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RLLAACATION SOLUTION OF THE FULL EULER EQUATIONS

GARY M. JOHNSON
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A numerical procedure for the relaxation solution of the full steady Euler

equations is described. By embedding the Euler system in a second-order surrogate

system, central differencing may be used in subsonic regions while retaining matrix

forms well suit ,sd to iterative solution procedures and convergence acceleration

techniques. Hence, this method allows the development rf stable, fully-conservative

differencing schemes for the solution of quite general inviscid flow problems.

Results are presented for both subcritical and shocked, supercritical internal

flows. Comparisons are made with a standard time-dependent solution algorithm.

INTRODUCTION

Techniques for the time-accurate solution of the unsteady Euler equations are

well known and have relatively firm theoretical basis. The methodology for

obtaining steady solutions to the Euler equations is in a more formative state and

has undergone considerable evolution in the recent past.

Given steady boundary conditions and assuming that a unique steady solution

exists, one may solve the unsteady Euler equations in a non-time-accurate fashion by

means of an algorithm with a stability bound in excess of the CFL condition or by

using local time stepping. These constitute the simplest form of pseudo-unsteady

solution procedure. Other nethods fix the total enthalpy at its steady-state value

or use enthalpy damping, as proposed by Jameson, Schmidt and Turkel (1981), to

accelerate convergence. Ni (1981) and Steger (1981) have developed multiple grid

schemes for pseudo-unsteady solution of the time-dependent Euler equations.

Approaches which modify the unsteady Euler equations by add;ng either time-dependent

terms or time-dependent equations which enhance convergence have been developed by

Essers (1980) and Viviand (1981).

Attempts to deal directly with the steady first-order Euler system meet with

immediate difficulties. Only centered difference operators will lead to numerical

schemes which are simultaneously stable for the entire system in subsonic flow.

However. such schemes lead to ill-conditioned matrices which defeat most iterative
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solution procedures.

Semi-direct methods using Newton iteration to avoid this numerical difficulty

have been developed by Rizzi (1979) for the homoenthalpic Euler equations, by Rizzi

and Skbllermo (1981) for the full potential equation written as a first-order

system, and by Shubin, Step;iens and Glaz (1981) for the quasi-one-dimensional Eisler

equations. The large matrices used by such methods may be an impediment when they

are generalized to the full Euler system, or to higher dimensions.

An alternative approach to solving the steady Euler equations involves either

embedding them in a higher-orde r steady system or preconditioning their finite

difference representations to enhance their compatibility with iterative procedures.

Chattot, Guiu-Roux and Laminie (1981) used a variational approach to transform the

first-order system representing, the potential equation into an equivalent second-

order system which was solved by a conjugate gradient algorithm. Lomax (1981),

Desideri and Lomax (1981) and Lomax, Pulliam and Jespersen (1981) descriued a strat-

egy for solving the Euler equations by preconditioning the finite difference equa-

tions, choosing, a stable relaxation procedure, and accelerating its convergence by a

multiple grid technique. Pr Pconditioned relaxation solutions were obtained for two-

dimensional subsonic flow by Desideri and Lomax, while Lomax, Pulliam and Jespersen

used a multiple grid procedure to solve a quasi-one-dimensional supersonic flow.

In Johnson (1981) we developed an approach whereby a first-order part'-al

differential system is embedded in a second-order surrogate system which may then be

solved by means of the same sort of numerical techniques routinely used on the

potential equation. We obtained results with the full Euler system for both

supersonic and subcritical, subsonic flow and with the transonic small disturbance

equations for both subcritical and supercritical flow. The embedding used with the

Euler equations assumed the invertibility of flux-vector Jacobian matrices and was

thus not suitable for use in transonic flow computations. The present paper presents

the details of an improved surrogate equation to hnique which is capable of treating

the full stead y transonic Euler equations.

SURROGATE EQUA TION TECILNIQU E

Given a first-order partial differential system, we embed this system in a

second-order surrogate s y stem, apply additional constraints to restrict the solution

set of the surrugate. and solve the resulting partial differential problem b y means

of a conventional iterative procedure. This method maintains the generality of the

Euler equations, while allowing the use of the same sort of reiaxation procedures

developed for the efficient solution of second-order equations.
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Consider a first-order system written in conservation law form, such as

ax (A ) +ay (B )	 q 0

L

where q is an n-component vector and A and B are n x n matrices. We embed this

system in a second-order surrogate of the form

[ ax
(M

 ) + ay (N )] ax (A ) + y(B )	 q0

i C
This system preserves the conservation law form of the o-urinal first-order system.

The natur.e of the second-order partial differential operas-r is controlled by the

choice of the matrices M and N. For example, the choice M = AT. N - BT symmetrixes
F
t
x	 the coefficients of the terms of highest order and causes the surrogate system to be

elliptic, while the choice M - A T , N - -BT results in a non-elliptic system which

may be upwind differenced. Alternative choices for M and N are possible but will

not be discussed here. The problem specification is completed by requiring that, in

addition to satisfying the original boundary conditions of the underlying

first-order system, the solution to the surrogate system must also satisfy the

first-order equations themselves at the boundaries. This is done to insure

uniqueness. Additionally, in the case where we employ an elliptic surrogate system

to compute a supercritical flow, this boundary treatment allows the introduction of

dissipative terms for proper shock capture.

Observe that, by switching the second-order operator from elliptic to

hyperbolic type when the flow changes from subsonic to supersonic, it is possible to

create a type-dependent differencing scheme for the surrogate system. Such a scheme

could provide an alternative means for insuring the correct shock capture and thus

relax some of the constraints on the boundary treatment. While initial computations

indicate that this may be a viable approach, the results to be presented

subsequentl y were obtained using the choice M - A T , N - BT everywhere in the domain.

Notice that, in this case, the embedding operator is a close relative of the formal

transpose of the Euler operator:

ax + BTa Jy

A discrete representation of this operator has been independently proposed as a

preconditioning operator by Desideri and Lomax. Because they operate on the finite

difference equations, their approach is in several additional respects distinct from
ti

the one discussed here. For example, preconditioning the finite difference

j^	 equations results in an effective non-compact differencing of the second-order 	 d
r

system. Permutation of the resulting matrices is required to restore compact
1

structure and reduce bandwidth. Furthermore, the surrogate equation technique

i
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appears to offer more flexibility in the treatment of boundary conditions than is

available with the preconditioned finite diff , rence equation approach.

The second-order partial differential problem, being compatible with iterative

techniques, may be solved by a variety of methods. For demonstration purposes, we

•	 use fully-conservative differencinb together with the well-established successive

line relaxation method.

RESULTS

We compute subcritical and shocked, supercritical flows in a straight channel

with a 10% half-thick circular arc airfoil mounted on its lower wall. The

second-order partial differential ptublem is illustrated in Fig.l. As physical

boundary conditions, we require that flow tangency be satisfied at solid walls, we

specify total pressure, total temperature and flow angle at the inlet, and we

specify the exit static pressure. We require that the first-order Euler equations

be satisfied at each boundary to provide the additional boundary conditions

necessary to completely pose the problem and to insure the correct shock capture.

As a standard of comparison for the accuracy of the results presented here, we have

recomputed all cases using the explicit MacCormack (1969) algorithm.

The subcritical test case had an isentropic inlet Mach number of 0.5. Fig.2

shows the comparative upper and lower surface Mach number distributions. Isomach

contours are plotted in Fig.3. The supercritical test case was run at an inlet Mach

number of 0.675, producing a shocked but unchoked flow. The comparative surface

Mach number distributions and isomachs are shown in Figs.4 and 5, respectively. The

sonic line is dashed in the isomach plots. Comparison of the results of the

surrogate equation algorithm with those of the MacCormack algorithm is encouraging.

Minor discrepancies may be attributed, in part, to differences in the truncation

error of the two algorithms or to the lack of complete annihilation of low frequency

error modes.

Representative convergence histories are shown in Fig.6. The surrogate

equation algorithm, using successive line overrelaxation on the second-order system,

converges more rapidly than the MacCormack algorithm, using loc31 time stepping at

0.9 of the local CFL limit. Since the residuals are defined quite differently for

the two methods, the error measure uaed for this comparison is the correction to the

vector of conservation variables. Consequently, the relative convergence rates are

more significant than the indicated levels of error. Having demcnstrated the

capability of the surrogate equation technique to solve the full Euler equations by

relaxation, it should prove relatively straightforward to further accelerate
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convergence.

While all results presented here are two-dimensional, the extension of the

.arrogate equation technique to th r ee dimensions presents no essential difficulties.

Furthermore, the use of this technique as an inviscid component of a zonal procedure

for the iterative solution of the stead y Navier-Stokes equations appears feasible.

CONC LUS 111NS

M4 • may obtain a solution to the full steady transonic Euler equations by using

a surrogate second-order system together with the original Euler physical boundary

conditions and additional constraints obtained from the first-order Euler system.

This surrogate equation technique provides a means for formulating problems

involving the full steady Euler equations in such a way as to allow the use of

stable, fully-conservative differencing and relaxation solution procedures. Hence.

we may solve either irrotational or rotational flow problems across the entire

spectrum of subsonic, transonic and supersonic conditions without resort either to

derived dependent variables, semi-direct methods, or to an unsteady formulation.

Fmbedding the Euler equations in a second-order system allows the application

of the many convergence acceleration techniques which have been developed for other

second-order systems. Thus, the surrogate equation technique provides an

opportunity for the construction of fast and efficient numerical procedures for the

solution of the full steady Euler equations.
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