>
<td>dry tropospheric refraction altitude correction</td>
</tr>
<tr>
<td>270.</td>
<td>std dev dry tropospheric refraction alt. correction</td>
</tr>
<tr>
<td>271.</td>
<td>wet tropospheric refraction altitude correction</td>
</tr>
</tbody>
</table>
272. std dev wet tropospheric refraction alt correction
273. LAMMR quality data flag
274. sigma naught atmospheric correction
275. spare
276. radar backscatter coefficient
277. wind speed at 10 meters
278. wind speed at 19j meters
279. level 2 corrected altitude
280. " " "
281. geoid height
282. tide height
283. solid earth tide height
284. altitude correction from EM bias
285. std dev alt correction from EM bias
286. EM sea state bias quality flag
287. sea surface height
288. altitude residual
289. spare
290. ice sheet height correction
291. mean surface roughness
292. sea surface height retrack quality flag
293. spare
294. quality flag for altitude std dev
295. " " altitude rate
296. " " radar backscatter
297. " " AGC std dev
298. " " attitude
299. " " MTU temp
300. " " DFB temp
301. " " noise gate
302. " " AGC gate
303. " " TMT collector temp
304. " " SWH std dev
305. " " EM sea state bias
306. " " data validity
307. spare
308. "
309. "
310. "
MODULE DESCRIPTIONS

This section contains the detailed descriptions of the altimeter processing algorithms.

The requirements and logic for each completed module of the altimeter processing algorithms are provided in this section. For each of these modules, the title and function, inputs and outputs, tables, and processing are presented. For the modules not completed functional requirements are presented.

ALTIMETER MAIN DRIVER MODULE A A-0.0

TITLE: PROGRAM ALTMTR
FUNCTION: Main driver module for the altimeter software
REFERENCE: Not applicable
CONTROL: None
SUPPORT: A.A-1.0 ALT1DR level 1 driver module
A.A-2.0 ALT2DR level 2 driver module
ACCESS: Not applicable
INPUTS: A.D-1.85 executive parameter file
A.D-1.72 EU conversion coefficient file
A.D-1.81 level 0 data file
A.D-1.94 level 1 data file

OUTPUTS:
A.D-1.94 level 1 data file
A.D-2.91 level 2 data file

TABLES:
Table 0.0a A.D-1.94 and A.D-2.91 Header Record (see Appendix B)
Table 0.0b A.D-1.94 Header Record #2 (see Appendix B)

ALGORITHM:
1. Read the execution-time data files (A.D-1.85 and A.D-1.72) into arrays IEXEC and EUC
2. Write header record(s) (see Tables 0.0a and 0.0b) on
 A.D-1.94 if IEXEC(1) equals 0 or 1
 A.D-2.91 if IEXEC(1) equals 0 or 2
3. IF (IEXEC(1) .NE. 2) GO TO 4
 a. Read header record from A.D-1.94
 b. GO TO 8
4. Read one minor frame from the level 0 data file (A.D-1.81); if end of data encountered GO TO 12
5. Process the level 0 data
 CALL ALT1DR
6. Write the minor frame on the level 1 data file (A.D-1.94)
7. Determine if level 2 data is to be processed
 IF (IEXEC(1) .EQ. 1) GO TO 4
 GO TO 9
8. Read one minor frame from the level 1 data file (A.D-1.94); if end of data encountered GO TO 12
9. Process the level 1 data
 CALL ALT2DR (IFLAG)
10. If IFLAG = 0, write the minor frame on the level 2 data file (A.D-2.91)
11. Go back to process the next minor frame
 IF (IEXEC(1) .EQ. 0) GO TO 4
 GO TO 8
12. Normal termination
 STOP

COMMENTS: 1. The following TYPE statements must be included in this module
 DIMENSION EU(8,100,2)
 COMMON /EXECUT/ IEXEC(100)
 COMMON /TLMTRY/ ITLM(100)
 COMMON /STATUS/ ISTAT(100)
 COMMON /SENSOR/ WLEV1(300)
 COMMON /GEOPHY/ WLEV2(325)
LEVEL 1 DRIVER MODULE

SUBROUTINE ALTIDR

Function: Driver module for the altimeter level 1 software

Reference: Not applicable

Control: A.A-0.0 ALTMTR altimeter main driver module

Support: A.A-1.1 EUCONV EU conversion module
 A.A-1.2 ALICOR level 1 altitude correction module
 A.A-1.3 CALMOD cal mode module
 A.A-1.4 ADPRES adaptive resolution module
 A.A-1.5 LOCATE location classification module
 A.A-1.6 HSMNTR health/status monitor module

Access: CALL ALTIDR

Inputs: IEXEC = array containing executive parameters
 EUC = array containing EU conversion coefficients
 ITLM = array containing telemetry data

Outputs: ISTAT = array containing status words
 WLEV1 = array containing level 1 output products

Tables: None

Algorithm: 1. Convert counts to engineering units
 CALL EUCONV

2. Determine the altimeter mode
 IF (ISTAT(9).EQ.1 .OR. NCAL.EQ.1) GO TO 3
 IF (ISTAT(9).GE.3 .AND. ISTAT(9).LE.6) GO TO 4
 IF (ISTAT(9).EQ.8 .OR. ISTAT(9).EQ.12) GO TO 5
 GO TO 6

3. Cal mode data (NCAL = 1 for cal mode; NFINAL = 1 for final call to cal mode module)
 NCAL = 1
 NFINAL = 0
 IF (ISTAT(9) .NE. 1) NFINAL = 1
 CALL CALMOD (NFINAL)
 IF (ISTAT(9) .EQ. 1) GO TO 6
 IF (ISTAT(9) .EQ. 8 .OR. ISTAT(9).EQ. 12) GO TO 5
 IF (ISTAT(9) .LT. 3 .OR. ISTAT(9).GT.6) GO TO 6

4. Track mode data (NCAL = 0 for non-cal mode)
 NCAL = 0
 CALL ALICOR
 GO TO 6
5. Adaptive resolution mode data
CALL ADPRES

6. Classify the subsatellite point
CALL LOCATE

7. Monitor critical instrument parameters
CALL HEALTH

8. End of algorithm
RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this module:
 COMMON /EXECUT/ IEXEC(100)
 COMMON /EUCEOEF/ EUC(8,100)
 COMMON /TLMTRY/ ITLM(100)
 COMMON /STATUS/ ISTAT(100)
 COMMON /SENSOR/ WLEV1(300)
 DATA NCAL/0/

2. Spacecraft engineering data handling has not yet been defined

EU CONVERSION MODULE A.A-1.1

TITLE: SUBROUTINE EUCONV
FUNCTION: Conversion of telemetry stream from counts to engineering units
REFERENCE: SEASAT-1 Radar Altimeter Phase I Engineering Assessment Report,
CONTROL: A.A-1.0 ALTIDR level 1 driver module
SUPPORT: A.A-1.1.1 EUTIME EU date and time conversion submodule
 | A.A-1.1.2 EUALT EU altitude, SWH, & AGC conversion submodule
 | A.A-1.1.3 EUGATE EU gate amplitude conversion submodule
 | A.A-1.1.4 EUSTAT EU status extraction submodule
 | A.A-1.1.5 EUICOM EU engineering subcom #1 conversion submodule
 | A.A-1.1.6 EU2COM EU engineering subcom #2 conversion submodule
 | A.A-1.1.7 EU3COM EU engineering subcom #3 conversion submodule
 | A.A-1.1.8 EURAIN EU rain subcom conversion submodule
 | A.A-1.1.9 EUWFRM EU waveform, CW, or dump submodule
ACCESS: CALL EUCONV
INPUTS: A.D-1.72 = EU conversion coefficient file
 ISTAT(25) = altimeter designator (1 or 2)
OUTPUTS: None
TABLES: None
ALGORITHM: 1. Extract the date and time
 CALL EUTIME
2. Break out the status words
 CALL EUSTAT
3. Load the appropriate EU coefficients into array EUC from file A.D-1.72
 if IALT ≠ ISTAT(25); then set
 IALT = ISTAT(25)
4. Convert the altitude, altitude rate, altitude error, SWH, and AGC
 CALL EUALT
5. Convert the gate amplitudes
 CALL EUGATE
6. Convert the engineering subcom #1
 CALL EU1COM
7. Convert the engineering subcom #2
 CALL EU2COM
8. Convert the engineering subcom #3
 CALL EU3COM
9. Convert the rain subcom
 CALL EURAIN
10. Process waveform, CW, or dump data
 CALL EUWFRM
11. End of algorithm
 RETURN
COMMENTS: 1. The following TYPE statements must be included in the code of this module
 COMMON /STATUS/ ISTAT(100)
 COMMON /EUCOEF/ EUC(8,100)
 DATA /IALT/ 0

EU DATE AND TIME CONVERSION SUBMODULE A.A-1.1.1

TITLE: SUBROUTINE EUTIME
FUNCTION: Extraction of date and time from telemetry stream
CONTROL: A.A-1.1 EUCONV EU conversion submodule
SUPPORT: A.A-1.1.1.1 IEUBIT EU bit extraction submodule
ACCESS: CALL EUTEIM

INPUTS:
- ITLM(1-4) = time (GMT)
- IEXEC(2) = year - 1900

OUTPUTS:
- WLEV1(1) = day of year
- WLEV1(2) = seconds past midnight
- WLEV1(3) = microseconds
- TMJDO = modified julian date in (d,1.0x10^-8)

TABLES: None

ALGORITHM:
1. Split the timing words between seconds and microseconds
 - I1 = IEUBIT(ITLM(3),10,5)
 - I2 = IEUBIT(ITLM(3),4,1)
2. Concatenate ITLM(1), ITLM(2), and I1 into a 26-bit right justified string called J1 with ITLM(1) being the MSB and I1 being the LSB
3. Concatenate I2 and ITLM(4) into a 14-bit right justified string called J2 with I2 being the MSB and ITLM(4) being the LSB
4. Compute the day of year and seconds and microseconds past midnight
 - WLEV1(1) = J1/86400 + 1
 - WLEV1(2) = FLOAT(J1) - 86400.0*WLEV1(1)
 - WLEV1(3) = J2
5. Compute the modified julian date
 - INDEX = IEXEC(2) - 74
 - TREF = IREF(INDEX)
 - TMJDO = (DBLE(WLEV1(3))*1.00-0.6+DBLE(WLEV1(2))) / 86400.0+00
 1 + DBLE(WLEV1(1)) + TREF
6. End of algorithm

RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this submodule
 - DOUBLE PRECISION TMJDO,TREF
 - DIMENSION IREF(25)
 - COMMON /EXECUT/ IEXEC(100)
 - COMMON /TLMTRY/ ITLM(100)
 - COMMON /SENSOR/ WLEV1(300)
 - EQUIVALENCE (TMJDO,WLEV1(115))
 - DATA IREF/ 0, 365, 731, 1096, 1461, 1826, 2192,
 1 2557, 2922, 3287, 3653, 4018, 4383, 4748,
 2 5114, 5479, 5844, 6209, 6575, 6940, 7305,
 3 7670, 8036, 8401, 8766/
EU BIT EXTRACTION SUBMODULE

TITLE:
INTEGER FUNCTION IEUBIT

FUNCTION:
To extrac. bits I1 through I2 from IWORD

REFERENCE:
Not applicable

CONTROL:
A.A-1.1.1 EU TIME EU date and time conversion submodule
A.A-1.1.2 EU ALT EU altitude, SWH, & AGC conversion submodule
A.A-1.1.4 EU STAT EU status extraction submodule
A.A-1.1.7 EU XOM EU engineering subcom #3 conversion submodule

SUPPORT:
None

ACCESS:
J = IEUBIT(IWORD,I1,I2)

INPUTS:
IWORD = the telemetry word (10 bits, right justified)
I1 = the first bit to be extracted
I2 = the last bit to be extracted

OUTPUTS:
IEUBIT = the extracted bits (right justified)

TABLES:
None

ALGORITHM:
1. Extract the desired bits
 IEUBIT = FLD(36-I1,11-I2+1,IWORD)
2. End of algorithm
 RETURN

COMMENTS:
1. Step #1 is machine-dependent (above is for HW625). Argument #1 is the starting bit, argument #2 is the number of bits, argument #3 is the array address. The HW625 numbers the bits from 0 to 35 with 0 being the MSB.
2. The 10 bits in the telemetry word (IWORD) are right justified. The numbering sequence used for I1 and I2 is as follows: the LSB is bit #1 and the MSB is bit #10.
3. This submodule is included here only for ease of specification of the algorithms. It may be replaced or eliminated to suit the particular hardware and software configuration chosen for the mission processing.

EU ALTITUDE, SWH, & AGC CONVERSION SUBMODULE

TITLE:
SUBROUTINE EU ALT

FUNCTION:
EU conversion of altitude, altitude rate, altitude error, SWH, and AGC

REFERENCE:
SEASAT-1 Radar Altimeter Phase I Engineering Assessment Report,
WFC-135-80-001, December 1980

42
INPUTS:
ITLM(5-7) = altitude counts
ITLM(8) = altitude rate counts
ITLM(9) = altitude error counts
ITLM(10) = SWH counts
ITLM(11) = AGC word counts
EUC = EU conversion coefficients
AGCW = AGC attenuator (see Table 1.1.2)

OUTPUTS:
ALT = level 0 altitude in (m,0.001)
WLEV1(4) = altitude rate in (m/s,0.01)
WLEV1(7) = altitude error in (m,0.01)
WLEV1(8) = SWH in (m,0.01)
WLEV1(9) = AGC word in (dB,0.01)

TABLES:
Table 1.1.2 AGC Word Lookup Table (see Appendix B)

ALGORITHM:
1. Convert the altitude from counts to meters
 a. Concatenate the 10 bits contained in each of ITLM(5), ITLM(6),
 and ITLM(7) into a right justified 30-bit string called I1 with
 ITLM(5) being the MSB and ITLM(7) being the LSB
 b. \(D = \text{DBLE} \left(\text{FLOAT} \left(I1 \right) \right) \)
 \(ALT = D \times \text{EUC}(5,1) + \text{EUC}(6,1) \)
2. Convert the altitude rate from counts to meters per second
 \(I1 = \text{IEUBIT} \left(\text{ITLM}(8),10,10 \right) \)
 \(IC = \text{ITLM}(8) - 1024 \times I1 \)
 \(WLEV1(4) = \text{EUPOLY} \left(\text{EUC}(1,2),IC,0.0 \right) \)
3. Convert the altitude error from counts to meters
 \(I1 = \text{IEUBIT} \left(\text{ITLM}(9),10,10 \right) \)
 \(I2 = \text{IEUBIT} \left(\text{ITLM}(9),10,5 \right) \)
 \(I3 = \text{IEUBIT} \left(\text{ITLM}(9),4,1 \right) \)
 \(MAG = I2 - 64 \times I1 \)
 \(C = 2.0^{**}(-I3) \times MAG \)
 \(WLEV1(7) = \text{EUC}(6,3) + C \times (\text{EUC}(5,3) + C \times (\text{EUC}(4,3) \right) \)
 \(+ C \times (\text{EUC}(3,3) + C \times (\text{EUC}(2,3) \right) \)
 \(+ C \times (\text{EUC}(1,3))) \)) + \text{EUC}(8,3) \)
4. Convert the SWH from counts to meters
 \(WLEV1(8) = \text{EUPOLY} \left(\text{EUC}(1,4),\text{ITLM}(10),0.0 \right) \)
5. Convert the AGC word from counts to dB
 I1 = IEUBIT(ITLM(11),10,5)
 I2 = IEUBIT(ITLM(11),4,1)
 WLEV1(9) = AGCW(I1+1) + EUPOLY(EUC(1,5), I2, WLEV1(23)-TMPRCV)

AGCW is an array of AGC values and I1 is the attenuator setting
(see Table 1.1.2)

6. End of algorithm
 RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this
 submodule

 DOUBLE PRECISION D,ALT
 COMMON /EUCOEF/ EUC(8,100)
 COMMON /TLMTRY/ ITLM(100)
 COMMON /SENSOR/ WLEV1(300)
 COMMON /TMPREF/ TMPRCV,TMPMTU
 COMMON /T112/ AGCW(64)
 EQUIVALENCE (ALT,WLEV1(5))

EU POLYNOMIAL CONVERSION SUBMODULE

TITLE: FUNCTION EUPOLY
FUNCTION: EU polynomial conversion from counts to engineering units
REFERENCE: Not applicable
CONTROL: A.A-1.1.2 EUALT EU altitude, SWH, & AGC conversion submodule
 A.A-1.1.3 EUGATE EU gate & amplitude conversion submodule
 A.A-1.1.4 EUSTAT EU status extraction submodule
 A.A-1.1.5 EUICOM EU engineering subcom #1 conversion submodule
 A.A-1.1.6 EU2COM EU engineering subcom #2 conversion submodule
 A.A-1.1.8 EURAIN EU rain subcom conversion submodule
SUPPORT: None
ACCESS: E = EUPOLY(C,L,T)
INPUTS: C = array of EU conversion coefficients
 L = telemetry counts
 T = temperature in (°C,0.01)
OUTPUTS: EUPOLY = engineering units
TABLES: None
ALGORITHM:
1. Convert counts to engineering units
 D = FLOAT(L)
EUPOLY = C(6) + D*(C(5) + D*(C(4) + D*(C(3) + D*(C(2)
 + D*(C(1))))) + C(7)*T + C(8)

2. End of algorithm
RETURN

COMMENTS:
1. The polynomial evaluated is
EUPOLY = C(1)*L^5 + C(2)*L^4 + C(3)*L^3 + C(4)*L^2 + C(5)*L
 + C(6) + C(7)*T + C(8)
2. The following TYPE statement must be included in the code of this
 submodule
 DIMENSION C(8)
3. The C array is a column vector of the doubly subscripted array EUC

EU GATE AMPLITUDE CONVERSION SUBMODULE A.A-1.1.3

TITLE: SUBROUTINE EUGATE
FUNCTION: EU conversion of
 1. AGC gate amplitude
 2. early gate amplitude
 3. late gate amplitude
 4. middle gate amplitude
 5. gate normalization factor
 6. noise gate amplitude
 7. plateau gate amplitude
 8. attitude gate amplitude

REFERENCE: SEASAT-1 Radar Altimeter Phase I Engineering Assessment Report,
 WFC-135-80-001, December 1980

CONTROL: A.A-1.1 EUCONV EU conversion module
SUPPORT: A.A-1.1.2.1 EUPOLY EU polynomial fit submodule
ACCESS: CALL EUGATE

INPUTS:
 ITLM(12) = AGC gate amplitude counts
 ITLM(13) = early gate amplitude counts
 ITLM(14) = late gate amplitude counts
 ITLM(15) = middle gate amplitude counts
 ITLM(16) = gate normalization factor counts
 ITLM(17) = noise gate amplitude counts
 ITLM(18) = plateau gate amplitude counts
 ITLM(19) = attitude gate amplitude counts
 ITLM(20) = transmit power counts
EUC = EU conversion coefficients
TMPRCV = receiver reference temperature in (°C,0.1)
TMPMTU = MTU reference temperature in (°C,0.1)

OUTPUTS:
WLEV1(10) = AGC gate amplitude in (v,0.1)
WLEV1(11) = early gate amplitude in (v,0.1)
WLEV1(12) = late gate amplitude in (v,0.1)
WLEV1(13) = middle gate amplitude in (v,0.1)
WLEV1(14) = gate normalization factor
WLEV1(15) = noise gate amplitude in (v,0.1)
WLEV1(16) = plateau gate amplitude in (v,0.1)
WLEV1(17) = attitude gate amplitude in (v,0.1)
WLEV1(18) = transmit power in (kw,0.1)

TABLES: None

ALGORITHM:
1. Extract the AGC, early, late, and middle gate amplitudes
 WLEV1(10) = ITLM(12)
 WLEV1(11) = ITLM(13)
 WLEV1(12) = ITLM(14)
 WLEV1(13) = ITLM(15)

2. Extract the gate normalized factor
 WLEV1(14) = ITLM(16)

3. Convert the noise, plateau, and attitude gate amplitudes from counts to volts
 WLEV1(15) = EUPOLY(EUC(1,6),ITLM(17),WLEV1(23)-TMPRCV)
 WLEV1(16) = EUPOLY(EUC(1,7),ITLM(18),WLEV1(23)-TMPRCV)
 WLEV1(17) = EUPOLY(EUC(1,8),ITLM(19),WLEV1(23)-TMPRCV)

4. Convert the transmit power from counts to kilowatts
 D = 1.14334068*(WLEV1(50)-TMPMTU) + ITLM(20)
 WLEV1(18) = EUC(6,9) + D*(EUC(5,9) + D*(EUC(4,9)
 1 + D*(EUC(3,9) + D*(EUC(2,9) + D*(EUC(1,9)))))) + EUC(8,9)

5. End of algorithm
RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this submodule
 COMMON /EUROEF/ EUC(8,100)
 COMMON /TLMTRY/ ITLM(100)
 COMMON /SENSOR/ WLEV1(300)
 COMMON /TMPREF/ TMPRCV,TMPMTU
EU STATUS EXTRACTION SUBMODULE

TITLE: SUBROUTINE EUSTAT

FUNCTION: EU conversion of
1. cal atten/SACU status
2. status #1
3. status #2
4. status #3
5. status #4
6. status #5

REFERENCE: SEASAT-1 Radar Altimeter Phase I Engineering Assessment Report,
WFC-135-80-001, December 1980

CONTROL: A.A-1.1 EUCONV EU conversion module

SUPPORT: A.A-1.1.1.1 IEUBIT EU bit extraction submodule
A.A-1.1.2.1 EUPOLY EU bit polynomial fit submodule

ACCESS: CALL EUSTAT

INPUTS:
ITLM(21) = cal atten/SACU status
ITLM(22) = status #1
ITLM(23) = status #2
ITLM(24) = status #3
ITLM(25) = status #4
ITLM(26) = status #5

OUTPUTS:
ISTAT(1-28) = broken out status words
WLEV1(139) = status #1
WLEV1(140) = status #2
WLEV1(141) = status #3
WLEV1(142) = status #4
WLEV1(143) = status #5

TABLES:
Table A.1 TM Format (see Appendix A)

ALGORITHM:
1. Decode the cal atten/SACU status
 ISTAT(1) = IEUBIT(ITLM(21),8,5)
 ISTAT(2) = IEUBIT(ITLM(21),3,3)
 ISTAT(3) = IEUBIT(ITLM(21),2,2)
 ISTAT(4) = IEUBIT(ITLM(21),1,1)

2. Decode status #1
 WLEV1(139) = ITLM(22)
 ISTAT(5) = IEUBIT(ITLM(22),10,10)
 ISTAT(6) = IEUBIT(ITLM(22),9,9)
 ISTAT(7) = IEUBIT(ITLM(22),8,8)
ISTAT(8) = IEUBIT(ITLM(22),7,7)
ISTAT(9) = IEUBIT(ITLM(22),6,3)
ISTAT(10) = IEUBIT(ITLM(22),2,1)

3. Decode status #2
WLEV1(140) = ITLM(23)
ISTAT(11) = IEUBIT(ITLM(23),10,5)
ISTAT(12) = IEUBIT(ITLM(23),4,1)

4. Decode status #3
WLEV1(141) = ITLM(24)
ISTAT(13) = IEUBIT(ITLM(24),10,8)
ISTAT(14) = IEUBIT(ITLM(24),7,7)
ISTAT(15) = IEUBIT(ITLM(24),6,5)
ISTAT(16) = IEUBIT(ITLM(24),4,4)
ISTAT(17) = IEUBIT(ITLM(24),3,3)

5. Decode status #4
WLEV1(142) = ITLM(25)
ISTAT(18) = IEUBIT(ITLM(25),8,8)
ISTAT(19) = IEUBIT(ITLM(25),7,7)
ISTAT(20) = IEUBIT(ITLM(25),6,6)
ISTAT(21) = IEUBIT(ITLM(25),5,5)
ISTAT(22) = IEUBIT(ITLM(25),4,4)
ISTAT(23) = IEUBIT(ITLM(25),3,3)
ISTAT(24) = IEUBIT(ITLM(25),2,2)

6. Decode status #5
WLEV1(143) = ITLM(26)
ISTAT(25) = IEUBIT(ITLM(26),10,10)
ISTAT(26) = IEUBIT(ITLM(26),9,6)
ISTAT(27) = IEUBIT(ITLM(26),5,4)
ISTAT(28) = IEUBIT(ITLM(26),3,1)

7. End of algorithm
RETURN

COMMENTS: 1. The following TYPE statements must be included in the code of this
submodule
COMMON /TLMTRY/ ITLM(100)
COMMON /STATUS/ ISTAT(100)
COMMON /SENSOR/ WLEV1(300)
EU ENGINEERING SUBCOM #1 CONVERSION SUBMODULE

A.A-1.1.5

TITLE: SUBROUTINE EUICON
FUNCTION: EU conversion of engineering subcom #1
REFERENCE: SEASAT-1 Radar Altimeter Phase I Engineering Assessment Report,
 WFC-135-80-001, December 1980
CONTROL: A.A-1.1 EUCONV EU conversion module
SUPPORT: A.A-1.1.2.1 EUPOLY EU polynomial conversion submodule
ACCESS: CALL EUICON

INPUTS:

ITLM(27) = EU subcom #1 counts
EUC = EU conversion coefficients
TMPRCV = receiver reference temperature in °C,0.1
TMPHTU = NTU reference temperature in °C,0.1
ISTAT(11) = subcom counter (1 to 20)

OUTPUTS:

WLEV1(19-37) = subcom #1 in engineering units

TABLES:
Table A.1 TN Format (see Appendix A)

ALGORITHM:

1. Branch to the appropriate subcom word
 N = ISTAT(11)
 GO TO (2,3,4,...,20,21), N

2. Convert the TWT beam current from counts to amps
 WLEV1(19) = EUPOLY(EUC(1,10),ITLM(27),0.0)
 GO TO 22

3. Convert the TWT cathode voltage from counts to kilowatts
 WLEV1(20) = EUPOLY(EUC(1,11),ITLM(27),0.0)
 GO TO 22

4. Convert the TWT HVPS temperature from counts to °C
 WLEV1(21) = EUPOLY(EUC(1,12),ITLM(27),0.0)
 GO TO 22

5. Convert the TWT collector temperature from counts to °C
 WLEV1(22) = EUPOLY(EUC(1,13),ITLM(27),0.0)
 GO TO 22

6. GO TO 22

7. Convert the receiver temperature from counts to °C
 WLEV1(23) = EUPOLY(EUC(1,14),ITLM(27),0.0)
 GO TO 22

8. Convert the noise gate amplitude from counts to volts
 WLEV1(24) = EUPOLY(EUC(1,15),ITLM(27),WLEV1(23)-TMPRCV)
 GO TO 22
9. Convert the plateau gate amplitude from counts to volts
 \[\text{MLEV1(25)} = \text{EUPOLY(EUC(1,16),ITLM(27),MLEV1(23)-TMRPCV)} \]
 GO TO 22

10. Convert the attitude gate amplitude from counts to volts
 \[\text{MLEV1(26)} = \text{EUPOLY(EUC(1,17),ITLM(27),MLEV1(23)-TMRPCV)} \]
 GO TO 22

11. Convert the transmit power from counts to kilowatts
 \[D = 0.3658690176^\circ(\text{MLEV1(50)}-\text{TMPMTU}) + \text{ITLM(27)} \]
 \[\text{MLEV1(27)} = \text{EUC(6,18)} + D^\circ(\text{EUC(5,18)} + D^\circ(\text{EUC(4,18)}) \]
 \[i + D^\circ(\text{EUC(3,18)} + D^\circ(\text{EUC(2,18)} + D^\circ(\text{EUC(1,18)}))))) + \text{EUC(8,18)} \]
 GO TO 22

12. Convert the UCFM temperature from counts to °C
 \[\text{MLEV1(28)} = \text{EUPOLY(EUC(1,19),ITLM(27),0.0)} \]
 GO TO 22

13. Convert the DDL temperature from counts to °C
 \[\text{MLEV1(29)} = \text{EUPOLY(EUC(1,20),ITLM(27),0.0)} \]
 GO TO 22

14. Convert the DDL ASSY temperature from counts to °C
 \[\text{MLEV1(30)} = \text{EUPOLY(EUC(1,21),ITLM(27),0.0)} \]
 GO TO 22

15. Convert the HSNS temperature from counts to °C
 \[\text{MLEV1(31)} = \text{EUPOLY(EUC(1,22),ITLM(27),0.0)} \]
 GO TO 22

16. Convert the DFB temperature #1 from counts to °C
 \[\text{MLEV1(32)} = \text{EUPOLY(EUC(1,23),ITLM(27),0.0)} \]
 GO TO 22

17. Convert the AT#1 temperature from counts to °C
 \[\text{MLEV1(33)} = \text{EUPOLY(EUC(1,24),ITLM(27),0.0)} \]
 GO TO 22

18. Convert the AT#2 temperature from counts to °C
 \[\text{MLEV1(34)} = \text{EUPOLY(EUC(1,25),ITLM(27),0.0)} \]
 GO TO 22

19. Convert the ICU temperature from counts to °C
 \[\text{MLEV1(35)} = \text{EUPOLY(EUC(1,26),ITLM(27),0.0)} \]
 GO TO 22

20. Convert the SACU temperature from counts to °C
 \[\text{MLEV1(36)} = \text{EUPOLY(EUC(1,27),ITLM(27),0.0)} \]
 GO TO 22
21. Convert the LVPS temperature from counts to °C
 \[\text{WLEV1}(37) = \text{EUPOLY}((1,28), \text{ITLM}(27), 0.0) \]

22. End of algorithm
 RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this submodule
 \[
 \begin{align*}
 \text{COMMON } & / \text{EUCOE}/ \text{ EUC}(8,100) \\
 \text{COMMON } & / \text{TLMTRY}/ \text{ ITLM}(100) \\
 \text{COMMON } & / \text{STATUS}/ \text{ ISTAT}(100) \\
 \text{COMMON } & / \text{SENSOR}/ \text{ WLEV1}(300) \\
 \text{COMMON } & / \text{TMPREF}/ \text{ TMPRCV, TMPMTU}
 \end{align*}
 \]

EU ENGINEERING SUBCOM #2 CONVERSION SUBMODULE A.A-1.1.6

TITLE: SUBROUTINE EU2COM
FUNCTION: EU conversion of engineering subcom #2
CONTROL: A.A-1.1 EUCONV EU conversion module
SUPPORT: A.A-1.1.2.1 EUPOLY EU polynomial conversion submodule
ACCESS: CALL EU2COM
INPUTS: ITLM(28) = EU subcom #2 counts
 EUC = EU conversion coefficients
 ISTAT(11) = subcom counter (1 to 20)
OUTPUTS: WLEV1(38-51) = subcom #2 in engineering units
TABLES: Table A.1 TM Format (see Appendix A)
ALGORITHM: 1. Branch to the appropriate subcom word
 \[N = \text{ISTAT}(11) \]
 \[\text{GO TO } (2,3,4,\ldots,20,21), N \]
2. Convert the LVPS 38V current from counts to amps
 \[\text{WLEV1}(38) = \text{EUPOLY}((1,29), \text{ITLM}(28), 0.0) \]
 \[\text{GO TO 22} \]
3. Convert the +28V S/C bus isolated from counts to volts
 \[\text{WLEV1}(39) = \text{EUPOLY}((1,30), \text{ITLM}(28), 0.0) \]
 \[\text{GO TO 22} \]
4. Convert the +28V from counts to volts
 \[\text{WLEV1}(40) = \text{EUPOLY}((1,31), \text{ITLM}(28), 0.0) \]
 \[\text{GO TO 22} \]
5. Convert the +15V from counts to volts
 \[\text{WLEV1}(41) = \text{EUPOLY}(\text{EUC}(1,32), \text{ITLM}(28), 0.0) \]
 \[\text{GO TO 22} \]

6. Convert the -15V from counts to volts
 \[\text{WLEV1}(42) = \text{EUPOLY}(\text{EUC}(1,33), \text{ITLM}(28), 0.0) \]
 \[\text{GO TO 22} \]

7. Convert the +7V from counts to volts
 \[\text{WLEV1}(43) = \text{EUPOLY}(\text{EUC}(1,34), \text{ITLM}(28), 0.0) \]
 \[\text{GO TO 22} \]

8. Convert the -9V from counts to volts
 \[\text{WLEV1}(44) = \text{EUPOLY}(\text{EUC}(1,35), \text{ITLM}(28), 0.0) \]
 \[\text{GO TO 22} \]

9. Convert the +5V from counts to volts
 \[\text{WLEV1}(45) = \text{EUPOLY}(\text{EUC}(1,36), \text{ITLM}(28), 0.0) \]
 \[\text{GO TO 22} \]

10. Convert the -5.2V from counts to volts
 \[\text{WLEV1}(46) = \text{EUPOLY}(\text{EUC}(1,37), \text{ITLM}(28), 0.0) \]
 \[\text{GO TO 22} \]

11. Convert the +1.00V REF from counts to volts
 \[\text{WLEV1}(47) = \text{EUPOLY}(\text{EUC}(1,38), \text{ITLM}(28), 0.0) \]
 \[\text{GO TO 22} \]

12. Convert the 0.657V REF from counts to volts
 \[\text{WLEV1}(48) = \text{EUPOLY}(\text{EUC}(1,39), \text{ITLM}(28), 0.0) \]
 \[\text{GO TO 22} \]

13. Convert the SACU PLO LOCK from counts to volts
 \[\text{WLEV1}(49) = \text{EUPOLY}(\text{EUC}(1,40), \text{ITLM}(28), 0.0) \]
 \[\text{GO TO 22} \]

14. Convert the MTU temperature from counts to °C
 \[\text{WLEV1}(50) = \text{EUPOLY}(\text{EUC}(1,41), \text{ITLM}(28), 0.0) \]
 \[\text{GO TO 22} \]

15. \text{GO TO 22}

16. Convert the DFB temperature #2 from counts to °C
 \[\text{WLEV1}(51) = \text{EUPOLY}(\text{EUC}(1,42), \text{ITLM}(28), 0.0) \]
 \[\text{GO TO 22} \]

17. \text{GO TO 22}

18. \text{GO TO 22}

19. \text{GO TO 22}

20. \text{GO TO 22}

21. CONTINUE
22. End of algorithm
RETURN

COMMENTS: 1. The following TYPE statements must be included in the code of this
submodule

COMMON /EUCOF/ EUC(8,100)
COMMON /TLMTRY/ ITLM(100)
COMMON /STATUS/ ISTAT(100)
COMMON /SENSOR/ WLEV1(300)

EU ENGINEERING SUBCOM #3 CONVERSION SUBMODULE A.A-1.1.7

TITLE: SUBROUTINE EU3COM
FUNCTION: EU conversion of engineering subcom #3
REFERENCE: SEASAT-1 Radar Altimeter Phase I Engineering Assessment Report,
WFC-135-80-001, December 1980
CONTROL: A.A-1.1 EUCONV EU conversion module
SUPPORT: A.A-1.1.1.1 IEUBIT EU bit extraction submodule
ACCESS: CALL EU3COM
INPUTS: ITLM(29) = EU subcom #3 counts
ISTAT(11) = subcom counter (1 to 20)
OUTPUTS: ISTAT(29-42) = subcom #3 statuses
TABLES: Table A.1 TM Format (see Appendix A)
ALGORITHM: 1. Branch to the appropriate subcom word
 \[N = ISTAT(11) \]
 \[\text{IF (N .GT. 6) GO TO 8} \]
 \[\text{GO TO (2,3,4,5,6,7), N} \]

2. Decode word #1
 \[ISTAT(29) = \text{IEUBIT(ITLM(29),3,3)} \]
 \[ISTAT(30) = \text{IEUBIT(ITLM(29),2,2)} \]
 \[ISTAT(31) = \text{IEUBIT(ITLM(29),1,1)} \]
 \[\text{GO TO 8} \]

3. GO TO 8

4. Decode word #3
 \[ISTAT(32) = \text{IEUBIT(ITLM(29),10,9)} \]
 \[ISTAT(33) = \text{IEUBIT(ITLM(29),8,7)} \]
 \[ISTAT(34) = \text{IEUBIT(ITLM(29),6,3)} \]
 \[\text{GO TO 8} \]
5. Decode word #4

ISTAT(35) = IEUBIT(ITLM(29),10,7)
ISTAT(36) = IEUBIT(ITLM(29),6,3)
GO TO 8

6. Decode word #5

ISTAT(37) = IEUBIT(ITLM(29),10,9)
ISTAT(38) = IEUBIT(ITLM(29),8,7)
ISTAT(39) = IEUBIT(ITLM(29),6,5)
ISTAT(40) = IEUBIT(ITLM(29),4,3)
GO TO 8

7. Decode word #6

ISTAT(41) = IEUBIT(ITLM(29),10,7)
ISTAT(42) = IEUBIT(ITLM(29),6,3)

8. End of algorithm

RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this submodule

COMMON /TLMTRY/ ITLM(100)
COMMON /STATUS/ ISTAT(100)

EU RAIN SUBCOM CONVERSION SUBMODULE

TITLE: SUBROUTINE EURAIN
FUNCTION: EU conversion of the rain detection subcom
CONTROL: A.A-1.1 EUCONV EU conversion module
SUPPORT: A.A-1.1.2.1 EUPOLY EU polynomial fit submodule
ACCESS: CALL EURAIN
INPUTS: EUC = telemetry data
 ITLM = telemetry data
 ISTAT = status words
 WLEVI = level 1 output products
OUTPUTS: WLEVI = level 1 output products
TABLES: None
ALGORITHM: 1. End of algorithm
 RETURN
1. The following TYPE statements must be included in the code of this submodule
 COMMON /EU COEF/ EUC(8,100)
 COMMON /TL MTRY/ ITLM(100)
 COMMON /STATU S/ ISTAT(100)
 COMMON /SENS OR/ WLEV1(300)

2. Algorithm will be defined at a later date
3. If subcom counter skips, set output parameter to -9999

SUBROUTINE EUWFRM

EU processing of waveform, CW, or dump data

REFERENCE: None

CONTROL: A.A-1.1 EUCONV EU conversion module

SUPPORT: None

ACCESS: CALL EUWFRM

INPUTS: EUC = EU conversion coefficients
 ITLM = telemetry data
 ISTAT = status words

OUTPUTS: WLEV1 = level 1 output products

TABLES: None

ALGORITHM:
1. Check for CW code
 IF (ISTAT(18) .EQ. 0) GO TO 5

2. Check for memory dump
 IF (ISTAT(6) .EQ. 1) GO TO 6

3. Extract the waveform samples
 DO 10 I = 31,93
 J = I + 129
 10 WLEV1(J) = ITLM(I)
 GO TO 7

5. Process CW mode
 GO TO 7

6. Process memory dump
 GO TO 7

7. End of algorithm
 RETURN
COMMENTS: 1. The following TYPE statements must be included in the code of this submodule

COMMON /EUROEF/ EUC(8,100)
COMMON /TLMTRY/ ITLM(100)
COMMON /STATUS/ ISTAT(100)
COMMON /SENSOR/ WLEV1(300)

2. Algorithms for CW mode and memory dump will be defined at a later date

LEVEL I ALTITUDE CORRECTION MODULE A.A-1.2

TITLE: SUBROUTINE ALICOR

FUNCTION: To act as the driver module for the calculation of the sensor-related corrections to the altitude, the AGC, and the time, for all non-calibration and non-adaptive resolution mode data

REFERENCE: Not applicable

CONTROL: A.A-1.0 ALTIUR level 1 driver module

SUPPORT: A.A-1.2.1 TIMCOR time tag correction submodule
A.A-1.2.2 CZBIAS cal zone bias submodule
A.A-1.2.3 OFFSET C.G. offset submodule
A.A-1.2.4 CMBIAS cal mode bias submodule

ACCESS: CAL ALICOR

INPUTS: ALTO = uncorrected altitude in (m,0.001)
TMJDO = uncorrected modified julian date in (d,1.0x10^-8)
ISTAT(25) = altimeter designation flag (1 or 2)
WLEV1(9) = uncorrected AGC in (dB,0.01)
WLEV1(119) = time tag correction in (s,0.0001)
WLEV1(126) = altitude cal zone bias in (m,0.001)
WLEV1(128) = altitude C.G. offset in (m,0.001)
WLEV1(130) = altitude cal mode bias in (m,0.001)
WLEV1(132) = AGC cal mode bias in (dB,0.01)

OUTPUTS: ALTI = corrected altitude in (m,0.001)
TMJDO = corrected modified julian date in (d,1.0x10^-8)
WLEV1(120) = year - 1900
WLEV1(121) = month
WLEV1(122) = day
WLEV1(123) = hour
WLEV1(124) = minute
WLEV1(125) = second
WLEV1(135) = corrected AGC in (dB,0.01)

TABLES: None
ALGORITHM:
1. Determine the net time tag correction
 CALL TIMCOR
2. Correct the modified Julian date
 \[
 \text{DELT} = \text{DBLE(WLEV1(119))} / 86400.00 + 00
 \text{TMJD1} = \text{TMJDO} + \text{DELT}
 \]
3. Determine the hour
 \[
 \text{MJD} = \text{TMJD1}
 \text{DHOUR} = (\text{TMJD1}-\text{MJD}) \times 24.00 + 00
 \text{IHOUR} = \text{DHOUR}
 \text{WLEV1(123)} = \text{IHOUR}
 \]
4. Determine the minute
 \[
 \text{DMIN} = (\text{DHOUR}-\text{IHOUR}) \times 60.00 + 00
 \text{IMIN} = \text{DMIN}
 \text{WLEV1(124)} = \text{IMIN}
 \]
5. Determine the second
 \[
 \text{WLEV1(125)} = (\text{DMIN}-\text{IMIN}) \times 60.00 + 00
 \]
6. If same day, and same altimeter as last time, skip to Step #10
 IF (IHOUR .LT. 12) MJD = MJD + 1
 IF (ISTAT(25) .NE. LALT) GO TO 7
 IF (MJD .EQ. LMJD) GO TO 10
7. Determine the year
 ICHECK = 0
 DO 100 I = 2,25
 J = I - 1
 IF (MJD .LT. IREF(I)) GO TO 150
 100 CONTINUE
 150 IYEAR = J + 74
 \text{WLEV1(120)} = \text{IYEAR}
8. Determine the month
 \[
 \text{K} = 1
 \text{IF (MOD(IYEAR,4) .EQ. 0) K} = 2
 \text{IDOY} = \text{MJD} - \text{IREF(J)}
 \text{DO 200 I = 2,12}
 J = I - 1
 \text{IF (IDOY .LT. JREF(I,K)) GO TO 250}
 200 CONTINUE
250 IMON = J
WLEV1(121) = IMON

9. Determine the day
 IDAY = ID0Y - JREF (IMON, K)
 WLEV1(122) = IDAY

10. Determine if the altitude and AGC correction must be computed
 IF (ICHECK .EQ. 1) GO TO 15

11. Determine the cal zone bias
 CAL CZBIAS

12. Determine the C.G. offset
 CALL OFFSET

13. Determine the cal mode bias
 CALL CMBIAS

14. Check the validity of the altitude and AGC corrections
 DH1 = WLEV1(126)
 DH2 = WLEV1(128)
 DH3 = WLEV1(130)
 DAGC = WLEV1(132)
 IF (DH1 .LT. -9000.0) DH1 = 0.0
 IF (DH2 .LT. -9000.0) DH2 = 0.0
 IF (DH3 .LT. -9000.0) DH3 = 0.0
 IF (DAGC .LT. -9000.0) DAGC = 0.0
 DALT = DBLE(DH1+DH2+DH3)
 IF (DALT.GT.-9000.0D+00 .AND. DAGC.GT.-9000.0) ICHECK = 1
 LALT = ISTAT(25)
 LMJD = NJD

15. Apply the altitude and AGC corrections
 ALTI = ALTO + DALT
 WLEV1(135) = WLEV1(9) + DAGC

16. End of algorithm
 RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this module:
 DOUBLE PRECISION TNJ00, TMJDI, DELT, ALTO, ALTI, DALT
 DIMENSION IREF(25), JREF(12, 2)
 COMMON /STATUS/ ISTAT(100)
 COMMON /SENSOR/ WLEV1(300)
 EQUIVALENCE (ALTO, WLEV1(5)) , (TNJDO, WLEV1(115))
 EQUIVALENCE (ALTI, WLEV1(133)) , (TMJDI, WLEV1(117))
DATA LMJD/-9999/, LALT/-9999/
DATA IREF/ 0, 365, 731,1096,1461,1826,2192,
 2557,2922,3287,3653,4018,4383,4748,
 5114,5479,5844,6209,6575,6940,7305,
 7670,8036,8401,8766/
DATA JREF/ 0, 31, 59, 90,120,151,181,212,
 243,273,304,334, 0, 31, 60, 91,
 121,152,182,213,244,274,305,335/

2. The year, month, and day, and the altitude and AGC corrections (Step
 #7 through Step #14) are only computed once per day

3. The altitude and AGC corrections are scheduled to be computed only
 once per day. However that calculation might be required more fre-
 quently because of mission operation design.

TIME TAG CORRECTION SUBMODULE

TITLE: SUBROUTINE TIMCOR
FUNCTION: To compute the time tag correction, which accounts for the difference
 between the telemetry stream time tag (the time at which the reflected
 pulse reaches the telemeter) and the time at which the altimeter pulse
 is actually reflected from the earth's surface. The correction cons-
 sists of a constant component, which is mode dependent, and a variable
 component, which is altitude dependent.

REFERENCE: "Seasat Algorithm Development Facility Altimeter Sensor Algorithm

CONTROL: A.A-1.2 ALICOR level 1 altitude correction module

SUPPORT: None

ACCESS: CALL TIMCOR

INPUTS: ISTAT(9) = operate status
 ISTAT(25) = altimeter designator (1 or 2)
 ALTO = uncorrected altitude in (m,0.001)
 DTC = array of time corrections from Table 1.2.1
 ALTLO = altitude lower limit in (m,1.0)
 ALTHI = altitude higher limit in (m,1.0)

OUTPUTS: WLEV1(119) = time tag correction in (s,0.0001)

TABLES: Table 1.2.1 Constant Time Tag Correction (see Appendix B)

ALGORITHM: 1. Check input values
 IF (ISTAT(9).LT.1 .OR. ISTAT(9).GT.4) GO TO 5
IF (ISTAT(25).LT.1 .OR. ISTAT(25).GT.2) GO TO 5
IF (ALTO.LT.ALTLO .OR. ALTO.GT.ALTHI) GO TO 5

2. Determine the constant time tag correction
 MODE = ISTAT(9)
 IALT = ISTAT(25)
 DT1 = DTC(MODE,IALT)

3. Determine the variable time tag correction
 DT2 = ALTO / (C*2.0D+00)

4. Determine the net time tag correction
 WLEV1(119) = DT1 + DT2
 GO TO 7

5. Input out of range - print warning message and all input variables

6. WLEV1(119) = -9999.0

7. End of algorithm
 RETURN

COMMENTS: 1. The following TYPE statements must be included in the code of this submodule
 DOUBLE PRECISION ALTO,C
 COMMON /STATUS/ ISTAT(100)
 COMMON /SENSOR/ WLEV1(300)
 COMMON /ALTLIM/ ALTLO,ALTHI
 COMMON /T121/ DTC(4,2)
 EQUIVALENCE (ALTO,WLEV1(5))
 DATA C/2.99792458D+08/

CAL ZONE BIAS SUBMODULE A.A-1.2.2

TITLE: SUBROUTINE CZBIAS
FUNCTION: To set the altitude cal zone bias, which maximizes the absolute accuracy
 of the altitude measurement, and its associated standard deviation. The
correction is based upon the analysis of altimeter data segments taken
directly over laser tracking stations.

REFERENCE: None
CONTROL: A.A-1.2 ALICOR level 1 altitude correction module
SUPPORT: None
ACCESS: Call CZBIAS
INPUTS: ISTAT(25) = altimeter designation flag (1 or 2)
 TMJD1 = modified julian date in (d,1.0x10^-8)
DCZB = array of time from Table 1.2.1
CZB = array of cal zone biases from Table 1.2.2
SCZB = array of standard deviations from Table 1.2.2

OUTPUTS:
WLEV1(126) = altitude cal zone bias in (m,0.001)
WLEV1(127) = cal zone bias standard deviation in (m,0.001)

TABLES:
Table 1.2.2 Cal Zone Bias and Standard Deviation (see Appendix B)

ALGORITHM:
1. Check input values
 IF (ISTAT(25).LT.1 .OR. ISTAT(25).GT.2) GO TO 4
 IF (TMJD1.LT.0.00+00 .OR. TMJD1.GT.1.00+05) GO TO 4
2. Select the proper table entry index
 DO 100 I = 2,5
 K = I - 1
 IF (DCZB(I) .GT. TMJD1) GO TO 3
100 CONTINUE
 K = 5
3. Set the cal zone bias and its standard deviation
 IFLAG = ISTAT(25)
 WLEV1(126) = CZB(K,IFLAG)
 WLEV1(127) = SCZB(K,IFLAG)
 GO TO 6
4. Input out of range - print warning message and all input variables
5. WLEV1(126) = -9999.0
 WLEV1(127) = -9999.0
6. End of algorithm
 RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this submodule:
 DOUBLE PRECISION TMJD1,DCZB
 COMMON /STATUS/ ISTAT(100)
 COMMON /SENSOR/ WLEV1(300)
 COMMON /T122/ DCZB(5),CZB(5,2),SCZB(5,2)
 EQUIVALENCE (TMJD1,WLEV1(117))
2. This submodule will be accessed only once per day
CENTER OF GRAVITY OFFSET SUBMODULE

TITLE: SUBROUTINE OFFSET

FUNCTION: To set the altitude center of gravity offset correction and its standard deviation. The correction depends upon the expenditure of onboard fuel and the position of each of the altimeters with respect to the center of gravity of the spacecraft.

REFERENCE: None

CONTROL: A.A-1.2 ALICOR level 1 altitude correction module

SUPPORT: None

ACCESS: CALL OFFSET

INPUTS:
- ISTAT(25) = altimeter designation flag (1 or 2)
- TMJD1 = modified julian date in (d,1.0x10^-8)
- DCGO = array of time from Table 1.2.3
- CGO = array of C.G. offsets from Table 1.2.3
- SCGO = array of standard deviations from Table 1.2.3

OUTPUTS:
- WLEV1(128) = altitude C.G. offset in (m,0.001)
- WLEV1(129) = C.G. offset standard deviation in (m,0.001)

TABLES: Table 1.2.3 C.G. Offset and Standard Deviation (see Appendix B)

ALGORITHM:
1. Check input values
 IF (ISTAT(25).LT.1 .OR. ISTAT(25).GT.2) GO TO 4
 IF (TMJD1.LT.0.0D+00 .OR. TMJD1.GT.1.0D+05) GO TO 4
2. Select the proper table entry index
 DO 100 I = 2,10
 K = I - 1
 IF (DCGO(I) .GT. TMJD1) GO TO 3
 100 CONTINUE
 K = 10
3. Set the C.G. offset and standard deviation
 IFLAG = ISTAT(25)
 WLEV1(128) = CGO(K,IFLAG)
 WLEV1(129) = SCGO(K,IFLAG)
 GO TO 6
4. Input out of range - print warning message and all input variables
5. WLEV1(128) = -9999.0
 WLEV1(129) = -9999.0
6. End of algorithm

COMMENTS: 1. The following TYPE statements must be included in the code of this submodule:
DOUBLE PRECISION TMJD1,DCGO
COMMON /STATUS/ ISTAT(100)
COMMON /SENSOR/ WLEV1(300)
COMMON /T123/ DCGO(10),CGO(10,2),SCGO(10,2)
EQUIVALENCE (TMJD1,WLEV1(5))

2. This submodule is scheduled to be accessed only once per day.
However, the C.G. offset might be required more frequently.

CAL MODE BIAS SUBMODULE

TITLE: SUBROUTINE CMBIAS
FUNCTION: To set the altitude and AGC cal mode bias corrections and standard deviations. The bias corrections maximize the relative accuracies in order to maintain consistent output products.
REFERENCE: None
CONTROL: A.A-1.2 ALICOR level 1 altitude correction module
SUPPORT: None
ACCESS: CALL CMBIAS

INPUTS:
ISTAT(25) = altimeter designation flag (1 or 2)
TMJD1 = modified julian date in (d,1.0x10^-8)
TCMB = array of times from Table 1.2.4
CMB = array of altitude biases from Table 1.2.4
SCMB = array of standard deviations from Table 1.2.4
AGCB = array of AGC biases from Table 1.2.4
SAGCB = array of AGC standard deviations from Table 1.2.4

OUTPUTS:
WLEV1(130) = altitude cal mode bias in (m,0.001)
WLEV1(131) = cal mode bias standard deviation in (m,0.001)
WLEV1(132) = AGC cal mode bias in (dB,0.01)
WLEV1(144) = AGC cal mode bias standard deviation in (dB,0.01)

TABLES: Table 1.2.4 Cal Mode Biases and Standard Deviations (see Appendix B)

ALGORITHM:
1. Check input values
 IF (ISTAT(25).LT.1 OR. ISTAT(25).GT.2) GO TO 4
 IF (TMJD1.LT.0.00+00 .OR. TMJD1.GT.1.00+05) GO TO 4
2. Select the proper table entry index
 DO 100 I = 2,5
 K = I - 1
 IF (DCMB(I).GT. TMJD1) GO TO 3
100 CONTINUE
K = 5
3. Set the cal mode biases and standard deviation
 IFLAG = ISTAT(25)
 MLEV1(130) = CMB(K,IFLAG)
 MLEV1(131) = SCMB(K,IFLAG)
 MLEV1(132) = AGCB(K,IFLAG)
 MLEV1(144) = SAGCB(K,IFLAG)
 GO TO 6
4. Input out of range - print warning message and all input variables
5. MLEV1(130) = -9999.0
 MLEV1(131) = -9999.0
 MLEV1(132) = -9999.0
 MLEV1(144) = -9999.0
6. End of algorithm
 RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this
 submodule:
 DOUBLE PRECISION TNJDI,DCMB
 COMMON /STATUS/ ISTAT(100)
 COMMON /SENSOR/ MLEV1(300)
 COMMON /T124/ DCMB(5),CMB(5,2),SCMB(5,2),AGCB(5,2),SAGCB(5,2)
 EQUIVALENCE (TNJDI,MLEV1(5))
2. This submodule will be accessed only once per day

CAL MODE MODULE A.A-1.3

TITLE: SUBROUTINE CALMOD
FUNCTION: To control the processing and evaluation of all calibration mode data,
 which is designed to detect changes in altitude, AGC, and other parameters
 due to aging, temperature and voltage fluctuations, etc. The cal mode
 data, normally commanded once per day, will last for 60 seconds, the first
 44 seconds being Cal I and the last 16 seconds being Cal II.
REFERENCE: None
CONTROL: A.A-1.0 ALT1DR level 1 driver module
SUPPORT: A.A-1.3.1 CAL1 Cal I processing submodule
 A.A-1.3.2 CAL2 Cal II processing submodule
 A.A-1.3.3 TREND trend file processing submodule
ACCESS: CALL CALMOD (NFINAL)

INPUTS:
NFINAL = 0 for all but last Cal II entry
= 1 for last Cal II entry (wrap up)
ISTAT(22) = Cal I indicator
ISTAT(23) = Cal II indicator

OUTPUTS: None

TABLES: None

ALGORITHM:
1. Determine the Cal type (NCAL = 1 for Cal I, NCAL = 2 for Cal II, NCAL = -1 for improper input)
 IF (NFINAL .EQ. 1) GO TO 5
 NCAL = -1
 IF (ISTAT(22) .EQ. 1) NCAL = 1
 IF (ISTAT(23) .EQ. 1) NCAL = 2
 IF (NCAL .EQ. 1) GO TO 2
 IF (KCAL .EQ. 2) GO TO 3
 GOTO 7
2. Process Cal I data if present
 CALL CAL1 (0)
 MCAL = 1
 GOTO 8
3. Wrap up Cal I data if required
 IF (MCAL .EQ. 1) CALL CAL1 (1)
4. Process Cal II data
 CALL CAL2 (0)
 MCAL = 2
 GOTO 8
5. Wrap up Cal II data if required
 CALL CAL2 (1)
6. Process Trend File
 CALL TREND
 GOTO 8
7. Input out of range - print warning message and all input variables
8. End of algorithm
 RETURN

COMMENTS:
1. The following TYPE statement must be included in the code of this submodule:
 COMMON /STATUS/ ISTAT(100)
2. MCAL is the type of calibration for the previous module entry
 (MCAL = 1 for Cal I or MCAL = 2 for Cal II)
CAL I PROCESSING SUBMODULE

TITLE: SUBROUTINE CAL1

FUNCTION: To process all of the Cal I calibration mode data. Cal I is designed to measure transmitter/receiver power and RF pathlength changes and to verify the shape of the transmitted pulse. It will occur during the first 44 seconds of the calibration mode and will be divided into 11 steps of 4 seconds each.

REFERENCE: None

CONTROL: A.A-1.3 CALMOD cal mode monitor module

SUPPORT: A.A-1.3.1.1 STAT cal mode statistical accumulation submodule

ACCESS: CALL CAL1 (IEND)

INPUTS:
- IEND = 0 for all but last Cal I entry
- 1 for last Cal I entry (wrap up)
- ISTAT(1) = command out to SACU
- ISTAT(11) = channel select (1 to 20)
- ISTAT(25) = altimeter designator (1 or 2)
- ALT = altitude in (m,0.001)
- TMJD = modified julian date in (d,1.0x10^-9)
- WLEVEL = level 1 output products
- XL = Cal I parameter lower edit limit array
- XU = Cal I parameter upper edit limit array
-XE = Cal I parameter expected value array
- TL = Cal I parameter lower tolerance limit array
- TU = Cal I parameter upper tolerance limit array
- ST = Cal summary time array
- SM = Cal summary mean array
- SE = Cal summary engineering mean array

OUTPUTS: A.D-1.91 = Cal report file

TABLES: A table containing Cal I Parameter Edit Limits, Tolerances, and Nominal Values to be defined later.

ALGORITHM: 1. Check the value of the Cal I step number (NSTEP) against the previous Cal I step number (MSTEP). Normally, their difference should be either zero or one.
 a. K = ISTAT(25)
 IF (IEND .EQ. 1) GO TO 8
 NSTEP = ISTAT(1) - 4
 IF (NSTEP.LT.1 .OR. NSTEP.GT.11) GO TO (1-d)
 NTEST = NSTEP - MSTEP
IF (NTEST .EQ. 0) GO TO 2
IF (NTEST .EQ. 1) GO TO 8

b. Cal I step number out of order - print warning message
c. GO TO 8
d. Illegal value for Cal I step number - print warning message
e. GO TO 11

2. Add previous record of subcom data to summations
 a. M1 is indication of data present from subcom #1
 IF (M1 .EQ. 0) GO TO 100
 CALL STAT (2, X(M1), 1, XL(M1,K), XU(M1,K), XE(M1,K), S1(M1), S2(M1),
 N1(M1), N2(M1), XMIN(M1), XMAX(M1), XM(M1), XV(M1), XS(M1))
 b. M2 is indication of data present from subcom #2
 IF (M2 .EQ. 0) GO TO 3
 CALL STAT (2, X(M2), 1, XL(M2,K), XU(M2,K), XE(M2,K), S1(M2), S2(M2),
 N1(M2), N2(M2), XMIN(M2), XMAX(M2), XM(M2), XV(M2), XS(M2))

3. Save current record of subcom #1 data. N is a counter based upon the
 channel select status (ISTAT(11)). ISTAT(11) = 5 is skipped because
 subcom #1 contains no data for that value.
 N = ISTAT(11)
 IF (ISTAT(11) .EQ. 5) GO TO 200
 IF (ISTAT(11) .GT. 5) N = ISTAT(11) - 1
 M1 = N + 71
 X(M1) = WLEV1(N+18)
 GO TO 4

 200 M1 = 0

4. Save current record of subcom #2 data. N is a counter based upon the
 channel select status (ISTAT(11)). ISTAT(11) = 14 and ISTAT(11) > 15
 are skipped because subcom #2 contains no data for those values.
 N = ISTAT(11)
 IF (ISTAT(11) .EQ. 14) GO TO 300
 IF (ISTAT(11) .GT. 15) GO TO 300
 IF (ISTAT(11) .EQ. 15) N = ISTAT(11) - 1
 M2 = N + 90
 X(M2) = WLEV1(N+37)
 GO TO 5

 300 M2 = 0

5. Check for steady state condition (2 seconds elapsed since beginning
 of the Cal I step)
TDIFF = (TMJD-TSTART) * 86400.0
IF (TDIFF .LT. 2.0) GO TO 7

6. Add previous record of non-subcom data to summations
 CALL STAT(2,X,71,XL(1,K),XU(1,K),XE(1,K),S1,S2,N1,N2
 1 XMIN,XMAX,XM,XV,XS)

7. Save current record of non-subcom data
 DO 400 I = 1,63
 J = I + 159
 400 X(I) = WLEV1(J)
 X(64) = ALT - ALTREF
 X(65) = WLEV1(7)
 X(66) = WLEV1(10)
 X(67) = WLEV1(15)
 X(68) = WLEV1(16)
 X(69) = WLEV1(17)
 X(70) = WLEV1(18)
 X(71) = WLEV1(9)
 GO TO 11

8. Compute final statistics for previous step (non-subcom data)
 a. If MSTEP = 0, no data present for statistical computations
 IF(MSTEP .EQ. 0) GO TO 10
 CALL STAT (.3,X,71,XL(1,K),XU(1,K),XE(1,K),S1,S2,N1,N2
 1 XMIN,XMAX,XM,XV,XS)
 b. Print MSTEP and statistics (i.e., XM(I), XS(I), XMIN(I), and
 XMAX(I) for I=1 to 71)
 c. Save means for summary and trend
 ST(MSTEP) = TSTART
 DO 500 I = 1,71
 500 SM(I,MSTEP) = XM(I)
 d. Determine if this is the final entry of Cal I data
 IF(IEND .EQ. 0) GO TO 10

9. Compute final statistics for entire Cal I (subcom data)
 a. CALL STAT (3,X(72),33,XL(72,K),XU(72,K),XE(72,K),S1(72),S2(72)
 1 N1(72),N2(72),XMIN(72),XMAX(72),XM(72),XV(72),XS(72))
 b. Print statistics (i.e., XM(I), XS(I), XMIN(I), XM(I), and
 N1(I) for I=72 to 104)
 c. Print summary of means, flagging parameters which lie outside
 tolerance limits
d. Save subcom means for trend
 DO 600 I = 1,33
 J = I + 71
 600 SE(I,1) = XM(J)

e. NSTEP = 0
 M1 = 0
 M2 = 0

10. Initialization section for next step (MSTEP = 0 for initial entry of entire calibration mode; N is the number of variables to be zeroed - 104 for initial entry of entire cal mode or 71 for initialization of each subsequent step)

 N = 71
 IF (MSTEP .GT. 0) GO TO 700
 N = 104
 DO 625 I = 1,12
 ST(I) = 0.0D+00
 DO 625 J = 1,71
 625 SM(J,I) = 0.0
 DO 650 I = 1,38
 DO 650 J = 1,2
 650 SE(I,J) = 0.0
 650 SE(I,J) = 0.0
 700 MSTEP = NSTEP
 TSTART = TMJD
 CALL STAT (1,X,N,XL(1,K),XU(1,K),XE(1,K),S1,S2,N1,N2,
 1 XMIN,XMAX,XM,XV,XS)

11. End of algorithm
 RETURN

COMMENTS: 1. The following TYPE statements must be included in the code of this submodule:

 DOUBLE PRECISION TMJD,TSTART,ALT,ALTREF,ST
 DIMENSION X(104),S1(104),S2(104),N1(104),N2(104)
 DIMENSION XMIN(104),XMAX(104),XM(104),XV(104),XS(104)
 COMMON /STATUS/ ISTAT(100)
 COMMON /SENSOR/ WLEV1(300)
 COMMON /T131/ XL(104,2),XU(104,2),XE(104,2),TL(104,2),TU(104,2)
 COMMON /CALSUM/ ST(12),SM(71,12),SE(33,2)
 COMMON /ALTCAL/ ALTREF
 EQUIVALENCE (TMJD,WLEV1(117)),(ALT,WLEV1(5))
2. The previous record is used to accumulate the summations due to the possible occurrence of bad data in the last record of each step.
3. "Steady state" is presumed to be attained after the first two seconds of each step.

CAL MODE STATISTICAL ACCUMULATION SUBMODULE

TITLE: SUBROUTINE STAT
FUNCTION: To calculate the mean, variance, standard deviation, minimum, and maximum of several data sets simultaneously, with the editing of spurious data.
REFERENCE: Not applicable
CONTROL: A.A-1.3.1.1 Cal I Processing Submodule
A.A-1.3.1.1 Cal II Processing Submodule
SUPPORT: None
ACCESS: CALL STAT (J,X,M,XL,XU,XE,Sl,S2,N1,N2,XMIN,XMAX,XM,XV,XS)
The module is accessed in one of the three modes, depending upon the value of J:

- J = 1 This mode is used to initialize constants. No data are supplied in this mode.
- J = 2 This mode is used when data are supplied. The summations required for the calculation are accumulated.
- J = 3 This mode is used to calculate the final statistics. Only the summations are supplied in this mode.

For example, when the Cal I submodule is processing cal mode data, it accesses SUBROUTINE STAT once with J = 1 at the beginning of each Cal I step. After the data has reached a steady state condition, SUBROUTINE STAT is accessed with J = 2 once for each input data record (approximately 40 times). At the end of each Cal I step, SUBROUTINE STAT is accessed once with J = 3 to calculate the final statistics.

The input variable M defines the number of separate data sets whose statistics are to be determined simultaneously. Each time that the module is accessed with J = 2, only one point for each of the M separate data sets is supplied.

INPUTS:
- J = 1 for initialization (no data are supplied)
- J = 2 for supplying data and accumulating statistics
- J = 3 for final wrap up (no data are supplied)
X = the vector of data (each element contains a data point for one of the M separate data sets)

M = the number of separate data sets for which statistics are to be calculated simultaneously and the dimension of X, XL, XU, XE, S1, S2, N1, N2, XMIN, XMAX, XM, XV, and XS

XL = the vector containing the lower edit limits

XU = the vector containing the upper edit limits

XE = the vector containing the expected mean values

OUTPUTS:

S1 = the vector containing the summation of the unedited points

S2 = the vector containing the summation of the squares of the unedited points

N1 = the vector containing the number of unedited points

N2 = the vector containing the number of edited points

XMIN = the vector containing the minimum unedited points

XMAX = the vector containing the maximum unedited points

XM = the vector containing the calculated mean values

XV = the vector containing the calculated variances

XS = the vector containing the calculated standard deviations

TABLES: None

ALGORITHM:

1. Check input mode

a. IF (J .EQ. 1) GO TO 2

 IF (J .EQ. 2) GO TO 3

 IF (J .EQ. 3) GO TO 4

b. Erroneous value of J - print warning message

 GO TO 4

2. Initialize parameters

 DO 100 I = 1,M

 XM(I) = 0.0

 XV(I) = 0.0

 XS(I) = 0.0

 S1(I) = 0.0

 S2(I) = 0.0

 XMIN(I) = +9999.0E+20

 XMAX(I) = -9999.0E+20

 N1(I) = 0

 100 N2(I) = 0

 GO TO 5

3. Update the summations

 DO 200 I = 1,M

 200
IF (X(I) .LT. XL(I)) GO TO 150
IF (X(I) .GT. XU(I)) GO TO 150
CONS = X(I) - XE(I)
N1(I) = N1(I) + 1
S1(I) = S1(I) + CONS
S2(I) = S2(I) + CONS*CONS
IF (X(I) .LT. XMIN(I)) XMIN(I) = X(I)
IF (X(I) .GT. XMAX(I)) XMAX(I) = X(I)
GO TO 200
150 N2(I) = N2(I) + 1
200 CONTINUE
GO TO 5

4. Calculate the final statistics
DO 300 I = 1,M
IF (N1(I) .GE. 2) GO TO 250
XM(I) = -9999.0
XV(I) = -9999.0
XS(I) = -9999.0
GO TO 300
250 CONS = N1(I)
XM(I) = S1(I)/CONS + XE(I)
XV(I) = (CONS*S2(I)-S1(I)*S1(I)) / (CONS*(CONS-1.0))
XS(I) = SQRT(XV(I))
300 CONTINUE

5. End of algorithm
RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this module:

 DIMENSION X(M),XL(M),XU(M),XE(M),S1(M),S2(M),N1(M),N2(M)
 DIMENSION XMIN(M),XMAX(M),XM(M),XV(M),XS(M)

2. The values of the S1, S', N1, N2, XMIN, and XMAX vectors must not be altered by the controlling module until after SUBROUTINE STAT has been accessed with J = 3 since these vectors contain variables that are required for the final calculation of the statistical parameters.

3. The units of all of the input and output variables are consistent with the units of X. It should be noted however that imbedded in the calculations of the statistics is the sum of the squares of the unedited points. If the individual data points are large (in absolute value), then this summation could cause loss of accuracy due to truncation.
error. To alleviate this potential problem, the expected mean value (XE) is subtracted from each data point prior to the calculation of the summations. Then, before the final calculation of the statistics, the summations are modified to remove the effects of subtracting out XE. This entire process is invisible to the controlling module. In fact, some elements of XE may be set equal to zero if truncation error is not a problem for that particular data set.

4. The XL, XU, and XE arrays are column vectors of doubly subscripted arrays which are dimensioned in the accessing module.

CAL II PROCESSING MODULE

TITLE: SUBROUTINE CAL2
FUNCTION: To process all of the Cal II calibration mode data. Cal II data are designed to determine the aging characteristics of the system reference to noise. These data will occur during the last 16 seconds of the calibration mode.

REFERENCE: None

CONTROL: A.A-1.3 CALMOD cal mode monitor module

SUPPORT: A.A-1.3.1.1 STAT cal mode statistical accumulation submodule

ACCESS: CALL CAL2 (IEND)

INPUTS:
- IEND = 0 for all but last Cal II entry
- IEND = 1 for last Cal II entry (wrap up)
- ISTAT(11) = channel select (1 to 20)
- ISTAT(25) = altimeter designator (1 or 2)
- ALT = altitude in (m, 0.001)
- TMJD = modified julian date in (d, 1.0x10^-9)
- WLEV1 = level 1 output products
- YL = Cal II parameter lower edit limit array
- YU = Cal II parameter upper edit limit array
- YE = Cal II parameter expected value array
- ZL = Cal II parameter lower tolerance limit array
- ZU = Cal II parameter upper tolerance limit array
- ST = Cal summary time array
- SM = Cal summary mean array
- SE = Cal summary engineering mean array

OUTPUTS:
- A.D-1.91 = Cal report file
TABLES: A table containing Cal II Parameter Edit Limits, Tolerances, and Nominal Values to be defined later.

ALGORITHM:
1. Check for first Cal II record; if first record \((NS=0) \) then initialize summations

 IF (IEND .EQ. 1) GO TO 8
 IF (NS .EQ. 1) GO TO 2

 \[K = \text{ISTAT}(25) \]

 CALL STAT(1,Y,104,YL(1,K),YU(1,K),YE(1,K),S1,S2,N1,N2,
 1 YMIN,YMAX,YM,YV,YS)

 \[\text{TSTART} = \text{TMJD} \]

 \[\text{NS} = 1 \]

2. Add previous record of subcom data to summations

 a. \(M1 = 0 \) is indication of data present in subcom \#1

 IF (M1 .EQ. 0) GO TO 100

 CALL STAT (2,Y(M1),1,YL(M1,K),YU(M1,K),YE(M1,K),S1(M1),S2(M1),
 1 N1(M1),N2(M1),YMIN(M1),YMAX(M1),YM(M1),YV(M1),YS(M1))

 b. \(M2 = 0 \) is indication of data present in subcom \#2

 IF (M2 .EQ. 0) GO TO 3

 CALL STAT (2,Y(M2),1,YL(M2,K),YU(M2,K),YE(M2,K),S1(M2),S2(M2),
 1 N1(M2),N2(M2),YMIN(M2),YMAX(M2),YM(M2),YV(M2),YS(M2))

3. Save the current record of subcom \#1 data. \(N \) is a counter based upon the channel select status \(\text{ISTAT}(11) \). \(\text{ISTAT}(11) = 5 \) is skipped because subcom \#1 contains no data for that value.

 \[N = \text{ISTAT}(11) \]

 IF (ISTAT(11) .EQ. 5) GO TO 200

 IF (ISTAT(11) .GT. 5) \(N = \text{ISTAT}(11) - 1 \)

 \[M1 = N + 71 \]

 \[Y(M1) = \text{WLEVI}(N+18) \]

 GO TO 4

4. Save current record of subcom \#2 data. \(N \) is a counter based upon the channel select status \(\text{ISTAT}(11) \). \(\text{ISTAT}(11) = 14 \) and \(\text{ISTAT}(11) > 15 \) are skipped because subcom \#2 contains no data for those values.

 \[N = \text{ISTAT}(11) \]

 IF (ISTAT(11) .EQ. 14) GO TO 300

 IF (ISTAT(11) .GT. 15) GO TO 300

 IF (ISTAT(11) .EQ. 15) \(N = \text{ISTAT}(11) - 1 \)

 \[M2 = N + 90 \]

 \[Y(M2) = \text{WLEVI}(N+37) \]
GO TO 5
300 M2 = 0
5. Check for steady state condition
 TDIFF = (TMJD-TSTART) * 86400.0
 IF (TDIFF .LT. 6.0) GO TO 7
6. Add previous record of non-subcom data to summations
 CALL STAT (2,Y,71,YL(1,K),YU(1,K),YE(1,K),S1,S2,M1,M2,
 1
 YMIN,YMAX,YM,YV,YS)
7. Save current record of non-subcom data
 DO 400 I = 1,63
 J = I + 159
 400 Y(I) = WLEV1(J)
 Y(64) = ALT - ALTREF
 Y(65) = WLEV1(7)
 Y(66) = WLEV1(10)
 Y(67) = WLEV1(15)
 Y(68) = WLEV1(16)
 Y(69) = WLEV1(17)
 Y(70) = WLEV1(18)
 Y(71) = WLEV1(9)
 GO TO 9
8. Compute final statistics for Cal II
 a. CALL STAT (3,Y,104,YL(1,K),YU(1,K),YE(1,K),S1,S2,M1,M2,
 1
 YMIN,YMAX,YM,YV,YS)
 b. Print statistics (i.e., YM(I), YS(I), YMIN(I), and YMAX(I) for
 I = 1 to 104)
 c. Save means for summary
 ST(12) = TSTART
 DO 500 I = 1,71
 500 SM(1,12) = YM(I)
 DO 600 I = 1,33
 J = I+71
 600 SE(I,2) = Y(J)
 d. Print summaries of means, flagging parameters which lie outside
 tolerance limits
 e. M1 = 0
 M2 = 0
 NS = 0
9. End of algorithm

RETURN

COMMENTS:

1. The following TYPE statements must be included in the code of this submodule:

DOUBLE PRECISION TMJD,TSTART,ALT,ALTREF,ST
DIMENSION Y(104),S1(104),S2(104),N1(104),N2(104)
DIMENSION YMIN(104),YMAX(104),YM(104),YV(104),YS(104)
COMMON /STATUS/ ISTAT(100)
COMMON /SENSOR/ WLEVI(300)
COMMON /T132/ YL(104,2),YU(104,2),YE(104,2),ZL(104,2),ZU(104,2)
COMMON /CALSUM/ ST(12),SM(33,12),SE(33,2)
COMMON /ALTCAL/ ALTREF
EQUIVALENCE (TM,MLEV1(117)) , (ALT,MLEV1(5))
DATA M1,M2,NS/3*0/ , YM,YV,YS/312*0.0/ , N1,N2/208*0/

TREND FILE PROCESSING

A.A-1.3.3

TITLE: SUBROUTINE TREND

FUNCTION: To identify long-range trends in the calibration mode data. A file of
trends will be automatically maintained, and significant changes in
altimeter parameters will be calculated and flagged. A human decision of
the appropriate action to be taken to correct the flagged parameters will
be required. The inputs to the module will be the Cal Report data and the
trend file, and the outputs will be the updated trend file and a display
of flagged parameters.

REFERENCE: Not applicable

CONTROL: A.A-1.3 CALMOD cal mode module

SUPPORT: None

ACCESS: CALL TREND

INPUTS: Cal Report data (A.D-1.91) and trend file (A.D-1.71).

OUTPUTS: Updated trend file (A.D-1.71) and trend report (A.D-1.92).

TABLES: A table of tolerances (not presently available). The maximum number of
entries will be 100 for each of two altimeters.

ALGORITHM: The input Cal Report statistics will be compared with previous calibration
mode summaries. A curve-fit technique will be employed to determine if
any long-range trends are present. If significant long-range trends are
found, the parameters involved will be flagged and displayed for human
interpretation and reaction. This module is run once per calibration mode command, which is normally once per day.

1. The altimeter has internal calibration modes to detect changes in altitude, AGC, and other parameters attributable to aging, temperature, voltage fluctuation, etc. This mode will be employed for 60 seconds about once per day. The cal mode monitor will process the calibration mode data and generate calibration reports of comparisons with preflight nominal calibrations. These reports will require Mission Contractor interpretation when flagged changes are significant enough to justify updates to the cal mode bias submodule tables. The trend file processor is designed to identify long-range (one month to one year) trends in the calibration mode data. To this end, a file of trends will be automatically maintained by the altimeter processing software, and significant changes in altimeter parameters will be calculated and flagged. A human decision of the appropriate action to be taken to correct the flagged parameters will be required. It may take two to three weeks to verify that the characteristic is valid and, if valid, to implement a correction. Any faster changes will be detected by health status monitoring.

2. This is only a functional description. The algorithms will be defined at a later date.

ADAPTIVE RESOLUTION

TITLE:	SUBROUTINE ADPRES
FUNCTION:	To process all adaptive resolution mode data. Adaptive resolution is a mode in which the altimeter has detected surface slope changes and automatically switched to a wider pulse width and different track constants to maintain lock. The input to the module will be the altimeter engineering units data and the output will be modified altitudes, AGC, and time tags.
REFERENCE:	Not applicable
CONTROL:	A.A-1.0 ALTIDR level 1 driver module
SUPPORT:	None
ACCESS:	CALL ADPRES
INPUTS:	Altimeter engineering unit data from module A.A-1.1
OUTPUTS:	WLEV1(133) = modified altitude in (m,0.001)
	WLEV1(135) = modified AGC in (dB,0.01)
	WLEV1(117) = modified altitude time tag in (s,0.0001)
WLEV1(146) = total height correction in (m,0.001)
WLEV1(148) = AGC correction (dB,0.01)
WLEV1(119) = time-tag correction in (s,0.0001)

TABLES: Tables for each resolution step similar to those in A.A-1.2. Maximum entries are 30 for each of two altimeters.

ALGORITHM: Correct altitude, AGC, and time tags for offsets due to the selected pulse width and tracker characteristics. Generally these will be in the form of table lookups indexed by pulse width (five possible steps). This module will also process data from the CW mode.

Adaptive resolution will occur primarily over ice sheets and land. The corrections made by this module will make level 1 output products consistent with the normal track mode processed by A.A-1.2.

COMMENTS: 1. This is only a functional description.

LOCATION CLASSIFICATION MODULE A.A-1.5

TITLE: SUBROUTINE LOCATE

FUNCTION: To act as the driver module for the ephemeris interpolation software. This routine interpolates the spacecraft latitude, longitude, height above the reference ellipsoid, and attitude to the altimeter data time tag. The data is also catalogued for surface type classification.

REFERENCE: Not applicable

CONTROL: A.A-1.0 ALTIDR level 1 driver module

SUPPORT: A.A-1.5.1 PLHINT spacecraft ephemeris interpolation submodule
A.A-1.5.2 CLSIFY subsatellite point classification submodule

ACCESS: CALL LOCATE

INPUTS: None

OUTPUTS: None

TABLES: None

ALGORITHM: 1. Interpolate the spacecraft ephemeris and attitude
 CALL PLHINT
 2. Determine if subsatellite point is water, land, or ice
 CALL CLSIFY
 3. End of algorithm
 RETURN

COMMENTS: None
SPACECRAFT EPHEMERIS INTERPOLATION SUBMODULE

SUBROUTINE PLHINT

To determine the spacecraft latitude, longitude, height above the reference ellipsoid, and attitude by interpolating the ephemeris file, A.D(M)-1.82, to the proper time.

REFERENCE: None

CONTROL: A.A-1.5 LOCATE location classification module

INPUTS:
- A.D(M)-1.82 = ephemeris file
- TMJD = modified Julian date in (d, 1.0 \times 10^{-9})

OUTPUTS:
- WLEV1(136) = spacecraft attitude
- WLEV1(151) = geodetic latitude in (deg, 0.000001)
- WLEV1(152) = longitude in (deg, 0.000001)
- HGT = height above the reference ellipsoid in (m, 0.001)
- ISTAT(43) = subtrack direction flag

TABLES: None

ALGORITHM: TBD

COMMENTS:
1. The following TYPE statements must be included in the code of this submodule:
   ```
   DOUBLE PRECISION TMJD, HGT
   COMMON /STATUS/ ISTAT(100)
   COMMON /SENSOR/ WLEV1(300)
   EQUIVALENCE (TMJD, WLEV1(117)) , (HGT, WLEV1(137))
   ```
2. The spacecraft attitude is computed from onboard sensors and should not be confused with the attitude calculated in the Waveform Module, which is computed from analysis of waveform data.
3. The specific design of this algorithm for now is being left to the mission contractor.

SUBSATELLITE POINT CLASSIFICATION SUBMODULE

SUBROUTINE CLSIFY

To classify the subsatellite point as water, land, or ice based upon the world surface map

REFERENCE: None

CONTROL: A.A-1.5 LOCATE location classification module

SUPPORT: None
ACCESS: CALL CLSIFY

INPUTS:
- A.D(M)-1.83 = world surface map file
- TMJD = modified Julian date in (d,1.0x10^-9)
- WLEV1(151) = geodetic latitude in (deg,0.000001)
- WLEV1(152) = longitude in (deg, 0.000001)

OUTPUTS:
- ISTAT(44) = zone flag (1 for water, 2 for land or ice)

TABLES: None

ALGORITHM: TBD

COMMENTS:
1. The following TYPE statements must be included in the code of this submodule:
 - DOUBLE PRECISION TMJD
 - COMMON /STATUS/ ISTAT(100)
 - COMMON /SENSOR/ WLEV1(300)
 - EQUIVALENCE (TMJD,WLEV1(117))

2. The specific design of this algorithm for now is being left to the mission contractor.

HEALTH/STATUS MONITOR DRIVER MODULE A.A-1.6

TITLE: SUBROUTINE HSMNTR

FUNCTION: To monitor critical instrument parameters and turn on system alarms when a potentially damaging or dangerous condition exists.

REFERENCE: Not applicable

CONTROL: A.A-1.0 ALTI0R level 1 driver module

SUPPORT:
- A.A-1.6.1 HSDAYW health/status monitor 1-day wrap up submodule
- A.A-1.6.2 HSMINW health/status monitor n-minute wrap up submodule
- A.A-1.6.3 HSSTAT health/status monitor status processing submodule
- A.A-1.6.4 HSNONS health/status monitor non-subcom processing submodule
- A.A-1.6.5 HSSUB1 health/status monitor subcom #1 processing submodule
- A.A-1.6.6 HSSUB2 health/status monitor subcom #2 processing submodule
- A.A-1.6.7 HSSUB3 health/status monitor subcom #3 processing submodule

ACCESS: CALL HSMNTR.

INPUTS: None

OUTPUTS: None

TABLES: None

ALGORITHM:
1. Finalize statistics for 1-day averaging period if required
 CALL HSDAYW
2. Finalize statistics for n-minute averaging period if required
 CALL HSMINW
3. Process status words
 CALL HSSTAT
4. Process non-subcom data
 CALL HSNONS
5. Process subcom #1
 CALL HSSUB1
6. Process subcom #2
 CALL HSSUB2
7. Process subcom #3
 CALL HSSUB3
8. End of algorithm
 RETURN

COMMENTS: 1. The variables contained in COMMON /HSCOM/ , which is used in the sub-
modules supporting this module, are described in Tables IX(a) and IX(b).

HEALTH/STATUS MONITOR 1-DAY WRAP UP SUBMODULE A.A-1.6.1

TITLE: SUBROUTINE HSDAYW
FUNCTION: To check to see if the end of a 1-day averaging period has been reached.
If it has, final statistics for the period are calculated and printed on
the Altimeter Diagnostics File (A.D-1.93)
REFERENCE: Not applicable
CONTROL: A.A-1.6 HSMNTR health/status monitor driver module
SUPPORT: A.A-1.6.1.1 STATZ health/status monitor statistical submodule
ACCESS: CALL HSDAYW

INPUTS: TMJD = modified Julian date in (d,1.0x10^-9)
 N1D = number of unedited points (1-day averaging)
 N2D = number of edited points (1-day averaging)
 ZMIND = minimum unedited points (1-day averaging)
 ZMAXD = maximum unedited points (1-day averaging)
 ZMD = means (1-day averaging)
 ZSD = standard deviations (1-day averaging)

OUTPUTS: A.D-1.93 = Altimeter Diagnostics Files
 NEWDAY = 0 for same day
 = 1 for new day

TABLES: None
ALGORITHM:

1. Check for a new 1-day averaging period by comparing the current modified Julian date (TMJD) with the last modified Julian date (TMJDL). For each modified Julian date, 1/2 day must be added since the Julian day changes at noon and not at midnight. If the modified Julian date does not cross midnight, then NEWDAY is set equal to zero. If the modified Julian date does cross midnight, then NEWDAY is set equal to one, unless the last modified Julian date was -9999, which indicates that the current record is the first record to be processed.

 NEWDAY = 0
 MJDL = TMJDL + 0.5D+00
 MJD = TMJD + 0.5D+00
 IF (MJDL .EQ. MJD) GO TO 5
 IF (MJDL .LT. 0) GO TO 4
 NEWDAY = 1

2. New 1-day averaging period - compute final statistics for the previous 1-day averaging period for each altimeter (J = 1 and 2).

 CALL STATZ (3,1,75,1,1)
 CALL STATZ (3,1,75,1,2)

3. Print final statistics for the previous 1-day averaging period.
 Included in this print will be the number of unedited points (N1D), the number of edited points (N2D), the minimum unedited points (ZMIND), the maximum unedited points (ZMAXD), the means (ZMD), and the standard deviations (ZSD) for each of the 43 parameters and for each altimeter. (See explanation of parameters in COMMON /HSCOM/ located in module A.A-1.6.)

4. Initialize statistics for next 1-day averaging period for each altimeter (J = 1 and 2)

 CALL STATZ (1,1,75,1,1)
 CALL STATZ (1,1,75,1,2)

5. End of algorithm

 TMJDL = TMJD
 RETURN

COMMENTS:

1. The following TYPE statements must be included in the code of this submodule:

 DOUBLE PRECISION TMJD,TMJDL
 COMMON /HSCOM/ Z(75),ZL(75),ZU(75),ZE(75),
 1 S1D(75,2),S2D(75,2),N1D(75,2),N2D(75,2),
 2 ZMIND(75,2),ZMAXD(75,2),ZMD(75,2),ZVD(75,2),ZSD(75,2),
HEALTH/STATUS MONITOR STATISTICAL SUBMODULE

TITLE: SUBROUTINE STATZ

FUNCTION: To calculate the mean, variance, standard deviation, minimum, and maximum of several data sets simultaneously, with the editing of spurious data

REFERENCE: Not applicable

CONTROL: A.A-1.6.1 HSDAYW health/status monitor 1-day wrap up submodule
A.A-1.6.2 HSMINW health/status monitor n-minute wrap up submodule
A.A-1.6.3 HSSTAT health/status monitor status processing submodule
A.A-1.6.4 HSNSON health/status monitor non-subcom processing submodule
A.A-1.6.5 HSSUB1 health/status monitor subcom #1 processing submodule
A.A-1.6.6 HSSUB2 health/status monitor subcom #2 processing submodule

SUPPORT: None

ACCESS: CALL STATZ (J,K1,K2,L,N)

INPUTS: J = 1 to initialize constants (no data are supplied)
 = 2 to accumulate summations for later calculation of statistics
 = 3 to calculate final statistics (no data are supplied)
K1 = starting value of Z array first index
K2 = ending value of Z array first index
L = 1 for 1-day averaging
 = 2 for n-minute averaging
N = altimeter number
Z = data to be averaged
ZL = lower edit limits
ZU = upper edit limits
ZE = expected values

OUTPUTS: SID = summations of unedited points (1-day averaging)
S2D = summations of unedited points squared (1-day averaging)
N1D = number of unedited points (1-day averaging)
N2D = number of edited points (1-day averaging)
ZMIN = minimum unedited points (1-day averaging)
ZMAXD = maximum unedited points (1-day averaging)
ZMD = means (1-day averaging)
ZVD = variances (1-day averaging)
ZSD = standard deviations (1-day averaging)
SIM = summations of unedited points (n-minute averaging)
S2M = summations of unedited points squared (n-minute averaging)
N1M = number of unedited points (n-minute averaging)
N2M = number of unedited points (n-minute averaging)
ZMINM = minimum unedited points (n-minute averaging)
ZMAXM = maximum unedited points (n-minute averaging)
ZMM = means (n-minute averaging)
ZVM = variances (n-minute averaging)
ZSM = standard deviations (n-minute averaging)

TABLES: None

ALGORITHM:

1. Check input values
 IF (J.LT.1 .OR. J.GT.3) GO TO 5
 IF (K1.LT.1 .OR. K1.GT.75) GO TO 5
 IF (K2.LT.1 .OR. K2.GT.75) GO TO 5
 IF (L.LT.1 .OR. L.GT.2) GO TO 5
 IF (N.LT.1 .OR. N.GT.2) GO TO 5
 IF (J. EQ. 1) GO TO 2
 IF (J. EQ. 2) GO TO 3
 GO TO 4

2. Initialize parameters
 DO 100 I = K1,K2
 ZMD(I,N) = 0.0
 ZVD(I,N) = 0.0
 ZSD(I,N) = 0.0
 S1M(I,N) = 0.0
 S2M(I,N) = 0.0
 ZMINM = +9999.0E+20
 ZMAXM = -9999.0E+20
 N1M(I,N) = 0
 N2M(I,N) = 0
 ZMM(I,N) = 0.0
 ZVM(I,N) = 0.0
 ZSM(I,N) = 0.0
 S1M(I,N) = 0.0
 S2M(I,N) = 0.0
ZMINM(I,N) = +9999.0E+20
ZMAXM(I,N) = -9999.0E+20
N1M(I,N) = 0
100 N2M(I,N) = 0
GO TO 6

3. Update the summations
 a. DO 200 I = K1,K2
 IF (Z(I) .LT. ZL(I)) GO TO 3-d
 IF (Z(I) .GT. ZU(I)) GO TO 3-d
 CONS = Z(I) - ZE(I)
 IF (L .EQ. 2) GO TO 3-c
 b. 1-day averaging
 N1D(I,N) = N1D(I,N) + 1
 S1D(I,N) = S1D(I,N) + CONS
 S2D(I,N) = S2D(I,N) + CONS*CONS
 IF (Z(I) .LT. ZMIND(I,N)) ZMIND(I,N) = Z(I)
 IF (Z(I) .GT. ZMAXD(I,N)) ZMAXD(I,N) = Z(I)
 GO TO 200
 c. n-minute averaging
 N1M(I,N) = N1M(I,M) + 1
 S1M(I,N) = S1M(I,M) + CONS
 S2M(I,N) = S2M(I,M) + CONS*CONS
 IF (Z(I) .LT. ZMINM(I,N)) ZMINM(I,N) = Z(I)
 IF (Z(I) .GT. ZMAXM(I,N)) ZMAXM(I,N) = Z(I)
 GO TO 200
 d. Edited point
 IF (L .EQ. 1) N2D(I,N) = N2D(I,N) + 1
 IF (L .EQ. 2) N2M(I,N) = N2M(I,N) + 1
 e. End of loop
 200 CONTINUE
 GO TO 6

4. Calculate the final statistics
 a. DO 300 I=K1,K2
 IF (L .EQ. 2) GO TO 4-c
 b. 1-day averaging
 IF (N1D(I,N) .GE. 2) GO TO 225
 ZMD(I,N) = -9999.0
 ZVD(I,N) = -9999.0
 ZSD(I,N) = -9999.0
 GO TO 6
GO TO 300
225 CONS = N1D(I,N)
 ZMD(I,N) = S1D(I,N)/CONS + ZE(I)
 ZVD(I,N) = (CONS*S2D(I,N) - S1D(I,N)**2) / (CONS*(CONS-1.0))
 ZSD(I,N) = SQRT(ZVD(I,N))
GO TO 300

C. n-minute averaging
 IF(N1M(I,N).GE. 2) GO TO 250
 ZMM(I,N) = -9999.0
 ZVM(I,N) = -9999.0
 ZSM(I,N) = -9999.0
GO TO 300
250 CONS = N1M(I,N)
 ZMM(I,N) = S1M(I,N)/CONS + ZE(I)
 ZVM(I,N) = (CONS*S2M(I,N)-S1M(I,N)**2) / (CONS*(CONS-1.0))
 ZSM(I,N) = SQRT(ZVM(I,N))

D. End of loop
300 CONTINUE
 GO TO 6

5. Input out of range - print warning message and all input variables
6. End of algorithm
RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this
 submodule:
 COMMON /HSCOM/ Z(75),ZL(75),ZU(75),ZE(75),
 1 S1D(75,2),S2D(75,2),N1D(75,2),N2D(75,2),
 2 ZMIND(75,2),ZMAXD(75,2),ZMD(75,2),ZVD(75,2),ZSD(75,2),
 3 S1M(75,2),S2M(75,2),N1M(75,2),N2M(75,2),
 4 ZMINM(75,2),ZMAXM(75,2),ZMM(75,2),ZVM(75,2),ZSM(75,2),
 5 NEWDAY,ZAL(75,2),ZAU(75,2),NCNT(25)

2. The units of all of the input and output variables are consistent with
 the units of Z. It should be noted however that imbedded in the cal-
 culations of the statistics is the sum of the squares of the unedited
 points. If the individual data points are large (in absolute value),
 then this summation could cause loss of accuracy due to truncation
 error. To alleviate this potential problem, the expected mean value
 (ZE) is subtracted from each data point prior to the calculation of
 the summations. Then, before the final calculation of the statistics,
 the summations are modified to remove the effects of subtracting out
ZE. This entire process is invisible to the controlling module. In fact, some elements of ZE may be set equal to zero if truncation error is not a problem for that particular data set.

HEALTH/STATUS MONITOR N-MINUTE WRAP UP SUBMODULE

TITLE: SUBROUTINE HSMINW

FUNCTION: To check to see if the end of an n-minute averaging period has been reached, where the number of minutes in the averaging period is a program input (nominally 25). If it has, final statistics for the period are calculated and printed on the Altimeter Diagnostics File (A.D-1.93).

REFERENCE: Not applicable

CONTROL: A.A-1.6 HSMNTR health/status monitor driver module

SUPPORT: A.A-1.6.1.1 STATZ health/status monitor statistics submodule

ACCESS: CALL HSMINW

INPUTS:
- TMJD = modified Julian date in (d, 1.0x10^-9)
- IEXEC(4) = interval for n-minute averaging period
- N1M = number of unedited points (n-minute averaging)
- N2M = number of edited points (n-minute averaging)
- ZMINM = minimum unedited points (n-minute averaging)
- ZMAXM = maximum unedited points (n-minute averaging)
- ZMM = means (n-minute averaging)
- ZSM = standard deviations (n-minute averaging)

OUTPUTS: A.D-1.93 = Altimeter Diagnostics File

TABLES: None

ALGORITHM:
1. Check for a new n-minute averaging period by comparing the current Julian date (TMJD) converted to minutes past midnight (MIN) with the last modified Julian date (TMJDL) converted to minutes past midnight (MINL). If the difference is greater than the averaging period (IEXEC(4)), then a new n-minute averaging period has begun (unless the last modified Julian date was -9999, which indicates that the current record is the first record to be processed).

 MINL = DMOD(TMJDL+0.5D+00,1.0D+00) * 1440.0D+00
 MIN = DMOD(TMJD+0.5D+00,1.0D+00) * 1440.0D+00
 MDIFF = MIN - MINL
 IF (MDIFF .LT. 0) MDIFF = MDIFF + 1440
 IF (MDIFF .LT. IEXEC(4)) GO TO 5
 IF (TMJDL .LT. 0.0D+00) GO TO 5
2. New n-minute averaging period - compute final statistics for the previous n-minute averaging period for each altimeter (J = 1 and 2).
 CALL STATZ (3,1,75,2,1)
 CALL STATZ (3,1,75,2,2)

3. Print the final statistics for the previous n-minute averaging period.
 Included in this print will be the number of unedited points (N1M), the number of edited points (N2M), the minimum unedited points (ZMINM), the maximum unedited points (ZMAXM), the means (ZMM), and the standard deviations (ZSM) for each of the 43 parameters and for each altimeter.
 (See explanation of parameters in COMMON /HSCOM/ located in module A.A-1.6.)

4. Initialize statistics for next n-minute averaging period for each altimeter (J = 1 and 2).
 CALL STATZ (1,1,75,2,1)
 CALL STATZ (1,1,75,2,2)

5. End of algorithm
 TMJDL = TMJD
 RETURN

COMMENTS:

1. The following TYPE statements must be included in the code of this subroutine:
 DOUBLE PRECISION TMJD,TMJDL
 COMMON /HSCOM/ Z(75),ZL(75),ZU(75),ZE(75),
 1 S1D(75,2),S2D(75,2),N1D(75,2),N2D(75,2),
 2 ZMIND(75,2),ZMAXD(75,2),ZMD(75,2),ZVD(75,2),ZSD(75,2),
 3 SMB(75,2),S2M(75,2),N1M(75,2),N2M(75,2),
 4 ZMINM(75,2),ZMAXM(75,2),ZMM(75,2),ZVM(75,2),ZSM(75,2),
 5 NEWDAY,ZAL(75,2),ZAU(75,2),NCNT(25)
 COMMON /EXECUT/ IEXEC(100)
 COMMON /SENSOR/ WLEV1(300)
 EQUIVALENCE (TMJD,WLEV1(117))
 DATA TMJDL/-9999.00+00/
<table>
<thead>
<tr>
<th>CONTROL:</th>
<th>A.A-1.6</th>
<th>HSMNTR</th>
<th>health/status monitor driver module</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPORT:</td>
<td>A.A-1.6.1.1</td>
<td>STATZ</td>
<td>health/status monitor statistical submodule</td>
</tr>
<tr>
<td>ACCESS:</td>
<td>CALL HSSTAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUTS:</td>
<td>TMJD</td>
<td></td>
<td>modified Julian date in (d,1.0x10^-9)</td>
</tr>
<tr>
<td></td>
<td>ISTAT(2)</td>
<td></td>
<td>HV on</td>
</tr>
<tr>
<td></td>
<td>ISTAT(3)</td>
<td></td>
<td>HV ready</td>
</tr>
<tr>
<td></td>
<td>ISTAT(4)</td>
<td></td>
<td>TWT fault</td>
</tr>
<tr>
<td></td>
<td>ISTAT(7)</td>
<td></td>
<td>rain processing enable</td>
</tr>
<tr>
<td></td>
<td>ISTAT(9)</td>
<td></td>
<td>mode command</td>
</tr>
<tr>
<td></td>
<td>ISTAT(14)</td>
<td></td>
<td>ACQ/TRK</td>
</tr>
<tr>
<td></td>
<td>ISTAT(18)</td>
<td></td>
<td>chirp/CW</td>
</tr>
<tr>
<td></td>
<td>ISTAT(20)</td>
<td></td>
<td>TWT fault reset</td>
</tr>
<tr>
<td></td>
<td>ISTAT(21)</td>
<td></td>
<td>trigger kill</td>
</tr>
<tr>
<td></td>
<td>ISTAT(24)</td>
<td></td>
<td>TWT heater ON/OFF</td>
</tr>
<tr>
<td></td>
<td>ISTAT(25)</td>
<td></td>
<td>altimeter designator</td>
</tr>
<tr>
<td></td>
<td>ISTAT(26)</td>
<td></td>
<td>program version</td>
</tr>
<tr>
<td></td>
<td>ISTAT(27)</td>
<td></td>
<td>tracker type</td>
</tr>
<tr>
<td></td>
<td>ISTAT(28)</td>
<td></td>
<td>resolution step</td>
</tr>
<tr>
<td></td>
<td>WLEV1(139)</td>
<td></td>
<td>status #1</td>
</tr>
<tr>
<td>OUTPUTS:</td>
<td>A.D-1.93</td>
<td></td>
<td>Altimeter Diagnostics File</td>
</tr>
<tr>
<td></td>
<td>A.D-CRT</td>
<td></td>
<td>Master Control CRT File</td>
</tr>
<tr>
<td></td>
<td>NCNT(1)</td>
<td></td>
<td>HV on counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(2)</td>
<td></td>
<td>HV off counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(3)</td>
<td></td>
<td>altimeter on counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(4)</td>
<td></td>
<td>standby counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(5)</td>
<td></td>
<td>calibrate counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(6)</td>
<td></td>
<td>trigger kill counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(7)</td>
<td></td>
<td>track 1 counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(8)</td>
<td></td>
<td>track 2 counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(9)</td>
<td></td>
<td>track 3 counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(10)</td>
<td></td>
<td>track 4 counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(11)</td>
<td></td>
<td>TWT fault reset counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(12)</td>
<td></td>
<td>test mode 1 (CW) counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(13)</td>
<td></td>
<td>test mode 2 counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(14)</td>
<td></td>
<td>test mode counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(15)</td>
<td></td>
<td>test mode counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(16)</td>
<td></td>
<td>adapt. resolution counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(17)</td>
<td></td>
<td>TBD counter</td>
</tr>
<tr>
<td></td>
<td>NCNT(18)</td>
<td></td>
<td>TBD counter</td>
</tr>
</tbody>
</table>
NCNT(19) = TBD counter
NCNT(20) = rain processing counter
NCNT(21) = ACQ/TRK counter
NCNT(22) = chirp mode counter
NCNT(23) = CW mode counter
NCNT(24) = trigger kill counter
NCNT(25) = 1WTA fault reset counter

1. Process the Cal Atten/SACU Status
 a. Check HV ON for changes
 IF (ISTAT(2) .EQ. 1) NCNT(1) = NCNT(1) + 1
 IF (ISTAT(2) .EQ. 0) NCNT(2) = NCNT(2) + 1
 IF (NFIRST .EQ. 1) GO TO 1-b
 IF (ISTAT(2) .NE. JSTAT(1)) Print HV ON status change notice
 b. Check HV ready for changes
 IF (ISTAT(3) .EQ. 1) GO TO 1-c
 IF (JSTAT(2) .EQ. 0) GO TO 100
 TMJDX = TMJD
 NCNT(3) = NCNT(3) + 1
 100 IF ((TMJD-TMJDX)*1440.0D+00 .GT. 3.0) Print and display
 HV ready alarm
 c. Check TWT fault
 IF (ISTAT(4) .EQ. 1) Print and display TWT fault alarm

2. Process status #1 - accumulate time for each mode and look for changes
 N = ISTAT(9)
 NCNT(N+4) = NCNT(N+4) + 1
 IF (ISTAT(7) .EQ. 1) NCNT(20) = NCNT(20) + 1
 NSTAT1 = WLEV1(39)
 IF (NFIRST .EQ. 1) GO TO 3
 IF (NSTAT1 .NE. JSTAT(3)) print change of status #1 notice

3. Process status #3 - count changes in the ACQ/TRK status
 IF (ISTAT(14) .NE. JSTAT(4)) NCNT(21) = NCNT(21) + 1

4. Process status #4 - accumulate times and check for alarms
 IF (ISTAT(9) .LT. 3 .OR. ISTAT(9) .GT. 6) GO TO 100
 IF (ISTAT(18) .EQ. 0) NCNT(22) = NCNT(22) + 1
 IF (ISTAT(18) .EQ. 1) NCNT(23) = NCNT(23) + 1
 IF (ISTAT(21) .EQ. 1) NCNT(24) = NCNT(24) + 1
 100 IF (ISTAT(20) .EQ. 1) NCNT(25) = NCNT(25) + 1
IF (ISTAT(20) .EQ. 1) print and display TMTA fault reset alarm
IF (ISTAT(24) .EQ. 0) print and display TMTA heater ON/OFF alarm

5. Process status #5 - report changes
IF (ISTAT(25) .NE. JSTAT(5)) print change of altimeter notice
IF (ISTAT(26) .NE. JSTAT(6)) print change of program version notice
IF (ISTAT(14) .NE. 1) GO TO 6
IF (ISTAT(27) .NE. JSTAT(7)) print change of tracker type notice
IF (ISTAT(28) .NE. JSTAT(8)) print change of resolution step notice

6. Reset all test words so that the next data record can be compared with this data record

NFIRST = 0
JSTAT(1) = ISTAT(2)
JSTAT(2) = ISTAT(3)
JSTAT(3) = NSTAT1
JSTAT(4) = ISTAT(14)
JSTAT(5) = ISTAT(25)
JSTAT(6) = ISTAT(26)
JSTAT(7) = ISTAT(27)
JSTAT(8) = ISTAT(28)

7. End of algorithm
RETURN

COMMENTS:
1. The following TYPE statements must be included in this submodule:

 DOUBLE PRECISION TMJD, TMJDX
 DIMENSION JSTAT(8)
 COMMON /HSCOM/ Z(75), ZL(75), ZU(75), ZE(75),
 1 S1D(75,2), S2D(75,2), N1D(75,2), N2D(75,2),
 2 ZMIND(75,2), ZMAXD(75,2), ZMD(75,2), ZVD(75,2), ZSD(75,2),
 3 S1M(75,2), S2M(75,2), N1M(75,2), N2M(75,2),
 4 ZMINM(75,2), ZMAXM(75,2), ZMM(75,2), ZVM(75,2), ZSM(75,2),
 5 NEWDAY, ZAL(75,2), ZAU(75,2), NCNT(250)
 COMMON /STATUS/ ISTAT(100)
 COMMON /SENSOR/ WLEV1(300)
 EQUIVALENCE (TMJ, WLEV1(117))
 DATA NFIRST/1/, JSTAT/B=-9999/

2. "Print" refers to printing on the Altimeter Diagnostics File (A.D-1.93) and "display" refers to displaying on the Master Control CRT File (A.D-CRT).
HEALTH/STATUS MONITOR NON-SUBCOM PROCESSING SUBMODULE A.A-1.6.4

TITLE: SUBROUTINE HSNONS

FUNCTION: To monitor non-subcom critical instrument parameters. In particular, this submodule
1. accumulates statistics for selected non-subcom parameters over 1-day and n-minute averaging periods, and
2. sets off system alarms when potentially damaging or dangerous conditions are detected in selected non-subcom parameters.

REFERENCE: Not applicable

CONTROL: A.A-1.6 HSMNTR health/status monitor driver module
SUPPORT: A.A-1.6.1.1 STATZ health/status monitor statistical submodule

ACCESS: CALL HSNONS

INPUTS:
TMJD = modified Julian date in (d, 1.0x10^-9)
WLEV1(4) = altitude rate in (m/s, 0.01)
WLEV1(7) = altitude error in (m, 0.01)
WLEV1(8) = SWH in (m, 0.01)
WLEV1(9) = AGC word in (dB, 0.01)
WLEV1(10) = AGC gate amplitude in (v, 0.1)
WLEV1(15) = noise gate amplitude in (v, 0.1)
WLEV1(18) = transmit power in (kw, 0.1)
WLEV1(136) = attitude (spacecraft) in (deg, 0.01)
ISTAT(9) = operate status
ISTAT(12) = AFI mode
ISTAT(14) = ACQ/TRK status
ISTAT(18) = chirp/CW status
ISTAT(19) = high voltage ON/OFF status
ISTAT(25) = altimeter designator (1 or 2)
ISTAT(44) = zone flag

OUTPUT:
A.D-1.93 = Altimeter Diagnostics File
A.D-CRT = Master Control CRT
Z(1) = spacecraft attitude (HV ON only)
Z(2) = altitude rate (HV ON only)
Z(3) = altitude error (HV ON only)
Z(4) = SWH (HV ON only)
Z(5) = AGC word (HV ON only)
Z(6) = AGC gate amplitude (HV ON only)
Z(7) = noise gate amplitude (HV ON only)
Z(8) = transmit power (chirp mode; HV ON only)
Z(9) = transmit power (CW mode; HV ON only)

TABLES: None

ALGORITHM:
1. Check for steady-state condition (i.e., high voltage must have been on for at least 2 seconds). If high voltage is on, then NHVON is set equal to one. If not, NHVON is set equal to zero. When high voltage is turned from off to on, the modified Julian date is saved in THVON.
 a. IF (ISTAT(19) .EQ. 0) GO TO 1-b
 IF (NHVON .EQ. 0) THVON = TMJD
 NHVON = 1
 GO TO 2
 b. NHVON = 0
 GO TO 14

2. Check for open ocean (ACQ/TRK status equal to 1 and zone flag equal to 1) and for in track mode (operate status between 3 and 6).
 IF (ISTAT(14) .EQ. 0) GO TO 14
 IF (ISTAT(44) .NE. 1) GO TO 14
 IF (ISTAT(9) .LT. 3) GO TO 14
 IF (ISTAT(9) .GT. 6) GO TO 14

3. Store spacecraft attitude and check for alarm condition
 a. J = ISTAT(25)
 Z(1) = WLEV1(136)
 IF (Z(1).GT.ZAL(1,J) .AND. Z(1).LT.ZAU(1,J)) GO TO 4
 b. Print and display the spacecraft attitude alarm

4. Determine if mode is chirp or CW
 IF (ISTAT(18) .EQ. 0) GO TO 12

5. Chirp mode - store altitude rate and check for alarm condition
 a. Z(2) = WLEV1(4)
 IF (Z(2).GT.ZAL(2,J) .AND. Z(2).LT.ZAU(2,J)) GO TO 6
 b. Print and display the altitude rate alarm

6. Store altitude error and check for alarm condition
 a. Z(3) = WLEV1(7)
 IF (Z(3).GT.ZAL(3,J) .AND. Z(3).LT.ZAU(3,J)) GO TO 7
 b. Print and display the altitude error alarm

7. Store SMH and check for alarm condition
 a. Z(4) = WLEV1(8)
 IF (Z(4).GT.ZAL(4,J) .AND. Z(4).LT.ZAU(4,J)) GO TO 8
 b. Print and display the SMH alarm
8. Store the AGC word and check for alarm condition
 a. \[Z(5) = \text{WLEVI}(9) \]
 \[\text{IF} \ (Z(5) > Z(AL(9,J)) \ \text{AND} \ Z(5) < Z(AU(9,J))) \ \text{GO TO 9} \]
 b. Print and display the AGC word alarm
9. Store the AGC gate amplitude and check for alarm condition
 a. \[Z(6) = \text{WLEVI}(10) \]
 \[\text{IF} \ (Z(6) > Z(AL(10,J)) \ \text{AND} \ Z(6) < Z(AU(10,J))) \ \text{GO TO 10} \]
 b. Print and display the AGC gate amplitude alarm
10. Store the noise gate amplitude and check for alarm condition
 a. \[Z(7) = \text{WLEVI}(15) \]
 \[\text{IF} \ (Z(7) > Z(AL(15,J)) \ \text{AND} \ Z(7) < Z(AU(15,J))) \ \text{GO TO 11} \]
 b. Print and display the noise gate amplitude alarm
11. Chirp mode - store transmit power and check for alarm condition
 a. \[Z(8) = \text{WLEVI}(18) \]
 \[\text{IF} \ (Z(8) > Z(AL(18,J)) \ \text{AND} \ Z(8) < Z(AU(18,J))) \ \text{GO TO 13} \]
 b. Print and display the chirp mode transmit power alarm
 GO TO 13
12. CW mode - store transmit power and check for alarm condition
 a. \[Z(9) = \text{WLEVI}(18) \]
 \[\text{IF} \ (Z(9) > Z(AL(18,J)) \ \text{AND} \ Z(9) < Z(AU(18,J))) \ \text{GO TO 13} \]
 b. Print and display the CW mode transmit power alarm
13. Update statistics for both 1-day and n-minute averaging
 a. All non-subcom data except transmit power (only attitude for CW mode)
 \[K = 7 \]
 \[\text{IF} \ (I \text{STAT}(18).EQ.0) \ K = 1 \]
 \[\text{CALL STAT}(2,1,K,1,J) \]
 \[\text{CALL STAT}(2,1,K,2,J) \]
 b. Transmit power (N = 8 for chirp mode, N = 9 for CW mode)
 \[\text{IF} \ (I \text{STAT}(18).EQ.1) \ N = 8 \]
 \[\text{IF} \ (I \text{STAT}(18).EQ.0) \ N = 9 \]
 \[\text{CALL STAT}(2,N,N,1,J) \]
 \[\text{CALL STAT}(2,N,N,2,J) \]
14. End of algorithm

RETURN

COMMENTS: 1. The following TYPE statements must be included in the code of this submodule:

 \[\text{DOUBLE PRECISION TMJD,THVON} \]
 \[\text{COMMON } /HSCOM/ Z(75),ZL(75),ZU(75),ZE(75), \]

 94
1. \text{SID}(75,2), S2D(75,2), N1D(75,2), N2D(75,2),
2. ZMIND(75,2), ZMAXD(75,2), ZVD(75,2), ZSD(75,2),
3. S1M(75,2), S2M(75,2), N1M(75,2), N2M(75,2),
4. ZMINM(75,2), ZMAXM(75,2), ZVM(75,2), ZSM(75,2),
5. NEWDAY, ZAL(75,2), ZAU(75,2), NCNT(25)

\text{COMMON /STATUS/ ISTAT(100)}
\text{COMMON /SENSOR/ WLEV1(300)}
\text{EQUIVALENCE (TMJD, WLEV1(117))}

2. "Print" refers to printing on the Altimeter Diagnostics File (A.D-1.93) and "display" refers to displaying on the Master Control CRT File (A.D-CRT).

\text{HEALTH/STATUS MONITOR SUBCOM \#1 PROCESSING SUBMODULE A.A-1.6.5}

\text{TITLE: SUBROUTINE HSSUBL}
\text{FUNCTION: To monitor subcom no. 1 parameters. In particular, this submodule}
1. accumulates statistics for subcom \#1 parameters over 1-day and n-minute averaging periods, and
2. sets off system alarms when potentially damaging or dangerous conditions are detected.
\text{REFERENCE: Not applicable}
\text{CONTROL: A.A-1.6 HSMNTR health/status monitor driver module}
\text{SUPPORT: A.A-1.6.1.1 STATZ health/status monitor statistical submodule}
\text{ACCESS: CALL HSSUBL2}
\text{INPUTS:}
\begin{align*}
\text{ISTAT(2)} &= \text{HV ON} \\
\text{ISTAT(11)} &= \text{channel select status (1 to 20)} \\
\text{ISTAT(12)} &= \text{ATU mode} \\
\text{ISTAT(18)} &= \text{chirp/CW (0 or 1)} \\
\text{ISTAT(25)} &= \text{altimeter designator (1 or 2)} \\
\text{WLEV1(19)} &= \text{TWT beam current} \\
\text{WLEV1(20)} &= \text{TWT cathode voltage} \\
\text{WLEV1(21)} &= \text{TWT HVPS temperature} \\
\text{WLEV1(22)} &= \text{TWT collector temperature} \\
\text{WLEV1(23)} &= \text{receiver temperature} \\
\text{WLEV1(24)} &= \text{noise gate amplitude} \\
\text{WLEV1(25)} &= \text{plateau gate amplitude} \\
\text{WLEV1(26)} &= \text{attitude gate amplitude} \\
\text{WLEV1(27)} &= \text{transmit power}
\end{align*}

95
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLEV1(28)</td>
<td>UCFM temperature</td>
</tr>
<tr>
<td>WLEV1(29)</td>
<td>DDL temperature</td>
</tr>
<tr>
<td>WLEV1(30)</td>
<td>DDL ASSY temperature</td>
</tr>
<tr>
<td>WLEV1(31)</td>
<td>HSWS temperature</td>
</tr>
<tr>
<td>WLEV1(32)</td>
<td>DFB temperature no. 1</td>
</tr>
<tr>
<td>WLEV1(33)</td>
<td>AT no. 1 temperature</td>
</tr>
<tr>
<td>WLEV1(34)</td>
<td>AT no. 2 temperature</td>
</tr>
<tr>
<td>WLEV1(35)</td>
<td>ICU temperature</td>
</tr>
<tr>
<td>WLEV1(36)</td>
<td>SACU temperature</td>
</tr>
<tr>
<td>WLEV1(37)</td>
<td>LVPS temperature</td>
</tr>
<tr>
<td>Z(10)</td>
<td>TWT beam current (HV ON only)</td>
</tr>
<tr>
<td>Z(11)</td>
<td>TWT cathode voltage (HV ON only)</td>
</tr>
<tr>
<td>Z(12)</td>
<td>TWT HVPS temperature (HV ON only)</td>
</tr>
<tr>
<td>Z(13)</td>
<td>TWT collector temperature (HV ON only)</td>
</tr>
<tr>
<td>Z(14)</td>
<td>receiver temperature (HV ON only)</td>
</tr>
<tr>
<td>Z(15)</td>
<td>noise gate amplitude (HV ON only)</td>
</tr>
<tr>
<td>Z(16)</td>
<td>plateau gate amplitude (HV ON only)</td>
</tr>
<tr>
<td>Z(17)</td>
<td>attitude gate amplitude (HV ON only)</td>
</tr>
<tr>
<td>Z(18)</td>
<td>transmit power (chirp mode; HV ON only)</td>
</tr>
<tr>
<td>Z(19)</td>
<td>transmit power (CW mode; HV ON only)</td>
</tr>
<tr>
<td>Z(20)</td>
<td>UCFM temperature (HV ON only)</td>
</tr>
<tr>
<td>Z(21)</td>
<td>DDL temperature (HV ON only)</td>
</tr>
<tr>
<td>Z(22)</td>
<td>DDL ASSY temperature (HV ON only)</td>
</tr>
<tr>
<td>Z(23)</td>
<td>HSWS temperature (HV ON only)</td>
</tr>
<tr>
<td>Z(24)</td>
<td>DFB temperature no. 1 (HV ON only)</td>
</tr>
<tr>
<td>Z(25)</td>
<td>AT no. 1 temperature (HV ON only)</td>
</tr>
<tr>
<td>Z(26)</td>
<td>AT no. 2 temperature (HV ON only)</td>
</tr>
<tr>
<td>Z(27)</td>
<td>ICU temperature (HV ON only)</td>
</tr>
<tr>
<td>Z(28)</td>
<td>SACU temperature (HV ON only)</td>
</tr>
<tr>
<td>Z(29)</td>
<td>LVPS temperature (HV ON only)</td>
</tr>
<tr>
<td>Z(44)</td>
<td>TWT HVPS temperature (HV OFF only)</td>
</tr>
<tr>
<td>Z(45)</td>
<td>TWT collector temperature (HV OFF only)</td>
</tr>
<tr>
<td>Z(46)</td>
<td>receiver temperature (HV OFF only)</td>
</tr>
<tr>
<td>Z(47)</td>
<td>noise gate amplitude (HV OFF only)</td>
</tr>
<tr>
<td>Z(48)</td>
<td>plateau gate amplitude (HV OFF only)</td>
</tr>
<tr>
<td>Z(49)</td>
<td>attitude gate amplitude (HV OFF only)</td>
</tr>
<tr>
<td>Z(50)</td>
<td>transmit power (chirp mode; HV OFF only)</td>
</tr>
</tbody>
</table>
Z(51) = transmit power (CW mode; HV OFF only)
Z(52) = UCFM temperature (HV OFF only)
Z(53) = DDL temperature (HV OFF only)
Z(54) = DDL ASSY temperature (HV OFF only)
Z(55) = HSMS temperature (HV OFF only)
Z(56) = DFB temperature no. 1 (HV OFF only)
Z(57) = AT no. 1 temperature (HV OFF only)
Z(58) = AT no. 2 temperature (HV OFF only)
Z(59) = ICU temperature (HV OFF only)
Z(60) = SACU temperature (HV OFF only)
Z(61) = LVPS temperature (HV OFF only)

TABLES: None

ALGORITHM:
1. Set up indices and branch to appropriate subcom word
 a. Set indices and check for HV ON. N is the channel select (N = 5 is not used) and M is the accumulation array index (see Tables 6.1 and 6.2)
 J = ISTAT(25)
 N = ISTAT(11)
 M = N + 9
 IF (N.GE.6 .AND. N.LE.1)) M = N + 8
 IF (ISTAT(2) .EQ. 1) GO TO 1-c
 b. HV OFF (skip N = 1 and N = 2)
 IF (N .LE. 2) GO TO 23
 M = M + 32
 c. Branch to appropriate subcom word
 GO TO 2,3,4,...,20,21), N

2. TWT beam current
 a. Z(M) = WLEV1(19)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 22
 b. Print and display the TWT beam current alarm
 c. GO TO 22

3. TWT cathode voltage
 a. Z(M) = WLEV1(20)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 22
 b. Print and display the TWT cathode voltage alarm
 c. GO TO 22

4. TWT HVPS temperature
 a. Z(M) = WLEV1(21)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 22
b. Print and display the TWT HVPS temperature alarm
c. GO TO 22

5. TWT collector temperature
a. \(Z(M) = W\text{LEVEL}(22) \)
 \[
 \text{IF (}(Z(M) \gt Z\text{AL}(M,J) \text{.AND. } Z(M) \lt Z\text{AU}(M,J)) \text{ GO TO 22}
 \]
b. Print and display the TWT collector temperature alarm
c. GO TO 22

6. No data
 GO TO 23

7. Receiver temperature
 a. \(Z(M) = W\text{LEVEL}(23) \)
 \[
 \text{IF (}(Z(M) \gt Z\text{AL}(M,J) \text{.AND. } Z(M) \lt Z\text{AU}(M,J)) \text{ GO TO 22}
 \]
b. Print and display the receiver temperature alarm
c. GO TO 22

8. Noise gate amplitude
 a. \(Z(M) = W\text{LEVEL}(24) \)
 \[
 \text{IF (}(Z(M) \gt Z\text{AL}(M,J) \text{.AND. } Z(M) \lt Z\text{AU}(M,J)) \text{ GO TO 22}
 \]
b. Print and display the noise gate amplitude alarm
c. GO TO 22

9. Plateau gate amplitude
 a. \(Z(M) = W\text{LEVEL}(25) \)
 \[
 \text{IF (}(Z(M) \gt Z\text{AL}(M,J) \text{.AND. } Z(M) \lt Z\text{AU}(M,J)) \text{ GO TO 22}
 \]
b. Print and display the plateau gate amplitude alarm
c. GO TO 22

10. Attitude gate amplitude
 a. \(Z(M) = W\text{LEVEL}(26) \)
 \[
 \text{IF (}(Z(M) \gt Z\text{AL}(M,J) \text{.AND. } Z(M) \lt Z\text{AU}(M,J)) \text{ GO TO 22}
 \]
b. Print and display the attitude gate amplitude alarm
c. GO TO 22

11. Transmit power (chirp mode)
 a. \(\text{IF (} I\text{STAT}(18) \text{.EQ. 0) GO TO 11-d} \)
 \[
 \text{Z(M) = W\text{LEVEL}(27)}
 \text{IF (}(Z(M) \gt Z\text{AL}(M,J) \text{.AND. } Z(M) \lt Z\text{AU}(M,J)) \text{ GO TO 22}
 \]
b. Print and display the transmit power (chirp mode) alarm
c. GO TO 22
 Transmit power (CW mode; accumulate only in Test Mode 1)
 d. \(M = M + 1 \)
 \[
 \text{IF (} I\text{STAT}(12) \text{.NE. 8) GO TO 24}
 \]
12. UCFM temperature
 a. Z(M) = WLEV1(28)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 22
 b. Print and display the UCFM temperature alarm
 c. GO TO 22
13. DOL temperature
 a. Z(M) = WLEV1(29)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 22
 b. Print and display the DOL temperature alarm
 c. GO TO 22
14. DOL ASSY temperature
 a. Z(M) = WLEV1(30)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 22
 b. Print and display the DOL ASSY temperature alarm
 c. GO TO 22
15. HSWS temperature
 a. Z(M) = WLEV1(31)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 22
 b. Print and display the HSWS temperature alarm
 c. GO TO 22
16. OFS temperature no. 1
 a. Z(M) = WLEV1(32)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 22
 b. Print and display the OFS temperature no. 1 alarm
 c. GO TO 22
17. AT no. 1 temperature
 a. Z(M) = WLEV1(33)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 22
 b. Print and display the AT no. 1 temperature alarm
 c. GO TO 22
18. AT no. 2 temperature
 a. Z(M) = WLEV1(34)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 22
 b. Print and display the AT no. 2 temperature alarm
 c. GO TO 22
19. ICU temperature
 a. \(Z(M) = WLEV1(35) \)
 IF \((Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) \) GO TO 22
 b. Print and display the ICU temperature alarm
 c. GO TO 22
20. SACU temperature
 a. \(Z(M) = WLEV1(36) \)
 IF \((Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) \) GO TO 22
 b. Print and display the SACU temperature alarm
 c. GO TO 22
21. LVPS temperature
 a. \(Z(M) = WLEV1(37) \)
 IF \((Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) \) GO TO 22
 b. Print and display the LVPS temperature alarm
22. Update the statistics for 1-day and n-minute averaging
 CALL STATZ (2,M,M,1,J)
 CALL STATZ (2,M,M,2,J)
23. End of algorithm
 RETURN

COMMENTS:

1. The following TYPE statements must be included in the code of this
 submodule:

 COMMON /HSCOM/ Z(75),ZL(75),ZU(75),ZE(75),
 1 S1D(75,2),S2D(75,2),N1D(75,2),N2D(75,2),
 2 ZMIND(75,2),ZMAXD(75,2),ZMD(75,2),ZVD(75,2),ZSD(75,2),
 3 S1M(75,2),S2M(75,2),N1M(75,2),N2M(75,2),
 4 ZMINM(75,2),ZMAXM(75,2),ZMM(75,2),ZVM(75,2),ZSM(75,2),
 5 NEWDAY,ZAL(75,2),ZAU(75,2),NCTN(25)
 COMMON /STATUS/ ISTAT(100)
 COMMON /SENSOR/ WLEV1(300)

2. "Print" refers to printing on the Altimeter Diagnostics File (A.D-1.93)
 and "display" refers to displaying on the Master Control CRT File
 (A.D-CRT).

HEALTH/STATUS MONITOR SUBCOM # 2 PROCESSING SUBMODULE A.A-1.6.6

TITLE: SUBROUTINE HSSUB2
FUNCTION: To monitor subcom #2 parameters. In particular, this submodule
1. accumulate statistics for subcom #2 parameters over 1-day and n-minute averaging periods, and
2. sets off system alarms when potentially damaging or dangerous conditions are detected.

REFERENCE: Not applicable
CONTROL: A.A-1.6 HSMNTR health/status monitor driver module
SUPPORT: A.A-1.6.1.1 STATZ health/status monitor statistical submodule
ACCESS: CALL HSSUB2
INPUTS: ISTAT(2) = HV ON
ISTAT(11) = channel select status (1 to 20)
ISTAT(25) = altimeter designator (1 or 2)
WLEV1(38) = LVPS 38V current
WLEV1(39) = +28V S/C bus isolated
WLEV1(40) = +28V
WLEV1(41) = +15V
WLEV1(42) = -15V
WLEV1(43) = +7V
WLEV1(44) = -9V
WLEV1(45) = +5V
WLEV1(46) = -5.2V
WLEV1(47) = +1.00 REF
WLEV1(48) = 0.657V REF
WLEV1(49) = SACU PLO LOCK
WLEV1(50) = MTU temperature
WLEV1(51) = DFB temperature no. 2

OUTPUTS: A.D-1.93 = Altimeter Diagnostics File
A.D-CRT = Master Control CRT
Z(30) = LVPS 38V current
Z(31) = +28V S/C bus isolated
Z(32) = +28V
Z(33) = +15V
Z(34) = -15V
Z(35) = +7V
Z(36) = -9V
Z(37) = +5V
Z(38) = -5.2V
Z(39) = +1.00 REF
Z(40) = 0.657V REF
Z(41) = SACU PLO LOCK
Z(42) = MTU temperature
Z(43) = DFB temperature no. 2
Z(62) = LVPS 38V current (HV OFF only)
Z(63) = +28V S/C bus isolated (HV OFF only)
Z(64) = +28V (HV OFF only)
Z(65) = +15V (HV OFF only)
Z(66) = -15V (HV OFF only)
Z(67) = +7V (HV OFF only)
Z(68) = -9V (HV OFF only)
Z(69) = +5V (HV OFF only)
Z(70) = -5.2V (HV OFF only)
Z(71) = +1.00V REF (HV OFF only)
Z(72) = 0.657V REF (HV OFF only)
Z(73) = SACU PLO LOCK (HV OFF only)
Z(74) = MTU temperature (HV OFF only)
Z(75) = DFB temperature no. 2 (HV OFF only)

TABLES: None

ALGORITHM:

1. Set up indices and branch to appropriate subcom word
 a. Set indices and check for HV ON. N is the channel select (N = 14
 and N > 15 are not used) and M is the accumulation array index
 (see Tables 6.1 and 6.2).

 J = ISTAT(25)
 N = ISTAT(11)
 M = N + 29
 IF (N.EQ.14 .OR. N.GT.15) GO TO 17
 IF (N.EQ.15) M = N + 28
 IF (ISTAT(2).EQ.1) GO TO 1-c
 b. HV OFF
 M = M + 32
 c. Branch to appropriate subcom word
 GO TO (2,3,4,...,14,15), N

2. LVPS 38V current
 a. Z(M) = WLEV1(38)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 16
 b. Print and display the LVPS 38V current alarm
 c. GO TO 16

3. +28V S/C bus isolated
 a. Z(M) = WLEV1(39)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 16
b. Print and display the +28V S/C bus isolated alarm
c. GO TO 16

4. +28V
 a. Z(M) = WLEV1(40)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 16
 b. Print and display the +28V alarm
 c. GO TO 16

5. +15V
 a. Z(M) = WLEV1(41)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 16
 b. Print and display the +15V alarm
 c. GO TO 16

6. -15V
 a. Z(M) = WLEV1(42)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 16
 b. Print and display the -15V alarm
 c. GO TO 16

7. +7V
 a. Z(M) = WLEV1(43)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 16
 b. Print and display the +7V alarm
 c. GO TO 16

8. -9V
 a. Z(M) = WLEV1(44)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 16
 b. Print and display the -9V alarm
 c. GO TO 16

9. +5V
 a. Z(M) = WLEV1(45)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 16
 b. Print and display the +5V alarm
 c. GO TO 16

10. -5.2V
 a. Z(M) = WLEV1(46)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 16
 b. Print and display the -5.2V alarm
 c. GO TO 16

11. +1.00V REF
 a. Z(M) = WLEV1(47)
IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 16
b. Print and display the +1.00V REF alarm
c. GO TO 16

12. 0.657V REF
 a. Z(M) = WLEV1(48)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 16
 b. Print and display the 0.657V REF alarm
 c. GO TO 16

13. SACU PLO LOCK
 a. Z(M) = WLEV1(49)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 16
 b. Print and display the SACU PLO LOCK alarm
 c. GO TO 16

14. MTU temperature
 a. Z(M) = WLEV1(50)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 16
 b. Print and display the MTU temperature alarm
 c. GO TO 16

15. DFB temperature no. 2
 a. Z(M) = WLEV1(51)
 IF (Z(M).GT.ZAL(M,J) .AND. Z(M).LT.ZAU(M,J)) GO TO 16
 b. Print and display the DFB temperature no. 2 alarm

16. Update statistics for 1-day and n-minute averaging
 CALL STATZ (2,M,M,1,J)
 CALL STATZ (2,M,M,2,J)

17. End of algorithm
 RETURN

COMMENTS:
1. The following TYPE statements must be included in this submodule
 COMMON /HSCOM/ Z(75),ZL(75),ZU(75),ZE(75),
 1 S1D(75,2),S2D(75,2),N1D(75,2),N2D(75,2),
 2 ZMIND(75,2),ZMAXD(75,2),ZMD(75,2),ZVD(75,2),ZSD(75,2),
 3 S1M(75,2),S2M(75,2),N1M(75,2),N2M(75,2),
 4 ZMINM(75,2),ZMAXM(75,2),ZMM(75,2),ZVM(75,2),ZSM(75,2),
 5 NEWDAY,ZAL(75,2),ZAU(75,2),NCNT(25)
 COMMON /STATUS/ ISTAT(100)
 COMMON /SENSOR/ WLEV1(300)

2. "Print" refers to printing on the Altimeter Diagnostics File (A.D-1.93)
 and "display" refers to the displaying on the Master Control CRT File
 (A.D-CRT).
TITLE: SUBROUTINE HSSUB3

FUNCTION: To monitor changes in the status words contained in subcom #3 and to print a report when any changes occur.

REFERENCE: Not applicable

CONTROL: A.A-1.6 HSMMTR health/status monitor driver module

SUPPORT: None

ACCESS: CALL HSSUB3

INPUTS:
- ISTAT(11) = channel select status (1 to 20)
- ISTAT(30) = LVPS current
- ISTAT(31) = AT number
- ISTAT(32) = acquisition constant index
- ISTAT(33) = track constant index
- ISTAT(34) = AGC threshold index
- ISTAT(35) = α, β, and AGC acquisition
- ISTAT(36) = α, β, and AGC track index
- ISTAT(37) = ΔH gate width index
- ISTAT(38) = L_6-E_6 track index
- ISTAT(39) = height error index
- ISTAT(40) = L_6-E_6 acquisition index
- ISTAT(41) = waveheight curve offset
- ISTAT(42) = acquisition height offset

OUTPUTS:
- A.D-1.93 = Altimeter Diagnostics File
- A.D-CRT = Master Control CRT File

TABLES: None

ALGORITHM:
1. Branch to appropriate subcom word (NCHG = 0 means no changes, NCHG = 1 means changes have occurred, MSTAT(I) = 0 means that no change has occurred in that particular status, MSTAT(I) = 1 means that a change has occurred in that particular status)
 - J = ISTAT(25)
 - N = ISTAT(11)
 - IF (ISTAT(11) .GT. 5) GO TO 9
 - GO TO (2,3,4,5,6), N
2. Check relay status for changes
 - IF (ISTAT(29) .NE. ISTAT(1)) MSTAT(1) = 1
 - IF (ISTAT(30) .NE. ISTAT(2)) MSTAT(2) = 1
 - IF (ISTAT(29) .EQ. 0) print and display the TMRA fault override alarm
IF (ISTAT(30) .EQ. 1) print and display the LVPS current override alarm
IF ((MSTAT(1)-1)*(MSTAT(2)-1) .EQ. 0) NCHG = 1
GO TO 9

3. Check parameter select no. 1 for changes
 IF (ISTAT(32) .NE. JSTAT(3)) MSTAT(3) = 1
 IF (ISTAT(33) .NE. JSTAT(4)) MSTAT(4) = 1
 IF (ISTAT(34) .NE. JSTAT(5)) MSTAT(5) = 1
 IF ((MSTAT(3)-1)*(MSTAT(4)-1)*(MSTAT(5)-1) .EQ. 0) NCHG = 1
 GO TO 9

4. Check parameter select no. 2 for changes
 IF (ISTAT(35) .NE. JSTAT(6)) MSTAT(6) = 1
 IF (ISTAT(36) .NE. JSTAT(7)) MSTAT(7) = 1
 IF ((MSTAT(6)-1)*(MSTAT(7)-1) .EQ. 0) NCHG = 1
 GO TO 9

5. Check parameter select no. 3 for changes
 IF (ISTAT(37) .NE. JSTAT(8)) MSTAT(8) = 1
 IF (ISTAT(38) .NE. JSTAT(9)) MSTAT(9) = 1
 IF (ISTAT(39) .NE. JSTAT(10)) MSTAT(10) = 1
 IF (ISTAT(40) .NE. JSTAT(11)) MSTAT(11) = 1
 IF ((MSTAT(8)-1)*(MSTAT(9)-1)*(MSTAT(10)-1)*(MSTAT(11)-1) .EQ. 0) NCHG = 1
 GO TO 9

6. Check parameter select no. 4 for changes
 IF (ISTAT(41) .NE. JSTAT(12)) MSTAT(12) = 1
 IF (ISTAT(42) .NE. JSTAT(13)) MSTAT(13) = 1
 IF ((MSTAT(12)-1)*(MSTAT(13)-1) .EQ. 0) NCHG = 1
 IF (NCHG .EQ. 0) GO TO 8

7. Changes have occurred - print all subcom #3 statuses with an asterisk next to those statuses that have changed (MSTAT(I) = 1)

8. Reset all test words so that the next data record can be compared with this data record
 DO 100 I = 1,13
 MSTAT(I) = 0
 100 JSTAT(I) = ISTAT(I+29)
 NCHG = 0

9. End of algorithm
 RETURN
COMMENTS: 1. The following TYPE statements must be included in the code of this submodule

```
DIMENSION JSTAT(13),MSTAT(13)
COMMON /STATUS/ ISTAT(100)
DATA JSTAT,MSTAT/26 t-9999/ , NCNG/0/
```

2. "Print" refers to printing on the Altimeter Diagnostic File (A.D-1.93) and "display" refers to displaying on the Master Control CRT File (A.D-CRT).

LEVEL 2 DRIVER MODULE

SUBROUTINE ALT2DR

FUNCTION: Driver module for the altimeter level 2 software

REFERENCE: Not applicable

CONTROL: A.A-0.0 ALTMTR altimeter main driver module
A.A-2.1 CONTAM contamination processing module
A.A-2.2 COMPRS data compression module
A.A-2.3 WAVFRM waveform module
A.A-2.4 ATMOS atmospheric module
A.A-2.5 WNDSIG wind speed/backscatter coefficient module
A.A-2.6 AL2COR level 2 altitude correction module
A.A-2.7 ICE ice sheet height module
A.A-2.8 SEAICE sea ice module
A.A-2.9 QUALTY quality control module

ACCESS: Call ALT2DR (IFLAG)

INPUTS: IEXEC = array containing executive parameters
ISTAT = array containing status words
WLEV1 = array containing level 1 output products

OUTPUTS: ISTAT = array containing status words
WLEV2 = array containing level 2 output products
IFLAG = 0 if level 2 output to be written
 = 1 if level 2 output not to be written

TABLES: None

ALGORITHM: 1. Classify the subsatellite point
 CALL CONTAM

2. Compress the data
 CALL COMPRS (IFLAG)
 IF (IFLAG .EQ. 1) GO TO 11
3. Process waveform data
 CALL WAVFRM
4. Process atmospheric data
 CALL ATMOS
5. Calculate the wind speed
 CALL WNDSIG
6. Calculate the level 2 altitude corrections
 CALL AL2COR
7. Check subsatellite point for ice or currents
 IF (ISTAT(42) .EQ. 1) GO TO 8
 IF (ISTAT(42) .EQ. 2) GO TO 9
 GO TO 10
8. Ice sheet data
 CALL ICE
 GO TO 10
9. Sea ice data
 CALL SEAICE
10. Monitor quality control
 CALL QUALTY (IFLAG)
11. End of algorithm
 RETURN

COMMENTS: 1. The following TYPE statements must be included in the code of this module:
 COMMON /EXECUT/ IEXEC(100)
 COMMON /STATUS/ ISTAT(100)
 COMMON /SENSOR/ WLEV1(300)
 COMMON /GEOPHYS/ WLEV2(325)

CONTAMINATION PROCESSING A.A-2.1

TITLE: SURBOURINTE CONTAM
FUNCTION: To classify the nature of the subsatellite point as either land, water, or ice. This classification, which is derived from analysis of the altimeter data with a resolution of approximately 1 km, should not be confused with the classification performed in the location classification module (A.A-1.5), which is derived from a world surface map and has a resolution of approximately 10 km. The module will estimate the time and location of land/water and ice/water interfaces. In addition, a flag will be set.
to indicate if the data are appropriate for processing by the waveform module.

REFERENCE:

CONTROL: A.A-2.0 ALT2DR level 2 driver module
SUPPORT: None
ACCESS: CALL CONTAM

INPUTS:
ISTAT(28) = adaptive resolution step flag
ISTAT(44) = subsatellite point classification flag from A.A-1.5
WLEVI(7) = altitude error in (m,0.01)
WLEVI(135) = AGC in (dB,0.01)
WLEVI(16) = plateau gate in (mv,0.01)
WLEVI(17) = attitude gate in (mv,0.01)
WLEVI(8) = significant wave height in (m,0.01)
WLEVI(114) = altitude acceleration in (m/s²,0.01)

OUTPUTS:
WLEV2(15) = subsatellite point classification flag (1 for water, 2 for ice, 3 for land, 4 for unknown)

TABLES: None
ALGORITHM: TBD
COMMENTS: 1. Only a functional description is given.

DATA COMPRESSION MODULE A.A-2.2

TITLE: SUBROUTINE COMPRS
FUNCTION: To compress the level 1 output to a selectable rate. Nonproduction data modes, such as cal mode, trigger kill, and standby will be edited. The module also calculates standard deviations of selected parameters for later quality analysis.

REFERENCE: Not applicable
CONTROL: A.A-2.0 ALT2DR level 2 driver module
SUPPORT: None
ACCESS: CALL COMPRS (IFLAG)
INPUTS:
IEXEC(3) = orbit number
IEXEC(5) = compression period in hundredths of a second
ISTAT(9) = mode command
ISTAT(11) = channel select
ISTAT(25) = altimeter designator
ISTAT(44) = zone flag
WLEV1 = level 1 products

OUTPUTS:
IFLAG = 0 if compression period is complete
 = 1 if compression period is not complete
WLEV2 = level 2 output array

TABLES:
Table 2.2a Parameters For Which Means Only Are Calculated
Table 2.2b Parameters For Which Means and Standard Deviations Are Calculated
Table 2.2c Parameters Which Are Linearly Fit Without Computation of Standard Deviations
Table 2.2d Parameters Which Are Linearly Fit With Computation of Standard Deviations
Table 2.2e Special Parameters To Be Compressed

ALGORITHM:
1. Skip all but track mode data
 IFLAG = 1
 IF (ISTAT(9).LT.3 .OR. ISTAT(9).GT.6) GO TO 16
2. Check to make sure that the current time (TMJD) is greater than the last time (TL) and that it is less than the ending time of the compression period (T2)
 IF (TMJD .LT. TL) GO TO 9
 IF (TMJD .GT. T2) GO TO 10
3. Process new data for those parameters listed in Table 2.2e
 a. Altimeter number (ISTAT(25) is the altimeter number and LALT is the previous altimeter number)
 IF ISTAT(25) .NE. LALT) GO TO 10
 WLEV2(2) = ISTAT(25)
 b. Orbit number (TMJD is the current time, and TE is the evaluation time of the compression period, and IEXEC(3) is the orbit number).
 IF (TMJD .LE. TE) WLEV2(1) = IEXEC(3)
 c. Zone flag. If ISTAT(44) changes, then the zone flag is set to zero, indicating an undefined area. (LFLAG is the zone flag at the beginning of the compression period.)
 IF (ISTAT(44) .NE. LFLAG) LFLAG = 0
4. Add new data to those parameters listed in Table 2.2a. N1 is the total number of parameters, I1 is the array containing the WLEV1 indices, S1 is the array containing the summations, and M1 is the array containing the number of samples used in the summations.
 DO 100 N = 1, N1
 IF (N .LE. 8) GO TO 50
IF (N.EQ.9 .AND. ISTAT(11).NE.13) GO TO 100
IF (N.EQ.10 .AND. ISTAT(11).NE.15) GO TO 100
IF (N.EQ.11 .AND. ISTAT(11).NE.4) GO TO 100
50 I = I1(N)
 M1(N) = M1(N) + 1
 S1(N) = S1(N) + WLEV1(I)
100 CONTINUE

5. Add new data to those parameters listed in Table 2.2b. N2 is the total number of parameters, I2 is the array containing the WLEV1 indices, S2A and S2B are the arrays containing the summations, and M2 is the array containing the number of samples used in the summations.

 DO 200 N = 1, N2
 I = I2(N)
 M2(N) = M2(N) + 1
 S2A(N) = S2A(N) + WLEV1(I)
 200 S2B(N) = S2B(N) + WLEV1(I)*WLEV1(I)

6. Add new data to those parameters listed in Table 2.2c. N3 is the total number of parameters, I3 is the array containing the WLEV1 indices, S3A, S3B, S3C, and S3E are the arrays containing the summations, M3 is the array containing the number of samples used in the summations and DT is the number of seconds elapsed since the beginning of the compression period. The assumption is made that the orbit is retrograde and that the longitude is always between 0 and 360 degrees.

 DT = (TMJD-T1) * 86400.0D+00
 DO 300 N = 1, N3
 I = I3(N)
 DX = WLEV1(I)
 IF (N.EQ.2 .AND. DX.GT.RLON) DX = DX - 360.0
 IF (N.EQ.3) DX = HGT - HGTO
 M3(N) = M3(N) + 1
 S3A(N) = S3A(N) + DX
 S3B(N) = S3B(N) + DX
 S3C(N) = S3C(N) + DT*DX
 S3E(N) = S3E(N) + DT*DT
 300 CONTINUE

7. Add new data to those parameters listed in Table 2.2d. N4 is the total number of parameters, I4 is the array containing the WLEV1 indices, S4A, S4B, S4C, S4D, and S4E are the arrays containing the summations, and M4 is the array containing the number of samples used in the summations.
DO 400 N = 1, N4
I = I4(N)
DX = MLEV1(I)
IF (N .EQ. 1) DX = H - HO
M4(N) = M4(N) + 1
S4A(N) = S4A(N) + DT
S4B(N) = S4B(N) + DX
S4C(N) = S4C(N) + DT*DX
S4D(N) = S4D(N) + DX*DX
S4E(N) = S4E(N) + DT*DT
400

8. Save the current time and then skip to the end of the module.
 TL = TMJD
 GO TO 16

9. Current time (TMJD) is either less than the previous time (TL) print
 warning message and skip this record.
 GO TO 16

10. Check for the first entry to the module (IEXEC(5) is the compression
 period in hundredths of a second.).
 IF (TE .GT. 0.0) GO TO 11
 T2 = TMJD
 CP = DFLOAT(IEXEC(5)) / 86400.0D+02
 WLEV2(4) = 0.01 * IEXEC(5)
 GO TO 15

11. Compute the means of those parameters listed in Table 2.2a. N1 is the
 total number of parameters, J1 is the array containing WLEV2 indices,
 S1 is the array containing the summations, and M1 is the array con-
 taining the number of samples used in the summations.
 IFLAG = 0
 WLEV2(14) = LFLAG
 DO 500 N = 1, N1
 J = J1(N)
 WLEV2(J) = -9999.0
 IF (M1(N) .EQ. 0) GO TO 500
 WLEV2(J) = S1(N) / M1(N)
 500 CONTINUE

12. Compute the means and standard deviations about the means for those
 parameters listed in Table 2.2b. N2 is the total number of param-
 eters, J2A is the array containing the WLEV2 mean indices, J3B is
 the array containing the WLEV2 standard deviation indices, S2A and
S2B are the arrays containing the summations, and M2 is the array containing the number of samples used in the summations.

```
DO 600 N = 1, M2
JA = J2A(N)
JB = J2B(N)
WLEV2(JA) = -9999.0
WLEV2(JB) = -9999.0
IF (M2(N) .EQ. 0) GO TO 600
WLEV2(JA) = SA(N) / M2(N)
IF (M2(N) .EQ. 1) GO TO 600
WLEV2(JB) = SQRT((SB(N)*M2(N)-SA(N)*SA(N))/(M2(N)*(M2(N)-1)))
600 CONTINUE
```

13. Compute the linear fit of those parameters listed in Table 2.2c. N3 is the total number of parameters, J3 is the array containing the WLEV2 indices, S3A, S3B, S3C, and S3E are the arrays containing the summations, M3 is the array containing the number of samples used in the summations and TE is the evaluation time.

```
DO 700 N = 1, N3
J = J3(N)
WLEV2(J) = -9999.0
IF (M3(N) .EQ. 0) GO TO 700
D = S3A(N)*S3A(N) - S3E(N)*M3(N)
A = (S3A(N)*S3B(N) - S3C(N)*M3(N)) / D
B = (S3A(N)*S3C(N) - S3B(N)*S3E(N)) / D
WLEV2(J) = A*TE + B
700 CONTINUE
```

```
IF (WLEV2(8) .LT. 0.0) WLEV2(8) = WLEV2(8) + 360.0
HGTC = WLEV2(9) + HGTO
IF (M3(3) .EQ. 0) HGTC = -9999.0D+00
```

14. Compute the linear fit and the standard deviation about the fit for those parameters listed in Table 2.2d. N4 is the total number of parameters, J4A is the array containing the WLEV2 mean indices, J4B is the array containing the WLEV2 standard deviation indices, S4A, S4B, S4C, S4D, and S4E are the arrays containing the summations, M4 is the array containing the number of samples used in the summations and TE is the evaluation time.

```
DO 800 N = 1, M4
JA = J4A(N)
JB = J4B(N)
```
WLEV2(JA) = -9999.0
WLEV2(JB) = -9999.0
IF (M4(N) .EQ. 0) GO TO 800
D = S4A(N) * S4A(N) - S4C(N) * M4(N)
A = (S4A(N) * S4B(N) - S4C(N) * M4(N)) / D
B = (S4A(N) * S4C(N) - S4B(N) * S4E(N)) / D
WLEV2(JA) = A * TE + B
IF (M4(N) .EQ. 1) GO TO 750
SH = S4D(N) - S4B(N) * S4B(N) / N4(N)
WLEV2(JB) = SQRT(SH / (N4(N) * (N4(N) - 1)))

800 CONTINUE
WLEV2(13) = M4(1)
HC = WLEV2(17) + HO
IF (M4(1) .EQ. 0) HC = -9999.0D+00

15. Reset parameters for next compression period
a. Set time parameters (T1 is the beginning time of the compression period, T2 is the ending time of the compression period, TE is the evaluation time within the compression period, and CP is the length of the compression period expressed in days).
900 IF (TMJD.GE.T1 .AND. TMJD.LT.T2) GO TO 910
 T1 = T2
 T2 = T1 + CP
 GO TO 900
910 IE = T1 + CP/2.0
b. Reset the counters and summations
 DO 920 N = 1, N1
 M1(N) = 0
920 S1(N) = 0.0
 DO 930 N = 1, N2
 M2(N) = 0
 S2A(N) = 0.0
930 S2B(N) = 0.0
 DO 940 N = 1, N3
 M3(N) = 0
 S3A(N) = 0.0
 S3B(N) = 0.0
 S3C(N) = 0.0
940 S3E(N) = 0.0
 DO 950 N = 1, N4
M4(N) = 0
S4A(N) = 0.0
S4B(N) = 0.0
S4C(N) = 0.0
S4D(N) = 0.0
950 S4E(N) = 0.0
c. Save the initial conditions for longitude, spheroid height, and altitude
RLON = WLEV1(152)
HGTO = HGT
HO = H
LALT = ISTAT(25)
LFLAG = ISTAT(44)
GO TO 4
16. End of module
RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this module:

DOUBLE PRECISION TMJD, TE, TL, T1, T2, CP, HGT, HGTO, HGTC, H, HO, HC
DIMENSION M1(11), S1(11), M2(93), S2A(93), S2B(93), M3(3),
1 S3A(3), S3B(3)
DIMENSION S3C(3), S3E(3), M4(5), S4A(5), S4B(5), S4C(5), S4D(5),
1 S4E(5)
COMM /T22A/ N1, I1(11), J1(11)
COMM /T22B/ N2, I2(93), J2A(93), J2B(93)
COMM /T22C/ N3, I3(3), J3(3)
COMM /T22D/ N4, I4(5), J4A(5), J4B(5)
COMM /STATUS/ ISTAT(100)
COMM /EXECUT/ IEXEC(100)
COMM /SENSOR/ WLEV1(300)
COMM /GEOPHY/ WLEV2(325)
EQUIVALENCE (H, WLEV1(5)), (HGT, WLEV1(137))
EQUIVALENCE (HC, WLEV2(17)), (HGTC, WLEV2(9))
EQUIVALENCE (TMJD, WLEV1(117))
EQUIVALENCE (TE, WLEV2(5))
DATA TE/-9999.0D+00/, T2/-9999.0D+00/, LALT/-9999/
WAVEFORM MODULE

TITLE: SUBROUTINE WAVFRN
FUNCTION: Driver module for the level 2 waveform processing
REFERENCE: Not applicable
CONTROL: A.A-2.0 ALT2DR level 2 driver module
SUPPORT: A.A-2.3.1 SWHFIT waveform processor driver submodule
A.A-2.3.2 WAVALT waveform altitude correction submodule
A.A-2.3.3 SWHCOR waveform SWH correction submodule
A.A-2.3.4 SWHBIAS waveform SWH bias submodule
A.A-2.3.5 WFPROD waveform products submodule
ACCESS: CALL WAVFRN
INPUTS: None
OUTPUTS: None
TABLES: None
ALGORITHM:
1. Access waveform processor submodule
 CALL SWHFIT (NLO,NUP,WTY)
2. Access waveform altitude correction submodule
 CALL WAVALT
3. Access waveform SWH correction submodule
 CALL SWHCOR
4. Access waveform SWH bias submodule
 CALL SWHBIAS
5. Access waveform products submodule
 CALL WFPROD
6. End of algorithm
 RETURN
COMMENTS:
1. The following TYPE statements must be included in the code of this submodule:
 DIMENSION WTY(63)
 DATA NLO/1/,NUP/63/ , WTY/63*0.01
 These values are SEASAT specific.

WAVEFORM PROCESSOR DRIVER SUBMODULE

TITLE: SUBROUTINE SWHFIT
FUNCTION: Driver submodule of the waveform modeled parameter recovery. This group of submodules fits a model waveform to the waveform data to obtain esti-
mates of the parameters characterizing the modeled waveform. The particular modeled radar waveform used for SEASAT data analysis is characterized by six parameters: 1) amplitude; 2) time origin or track point; 3) ocean surface rms roughness; 4) noise baseline; 5) ocean surface skewness; and 6) attitude or off-nadir angle. These are also expected to characterize the NOSS waveform.

The time origin parameter is the location of the actual mean return waveform relative to the altimeter's altitude-tracker-positioned waveform sample set, and the time origin is thus directly interpretable as an altitude correction to be applied to the real-time altitude output. The ocean surface rms roughness provides a revised estimate of the significant waveheight (SWH). The ocean surface skewness parameter provides additional information about the surface elevation probability density function and possibly also about the ocean wave spectrum. The amplitude parameter may be used to revise the altimeter-estimated surface backscattering cross-section, and the attitude angle also leads to a correction to the backscatter. The noise baseline parameter is of relatively little direct interest but must be included as one of the fitted waveform parameters because the waveform samples measure radar signal plus noise.

CONTROL: A.A-2.3 WAVFRM waveform module
SUPPORT: A.A-2.3.1.1 FILLD derivative submodule
A.A-2.3.1.2 SYMINV matrix inversion submodule
A.A-2.3.1.1.1 FILLV convolution submodule

ACCESS: CALL SWHFIT (NLO,NUP,WTY)

INPUTS: NLO = first waveform sample used in the fit (> 1)
NUP = last waveform sample used in the fit (< 63)
WTY = input waveform sample weights
WLEV2(21) = mean compressed SWH
WLEV2(101-163) = mean compressed waveform samples

OUTPUTS: WLEV2(227) = rss of fit
WLEV2(228) = kurtosis estimate
WLEV2(229) = waveform processor convergence flag
1 for normal convergence
-1 for increasing sum of squared errors
-2 for matrix inversion failure
-10 for waveform sample value outside acceptable limits
2 for amplitude estimate outside acceptable limits
3 for time origin estimate outside acceptable limits
4 for risetime estimate outside acceptable limits
5 for baseline estimate outside acceptable limits
6 for skewness estimate outside acceptable limits
7 for attitude estimate outside acceptable limits
8 for kurtosis estimate outside acceptable limits

WLEY2(230) = significant waveheight estimate
WLEY2(231) = attitude estimate
WLEY2(232) = skewness estimate
WLEY2(233) = amplitude estimate
WLEY2(234) = altitude correction from waveform processor
WLEY2(235) = baseline estimate

TABLES: Table 2.3.1. Time Location and Indexing for the 63 SEASAT Waveform Samples

ALGORITHM:
1. Set initial values, limits
 Lower and upper waveform sample numbers (63 is the number of SEASAT waveform samples)
 IF (NLO .LT. 1) NLO = 1
 IF (NUP .GT. 63) NUP = 63
 Fractional change limit for satisfactory convergence
 ERLIM = 0.001
 Maximum iteration limit
 LIMIT = 30
 Iteration counter
 ITER = 0
 Set GUESS(3) to real-time SWH estimate
 GUESS(3) = WLEV2(21) / 0.6
 Minimum sum of the squared errors
 SQMIN = 1.0E+06
 Working sum of the squared errors
 SERSC = SQMIN
 Output parameters
 IER = -10
 WLEY2(227) = -8888.0
 WLEY2(228) = -8888.0
 WLEY2(229) = IER
 WLEY2(230) = -8888.0
 WLEY2(231) = -8888.0
WLEV2(232) = -8888.0
WLEV2(233) = -8888.0
WLEV2(234) = -8888.0
WLEV2(235) = -8888.0

2. Check that input waveform sample values (YIN) are within allowed limits (return with no further SWN work if not within limits), and sum input weighting factors for normalization

WTI = 0.0
DO 50 I = NLO,NUP
 WTI = WTI + WTY(I)
 YI = YIN(I)

Expected nominal range of SEASAT waveform samples

IF (YI.LT.-25.0 .OR. YI.GT.500.0) GO TO 20
50 CONTINUE
DO 100 I = NLO,NUP
100 WT(I) = WTY(I) / WTI

3. Set initial fit parameter estimates equal to GUESS(7) which provides initial estimates of parameters not being fitted as well as those being fitted. GUESS(7) has been previously defined in COMMON /SSM4N/.

DO 105 I = 1,7
105 A(I) = GUESS(I)

4. Set the inverse-variance constraints to be added to the on-diagonal terms below at Step #8. CNSTR,:) which are the a priori estimates of the fit parameter standard deviations, limit the step size of the parameter changes in the fitting iteration and have been previously defined in COMMON /SSM4N/. Test to avoid and input standard deviation estimates less than 0.033. JORDR is the fitting order of the fit parameters. AKEEP always contains the best fit parameters before the current iteration. NA is the number of parameters used in the estimation process. (JORDR, AKEEP, and NA have all been previously defined in COMMON /SSM4N/.)

IJK = 0
DO 107 II = 1,NA
 I = JORDR(II)
 YI = CNSTR(I)**2
 IF (YI.LT. 0.001) YI = 0.001
 CNSTI(I) = 1.0 / YI
107 AKEEP(I) = A(I)
5. FILLV gets the 63 modeled waveform samples from the FFT-convolution program. These are in ascending order in the independent variable

 60 CALL FILLV (VAL)
 IER = 1

Compute residuals by subtracting the modeled waveform from the actual waveform. Then compute the sum of the weighted squares of the residuals.

 EOLD = 0.0
 DO 109 I = NLO,NUP
 YI = YIN(I) - VAL(I)
 109 EOLD = EOLD + YI*YI*WT(I)
 SQMIN = EOLD

6. Iteration restart (each iteration is restarted at this point). Zero upper part, symmetric matrix

 110 CONTINUE
 DO 200 I = 1, NA
 DO 150 J = 1, I
 150 XMAT(J, I) = 0.0
 200 BCOLM(I) = 0.0

Limit the size of the correction in the parameter space by use of a fractional multiplier on the first three iterations. This method of preventing divergence may not be acceptable in the context of realtime processing.

 XFRCT = 1.0
 IF (ITER .LT. 4) XFRCT = (1.0+FLOAT(ITER)) / 5.0
 ELIM = ERLIM * XFRCT
 SERSQ = 0.0

7. FILLD sets up the (63,7) derivative array (DRV) by making steps in the values of the parameters A(7); the step sizes taken are carried by STPRM(7), and the order of the derivatives in DRV(63,7) is set by JORDR. The order of STPRM is the same as A. FILLV must have been called before FILLD; the held value in VAL(63) from the call to FILLV is used in filling DRV(63,7). Incidentally, the numerical derivative is not taken in case of the amplitude and baseline, so the values set in STPRM(1) and STPRM(4) are irrelevant.

 CALL FILLD (VAL,DRV,STPRM)

"DO 300" loop fills upper half of the symmetric matrix, also the column vector (see Hayne, general discussion)

 DO 300 JP = NLO,NUP
WTI = WT(JP)
DY = YIN(JP) - VAL(JP)
DO 250 JA = 1,NA
PVECT(JA) = DRV(JP,JA)
250 CONTINUE
DO 300 I = 1,NA
YI = PVECT(I) * WTI
DO 275 J = 1,I
275 XMAT(J,I) = XMAT(J,I) + YI * PVECT(J)
300 BCOLM(I) = BCOLM(I) + YI * DY
8. Add on-diagonal constraint elements to the symmetric matrix; these are from the a priori information on variation expected in the parameters to be fitted. The constraint is the inverse of the input variance estimate, minimum allowed variance of 0.001
DO 520 I = 1,NA
JJ = JORDR(I)
520 XMAT(I,I) = XMAT(I,I) + CNSTI(JJ)
9. Symmetric matrix inversion (upper triangular portion only computed)
CALL SYMINV (XMAT,NA,IFAIL,7,PSYM,QSYM,MSYM)
IF (IFAIL .NE. 0) GO TO 1000
DO 660 I = 1,NA
II = JORDR(I)
Compute correction in the parameter space before fractional multiplier
ACLM = 0.0
DO 620 J = 1,NA
IF (J .LT. I) GO TO 600
ACLM = ACM + XMAT(I,J)*BCOLM(J)
GO TO 620
600 ACM = ACM + XMAT(J,I)*BCOLM(J)
620 CONTINUE
The II = 6 parameter is pointing angle; following treatment is ad hoc and specific to SEASAT-1 case
IF (II .NE. 6) GO TO 640
IF (ABS(A(6)) .LT. 0.025) ACM = ACM / 5.0
A(6) = A(6) + XFRCT*ACLM
IF (A(6).LT.-4.0 .OR. A(6).GT.4.0) A(6) = A(6) / 10.0
GO TO 660
640 A(II) = A(II) + XFRCT*ACLM
660 CONTINUE

121
The following avoids negative risetime

\[
\text{IF (A(3) .LT. 1.0E-06) A(3) = 1.0E-06}
\]

10. Recalculate values of the sampled waveform function for the new, updated estimates of the parameters A(7) and recalculate the sum of the weighted squared errors

\[
\text{CALL FILLV (VAL)}
\]

\[
\text{SERSQ} = 0.0
\]

\[
\text{DO 775 I = NLO,NUP}
\]

\[
\text{YI = YIN(I) - VAL(I)}
\]

\[
\text{775 SERSQ = SERSQ + YI*YI*WT(I)}
\]

\[
\text{ITER = ITER + 1}
\]

11. Check that we keep coefficients producing minimum sum squared errors but do not retain solution if sum was not smaller

\[
\text{IF (SERSQ .GE. SQMIN) GO TO 785}
\]

\[
\text{DO 780 I = 1,NA}
\]

\[
\text{DO 779 J = 1,I}
\]

\[
\text{779 XKEEP(J,I) = XMAT(J,I)}
\]

\[
\text{II = JORDR(I)}
\]

\[
\text{780 AKEEP(II) = A(II)}
\]

\[
\text{SQMIN = SERSQ}
\]

\[
\text{785 CONTINUE}
\]

12. Check to see if more iterations are required. Do not try for absurdly small residuals about fit (4.4E-05 is an empirically derived SEASAT constant)

\[
\text{IF (SERSQ .LT. 4.4E-05) GO TO 3000}
\]

Do not exceed iteration limit

\[
\text{IF (ITER .GE. LIMIT) GO TO 2500}
\]

Do not allow errors to increase

\[
\text{IF (SERSQ .GT. EOLD) GO TO 800}
\]

Check for fractional error convergence

\[
\text{IF (\((\text{EOLD-SERSQ)}/\text{EOLD .LE. ELIM})\) GO TO 3000}
\]

Best solution has not been obtained, try again

\[
\text{790 EOLD = SERSQ}
\]

\[
\text{GO TO 110}
\]

13. Check the fractional change in the sum of the squared errors; value less than 0.0099 is an individual waveform sample standard deviation of about 0.015, which is assumed to be an adequate lower limit to the SEASAT situation when using only last 45 waveform samples. For the SEASAT waveform case, check if the sum of the squared errors
has increased; don't make error exit if (fractional) increase is less than 10 times limits.

800 IF (SERSQ .LE. 0.0099) GO TO 3000
 IF (ABS((SERSQ-EOLD)/EOLD) .LE. 10.0*ERLIM) GO TO 190

14. Sum errors **2 increased
 IER = -1
 GO TO 2500

15. Matrix inversion failure (singular matrix)
 1000 IER = -2
 GO TO 2500

16. Iteration count exceeded. From SEASAT experience, if ITER > 2, figure that some sort of solution exists, so set IER = 1 and retrieve the minimum value producing set of A(.) and the resulting XMAT(...) values if necessary
 2500 IF (ITER .LE. 2) GO TO 4500
 IER = 1
 IF (SERSQ .LT. SQMIN) GO TO 3000
 DO 2510 I = 1, NA
 DO 2505 J = 1, I
 2505 XMAT(J,I) = XKEEP(J,I)
 II = JORDR(I)
 2510 A(II) = AKEEP(II)
 SERSQ = SQMIN
 3000 CONTINUE

17. Use values from XMAT (at last iteration and after inversion) to find correlations which will then be set into array CORRL(21) in order: 2,1 3,1 3,2 4,1 4,2 4,3 etc. Note that first the square roots of diagonal elements will be taken, for convenience. Also note that order in this correlation array is in terms of the order in which the parameters were fitted, not the order in which they are in A(.)
 DO 3001 I = 1, NA
 3001 CORRL(I) = 0.0
 IJ = 0
 DO 3005 J = 2, NA
 JM = J - 1
 DO 3005 I = 1, JM
 IJ = IJ + 1
 CORRL(IJ) = XMAT(I,J) / (XMAT(I,I)*XMAT(J,J))
 3005 CONTINUE
The following statement is reached when linefit converged, produced parameter estimates

3010 CONTINUE

18. Check linefit parameters against edit limits, signal by IER > 1
 DO 3012 II = 1,NA
 I = JORDR(II)
 YI = Y(I)
 3012 IF (YI.LT.AEDIT(1,I) .OR. YI.GT.AEDIT(2,I)) GO TO 4000
 GO TO 4500
 4000 IER = 1 + I

19. Store final output estimates in COMMON /GEOPHY/
 4500 WLEV2(227) = SQRT(SERSQ/(NUP-NLO))
 WLEV2(228) = A(7)
 WLEV2(229) = IER
 WLEV2(230) = A(3) * 0.6
 WLEV2(231) = A(6)
 WLEV2(232) = A(5)
 WLEV2(233) = A(1)
 WLEV2(234) = A(2) * 0.149896
 WLEV2(235) = A(4)

20. End of algorithm
 RETURN

COMMENTS: 1. The following TYPE statements must be included in the code of this subroutine:
 DIMENSION YIN(63),WTY(63),XMAT(7,7)BCOLM(7),PVECT(7)
 DIMENSION WT(63),PSYM(7),QSYM(7),MSYM(7),CNSTI(7)
 DIMENSION AKEEP(7),XKEEP(7,7),VAL(63),ORV(63,7),STPRM(7)
 DATA STPRM /1.0,0.25,0.2,1.0,0.05,0.005,0.05/
 COMMON /SYSTM/ SYS(514),NSYS,NSCTR,SMYS
 COMMON /SSM4N/ A(7),XCNST(7),NA,ITER,SERSQ,
 $ CORRL(21),GUESS(7),CNSTR(7),JORDR(7),AEDIT(2,7)
 COMMON /GEOPHY/ WLEV2(235)
 EQUIVALENCES (WLEV2(101),YIN(1))
TITLE: SUBROUTINE FILLD

FUNCTION: To fill an array DRV(63,7) containing 63 sample values of up to 7 derivatives. The order of the derivative terms in DRV is set by JORDR(7).
FILLD is a companion to FILLV (A.A-2.3.1.1); it requires that FILLV has been called already.

CONTROL: A.A-2.3.1 SWHFIT waveform processor driver submodule
SUPPORT: A.A-2.3.1.1.1 FILLV convolution submodule
ACCESS: CALL FILLD (VAL,DRV,STPRM)

INPUTS: VAL = modeled waveform
STPRM = step size of the fit parameters

OUTPUTS: DRV = partial derivatives of the modeled waveform with respect to the fit parameters

TABLES: None

ALGORITHM:
1. Loop to 400 for the NA derivates needed
 DO 400 K = 1,NA
 J = JORDR(K)
 GO TO (2,4,4,3,4,4,4), J

2. Amplitude derivative
 TMP = AMPLI
 IF (TMP .LT. 1.0E-05) TMP = 1.0E-05
 DO 110 I = 1,63
 110 DRV(I,K) = (VAL(I)-BSLIN) / TMP
 GO TO 5

3. Baseline derivative
 DO 210 I = 1,63
 210 DRV(I,K) = 1.0
 GO TO 5

4. Numerical derivative for all except amplitude and baseline
 ATMP = A(J)
 STEP = STPRM(J)
 A(J) = A(J) + STEP
 Compute new estimates for the Jth parameter
 CALL FILLV (TMP)
 DO 320 I = 1,63
320 DRV(I,K) = (TMP(I)-VAL(I)) / STEP
 A(J) = ATMP

5. End of loop
400 CONTINUE
6. End of algorithm
RETURN

COMMENTS: 1. The following TYPE statements must be included in the code of this
submodule:

 DIMENSION VAL(63),DRV(63,7),STPRM(7),TMP(63)
 COMMON /SSS4N/ A(7),XCNST(7),NA,ITER,SERSQ
 $ CORRL(21), GUESS(7), CNSTR(7), JORDR(7), AEDIT(2,7)
 EQUIVALENCE (AMPLI,A(1)), (BSLIN,A(4))

CONVOLUTION SUBMODULE A.A-2.3.1.1.1

TITLE: SUBROUTINE FILLV
FUNCTION: To evaluate waveforms using FFT techniques to perform convolution of:
1) system point target response, 2) sea surface elevation distribution,
and 3) flat sea response. This submodule is set up for a 512-point trans-
form and uses FFT submodules FFA and FFS and their associated submodules.

REFERENCE: Hayne, G. S., "Radar Altimeter Waveform Modeled Parameter Recovery,"
NASA TM-73294, April 1981

CONTROL: A.A-2.3.1 SWHFIT waveform processor driver submodule
 A.A-2.3.1.1 FILLD derivative submodule

SUPPORT: A.A-2.3.1.1.1 GTFSR flat sea response submodule
 A.A-2.3.1.1.2 GTSEA surface elevation distribution submodule
 A.A-2.3.1.1.3 FFA fast Fourier transform submodule
 A.A-2.3.1.1.4 FFS fast Fourier synthesizing submodule

ACCESS: CALL FILLV (VAL)

INPUTS: None

OUTPUTS: VAL = modeled waveform

TABLES: None

ALGORITHM: 1. Initialization
 IF (IIST .NE. 0) GO TO 3
 IIST = 1

2. Transform the system impulse response, SYS, which has been previously
defined in COMMON /SYSTEM/
 CALL FFA (SYS,NNP)
3. Set up the sea surface elevation distribution and perform transform, replacing the input distribution
 CALL GTSEA (NNP,SEA,SMSEA)
 CALL FFA (SEA,NNP)

4. Set up flat sea response and perform transform, replacing the input distribution
 CALL GTFSR (NNP,FSR,SMFSR)
 CALL FFA (FSR,NNP)

5. Form amplitude normalization ANORM, then set up phase multiplier delta factor DPHI. XNCTR is included as a possible time bias to be defined at a later date.
 XNCTR = 0.0
 PHI = 0.0
 The constant 1.5625 is the SEASAT 1/2 waveform sample interval
 DPHI = -((XNCTR-24.5-FLOAT(NSCTR)) + TIMO/1.5625)*6.2831853/FLOAT(NNP)

 SMSYS is the sum of the system impulse response and has been set previously in COMMON /SYSTEM/
 ANORM = 1.0 / (SMSYS*SMSEA)
 CTRES(1) = CMPLX(ANORM,0.0) * CTSYS(1) * CTSEA(1) * CTFSR(1)
 DO 500 I = 2,NC2
 PHI = PHI + DPHI
 CPHAS = CMPLX(ANORM*COS(PHI),ANORM*SIN(PHI))
 500 CTRES(I) = CPHAS * CTSYS(I) * CTSEA(I) * CTFSR(I)

6. Inverse transform to get final convolution result (RES and CTRES are equivalenced)
 CALL FFS (RES,NNP)
 IF (ABS(BSLIN) .LE. AMPLI*0.1E-05) GO TO 7
 DO 530 I = 1,NNP
 Add the baseline back in
 530 RES(I) = RES(I) + BSLIN

7. Transfer data to final output array (512 array is at SEASAT 1/2 waveform sample spacing; therefore pick every other one). Output waveform sample #1 matches resulting waveform estimate #1 by the selection of DPHI.
 DO 610 I = 1,29
 J = I + 1
 VAL(I+34) = RES(J+61)
 610 VAL(I) = RES(J-1)
DO 620 I = 30,34
620 VAL(I) = RES(I+28)

8. End of algorithm
RETURN

COMMENTS: 1. The following TYPE statements must be included in the code of this submodule:

```
DIMENSION VAL(63),SEA(514),FSR(514),RES(514)
COMPLEX CTSYS(257),CTSEA(257),CTFSR(257),CTRES(257),CPHAS
COMMON /SYSTM/ SYS(514),NSYS,NSCTR,SMSYS
COMMON /SSMANN/ A(7),XCNST(7),NA,ITER,SERSQ,
$ CORRL(21),GUESS(7),CNSTR(7),JORDR(7),AEDIT(2,7)
DATA I1ST/,0/, NNP/512/, NP2/514/, NC2/257/
EQUIVALENCE (SYS(1),CTSYS(1)) , (SEA(1),CTSEA(1))
EQUIVALENCE (FSR(1),CTFSR(1)) , (RES(1),CTRES(1))
EQUIVALENCE (A(1),AMPLI) , (A(2),TMO) , (A(3),SIGMA)
EQUIVALENCE (A(4),BBLIN) , (A(5),XLMDA) , (A(6),XIDE)
EQUIVALENCE (A(7),XKURT)
```

FLAT SEA RESPONSE SUBMODULE A.A-2.3.1.1.1

TITLE: SUBROUTINE GTFSR
FUNCTION: To determine the flat sea response using I_0 term only from Brown's expansion (see references). A power series from Abramowitz and Stegun is used to evaluate I_0. This version of GTFSR uses 230 non-zero values of the flat sea response and assumes that NNP>231.

CONTROL: A.A-2.3.1.1.1 FILLV convolution submodule
SUPPORT: None
ACCESS: CALL GTFSR (NNP, FSR, SMFSR)
INPUTS: NNP = number of points in the flat sea response array (at least 2 less than the dimension of FSR)
OUT PUTS:
FSR = flat sea response array
SMFSR = flat sea response normalization sum

TABLES: None

ALGORITHM:
1. Initialization (NSPR = 320 is SEASAT specific and related to using a 512 point transform).
 NSFR = 230
 SMFSR = 0.0
 SEASAT 1/2 waveform sample interval
 DT = 1.5625
 T = -DT/2.0
2. Test for (impossible) negative angle; if present choose branch which effectively increases the DLTA at < zero degrees pointing
 IF (XIDEG .GT. 0.0) GO TO 3
 Brown's equation do not allow for negative angle. Therefore approximate extrapolation by exponential. The following statement causes DLTA to increase by a factor of two for one degree (fictitious) negative angle.
 DLTA = 2.66496E-03 * (1.0-XIDEG)
 DO 15 J = 1,NFSR
 T = T + DT
 Z = AMPLI * EXP(-DLTA*T)
 FSR(J) = Z
15 SWSR = SMFSR + Z
 GO TO 4
3. Fill in surface response by proper power series for I_0(Z). The constants used in the calculation of BETA and DLTA (see Hayne, equations 19, 20, and 22) are SEASAT related and dependent upon beam width and altitude.
 X2RAD = XIDEG / 28.64789
 BETA = 4.35331 * SIN(X2RAD)
 DLTA = 2.66496E-03 * COS(X2RAD)
 DO 30 J = 1,NFSR
 T = T + DT
 Z = BETA * SQRT(T)
 Select which of two series to use for I_0(Z) from Abramowitz and Stegun
 IF (Z .GT. 3.75) GO TO 23
 Z = Z * Z / 14.0625
 A = 1.0 + Z*(3.515623+Z*(3.089942+Z*(1.206749

129
$ +Z^*(0.2659732+Z^*(0.0360768+Z^*0.0045813))))$

GO TO 27

23 $A = \exp(Z) / \sqrt{Z}$

$Z = 3.75 / Z$

$A = Z^*(0.3989423-Z^*(0.03988024+Z^*(0.00362018$

$S -Z^*(0.00163801-Z^*(0.00163801-Z^*(0.01031555-Z^*(0.02895312$

$S -Z^*(0.01787654-Z^*(0.00420059))))))))$

27 $Z = \text{AMPLI} \times \exp(-\Delta T) \times A$

$\text{FSR}(J) = Z$

30 $\text{SMSFR} = \text{SMSFR} + Z$

4. Fill rest of the array with zeroes

$K = \text{NFSR} + 1$

$\text{NP2} = \text{NNP} + 2$

DO 40 $J = K, \text{NP2}$

40 $\text{FSR}(J) = 0.0$

I1ST = 1

5. End of algorithm

RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this submodule:

DIMENSION $\text{FSR}(2)$

COMMON /SSMAN/ $A(7),x\text{CNST}(7),\text{NA}, \text{ITER}, \text{SERSQ},$

$S \text{ CORRL}(21), \text{GUESS}(7), \text{CNSTR}(7), \text{JORDR}(7), \text{AEDIT}(2,7)$

EQUIVALENCE ($A(1), \text{AMPLI} , (A(2), \text{TIMDO}) , (A(3), \text{SIGMA})$

EQUIVALENCE ($A(4), \text{BSLIN} , (A(5), \text{XLMDA}) , (A(6), \text{XIDEG})$

EQUIVALENCE ($A(7), \text{XKURT}$)

SURFACE ELEVATION DISTRIBUTION SUBMODULE

A.A-2.3.1.1.2

SUBROUTINE GTSEA

To fill array with a skewed Gaussian surface elevation distribution centered on the sample number 86. Zeroes entered in all other elements than in interval 1 - 171. Assumes NNP > 171. It is intended for use in the 512-point FFT processes.

RAYNE, G. S., "Radar Altimeter Waveform Modeled Parameter Recovery."

A.A-2.3.1.1 FILLV convolution submodule

None

130
ACCESS: CALL GTSEA (NNP,SEA,SMSEA)

INPUTS: NNP = number of points in the surface elevation distribution array
(at least 2 less than the dimension of SEA)

OUTPUTS: SEA = surface elevation distribution array
SMSEA = surface elevation distribution normalization sum

TABLES: None

ALGORITHM: 1. Convert sea sigma to # gate intervals (zero width is not allowed).
 The constant 1.5625 is the SEASAT 1/2 waveform sample interval.

 XNGTS = SIGMA / 1.5625
 IF (XNGTS .LT. 0.001) XNGTS = 0.001
 WGTS = 0.0

2. Establish center at 86th gate
 NCTR = 86
 SEA(NCTR) = 1.0
 SMSEA = 1.0
 K = NCTR - 1
 X6 = XLMODA / 6.0
 XNDX = 0.0

3. Fill non-zero elements of the array
 DO 20 J = 1,K
 XNDX = XNDX + 1.0
 WGTS = XNDX / XNGTS
 Z = -WGTS * WGTS / 2.0
 IF (Z .LT. -80.0) GO TO 10
 A = EXP(Z)
 Z = X6 * WGTS * (WGTS*WGTS-3.0)
 A1 = A * (1.0-Z)
 A2 = A * (1.0+Z)
 GO TO 15
 10 A1 = 0.0
 A2 = 0.0
 15 SEA(NCTR-J) = A1
 SEA(NCTR+J) = A2
 20 SMSEA = SMSEA + A1 + A2

4. Fill zero elements of the array
 K = 2 * NCTR
 NP2 = NNP + 2
 DO 25 J = K,NP2
 25 SEA(J) = 0.0
5. End of algorithm
RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this submodule:

```
DIMENSION SEA(2)
COMMON /SSMAN/ A(7),XCNST(7),NA,ITER,SERSQ,CORRL(21)
$ GUESS(7),CNSTR(7),JORDR(7),EDIT(2,7)
EQUIVALENCE (A(1),AMPLI), (A(2),TINO), (A(3),SIGMA)
EQUIVALENCE (A(4),BSLIN), (A(5),XLMDA), (A(6),XIDE)
EQUIVALENCE (A(7),XKURT)
```

FAST FOURIER TRANSFORM SUBMODULE

TITLE: SUBROUTINE FFA

FUNCTION: To replace the real vector B(K), (K=1,2,...,N), with its finite discrete Fourier transform. The DC term is returned in location B(1) with B(2) set to 0. Thereafter, the J-TH harmonic is returned as a complex number stored as B(2*J+1) + i B(2*J+2). Note that the N/2 harmonic is returned in B(N+1) with B(N+2) set to 0. Hence, B must be dimensioned to size N+2. The subroutine is called as FFA (B,N) where N = 2M and B is an N term real array (for SEASAT, M = 9). A real-valued, radix 8 algorithm is used with in-place reordering and the trig functions are computed as needed.

CONTROL: A.A-2.3.1.1.1 FILLV convolution submodule

SUPPORT: FFA-FFS package (see COMMENTS)

ACCESS: Call FFA (B,NFFT)

INPUTS:
- B = the real vector to be transformed
- NFFT = the dimension of the B vector

OUTPUTS:
- B = the finite discrete Fourier transform of the input vector

TABLES: None

ALGORITHM: See above reference

COMMENTS:
1. The submodule is one of the set of routines for fast Fourier transform of real data sequences as described in the above reference. These routines are collectively the "FFA-FFS package" which includes: FFA, FFS, RZTR, R4TR, R8TR, R4SYN, RBSYN, ORD1 and ORD2.
FAST FOURIER SYNTHESIZING SUBMODULE

TITLE: SUBROUTINE FFS

FUNCTION: To synthesize the real vector B(K), where K=1,2,...,N. The initial Fourier coefficients are placed in the B array of size N+2. The DC term is in B(1) with B(2) equal to 0. The J-TH harmonic is stored as B(2*J+1) + i B(2*J+2). The N/2 harmonic is in B(N+1) with B(N+2) equal to 0. The subroutine is called as FFS (B,N) where N = 2M (for SEASAT, M = 9) and B is the N term real array discussed above.

CONTROL: A.A-2.3.1.1.1 FILLV convolution submodule

SUPPORT: FFA-FFS package (see COMMENTS)

ACCESS: CALL FFS (B,NFFT)

INPUTS: B = the Fourier coefficients
 NFFT = the dimension of B vector

OUTPUT: B = the real vector

TABLES: None

ALGORITHM: See above reference

COMMENTS: 1. The submodule is one of the set of routines for fast Fourier transform of real data sequences as described in the above reference. These routines are collectively the "FFA-FFS package" which includes: FFA, FFS, R2TR, R4TR, R4TR, R4SYN, R8SYN, ORD1, and ORD2.

MATRIX INVERSION SUBMODULE

TITLE: SUBROUTINE SYMINV

FUNCTION: To compute the inverse of a symmetric matrix

REFERENCE:

CONTROL: A.A-2.3.1 SWHFIT waveform processor driver submodule

SUPPORT: None

ACCESS: CALL SYMINV (A,N,IFAIL,NROW,P,Q,M)

INPUTS: A = symmetric matrix to be inverted
 N = order of the matrix to be inverted
 NROW = row dimension of A
 P = dummy vector of dimension N
Q = dummy vector of dimension N
M = dummy vector of dimension N

OUTPUTS:
A = inverted matrix
IFAIL = 0 for successful inversion
= 1 for unsuccessful inversion

TABLES:
None

ALGORITHM:
1. Initialization

 IFAIL = 0
 DO 10 I = 1,N
 10 M(I) = 1

2. Search for pivot

 DO 140 I = 1,N
 BIG = 0.0
 DO 40 J = 1,N
 TEST = ABS(A(J,J))
 IF (TEST > BIG) 40,40,20
 20 IF (M(J)) 150,40,30
 30 BIG = TEST
 K = J
 40 CONTINUE

3. Preparation for elimination step

 M(K) = 0
 Q(K) = 1.0 / A(K,K)
 P(K) = 1.0
 A(K,K) = 0.0
 KP1 = K + 1
 KM1 = K - 1
 IF (KM1) 150,80,50
 50 DO 70 J = 1,KM1
 P(J) = A(J,K)
 IF (M(J)) 150,70,60
 60 Q(J) = -Q(J)
 70 A(J,K) = 0.0
 80 IF(K-N) 90,130,150
 90 DO 120 J = KP1,N
 P(J) = A(K,J)
 IF (M(J)) 150,100,110
 100 P(J) = -P(J)
110 Q(J) = -A(K,J) * Q(K)
120 A(K,J) = 0.0

4. Elimination proper
130 DO 140 J = 1,N
 DO 140 K = J,N
140 A(J,K) = A(J,K) + P(J)*Q(K)
 GO TO 6

5. Error exit
150 IFAIL = 1

6. End of algorithm
 RETURN

COMMENTS: 1. The following TYPE statement must be included in the code of this
 submodule:
 DIMENSION A(NROW,1),P(1),Q(1),M(1)

2. This submodule uses only the upper triangular portion of A as input
 and returns only the upper triangular portion of the matrix inverse.

WAVEFORM ALTITUDE CORRECTION A.A-2.3.2

TITLE: SUBROUTINE WAVALT
FUNCTION: To compute the altitude correction for attitude, SWH, and h when the wave-
 form processor fails to converge. This module is used only as a backup to
 the waveform processor and is not called when convergence is achieved by
 the waveform processor. The inputs to the module are the spacecraft esti-
 mate of attitude and the real-time SWH and the software estimate of h.
 The output is the altitude correction for attitude, SWH, and h.

REFERENCE: "Seasat Algorithm Development Facility Altimeter Sensor Algorithm Specifi-

CONTROL: A.A-2.3 WAVFRM waveform module
SUPPORT: None
ACCESS: CALL WAVALT

INPUTS:
 WLEV2(12) = attitude in (deg,0.01)
 WLEV2(21) = significant wave height in (m,0.01)
 WLEV2(236) = height acceleration in (m/s2,0.01)
 WLEV2(229) = waveform processor flag
 ISTAT(9) = track-mode flag

OUTPUTS:
 WLEV2(238) = height correction for attitude, SWH, and h in (m,0.001)
 WLEV2(240) = standard deviation of $\delta h_{2,6}$ in (m,0.001)
TABLES: A table of sea states and attitudes.

ALGORITHM: Whenever the waveform processor does not converge:

1. Compute the altitude correction for attitude and SWH by table lookup.
2. Compute altitude correction for h.
3. Output the total correction and its standard deviation.

COMMENTS: 1. This is only a functional description. At a later date it will be defined or deleted if not needed to backup the waveform parameter recovery.

WAVEFORM SWH CORRECTION

A.A-2.3.3

TITLE: SUBROUTINE SWHCOR

FUNCTION: To compute the SWH correction for attitude and SWH when the waveform processor fails to converge. This module is used only as a backup to the waveform processor and is not called when convergence is achieved by the waveform processor. The inputs to the module are the spacecraft estimate of attitude and the real-time SWH. The output is the SWH correction for attitude and SWH.

CONTROL: A.A-2.3 WAVFRM waveform module

SUPPORT: None

ACCESS: CALL SWHCOR

INPUTS: WLEV2(12) = attitude in (deg,0.01)
WLEV2(21) = significant wave height in (m,0.01)
WLEV2(229) = waveform processor convergence flag

OUTPUTS: WLEV2(237) = SWH correction for attitude and SWH in (m,0.001)

TABLES: A table consisting of two entries for each of 16 attitudes and 20 sea states (640 entries).

ALGORITHM: If the waveform processor did not converge, this module will compute the SWH correction for attitude and SWH by table lookup.

COMMENTS: 1. This is only a functional description. At a later date this module will be defined or deleted if not needed as a backup.
SUBROUTINE SWHBIAS

To calculate the SWH cal zone bias. The correction will be based on comparisons of the calculated SWH with ground-truth measurements from buoys and aircraft and will therefore be computed after launch. The input to the module will be Julian date and the output will be the SWH cal bias.

REFERENCE:
"SEASAT Algorithm Development Facility Altimeter Sensor Algorithm Specifications," Jet Propulsion Laboratory, PD-622-202, Revision A.

CONTROL: A.A-2.3 WAVFRM waveform module

SUPPORT: None

ACCESS: CALL SWHBIAS

INPUTS:
- WLEV2(15) = classification flag
- WLEV2(5) = time as Julian date in (days, 1 x10^-8)
- WLEV2(21) = significant wave height (m, 0.01)

OUTPUTS:
- WLEV2(241) = SWH cal zone bias in (m, 0.001)

TABLES: A table of ΔSWH as a function of SWH (not presently available). There will be a maximum of 20 table entries of SWH and ΔSWH for each of a maximum of five TJD (100 total entries).

ALGORITHM: For data over water a table lookup of SWH will be made. Linear interpolation and extrapolation may be used to calculate the output.

COMMENTS:
1. This is only a functional description.
2. The table will not be available until postlaunch inflight data are compared and analyzed against ground-truth data. This table may be updated during the mission.
INPUTS:
- WLEV2(230) = refined SWH estimate
- WLEV2(232) = skewness estimate

OUTPUTS:
- WLEV2(245) = significant slope
- WLEV2(246) = dominant wavelength
- WLEV2(247) = dominant frequency
- WLEV2(248) = dominant phase speed
- WLEV2(249) = dominant wave number

TABLES:
None

ALGORITHM:
1. Compute the significant slope
 \[\text{WLEV2}(245) = \frac{\text{WLEV2}(232)}{(8.0*\pi)} \]
2. Compute the dominant wavelength
 \[\text{WLEV2}(246) = \frac{\text{WLEV2}(230)}{(4.0*\text{WLEV2}(245))} \]
3. Compute the dominant frequency
 \[\text{WLEV2}(247) = \sqrt{\frac{2.0*\pi*G}{\text{WLEV2}(246)}} \]
4. Compute the dominant phase speed
 \[\text{WLEV2}(248) = \sqrt{\frac{G*\text{WLEV2}(246)}{(2.0*\pi)}} \]
5. Compute the dominant wave number
 \[\text{WLEV2}(249) = \frac{2.0*\pi}{\text{WLEV2}(246)} \]
6. End of algorithm

RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this submodule:
 \[
 \text{COMMON /GEOPHY/ WLEV2(325)}
 \]
 \[
 \text{DATA PI/3.14159265358979/}
 \]
 \[
 \text{DATA G/9.80621/}
 \]

ATMOSPHERIC CORRECTIONS	A.A-2.4

TITLE:
SUBROUTINE ATMOS

FUNCTION:
To calculate the atmospheric corrections to the spacecraft altitude and the radar backscatter coefficient. The module will also process data from the rain gate. The altitude correction from this module consists of the combined effects of ionospheric refraction, wet and dry tropospheric refraction, and atmospheric pressure. The radar backscatter coefficient correction accounts for the effects of the atmosphere on return power, and the rain-gate processing detects the presence of rain at the subsatellite point. All inputs and outputs are processed by submodules.

REFERENCE:
Not applicable
CONTROL: A.A-2.0 ALT2DR level 2 main driver

SUPPORT: A.A-2.4.1 RAIN rain estimate submodule
A.A-2.4.2 BARTRO barotropic effects submodule
A.A-2.4.3 IONO ionospheric refraction
A.A-2.4.4 DRYTRO dry tropospheric refraction
A.A-2.4.5 WETTRO wet tropospheric refraction
A.A-2.4.6 SIGCOR radar backscatter correction

ACCESS: CALL ATMOS

INPUTS: TBD

OUTPUTS: TBD

TABLES: None

ALGORITHM: Each submodule is called in turn:
(1) Rain gate (A.A-2.4.1)
(2) Barotropic effects (A.A-2.4.2)
(3) Ionospheric refraction (A.A-2.4.3)
(4) Dry tropospheric refraction (A.A-2.4.4)
(5) Wet tropospheric refraction (A.A-2.4.5)
(6) Sigma-naught correction (A.A-2.4.6)

COMMENTS: 1. This is only a functional description.

RAIN GATE A.A-2.4.1

TITLE: SUBROUTINE RAIN

FUNCTION: To provide nadir rain-rate estimates. In addition, two flags, indicating the quantity and quality of the rainfall estimate, will be set to facilitate processing of possible altitude rain-rate correction.

CONTROL: A.A-2.4 ATMOS atmospheric correction module

SUPPORT: None

ACCESS: CALL RAIN

INPUTS: TBD

OUTPUTS: WLEV2(251) = rain rate in (mm/hr,0.1)
WLEV2(252) = rain-rate quantity flag:
1 for light (0 < R ≤ 2)
2 for mild (2 < R ≤ 6)
3 for medium (6 < R ≤ TBD)
4 for heavy (TBD < R)
WLEV2(253) = rain-rate estimate quality flag:
0 for good
1 for questionable

TABLES: TBD
ALGORITHM: TBD
COMMENTS: 1. This algorithm will be defined at a later date.

BAROTROPIC EFFECTS A.A-2.4.2

TITLE: SUBROUTINE BARTRO
FUNCTION: To compute the altitude correction due to the effects of atmospheric pressure.
CONTROL: A.A-2.4 ATMOS atmospheric correction module
SUPPORT: None
ACCESS: CALL BARTRO
INPUTS: WLEV2(256) = sea-surface atmospheric pressure (from FNOC) in (mb,0.1)
WLEV2(259) = FNOC data-present flag
OUTPUTS: WLEV2(260) = atmospheric pressure altitude correction in (m,0.001)
WLEV2(261) = standard deviation of corrections in (m,0.001)
TABLES: A table of monthly averages of atmospheric pressure, temperature, and vapor pressure for each 5 degrees of latitude (not presently available).
The size of the table will be approximately 3 by 12 by 30.
ALGORITHM: If the surface atmospheric pressure (P) is not available from FNOC, the table will be linearly interpolated for calculating P.
\[P = WLEV2(256) \]
\[WLEV2(260) = 0.009948 \times (P-1013.3) \]
\[WLEV2(261) = 0 \] (for default)
COMMENTS: 1. The detailed algorithm will be defined at a later date.

IONOSPHERIC REFRACTION A.A-2.4.3

TITLE: SUBROUTINE IONO
FUNCTION: To compute the altitude correction necessitated by the effects of ionospheric refraction.

CONTROL: A.A-2.4. ATMOS atmospheric correction module

SUPPORT: None

ACCESS: CALL IONO

INPUTS:
- WLEV2(5) = time expressed as Julian date in (d,1x10^-8)
- WLEV2(7) = latitude of subsatellite point in (deg,0.001)
- WLEV2(8) = longitude of the subsatellite point in (deg,0.001)

OUTPUTS:
- WLEV2(267) = ionospheric refraction altitude correction in (m,0.001)
- WLEV2(268) = standard deviation of Δh₂₂ in (m,0.001)

TABLES:
- TBD

ALGORITHM:
- Ionospheric data file, A.D-2.82

COMMENTS:
1. This algorithm will be defined at a later date.

DRY TROPOSPHERIC REFRACTION

A.A-2.4.4

TITLE: SUBROUTINE DRYTRO

FUNCTION: This module computes the altitude correction due to the effects of dry tropospheric refraction.

CONTROL: A.A-2.4 ATMOS atmospheric correction module

SUPPORT: None

ACCESS: CALL DRYTRO

INPUTS:
- WLEV2(256) = surface atmospheric pressure (from FNOC) in (mb,0.1)
- WLEV2(259) = FNOC data-present flag
- WLEV2(7) = spacecraft latitude (from ephemeris) in (deg,0.001)

OUTPUTS:
- WLEV2(269) = dry tropospheric refraction altitude correction in (m,0.001)
- WLEV2(270) = standard deviation of Δh₂₃ in (m,0.001)

TABLES:
- A table of monthly averages of atmospheric pressure, temperature, and vapor pressure for each 5 degrees of latitude (not presently available).
- The size of the table will be approximately 3 by 12 by 30.

ALGORITHM:
- If the surface atmospheric pressure (P) is not available from FNOC, a table will be linearly interpolated for calculating P.

 WLEV2(269) = P(2.277-0.011 cos φ) x 10^-3

 WLEV2(270) = 0 (for default)

COMMENTS:
1. This is only a functional description.
WET TROPOSPHERIC REFRACTION

TITLE: SUBROUTINE WETTRO
FUNCTION: This module computes the altitude correction due to the effects of wet tropospheric refraction. It uses either rain data, LAMMR level 2 data file or FNOC data.
CONTROL: A.A-2.4 ATMOS atmospheric correction module
SUPPORT: TBD
ACCESS: CALL WETTRO

INPUTS:
WLEV2(5) = time
WLEV2(7) = spacecraft latitude
WLEV2(251) = rain rate
WLEV2(252) = rain rate quality flag
WLEV2(253) = rain rate quality flag
WLEV2(257) = FNOC sea surface water-vapor pressure (e)
WLEV2(258) = FNOC sea surface atmospheric temperature (T)
WLEV2(259) = FNOC data present flag
LAMMR = level 2 data file A.D(L)-2.83

OUTPUTS:
WLEV2(271) = wet tropospheric refraction altitude correction
WLEV2(272) = standard deviation of WLEV2(271)
WLEV2(273) = LAMMR data quality flag

TABLES: A table of monthly averages of temperature, and vapor pressure for each 5 degrees of latitude (not presently available).

ALGORITHM:
1. If rain data is of good quality then use it to compute WLEV2(271).
2. If not use LAMMR data if available.
3. If LAMMR not available then set e = WLEV2(257) or from the table if FNOC data not present.
4. Assign standard deviation and LAMMR quality flag.

COMMENTS: 1. This is only a functional description.

RADAR BACKSCATTER CORRECTION

TITLE: SUBROUTINE SIGCOR
FUNCTION: To compute the atmospheric correction to sigma naught. The correction will be computed using rain data if it indicates a rate greater than 2 mm/hr, otherwise LAMMR data is used.

CONTROL: A.A-2.4 ATMOS atmospheric correction module

SUPPORT: TBD

ACCESS: CALL SIGCOR

INPUTS:
- WLEV2(5) = time expressed as Julian date in $(d, 1 \times 10^{-6})$
- WLEV2(251) = rain rate from A.A-2.4.1 in $(\text{mm/hr}, 0.1)$
- WLEV2(252) = rain-rate quantity flag from A.A-2.4.1
- WLEV2(253) = rain-rate quality flag from A.A-2.4.1
- LAMMR level 2 T_B data file (A.D(L)-2.84)

OUTPUTS:
- WLEV2(274) = sigma-naught atmospheric correction in $(\text{dB}, 0.01)$

TABLES: None

ALGORITHM:
1. Compute correction using rain gate data if good quality or else 2.
2. Process according to S.A.(S)-2.4 (Ref. 6).

COMMENTS: 1. This is only a functional specification.

WIND SPEED AND RADAR BACKSCATTER COEFFICIENT DRIVER MODULE A.A-2.5

TITLE: SUBROUTINE WINDSIG

FUNCTION: To act as the driver module for the calculation of the wind speed and the radar backscatter coefficient

REFERENCE: Not applicable

CONTROL: A.A-2.0 ALT2DR level 2 driver module

SUPPORT: A.A-2.5.1 SIGZRO radar backscatter coefficient submodule
- A.A-2.5.2 WIND wind speed submodule

ACCESS: CALL WINDSIG

INPUTS: None

OUTPUTS: None

TABLES: None

ALGORITHM:
1. Determine the radar backscatter coefficient
 CALL SIGZRO
2. Determine the wind speed $(19\frac{1}{2} \text{ meters altitude})$
 CALL WIND
3. End of algorithm
 RETURN
RADAR BACKSCATTER COEFFICIENT SUBMODULE A.A-2.5.1

TITLE: SUBROUTINE SIGZRO
FUNCTION: To estimate the radar backscatter coefficient, which is an indication of
the reflectance properties of the ocean surface.
CONTROL: A.A-2.5 WINDSIG wind speed and radar backscatter coefficient module
SUPPORT: None
ACCESS: CALL SIGZRO

INPUTS:
- ALT2 = corrected altitude in (m,0.001)
- WLEVEL(9) = AGC in (dB,0.01)
- WLEVEL(231) = altimeter off nadir angle in (deg,0.01)
- WLEVEL(274) = radar backscatter coefficient atmospheric correction
 in (dB,0.01)
- AGCI = array of AGC attenuator values from Table 2.5.1-a
- CALK = array of cal attenuator values from Table 2.5.1-a
- ATT = array of attitude values from Table 2.5.1-b
- AL = array of attitude loss values from Table 2.5.1-b
- ALTLO = altitude lower limits in (m,1.0)
- ALTHI = altitude higher limits in (m,1.0)

OUTPUTS:
- WLEVEL(276) = radar backscatter coefficient in (dB,0.01)

TABLES:
- Table 2.5.1-a Cal Attenuator and AGC (see Appendix B)
- Table 2.5.1-b Attitude Loss (see Appendix B)

ALGORITHM:
1. Check input values
 IF (ALT2.LT.ALTLO .OR. ALT2.GT.ALTHI) GO TO 6
 IF (WLEVEL(9).LT.0.0 .OR. WLEVEL(9).GT.60.58) GO TO 6
 IF (WLEVEL(274).LT.-10.0 .OR. WLEVEL(274).GT.10.0) GO TO 6
 IF (WLEVEL(231).LT.0.0 .OR. WLEVEL(231).GT.0.75) GO TO 6
2. Determine cal attenuator value
 DMIN = 9999.0
 DO 100 I = 1,8
 TEST = ABS(AGCI(I)-WLEVEL(9))
 IF (TEST .GT. DMIN) GO TO 3
 K = I
 100 DMIN = TEST
3. Determine the proper attitude loss table entry index
 DO 200 I = 2,16
 K2 = I
IF (ATT(I) .GT. WLEV2(231)) GO TO 4
200 CONTINUE

4. Determine the attitude loss

 K1 = K2 - 1

 FACT = (AL(K2)-AL(K1)) / (ATT(K2)-ATT(K1))

 ALOSS = AL(K1) + FACT*(WLEV2(231)-ATT(K1))

5. Determine the radar backscatter coefficient

 CORR = 30.0 * ALOG10(SNGL(ALT2)/796440.0)

 WLEV2(276) = 38.33 - DMIN - CALK(K) + ALOSS

 1 + CORR + WLEV2(274)

 GO TO 8

6. Input out of range - print warning message and all input variables
7. WLEV2(276) = -9999.0
8. End of algorithm

RETURN

COMMENTS:

1. The following TYPE statements must be included in the code of this submodule

 DOUBLE PRECISION ALT2

 COMMON /SENSOR/ WLEV1(300)

 COMMON /GEOPHY/ WLEV2(325)

 COMMON /ALTLM/ ALTLO,ALTHI

 COMMON /T251A/ AGCI(8),CALK(8)

 COMMON /T251B/ ATT(16),AL(16)

 EQUIVALENCE (ALT2,WLEV2(9))

2. The original (SEASAT) algorithm used WLEV2(274) = 0. The NOSS algorithm determines WLEV2(274) in the radar backscatter coefficient atmospheric correction submodule (A.A-2.4.6) using data that are supplied by the LAMMR and the CZCS instruments.

3. The radar backscatter coefficient bias used in Step #5 (38.33 dB) was changed from the original (SEASAT) value of 39.93 dB on the recommendation of L. Fedor, based upon results of the SEASAT Gulf of Alaska Workshop (Ref. 7).

4. The altimeter off-nadir angle, WLEV2(231), is determined by the waveform processor submodule (A.A-2.3.1) if that submodule converges. If not, the instrument-computed value of the pointing angle is used.
FUNCTION: To calculate the wind speed at the subsatellite point and altitudes of 191 meters and 10 meters

2. Private communication, L. Clarke (FNOC), November 1980

CONTROL: A.A-2.5 WINDSIG wind speed and radar backscatter coefficient driver module

INPUTS: WLEV2(276) = radar backscatter coefficient in (dB,0.01)
A = array of coefficients from Table 2.5.2-a
B = array of coefficients from Table 2.5.2-a
C = array of coefficients from Table 2.5.2-b

OUTPUTS: WLEV2(277) = wind speed at 10 meters in (m/s,0.1)
WLEV2(278) = wind speed at 191 meters in (m/s,0.1)

TABLES: Table 2.5.2-a Wind A and B Coefficients (see Appendix B)
Table 2.5.2-b Wind Polynomial Coefficients (see Appendix B)

ALGORITHM:
1. Check input values
 IF (WLEV2(276).LT.0.0 .OR. WLEV2(276).GT.15.0) GO TO 5
2. Determine the proper table entry index
 I = 1
 IF (WLEV2(276) .GT. 10.12) I = 2
 IF (WLEV2(276) .GT. 10.90) I = 3
3. Determine the wind speed at 10 meters altitude
 X = -0.1 * (WLEV2(276)+2.1)
 Y = EXP((10.0**X-B(I)) / A(I))
 IF (Y .GT. 16.0) WTEN = Y
 IF (Y .LE. 16.0) WTEN = C(1)*Y + C(2)*Y**2 + C(3)*Y**3 + C(4)*Y**4 + C(5)*Y**5
 WLEV2(277) = WTEN
4. Determine the wind speed at 191 meters altitude
 W1 = 0.66783E-02 * WTEN
 W2 = ALOG(1.0 / (1.38E-15*WEN))
 WLEV2(278) = WTEN + W1/W2
 GO TO 7
5. Input out of range - print warning message and all input variables
6. WLEV2(277) = -9999.0
 WLEV2(278) = -9999.0
7. End of algorithm
 RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this
 submodule:
 COMMON /SENSOR/ WLEV1(300)
 COMMON /GEOPHY/ WLEV2(325)
 COMMON /T252A/ A(3), B(3)
 COMMON /T252B/ C(5)
2. The A and B coefficients were determined empirically from comparisons
 between GEOS-3 wind speed estimates and ground truth wind speed
 measurements

LEVEL 2 ALTITUDE CORRECTION MODULE

TITLE: SUBROUTINE AL2COR
FUNCTION: To act as the driver module for the calculation of the geophysical related
 corrections to the altitude (except for atmospheric corrections)
REFERENCE: Not applicable
CONTROL: A.A-2.0 ALT2DR level 2 driver module
SUPPORT: A.A-2.6.1 GEOID geoid height submodule
 A.A-2.6.2 TIDE tide height submodule
 A.A-2.6.3 SETIDE solid earth tide height submodule
 A.A-2.6.4 EMBIAS EM bias submodule
 A.A-2.6.5 SSHRES sea surface height submodule
ACCESS: CALL AL2COR
INPUTS: None
OUTPUTS: None
TABLES: None
ALGORITHM: 1. Determine the geoid height
 CALL GEOID
2. Determine the tide height
 CALL TIDE
3. Determine the solid earth tide height
 CALL SETIDE
4. Determine the EM bias
 CALL EMBIAS
5. Determine the sea surface height
 CALL SSHRES

6. End of algorithm
 RETURN

GEOID HEIGHT SUBMODULE

A.A-2.6.1A

TITLE: SUBROUTINE GEOID

FUNCTION: To compute the geoid height at the subsatellite point. Any geoid model
 may be used as long as the geoid heights are supplied for a 1°x1° grid.

REFERENCES: None

CONTROL: A.A-2.6 AL2COR level 2 altitude correction module

SUPPORT: A.A-2.6.1.1 BILINE bilinear interpolation submodule

ACCESS: CALL GEOID

INPUTS: A.D-2.71 = geoid data file (see Comment #4)
 WLEV1(151) = geodetic latitude in (deg,0.000001)
 WLEV1(152) = longitude in (deg,0.000001)
 ISTAT(43) = subtrack direction flag (0 for south to north, 1 for north to south)

OUTPUTS: WLEV2(281) = geoid height in (m,0.001)

TABLES: None

ALGORITHM: 1. Check for input variables out of range
 IF (ISTAT(43).LT.0 .OR. ISTAT(43).GT.1) GO TO 9
 IF (WLEV1(151).LT.-90.0 .OR. WLEV1(151).GT.90.0) GO TO 9
 IF (WLEV1(152).LT.0.0 .OR. WLEV1(152).GE.360.0) GO TO 9

2. Compute the corner point coordinates of the 1°x1° rectangle enclosing the subsatellite point
 IO = WLEV1(151)
 JO = WLEV1(152)
 IF (WLEV1(151).LT.0.0) IO = IO - 1
 X1 = JO
 Y1 = IO
 X2 = JO + 1
 Y2 = IO + 1

3. Determine if the geoid file must be read
 NTEST = JO - N
 IF (NTEST.GE.0 .AND. NTEST.LE.4) GO TO 8
\[NTEST = JO - N + 360 \]

\[\text{IF} \ (NTEST \geq 0 \ \text{AND} \ NTEST \leq 4) \ \text{GO TO} \ 8 \]

4. Geoid file must be read - determine which records (current longitude through 5 degrees longitude down track)
\[N = JO - 4 \]
\[\text{IF} \ (N < 0) \ N = N + 360 \]
\[NSTOP = N + 5 \]

5. Determine the latitude range to be used (current latitude through 30 degrees latitude down track)
\[\text{IF} \ (ISTAT(43) = 0) \ L1 = IO \]
\[\text{IF} \ (ISTAT(43) = 1) \ L1 = IO - 29 \]
\[\text{IF} \ (L1 < -90) \ L1 = -90 \]
\[\text{IF} \ (L1 > 60) \ L1 = 60 \]
\[L2 = L1 + 30 \]

6. Read the geoid file
 a. \[\text{DO} \ 100 \ I = N,NSTOP \]
 \[NREC = I + 1 \]
 \[\text{IF} \ (NREC > 360) \ NREC = NREC - 360 \]
 b. Read record \#NREC from the random access geoid file into the array called \(V \)

7. Store the geoid data inside the computed latitude range
\[K = N - I + 1 \]
\[\text{DO} \ 100 \ L = L1,L2 \]
\[J = L + 91 \]
\[M = L1 - L + 1 \]
\[100 \ G(M,K) = V(J) \]

8. Interpolate the geoid
\[K1 = IO - L1 + 1 \]
\[K2 = K1 + 1 \]
\[J1 = JO - N + 1 \]
\[J2 = J1 + 1 \]
\[\text{CALL BILINE} (X1,Y1,Y2,WLEV1(152),WLEV1(151),G(J1,K1),1,G(J1,K2),G(J2,K1),G(J2,K2),WLEV2(281)) \]
\[\text{GO TO} \ 11 \]

9. Input out of range - print warning message and all input variables
\[WLEV2(281) = -9999.0 \]

10. End of algorithm

\[\text{RETURN} \]
1. The following TYPE statements must be included in the code of this submodule:

 DIMENSION V(181),G(31,6)
 COMMON /STATUS/ ISTAT(100)
 COMMON /SENSOR/ WLEV1(300)
 COMMON /GEOPHY/ WLEV2(325)
 DATA N/-9999/

2. The input longitude of the subsatellite point, WLEV1(152), must be in the range

 0 ≤ WLEV1(152) < 360

3. The geoid heights are read and stored into an array 6° in longitude by 31° in latitude

4. The geoid data file (A.D-2.71) consists of 360 records (one for each degree of longitude), each containing 181 words (one for each degree of latitude). The first record contains data for 1.0° longitude.

GEOID AND TIDE HEIGHT SUBMODULE A.A-2.6.1B

SUBROUTINE GEOTID

FUNCTION: To compute the tide and geoid heights at the subsatellite point. The tide model used is the Schwiderski tide model. Any geoid model may be used as long as the geoid heights are supplied for a 1°x1° grid.

REFERENCES:
 Schwiderski, E. W., "Detailed Ocean Tide Models of (N2, M2, S2, K2) and (K1, P1, O1, Q1) Including an Atlas of Tidal Charts and Maps," IUGG General Assembly XXII, Canberra, Australia, 1979.

CONTROL: A.A-2.6 AL2COR level 2 altitude correction module
SUPPORT: A.A-2.6.1.1 BILINE bilinear interpolation submodule
ACCESS: CALL GEOTID

INPUTS: A.D-2.71 = geoid and tide data file
 TMJD = modified julian date in (d,1.0x10^-9)
 WLEV1(1) = day of year
 WLEV1(2) = seconds past midnight
 WLEV1(120) = year - 1900
 WLEV1(151) = geodetic latitude in (deg,0.000001)
WLEV1(152) = longitude in (deg,0.000001)
ISTAT(43) = subtrack direction flag (0 for south to north, 1 for north to south)

OUTPUTS:
WLEV2(281) = geoid height in (m,0.001)
WLEV2(282) = tide height in (m,0.001)

TABLES: None

ALGORITHM:
1. Check for input variables out of range
 IF (ISTAT(43).LT.0 .OR. ISTAT(43).GT.1) GO TO 12
 IF (WLEV1(151).LT.-90.0 .OR. WLEV1(151).GT.90.0) GO TO 12
 IF (WLEV1(152).LT.0.0 .OR. WLEV1(152).GE.360.0) GO TO 12
 IF (TMJD.LT.0.0D+00 .OR. TMJD.GT.1.0D+05) GO TO 12
2. Compute the corner point coordinates of the 1°x1° rectangle enclosing the subsatellite point
 IO = WLEV1(151)
 JO = WLEV1(152)
 IF (WLEV1(151).LT.0.0) IO = IO - 1
 X1 = JO
 Y1 = IO
 X2 = JO + 1
 Y2 = IO + 1
3. Determine if the geoid/tide file must be read
 NTEST = JO - N
 IF (NTEST.GE.0 .AND. NTEST.LE.4) GO TO 8
 NTEST = JO - N + 360
 IF (NTEST.GE.0 .AND. NTEST.LE.4) GO TO 8
4. Geoid/tide file must be read - determine which records (current longitude through 5 degrees longitude down track)
 N = JO - 4
 IF (N.LT.0) N = N + 360
 NSTOP = N + 5
5. Determine the latitude range to be used (current latitude through 30 degrees latitude down track)
 IF (ISTAT(43).EQ.0) L1 = IO
 IF (ISTAT(43).EQ.1) L1 = IO - 29
 IF (L1.LT.-90) L1 = -90
 IF (L1.GT.60) L1 = 60
 L2 = L1 + 30
6. Read the geoid/tide file
 a. DO 100 I = N,NSTOP
NREC = I + 1
IF (NREC .GT. 360) NREC = NREC - 360

b. Read record #NREC from the random access geoid/tide file into the 181x13 array called V

7. Store the geoid and tide data inside the computed latitude range

 K = N - I + 1
 DO 100 L = L1,L2
 J = L + 91
 M = L1 - L + 1
 G(M,K) = V(J,1)
 SM(M,K) = V(J,2)
 CM(M,K) = V(J,3)
 SS(M,K) = V(J,4)
 CS(M,K) = V(J,5)
 SN(M,K) = V(J,6)
 CN(M,K) = V(J,7)
 SK(M,K) = V(J,8)
 CK(M,K) = V(J,9)
 SO(M,K) = V(J,10)
 CO(M,K) = V(J,11)
 SP(M,K) = V(J,12)
 CP(M,K) = V(J,13)

100 CP(M,K) = V(J,13)

8. Interpolate the geoid (data is now available for interpolation)

 K1 = IO - L1 + 1
 K2 = K1 + 1
 J1 = J0 - N + 1
 J2 = J1 + 1
 CALL BILINE (X1,Y1,Y2,WLEV1(152),WLEV1(151),G(J1,K1),
 1 G(J1,K2),G(J2,K1),G(J2,K2),WLEV2(281))

9. Interpolate the tide coefficients

 CALL BILINE (X1,Y1,X2,Y2,WLEV1(152),WLEV1(151),SM(J1,K1),
 1 SM(J1,K2),SM(J2,K1),SM(J2,K2),SM2)
 CALL BILINE (X1,Y1,X2,Y2,WLEV1(152),WLEV1(151),CM(J1,K1),
 1 CM(J1,K2),CM(J2,K1),CM(J2,K2),CM2)
 CALL BILINE (X1,Y1,X2,Y2,WLEV1(152),WLEV1(151),SS(J1,K1),
 1 SS(J1,K2),SS(J2,K1),SS(J2,K2),SS2)
 CALL BILINE (X1,Y1,X2,Y2,WLEV1(152),WLEV1(151),CS(J1,K1),
 1 CS(J1,K2),CS(J2,K1),CS(J2,K2),CS2)
CALL BILINE (X1, Y1, X2, Y2, WLEV1(152), WLEV1(151), SN(J1, K1),
1 SN(J1, K2), SN(J2, K1), SN(J2, K2), SN)
CALL BILINE (X1, Y1, X2, Y2, WLEV1(152), WLEV1(151), CN(J1, K1),
1 CN(J1, K2), CN(J2, K1), CN(J2, K2), CN)
CALL BILINE (X1, Y1, X2, Y2, WLEV1(152), WLEV1(151), SK(J1, K1),
1 SK(J1, K2), SK(J2, K1), SK(J2, K2), SK)
CALL BILINE (X1, Y1, X2, Y2, WLEV1(152), WLEV1(151), CK(J1, K1),
1 CK(J1, K2), CK(J2, K1), CK(J2, K2), CK)
CALL BILINE (X1, Y1, X2, Y2, WLEV1(152), WLEV1(151), SO(J1, K1),
1 SO(J1, K2), SO(J2, K1), SO(J2, K2), SO)
CALL BILINE (X1, Y1, X2, Y2, WLEV1(152), WLEV1(151), CO(J1, K1),
1 CO(J1, K2), CO(J2, K1), CO(J2, K2), CO)
CALL BILINE (X1, Y1, X2, Y2, WLEV1(152), WLEV1(151), SP(J1, K1),
1 SP(J1, K2), SP(J2, K1), SP(J2, K2), SP)
CALL BILINE (X1, Y1, X2, Y2, WLEV1(152), WLEV1(151), CP(J1, K1),
1 CP(J1, K2), CP(J2, K1), CP(J2, K2), CP)
SK2 = 0.29 * (SS2 + 0.9939083 - CS2 * 0.0348995)
CK2 = 0.29 * (CS2 + 0.9939083 + SS2 * 0.0348995)

10. Determine the phase of the tide
a. IDAY = WLEV1(1)
SEC = WLEV1(2)
IYR = WLEV1(120)
IDB = IDAY + 365 * (IYR - 75) + (IYR - 77) / 4
T = (TO + T1 * IDB) / 36525.0
S = SO + S1 * T + S2 * T**2 + S3 * T**3
H = HO + H1 * T + H2 * T**2
P = PO + P1 * T + P2 * T**2 + P3 * T**3
DTR = 3.1415926535 / 180.0

b. XM2 = 2.0 * (H - S) * DTR
XS2 = 0.0
XN2 = (2.0 * H - 3.0 * S + P) * DTR
XK2 = 2.0 * H * DTR
XK1 = (H + 90.0) * DTR
X01 = (H - 2.0 * S - 90.0) * DTR
XP1 = (-H + 90.0) * DTR

c. PM2 = SM2 * SEC + XM2
PS2 = SS2 * SEC + XS2
PN2 = SN2 * SEC + XN2
PK2 = SK2 * SEC + XK2
PK1 = SK1*SEC + X1
PO1 = SO1*SEC + X01
PP1 = SP1*SEC + XP1

11. Calculate the height of each constituent of the tide and sum
 HM2 = CM2*COS(PM2) + SM2*SIN(PM2)
 HS2 = CS2*COS(PS2) + SS2*SIN(PS2)
 HN2 = CN2*COS(PN2) + SN2*SIN(PN2)
 HK2 = CK2*COS(PK2) + SK2*SIN(PK2)
 HK1 = CK1*COS(PK1) + SK1*SIN(PK1)
 HO1 = CO1*COS(PO1) + SO1*SIN(PO1)
 HP1 = CP1*COS(PP1) + SP1*SIN(PP1)
 WLEV2(282) = HM2 + HS2 + HN2 + HK2 + HK1 + HO1 + HP1
 GO TO 14

12. Input out of range - print warning message and all input variables
13. WLEV2(281) = -9999.0
 WLEV2(282) = -9999.0
14. End of algorithm
 RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this
 submodule:

 DOUBLE PRECISION TMJD
 DIMENSION SM(31,6),SS(31,6),SN(31,6),SK(31,6),SO(31,6),
 DIMENSION CM(31,6),CS(31,6),CN(31,6),CK(31,6),CO(31,6)
 DIMENSION SP(31,6),CP(31,6),V(181,13),G(31,6)
 COMMON /STATUS/ ISTAT(100)
 COMMON /SENSOR/ WLEV1(300)
 COMMON /GEOPHY/ WLEV2(300)
 COMMON /JUNK/ WORK(2500)
 EQUIVALENCE (V(1,1),WORK(1)), (TMJD,WLEV1(5))
 DATA N/-9999/
 DATA TO,T1/27392.500528,1.0000000356/
 DATA S0,S1,S2,S3/270.434358,481267.88314137,-0.001133,0.0000019/
 DATA HO,H1,H2/279.69668,36000.768930485,0.000303/
 DATA P0,P1,P2,P3/334.329653,4069.034032957,-0.010325,-0.000012/

2. The input longitude of the subsatellite point, WLEV1(152), must be in
 the range
 0 ≤ WLEV1(152) ≤ 360
3. The geoid and tide coefficients are read and stored into arrays 6° in
 longitude by 31° in latitude
SUBROUTINE BILINE

FUNCTION: To linearly interpolate a three-dimensional function Z = f(X,) given the four X and Y coordinates of the corners of a rectangle and the value of Z at each of the corners.

REFERENCE: Not applicable

CONTROL: A.A-2.6.1 GEOID geoid height submodule
A.A-2.6.2 TIDE tide height submodule

SUPPORT: None

ACCESS: CALL BILINE (X1,Y1,X2,Y2,XE,YE,Z11,Z12,Z21,Z22,ZE)

INPUTS:
- X1 - first value of X
- Y1 - first value of Y
- X2 - second value of X
- Y2 - second value of Y
- XE - X evaluation point
- YE - Y evaluation point
- Z11 = f(X1,Y1)
- Z12 = f(X1,Y2)
- Z21 = f(X2,Y1)
- Z22 = f(X2,Y2)

OUTPUTS:
- ZE = f(XE,YE)

TABLES: None

ALGORITHM:
1. Compute interpolation constants
 - A1 = 0.0
 - A2 = 0.0
 - IF (X1 .NE. X2) A1 = (XE-X1) / (X2-X1)
 - IF (Y1 .NE. Y2) A2 = (YE-Y1) / (Y2-Y1)
2. Linearly interpolate f(X,Y) along Y = Y1
 - B1 = Z11 + A1*(Z21-Z11)
3. Linearly interpolate f(X,Y) along Y = Y2
 - B2 = Z12 + A1*(Z22-Z12)
4. Linearly interpolate f(X,Y) along X = XE
 - ZE = B1 + Z2*(B2-B1)
5. End of algorithm
 RETURN

COMMENTS: None
SUBROUTINE TIDE

To compute the tide height at the subsatellite point. The tide model used is the Schwiderski tide model.

REFERENCES:
Schwiderski, E. W., "Detailed Ocean Tide Models of (N2, M2, S2, K2) and (K1, P1, Q1) Including an Atlas of Tidal Charts and Maps," IUGG General Assembly XXII, Canberra, Australia, 1979.

CONTROL: A.A-2.6 AL2COR level 2 altitude correction module

SUPPORT: A.A-2.6.1.1 BILINE bilinear interpolation submodule

ACCESS: CALL TIDE

INPUTS:
A.D-2.72 = tide data file
TMJD = modified julian date in (d,1.0x10^-9)
WLEV1(1) = day of year
WLEV1(2) = seconds past midnight
WLEV1(120) = year - 1980
WLEV1(151) = geodetic latitude in (deg,0.000001)
WLEV1(152) = longitude in (deg,0.000001)
ISTAT(43) = subtrack direction flag (0 for south to north, 1 for north to south)

OUTPUTS:
WLEV2(282) = tide height in (m,0.001)

TABLES: None

ALGORITHM:
1. Check for input variables out of range
 IF (ISTAT(43).LT.0 .OR. ISTAT(43).GT.1) GO TO 11
 IF (WLEV1(151).LT.-90.0 .OR. WLEV1(151).GT.90.0) GO TO 11
 IF (WLEV1(152).LT.0.0 .OR. WLEV1(152).GE.360.0) GO TO 11
 IF (TMJD.LT.0.0D+00 .OR. TMJD.GT.1.0D+05) GO TO 11

2. Compute the corner point coordinates of the 1°x1° rectangle enclosing the subsatellite point
 IO = WLEV1(151) + 0.5
 JO = WLEV1(152) + 0.5
 IF (WLEV1(151).LT.0.5) IO = IO - 1
 X1 = JO - 0.5
 Y1 = IO - 0.5
X2 = JO + 0.5
Y2 = IO + 0.5

3. Determine if the tide file must be read
 NTEST = JO - N
 IF (NTEST.GE.0 .AND. NTEST.LE.4) GO TO 8
 NTEST = JO - N + 360
 IF (NTEST.GE.0 .AND. NTEST.LE.4) GO TO 8

4. Tide file must be read - determine which records (current longitude through 5 degrees longitude down track)
 N = JO - 4
 IF (N.LT.0) N = N + 360
 NSTOP = N + 5

5. Determine the latitude range to be used (current latitude through 30 degrees latitude down track)
 IF (ISTAT(43).EQ.0) L1 = IO
 IF (ISTAT(43).EQ.1) L1 = IO - 29
 IF (L1.LT.-89) L1 = -89
 IF (L1.GT.60) L1 = 60
 L2 = L1 + 30

6. Read the tide file
 a. DO 100 I = N,NSTOP
 NREC = I + 1
 IF (NREC.GT.360) NREC = NREC - 360
 b. Read record #NREC from the random access tide file into the 180x12 array called V

7. Store the tide data inside the computed latitude range
 K = N - I + 1
 DO 100 L = L1,L2
 J = L + 90
 M = L1 - L + 1
 SM(M,K) = V(J,1)
 CM(M,K) = V(J,2)
 SS(M,K) = V(J,3)
 CS(M,K) = V(J,4)
 SK(M,K) = V(J,5)
 CK(M,K) = V(J,6)
 SO(M,K) = V(J,7)
 CO(M,K) = V(J,8)
 SN(M,K) = V(J,9)
8. Interpolate the tide coefficients

\[
\begin{align*}
\text{CALL BILINE} (X_1, Y_1, X_2, Y_2, \text{WLEV1}(152), \text{WLEV1}(151), \text{SM}(J_1, K_1)) \\
1 & \quad \text{SM}(J_1, K_2), \text{SM}(J_2, K_1), \text{SM}(J_2, K_2), \text{SM}(J_2, K_3) \\
\text{CALL BILINE} (X_1, Y_1, X_2, Y_2, \text{WLEV1}(152), \text{WLEV1}(151), \text{CM}(J_1, K_1)) \\
1 & \quad \text{CM}(J_1, K_2), \text{CM}(J_2, K_1), \text{CM}(J_2, K_2), \text{CM}(J_2, K_3) \\
\text{CALL BILINE} (X_1, Y_1, X_2, Y_2, \text{WLEV1}(152), \text{WLEV1}(151), \text{SS}(J_1, K_1)) \\
1 & \quad \text{SS}(J_1, K_2), \text{SS}(J_2, K_1), \text{SS}(J_2, K_2), \text{SS}(J_2, K_3) \\
\text{CALL BILINE} (X_1, Y_1, X_2, Y_2, \text{WLEV1}(152), \text{WLEV1}(151), \text{CS}(J_1, K_1)) \\
1 & \quad \text{CS}(J_1, K_2), \text{CS}(J_2, K_1), \text{CS}(J_2, K_2), \text{CS}(J_2, K_3) \\
\text{CALL BILINE} (X_1, Y_1, X_2, Y_2, \text{WLEV1}(152), \text{WLEV1}(151), \text{SN}(J_1, K_1)) \\
1 & \quad \text{SN}(J_1, K_2), \text{SN}(J_2, K_1), \text{SN}(J_2, K_2), \text{SN}(J_2, K_3) \\
\text{CALL BILINE} (X_1, Y_1, X_2, Y_2, \text{WLEV1}(152), \text{WLEV1}(151), \text{CN}(J_1, K_1)) \\
1 & \quad \text{CN}(J_1, K_2), \text{CN}(J_2, K_1), \text{CN}(J_2, K_2), \text{CN}(J_2, K_3) \\
\text{CALL BILINE} (X_1, Y_1, X_2, Y_2, \text{WLEV1}(152), \text{WLEV1}(151), \text{SK}(J_1, K_1)) \\
1 & \quad \text{SK}(J_1, K_2), \text{SK}(J_2, K_1), \text{SK}(J_2, K_2), \text{SK}(J_2, K_3) \\
\text{CALL BILINE} (X_1, Y_1, X_2, Y_2, \text{WLEV1}(152), \text{WLEV1}(151), \text{CK}(J_1, K_1)) \\
1 & \quad \text{CK}(J_1, K_2), \text{CK}(J_2, K_1), \text{CK}(J_2, K_2), \text{CK}(J_2, K_3) \\
\text{CALL BILINE} (X_1, Y_1, X_2, Y_2, \text{WLEV1}(152), \text{WLEV1}(151), \text{SO}(J_1, K_1)) \\
1 & \quad \text{SO}(J_1, K_2), \text{SO}(J_2, K_1), \text{SO}(J_2, K_2), \text{SO}(J_2, K_3) \\
\text{CALL BILINE} (X_1, Y_1, X_2, Y_2, \text{WLEV1}(152), \text{WLEV1}(151), \text{CO}(J_1, K_1)) \\
1 & \quad \text{CO}(J_1, K_2), \text{CO}(J_2, K_1), \text{CO}(J_2, K_2), \text{CO}(J_2, K_3) \\
\text{CALL BILINE} (X_1, Y_1, X_2, Y_2, \text{WLEV1}(152), \text{WLEV1}(151), \text{SP}(J_1, K_1)) \\
1 & \quad \text{SP}(J_1, K_2), \text{SP}(J_2, K_1), \text{SP}(J_2, K_2), \text{SP}(J_2, K_3) \\
\text{CALL BILINE} (X_1, Y_1, X_2, Y_2, \text{WLEV1}(152), \text{WLEV1}(151), \text{CP}(J_1, K_1)) \\
1 & \quad \text{CP}(J_1, K_2), \text{CP}(J_2, K_1), \text{CP}(J_2, K_2), \text{CP}(J_2, K_3) \\
SK_2 & = 0.29 \times (SS_2 \times 0.99939083 - CS_2 \times 0.0348995) \\
CK_2 & = 0.29 \times (CS_2 \times 0.99939083 + SS_2 \times 0.0348995) \\
9. Determine the phase of the tide

\[
\begin{align*}
a. \quad \text{IDAY} & = \text{WLEV1}(1) \\
\text{SEC} & = \text{WLEV1}(2) \\
\text{IVR} & = \text{WLEV1}(120) \\
\text{IDB} & = \text{IDAY} + 365 \times (\text{IYR} - 75) + (\text{IYR} - 77)/4 \\
\end{align*}
\]
\[T = \frac{(TO+TI*IDB)}{36525.0} \]
\[S = \frac{.5 + S1*T + S2*T^2 + S3*T^3}{3} \]
\[H = \frac{H0 + H1*T + H2*T^2}{3} \]
\[P = \frac{P0 + P1*T + P2*T^2 + P3*T^3}{3} \]
\[DTR = \frac{3.1415926535 \times 180.0}{180.0} \]

b. \[XN2 = 2.0 * (H-S) * DTR \]
\[XS2 = 0.0 \]
\[XS2 = (2.0*H-3.0*S+P) * DTR \]
\[XK2 = 2.0 * H * DTR \]
\[X11 = (H+90.0) * DTR \]
\[X01 = (H-2.0*S-90.0) * DTR \]
\[XP1 = (-H-90.0) * DTR \]

c. \[PM2 = SM2*SEC + XM2 \]
\[PS2 = SS2*SEC + XS2 \]
\[PN2 = SN2*SEC + XN2 \]
\[PK2 = SK2*SEC + XK2 \]
\[PK1 = SK1*SEC + XK1 \]
\[PO1 = SO1*SEC + X01 \]
\[PP1 = SP1*SEC + XP1 \]

10. Calculate the height of each constituent of the tide and sum
\[HM2 = CM2*COS(PM2) + SM2*SIN(PM2) \]
\[HS2 = CS2*COS(PS2) + SS2*SIN(PS2) \]
\[HR2 = CN2*COS(PN2) + SN2*SIN(PN2) \]
\[HK2 = CK2*COS(PK2) + SK2*SIN(PK2) \]
\[HK1 = CK1*COS(PK1) + SK1*SIN(PK1) \]
\[HO1 = CO1*COS(PO1) + SO1*SIN(PO1) \]
\[HP1 = CP1*COS(PPI) + SP1*SIN(PPI) \]
\[WLEV1(282) = HM2 + HS2 + HR2 + HK2 + HK1 + HO1 + HP1 \]

GO TO 13

11. Input out of range - print warning message and all input variables

12. WLEV2(282) = -9999.0

13. End of algorithm

RETURN

COMMENTS: 1. The following TYPE statements must be included in the code of this submodule:

DOUBLE PRECISION TMJD
DIMENSION SM(31,6),SS(31,6),SN(31,6),SK(31,6),SO(31,6),
DIMENSION CM(31,6),CS(31,6),CN(31,6),CK(31,6),CO(31,6),
DIMENSION SP(31,6),CP(31,6),V(180,12)

159
COMMON /STATUS/ ISTAT(100)
COMMON /SENSOR/ WLEVl(300)
COMMON /GEOPHY/ WLEV2(300)
COMMON /JUNK/ WORK(2500)
EQUIVALENCE (V(1,1),WORK(1)), (TMJD,WLEVl(5))
DATA N/-9999/
DATA TO,T1/27392.500528,1.0000000356/
DATA SO,S1,S2,S3/270.434358,481267.88314137,-0.001133,0.0000019/
DATA HO,H1,H2/279.69668,36000.768930485,0.000303/
DATA PO,P1,P2,P3/334.329653,4069.034032957,-0.010325,-0.000012/

2. The input longitude of the subsatellite point, MLEVl(152), must be in the range
 0 \leq MLEVl(152) < 360
3. The tide coefficients are read and stored into an array 6° in longitude by 31° in latitude
4. The tide data file (A.D-2.72) consists of 360 records (one for each degree of longitude), each containing 180 words (one for each degree of latitude). The first record contains data for 0.5° longitude.
5. It was assumed that coefficients over land will cause this correction to be computed as zero. This is probably not the true case.

SOLID EARTH TIDE HEIGHT SUBMODULE

TITLE: SUBROUTINE SETIDE
FUNCTION: To calculate the magnitude of the solid earth tide height at the subsatellite point.
REFERENCE: SEASAT Altimeter Geophysical Algorithm Specifications, JPL 622-226, December 1980
CONTROL: A.A-2.6 AL2COR level 2 altitude correction module
SUPPORT: A.A-2.6.3.1 SLINT solar/lunar ephemerides interpolation submodule
ACCESS: CALL SETIDE
INPUTS: WLEVl(1) = day of year
 WLEVl(2) = seconds past midnight
 WLEVl(120) = year - 1900
 WLEV2(7) = geodetic latitude in (deg,0.000001)
 WLEV2(8) = longitude in (deg,0.000001)
 RN = lunar inertial position vector in (m,1.0)
 RS = solar inertial position vector in (m,1.0)
OUTPUTS: WLEV2(283) = solid earth tide height in (m,0.001)
TABLES: None
ALGORITHM: 1. Compute the modified Julian date (Julian date minus 2,400,000.5).
 Note that this modified Julian date is the modified Julian date
 defined by the GEOS and SEASAT software and is not consistent with
 the modified Julian date defined elsewhere in the MOSS algorithm
 specifications.
 IDAY = WLEV1(1)
 IYEAR = WLEV1(120)
 FODAY = WLEV1(2) / 86400.0
 NYRM1 = IYEAR + 1899
 IC = NYRM1 / 100
 MJD = -678576 + 365*NYRM1 + NYRM1/4 - IC + IC/4

2. Convert latitude and longitude to inertial coordinates
 TU = (MJD-15019.5) / 36525.0
 A = 99.69098 + (36000.7689+0.00038708*TU)*TU
 B = A + 360.9856473*FODAY
 C = COS(A)
 S = SIN(A)
 F = 1.0 / FR
 E = 2.0*F - F*F
 RLAT = WLEV2(7) * PI / 180.0
 RLON = WLEV2(8) * PI / 180.0
 P = ATAN(TAN(RLAT*(1.0-E)))
 XE1 = COS(P) * (C*COS(RLON)-S*SIN(RLON))
 XE2 = COS(P) * (S*COS(RLON)+C*SIN(RLON))
 XE3 = SIN(P)

3. Interpolate the inertial position vectors of the sun and the moon.
 CALL SLINT

4. Calculate the deformation due to the moon
 DM = DSQRT(RM(1)**2+RM(2)**2+RM(3)**2)
 TM = ACOS((XE1*RM(1)+XE2*RM(2)+XE3*RM(3))/DM)
 CTM = COS(TM)
 DMM = H2 * RATM * AE**4 / DM**3 * (1.5*CTM**2-0.5)

5. Calculate the deformation due to the sun
 DS = DSQRT(RS(1)**2+RS(2)**2+RS(3)**2)
 TS = ACOS((XE1*RS(1)+XE2*RS(2)+XE3*RS(3))/DS)
 CTS = COS(TS)
 DHS = H2 * RATS * AE**4 / DS**3 * (1.5*CTS**2-0.5)
6. Compute the net deformation
 \[WLEV2(283) = DHM + DHS \]
7. End of algorithm
 RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this submodule

 DOUBLE PRECISION RM(3),RS(3)
 COMMON /SENSOR/ WLEV1(300)
 COMMON /GEOPHY/ WLEV2(325)
 EQUIVALENCE (WLEV2(311),RM(1)), (WLEV2(317),RS(1))
 DATA H2/0.612/, AE/6378145.0/, FR/298.257/
 DATA RATM/0.01229997/, RATS/332945.562/
 DATA PI/3.1415926/

SOLAR/LUNAR EPHEMERIDES INTERPOLATION SUBMODULE A.A-2.6.3.1

TITLE: SLINT
FUNCTION: To determine the inertial position vectors of the sun and the moon by interpolating the ephemeris file, A.D(M)-2.85 to the proper time.
REFERENCE: None
CONTROL: A.A-1.5 LOCATE location classification module
SUPPORT: None
ACCESS: CALI/ SLINT
INPUTS: A.D(M)-2.85 = solar/lunar ephemeris file
 TMJD = modified Julian date in (d,1.0x10^-9)
OUTPUTS: RM = lunar inertial position vector in (m,1.0)
 RS = solar inertial position vector in (m,1.0)
TABLES: None
ALGORITHM: TBD
COMMENTS: 1. The following TYPE statement must be included in the code of this submodule

 DOUBLE PRECISION RM(3),RS(3)
 COMMON /GEOPHY/ WLEV2(325)
 EQUIVALENCE (WLEV2(311),RM(1)), (WLEV2(317),RS(1))

2. The specific design of this algorithm for now is being left to the mission contractor.
EM BIAS

TITLE: SUBROUTINE EMBIAS

FUNCTION: To provide a correction for the electromagnetic (EM) bias effect in which the relative radar cross section tends to increase below mean sea level (MSL) and decrease above MSL in the presence of waves. Its effect is to shift the centroid of the radar return away from MSL toward the wave troughs, so that the altimeter tracks long. Recent experimental data from the surface contour radar (SCR) at 36 GHz, and the NRL 10-GHz adaptive radar altimeter indicate that the EM bias is in the range of 0 to 3 percent of the SWH by E. J. Walsh. The data indicate that the magnitude of the effect may increase with wave height. A theoretical development by Jackson (Ref. 8) using a one-dimensional model of the sea surface indicated that there should be a linear dependence of the EM bias on the skewness of the height distribution.

REFERENCE: See above.

CONTROL: A.A-2.6 AL2COR level 2 altitude correction module

SUPPORT: TBD

ACCESS: CALL EMBIAS

INPUTS:
- WLEV2(230) = significant waveheight from A.A-2.3 (SWH)
- WLEV2(232) = ocean-wave skewness from A.A-2.3 (λ_s)
- WLEV2(277) = wind speed from A.A-2.5.2 (W_{10})

OUTPUTS:
- WLEV2(284) = height correction from EM bias
- WLEV2(285) = standard deviation of $\delta h_{2.5}$
- WLEV2(286) = EM sea-state bias quality flag

TABLES: A table of constants, K_1, K_2, K_3, and K_4 (TBD).

ALGORITHM:

\[
WLEV2(284) = K_1 + K_2 \text{SWH} + K_3 \lambda_s + K_4 W_{10}^{1/2} \text{SWH}
\]

if less than zero then set to zero.

WLEV2(285) = TBD

WLEV2(286) = TBD

COMMENTS:
1. This is only a functional description.

SEA SURFACE HEIGHT SUBMODULE

TITLE: SUBROUTINE SSHRES

FUNCTION: To compute the sea surface height and altitude residual. The sea surface height is the difference between the reference ellipsoid and the corrected altitude measurement and as such is an estimate of the altim-
eter geoid. The altitude residual is the difference between the correct-
corrected altitude measurement and the modeled altitude measurement and is
used in estimation and orbit determination.

REFERENCE: None

CONTROL: A.A-2.6 AL2COR level 2 altitude correction module

SUPPORT: None

ACCESS: CALL SSHRES

INPUTS:
- ALT2 = corrected altitude in (m,0.001)
- HGT = height above the reference ellipsoid in (m,0.001)
- WLEV2(281) = geoid height in (m,0.001)
- WLEV2(282) = tide height in (m,0.001)
- WLEV2(283) = solid earth tide height in (m,0.001)
- ALTLO = altitude lower limit in (m,1.0)
- ALTHI = altitude higher limit in (m,1.0)

OUTPUTS:
- WLEV2(287) = sea surface height in (m,0.001)
- WLEV2(288) = altitude residual in (m,0.001)

TABLES: None

ALGORITHM:
1. Check input values

 IF (ALT2.LT.ALTOLO .OR. ALT2.GT.ALTHI) GO TO 4
 IF (HGT.LT.ALTOLO .OR. HGT.GT.ALTHI) GO TO 4
 IF (WLEV2(281).LT.-150.0 .OR. WLEV2(281).GT.150.0) GO TO 4
 IF (WLEV2(282).LT.-10.0 .OR. WLEV2(282).GT.10.0) GO TO 4
 IF (WLEV2(283).LT.-10.0 .OR. WLEV2(283).GT.10.0) GO TO 4

2. Determine the sea surface height

 WLEV2(287) = HGT - ALT2

3. Determine the altitude residual

 WLEV2(288) = ALT2 - HGT + WLEV2(281)
 1 + WLEV2(272) + WLEV2(283)
 GO TO 6

4. Input out of range - print warning message and all input variables

5. WLEV2(287) = -9999.0
 WLEV2(288) = -9999.0

6. End of algorithm

 RETURN

COMMENTS:
1. The following TYPE statements must be included in the code of this
 submodule:

   ```
   DOUBLE PRECISION ALT2,HGT
   COMMON /SENSOR/ WLEV1(300)
   COMMON /GEOPHY/ WLEV2(325)
   ```
TITLE: SUBROUTINE ICE

FUNCTION: To correct sea-surface height estimates over ice sheet (and possibly over all non-ocean surfaces) for non-ocean return characteristics.

REFERENCE: None

CONTROL: A.A-2.0 ALT2DR level 2 driver module

SUPPORT: TBD

ACCESS: CALL ICE

INPUTS:

- WLEV2(287) = sea-surface height from A.A-2.6.5 in (m,0.001)
- WLEV2(101-163) = waveform samples in (counts,0.1)
- WLEV2(22) = AGC in (db,0.01)
- WLEV2(19) = height rate in (m/s,0.01)
- WLEV2(12) = spacecraft instrument attitude in (deg,0.01)
- WLEV2(20) = height error in (m,0.001)
- ISTAT(28) = adaptive resolution step size

OUTPUTS:

- WLEV2(287) = corrected sea-surface height in (m,0.001)
- WLEV2(290) = sea-surface height correction in (m,0.001)
- WLEV2(291) = mean surface roughness in (dimensionless,0.1)
- WLEV2(289) = mean surface slope in (deg,0.01)
- WLEV2(292) = sea-surface height retrack estimate quality flag (0 for good, 1 for questionable)

TABLES: TBD

ALGORITHM: TBD

COMMENTS: 1. This module will be employed only over areas of interest. The altimeter data will be corrected for waveform shape changes that cause track-point shifts. This correction will be done by a software retracking process designed for ice-sheet processing, and then the surface height will be calculated.

2. This is only a functional description. The algorithms will be defined at a later date.
SUBROUTINE SEAICE

FUNCTION: The sea ice related quantities, mean-squared slope, Fresnel power reflection and percent smooth area, are estimated.

CONTROL: A.A-2.0 ALT2DR level 2 driver module

SUPPORT: None

ACCESS: CALL SEAICE

INPUTS:
- WLEV2(12) = instrument attitude
- WLEV2(22) = automatic gain control
- WLEV2(37) = attitude gate
- WLEV2(36) = plateau gate
- WLEV2(99) = transmitted power
- WLEV2(163) = 63 waveform samples

OUTPUTS:
- WLEV2(242) = MSS (mean-square-slope)
- WLEV2(243) = F (Fresnel power reflection coefficient)
- WLEV2(244) = PCS (percent smooth area)

TABLES: None

ALGORITHM: These parameters were calculated on GEOS-3 (Ref. 9) and appeared to correlate with the Dwyer Godin index (Ref. 10). They are based on interpretation of the physics of radar scattering, whereas the Dwyer Godin index is an ad hoc ice index.

The Fresnel power reflection coefficient, F, is computed based on a relationship of the peak waveform amplitude and the mean square slope.

COMMENTS:
1. This is only a functional description.

QUALITY CONTROL

SUBROUTINE QUALITY

FUNCTION: To classify the quality of the level 2 output data A.D-2.91. The data will be flagged as being of questionable quality when prescribed standard deviation tolerances are exceeded, when the number of rejected points in the various smoothing algorithms exceeds acceptable limits, or when operational threshold limits are exceeded.

REFERENCES: None

CONTROL: A.A-2.0 ALT2DR level 2 driver module
SUPPORT: TBD
ACCESS: CALL QUALTY
INPUTS: Level 2 altimeter data.
OUTPUTS: The following data quality flags are set:

- WLEV2(294) = quality flag for \(\sigma_h \)
- WLEV2(295) = quality flag for height rate
- WLEV2(296) = quality flag for radar backscatter
- WLEV2(297) = quality flag for AGC standard deviation
- WLEV2(298) = quality flag for attitude
- WLEV2(299) = quality flag for MTU temperature
- WLEV2(300) = quality flag for DFB temperature
- WLEV2(301) = quality flag for noise gate
- WLEV2(302) = quality flag for AGC gate
- WLEV2(303) = quality flag for TWT collector temperature
- WLEV2(304) = quality flag for SWH standard deviation
- WLEV2(305) = EM sea-state bias quality flag
- WLEV2(306) = quality flag for data validity

Values of 0 indicate acceptable quality; values of 1 indicate questionable quality.

TABLES: A table of preflight nominal tolerances to be used in setting the data quality flags (TBD).

ALGORITHM: Level 2 output parameters are compared with the table and output flags are set to the appropriate values. Limits on standard deviations are compared after a decay filter is used to remove spurious points.

COMMENTS: 1. As a final step in the level 2 processing, the altimeter software will analyze the contents of the level 2 output file in order to classify the quality of the data. The data will be flagged as being of questionable quality when: (a) prescribed standard deviation tolerances are exceeded, (b) the number of rejected points in the various smoothing algorithms exceeds acceptable limits, or (c) operational threshold limits are exceeded.

2. This is only a functional description.
OTHER CONSIDERATIONS

This section summarizes the additional considerations required for developing the software for the altimeter processing. The Program Limitations section lists known limitations that are built into the processing and Expected Types of Future Changes/Updates section identifies the status and charges needed to complete the algorithms.

Program Limitations

The following program limitations are repeated here from the Key Assumptions section:

(a) All data required from the input files (i.e., ephemeris files, FNOC file, LAMMR level 2 file, etc.) must be available and current as the altimeter processing software requires it. Failure to supply any of the input files is not to result in the abnormal termination of the altimeter processing software but to produce degraded output products, which will be flagged as such.

(b) The requirements associated with the possible processing of data from more than one spacecraft have not been addressed in this report (i.e., no tables allow for four altimeters).

Expected Types of Future Changes/Updates

Modules are logically grouped in this report. However, a multisensor processing system may require the processing order to be revised for some modules.

The following modules will require future updates:

(a) 1.1-Engineering Units Conversion - The conversion constants provided in this report are Seasat values. MOSS values will replace these constants as they become available.

(b) 1.1.8--Engineering Units Rain Subcom - This module has only been scoped and will be completed in the future.

(c) 1.1.9--EU Waveform, CW or Dump - Only waveform has been specified.

(d) 1.2.1--Time Tag Correction - The table entries in this module are based upon Seasat values. MOSS values will replace them as they become available.

(e) 1.2.2--Cal Zone Bias - The table of cal zone bias corrections will be provided after the launch of the spacecraft.
(e) 1.2.3--Center of Gravity Offset - The table of center of gravity offsets will be provided after the geometry of the spacecraft is defined and updated after launch as fuel is expended.

(f) 1.2.4--Cal Mode Bias - The table of altitude and AGC cal mode biases will be provided after the launch of the spacecraft.

(g) 1.3.1--Cal 1 Processor - The calibration mode data base constants will be supplied three months before the launch of the spacecraft.

(i) 1.3.2--Cal 2 Processor - The calibration mode data base constants will be supplied before the launch of the spacecraft.

(j) 1.3.3--Trend File Processor - The curve-fit technique and the display requirements will be specified prior to the launch of the spacecraft.

(k) 1.4--Adaptive Resolution - This module has only been scoped and will be completed in the future.

(l) 1.5.1--Spacecraft Ephemeris Interpolation - This module has only been scoped and will be completed in the future.

(m) 1.5.2--Subsatellite Point Calculation - This module has only been scoped and will be completed in the future.

(n) 2.1--Contamination Processing - This module has only been scoped and will be completed in the future.

(o) 2.3.2--Waveform Altitude Correction - This module has only been scoped and will be completed in the future.

(p) 2.3.3--Waveform SWH Correction - This module has only been scoped and will be completed in the future.

(q) 2.3.4--Waveform SWH Bias - This module has only been scoped and will be completed in the future.

(r) 2.4--Atmospheric Module - This module and its submodules has only been scoped and will be completed in the future.

(s) 2.5.2--Wind Speed - The algorithm depends on the necessity of correcting for the atmosphere for the best accuracy.

(t) 2.6.3.1--Solar/Lunar Ephemeris Interpolation - This module has only been scoped and will be completed in the future.

(u) 2.6.4--EM Bias - This module has only been scoped and will be completed in the future.

(v) 2.7--Ice Sheet Height - This module has only been scoped and will be completed in the future.

(w) 2.8--Sea Ice - This module has only been scoped and will be completed in the future.

(x) 2.9--Quality Control - This module has only been scoped and will be completed in the future.
REFERENCES

BIBLIOGRAPHY

APPENDIX A
Table A.1

NOSS Altimeter Telemetry Mode 1 Content (20 records/sec.)

<table>
<thead>
<tr>
<th></th>
<th>Time (GMT)</th>
<th>Time (GMT)</th>
<th>Time (GMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Altitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altitude Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altitude Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SWH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGC word</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGC gate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Early gate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Late gate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Middle gate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gate normalization factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise gate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plateau gate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attitude gate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmit power</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cal atten/SACU status</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering subcom #1 (20 deep)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering subcom #2 (20 deep)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering subcom #3 (20 deep)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rain detection subcom (20 deep)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waveform samples (average of 50 pulses)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waveform Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spare</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOSS Altimeter Telemetry Mode 2 Content (CW)--Words 1 to 30 will be the same as TM format 1. Words 31 to 93 will be nine groups of seven words containing Tx count, hit count, altitude and AGC.

NOSS Altimeter Telemetry 3 Content (dump)--Same content as TM 2, except words 31 to 93 will contain memory dump data.
<table>
<thead>
<tr>
<th>MSB</th>
<th>10</th>
<th>Not used (=0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MSB=48 dB</td>
<td>Calibrate attenuator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"0"= insert attenuation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(all zeroes is max value)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>out to</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0 to 60 dB in 11 steps</td>
</tr>
<tr>
<td>5</td>
<td>LSB=6 dB</td>
<td>SACU</td>
</tr>
<tr>
<td>4</td>
<td>Spare</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HV ON</td>
<td>SACU status</td>
</tr>
<tr>
<td>2</td>
<td>HV ready</td>
<td>"1" = true</td>
</tr>
<tr>
<td>1</td>
<td>TWT fault</td>
<td></td>
</tr>
</tbody>
</table>
Table A.1 (continued)

Status #1 (last Data Command Sent)

<table>
<thead>
<tr>
<th>CMD word no.</th>
<th>Bit No.</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 9 d</td>
<td>7 6 5 4 3</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 0</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>1 0 0 0</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>3</td>
<td>1 0 0 0</td>
<td>0 0 0 1 0</td>
</tr>
<tr>
<td>4</td>
<td>0 0 0 0</td>
<td>0 0 0 1 1</td>
</tr>
<tr>
<td>5</td>
<td>1 0 0 0</td>
<td>0 0 1 0 0</td>
</tr>
<tr>
<td>6</td>
<td>0 0 0 0</td>
<td>0 0 1 0 1</td>
</tr>
<tr>
<td>7</td>
<td>0 0 0 0</td>
<td>0 1 1 0 1</td>
</tr>
<tr>
<td>8</td>
<td>1 0 0 0</td>
<td>0 1 1 1 1</td>
</tr>
<tr>
<td>9</td>
<td>1 0 0 0</td>
<td>1 0 0 0 0</td>
</tr>
<tr>
<td>10</td>
<td>0 0 0 0</td>
<td>1 0 0 0 1</td>
</tr>
<tr>
<td>11</td>
<td>0 0 0 0</td>
<td>1 0 1 0 0</td>
</tr>
<tr>
<td>12</td>
<td>1 0 0 0</td>
<td>1 0 1 1 1</td>
</tr>
<tr>
<td>13</td>
<td>0 0 0 0</td>
<td>1 1 0 0 0</td>
</tr>
<tr>
<td>14</td>
<td>1 0 0 0</td>
<td>1 1 0 0 1</td>
</tr>
<tr>
<td>15</td>
<td>1 0 0 0</td>
<td>1 1 1 0 0</td>
</tr>
<tr>
<td>16</td>
<td>0 0 0 0</td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

Parity Memory dump

<table>
<thead>
<tr>
<th>Mode command</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL I, II (add to track command to specify complete calibrate mode cycle to be run once every two hours)</td>
</tr>
</tbody>
</table>

Rain processing enable

Notes: Bits 2 & 1

- **1 0:** Execute bits 3 through 6 immediately
- **0 0:** First initialize the tracker, then execute bits 3 through 10
- **0 1:** Load memory dump control words, allows 256 data commands
- **1 1:** Load parameter select control words, allows 256 data command

Bits 3 through 10 used for parity. Commands sent with bits 1 and 2 either 01 or 11 will not appear in TM word 24
Table A.1 (continued)

Status #2 (Engineering Data Channel/ATU Mode)

<table>
<thead>
<tr>
<th>MSB</th>
<th>10</th>
<th>MSB</th>
<th>Channel select (1-46)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>LSB</td>
<td>4</td>
<td>ATU mode - same as bits 6, 5, 4, and 3 of word 15 (last data command) except when in CAL III.</td>
</tr>
</tbody>
</table>

Status #3 (ATU Branch Status)

<table>
<thead>
<tr>
<th>MSB</th>
<th>10</th>
<th>MSB</th>
<th>50, 25, 12.5, 6.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>3.125 normal spacing Gate width number (early, middle and late gate continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3.125 close spacing Gate width number (early and late gates overlapping middle gate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>LSB</td>
<td>ACQ/TRK</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ACQ/ TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Chirp ACQ step</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Reacquire flag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ΔH > TΔH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>LSB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

177
Table A.1 (continued)

Status #4 (SACU Mode Command)

<table>
<thead>
<tr>
<th>MSB</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Not used (=0)</td>
</tr>
<tr>
<td>9</td>
<td>Chirp/CW (chirp=1)</td>
</tr>
<tr>
<td>8</td>
<td>High voltage ON/OFF (ON=1)</td>
</tr>
<tr>
<td>7</td>
<td>TWTA fault reset (reset=1 for 50 ms)</td>
</tr>
<tr>
<td>6</td>
<td>Tr'gger kill (=1)</td>
</tr>
<tr>
<td>5</td>
<td>Calibrate mode I (1st 11 steps)</td>
</tr>
<tr>
<td>4</td>
<td>Calibrate mode II (noise only)</td>
</tr>
<tr>
<td>3</td>
<td>TWT heater ON/OFF (ON=1), (always ON if power applied)</td>
</tr>
<tr>
<td>2</td>
<td>Spare</td>
</tr>
</tbody>
</table>

Status #5 (ATU Control Status)

<table>
<thead>
<tr>
<th>MSB</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Altimeter designator</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Program version</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tracker type</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Resolution step</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

178
<table>
<thead>
<tr>
<th>Engineering Subcom #1</th>
<th>Engineering Subcom #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TWT beam current</td>
<td>1. LVPS 38V current</td>
</tr>
<tr>
<td>2. TWT cathode voltage</td>
<td>2. +28V S/C bus isolated</td>
</tr>
<tr>
<td>3. TWT HVPS temperature</td>
<td>3. +28V</td>
</tr>
<tr>
<td>4. TWT collector temperature</td>
<td>4. +15V</td>
</tr>
<tr>
<td>5. No data</td>
<td>5. -15V</td>
</tr>
<tr>
<td>6. Receiver temperature</td>
<td>6. +7V</td>
</tr>
<tr>
<td>7. Noise gate amplitude</td>
<td>7. -9V</td>
</tr>
<tr>
<td>8. Plateau gate amplitude</td>
<td>8. +5V</td>
</tr>
<tr>
<td>9. Attitude gate amplitude</td>
<td>9. -5.2V</td>
</tr>
<tr>
<td>10. Transmit power amplitude</td>
<td>10. +1.00V REF</td>
</tr>
<tr>
<td>11. UCFM temperature</td>
<td>11. 0.657V REF</td>
</tr>
<tr>
<td>12. DDL temperature</td>
<td>12. SACU PLO LOCK</td>
</tr>
<tr>
<td>13. DDL ASSY temperature</td>
<td>13. MTU temperature</td>
</tr>
<tr>
<td>14. HSWS temperature</td>
<td>14. No data</td>
</tr>
<tr>
<td>15. DFB temperature #1</td>
<td>15. DFB temperature #2</td>
</tr>
<tr>
<td>16. AT #1 temperature</td>
<td>16. Spare #1</td>
</tr>
<tr>
<td>17. AT #2 temperature</td>
<td>17. Spare #2</td>
</tr>
<tr>
<td>18. ICU temperature</td>
<td>18. Spare #3</td>
</tr>
<tr>
<td>19. SACU temperature</td>
<td>19. Spare #4</td>
</tr>
<tr>
<td>20. LVPS temperature</td>
<td>20. Spare #5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.</td>
<td>Relay status (see below)</td>
</tr>
<tr>
<td>2.</td>
<td>Bits 1 through 8 spare</td>
</tr>
<tr>
<td>3.</td>
<td>Parameter select 1</td>
</tr>
<tr>
<td>4.</td>
<td>Parameter select 2</td>
</tr>
<tr>
<td>5.</td>
<td>Parameter select 3</td>
</tr>
<tr>
<td>6.</td>
<td>Parameter select 4</td>
</tr>
<tr>
<td>7.</td>
<td>Spare #6</td>
</tr>
<tr>
<td>8.</td>
<td>Spare #7</td>
</tr>
<tr>
<td>9.</td>
<td>Spare #8</td>
</tr>
<tr>
<td>10.</td>
<td>Spare #9</td>
</tr>
</tbody>
</table>

Relay status

0 = TWTA fault override

Bit #3

1 = TWTA fault normal

0 = LVPS current normal

Bit #2

1 = LVPS current override

0 = AT #1

Bit #1

1 = AT #2
<table>
<thead>
<tr>
<th>Parameter select 1</th>
<th>Bits 10 & 9</th>
<th>Index to select acquisition running average time constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits 10 & 9</td>
<td></td>
<td>Index to select track running average time constant</td>
</tr>
<tr>
<td>Bits 6,5,4, & 3</td>
<td></td>
<td>Index to select track AGC threshold</td>
</tr>
<tr>
<td>Bits 8,9,8, & 7</td>
<td></td>
<td>Index to select acquisition a, b, and AGC time constants</td>
</tr>
<tr>
<td>Bits 6,5,4, & 3</td>
<td></td>
<td>Index to select track a, b, and AGC time constants</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter select 2</th>
<th>Bits 10,9,8, & 7</th>
<th>Index to select acquisition α, β, and AGC time constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits 6,5,4, & 3</td>
<td></td>
<td>Index to select track a, b, and AGC time constants</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter select 3</th>
<th>Bits 10 & 9</th>
<th>Index to select minimum gate width for ΔH computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits 8 & 7</td>
<td></td>
<td>Index to select average L₆-E₆ threshold for track (TT)</td>
</tr>
<tr>
<td>Bits 6 & 5</td>
<td></td>
<td>Index to select height error threshold (TA)</td>
</tr>
<tr>
<td>Bits 4 & 3</td>
<td></td>
<td>Index to select average L₆-E₆ threshold for chirp acquisition (TA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter select 4</th>
<th>Bits 10,9,8, & 8</th>
<th>Offset for adjustment waveheight curves (ΔK₆-E₆)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits 7,6,5,4, & 3</td>
<td></td>
<td>Acquisition height offset, LSB=0.4 ms</td>
</tr>
</tbody>
</table>

Notes: Bits 2 & 1 are 1, 1 for all parameter words.

If no parameter selection is requested, then words 13-16 are all zero.

If parameters are selected, the 32 selectable bits will not alter the status of the tracker immediately but will be utilized with a subsequent track 4 command.

If the altimeter is placed in the OFF mode, or when any command is sent with bit 2 = 0, then the selection is lost and must be reloaded.
Table A.2
Altimeter-Related Spacecraft Engineering Data (1/sec)*

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (GMT)</td>
<td>8</td>
</tr>
<tr>
<td>Instrument attitude</td>
<td>8</td>
</tr>
<tr>
<td>Baseplate temperature</td>
<td>120</td>
</tr>
<tr>
<td>Instrument currents</td>
<td>16</td>
</tr>
<tr>
<td>Instrument voltages</td>
<td>8</td>
</tr>
<tr>
<td>Instrument heater status</td>
<td>8</td>
</tr>
<tr>
<td>Altimeter analog channels</td>
<td>96</td>
</tr>
</tbody>
</table>

* Information is always available and must be continuously processed for both altimeters.
Table 0.0-a A.D-1.94 and A.D-2.91 Header Record

<table>
<thead>
<tr>
<th>Word Number</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>satellite ID</td>
</tr>
<tr>
<td>2</td>
<td>instrument ID</td>
</tr>
<tr>
<td>3</td>
<td>program version</td>
</tr>
<tr>
<td>4</td>
<td>year - 1900</td>
</tr>
<tr>
<td>5</td>
<td>TBD</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>100</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Table 0.0-b A.D-1.94 Header Record #2

<table>
<thead>
<tr>
<th>Word Number</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EU(1,1,1)</td>
</tr>
<tr>
<td>2</td>
<td>EU(2,1,1)</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>8</td>
<td>EU(8,1,1)</td>
</tr>
<tr>
<td>9</td>
<td>EU(1,2,1)</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>800</td>
<td>EU(8,100,1)</td>
</tr>
<tr>
<td>801</td>
<td>EU(1,1,2)</td>
</tr>
<tr>
<td>802</td>
<td>EU(2,1,2)</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>1600</td>
<td>EU(8,100,2)</td>
</tr>
</tbody>
</table>
Table 1.1.2 AGC Word Lookup Table

<table>
<thead>
<tr>
<th>Atten. Setting</th>
<th>AGC Value</th>
<th>Atten. Setting</th>
<th>AGC Value</th>
<th>Atten. Setting</th>
<th>AGC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>22</td>
<td>22.1</td>
<td>43</td>
<td>43.7</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>23</td>
<td>23.0</td>
<td>44</td>
<td>44.2</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>24</td>
<td>24.1</td>
<td>45</td>
<td>45.7</td>
</tr>
<tr>
<td>3</td>
<td>2.9</td>
<td>25</td>
<td>25.1</td>
<td>46</td>
<td>46.2</td>
</tr>
<tr>
<td>4</td>
<td>4.0</td>
<td>26</td>
<td>26.1</td>
<td>47</td>
<td>47.6</td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
<td>27</td>
<td>27.1</td>
<td>48</td>
<td>48.5</td>
</tr>
<tr>
<td>6</td>
<td>5.9</td>
<td>28</td>
<td>27.8</td>
<td>49</td>
<td>49.9</td>
</tr>
<tr>
<td>7</td>
<td>6.8</td>
<td>29</td>
<td>28.9</td>
<td>50</td>
<td>50.5</td>
</tr>
<tr>
<td>8</td>
<td>8.0</td>
<td>30</td>
<td>30.0</td>
<td>51</td>
<td>52.0</td>
</tr>
<tr>
<td>9</td>
<td>9.0</td>
<td>31</td>
<td>31.0</td>
<td>52</td>
<td>52.4</td>
</tr>
<tr>
<td>10</td>
<td>9.9</td>
<td>32</td>
<td>32.4</td>
<td>53</td>
<td>53.9</td>
</tr>
<tr>
<td>11</td>
<td>10.9</td>
<td>33</td>
<td>33.6</td>
<td>54</td>
<td>54.7</td>
</tr>
<tr>
<td>12</td>
<td>11.9</td>
<td>34</td>
<td>34.2</td>
<td>55</td>
<td>56.1</td>
</tr>
<tr>
<td>13</td>
<td>12.9</td>
<td>35</td>
<td>35.6</td>
<td>56</td>
<td>56.8</td>
</tr>
<tr>
<td>14</td>
<td>13.8</td>
<td>36</td>
<td>36.2</td>
<td>57</td>
<td>58.3</td>
</tr>
<tr>
<td>15</td>
<td>14.8</td>
<td>37</td>
<td>37.5</td>
<td>58</td>
<td>58.9</td>
</tr>
<tr>
<td>16</td>
<td>16.1</td>
<td>38</td>
<td>38.2</td>
<td>59</td>
<td>60.3</td>
</tr>
<tr>
<td>17</td>
<td>17.1</td>
<td>39</td>
<td>39.5</td>
<td>60</td>
<td>60.6</td>
</tr>
<tr>
<td>18</td>
<td>18.1</td>
<td>40</td>
<td>40.3</td>
<td>61</td>
<td>62.1</td>
</tr>
<tr>
<td>19</td>
<td>19.0</td>
<td>41</td>
<td>41.7</td>
<td>62</td>
<td>62.9</td>
</tr>
<tr>
<td>20</td>
<td>19.9</td>
<td>42</td>
<td>42.3</td>
<td>63</td>
<td>64.1</td>
</tr>
<tr>
<td>21</td>
<td>20.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.2.1 Constant Time Tag Correction

<table>
<thead>
<tr>
<th></th>
<th>DTC(I,1)</th>
<th>ETC(I,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.147951</td>
<td>-0.147951</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>-0.147951</td>
<td>-0.147951</td>
</tr>
</tbody>
</table>
Table 1.2.2 Cal Zone Bias and Standard Deviation

<table>
<thead>
<tr>
<th>I</th>
<th>DCZB(I)</th>
<th>CZB(I,1)</th>
<th>CZB(I,2)</th>
<th>SCZB(I,1)</th>
<th>SCZB(I,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
</tr>
<tr>
<td>3</td>
<td>9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
</tr>
<tr>
<td>4</td>
<td>9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
</tr>
<tr>
<td>5</td>
<td>9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
</tr>
</tbody>
</table>

Table 1.2.3 C.G. Offset and Standard Deviation

<table>
<thead>
<tr>
<th>I</th>
<th>DCGO(I)</th>
<th>CGO(I,1)</th>
<th>CGO(I,2)</th>
<th>SCGO(I,1)</th>
<th>SCGO(I,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
</tr>
<tr>
<td>3</td>
<td>9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>10</td>
<td>9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
</tr>
<tr>
<td></td>
<td>DCMB(I)</td>
<td>CMB(I,1)</td>
<td>CMB(I,2)</td>
<td>SCMB(I,1)</td>
<td>SCMB(I,2)</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
</tr>
<tr>
<td>3</td>
<td>9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
</tr>
<tr>
<td>4</td>
<td>9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
</tr>
<tr>
<td>5</td>
<td>9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
<td>-9999.0</td>
</tr>
<tr>
<td>N</td>
<td>Parameter</td>
<td>I1(N) Location</td>
<td>J1(N) Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>instrument attitude</td>
<td>136</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>time correction</td>
<td>119</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>altitude C.G. offset</td>
<td>128</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>altitude cal zone bias</td>
<td>126</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>altitude cal mode bias</td>
<td>130</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AGC cal mode bias</td>
<td>132</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>altitude adapt. res. correction</td>
<td>146</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AGC adapt. res. correction</td>
<td>148</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>MTU temperature</td>
<td>50</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DFB temperature #1</td>
<td>32</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TWT collector temperature</td>
<td>22</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N1 = 11
Table 2.2b. Parameters For Which Means and Standard Deviations Are Calculated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>12(N) MLEV1 Array Location</th>
<th>J2A(N) MLEV2 Array Location of Mean</th>
<th>J2B(N) MLEV2 Array Location of S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 AGC gate amplitude</td>
<td>10</td>
<td>30</td>
<td>49</td>
</tr>
<tr>
<td>2 early gate amplitude</td>
<td>11</td>
<td>31</td>
<td>50</td>
</tr>
<tr>
<td>3 late gate amplitude</td>
<td>12</td>
<td>32</td>
<td>51</td>
</tr>
<tr>
<td>4 middle gate amplitude</td>
<td>13</td>
<td>33</td>
<td>52</td>
</tr>
<tr>
<td>5 altitude error</td>
<td>7</td>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td>6 noise gate amplitude</td>
<td>15</td>
<td>35</td>
<td>54</td>
</tr>
<tr>
<td>7 plateau gate amplitude</td>
<td>16</td>
<td>36</td>
<td>55</td>
</tr>
<tr>
<td>8 attitude gate amplitude</td>
<td>17</td>
<td>37</td>
<td>56</td>
</tr>
<tr>
<td>9 rain subcom word #1</td>
<td>223</td>
<td>59</td>
<td>79</td>
</tr>
<tr>
<td>10 rain subcom word #2</td>
<td>224</td>
<td>59</td>
<td>79</td>
</tr>
<tr>
<td>28 rain subcom word #20</td>
<td>242</td>
<td>77</td>
<td>97</td>
</tr>
<tr>
<td>29 transmit power</td>
<td>18</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>30 waveform sample #1</td>
<td>160</td>
<td>101</td>
<td>164</td>
</tr>
<tr>
<td>31 waveform sample #2</td>
<td>161</td>
<td>102</td>
<td>165</td>
</tr>
<tr>
<td>93 waveform sample #63</td>
<td>222</td>
<td>163</td>
<td>226</td>
</tr>
</tbody>
</table>

N2 = 93
Table 2.2c. Parameters Which Are Linearly Fit Without Computation of Standard Deviations

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>I3(N) WLEV1 Array Location</th>
<th>J3(N) WLEV2 Array Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>latitude</td>
<td>151</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>longitude</td>
<td>152</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>ellipsoid height</td>
<td>137 & 138</td>
<td>9, 10</td>
</tr>
</tbody>
</table>

N3 = 3

Table 2.2d. Parameters Which Are Linearly Fit With Computation of Standard Deviations

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>I4(N) WLEV1 Array Location</th>
<th>J4A(N) WLEV2 Array Location of Fit</th>
<th>J4B(N) WLEV2 Array Location of S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>altitude</td>
<td>5 & 6</td>
<td>17 & 18</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>altitude rate</td>
<td>4</td>
<td>19</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>SWH</td>
<td>8</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>AGC word</td>
<td>9</td>
<td>22</td>
<td>48</td>
</tr>
</tbody>
</table>

N4 = 4

Table 2.2e. Special Parameters To Be Compressed

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Input Location</th>
<th>WLEV2 Array Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>orbit number</td>
<td>IEXEC(3)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>altimeter number</td>
<td>ISTAT(25)</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>compression interval</td>
<td>IEXEC(5)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>compressed time</td>
<td>WLEV1(117&118)</td>
<td>586</td>
</tr>
<tr>
<td>5</td>
<td>zone flag</td>
<td>ISTAT(44)</td>
<td>14</td>
</tr>
<tr>
<td>Index</td>
<td>Time, ns</td>
<td>SEASAT Waveform Sample #</td>
<td>Index</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>-92.1875</td>
<td>-30</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>-89.0625</td>
<td>-29</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>-85.9375</td>
<td>-28</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>-82.8125</td>
<td>-27</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>-79.6875</td>
<td>-26</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>-76.5625</td>
<td>-25</td>
<td>38</td>
</tr>
<tr>
<td>7</td>
<td>-73.4375</td>
<td>-24</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>-70.3125</td>
<td>-23</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>-67.1875</td>
<td>-22</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>-64.0625</td>
<td>-21</td>
<td>42</td>
</tr>
<tr>
<td>11</td>
<td>-60.9375</td>
<td>-20</td>
<td>43</td>
</tr>
<tr>
<td>12</td>
<td>-57.8125</td>
<td>-19</td>
<td>44</td>
</tr>
<tr>
<td>13</td>
<td>-54.6875</td>
<td>-18</td>
<td>45</td>
</tr>
<tr>
<td>14</td>
<td>-51.5625</td>
<td>-17</td>
<td>46</td>
</tr>
<tr>
<td>15</td>
<td>-48.4375</td>
<td>-16</td>
<td>47</td>
</tr>
<tr>
<td>16</td>
<td>-45.3125</td>
<td>-15</td>
<td>48</td>
</tr>
<tr>
<td>17</td>
<td>-42.1875</td>
<td>-14</td>
<td>49</td>
</tr>
<tr>
<td>18</td>
<td>-39.0625</td>
<td>-13</td>
<td>50</td>
</tr>
<tr>
<td>19</td>
<td>-35.9375</td>
<td>-12</td>
<td>51</td>
</tr>
<tr>
<td>20</td>
<td>-32.8125</td>
<td>-11</td>
<td>52</td>
</tr>
<tr>
<td>21</td>
<td>-29.6875</td>
<td>-10</td>
<td>53</td>
</tr>
<tr>
<td>22</td>
<td>-26.5625</td>
<td>-9</td>
<td>54</td>
</tr>
<tr>
<td>23</td>
<td>-23.4375</td>
<td>-8</td>
<td>55</td>
</tr>
<tr>
<td>24</td>
<td>-20.3125</td>
<td>-7</td>
<td>56</td>
</tr>
<tr>
<td>25</td>
<td>-17.1875</td>
<td>-6</td>
<td>57</td>
</tr>
<tr>
<td>26</td>
<td>-14.0625</td>
<td>-5</td>
<td>58</td>
</tr>
<tr>
<td>27</td>
<td>-10.9375</td>
<td>-4</td>
<td>59</td>
</tr>
<tr>
<td>28</td>
<td>- 7.8125</td>
<td>-3</td>
<td>60</td>
</tr>
<tr>
<td>29</td>
<td>- 4.6875</td>
<td>-2</td>
<td>61</td>
</tr>
<tr>
<td>30</td>
<td>- 3.1250</td>
<td>-1½</td>
<td>62</td>
</tr>
<tr>
<td>31</td>
<td>- 1.5625</td>
<td>-1</td>
<td>63</td>
</tr>
<tr>
<td>32</td>
<td>0.0000</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.5.1a. Cal Attenuator and AGC

<table>
<thead>
<tr>
<th>I</th>
<th>AGCI(I)</th>
<th>CALK(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.58</td>
<td>43.7</td>
</tr>
<tr>
<td>2</td>
<td>24.15</td>
<td>36.1</td>
</tr>
<tr>
<td>3</td>
<td>30.30</td>
<td>30.3</td>
</tr>
<tr>
<td>4</td>
<td>35.67</td>
<td>24.2</td>
</tr>
<tr>
<td>5</td>
<td>42.27</td>
<td>18.2</td>
</tr>
<tr>
<td>6</td>
<td>48.07</td>
<td>12.2</td>
</tr>
<tr>
<td>7</td>
<td>54.52</td>
<td>6.2</td>
</tr>
<tr>
<td>8</td>
<td>60.58</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 2.5.1b. Attitude Loss vs Attitude

<table>
<thead>
<tr>
<th>I</th>
<th>ATT(I)</th>
<th>AL(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.0161</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.0391</td>
</tr>
<tr>
<td>3</td>
<td>0.10</td>
<td>0.1081</td>
</tr>
<tr>
<td>4</td>
<td>0.15</td>
<td>0.2231</td>
</tr>
<tr>
<td>5</td>
<td>0.20</td>
<td>0.3842</td>
</tr>
<tr>
<td>6</td>
<td>0.25</td>
<td>0.5914</td>
</tr>
<tr>
<td>7</td>
<td>0.30</td>
<td>0.8449</td>
</tr>
<tr>
<td>8</td>
<td>0.35</td>
<td>1.1445</td>
</tr>
<tr>
<td>9</td>
<td>0.40</td>
<td>1.4904</td>
</tr>
<tr>
<td>10</td>
<td>0.45</td>
<td>1.8826</td>
</tr>
<tr>
<td>11</td>
<td>0.50</td>
<td>2.3213</td>
</tr>
<tr>
<td>12</td>
<td>0.55</td>
<td>2.8066</td>
</tr>
<tr>
<td>13</td>
<td>0.60</td>
<td>3.3386</td>
</tr>
<tr>
<td>14</td>
<td>0.65</td>
<td>3.9178</td>
</tr>
<tr>
<td>15</td>
<td>0.70</td>
<td>4.5430</td>
</tr>
<tr>
<td>16</td>
<td>0.75</td>
<td>5.2158</td>
</tr>
</tbody>
</table>
Table 2.5.2a. Wind A and B Coefficients

<table>
<thead>
<tr>
<th></th>
<th>A(I)</th>
<th>B(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.080074</td>
<td>-0.124661</td>
</tr>
<tr>
<td>2</td>
<td>0.039693</td>
<td>-0.031996</td>
</tr>
<tr>
<td>3</td>
<td>0.015950</td>
<td>0.017215</td>
</tr>
</tbody>
</table>

Table 2.5.2b. Wind Polynomial Coefficients

<table>
<thead>
<tr>
<th></th>
<th>C(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.087799</td>
</tr>
<tr>
<td>2</td>
<td>-0.3649928</td>
</tr>
<tr>
<td>3</td>
<td>0.04062421</td>
</tr>
<tr>
<td>4</td>
<td>-1.904952x10^-3</td>
</tr>
<tr>
<td>5</td>
<td>3.288189x10^-5</td>
</tr>
</tbody>
</table>