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ABSTRACT
w

This report summarizes the work performed during the NASA LANGLEY

research program entitled '"Development of an Analytical Technique for the

Optimization of Jet Engine and Duct Acoustic Liners." This research program ran

for one year (3/1/81-2/28/82) and carries the NASA number NAG 1-133. Detailed

results of the work performed during the `it'st six months of thR, contract are

presented In the NASA LANGLEY SEMI-ANNUAL STATUS REPORT (3/1/81-

8/31/81) for NAG 1-03 and thus will not be repeated here In its entirety.

During the past six months, a new method was developed for the
k

calculation of optimum constant admittance solutions for the minimization of the

sound radiated from an arbitrary axisymmetri+. body. This method utilizes both the

integral equation technique used in the calculation of the optimum non-constant

admittance liners and the independent. solutions generated as a by product of these

calculations. The results generated by both these methods are presented for three

duct geometries: 41) a straight duct; (2) the QCSEE inlet; and (3) the QCSEE

Inlet less its centerbody.
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I. INTRODUCTION

The object of this research program was the r!evelopmtnt of an analytical

technique for the determination of the optimum admittance distribution along the

wall of ;tn axisymmetric duct for the minimizatioti of sound radiated from the duct

given a spenific source of acoustic radiation in the duct. The results of this method

were to be checked against calculations performed for constant admittance liners

to see if better results could be obtained with the new method. Finally, a

parametric sturdy was to be done, based on wave number, for at least two

geometries in which the optimum constant and distributed admittance liners were

to be calculated..

The formulation of the problem which has been used in the parametric

study is, presented in detail in Chapter IV of the previous six month status report

for this grant (See Reference 1.). This being the case, the precise mathematical

formulation of the method will not be repeated, Instead, only a brief overview of

the method will be presented here.

The method itself is based upon a special integral formulation of the
l

external solutions of the Helmholtz equation. The basic formulation of the

governing equations for three dimensions is given in great detail in Reference 2.

This formulation can be specialized for axisymmetric bodies 3 and it is this form of

the equations which is used in this study.

These integral equations govern the acoustic quantities on the surface of

the body and take- Into account the Sommerfeld radiation conditions at infinity in

the field so that only outgoing, decaying solutions are considered. To solve these

equations, the surface of the body is discretized Into many small areas and since
t;
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the problem Is elliptic in nature a boundary condition Is applied over each small

area. The boundary condition specified may be either the acoustic potential which

Is directly related to the ` . 1^6ustic pressure, the normal acoustic velocity, or a ratio

of these two quantities referred to as the effective acoustic: admittance at each

point.

When this is done, a system of linear equations can be developed In which

the acoustic potential or the normal acoustic velocity is the unknown at each point

on the body depending on which boundary condition is specified there. The

boundary conditions themselves contribute to the inhomogeneous term in each equa-

tion and in some cases the diagonal term of the matrix.

Since the resulting equations are linear, the solutions may be

superimposed. Also, if the boundary conditions are chosen appropriately they do

not effect the matrix coefficients, only the inhomogeneous vector terms. It is

these two characteristics of this formulation which are exploited In both the

calculation of the optimum varying admittance for a duct and the optimum

constant admittance.

Normally to find the optimum constant admittance for a duct, a

parametric study must be done in which the 'real and imaginary parts of the

admittance of the liner are varied. Usually, this means that a connplete, separate

solution must be generated for each admittance value; however, a method has been

developed which utilizes the same independent solutions on the admittance surface

which were generated for the calculation of the optimum varying admittance

solution. This new method greatly reduces the amount of computing time required

for the generation of constant admittance solutions and is presented in detail in the

following section of this report.

!



Having developed both the theory and the computer codes for the

genera Ion of both optimum constant and varying admittance liners for eneral

finite axisymmetric ducts, a parametric study was performed on three separate

duct geometries. The three duct geometries are: (1) a straight duct with a

rounded lip; (2) the NASA QCSEE Inlet of Reference 4; and (3) the NASA QCSEE

Inlet less !ts centerbody. The results of this parametric study are presented at six

wave numbers for each geometry at which both the constant and varying optimum

admittance liners are calculated for both constant acoustic potential and constant

normal acoustic. velocity drivers.

^9
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11. CALCULATION OF OPTIMUM CONSTANT ADMITTANCE LINERS

In this section, we will briefly go over the generation of the independent

solutions on the surface of the body. Then, the development of constant

admittance solutions will be discussed in detail. Since the development of the

special integral formulation of the external solutions of the Helmholtz equation is

given in References 1-3 t only the final fora, of the equations will be presented

here. It will be noted that although this fora of the equations has been specialized

for axisymmetric geometries, that any cylindrically symmetric acoustic mode may

be calculated.

Firstly, let us define the geometrical variables that we will use on a

surface of revolution. In Fig. 1, the coordinate system employed on the body S is

given (p , Z,Q ) along with an outward normal from the body, n, and an element of

area on the surface of the body, p dsd 0. The variable s is the distance along the

generating line of the surface of revolution and is assumed to go from o at one end

of the body to R at the other.

We now assume that the acoustic potential on the surface of a body of

revolution can be written as

0(p, Z, 0) 0(s) cos (m0)

and similarly that the normal acoustic veloticy on the surface of the body can be

written as

a m(pr Z. 0)	 = V(s) cos (m e )
an
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In doing this we have Incurred no loss in generality. Since all of the equations are

linear, any acoustic radiation pattern may be generated as a sum of these simple,

cylindrically symmetric patterns. Also, the variable m is commonly referred to as

the tangential acoustic mode number.

In order to write the equation in compact form we now define three sets

of functions;

Influence functions:
r	 n

1 0,2 _ 2fo G(P,'Q) cos (in0 q) d 0
	(3) 1

Za	 8G(P ) cos (m0q) d 0q2 (rpq	
0 an

P

'	 Kernel Functions:

K (r ) 2 fo a G (P ) cos (me d e
pq 	 anq
 d

71	 (4)
a 2 G(P, Q) cos (m 8q) d 0q

(rpq) 2a o a np a nq

0 A9
q	 p	 j

Forcing functions. n

Fi (rpq) = 2a o G(PrQ) Ok (n p ' nq) d q

IT	 (S)
Fs (rpq) 2a o a 

G(P♦
) d q'

anP anq

9 0 
oP

f

',	
S



where rpq is the distance between points P and Q and A  and Iq are the outward

normals from the points P and % respectively (See Fig. 2.). Also, G(P,Q) is the

free space Green's function

ikr
G(P,Q)rM (6)

Pq

where k Is the wave number and a is the complex coupling constant for this

particular formulation which is found to be

a Vk	 (7)

it will be noted that in evaluating K 2 and F2 the point at which qp= 0q is excluded

from the integration as it constitutes a strong sigularity.

Using the above definitions and equations, the special integral formulation

of the external solutions of the Helmholtz equation may be written as

fo

R

 O(sq)LI (rPq) + K (rpq), pq dsq

R

O(sP) o [F 1 (rpq) + i (rpg)1 pq dsq

  J	 (8)

o V(s) CI (rp^	 z)+ I (rpq	 q)l p lsq	 t	 q

2-n L 
^(sp) + a V(sp)]
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In this particular formulation of the problem lot.. s and 8 coordinate directions

have been uncoupled so that the solution of the problom has been reduced to the

evaluation of line Integrals on tips. surface of li-4 body.

Equation (a) represents a relationship between the acoustic pressure and

normal acoustic velocity at any given point on a body (i.e., point P) to all of the

values everywhere else on the body (i.e., at the Q points). If this equation Is

applied at each point on the body, along with the boundary condition at each point,

a system of linear algebraic equations Is obtained for the unknown variables at each

point on the body. Thus, If there are N points, on the body, a system of N c omplex

equations in N complex unknowns Is developed.

In the numerical integration of the functions (See tgns. W-0).) a Gauss

Legendre integration formula is used. For the integration in the s direction, ' a

simple two point Integration is employed such that the point P Is never actually

equal to any of the lh^egration polnu (i.e., the Q points). Also, when the body Is

divided into N points in the s direction, both the acoustic potential # and the

normal acoustic velocity V are assumed to be constant over each element even

though there are two integration points per element.

For the development of the Independent solutions on the surface of the

body let us assume that the body is divided into three distinct regions as in Fig. 3.

These regions do, not necessarily have to be contiguous however, for the sake of

clarity they are presented as such here. The first solution which we must consider

is the driver solution. To calculate it we must solve for the acoustic quantities on

the surface of the body subject to the boundary conditions

(Q) - +b {Q) on Sp

(9)
V(Q) = 0	 on S  and SL

7



where tp (Q) is +tame specified function of the acoustic potential on the driver.

Solving this problem, we obtain the driver solution

VD(Q) on SD

tn(Q)	 on SM and SL	 (10)

Next, the liner surface (s) is divided up into M finite regions as in Fig. 4. Then M

independent solutions are generated which represent the effect of M simple

acoustic velocity sources on the liner using the boundary conditions given below

^ (Q) = Q on Sp

V(Q) 0 on S 	 (11)

V(Qj) l	 j= 1,,.,, M

on SL



The M solutions thus generated are given by
i

Vi
 
(Q) on SD

j (Q)	 on SH	 (12)

j (Q)	 on S
L
	i

f	 ^

1f we now sum these solutions multiplied by some arbitrary coupling constants

i	 designated by aj , which we can do as the problem is iinear,we generate a general

solution which has the form

(Q) -t (Q)
on SD 	(13)

	

V(Q) Vp (Q) + 	 aj V j (Q)
j-1

1

	

4 (Q) = 0 p(Q) +	 1a. 4 (Q)
j t	 ^ 

o	 (14)n SH

V(Q) .: 0
C

D

i (lS)

	

V(Qj) aj	 ) = i f* 0 O,M	 on SL

	

V(Q-) : 0	 1 * J 	
1

a

_9
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(Q^)	 ai _ p (Qj),
(1s)

j^1... ,M

e
A

z

i	 y

e ^
	 f

'r^

^i

It will be noted here that the above solution has some Interesting properties In that

the acoustic potential on the driver surface (See Eqn, (13).) and the normal acoustic

velocity on the hard walled surface (See Eqn. (14).) are not dependent upon the

choice of the coupling constants aj.

In this study we are Interested In the effective acoustic admittance Y

which Is defined as

r

01 i

a^

an^	 ^	 (16)
Y;	 ^_0

{

This being the case, we can now represent the effective acoustic admittance at any

point on the admittance surface as
I

a.
Y(Q^)	 1

M	
(17)

+i 1 ai ^i (Q^)

If we now speclfy that the effective acoustic admittance at all points on the

admittance surface is to be the complex number C we obtain



r

which represents a system of M linear complex equations for the M complex

coupling Constants, aj . Using this method many constant admittance , solutions can

be generated very economically once the independent solutions on the surface of

the body are known. Since the independent solutions have already been calculated

`

	

	 for the generation of the optimum varying admittance, a relatively small amount of
i

extra comF' jting time Is required for the determination of the optimum constant

admittance solution.

To find the optimum constant admittance solution 'for a specified

geometry, driver and wave number, the values of C: are chosen In a grid pattern and

a solution is generated for each value. Once the surface solution is known it is an

easy job to calculate the acoustic power radiated from the driver and the acoustic

power lost to the admittance surface usingl'S

Ea f f C 
R 

(Q) VI (Q) - t I(Q) VR (Q) ] dS(Q)	
(19)

SL

where E is the acoustic energy radiated out of a surface and the superscripts R and

I refer to the "real and imaginary part of", respectively. When the solution having

x

	

	 the minimum radiated power is found, the region may be further subdivided to

"home in" on the optimal value of the admittance.

It is of interest to note here that strictly speaking all possible values of

the effective admittance Y are not possible at each point on the liner surface. To

demonstrate this, let us look at the point j= l on the liner surface where

Y(Ql )	 a 

4D(Qd+ ^! ai ti (Q I)
	 (20)

• a



1

Solving for a l we obtain
	 i 1

M

a	
Y(Q1) i
	

ai ^i (Q1)	
(21)

I

f - Y(Q l ) ^ 1 (QI)

where it can be seem that if we want Y(Q,)= 	 I ) we must hava a,+	 Thus,

3j	 1
we cannot generate the solution where the effective admittance Y(Q^)

with a finite value for the complex coupling constant, aj.

x

w
F	 ,
e
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Ill. SOME GENERAL COMMENTS

t

i

.fi

The problem of acoustic radiation from a duct, as formulated for this

study, is strictly elliptic so that only one boundary condition may be specified on

any part of the body. Thus, either the acoustic potential (i.e., pressure) or the

normal acoustic velocity may be specified on the driver but not both. This leads us

to an Interesting problem when trying to compare the results of this method to any

other as other methods utilize the mathematical artifice of a semi-infinite duct-6

This artifice allows them to keep the driver power and medal input constant while

varying the acoustic properties of a liner. This tends to neglect any possible effect

the acoustic properties of the liner could have on the amount or modal content of

the power coming out of the driver.

In the problem, as formulated for this study, the driver power and more

Importantly the radial modal output of the driver cannot be fixed as this would

overspecify the problem. This being the case, there are two possible optimum

constant admittance liners possible, one a relative measure of the percent of the

driver power attenuated by the liner and the other an absolute measure of the

power coating out of the duct. Both were calculated at each wave number for each

geometry and are presented as such (I.e., Relative ar.d..;Absolute optimum constant

admittances). Also, since either the acoustic ,,potentiajl or the normal acoustic

velocity could be specified on the driver runs were done with each and are noted as

such. For the runs where the nor;c}al acoustic velocity Is specified on the driver,

the acoustic potential is specified on the admittance (i.e., diner) surface and vice

versa (See Egns. (9) and (l I).).

l3



IV. NUMERICAL CONSIDERATIONS

The special Integral formulation of the external solutions of the

Helmholtz equation 2t3 which Is used as the basis for all of the calculations done In

this study requires a closed body. Thus, all three of the ducts used in this

study: the straight duct with the rounded lip; the NASA QCSEE inlet, and, the

NASA QCSEE Inlet less its centerbody were terminated with a 2:1 ellipse (See Figs.

5-7,). Also, for the three geometries Investigated the total height to the Inner wall

of the duct at the driver plane was normalized to one and the outer wall of the duct

was 1.15. All of the ducts have an L/a of 2.0

For the numerical calculations , points were spaced evenly along the inner

walls of the ducts with a nominal spacing of 0.05a. On the outer walls of the ducts,

the points were systematically spaced at larger and larger intervals as It has been

found that the outer walls of ducts and their terminations have little effect on the

total power radiated and the radiation pattern in the forward half plane, The total

number of points used on the three geometries in the s direction for the

calculations performed for this study were: 92 points for the straight duct; 108

points for the NASA QCSEE Inlet; and, 100 points for the NASA QCSEE inlet less

Its centerbody. For the 0 Integration, a 32-point Gauss-Legendre integration

formula was used In all cases.

For all three of the ducts, the admittance surface consisted of 25 points

or intervals over which the optimum admittance distributions were to be generated

and ran from 0.4a to 1.6a in the Z direction Along the Inner walls of the ducts.

14
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Thus, a hard wall or driver solution and 23 independent source solutions were

calculated for each geometry, wave number and type of driver specified (i.e.,

potential or velocity).



V. RESULTS

Each of the geometries was run with a plane wave as input on the driver

for non-dimensional wave numbers of 1 0 21 30 $, 7, and 10. That Is, in all of the

cases run, the tangential mode number was taken as zero. Although a plane wave

was input, a plane wave driver did not necessarily result since only one variable

could be specified at a Cline.

The results for all of the straight duet runs are presented In Fables I-VI

and In Figs. 5-13. In the Tables, the power radiated out of the driver and the power

radiated into the field are tabulated along with their values, for the optimum

distributed admittance and for the optimum absolute and relative constant

admittances. In all the Tables, the power values are relative as they have been

ivornalized by the power out of the hard walled configuration. Also, each table

contains the results for one wave number for both the constant acoustic pressure

and normal acoustic velocity drivers.

It will be of interest to note here that for the lower wave numbers, the

power out of the driver is negative (i.e., It is damping). This necessarily means that

the liner surface is driving since the formulation of the Integral equations only

allows for the case where there is a net flow of power out of the body (1,e., no

incoming waves). If the Imaginary part of the effective admittance Y (See Eqn.

(16).) Is positive, this denotes driving; that is, an active suppressor, The relative

optimum constant admittance must always be a damping admittance sl.nce It is

determined as the smallest ratio of power out of the driver, to the power lost to

the admittance surface.

16



In general, it Is found VhAt the lowest power output is obtained trout cite

optimum admittance distributions, Also, the relative constant admittance usually

has the highest power output ass measured in the field surrounding the duct.

x
Each Figure constitutes a set of 6 plots for each wave number. The first

group of three plots in each set are for the case where a constant acoustic pressure

4	 is specified on the driver and the second group is for the case where a constant

P

	

	 normal acoustic velocity was specified. The first plot In each group (e.g., Figs. 8a

dt d), contains a plot of the optimum admittance distribution on the inner wall of

r the duct from the driver end Z;0.4a (inner), to the open end, Z. 1.6a (outer). As can

be seen even at the low wave numbers where there are a more than sufficient

number of points on the body to generate an accurate solution, the effective

admittance distribution is not very smooth. This Is because it is a ratio of two

f	 functions on the surface of the body which tends to make it less continuous than	 l
1

either generating function. Of course, more points could be taken on the surface of
9

the body to obtain a smoother function for the effective admittance; however, this

would not substantially change the overall accuracy of the solution (i.e., the power

output). At the higher wave numbers, the solution does become suspect however,

and more points should probably have 'peen used for the cases where ka_7 and 10.

This should not detract from the overall validity of the method however.

It will be noted that at the lower wave numbers, the distributed

admittance found for the minimum power out of the body is totally driving. As the

wave number gets higher,: the optimum admittance distribution becomes mixed

(i.e., some of the liner surface drives and some of it damps) and finally at some of

r the higher wave numbers, the distributed admittance is almost totally passive. This



is

Is probably due to the fact that at the higher wave numbers, the wave structure in

the duct becomes more complicated so that Interference patterns are more

difficult to set up. Since an active suppressor damps out sound through the setting

up of Interference patterns, these types of suppressors are probably only useful at

lower wave numbers where the wave patterns are less complicated. Also, since it

Is more difficult to set up interference patterns with the constraint of a constant

admittance liner, the optimum absolute constant admittance liner transition from

driving to damping occurs sooner.

In the second plot In each group of three, is a plot of the absolute power

out of the duct as a function of the admittance (constant) on the liner surface

which is expressed in dB. The admittance value for which the minimum power out

of the duct Is obtained Is marked with a large dot. Again, these values are

tabulated In the tables (See Tables I-VI.).

In the final plot In each group of three, Is a plot of the relative power out

of the c°+ tct as a function of admittance (constant) on the liner which Is also

expressed In dB. Only negative values of the imaginary part of the admittance are

considered in this case as the power out of the duct Is referrenced to the power

out of the driver. As with the previous plot, the admittance value, for which the

minimum percent power is radiated, is marked with a large dot and those values

also are tabulated in the Tables.

The results for the QCSEE inlet are presented in Tables VII-XII and in

Figs. 14-19. As with the straight duct, the tables contain the results for the six

wave numbers run, one wave number per table. The results at a non-dimensional

wave number of ka_7.0 for the case where the acoustic potential is specified on the

driver are not included since the optimum values for the absolute and relative



constant admittances fell outside of the initial search pattern. This pattern ran

from -10 to 10 in increments of 1 for both the real and imaginary parts of the

admittance. This is not to imply that they couldn't be calculated, just that they

were not, since this would have required modification of the computer programs

used for all of the other cases run.

As with the straight duct, each figure for this geometry consists of the six

plots done for each wave number. As before, the optimum admittance distribution

for both the constant acoustic pressure and the constant normal acoustic velocity

drivers are presented along with the contour power plots for the constant absolute

and relative admittance liners. Again, the optimum values are marked with dots in

these plots and are tabulated in the TaNes. It will be noted in Fig. 1$a and b that

these points are not marked since they fell outside the range of the plots.

The results for the QCSEE inlet less its centerbody are presented In

Tables XIII-, XVIII and in Figs. 20-25. The reason for running, the cases for this

particular geometry was to see if any trends could be established in going from the

Straight duct geometry to the full inlet geometry. At the lower wave numbers, the

optimum admittance values calculated for it, seem to fall between those for the

other two geometries as one would intuitively expect; however, this trend is not

maintained at the higher wave numbers.



VI. SUMMARY AND CONCLUSIONS

During the past year, a method was developed for the calculation of

optimum distri juted admittance duct liners. This method Is based upon a special

Integral representaiton of the external solutions of the Helmholtz equation which is

valid (i.e., can be used to generate the correct, unique. solutions) at all wave

numbers. The equations used had been specialized for axisymmetric geometries but

this Is not a restriction on the method itself.

As a by-product of this method, a procedure was developed for the

Identification of optimum constant admittance duct liners. This procedure utilizes

solutions already developed for the optimum distributed admittance calculation.

At present t it entails the use of a simple search pattern for the optimum constant

admittance; however, It is believed that this could be refined if time allowed.

To give some idea of the time involved In calculating these results , some

typical computing times are presented below. These runs were done on the Georgia

Tech CDC CYBER 760 and the programs are written in Fortran V. For the case
	 f

where 100 points were used on the body in the s direction, a 32 point Gauss-

Legendre integration formula was used in the 0 direction (See Fig. 1.), and there	
r

were 25 points on the liner surface, the calculation of the 26 independent solutions

required for the optimization procedure took 183 seconds of CPU time. The

generation of the optimum distributed admittance then took an additional 10 	 k

seconds and the identification of tht> optimum constant admittances took 390

seconds. As can be seen, the calculation of the constant admittance solutions Is

slow compared to the calculation of the optimum distributed admittance. The

contour plots of the sound, radiated for each constant admittance chosen on the 	 w
i

i
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liner surface were done with the GPCP general Purpose Contour Plotting) package

which we have available here at Georgia Tech. it was developed originally for

plotting contour maps but was found to be very useful In this research program.

In conclusion, an effective, efficient method has been developed for the

calculation of both optimum distributed and constant admittance liners for general

geometries. It was found through the use of this method that even very similar

geometries may have vastly different optimum liners associated with them. Also,

It was found that at low wave numbers often the most efficient liners for the

reduction of the sound radiated are active and not passive. At the higher wave

numbers, the optimum distributed admittances are found to be almost always a

combination of both active and passive elements.
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TABLE I

S'T'RAIGHT DUCT
-------------

Relative power normalized with respect to the hard
walled radiated power

ka * 1.0

Constant Phi	 Constant Velocity
on the Dr iver	 on the Drive r
-------------	 ----------^----.^,^.

OPTIMUM ADMITTANCE
DISTRIBUTION

POWDR OUT OF	 -0.511	 0.67
THE DRIVER

TOTAL POWER	 0.000017	 0.000042
IN PAR FIELD

ABSOLUTE CONSTANT	 ( -0.18, 4.881)	 ( -1.32, 4.601)
ADMITTANCE

POWER OUT OF	 -0.64	 -0.53
THE DRIVER

TOTAL POWER	 0.0014	 0.00063
IN FAR FIELD

RELATIVE CONSTANT	 (-1.30, -3.401)	 (-1.34, 3.330
ADM ITANCE

POWER OUT OF	 0. 87	 0. 65

THE DRIVER

!TOTAL POWER	 0.0015	 0.0012
IN FAR FIELD

,> 

f
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TABLE 11

STRAIGHT DUCT

Relative power normalized with respect to the hard
walled radiated power

'e	
x

Ii
ka = 2.0

Constant Phi	 Constant Velocity
on the Driver	 on the Driver

OPTIMUM ADMITTANCE
DISTRIBUTION

POWER OUT OF -0.65 - 0.61
THE DRIVER

TOZAL POKER 0.00012 0.00014
IN PAR FIELD

ABSOLUTE CONSTANT (-2.95,	 3 . 05i) (-2.70,	 - 2.901)
ADMITTANCE

POWER OUT OF -0.89 0.75
THE DRIVER

TOTAL TONER 0.00034 0.00054
IN FAF FIELD

RELATIVE CONSTANT (-2.64,	 -3.14i) (-2.65,	 -3.13i)
ADMI'T'TANCE

POWER OUT OF 0.91 0.78
THE DRIVER

TOTAL POWER 0.00088 0.00068
IN FAR FIELD `.

24



TABLE lll.

STRAIGHT DUCT
------- _ ----

Relative power normalized with respect to the hard
walled radiated power

ka = 3.0

Constant Phi Constant Velocity
on the Driver
--- - -----

on the Driver
-----------------

OPTIMUM ADMITTANCE
DISTRIBUTION

POWER OUT OF —0.23 — 0.016
THE DRIVER

E

!TOTAL POWER 0.000075 0.00011
IN FAR FIELD

ABSOLUTE CONSTANT ( -2.71, — 2.381) ( -2.65,	 — 2.33i)
r	 ADMI '1'I'AN CE

POWER OUT OF 0.77 0.13

THE DRIVER

TOTAL POWER 0.00072 0.0001.4
IN FAR FIELD

RELATIVE CONSTANT	 (-2.701 — 2.39i)	 (-2.65, —2.32i)
ADMI TTAN CE

POWER OUT OF	 0.77	 0.13
THE DRIVER

TOTAL POWER	 0. 00079	 0.00013
Ito FF ,R FIELD

25
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TABLE IV

STRAIGHT DUCT'
------------

Relative power normalized with respect to the hard
walled radiated power

kA w 5.0

Constant Phi	 Constant Velocity
on the Driver	 on the Driver
-------------	 -----------------

OPTIMUM ADMI`MANCE

is
DISTRIBUTION

POWER OUT or -0. 0011 0.0075
THE DRIVER

I 1

TO'T'AL POWER 0.00084 0.000011
114 PAP EILLD

ABSOLUTE (ANSTANT (-3.40,	 -1.66 1) (-4.61,	 -2.291)	 ►
ADMITTANCE

i
PMER OUT OF 1.00

i
0.043

THE DRIVER
a

TOTAL POWER 0.37
a

0.010
IN PAR FIELD

)1

^a

RELATIVE CONSTANT (-4.13,	 -1.771) (-4.441	 -2.30i)
ADMI TrANC4

POWER OJT OF 1.06 0.043	
l

T IAL DRIV E ,a

TOTAL POV;ER 0. 37 0.010
Its VAR FIELD

a
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ka - 7.0

Constant Phi
on the Driver

Constant Velocity
on the Driver

TABLE V

STRAIGHT DUCT
a

Relative power normalized with respect to the hard
walled radiated power

OPTIMUM ADMITTANCE
DISTRIBUTION

POWER OUT OF
THE DRIVER

TOTAL POWER
IN FAR FIELD

	0.066
	

0.014

	

0.00064
	

0.054

ABSOLUTE CONSTANT
	

( -5.17, - 1.95i)
	

( -4.72, -0.69i)
ADVII TTAN CE

POWER OUT OF
	

1.29
	

0.016
ThE DRIVER

TOTAL POWER 0.43 O.U070
IN FAR FIELD

RELATIVE CONSTANT (-5.56,	 — 1.30i) (-3.97, —1.761)
ADMITTANCE

POWER OUT OF 1.42 0.019
THE DRIVER

TOTAL POTAER 0.42 0.0006
IN FAR FIELD c
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(-5.65, -2.80i)
	

(-4.89, -2.69i)

	

1.02
	

0.010

	

0.48
	

0.0051
	

- 4

O.UO066

O.GUO16

0.050

U.OU49

1,

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE VI

STLAIGHT DUCT

Relative power normalized with respect to the hard
walled radiated power

Ka = 10.0

"

Constant Phi
	

Constant Velocity
on the Driver
	

on the Driver

^

OPTIMUM AL)MITTANCL
uISTidBullj^,,u

POWER OUT OF
THE OVIVLn

TOTAL POWER
IIY FAR FILLD

i

li

ABSOLU'T'E CONSTANT
ADMI 71ANCE

PGWER OUT oil

THE DRIVER

TOTAL PCVv1 R
I14 FAR FIELD

RELATIVE C014STANT	 (-5.41, -2.75i)	 (-5.02, -2.83i)
ADI•jI TTANCE

POWER OUT OF	 1.02	 0.010	 r
THE DRIVER

TOTAL POWER	 0.48	 0.0051
Iii FAL FIELD

F
3
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	 OF POOR QUALITY

TABLE VII

NASA QCSEE INLET
---- ----- ----

Relative power normalized with respect to the hard
walled radiated power

ka	 1.0

Constant Phi
on the Driver

_ -----_ _--

OPTIMUM ADMITTANCE
DISTRIBUTION

POWER OUT OF
	

-1.91	 -2.45
THE DRIVER

TO'T'AL POWER
	

0.00012
	

0.00012
IN FAR FIELD

	

ABSOLUTE CONSTANT	 (-0.64, 4.031)	 (-0.65, 4.11i)
ADVII TTANCE

POWER OUT OP-1.25	 -0.74
'> HE DRIVER

TOTAL POWER	 0.0015	 0.00082
114 PAIR FIELD

r

	

RELATIVE CONSTANT	 (-0.470 -3.781)	 (-0.53,, -3.771)
ADNI TTANCE.-

POWER OUT OF	 1.27	 0.79
THE DRIVER

TOTAL POWER	 0.0019	 0.0011
IN FAR FIELD

Constant
on the
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	 ORIGINAL PAGE IS
OF POOR QUALITY

TABLE VII(

NASA QCSEE INLET
----------------

Relative power normalized with respect to the hard
walled radiated power

ka a 2.0

Constant. Phi Constant Velocity
on the Driver on the Driver

OPTIMUM ADMITTANCE
DISTRIBUTION

POWER OUT OF -1.11 -0.70
THE DRIVER

TO'T'AL POWER 0.00011 0.000060
IN FAR FIELD

ABSOLUTE CONSTANT (-2.99,	 3.911) (-3.060	 3.58i)
ADMI TTANCE

POWER OUT OF -0.79 -0.53
THE U F:I V u*

TOTAL POWER 0.00074 0.00025
IN FAR FI1 LD

RELATIVE CONSTANT	 (-2.35, -3.91-)	 (-2.361 -3.931)
ADhI'TTAN CCU

POKER OUT OC	 0.02	 0.59
THE DRIVER

TOTAL POWER	 0.001.3	 0.00094
114 FAR FIELD

30
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^i	 TABLE IX	 pNq ja
NASA QCSEE INLET
----------------

Relative power normalized with respect to the hard
walled radiated power

ka a 3.0

Constant Phi	 Constant Velocity
on the Driver	 on the Ur fiver
- -----------	 -----------------

OPTIMUM ADMITTANCE
DISTRIBU`1'ION

POWER OUT OF	 1,3.69	 0.050
THE DRIVER

TOTAL POWER	 0.0096	 0.000049
IN FAR FIELD

ABSOLUTE CONSTAN T	(-3. 10 g,  -3.201)	 (-3. 00,, -3.19i)
ADMITTANCE

POWER OUT OF	 0.69	 0.18
THE DRIVEL

TOTAL POWER	 0.00045	 0.00020
IN FAR FIELD

RELATIVE CONSTANT	 (-3.04, -3.201)	 (-3.05, -3.10 i)
ADMITTANCE

POWER OUT OF	 0.69	 0.18
THE DRIVER

TOTAL POWER	 0.00061	 0.00015

6
	 IN FAR FIELD

3!
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OPMNAL PACE IS

TABLE X	
OF POOR QUALITY. 

NASA QCS EE INLET
----	 ---

Relative power normalized with respect to the nerd
Walled radiated power

ka - 5.0

Constant Phi
	

Constant Velocity
on the Driver	 on the Driver
4-- ---------

	 -----------------

OPTIMUM ADMI+PPANCE
DISTRIBUTION 3

POWER OUT OF -0.023 0.00059
►.	 THE DRIVER

TOTAL POWER 0.00040 0.000031
IN PAR FIELD

f	 ABSOLUTE CONSTANT (-4.20, -1.801) (-4.57, -1.69i)
ADMITTANCE

POWER OUT OF 0.80 0.040
THL DRI'VEAR

i
TOTAL POWER 0.13 0.0065
IN FAr FIELD

RELATIVE CONSTANT (-4.26,	 -1.961) (-4.37, -1.87i)
ADMI'T'TANCE

POWER OUT OF 0. el 0.041
THE DRIVER

TOTAL POWER 0.13 0.0066
IN FAR F ITLI

32
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ORIGINAL PAGE ^S

OF POO R QUALITY

TABLE XI

NASA QCSEL INLET----------------
Relative power normalized with respect to the hard

walled radiated power

I'.
ka a 7.0

I

Constant Phi Constant Velocity

i-------
on the Driver

------
on the Ur, iver

-----------------

r

OPTIMUM ADMITTANCE
DISTRIBUTION

POWER OUT OF 0.56 0.0066
I	

THE DRIVER

TOTAL POVvUl. 0.13 0,00013
IN FAR FIELD

ABSOLUTE CONSTANT (-----, ----- i) ( -5.42,	 -2.571)
ADN I P̀rANCE

PO&ti R OUT OF ---- 0.018
THL, DRIVER

TOTAL POWER ---- 0.0022
IN FAL FIELD

RELATIVL CONSTANT	 (-----, ----- i )	 (-5.2be -2.561)
ADMITTANCE

POWER OUT OF	 ---	 0.010
THE DFIVER

TOTAL PO%ER	 ----	 0.0022
IN FAR FIELD i

i
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Constant Phi
on the Driver

Constant Velocity
on the Driver

-----------------

0.29

0.00075

0.010

U.000064

(-4.02, -3.56i)

O. U10

0.0026

(-4.05,	 3.6i,i)

0.010

0.0026

a

w

ORIGINAL PAGE 15
OF POOR QUALITY

TABLE X11

NASA QCS EE INLET
----------------

1telative power normalized with respect to the hard
walled radiated power

ka - 10.0

OPTIMUM ADMITTANCE
DISTRIBUTION

'	 POWER OUT OF
THE DRIVER

TOTAL POWER
IN FAR FIELD

F

ABSOLUTE CONSTANT
	

(-4.32, -3.83i)
ADMITTANCE

PER OUT OF
	

0.94
THE DRIVLR

TOTAL POWER
	

0.22
IN FAR FIELD

RELATIVE CONSTANT	 (-4.27, -3.76i)
ADMITTANCE

POWER OUT OV	 0.94
TIDE DTIVEx

'DOTAL PO hER	 0.22
Its EAL FIELD

34
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TABLE X111

QCSEE INLET LESS CENTLRSODY`
------------ ---------------

Relative power normalized with respect to the hard
walled radiated power

ka . 1.0

Constant Phi
	

Constant Velocity
on the Driver	 on the Driver-----------

OPTIMUM ADMITTANCE
U ISTLIBUTION

POti-YER OUT OF
THE DRIVER

TOTAL POWER
IN FAR FIELD

	

-1.20
	

-1.73

	

0.000025
	

0.000072

ABSOLUTE CONSTANT (0.61,	 4.66i) (-0.75,	 4.721)
ADMITTANCE

POWER OUT OF -1.19 -1.06
TIDE DRIVER

TOTAL POWER 0.0021 U.00091
IN FAR P19LD

RELATIVE CONSTANT (-0.73, -3.491) (-0.79, -3.44i)
ADMITTANCE 

POWER OUT OF 1.71 1.33
THE DRIVER

TOTAL POWER 0.0029 O.OU23
IN FAR FIEL11
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TAOLE XIV

QCSEE INLET LESS CLNTERDODY
---------------------------

Relative power normalizes with respect to the Curd
walled radiated power

ka m 2.0

Constant Phi Constant Velocity
on the Driver
-------------

on the Driver-----------------

OPTIMUM ADMITTANCL
DISTRIBUTION

POWER OUT OF -0.56 =0.50
THE DRIVER

TOTAL POPPER 0.000044 0.000049
IN FAR FIELD

ABSOLUTE CONST'AN'T (-2.99,	 3.731) (-2.99,	 3.411)
ADMI TTAN CEO

POWER OUT OF -0.74 -0.65
THE DRIVER

TOTAL POWER 0.00058 0.00025
IN FAR FIELD

RELATIVE CONSTANT (-2.420	 -3.781) (-2.451 -3.791)
ADMITTANCE

POWER_ OUT OF 0.76 0.71 1
THE DRIVER

TOTAL POtWR 0.0011 0.00093
IN FAR FIELD

36



-0.024

0.000032

W%wuuu INLk;T uuua %1oP&V&r41%uvus
---rte wFM iii . ►mss.—W---^Wfr-------.--

Relative power normalized with respect to the hard
walled r adiated power

ka _ 3.0

Constant Phi
	

Constant Velocity
on the Dr iver	 on the ter iver

OPTIMUM ADMITTANCE
DISTRIBUTION

POWER OUT OF	 -0.41
TIDE DRIVER

TOTAL POWER	 0.000084
IN FAR FIELD

ABSOLUTE CONSTANT (-3.06,	 2.94 1)
A DMITTANCE 

MZR OUT OF -0.67
THE DRIVER

TOTAL POWER 0.000067
IN FACT FILLD

RELATIVE CONSTANT ( -2.901	 - 3.071)
AXII VI'ANCE;

POWER OUT OF 0.69
THE DRIVER

TOTAL POWER 0.00047
IN FAR FIELD

(-2.88, -3.02i)

0.13

0.000094

(-2.91, -2.971)

0.13

0.000063
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OF POOR QL%L1TY

TABLE XVI

QCSEE INLET LESS CENTERBODY
---------------------------

fielative power normalized with respect to the Kara
walled radiated power

ka = 5.0

Constant Phi Constant velocity
on the Driver on the Driver
------------- -----------------

OPTIMUM ADMITTANCE
DISTMOUTION

POWER OUT OF 0.098 O.OU69
THE DRIVER

TOTAL POWER 0.00077 0.0000071
IN FAR FIELD

ABSOLUTL CONSTANT (-3.89t	 -1.651) (-3.93t	 -2.39i)
ADMITTANCE

POVwER OUT OF 0.74 0.044
THE DRIVER

TOTAL POKER 0 .20 0.0042IN 
FAR FIELD

RELATIVE CONSTANT (-3.87t	 -1.98i) (-3.88t	 -2.24i)
ADMITTANCE

POWER OUT OF 0.77 0.044
THE DRIVER

TOTAL POV;ER 0.21 0.0042
IN FAR FIELD

38
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Constant Velocity
on the Driver

-----------------

Constant Phi
on the Driver
-------------

0.14

OPTIMUM ADMI TrANCE
DISTRIBUTION

POWER OUT OF O.UO91

ORIGINAL-OAGE

OF POOR QUALM

^ r TABLE XV11

QCS9C 114LET LESS CLNTERBODY
---------- W ---------

Relative power normalized with respect to tine hard
walled radiated power

ka - 7.0

THE DRIVER

TOTAL POWER 0.0016 0.00020
IN PAR FIELD

ABSOLUTE CONSTANT ( -4-77v -2.071) (-7.32t	 -1.67i)

r
ADMITTANCE

POWER OUT OF 1.02 0.020
THE DRIVER

TOTAL POMR 0.29 0.0uss
IN FAR, FIELD

RELATIVE CONSTANT (-4.87t	 -2.06i) (-6.84,,	 -1.571)
ADMITTANCE

POWER OUT Of' 1.02 0.021
THE DPIVER

TOTAL POWER 0.29 0.062
IN PAR FIELD
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OF POOR QUALITY

TABLE XVIII

QCSEE INLET LESS CCNTEROODY
---------------------------

Relative power normalized with respect to the hard
walled radiated power

ka = 10.0

Constant Phi	 Constant Velocity
on the Driver	 on the Driver
-------------	 -----------------

OPTIMUM ADMITTANCE
DISTRIBUTION

POUER OUT OF
THE DRIVER

TOTAL POWER
IN FAR FIELD

	

0.33	 0.00060

	

0.16	 0.000060

(-5.27r -3.01i)	 (-4.36p -3.18i)

	

0.97	 0.010

	

0.36	 0.0039

RELATIVE CONSTANT	 (-5.051 -2.911)	 (-4.49, -3.30i)
1 ANCEA DMI M

POWER OUT OF	 0.90	 0.010
THE DRIVER.

TOTAL POWER
	

0.36	 0.0039
IN 

PAR 
F IBLD

40

ABSOLUTE CONSTANT
ADMITTANCE

POWER OUT OF
THE DRIVER

TOTAL PMER
IN FAR FIELD
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QRIGiNAL PAGE 15
OF POOR QUALITY

STRA I GHT DUCT

7.

S.

F-

a 2.

}

0.
Z
w

D —2

f
H

-5.

—7.

—1.0.
— 15. 0--12. 5--10. 0 —7. 5 — S. 0 —2. 5 0.0 2.5 5.0

REAL PART

OPTIMUM ADMITTANCE DISTRIBUTION

C=mwtt ant Ph i an th• Dr i err
Figure 8a
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CRICINAL PAGE 13
OF POOR QUALrfy

STRAIGHT DUCT. KR=1.0 ► PHI SPECIFIED ON THE DRIVER
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Y.

Uj

cc

Q

U-

m
z
cb
cr
X:

130.0

N

f-- 

10	 0	 10

REAL PART OF ADMITTANCE

Figure 8b
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STRAIGHT DUCT, KA=1.0, VEL• SPECIFIED ON THE DRIVER

(RELATIVE POWER)
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0
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Figure 8f
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