
2222 ;-
C.1

I$
I L

NASA Conference Publication 2222

Production
of Reliable

Flight-Crucial
Software

Validation Methods Research for
Fault-Tolerant Avionics and Control

Systems Sub- Working-Group Meeting

KOAbl COPY: RETURN Tq
B;FWL TECWMICAL LIBRAR‘
\KlRTLAcND AFT% t’t. Y:

Research Triangle Park, North Carolina
November 2-4,198l

-
TECH LIBRARY KAFB, NM

I 1111 Hlll Ill lllll III IIHI lllll llll Ill1
00b73l,7

NASA Conference Publication 2.222

Production
of Reliable

Flight-Crucial
Software

Validation Methods Research for
Fault-Tolerant Avionics and Control

Systems Sub- Working-Group Meeting

Edited by
J. R. Dunham

Research Triangle Institute

J. C. Knight
University of Virginia

Proceedings of a sub-working-group meeting
held at Research Triangle Institute

Research Triangle Park, North Carolina
November 2-4,198l

NASA
National Aeronautics

and Space Administration

&ientific and Technical

lnformetion Branch

1982

PREFACE

As a part of an on-going reliability validation research program, NASA Langley
Research Center sponsored a Sub-Working-Group Meeting on the Production of Reliable
Flight-Crucial Software. This meeting, which was held at Research Triangle Institute,
November 2-4, 1981, specifically addressed the state of the art in the production of
crucial software for flight control applications. It provided a forum where research-
ers communicated their ideas about how to develop highly reliable software and high-
lighted problems associated with reliable software production.

Meeting objectives were to survey the state of the art and identify areas where
additional research is needed. A more specific objective of the sub-working-group
meeting was to obtain answers to the following questions:

1. Is it meaningful to associate reliability metrics with software? If so,
what are these metrics and how are they to be computed?

2. How good are the classical methods used in the conventional software devel-
opment cycle? Are they adequate for building crucial software assuming a
composite set of quality metrics was defined?

3. Are the more modern formal methods of building software sufficiently mature
that they could be applied during the production of reliable software for
digital flight control systems?

The consensus was that it is meaningful to associate reliability metrics with
software. However, the precise nature of these metrics needs to be determined.

Classical methods are inadequate for achieving a failure probability of lo-' for
a lo-hour flight. It was suggested that employing an eclectic set of complementary
techniques constitutes a feasible near-term solution using classical methods. This
approach should yield a substantial improvement in the reliability of a given soft-
ware system.

Some formal methods are approaching feasibility for production use. Technical
advances in the manageability of these methods must occur prior to their adoption.

The meeting format involved brief and informal presentations followed by discus-
sion. The earlier sessions considered conventional approaches to reliable software
development while the later ones focused more on reliability measurement and the more
formal methods. All presentations addressed the state of the art of the methodology
under consideration. A general discussion of the main problems and research needs
was held in the latter part of the second day.

Each meeting participant submitted a prioritized list of three short-term and
three long-term research needs. The results of this prioritization activity indicat-
ed a short-term need for research in the areas of tool development and software fault
tolerance. For the long term, research in formal verification or proof methods was
recommended. Formal specification and software reliability modeling were recommend-
ed as topics for both short- and long-term research. Recommendations for research in-
clude the use of the NASA Avionics Integration Research Laboratory (AIRLAB).

This sub-working-group meeting on the production of reliable software was con-
ceived and sponsored by personnel at NASA Langley Research Center, in particular
Billy L. Dove and A. 0. Lupton.

iii

CONTENTS

PREFACE . iii

1.0

2.0

3.0

4.0

INTRODUCTION AND OVERVIEW
1.1 Problem Motivation
1.2 Meeting Objectives
1.3 State of the Art in the Production of Reliable Software
1.4 Summary of Results

RELIABLE SOFTWARE DEVELOPMENT PROJECTS

Z
El
2:5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

Producing Reliable Software for the Space Shuttle . .
Controlling the Software Development Process -

The SAGA Project
The Cleanroom Approach to Reliable Software Developmen
Preimplementation Phases of Software Development . .
Programming Languages
Software Testing
Software Fault Toieranc;!
Software for Flight Control Applications . .
Software Environments - The TOOLPACK Project
Static Analysis of Concurrency
Software Reliability Measurement : : : : : :
Formal Verification of SIFT
System Specification and Program Transformat

.

.

.

.

.

.

.

.
ion . . .

.

CONCLUSIONS .

REFERENCES .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

TABLE

APPENDIX - PRIORITIZATION OF RECOMMENDED RESEARCH ACTIVITIES

AGENDA

ATTENDEES

3
3

i
4
5

6"
6
7
7
8
8
9

10

13

15

16

20

21

V

1.0 INTRODUCTION AND OVERVIEW

1.1 Problem Motivation

A computer application is termed crucial if failure could endanger human life.
An example is a full-time, full authority digital flight control system for commer-
cial air transport. Present commercial aircraft use mechanical and hydraulic link-
ages and analog controls in flight-critical applications. The next generation of
aircraft is expected to use digital flight controls and digital communications be-
tween the control system and the control surface actuators. Research in this area is
important since there is the potential for substantial fuel savings and improved air-
craft performance associated with entirely digital control systems.

Crucial applications demand high reliability as well as validation that the re-
liability pred-iction is meaningful. A requirement of a system failure probability

of 10-g for a lo-hour flight has been used as a working figure. This reliability
requirement is a system requirement and therefore includes system failures result-
ing from either hardware or software anomalies. A great deal of work has been done
on systems designed to be tolerant of hardware faults [1,21. However, further work
is needed to determine how to measure, cope with, or eliminate faults which occur in
software.

The problem of software quality has been studied extensively, but usually with
the imprecise goal of improving quality rather than achieving a certain specified re-
liability figure. For digital flight control systems to be accepted as suitable
for commercial use, it will be necessary to show that the required software reli-
ability has been achieved.

1.2 Meeting Objectives

The meeting objectives included surveying the state of the art in reliable soft-
ware production and identifying research needs. A more specific objective of the
sub-working-group meeting was to obtain answers to the following questions:

1.

2.

3.

Is it meaningful to associate reliability metrics with software? If so,
what are these metrics and how are they to be computed?
How good are the classical methods used in the conventional software devel-
opment cycle? Are they adequate for building crucial software assuming a
set of quality metrics was defined?
Are the more formal modern methods of building software sufficiently mature
that they could be applied during the production of reliable software for
digital flight control systems?

Research recommendations could include the use of the NASA AIRLAB facility.

1.3 State of the Art in the Production of Reliable Software

Present day production of software for crucial systems relies on a balanced al-
location of a myriad of resources and represents a costly endeavor. The developers
of the software for the Space Shuttle used accepted technology, review boards, and
brute force testing to maximize the reliability of the software and their confidence
in it. Their goal (which coincides with the goals of the IBM Cleanroom project) was
to produce error-free software. Whether error-free software is attainable remains an
open question.

Various software engineering approaches exist which contribute to the relia-
bility of a software system. The extent of their contributions still needs to be
quantitatively determined.

Formal specifications are a critical aspect of highly reliable software and pre-
suppose a mechanism for determining the equivalence of the specification with the in-
tent. Technology for addressing this problem does not exist today.

The available software reliability models require very large amounts of execu-
tion time to produce accurate estimates if the software is close to achieving a fail-
ure probability of log in a lo-hour flight. The problems of assuring the reliabil-
ity of software may be more difficult than those encountered during attempts to pro-
duce it.

The reliability of any software depends on the reliability of a considerable
body of support software (tools, languages, processors, etc.). High-level language
implementations must be reliable if programs written in those languages are to be re-
liable. Experimental efforts are under way to collect a set of tools in a unified
system for programmers' use. Systems which will assist management with administra-
tion of a software project are also under development.

1.4 Summary of Results

The overriding group consensus was that the currently stated reliability re-
quirements for software alone cannot be achieved or confirmed with current technol-
ogy. Available evidence indicates that current reliability figures are orders of
magnitude less than required.

For the short term the highest priority research recommendations were:

1. formal specification
2. software environment and tool development
3. reliability prediction, estimates, and measurement
4. fault-tolerant designs-
5. formal verification

For the long term the highest prior ity research recommendations were:

1. reliability prediction, estimat
2. formal specification
3. formal verification

ion, and measurement

It was suggested that AIRLAB might serve as a repository for sample flight con-
trol problems, support tools, and experimental results. Statistically controlled
software development experiments using flight control problems as vehicles for coher-
ency could be performed in AIRLAB. These experiments would permit measurement of the
contributions that different software development methodologies make to reliability.

2

2.0 RELIABLE SOFTWARE DEVELOPMENT PROJECTS

2.1 ProducixReliable Software for the Space Shuttle .__~ -_I

The Space Shuttle Software System is unique in that it uses software to perform
crucial functions with no analog backup. The primary goals of the Shuttle software
developing agency (IBM-FSD) were to produce software which meets the intent of custo-
mer requirements, have the software perform in accordance with the c.ustomer's opera-
tional expectations, and produce software which is free from errors. The use of a
composite set of midseventies techniques comprised the software development process.
Software reliability measures, formal specification languages, and formal verifi-
cation methods were not used.

Four system test facilities were used throughout the production process. These
are: a) a software development laboratory, b) a software-hardware integration labor-
atory, c) a flight systems laboratory, and d) a crew training laboratory. The soft-
ware developers placed greater emphasis on the earlier part of the development cycle.
An early definition of development tools, the use of structured methodologies, strict
configuration control, and the extensive use of review boards for decision making
constituted the development approach. The developers fostered an adversary relation-
ship between the designers and verifiers by maintaining their organizational indepen-
dence. A concise yet thorough description of the Shuttle software development is
given in a paper by A-3. Macina [33.

One of the difficulties encountered during the development of the Shuttle soft-
ware was the need to overlay software programs in memory. The function and size of
the applications software were not considered in the hardware selection decision. In
retrospect, it seems that software size should weight this decision.

The selection of the quad-redundant design also posed problems in that a 2 by 2
split was possible. Considerable effort. w:~s allocated to assuring that this condi-
tion did not occur. In the development of the SIFT and FTMP computers this problem
was solvedvia the theory of interactive consistency 141.

Since reliability measures were not produced, the Shuttle developers have no
measure of the reliability achieved. Brute force testing has increased their confi-
dence but in an unquantified way. In addition, they are only minimally confident of
correct operation in off-nominal flight operation. The software failed during simu-
lation of an off-nominal situation 3 weeks prior to the second Shuttle launch.

2.2 Controlling the Software Development Process - The SAGA Pro -- ___--

SAGA, a syntax-directed management system for software production,
going research project at the University of Illinois [5]. This effort is
tackling the complexity of software development projects by providing an
system for formally describing software production management and contra 1
mechanization of management policies.

ect

s an on-
aimed at
interact
ling the

ive

Context-free grammars, called management grammars, which describe the software
development process have been proposed, and recognizers for such grammars are cur-
rently being developed. In use, the recognizers will permit only approved activities
by software project staff and will collect management data routinely and automatical-
ly as the project proceeds.

3

The goals of the SAGA project represent an aggressive effort towards making the
process of software development more visible. This project illuminates the need to
use computers to control the development of computer programs. If successful, the
project will enable management to make decisions based upon accurate up-to-date infor-
mation and to better control the software development process.

2.3 The Cleanroom Approach to Reliable Software Development

The IBM Cleanroom Software Development Project constitutes a technical and OrganiL
zational approach to developing software products with certifiable reliability. This
approach divides software development into two parts: software design engineering and
software product engineering. The design engineer creates the product and the prod-
uct engineer certifies it.

The methods employed by the design engineers include stepwise refinement, cor-
rectness proving, finite state machine definitions, and the use of a design language.
In the coding phase, the design engineers use high-level programming languages,
structured programming techniques, and code reviews. They are trained to have the
attitude that they can produce error-free software and are permitted to perform only
syntax checks on their code.

The product engineers essentially debug the software produced by the design
engineers. The strategy used by the product engineers involves blind testing in
which design details are hidden. This testing is accomplished by analyzing the input
probability distributions, generating random inputs according to these distributions,
and recording failure data. Mean-time-before-failure statistics are generated, and
the product's reliability is estimated using Muss's execution time model [61.
Regression testing occurs as part of the failure diagnostic support.

Two premises underlie the Cleanroom approach to developing highly reliable soft-
ware. One premise is that individuals can be taught to write correct programs.
Arguments which support and question this assumption can be constructed. By removing
the crutch of testing, the designers will most probably be more conscientious in their
code development and more apt to subject their code to extensive desk checking. On
the other hand, are humans actually capable of consistently writing error-free code?

The second premise is that randomized testing by itself is sufficient. Random-
ized testing definitely avoids the 'fix the bug' and 'intended use' syndromes which
designers are prone to exhibit during testing. On the other hand, path testing and
tests which detect error types that occur most frequently are far from useless.
Furthermore, a difficulty encountered in randomized testing is the inability to pre-
dict the correct output.

2.4 Preimplementation Phases of Software Development

A range of approaches [7] exists for specifying the preimplementation informa-
tion needed in the initial phases of software development. These specification
approaches include both the informal traditional and information flow methods and the
more formal state-based, expression-based, axiomatic, and temporal logic descriptions.
Coupled with the choice of specification language are the types of analysis that it
is desirable to perform. Checking the consistency of the way the information is used
represents an extant analytical technique. Rapid prototyping, simulation, and
testing constitute viable yet infant approaches to ensuring the correctness of formal
language specifications. Proofs methods may be useful for verifying specifications
written in axiomatic description languages.

4

A clear delineation between the types of information recorded during each of the
preimplementation phases of software development does not exist. For example, the
distinction between requirements and design is often vague. The boundaries of and
transition between each of these phases must be precisely defined. This definition
is prerequisite to the selection of a description language. The choice of a descrip-
tion language should depend upon the amount and type of information to be specified
during each preimplementation phase.

For flight control systems, a language suitable for describing the desired con-
currency, real-time constraints, and response to exceptions is needed. Research
on the types of analysis necessary to establish the completeness and correctness of
flight control software requirements is also needed.

2.5 Programming Languages

Requirements for high-level programming languages include power of expression
and reliability. ADA, EUCLID, and GYPSY are examples of high-leve.1 programming lan-
guages developed for producing reliable software. Features of these languages in-
clude strong data typing, the use of data and procedure abstractions, exception han-
dling facilities, and the ability to express concurrency. Strong data typing permits
the compile-time checking of the consistent use of variables. Data abstractions and
procedure abstractions are mechanisms for selectively hiding objects and allowing
partial access. The inclusion of precertified packaged routines and library facili-
ties also enhances the reliability of programs written in these languages.

Although they may offer the ability to write more reliable programs, these lan-
guages do not guarantee the production of software having a reliability of the order
necessary because many of the traditional sources of error remain possible. In addi-
tion, their language implementations have not been certified as reliable. Proving
the correctness of an entire implementation for a language like ADA is beyond the
current state of the art.

One of the difficulties underlying the formal verification of an entire language
implementation stems from the lack of adequate methods for defining the semantics of
programming languages, and the considerable body of support software needed in addi-
tion to a compiler. Except for the control flow constructs, the run-time structure
of a program differs from the static compile-time structure. Demonstrating that a
program is ultra-reliable will require knowledge of its run-time structure and hence
knowledge of the compiler's implementation (i.e. the language semantics). This
demonstration is referred to as proof of security of implementation. Verification
based on models of programs as they are executed requires additional research.
Proofs of implementation that include all support software as well as the compiler
also require extensive additional research [8,91.

2.6 Software Testing

One method for constructing test data sets which yield increased confidence in
program correctness involves evaluating test data sets by introducing errors into a
program P. This method is known as program mutation 1101. Program mutation consists
of constructing a test data set, executing P with the test data, introducing errors
into P to form a mutant P', executing P' usinq the original test data, and comparing
the results to see if the test data distinguished P from P'. The number of program
mutations constructed is reduced by assuming that the programmers are competent and
will try to deliver a correct program. For example, mutating a program by deleting
it entirely is a valid mutation but is clearly pointless.

5

I II I I IllIlllllllll II lllll III1 I llllllllll I Ill I I I II llllllllllllllllllllll

Metrics can be calculated for various test data sets. One possible metric is
the percent of nonequivalent mutants of P which were distinguished by the test data.
The usefulness of this metric lies in its ease of computation.

This methodology evaluates the effectiveness of test data sets in detecting var-
ious types of simple errors. Program failures resulting from incomplete specifica-
tions or missed requirements are excluded. Some data exist which indicate that the
majority of complex errors are comprised of combinations of simple errors. This
phenomenon implies that attaining a high degree of test coverage for simple errors
will provide some coverage of the more complex errors. Further characterization of
the error space is needed.

The mutation method of program testing represents one approach to evaluating
test data sets. Other approaches exist in the literature [lIJ. A study which evalu-
ates the efficiency of the various testing approaches constitutes a valid research
need.

2.7 Software Fault Tolerance

Software fault tolerance methods are methods for developing software which is
tolerant of software faults 1121. A software fault is defined as a design defect in
the software, where the term "design defect" encompasses all deficiencies introduced
throughout the software development process. Manifestation of a software fault
places the system in an erroneous state, which may lead to system failure. Recovery
blocks, n-version programming, and robust data structures are fault-tolerant mechan-
isms advocated in the literature today.

Software fault tolerance methods are needed because fault avoidance and fault
removal methods alone are inadequate for achieving the required level of reliability.
Implemented in unison, fault tolerance, avoidance, and removal represent a balanced
approach to producing highly reliable software.

Experiments which assess the contributions to reliability of the various soft-
ware fault tolerance approaches are needed.

2.8 Software for Flight Control Applications

Producing flight control systems whose reliability is demonstrable requires much
effort and expense. The difficulties encountered lie more with the software than the
hardware since a suitable framework does not yet exist for quantitatively assessing
software reliability. Generally speaking, software reliability is discontinuous.
Software failures occur as results of random encounters with design faults rather
than results of continuous degradation or wearing out.

The successful handling of software errors involves minimizing the likelihood of
error introduction, improving the effectiveness of methods for detecting hidden de-
sign faults, and a priori code stabilization. The use of constructive software
development methodologies helps minimize the number of errors introduced. Tiger team
inspection represents a suitable means for detecting latent faults. A tiger team is
a sophisticated group of individuals who function in a constructive yet adversary
manner. Crucial software (e.g. the executive) may be stabilized by extensive use in
noncritical applications. Stabilized code could then be placed in libraries for
multiapplication use..

Since software failures frequently cause the system to exhibit aberrant and
discontinuous behavior, it may be advantageous to invoke a procedure which results in
a seemingly continuous system recovery. This recovery may be accomplished by
reinitializing the system to a previously correct state. Note that the effects of
repeated invocation of a reinitialization procedure can be observed easily [13].

2.9 Software Environments - The TOOLPACK Project

A software environment provides programmers with an integrated set of tools
which assist them in creating software [14]. The TOOLPACK project is an ongoing en-
deavor to establish the appropriate environment for FORTRAN programmers who write
small- to medium-sized mathematical programs.

Encouraging programmers to experience the tools and provide feedback is a basic
tenet of the TOOLPACK project. To initiate a feedback loop, the project leaders have
designed small experiments aimed specifically at identifying the proper tools, infor-
mation base, and user interface. Current components of this integrated system are
tools which support code development, maintenance, testing, analysis, documentation,
and portability. A variety of institutions which develop mathematical software are
participating in this project.

The data files are an essential component of the TOOLPACK system. Since the
data files are implemented by the host's file system, portability is enhanced by
utilizing a very simple and commonly occurring interface. It is difficult to deter-
mine a priori what the organization and contents of these files should be. An intel-
ligent guess must be made. Once knowledge of usage patterns increases, an accordant
information base will be constructed.

Gaining acceptance by the user community represents a major obstacle for
TOOLPACK. The incremental development approach, the flexibility provisions (i.e. no
predefined order of tool uses), and an intelligent editing facility should contribute
to its acceptance. A remaining critical problem, however, is the response time re-
quired. An obvious solution might be an overnight run which establishes the initial
information base.

2.10 Static Analysis of Concurrency

A tool which eventually will be incorporated into an integrated environment is
being developed to statically analyze concurrency in ADA programs. The specific
analytical capabilities being developed document rendezvous, parallel actions of in-
terest, and potential deadlock or infinite wait situations. This concurrency analyz-
er requires the user to have some knowledge of the underlying analysis. In particu-
lar, the user must be capable of resolving problems which surface during the analy-
sis.

For languages which permit rendezvous, analyzing concurrency and detecting er-
roneous conditions is np-complete. The computation time required for detecting
erroneous situations grows exponentially with n, the number of concurrent tasks being
statically analyzed. This analysis is manageable for n * 5.

Heuristics may be developed to allow analysis of larger systems of tasks. How-
ever, work is proceeding on an algorithm to reduce the complexity of systems involv-
ing larger numbers of tasks by partitioning the set and analyzing each set indepen-
dently [15,16].

7

2.11 Software Reliability Measurement

An important issue in crucial software development is the quantification of its
reliability. Problems encountered in assessing the reliability of flight software
may prove more difficult than those encountered during attempts to produce it.
Reviews of software reliability models can be found in the literature [17,18,191.
Assuming that these models are applicable to the systems of interest, they will still
require a very large amount of execution time in order to estimate reliability when
it is of the order required.

A potential solution is to develop a model which investigates the internal
structure of the software. In developing such a model, reliability theorems for
hardware designs may prove useful. A theorem from hardware reliability states that
redundancy at the component level results in a more reliable system than redundancy
at the system level. This theorem may be useful for assessing the contributions that
the various fault-tolerant methods make to reliability. It remains to be investigat-
ed whether or not this theorem holds true for software.

The modeling of software reliability is extremely important to the development
of acceptable crucial systems. It is not clear, however, whether the existing models
of reliability are appropriate to digital flight control system software. In addi-
tion, these models have not been extensively validated by experiment. A great deal
of research is needed before believable reliability figures can be associated with
software.

2.12 Formal Verification of SIFT

Formally verifying the design of SIFT entailed the specification of a hierarchy
of models [20]. The highest level model within this hierarchy is the I/O model.
This model succinctly describes the required properties of the system. To gain assur-
ance in the correctness of the SIFT design, the policy maker needs to understand only
the description of the axioms of this top level model. In SIFT, there are six such
axiomatic statements. The lowest level model in the SIFT hierarchy describes the
program executed by the hardware.

The models of the system are specified using different languages. Axioms in one
model are mapped to axioms specified in the next level model. Given these mappings,
verification of the design of SIFT involves showing that each axiom specified in a
higher level model is provable as a theorem of a lower level model. This methodology
alleviates the dangers of inconsistency by providing assurance that one axiom is
derivable from the next.

The proof of correctness of the SIFT software is a little over 100 pages. This
does not include the lowest of the six levels. The majority of difficulties in the
proof technique have been eliminated and it is anticipated that an intelligent comp-
uter science graduate could prove the software correct in about 6 months.

Essential to using a semiautomated theorem prover is the creation of a symbiot-
ic relationship between man and machine. The human understands the proof and can use
intuition to choose between the numerous paths which could be taken. The computer
system is useful for simplification and provides the required bookkeeping services.
Critical aspects of this symbiosis are short response times between the steps of the
proof and adequate information display facilities. If the response time is too long,
the human is forced to specify greater detail and take smaller steps in directing the
system. Proving SIFT required approximately 18 megabits of store. Approximately

500 lemmas were created, which posed a considerable bookkeeping problem. Part of the
problem was the difficulty of maintaining meaningful lemmas on a single screen.

The construction of the SIFT design proof was pedagogical. It demonstrated the
feasibility of design proofs and highlighted the importance of the man-machine symbi-
osis. It also reinforced the need for simplicity. Violation of simplicity may pre-
sent undue restrictions on what can be assuredly demonstrated about a system.
Further work which will enhance the formal verification process is needed.

2.13 System Specification and Program Transformation

A trend in reliable software development involves the definition of new ways in
which support software can be used to effectively eliminate sources of error. Dis-
crepancies between the user's intent and the actual system specification constitute a
major source of errors. Transitions between steps in the system life cycle are
another potential source of errors. Software which assists in the formulation of
system specifications and semiautomates program transformations should enhance the
reliability of a system by eliminating these error sources. Developing this support
software is not an easy feat.

Specification Acquisition from Experts (SAFE) is a prototype tool which simpli-
fies the creation of a formal specification [21]. The development of this tool is
highly desirable as it should increase the reliability of the specification process
and does not require specialized training. It would also make the formal specifica-
tion more maintainable, since the informal specification can be modified and semi-
automatically retransformed into the formal specification. Making the SAFE system
interactive helps eliminate the problem of computer misinterpretation of the informal
specification. It has been demonstrated that this interaction can be kept to a mini-
mum so as not to abrogate the advantages of informality. Part of this project
involved the development of a suitable formal specification languaqe.

Developing computer-based tools which support the user during the development of
a program by mechanically transforming formal specifications into efficient implemen-
tations should improve reliability. If the transformation correctly preserves seman-
tics, as intended, new errors cannot be introduced. A prototype program transforma-
tion tool is currently under development at USC-IS1 [221. This tool transforms speci-
fications using a methodology similar to that used for verifying SIFT. The main dif-
ference is that program optimization and maintainability rather than verification are
of concern. Maintainability is improved since changes and enhancements are effected
by modifying the specification and allowing the computer to redo the transformations
which resulted in the original optimized implementation. Since optimizing a program
contributes to its complexity and hence its reliability, this automated approach
seems superior to conventional maintenance.

These tools require additional development before they will be useful for pro-
duction. Since the man-machine interface is extremely important, some trial use and
feedback as with the TOOLPACK project will be necessary. Note that these types of
automation would allow one person to create a software system. The problem has
not been tackled for permitting development by a group of people. An effective com-
munication mechanism would have to be developed in this case.

9

3.0 CONCLUSIONS

The overriding group consensus was that the currently stated reliability
requirements for software alone cannot be achieved or confirmed with current technol-
ogy- Available evidence indicates that current reliability figures are orders of
magnitude less than required.

A concern which was voiced repeatedly by working group participants was the need
for improved methods of defining requirements and specifications. Experience has
shown that inconsistent or inadequate requirements definitions are a constant source
of errors which are exceedingly difficult to find.

In the short term the best overall approach to software development is to employ
an eclectic set of complementary techniques. The integration of fault avoidance,
fault tolerance, fault removal, and other software engineering methods should yield a
substantial improvement in overall reliability. Component technology at all levels
of software development is also recommended as the components may be separately vali-
dated and reused.

In the long term, formal modeling and definition methods should prove invalu-
able at all levels of software development for the projected reliability require-
ments. Techniques which investigate program structure should prove immensely useful.
Demonstrating absolute equivalence between a specification and an implementation may
be technically attainable. There will remain, however, the difficulty of achieving
the absolute equivalence of the specifications with the intent.

The following is a list of the general comments agreed upon by the majority of
the meeting participants during the discussion period held at the latter part of the
second day. They are not prioritized.

Formal specifications are a critical aspect of super reliable software and pre-
suppose a mechanism for determining the equivalent of the specification with the
intent. We do not have technology for addressinq that problem yet.

The currently stated reliability requirements for software alone cannot be con-
firmed with current technology. All available evidence indicates that we are
currently several orders of magnitude short of the stated figure in general. It
is unlikely that we can achieve ultra reliability by incremental improvements in
reliability.

There is serious doubt that it is presently possible to produce flight software
systems having the stated level of reliability and to assure that they have that
level of reliability.

We do not have a measure of the level of reliability that can be assured by a
methodology, or the ability to compare the levels assured by different methodol-
ogies.

The reliability of any flight software depends on the reliability of the con-
siderable body of support software (tools, language processors, etc.).

Within the forseeable future it will not be possible to define hishly reliable
requirements of an arbitrarily complex system. We must learn to limit the com-
plexity of systems or at least of those parts that must be reliable.

10

"In the short term, the best approach is to be eclectic. We recommend an inte-
gration of fault avoidance, fault tolerance, etc. and we expect a substantial
improvement. We don't know what the right mix is!"

"In the longer term, absolute equivalence between a specification and.an imple-
mentation may be technically attainable.

"Formal modeling and definition methods are invaluable at all levels of soft-
ware development for the projected reliability requirements. Make them compre-
hensible, concise and intellectually manageable by mere mortals."

"We recommend component technology at all levels of development. These can be
separately validated and reused."

"The contributions which the various software engineering approaches make to
reliability need to be quantitatively determined."

"We are dismayed that in the area of hardware reliability little or no attention
is given to modeling and analyzing design faults. These faults are similar to
software faults, and are the source of most system unreliability."

"Do what we already know in real applications."

"The internal structure of the software cannot be ignored."

Due to the scope and inherent complexity of the problem being addressed, a pri-
oritization of research needs was requested. This prioritization was accomplished by
a vote in which each meeting participant ranked three short-term and three.long-term
research needs. Table 1 summarizes the results of this vote and shows formal speci-
fication, software environments/ tools, reliability modeling, fault-tolerant de-
signs, and formal verification as the foremost short-term research needs. Research
in reliability modeling, formal specification, and formal verification is indicated
for the long term. These recommendations are listed by participant in the appendix.

Recommendations for research included suggestions that AIRLAB be a repository
for sample flight control problems of various sizes. These problems would be useful
for quantitatively evaluating the various approaches to reliable software production.
This evaluation could take the form of statistically controlled software development
experiments. These experiments would involve the fabrication of software solutions
for real applications and require all activities from the informal problem statement
to the highly reliable software product. Thus, these experiments would be termed
"end-to-end." An experimenter might deliver a prepackaged system component and the
overall development process could be evaluated within AIRLAB. Thus, AIRLAB could
serve as a repository of sample problems, system development tools, and experimental
results. It could be a place where comparative and competitive studies are performed
as well as a focal point for additional workshops.

The following is a list of AIRLAB themes recommended by the meeting partici-
pants:

*Repository of sample avionics problems, various sizes

l Tool and result repository

l University experiments in all areas

11

Ill I

l Coordination and integration of results

l Comparative, competitive studies

l Additional workshops

l Collection of statistically meaningful data

12

-

4.0 REFERENCES

1. Hopkins, A. L.; Smith, T. Basil, III; and Jaynarayan, H. Lala: FTMP: A Highly
Reliable Fault-Tolerant Multiprocessor for Aircraft. Proceedings of the IEEE,
vol. 66, no. 10, October 1978, pp. 1221-1239.

2. Wensley, John H.; Lamport, Leslie; Goldberg, Jack; Green, Milton W.; Levitt,
Karl N.; Melliar-Smith, P. M .; Shostak, Robert E .; and Weinstock, Charles B.:
SIFT: Design and Analysis of a Fault-Tolerant Computer for Aircraft Control.
Proceedings of the IEEE, vol. 66, no. 10, October 1978, pp. 1240-1255.

3. Macina, A. J.: Independent Verification and Validation Testing of the Space
Shuttle Pr imary Flight Software System. Paper presented at NSIA/AIA/USAF-SD/NASA
Conference and Workshops on Mission Assurance, Los Angeles, Ca., April 1980.

4. Pease, M.; Shostak, R.; and Lamport, L.: Reaching Agreement in the Presence of
Faults. J . of the ACM, vol. 27, no. 2, April 1980, pp. 228-234.

5. Campbell, R. H .; and Richards, P. G.: SAGA - A System to Automate the Management
of Software Production. AFIPS Conference Proceedings: 1981 National Computer
Conference, AFIPS Press, Arlington, Va., 1981, p. 231.

6. Musa, J. D.: Validity of the Execution Time Theory of Software Reliability.
IEEE Transactions on Reliability, vol. R-28, no. 3, August 1979, pp. 181-191.

7. IEEE Transactions on Software Engineering, vol. SE-3, no. 1,Jan. 1977, pp. l-102.

8. Pratt, T. W.: H-Graph Semantics - Data Structure Grammars. Report no. 81-15,
Dept. of Applied Mathematics and Computer Science, University of Virginia,
Charlottesville, October 1981.

9. Pratt, T. W.: H-Graph Semantics - H-Graph Machines. Report no. 81-16, Dept. of
Applied Mathematics and Computer Science, University of Virginia, Charlottesville,
October 1981.

10. DeMillo, Richard A.; Lipton, Richard J.; and Sayward, Frederick G.: Hints on
Test Data Selection: Help for the Practicing Programmer. Computer, vol. 11,
no. 4, April 1978, pp. 34-41.

11. Howden, W. E.: A Survey of Dynamic Analysis Methods. IEEE Tutorial: Software
Testing and Validation Techniques, EH0138-8, September 1978, pp. 184-206.

12. Anderson, T. A.; and Lee, P. A.: Fault Tolerance: Principles and Practice.
London: Prentice-Hall Intl., Inc., 1981.

13. Schwartz, Jacob T.: Comments on Highly Reliable Software for Avionics Appli-
cations. ICASE rep. no. 81-31 (Contracts NASl-14472 and NASl-15810), Univ.
Space Res. Assoc., Sept. 23, 1981. (Available as NASA CR-165878.)

14. Osterweil, L.: Software Environment Research: Directions for the Next Five
Years. Computer, vol. 14, no. 4, April 1981, pp. 35-43.

13

I I I llllllllll

15. Taylor, R.: An Algorithm for Analyzing Concurrent Programs. Report no.
DCS-IO-IR, Dept. of Computer Science, University of Victoria, British Columbia,
Canada, May 1981.

16. Taylor, R.: Complexity of Analyzing the Synchronization Structure of Concurrent
Programs. Report no. DCS-IO-IR, Dept. of Computer Science, University of
Victoria, British Columbia, Canada, May 1981.

17. Littlewood, B.: Theories of Software Reliability: How Good Are They and How
Can They Be Improved? IEEE Transactions on Software Engineering, vol. SE-6,
no. 5, September 1980, pp. 489-500.

18. Musa, J. D.: The Measurement and Management of Software Reliability. Proceed-
ings of the IEEE, vol. 68, no. 9, September 1980, pp. 1131-1143.

19. Schick, G. J.; and Wolverton, R. W.: An Analysis of Competing Software
Reliability Models. IEEE Transactions on Software Engineering, vol. SE-4,
no. 2, March 1978, pp. 104-120.

20. Melliar-Smith, P. M.; and Schwartz, Richard L.: Heirarchical Specification of
the SIFT Fault-Tolerant Flight Control System. SRI Technical Report No. CSL-
123, SRI International, Menlo Park, Ca., March 1981.

21. Balzer, R.; Goldman, Neil, and Wile, David.: Informality in Program Specifi-
cations. IEEE Transactions on Software Engineering, vol. SE-4, no. 2, March
1978, pp. 94-106.

22. Balzer, R.: Transformational Implementation: An Example. IEEE Transactions
on Software Engineering, vol. SE-7, no. 1, January 1981, pp. 3-13.

14

Table 1. Recommended Research Priorities

Rank Sum

Activity Short Term Long Term --- --

Formal Specification 14 14

Formal Verification 9 12

Reliability Prediction,
Estimation & Measurement 12 15

Programming Language 2 2

Software Environments/
Tools 14 8 -

Test Methods 4 2 -----

Fault-Tolerant Designs 10 0 -

Real-Time Issues 1 0 -

Validation Tools &
Techniques 6 5

Automatic Programming 0 7

Flight Control Program
Libraries 0 4

Management Policies 1 0 -_----

15

I!

II II I lllllllllllllllllIlIlllIlIIlIIlIlIlIlll I I I

APPENDIX

PRIORITIZATION OF RECOMMENDED RESEARCH ACTIVITIES

PARTICIPANT - T. ANDERSON

Short Term

1. Reliability measurements Pr requirements/specification (tie)

2. Software fault tolerance

3. Real-time issues

Long Term

1. Validation

2. More requirements

3. Development tools

PARTICIPANT - R. CAMPBELL

Short Term

1. Reliability - how to measure - actual ways to measure

2. Formal verification and validation of complete software life cycle including
requirements, maintenance and testing

3. Tools to aid in measuring reliability and formal verification and validation
of complete software life cycle including requirements, maintenance and testing

Long Term

1. Actual ways to measure reliability

2. Formal verification and validation of complete software life cycle including
requirements, maintenance and testing plus much more integration to form a
"product"

3. Tools to aid in measuring reliability and formal verification and validation of
complete software life cycle including requirements, maintenance and testing plus
much more integration to form a "product"

PARTICIPANT - F. DONAGHE

Short Term

1. Specifications

2. Implementation

3. Verification

16

Long Term

1. Specifications

2. Implementation

3. Verification

PARTICIPANT - M. DYER

Short Term

1. SIFT type verification

2. Fault tolerance (see Anderson)

3. Reliability measures

Long Term

1.

2.

3.

1.

2.

3.

1.

2.

1.

2.

3.

Specification methods

Spanning specifications to implementation

Packaging for components

Stochast c reliability modeling of software fault-tolerant systems

PARTICIPANT - B. LITTLEWOOD

Short Term

Comparison of performance of exis
on real data sets

Requirements/specifications fault

ting (and future ?) software reliabili ty models

tolerance

Long Term

Relationship between other metrics (and quality of them) and software
reliability

Comparison of subjective beliefs and actual performance; consensus techniques
between "expert" witnesses

PARTICIPANT - M. MELLIAR-SMITH

Short Term

Formal verification

Formal requirements

Testing

17

Lona Term

1.

2.

3.

1.

2.

3.

1.

2.

3.

1.

2.

3. Testing methods and quantifying the reliability of software after testing

1.

2.

3. Testing methods and quantifying the reliability of software after testing

Formal verification

Formal requirements

Software reliability measurement

PARTICIPANT - H. MILLS

Short Term

AIRLAB environment for end-to-end model projects

Techniques for formal and readable flight software specifications

Technical standards for high reliability software development

Long Term

Specifications of module (package) library for flight software reuse

Automatic programming methods peculiar to flight software

Relation of catastrophic theory to to software requirements and specifications

PARTICIPANT - T. PRATT

Short Term

Formal methods for specifying and verifying the correctness and consistency of
preceding stages of software development requirements, specifications, design

Integrated software development environments

- management tools and software
- construction/analysis tools

Long Term

Formal methods for specifying and verifying the correctness and consistency of
-ring stages of software development requirements, specifications, design

Integrated software development environments

- management tools and software
- construction/analysis tools

18

PARTICIPANT - R. TAYLOR

Short Term

1. A tool environment incorporating the best available technology of

Requirements analysis
Preliminary design
Detailed design
Coding tools
Verification and test tools
(NTS + preimplementation)

2. Software fault tolerance techniques

3. Software management issues

Long Term

1. Preimp ementation tools, requirements foremost

2. Program transformation tools

3. Formal verification & Reliability assessment (tie)

PARTICIPANT - J. WILEDEN

Short Term

1. Specifications/requirements tools, especially assessment/animation, for flight
control software

2. Contr

3. Contr

ibution of software fault-to

ibution of testing to flight

lerance to flight control software reliability

control software reliability

Long Term

1. Apropriate methods for measuring reliability and appropriate goals

2. Formal verification

3. Transformation (computer-assisted) implementation from specifications

19

AGENDA

Monday, November 2, 1981

Introductory Remarks
J. Clary, Research Triangle Institute

AIRLAB Overview
J. Gault, North Carolina State University

Problem Definition
J. Knight, University of Virginia

Tuesday, November 3, 1981

Meeting Introduction
J. Knight, University of Virginia

Producing Reliable Software for the Space Shuttle
F. Donaghe, IBM-Federal Systems Division

Controlling the Software Development Process (SAGA)
R. Campbell, University of Illinois

The Cleanroom Approach to Reliable Software Development
M. Dyer, IBM-Federal Systems Division

Preimplementation Phases of Software Development
J. Wileden, University of Massachusetts

Programming Languages
T. Pratt, University of Virginia

Software Testing
R. DeMillo, Georgia Institute of Technology

Software Fault Tolerance
T. Anderson, University of Newcastle upon Tyne

Software for Flight Control Applications
J. Schwartz, New York University

Wednesday, November 4, 1981

Software Environments (TOOLPACK)
L. Osterweil, University of Colorado

Static Analysis of Concurrency
R. Taylor, University of Victoria

Software Reliability Measurement
B. Littlewood, City University of London

Formal Verification of SIFT
P. M. Melliar-Smith, SRI International

System Specification and Program Transformation
R. Balzer, University of Southern California/

Information Sciences Institute
Summary Discussion

20

Dr. Tom Anderson
Computing Laboratory
University of Newcastle upon Tyne
Claremont Tower, Claremont Road
Newcastle upon Tyne, England
(0632) -329-233

Dr. Robert Balzer
USC/Information Sciences Institute
4676 Admiralty Way
Marina Del Rey, California 90291
(213) 822-1511

Mr. Jim Clary
Digital Systems Research Programs
Research Triangle Institute
Research Triangle Park, NC 27709
(919) 541-6951

Dr. Roy Campbell
Computer Science Department
University of Illinois

at Urbana-Champaign
Urbana, Illinois 61801
(217) 333-6464

Dr. Richard DeMillo
Computer Science Department
Georgia Institute of Technology
Atlaita, Georgia 30332
(404) 894-3180

Mr. Frank Donaghe
Mgr. Test Guidance, Nav

and Flight Control
IBM-Federal Systems Div
1322 Space Park Drive
Houston, Texas 77058
(713) 333-7518

igation,

ision

Ms. Janet Dunham
Digital Systems Research Programs
Research Triangle Institute
Research Triangle Park, NC 27709
(919) 541-6562

Mr. Michael Dyer
IBM-Federal Systems Division
18100 Frederick Pike
Gaithersburg, Maryland 20760
(301) 493-1495

ATTENDEES

Dr. Jim Gault
Department of Electrical Engineering
North Carolina State University
P.O. Box 5275
Raleigh, NC 27650
(919) 737-2376

Dr. John Knight
Dept. of Applied Math 81 Computer Science
Thornton Hall
University of Virginia
Charlottesville, Virginia 22901
(804) 924-7201

Dr. Bev Littlewood
Department of Mathematics
City University of London
London, England
01-253-4399 Ext. 4115

Mr. Mike Melliar-Smith
Stanford Research Institute International
333 Ravenswood Avenue
Menlo Park, California 94025
(415) 326-6200 Ext. 2336

Mr. Earl Migneault
NASA Langley Research Center
Mail Stop 477
Hampton, Virginia 23665
(804) 827-3681

Dr. Harlan Mills
IBM-Federal Systems Division
18100 Frederick' Pike
Gaithersburg, Maryland 20760
(301) 493-1495

Dr. Leon Osterweil
Computer Science Department
University of Colorado at Boulder
Boulder, Colorado 80309
(303) 492-6361

Dr. Terri Pratt
Dept. of Applied Math & Computer Science
Thornton Hall
University of Virginia
Charlottesville, Virginia 22901
(804) 924-7201

21

--- ,~~~~~,~ll~~IIIIII~IuIuIIu I lull 1111111111111 1111111111111111111111111111111111 I

Ms. Janet Schultz
NASA Lanqley Research Center
Mail Stop 477
Hampton, Virginia 23665
(804) 827-3681

Dr. Jack Schwartz
Courant Institute of Mathematics
New York University
New York, NY 10012
(212) 460-7100

Dr. Richard Taylor
Computer Science Department
University of Victoria
British Columbia, Canada V8R4K3
(604) 721-7228

Dr. Jack Wileden
Department of Computer

and Information Science
University of Massachusetts
Amherst, Massachusetts 01003
(413) 545-0289

22

1. Report No. 2. Government Accession No.
CP-2222

3. Recipient’s Catalog No.

4. Title and Subtitle
I

Production of Reliable Flight-Crucial Software - Validatior
5. Report Date

May 1982
Methods Research for Fault-Tolerant Avionics and Control
Systems Sub-Working-Group Meetj:ng

6. Performing Organization Code

7. Author(s)

J. R. Dunham and J. C. Knight, Editors
6. Performing Organization Report No.

L-15291

10. Work Unit No.
9. Performing Organization Name and Address
Research Triangle Institute
Systems and Measurements Division 11. Contract or Grant No.

Research Triangle Park, NC 27709

13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Conference Publication

National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, DC 20546 505-34-43-05
15. Supplementary Notes

J. R. Dunham: Research Triangle Institute, Research Triangle Park, NC 27709
J. C. Knight: University of Virginia, Charlottesville, VA 22901

16. Abstract On November 2-4, 1981, a Validation Methods Research for Fault-Tolerant Avionic:
and Controls Systems Sub-Working-Group Meeting was held at the Research Triangle Insti-
tute, Research Triangle Park, North Carolina, to address the state of the art in the
production of crucial software for flight control applications. A more specific objec-
tive of the sub-working-group meeting was to obtain answers to the following questions:

1. Is it meaningful to associate reliability metrics with software? If so,
what are these metrics and how are they to be computed?

2. How good are the classical methods used in the conventional software devel-
opment cycle? Are they adequate for building crucial software assuming a
composite set of quality metrics was defined?

3. Are the more modern formal methods of building software sufficiently mature
that they could be applied during the production of reliable software for
digital flight control systems?

The consensus was that it is meaningful to associate reliability metrics with software.
However, the precise nature of these metrics needs to be determined.

Classical methods are inadequate for achieving a failure probability of 10 -9 for
a lo-hour flight. It was suggested that employing an eclectic set of complementary
techniques constitutes a feasible near-term solution using classical methods. This
approach should yield a substantial improvement in the reliability of a given soft-
ware system.

Some formal methods are approaching feasibility for production use. Technical advances
in the manageability of these methods must occur prior to their adoption.

7. Key Words (Suggested by Author(s))
Reliable software
Software reliability metrics
Flight control software
Software fault tolerance
Production of reliable software

18. Distribution Statement

UNCLASSIFIED - UNLIMITED

SUBJECT CATEGORY 61

9. Security Classif. (of this report)

JNCLASSIFIED

1
20. Security Classif. (of this page)

UNCLASSIFIED
21. No. of Pages 22. Price’

26 A03

For sale by the National Technical Information Service, Springfield. Virgrnra 22161 NASA-Langley. 1982

National Aeronautics and
Space Administration

Washington, D.C.
20546

SPECIAL FOURTH CLASS MAIL
BOOK

Post- and Faes Paid
National Aeronautics and
Space Administration
NASA451

Official Business

Penalty for Private Use, $300

POSTMASTER: If Undeliverable (Section 15 8
Postal Manual) Do Not Return

