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Barriers and Dispersal Surfaces in Minimum-Time Interception I

N. RAJAN2 AND M. D. ARDEMA 3

Abstract. Dispersal points and points on the Barrier are located

for a class of pursuit-evasion and interception problems. These

points are determined by constructing cross sections of the iso-

chrones and hence obtaining the Barrier, Dispersal, and control-

leve! surfaces. The method is illustrated through examples from

minimum-time interception of a target moving in a straight line in a

horizontal plane.

Key Words. Barriers, minimum-time interception, aircraft flight

paths optimization.

i. Introduction

The area of optimizing aircraft maneuvers is quite complex and has

received extensive attention. In Ref. i, minimum-time turns to a line or a

point in the plane are investigated when the final velocity and heading are

specified. The destination point or line is taken far away from the starting

point so that the aircraft has sufficient time to accelerate to maximum speed

in all cases. The solution is obtained by integrating the optimal trajectory

backward from termination. The assumption of long-duration makes the extremals

iThe authors are indebted to F. Neuman, M. Sidar, J. Shinar, H. Erzberger, and
G. Leitmann for their comments. The first author wishes to acknowledge the

financial support of the National Research Council.

2NRC Research Associate, Ames Research Center, NASA, Moffett Field, California.

3Research Assistant to the Director, Ames Research Center, NASA, Moffett Field,
California.
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a one-parameter family. The two-boundary-value problem of choosing the extre-

mal that satisfies the given initial conditions is thus simplified. Under the

restriction of long-duration maneuvers, time-scale separation of turning and

acceleration is possible, and singular perturbation approaches (Refs. 2, 3)

have been successful in obtaining feedback approximations. However, short-

and intermedlate-duration maneuvers do not show up in these analyses. Aircraft

maneuvers in a tail-chase pursuit-evasion game have been investigated in Ref. 4,

employing a differential dynamic programming algorithm. The numerida!l

examples show tail-chase maneuvers of short duration.

In this paper, minimum-time interception of a target moving in a horizon-

tal plane is analyzed as a one-player differential game (Ref. 5). The game

solution gives the interceptor's strategy in a feedback form. It first

addresses the question whether the target can be captured from all initial

positions relative to the interceptor. If not, the Barrier, a closed-surface

bounding the initial positions from which capture is possible, is constructed.

Even if capture is possible for all initial states, a Barrier may exist, but in

this case it is an open surface across which the game value, here the =ime-to-

capture, is discontinuous, and the nature of the optimal trajectories changes

drastically.

The game _olution maps the controls as a function of the state within the

capture region. This is done by backward integration of the state and adjoint

equations from termination. The integration has to be stopped at surfaces

where the adjoints are discontinuous; such surfaces are called singular surfaces

(Ref. 5). One of the most frequently encountered singular surfaces is the

Dispersal surface. Along such a surface, one player can choose between two

distinct strategies and still obtain the same payoff. Constructing the Barrier

and Dispersal surfaces is therefore an inherent part of a differential game

solution.
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In a game with four or five state variables, visualization of the Barrier

and Dispersal surfaces is difficult. This is circumvented by constructing the

cross sections of these surfaces with two or more of the state variables held

constant. A stack of such cross sections then describes the surfaces. This

paper describes a method of computing the locations of points on these cross

sections. Although minimum-time interception in the plane is used as an

example, the extension of the method to pursuit-evaslon in the plane, which

is straightforward, is also outlined.

The analysis uses a device first developed in Refs. 6-8. The motion of

the interceptor and the target are described in a coordinate system whose

origin is fixed at the interceptor's terminal position, and the x-axis is

along the terminal line of sight. The equations that describe" the inter-

ceptor's optimal motion backward in time from termination do not contain any

reference to the target motion. They can be integrated independently to give

extremal trajectory maps (ETM) (Ref. 6). Using this concept, cross sections of

the Barrier were constructed by direct iteration of the terminal Mach numbers

of the pursuer and evader in Refs. 6-8. In this paper, constant initial Mach

number and relative heading cross sections of the isochrones (constant-time

loci) are drawn. At Dispersal points (DP), two branches of an isochrone

intersect. An isochrone ends if capture becomes impossible for the given time-

to-go. The endpoints thus fall on a Barrier cross section.

The interception problem is formulated and the necessary conditions for

optimality are derived in Section 2. Extremal trajectory maps are shown for a

given initial in=erceptor speed. The method of constructing a global solution

is described in Section 3. Isochrone cross sections for interception are

depicted, and some interception encounters in the plane are shown. The exten-

sion of the method to pursuit-evasion is outlined.
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2. Problem Statement

2.1 Formulation. The motion of the target in the plane is described in

terms of its coordinates [XT(t), yT(t)] in any conventient set of axes.

Since the motion is prescribed a priori, the target motion is a function of

time alone. In the same coordinate frame, the interceptor's motion is

goverened by

Xl = MIC°SSI' (I)

#I = MIsinBl' (2)

MI = A(MI)_ - B(MI) - C(MI)_Z (3)

and

gl = ma!Mll/Sl' (4)

subject to the state-variable constraint,

MINIM, _], (5)

with the throttle setting _ and the bank control _ chosen such that

×E[0, i] and wc[-l,l].

The above description of the aircraft's motion is the same as that given

in Ref. 6. Briefly, BI is the interceptor's heading measured from the x-axis

(counterclockwise positive); MI is the Mach number; A represents the maximum

thrust, B is the zero bank drag, C is the lift-induced drag at the maximum

bank, and a is the angular acceleration. The target is considered to have

been intercepted when brought within a line of sight (LOS) distance of R of

the interceptor. This is,



[XT(tf) - Xl(tf)]2 + [YT(tf) - Yl(tf)]2 zR2 (6)

at the instant of interception if, the interceptor must be reducing the

separation distance or

£ = MT(tf)cOSST(tf) - Ml(tf)cOSSl(tf)<O (7)

to effectcapture. Where interceptionoccurs,the payoffis the time takento

capture the target. The performance index, augmented by the terminal con-

straint (6),is

tf
Ja = _[(XT(tf) - Xl(tf))2 + (YT(tf) - Yl(tf ))2 - R2] +I dr. (8)o

As in the analyses of pursuit-evasion, (Refs. 6-8) the coordinate axes,

to which the above equatiorsrefer, are selected such that the origin coincides

with the interceptor's terminal position, and the x-axis is along the terminal

line of sight (Fig. i). The position and orientation of the axes thus change

from engagement to engagement. As is shown below, this choice of axes makes

the trajectory equations and the expressions for the optimal controls for the

interceptor independent of the target motion. The analysis is simplified and

leads very naturally to the method of locating Dispersal points, which is

developed later.

2.2 The Necessary Conditions. The Hamiltonian for the minimum-time

interception problem is written as

H = i + %xll+ Ayii+ (AM + _)MI + AS_I' (9)

where Ax, ly, are the position adjoints; AM and 18 are the velocity and

heading adjoints; and the multiplier _ accounts for the first-order state-

variable (Ref. 9) constraint on the interceptor's Mach number. It satisfies

the Kuhn-Tucker conditions,
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<0 if MI =M,

--0 if M_<MI<_, (i0)

>0 if MI = i_.

From the Euler-Lagrange equations and the transversality conditions plus

the particular choice of coordinate axes mentioned above, it can be shown that

the adjoints satisfy (Appendix)

= -2_R, (ii)
x

X _0, (12)
Y

and

IB = -29RYI" (13)

The vanishing of the Hamiltonian at tf gives the value of the multiplier

as

= (2R(MlfCOSglf - MTfCOSBTf))_; (14)

v is positive because the target's velocity relative to the interceptor has a

negative component along the line of sight at the endpoint.

Because H does not involve time explicitly, a first integral of motion

is given by (Appendix)

min H = -2VR MTfCOS8Tf. (15)
(_,_)

When the normalized velocity adjoint 0M and the multiplier _ are defined,

repectively, as

&

0M = },M/2_R (16)



and

_ _/2_R, (17)

and by using (11)-(13) in (9), then (15) becomes

min HI = -MlfCOS61f, (18)
(_,_)

where

(OM+_)MI__I_YlBI. (19)HI

Minimizing HI with respect to (_,_) subject to the constraints we[0,1],

m_[-l,l] yields the following expression for the optimal controls:

= sat(-aYl/(2CMl(0M+_))) for 0M+_<0 (20)

and

w=0

= sign(yI) for 0M+_>0. (21)

The normalized velocity adjoint appearing in the above expressions satisfies

the differential equation

= cosBl-(DM+_)(-dA/dMI-_2dc/dMl)+ (22)0M

_Yl(da/dMl-a/Ml)/M I-

No=e that the canonical equations (i), -(4), and (22), together with

the controls (20) and (21) contain no reference to the target motion; the same

type of "open-loop optimality" found in pursuit-evasion is obtained here.



Backward integration of the extremals depends only on the terminal-velocity

vector of the interceptor and is independent of target motion. Thus a map of

the extremals may be generated integrating backward from the origin; this is

called the extremal trajectory map (ETM) in Refs. 6 and 7.

2.3 ExZremal Trajectory Maps. Each extremal in an ETM may be consid-

ered to be specified by a triplet of values (Sf, Mf, Tf), where 8f and Mf

are the terminal heading and Mach number, and Tf(= tf-_) is the time-to-go.

For any given pair of values for 8f and Tf, it is possible to select an

Mf value, through a one-dimensional search, such that the Math number at Tf

matches a given value M . The ETMs used here are collections of extremalso

that start out from a given initial Mach number. They can be combined with a

target/pursuer/evader'sETM to yield a global solution for any given

encounter. For this, apart from the triplet (_f, Mr, Tf), the initial

coordinates (x,y) and heading 8 are needed. The behavior of the bank and

throttle along the extremals determines the values of Tf for which iso-

chrones need be drawn (Section 3).

The trajectories in the plane for Tf = 10 sec are shown in Fig. 2a.

The variation of Mach number, heading and bank with retro time is shown in

Figs. 2b - 2d. For 8f = 0°, the aircraft flies in a straight line at full

throttle, accelerating from Mach 0.9 to Mach 1.02. The extremal with

_f = 0.33° starts out at half-bank and gradually straightens out to near-

level flight. The angle of turn AB = 23°, and the terminal Mach number is

slightly above unity. On the next extremal, the bank decreases from unit

magnitude at start to below 0.i at termination; 48 = 45°, and the average

turn rate is about half the maximum instantaneous at Mach 0.9. As Bf

increases beyond 0.85°, the bank saturation instant moves closer to termination,

till at 8f = 15°, the entire trajectory is flown at full bank.
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These trajectories represent different trade-offs between turn and

speed. However, their initial points would not appear on the cross section of

the u1_it bank control surface taken with the initial Mach number equal to

0.9. Between 8f = 15° and 77°, the extremals are constant control arcs; both

bank and throttle are full throughout. The Mach number tlme-history is

identical for all extremals in this range of 8f and is hence a single curve

in Fig. 2b. The turn angle A8 = 109 °, or the average turn rate = lO.9°/sec.

Between 77° and 90°, the extremals start out with the throttle closed and

switch to full throttle sometime later; this switching instant moves toward

tf with increasing _f till, at 90°, the extremals terminate with zero

throttle. The region between Bf = 90° and i00 °, shows throttle switches from

zero to full and back to zero;ofor 8f = i00°, at T = 9.5(0 to i) and

6.6(1 to O) sec, respectively. Beyond 8f = i00 °, the extremals are all

flown at zero throttle, full bank; the Mach number variation is independent of

8f (Fig. 2b).

The 140 ° and 160° extremais show switchings in bank (Fig. 2c) where

they intersect the x-axis Such maneuvers reduce the turn angle; the net

effect is to brake down while heading in the same direction. Such a maneuver

is resorted to when the target is close behind and heading in the same direc-

tion. In Fig. 2a, the extremals for Bf = 140 ° and 160° appear to intersect.

However, the heading angles at the point of intersection are different, as can

be seen from Fig. 2c.

Bank and throttle switching disappear as Tf increases beyond 25 sec.

The behavior of the extremals with increasing rf becomes more uniform and can

be summarized as follows: as Tf increases, the values of Bf for the same

A_ decrease steadily (for rf = 60 sec, _f = 0.0005 ° for AB = 200°); all

extremals have partial bank segments and are full-throttle throughout for the
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initial Mach number of 0.9. As rf increases further, the terminal Mach

number hits the speed boundary. The extremals then consist of an uncon-

strained (maximum Mach number constraint) arc accelera=ing up to M, a

circular arc at M, then a straight dash at M along the negative x-axls.

Such extremals, called cruise arcs, are similar to those discussed in Ref. i.

However, the use of these extremals to locate Dispersal points depends only on

a decoupling coordinate transformation approach being possible; it is discussed

next.

3. Construction of a Feedback Solution

A feedback solution to interception or pursuit-evasion must give the

control strategies and the value at any point in the state-space. Oneway of

presenting the solution is to draw the boundaries of the regions within which

the strategies are constant. Where a control varies continuously over a range,

as does the bank here, the surfaces at which the control attains specified

values are mapped. Since these boundaries and surfaces are in a four or five

dimensional state-space, they can be visualized by cross sectioning. They are

sectioned by keeping the initial Mach numbers of the interceptor and target,

or of the pursuer and evader, and the initial relative heading, constant. The

cross sections are then plotted relative to the interceptor/pursuer and become

curves in the plane of the encounter.

The control-level surfaces, Barrier Points (BP), and Dispersal Points

are all located by drawing cross sections of the isochrones (the optimal parts

of the isochrones are isocost). The control-level surface links the points on

the isochrone at which the controls take on a specified set of values.

Dispersal Points are located at the intersections of different branches of the

same isochrone. Where the isochrone cross sections are not closed, their
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endpoints are on a Barrier cross section. Such a section separates two

families of isochrones. The construction of the isochrone sections for inter-

ception is described next.

3.1 Isochrones for Interception. Assume that the interceptor and

target ETMs- are as shown in Figs. 3a and 3b, respectively. The interceptor's

map comprises extremals generated for a specified time to go with the terminal

heading 8f as a parameter. For each extremal in the map, the initial Math

number is Mlo; the initial heading measured relative to the terminal line of

sight equals 81o. The target's initial Mach number is given as _o" Since

the target's motion is prescribed, the target's terminal Math number _f

and the angle of turn 8_T at Tf are known. Although the target's motion

in the plane is fixed, its heading relative to the terminal line of sight 8Tf

varies with the different paths flown by the interceptor. The target's ETM

consists of the target's path in the plane rotated through several different

values of 8Tf (the term ETM is Used only as a convenience).

If the relative heading of the isochrone section being constructed is

Bo, then the initial heading of the target measured from the terminal LOS must

be equal to BIo+B o. Since the target's angle of turn is ABT, its terminal

heading equals 81o+8o-AST . In the construction of a locus point (Fig. 3c),

the interceptor's extremal is first laid off as IA. The terminal LOS is AB.

Since the target's heading relative to AB is known, it can be laid off as

shown, TB. The point T is the point on the locus, provided the terminal LOS

rate is negative; that is

_fcos(81o+Bo-AST)-MlfCOSSf<0.

Different values of Bf give other points on the locus. Points of

interest on the extremals, for example bank saturation, throttle, and bank
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switching, also get mapped on the isochrone locus section. For a section with

a different relative heading, these points are rotated by the difference in

Bo. The method plots all candidate points for the isochrone. This is true

because extremals for all possible values of Bf are generated. Some of the

resulting points are not optimal because there are other constant-time loci

points for a lower tlme-to-go overlapping them. A Dispersal point occurs if

two extremals with different values of Bf pass through the same point in

reduced space. Neither extremal is globally optimal beyond the DP.

The location of Dispersal and Sarrier points and the construction of

isochrones are explained by examples.

3.2 Examples. Figure 4a shows some isochrone section for an inter-

ceptor initial Mach number of 0.9 and a relative heading of 135°. The points

AI to A4 are those for which Bf = 0°; the interceptor just flies straight

ahead at full throttle to meet the target. To the right of these points, the

interceptor banks to the right, and the terminal heading Bf is positive.

For all the sections, Bf increases in the direction C to B. The sections

do not extend beyond the points B and C because the "teachability"

condition is not met; thus, the envelope of these points delineates the

Bo = 135°' Mlo = 0.9 section of the Barrier (Ref. 5). However, since the

interceptor has a maximum Mach number capability of 1.6, it can capture the

target, given sufficient time. This can be seen from Fig 4b where the 30 sec

locus is also shown. Across B3, there is a discontinuity in the time-to-go.

From B3 to P, the time-to-go is 30 sec. The PQD I portion of the constant-

time locus for tf = 30 sec is nonoptimal and does not form part of any iso-

chrone. All points on PQD 1 are conjugate points; however, only DI and P

actually appear on the isochrone sections. This sugges_ that not all values of

Bf lead to extremals that are globally optimal for a given value of Bo,
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there are points for Tf = 20 see which fall between the origin and the 15-

sec locus and are hence obviously non-optimal globally.

Figure 4c shows a more complete picture of the isochrone sections with

Tf ranging from 5 to 60 sec. The 60-see locus is the first one that is

closed. Even for an initial range of 2 km, 60 sec is the globally optimal

time-to-capture because of the unfavorable initial conditions. The target

has a higher initial speed and its direction is away from the interceptor.

The interceptor turns left and accelerates to Mach 1.2 with its terminal

heading almost aligned with the final LOS. This encounter starting from P

is depicted in real space in Fig. 5. The locus shows a Dispersal point at

D. Extremals with two different values of 8f pass through D; they are

shown in the plane in Fig. 6.

In Fig. 7, an isochrone section with 8o = 0° and rf = 20 sec is

shown. The Dispersal point at DI is one along a Dispersal surface where the

interceptor flies symmetric paths starting with either a left or a right turn;

the values of 8f at DI are _i16 °. The encounter at DI is shown in Fig. 8.

Another interesting kind of Dispersal point occurs at D2 in Fig. 7..Two

branches of the locus, one with 8f decreasing toward 90° and the other with

8f increasing, intersect at D2. The encounter at D2 is shown in Fig. 9.

The additional computational effort to map the feedback solution, given

the ETMs, is relatively small. Moreover the logic of determining the Barrier

and Dispersal Points can be automated. The generation of the ETM data storage

is a straightforward, though tedious process; once done, however, the data are

common =o any interception/pursuit evasion problem in which the given aircraft

is a participant. The method of constructing maps of strateBies and isochrones

can serve as a useful tool for design, displays, training, and testing of sub-

optimal approximations. The extension of the method to interception and
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pursuit-evasion in three dimensions is, in principle, straightforward. If

the aircraft is modeled based on the energy-state approximation, with the

specific energy replacing the Mach number as a variable, a similar structure

is obtained. The extension of the method to pursuit-evaslon is outlined.

3.3 Pursuit-Evaslon. The above method of constructing isochrone

sections can he employed for an actively evading target. The cross sectioning

would be done for fixed initial Mach numbers and relative heading for the

pursuer and evader. The evader's ETM would be constructed in exactly the same

way as the pursuer's, with Bf, Tf, as parameters and Mf iterated till the

initial Mach number is matched. For each point on a constant-time locus, the

evader's ETM would be searched for the extremal that has an initial heading

equal to _o+_io . The "reachability" condition would be checked for the

extremal. This search for the extremal in the evader's ETM is independent of

the search for the Mf value that generates it. Other features of the method

are the same as for interception.

4. Conclusions

A method of locating Barrier and Dispersal points for a class of minimum-

time interception and pursuit-evasion problems has been developed. The method

obtains these points, which are an essential part of the game solution, by

drawing cross sections of the isochrones. Examples are shown for mlnimum-time

interception in a horizontal plane. The method can be extended to solve pursuit-

evasion between two aircraft in the plane and in three dimensions.
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Appendix

The differential equations for the adjolnts are

i = 0, (At)
x

i =0, (A2)

= -IxCOSBl-lySinB I-(IM+_) (_dA/dM-dB/dM- _ 2dC/dM) (A3)

+_B_(a/M-da/dM)/M,

and

IB = IxYl-l_l. (A4)

For the choice of coordinate axes shown in Fig. i, the transversality

conditions give

Ix(tf) = -2_R, (A5)

I (tf) = IB(t f) : _(=f) : 0, (A6)Y

and

H(tf) = -2_RMTfCOSBrf. (A7)

In (A7), MTf and BTf are the target's terminal Mach number and heading.

Equations (AI), (A2), and (A4), together with the end conditions (AS) and (A6),

yield (ii) - (13). The substitution of (A5) in (A7) leads to (14).
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history.

Fig. 3. Construction of a point on a constant-time locus.

Fig. 4. Constant-time loci in reduced space: (a) loci for 5, i0, 15, and
i

20 secs; (b) additional 30-sec locus with nonoptimal segments;

(c) Barrier and Dispersal points.

Fig. 5. Long-duration encounter starting close-in.

Fig. 6 Interceptor paths for a DP on the l-min locus.

Fig. 7. A 20 sec locus with 2 DPs.

Fig. 8. Interceptor path w&th bank switching.

Fig. 9. The two possible paths from the Dispersal Point D2.
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