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SUMMARY

Spiral bevel gears have widespread applications in the transmission
systems of helicopters, airplanes, trucks, automobiles, tanks and many other
machines. Major requirements in the field of helicopter transmissions are:
(a) improved life and reliability, (b) reduction in overall weight (i.e.,
a large power to weight ratio) without compromising the strength and
efficiency during the service life, (c) reduction in the transmission noise.

Spiral bevel gears which used in practice are normally generated with
approximately conjugate tooth surfaces by using special machine and tool
settings. Therefore, designers and researchers cannot solve the Hertzian
contact stress problem and define the dynamic capacity and contact fatigue
life until these settings are calculated. The geometry of gear tooth sur-
faces is very complicated and the determination of principal curvatures and
principal directions of tooth surfaces for Hertzian problem is a very hard
problem.

The first two parts of this report deal with tooth contact geometry.
In this report, a novel approach to the study of the geometry of spiral
bevel gears and to their rational design is proposed. The nonconjugate
tooth surfaces of spiral bevel gears are, in theory, replaced (or approxi-
mated) by conjugated tooth surfaces. These surfaces can be generated:

(a) by two conical surfaces which are rigidly connected with each other and
are in linear tangency along a common generatrix of tool cones and (b) by
a conical surface and a surface of revolution which are in linear tangency

along a circle.



We can imagine that four surfaces are in mesh: two of them are tool
surfaces Zl and 22, G1 and G2 are gear tooth surfaces. Surfaces Zl

and G1 are in linear contact and the contact line moves along the surfaces
Zi and Gi in the process of meshing. Surfaces Zl and 22 are rigidly
connected and move in the process of meshing as a whole body. Surfaces Gl
and G2 are in point contact and the point of their contact moves along

the surfaces in the process of meshing. Surfaces G1 and G2 are hypothet-
ical conjugate tooth surfaces which approximate the actual nonconjugate
tooth surfaces to within manufacturing tolerances in the neighborhood of any
path contact point. It is important to note that these conjugate tooth
surfaces are not practical to use and, due to a constant tooth depth, may be
undercut partly. However, the dynamic design of the gears is primarily
dependent upon the nature of tooth surfaces in the neighborhood of the path
of contact, and we propose to use these hypothetical conjugate surfaces for
this purpose.

Although these hypothetical conjugate surfaces are simpler than the
actual ones, the determination of their principal curvatures and directions
is still a complicated problem. Therefore, a new approach to the solution
of these is proposed in this report. 1In this approach, direct relationships
between the principal curvatures and directions of the tool surface and
those of the generated gear surface are obtained. Therefore, the principal
curvatures and directions of gear tooth surface are obtained without using
the complicated equations of these surfaces.

The proposed report utilizes effective methods of kinematic and
analytic geometry (e.g., matrices for coordinate transformation, kinematic

relations between motions of contact point and unit normal vector of two

surfaces, etc.). With the aid of these analytical tools, the Hertzian



contact problem for conjugate tooth surfaces can be solved. These results
are eventually useful in determining compressive load capacity and surface
fatigue life of spiral bevel gears.

In the third part of this report, a general theory of kinematical
errors exerted by manufacturing and assembly errors is developed. This
theory is used to determine the analytical relationship between gear
misalignments and kinematical errors. In the past, the influence of manu-
facturing errors and assembly errors on two surfaces in contact could be

determined only by using numerical methods.



1. BASIC METHODS OF INVESTIGATION

1.1 General Kinematic Relations

Three coordinate systems rigidly connected with mechanism links are

considered. One of these - Sf(xf,yf,zf) - is rigidly connected with the

frame. The other two - Si(xi,yi,zi) (i=1,2) are rigidly connected with
the driving and driven gears.
The tooth surface is represented by vector-function

1
gi(ui,ei) € C (u,0) € G (1.1.1)

1

where (ui,Oi) are surface coordinates. The symbol C™ means that function

{1.1.1) has continuous partial derivatives of first order with respect to
all its arguments. The designation G means that surface coordinates

belong to the area G.

The normal vector Ni and unit normal vector n, are represented by

the following equations:
or. or,
=i

= 3 o =1
Ni = 35 X 79, (1.1.2)
1 1

N.
~1 (1.1.3)

It is assumed that surface Zi is a regular one and Ni # 0.

Surface Zi and its unit normal vector may be represented in coordinate
system Sf by equations

2D = r M ,0,,6) (21,2) (.0 € 6, V<0l 1.0

aM = 0B ,,6,,0,) (1-1,2) (1.1.5)

Equations (1.1.4) and (1.1.5) can be obtained with the matrix equations

7 = g () (1.1.6)

)] = [yl Ing] (1.1.7)

Matrix [Mfi] is represented by



i ]
1 %12 *3 34 )
Mgl =125 25 85 a2y | =
831 %32 833 A3y
0 0 0 1
i cos(x Ax') cos(x Ay ) cos(x Nz ) x(Oi) W
£771 £771 £27i f
= cos(y X ) cos( " ) cos|( Sz ) (05)
£2%5 Yer¥s Yer2i) Vg (1.1.8)
cos(z Ax.) cos(z Ay ) cos(z Nz ) z(oi)
’ £771 £771 £771 f
0 0 0 1
L -
where xf 0i), yf(oi) and zf(oi) are '"mnew" coordinates of the "old" origin--
the coordinates of origin Oi of the coordinate system S.1 as defined in
coordinate system Sf.
The column matrix [ri] is represented by
' -
X,
i
£
[ri] =| z; (1.1.9)
1
Here the coordinates of a point M are homogeneous coordinates: M(xi,yi,zi,l)
Matrix [Lfi] is a sub-matrix of [Mfi]
[Lfl] =
i 1 —;os(x 5x.)  cos(xy.) cos(xSrz.) ]
31 212 *13 £2%1 £71 £12
= = 5 Y. 5Z. 1.1.10
= 3y, 3y, 5| = cos(yf,xi) cos(yf yl) cos(yf zl) ( )
N T cos(zf,xi) cos(zf,yi) cos(zf,zi)
- L -
The column matrix [ni] is represented by




ix

[ni] = niy (1.1.11)

iz
[ "

In the process of motion tooth surfaces Zl and 22 must be in con-

timous tangency. Therefore, the following equations are to be observed
(1) = (2
Ef (ul’el’¢l) - Ef (u2162)¢2) (1.1.12)
(1 = 2
net T (ug58,,0,) = 0t (u,,6,,4,), (1.1.13)

where ¢1 and ¢2 are the angles of rotation of the driving and driven gears,

respectively. Equation (1.1.12) expresses that surfaces Zl and 22 have

common points. Equation (1.1.13) expresses that surfaces Zl and 22 have

common unit normals at their common points. Together, equation systems

(1.1.12) and (1.1.13) express that surfaces X, and X, are in tangency.

1 2 .
Figure 1.1.1 shows surfaces Zl and Zz which are in tangency at point M.
Plane T 1is tangent to these surfaces at their point of tangency, point M.
Position vectors gél) and géz) drawn from the origin 0f of coordinate

system Sf(xf,yf,zf) coincide with each other at point M. At this point

the unit normal vectors gél) and géz) coincide, too.

Vector equations (1.1.12) and (1.1.13) yield the following six scalar

equations
x M u,0,,00) = P (u,,8,,6,) (1.1.14)
ye ™ uy,0,,0) = ¥, P (u),8,.0,) (1.1.15)
zf(l)tu1,91,¢1) =2, (0,9, (1.1.16)
nx(l)(u1,61,¢1) - nx(z)(u2,62,¢2) (1.1.17)
ny(l)(u1,91,¢1) = ny(Z)(u2,82,¢2) (1.1.18)
n M ,0,,6) = n P (uy.8,,0)) (1.1.19)
6



FIG. LI.1

Contacting Tooth Surfaces



Scalar equations (1.1.14) - (1.1.19) can be represented as
fk(u1,61,¢1,u2,62,¢2) =0 (k=1,2,...,6) (1.1.20)

But three equations (1.1.17) - (1.1.19) of the system (1.1.14) - (1.1.19)

(1) (2)

can provide only two independent equations because n are unit

~

and ne
heref 1)y _ (2) . . . .
vectors. Therefore, Inf | ]nf | and if two projections of each unit
vector are equal then the third projections must be equal, too. Con-
sequently, vector equations (1.1.12) and (1.1.13) yield a system of only

five independent equations:

fi(ul,81,¢1,u2,62,¢2) =0 (i=1,2,3,4,5) (1.1.21)
It is assumed that
1
{fl,fz,fs,f4,fs} e C (1.1.22)

In other words, it is assumed that functions fi(i=1,...,5) have with respect
to all arguments continuous partial derivatives of first order at least.

It is known that the instantaneous contact of tooth surfaces can be a
linear contact (along a spatial curve, in general) or a point contact. Let
us suppose that the system of equations (1.1.20) is satisfied at a point Mo
by a set of parameters

P= (4°,8,°9,%u,%,8,%¢,°) (1.1.23)
If link 1 is the input and tooth surfaces are in contact point in the neigh-
borhood of M, a system of functions

(6,(6,),u, (63,8, (8,),u,(9,),8,(9)) & ¢’
must exist in the neighborhood of Mo. This requirement will be satisfied

if at point M, the following inequality is observed

D(f. ,£.,£,,£ ,£)
D( SR ¢5) #0 (1.1.24)
Uys¥10U55Y55%
Here: 3f, Bf, Of 3F Of,
D(E,,£ £ ,f ,£.) S0, 0. Bu. 36, 3¢
12 e4 ¢5 _ |9 99y 9up 95, 9% (1.1.25)
D(uy,8;,u,,8,,0,) pf, 9F; OF Of Ofg

is the Jacobian of system (1.1.20)



Inequality (1.1.24) indicates that the tooth surfaces are in contact at a
point. If the inequality (1.1.24) becomes an equality this indicates that
surfaces contact each other along a line.

It results from the continuity of surface contact that

ar, M ,0,,0) = ar, P ,,6,.4,) (1.1.26)

dgfcl)(u1,01,¢1) = dgfcz)(u2,62,¢2) (1.1.27)
or that

drél) dréz)

& (u.0,,9)) = g (u,,8,,9,) (1.1.28)

dng"” ang®

F (ul’el,d)l) = E— (u2:62,¢2) (1.129)

; (i) (1) (1) (1) sl R € I
Let us designate dgf by Vabs and dgf by Novs (i=1,2). Here: Vabs 1S
dt dt
the velocity of contact point in the absolute motion (with respect to the

frame); n is the velocity of the end of unit normal in absolute motion

abs
(with respect to the frame).

The velocity of absolute motion can be represented as a sum of two
components: (a) velocity of transfer motion - together with the surface; and
(b) velocity of a relative motion - relative to the surface. Conse-

quently,

Xétl = Xgi) + !ﬁl)’ !gil = Xéi) * Xiz) (1.1.30)
. (1)
Babs ~tr

.(1 (1) () _ . . .(2)
Al or ), Tabs ~ Ber ¥ Py (1.1.31)

Equations (1.1.12), (1.1.13), (1.1.30) and (1.1.31) yield

. ar(11 do. . ar(i) du. Br(i) dse.
) o~ i 6.~ 1, ~ 1 (1.1.32)
~tr a¢i dt ’> ~r Bui dt aei dt



82(1) a; s <33(1) du, a‘l(i) de,
—_— —n =

A = 3 i (1.1.33)
~tT 8¢i dt ’> ~T Bui dt aei dt
Due to continuity of tangency
1 _ @ Q1) _ .(2)
Yabs = Yabs’ labs - Zabs (1.1.34)
Equations (1.1.30), (1.1.31) and (1.1.34) yield
(1) 1y _ @ (2)
Yer T Yr T T Yer Y Y (1.1.35)
(1), (1) _ .(2) , .(2)
Zern T Dy ey Y D2 (1.1.36)

Equations (1.1.34) and (1.1.35) were proposed by F. Litvin. On the basis of
these equations important problems in the theory of gearings, such

as problem of tooth-nonundercutting, relations between curvatures of two
surfaces in mesh, and the problem of kinematical errors of gear drives caused
by errors of manufacturing and assemblage, were solved.

1.2 Transfer Velocity

In addition to equation (1.1.32), transfer velocity may be defined in

a kinematical way, too.
Figure 1.2.1 shows a tooth surface Zi of gear i. The gear rotates

(1)

with angular velocity Wg about axis j-j. Generally, the axis of rotation
does not pass through the origin Of of coordinate system Sf.

The sliding vector géi) directed along j-j may be substituted by
éi) x Qéi)

3

the same vector which passes through Of and a vector-moment R

where Bél) is a position vector drawn from Of to an arbitrary point on

the line of action of Qél) (of axis j-j). Figure 2.1 shows vector
(1) _ax @)
Bf = OfN .
The reduction of the sliding vector gél) passing through point N(l)

by the same vector gél) passing through O and vector-moment Bél) x gél)

is based on the opportunity to represent the transfer velocity by the follow-
ing two equations:

iy _ 1) (i) (1.2.1)
Ver =9 X Pg

~tr
10



FIG 1.2.

Rotation of Tooth Surface About Axis Not Passing Through Origin
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L)

S I OO BN c (1.2.2)

~f ~f ~f
It is easy to verify that

o) o), g ) |

~f ~f ~f ~f ~f Pe > (1.2.3)

taking into account that

[ N(i)of + OfM(i) = OfM(i) - OfN(i) = 5§i) - géi) (1.2.4)
Consequently,
og e R xof) < ofP @D - i) < oD 4 o)

The velocity of transfer motion represented by equation (1.2.2) can be
considered as a resultant velocity of two motions: (a) translation with
the velocity Bgi) X Qéi); and (b) rotation with angular velocity Qéi)
about axis j'-j' drawn through Of parallel to axis j-j.

Now, let us define the transfer velocity of the unit normal vector.
Fig.1.2.2 shows point M(i) of the tooth surface Zi (i=1,2), the unit normal
Bgi), and the tangent plane T to the surface at point M(i). The surface

rotates about axis j-j with angular velocity Qéi).

Unlike the previous case, shown in Fig. 1.2.1, let us move the
sliding vector géi) not to point Of but to point M(i). Then, the trans-
fer motion may be represented as a resultant motion with two components: (a)
of translation with velocity M(i)N(i)xgéi); and (b) of rotation about
axis j'-j' with angular velocity Qéi). Axis j'-j' is drawn through point
m() parallel to j-j (Fig. 1.2.2);point N3 is an arbitrarily chosen point
on axis j-j.

By translation the unit normal vector g(i) will be moved with the surface
point M(i) parallel to its original direction. So, when surface Zi with
point M(i) and unit normal B(i) is translated with velocity M(i)N(i)xQéi)

vector nél) does not change its original direction. But the direction of

~

n(i) will be changed by rotation about axis j'-j'.

12
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Transfer Velocity of Unit Normal Vector
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Fig. 1.2.2 shows two positions of the unit vector: 9(1) is the initial
position and 5(1) is the changed position after rotation about axis j'-j!

by the angle d¢(1) = Qél) dt. The difference

HONMO PO - 1.2.5)

represents the displacement of unit normal by rotation about axis j'-j'.

Vector dntr is represented by the equation

dng = @ x a1 < @ x 2 W)ar (1.2.6)

Accordingly, the velocity ﬂ(l) of transfer motion may be represented by
& ~tr

equation

. dn . .
?Ei) = dEtr = ‘i‘(l) x 2(1) (1.2.7)

1.3 Relative Velocity of Contact Points

Consider tooth surfaces Zl and ZZ which are in mesh. Points M(l)
and M(Z) are rigidly connected with their respective surfaces and coincide
with each other at the point of surface contact.

(1) (2)
1

Let us designate by v and vy the transfer velocities of points
M) ang M(z); the subscript '"1" means that yfl) and !£2) are

represented in terms of components of coordinate system S1 rigidly con-

nected with surface Zl. The relative velocity
ey _, @ _, M Ls1
!1 = Yl El ( 3. )

expresses the velocity of point M(Z) with respect to point M(l) defined by

. 1
an observer located at the system S1 at point M( ).

Sample problem 1.3.1
Gears 1 and 2 rotate about crossed axes z; and z, with angular

velocities m(l) and w(z) (Fig. 1.3.1);axes zl and 22 make an angle

. . 2
Y; the shortest distance between z, and z, 1is C. Points M(l) and M( )

of surfaces Zl and 22 coincide with each other at the point of contact M.

14
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Vectors for Computing Relative Velocity at Point M
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The transfer velocities of points Mcl) and M(Z) are represented by the

equations
bos 31 k
MCO RN E) I o1 LM (1)
Vo= x O = oo 037 . (1.3.2)
X "1 %1
(2) 2 . 5% .00 (2)
VioT T e T xOM+ 0,0, x )0 =
b RS | K Y 11 k
L2 @ @ (02 0 0 (1.3.3)
x1 yl zl 1 1 1
@ L@ @)
1N 21 17 %1 9
Here: (xl,yl,zlj are coordinates of point M(I)Ehﬂﬂ)fhh m(i) (i), mtl)
o W (023' (02)
are projections of angular velocity (i=1,2); 1 zy
are coordinates of point O2 in terms of coordinate system S._.
Surface Zl rotates about z) and
OO RN 1 . @)
xl yl = 0, mzl = (1.3.4)
It is easy to express méz) in terms of components of coordinate

system Sf rigidly connected with the frame
0
2 =
[wé )] _m(Z) siny
—m(z)cosy
(2)

The angular velocity o

coordinate system S1 with the aid of the matrix equation

[, @7 - @)

[l o
Here: matrix

16

(1.3.5)

can be expressed in terms of components of

(1.3.6)



r‘ i ~. —
F cosqb1 51n¢1 0 0
L ~-sind, cosd 0 -m(2)siny ' (1.3.7)
1f = 1 1 T
0 0 1 -m(z)cosY
describes transformation of vector projeéfions by transition from Sf to
Sl'
It results from expressions (1.3.5)-(1.3.7) that
-mcz)sinY sinqb1
[wlcz)] = -w(z) siny coscjb1 (1.3.8)
—wcz)cosy

Transformation of coordinates of some point given in system S. to S is

f 1
represented by matrix equation
[rl] = [le] [rf]’ (1.3-9)
where
cos¢1 51n¢1 0 0
M, ] = -sin¢1 cosd)1 0 0 (1.3.10)
1f
0 0 1 0
0 0 0 1
For point O2 the column matrix is given by
-C
0 ———
[rf] = [Rf] - (R~ 0,0,) (1.3.11)
[ 1]
Expressions (1.3.9)-(1.3.14) yield
0, ] ]
X -C cosd
1 1
(02) C Sln¢1
[®,] Y, 1 (R,=0,0,) (1.3.12)
0,
2
. T
1
17




The subscripts "f" and "1" for [Rf] and [Rl] denote that the same vector

R = 0102 is expressed in terms of components of two coordinate systems:

Sf and Sl.

Equations (1.3.2)-(1.3.4), (1.3.8) and (1.3.12) yield

v, B = v, Py - @

(yl(w(z)cosY + w(l))—zlw(z)sinY cos¢1—C(u(2)cosy sind)1
= -xl(w(z)cosy + w(l))+zlm(2)siny'sin¢1—Ccu(2)cosY cos¢1 (1.3.13)
Ned)

51ny(x1cos¢1-ylsln¢1 + C)

(21)

d

To express the relative velocity v in terms of components of coordinate

system Sf it is sufficient to put in matrix (1.3.13) ¢1 =0 and X, =

Xes ¥ = Ve 2, = Zg because with ¢1 =0 the coordinate system S1 coin-

cides with S..

f -
ye@@eosy + 02 0@ siny

v 27 = | xp 0P eosy + oD)-coPcosy (1.3.14)
:ucz)sinY(xf + C) ]

For the case when motion is transformed between parallel axes the crossing

angle Y nrnust be put equal to zero in matrices (1.3.13) and (1.3.14). For
gear drives with intersecting axes, such as bevel gears, the shortest distance
C must be put equal to zero in the same matrices; the angle vy 1is made by

intersected axes.

1.4. The General Law of Gearings

Let us suppose that tooth surfaces Zl and 22 which are in linear or

point contact must transform motion with prescribed angular velocity ratio
2 . . . .
R21 = w( ):w(l) with prescribed location of the axes of rotation. Because

the contact of surfaces must be a continuous one the surfaces should not

interfere each other or lose their contact. Therefore, at a point of contact

18



(21)

the relative velocity v, must belong to the common tangent plane T
to the surfaces at their contact point M (Fig. 1.4.1). Consequently,

at a point of contact the following equation

L3 (21) —_
§1 ¥y =0 1.4.1)
must be observed. Here: N1 is the common surface normal at the contact
point M, v (21 is the relative velocity represented by equations (1.3.13).

~1

For a surface Zl represented by vector-function
r, (u,8)ecl, (u,0)eG (1.4.2)

the surface normal is defined by equation

arl arl
M Tw X (1.4.3)

Equations _(1.4.1) and (1.4.3)-yield that the scalar triple product

or, or
[ >l 1 !1(21) is equal to zero. The equation

du 06
dr, dr, - ’
=1 X1 21| _
[—au % U ] = 0 (1.4.4)
provides an equation of meshing
£(u,8,6;) =0 (1.4.5)
or Brl
because 5&— and 5%—- are functions of surface coordinates (u,8) and

12 3 i
!( )(xl’yl’zl’¢l) is a function of (u,9,¢1)-

Surface EI' can be represented in coordinate system Zf by the

vector-function
. 1 2
0,0 )ect, @ es, o, Mo <o P (1.4.6)

Different valuesqof ¢1 cofrespond to different positions of Ll in coordinate

system Sf. For a definite position of 21 the motion parameter ¢1 must

be considered as a fixed one.

19
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FIG 1.4.1

Contacting Tooth Surfaces and Common Tangent Plane
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The equation of meshing (1.4.5) can be obtained by

or . ar
~f .f 21
[‘au—s“e‘ e )] = £(,8,9)) =0 (1.4.7)
Here:
or or
~£ ~f _
T X 55 = N,f (1.4.8)

(z1)

is the surface normal; the relativg veloéity Ve is represented by
equations (1.3.14). ‘

For gearings with parallel. and intersecting axes the law of meshing
can be expressed in another form.

For gears with parallel axes the relative motion can be represented as a

rotation about the instantaneous axis of rotation I-I (Fig. 1.4.2). By a given

ratio
0@
R =™ (1.4.9)
®
]
the relative motion is rolling of two cylinders with operating radii T,
)
and T, defined by equations
C@
T
1 _ w _ 1 ] _
Ty R21, r1 + r2 c, (1.4.10)
T w
2
where C = 0102 is the distance between the axes of rotation.
With cylinder 1 fixed, cylinder 2 rotates about axis I-I with angular

(21) = m(Z) - w(l]. The relative velocity v1(21)

~ ~

velocity w is represented
by equation

v, (Z1 - (21 « MM, | (1.4.11)

t
where M is the point of contact of surfaces 21 and 22; MM is a per-
pendicular to axis I-I drawn from point M.

Equations (1.4.1) and (1.4.11) yield
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(b)

FIG 1.4.2

Pitch Cylinders and Instantaneous Axis of Rotation
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N, * (9(21) XM M = [§19(21)M'M] =0 (1.4.12)

~

Because the scalar triple product is equal to zero,all three vectors must
belong to the same plane and the surface normal § must intersect the
instantaneous axis of rotation I-I (Fig. 1.4.2,B). This fact results in
the following theorem:

The contact line of tooth surfaces of gears with parallel axes of
rotation must be such that common normal to tooth surfaces at any point
of contact intersects the instantaneous axis I-I of rotation (the
line of tangency of operating pitch cylinders).

According to this theorem the law of meshing may be defined with the
following equations

Xl—xl(u,e) Yl—yl(u,a) ) Zl—zl(u,e)

= = (1.4.13)
le Nyl Nzl

Here: xl(u,e), yl(u,G), zl(u,e) are coordinates of a point of surface
Zl; X1(¢1), Y1(¢1), Zl(ll) are coordinates of a point which belongs to

axis I-I (Fig.1.4.2). It is assumed that axis Z, is the rotation axis of

gear 1 and 1, is a coordinate of a point of this axis.

1

The first equation (1.4.13)
X1(¢l)-xl(u,9) ) Y1(¢1)-Y1FU,9)

le(u,G) Nylku,e)

(1.4.14)

yields the equation of meshing (1.4.5).

Equations (1.4.13) can be applied for bevel gears, too.

The equation of meshing can also be defined another way, if iﬁstead of
(1.4.14) the following equation is used

Xf_xf(u’e,¢1) Yf_yf(u’e,q)l)

= (1.4.15)
N, (0,0,6,) ~ N (68,6

Subscript "f'" denotes that all vectors are represented in terms

of components of coordinate system Sf(xf,yf,zf) rigidly connected with the
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frame; Xf,Yf,Zf are coordinétes of a point which belongs to the axis of

instantaneous rotation; are coordinates of a point of surface

XgYgrle

z are projection of surface normal.

1’ Nxf’Nyf’sz

1.5 Contact Lines, Surface of Action, The Enveloped Surface -

The same three coordinate systems mentioned in item 1.1 are considered.
The problem to be solved ‘can be formulated as follows: The surface Zl of
gear 1 teeth is given; surface 22 of gear 2 teeth, the surface of action

Zf and lines of contact of surfaces Zl and 22 must be defined. Let us take

L. as the generating surface and 22 as the surface generated by I

1 1

Let us suppose that surface I, is represented by vector-function

1
rl(u,e)ecl, (u,6) € G (1.5.1)

Then, contact lines on surface Zl can be represented by the following

equations
X, = xl(u,e)
y, = ¥,(u,6)
1 1 (1.5.2)
z, = zl(u,e)

The first three equations represent surface I the fourth one represents

1’
the equation of meshing; ¢l is a fixed value for every contact line.

covered with contact lines CL(¢1(1))

Fig. 1.5.1 shows surface Zl

(i=1,2,3,...), where ¢1(1) are fixed values. By a definite value of ¢§1)
line CL(¢1(1)) will become the line of instantaneous tangency of 21 and
22.
The to-be-defined surface 22 can be represented as the locus of
contact lines in coordinate system Sz(xz,yz,zz). Consequently, surface

22 can be represented by equations

)

z2 = Zz(u’e’¢1)’ f(u,e,d)l):O

x,(1,0,6,), ¥, = yz(u’e’¢1)’_ (1.5.3)

24
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Surface Covered with Contact Lines
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The first of these three equations can be obtained through the matrix equation

[rz] = Ele(q;l):l :rl(u,e)], (1.5.4)
where _xz_ _Xl(u,e)_
y,(u,8)
[1‘2] i )Z,z ’ [1'1] i . zi(u,G) ;
1 1 i

matrix [MZJ describes coordinate transformation by transition from S1
to S,.

2

The surface of action is a locus of contact lines represented in the

coordinate system S by equations

f
Xg = xf(u,6,¢1), yf(u,6,¢1), zp = zf(u,9,¢1),

f(u,6,¢1)=0 (1.5.5)

The first three equations are obtained by using the matrix equation

[rf] = [Mfl(¢1)] [rl(u,eﬂ (1.5.6)

Sample problem 1.5.1.

The generating process of spiral bevel gears is shown in Fig. 1.5.2.
The tool is a head-cutter with blades mounted in it. Both shapes of a
blade are straight lines. By rotation about head-cutter axis C the
straight-lined side of the blade describes a cone surface with vertex angle
ch (Fig. 1.5.3,a). The angular velocity of the head-cutter rotation is
not related to the kinematics of tooth generation.

The head cutter is mounted on the cradle of the cutting machine (Fig.
1.5.2). In the process of cutting the cradle and the to-be-generated
gear rotate about intersecting axes 0-0 and a-a with angular velocities
9(1) and 9(2), respectively. The generating surface Zl and the
generating gear are shown in Fig. 1.5.3.

The conic surface Zl is represented in coordinate system SC
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FIG. 1.5.2

Schematic of Cutting Process for Spiral Bevel Gears
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b

(Fig. 1.5.4,a) by the equation

X, = rccot wc -u coswc,
Yo = u51n¢c sin 6, (1.5.7)
z = usiny cosf.

c c

)
Here: - u=[0 NI and 8 are surface coordinates, xpc is the angle made
by the cone generatrix and cone axis and T, is the mean radius of the head
cutter measured in plane xc=0.

' Coordinate systems Sc and S, are rigidly connected with the gener-

1

ating gear. Axis x, 1is the axis of rotation of the generating gear by

1
cutting. The location of the head cutter (or of system Sc) is defined by

the distance 010c=b and by the angle q (Fig. 1.5.4,b and Fig. 1.5.4,c);

B 1is the mean spiral angle; M is the point of intersection of the cone

surface and axis z;-

The coordinate transformation from system Sc to S, 1is represented

1

by matrix equation

(r,] =[] [=.] _ (1.5.8)
where (Fig. 1.5.4)

1 0 0 0
0 cosq -sing -bsin q
[Ml ] - (1.5.9)
¢ 0 sinq cosgq bcos q
) ‘_O 0 0 1 J

Equations (1.5.7)-(1.5.9) yield

X; = rccot lpc -u cos wc
Yy = usin w(': sin(6-q)-bsingq (1.5.10)
z, = usinwccos(e-q)+b cos q.

Equations (1.5.10) represent the generating surface in coordinate system

S,» Tepresent the generating gear.

The surface normal is represented by the equation
N - or, < 85'1
~1 238 Ju
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.:\i.'l j.l El
= 0 u sin tpccos 6-q) -u sin \pcsin 6-q | =
-cos l,bc sin wcsin(e—q) sin l,bc cos (0-q)
_ .2 . . . _ . . _
= usin wc i, +u 51mllC cosxpC51n(6 q):]'_1 +u s:.mpc coswccos 6 q)El
(1.5.11)

The surface unit normal is represented by the equations (it is assumed that
u sim\bc #0):

n, = sinwcil + COS \pc sin(e-q)i1 + cos tpc cos(e—q)lj1 (}.5.12)
In the process of cutting the generating gear 1 rotates about axis Xg (of
coordinate system Sf) rigidly connected with the frame, while the generated
gear 2 rotates about axis zp of the auxiliary coordinate system SP which
is rigidly connected with Sf(xf,yf, zf) (Fig. 1.5.5). The angular velocities
L_g(l) and 93(2) are related such that OPM(p) is the instantaneous axis of
rotation (OPM(P) is- the generatrix of the pitch cone of gear 2). A coordinate
system 82 (see below) is rigidly connected with gear 2.

The coordinate transformation is represented by matrix equations

el =] )] (1.5.12)
[p] [Mpf] el (1.5.13)
] = [y,] [,] (1.5.14)

According to the drawings of Figs. 1.5.5-7, the mentioned matrices are

given by
(1 o 0 0]
[Mfl] - 0 cos ¢1 sin ¢1 0 (1.5.15)
0 -sin q)l c?s ¢1 0
[0 o0 0 1]
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cos(Yz-Az) 0 sin(yz-Az) 11cos(y2_A2)

_ 0 1 0 0
Mpf] = (1.5.16)
-sin(yz-Az) 0 cos(Yz-AZ) -hsin(Yz-Az)
L o 0 0 1 _
™ cosé sing 0 0]
2 2
Dﬁp] -sing, cos¢, O O (1.5.17)
0 0 1 0
0 0 0 1
Let us define the equation of meshing (1.4.7). The relative velocity vf(21)

is represented by equation

Xf(ZI) = Yf(Z) - !f(?) = @f(z) X1p+ 0,0, X 9%2) - chl) X Te
(chz) - Qf(l))x o+ 5135 X QEQ) -
is s K¢
~;m(2)sin(Y2-A2)+w(1) 0 m(z)cos(yz—Az) +
Xg e %
if s ke
n 0 0 (1.5.17)
-w(z)sin(YZ-Az) 0 w(z)cos(Yz—Az)
Vectors 9(2) and 9(1) are related such that g(z)-g(l) = g(21) coincides

with the generatrix of the pitch cone. Consequently (Fig. 1.5.5),

(2)

W sinY2 =W 2

Equations (1.5.17) and (1.5.18) yield

YéZI) - m(Z)COS(YZ_Az) Freip + (xprh)ig] (1.5.19)

(l)cosA (1.5.18)

It results from equation of meshing (1.4.7) that Nf' !§21) =0 and from

(1.5.19) that

_nyfx + (xf+L51nA2)Nfy =0

35
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Here LsinA,=h (Fig. 1.5.5), where 1=02M(p) is the mean length

of the generatrix of pitch cone.
Equation (1.5.20} can be obtained another way, on the basis.of equation

(1.4.14), which was represented above by

Xe-X Y .-y
f°f
. - Nf f.o (1.5.21)
fx fy
Here Xf and Yf are coordinates of an arbitrary point on instantaneous
axis of rotation - generatrix OPM(P). In the discussed case putting into

equation (1.5.21) coordinates Xf=h, Yf=0 of point 0p (Fig. 1.5.7),
equation (1.5.20) will be found.

Equation (1.5.10) and matrix equation (1.5.12) with matrix (1.5.15)

yield that
Xg = rccot wc -u cos wc
Yg = usin chSin(e-q+¢1)-b 51n(q—cb1) (1.5.22)
zp = usin wc cos(e-q+¢l) +bcos(q-¢1)

Equation (1.5.11) and matrix equation

bl = Egy ] (1.5.23)
yield

ng = sinwc, nfy = cos lpc sin(e-q+¢l),

ng = cos wc cos(e-q+¢1) (1.5.24)

Matrix [Lfl] is a submatrix of [Mg,] which is found from [M]

by elimination of the fourth row and fourth column. Projections of N and

fx

of N contained in equation (1.5.20) can be substituted by proportional

fy
projections of mn..
Equations (1.5.20), (1.5.22) and (1.5.24) yield
(rC cot l,bc— u coswc+L sin Az) cosd}csin(e—qﬂbl) -
fusin ¥ sin(8-q+¢,)~ b sin(q-c_bl)] siny =
[(rccot wc +L sin Az)coswc—u] sin(S—q+¢1)+

bsinwcsin(q—(bl) = f(u,6,¢1)=0 . (1.5.25)
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Equation (1.5.25) is the equation of meshing.
Equations (1.5.10) and (1.5.25) represent the set of contact lines
covering surface Zl. Each contact line of the set is defined by fixed

value of ¢  Surface 22 is represented by equations

X, = xz(u,6,¢1),. Y, = yz(u,6,¢1), z, = Zz(u,9,¢11,
£(u,9,¢,)=0 (1.5.26)

The first three equations are defined by equations (1.5.10) and matrix

[, = [MZp] [Mpf] [Mﬂ] [rl] (1.5.27)

1.6 Relations Between Principal Curvatures and Directions of Two Surfaces

equality

Being in Meshing

Generally, equations of the enveloped surface are considerably more com-
plicated than of the enveloping one. Therefore a direct way to obtain the
principal curvatures and directions of the enveloped surface is a very hard
problem. lThe solution of this problem can be significantly simplified if
relations between the principal curvatures and directions of two surfaces which
are in mesh are known. Such relations were worked out first by F. L.

Litvin. It is necessary to emphasize that the principal curvatures and
directions of two contacting surfaces are necessary to define the size and
direction of contact ellipse at the contact point.

Let us suppose that surfaces Zl and 22 contact each other at
point M given in the coordinate system Sf. rigidly connected with the
frame. Principal directions of surface 21 are represented by unit
vectors EI and iII

known. At the point of contact the equation of meshing

and principal curvatures Ky and K11 of 21 are

ne 0y (1D D[ (oD -P)xx V-2 xaf?)] -0 (1.6.1)

~ ~

is satisfied
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Here: nf(l) is the surface Z unit normal; Zf(lZ) is the relative
velocity (v (12)_ f( )-chzl; Ve (i)(i=1,2) is the transfer velocity of
a point rigidly connected with surface Z Rf is a vector-radius drawn
from the origin of coordinate system Sf to an arbitrary point of the
(2). (. |
M

line of action of angular velocity we °5 vector Vf(lz)_

-~

(vf(z) - vf(l)) where vf( 1 is the vector represented by equations (1.3.14).
Equation of meshing (1.6.1) must be observed not only at the point of
contact M, but in the neighborhood of M, too. Therefore, equation (1.6.1) can

be differentiated which yields:
é(})v(12)+ n(})(wclz)x g(l))=0 (1.6.2)
w?)
It is assmued that w(l)- const, R(Zl) = const, R = const. Lower

(1)

subscript "f" is eliminated for simpliflcatlon.

According to results demonstrated in items (1.1) and (1.2) by equations
(1.1.31) and (1.2.7) it yields that

~(1)= Q(IJX I~1(13+ ér(lJ (1.6.3)
Equation (1.1.30) yields
f(l) - Xtr(1) + l,r(l) (1.6.4)

It results from equations (1.6.2), (1.6.3) and (1.6.4) that

[9(1)11(1)!(123] +é§1)-x(123+[Bm‘:’(lz)!tr(l)]

[Bcl)gclzzylgl)] o | (2.6.5)
where

l,(12) - Xtr(l) _ l,tr(Z).. (1.6.6)

12 _ ) _ (@) (1.6.7)

Equations (1.6.5)-(1.6.7) yield
5 (0,02, D1y 1y 4y (,Wyy M ,Dy, W),
=0 (1.6.8)
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Two other equations

@ .,

Ve ~r(1) * 3(12) (1.6.9

(2

(1), 12y D
~T ~ ~

=1, (1.6.10)

were represented before in item (1.1) by equations (1.1.35) and (1.1.36).
Relations between the principal curvatures and principal directions of

surfaces Zl and 22 will be composed on the basis of equations (1.6.8) -

(1.6.10). Before this, let us recall the following equations from
differential geometry. The normal curvature of a surface is represented by
equation

I:l?[‘ VI‘
K = = ﬁ_ (1.6.11)
~T ~T

Along the principal direction, vectors ﬁr and v. are co-linear and
the principal curvature is represented by equation

n.i=- Ki(zr'f)’ (1.6.12)

where i is the unit vector directed along the principal direction.
Now, let us place two right trihedrons at the contact point M (Fig.

1.6.1): Sa(EI’EII’B) and Sb(llll’fiv’g) Here: i, are unit vectors

directed along principal directions of surface Zl; iIII and iiv are
unit vectors directed along principal directions of surface 22; n 1is the

common unit normal of surfaces I and Zz. It is assumed that unit vectors

1
make an angle o (Fig. 1.6.1). Vectors !r(l), n 1) and

i, and i n.

LI ~II1

Vr(2) ﬁr(z) can be expressed in terms of components of coordinate systems

Sa and S, by following equations

b
Xr(l) = Vr§1)51 * Vr§%)211 (1.6.13)
i, - a g Py (1.6.14)
Xr(Z) = Vr§§} ipir * V§§3 iiv (1.6.15)
ér(Z) = ﬂr%%% irpr ﬁrgi)iiv (1.6.16)
39
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Principal Directions of Surfaces I, and X
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(2)

Vectors and n
ect V. r

(2

can be expressed in terms of components of

coordinate system Sa(EI’iII’B) by the following equations

A o A M o T B O RV
rﬁ) = l’r(?)iu = Verrrirrroior ¢t "ri(\zr)iiv‘in (1.6.18)
"‘rEZ) ) ~r(2231'“rg)1 £33 5 20 ﬁricxzr)iiv'il (1.6.19)
r%? = ’;‘fc?)i‘n = fogpridporein t “1(33: Liviing - (1.6.20)
Here (Fig. 1.6.1):
EIII'EI = cos 0, Eivix = - sinag, iIII.iII=sin03 Ziv'iII=c°so’(1.6.21)
Equations (1.6.17)-(1.6.21) yield
r§2) = g%} cos O -Vﬁi% sino (1.6.22)
Vrgi) = rgii singo + Vrgs)cosd - (1.6.22,a)
al2) =4 (2 coso- i Hsino (1.6.23)
189 =8 D sinos a_Peoso (1.6.24)

Equations (1.6.8)-(1.6.10), (1.6.12) and (1.6.22)-(1.6.24) yield the

vy (1)

following system of 9 linear equations in 8 unknowns 1 VeI

ey (1) (2 (23 . (2) .(2),

fper e anI > Vo111’ Vreiv? MrIIn’ nrlv

(v 02 otV VD) [‘3(12)’3(1)51] ) "ﬂ)l [‘9(12)“(1)111}

rI Vi
[(1) ® (l)] ) [ MMy (2)] (1.6.25)
~tr ~ ~ ~tr
Vr:E%} cOs O - vl(‘z\)ISinG_ Vrgl) = VI(IZ) (1.6.26)
r%%% sino + vii%cosc - Vrgi) - VII(IZ) (1.6.27)
rﬁ)lcosc_ “§23,51"° AP [@(12)3 31] (1.6.28)
 Bsino + 1Bcosc - 40 [0 1, ] .09
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R (1.6.30)

I'rl
(2) (1) _
N AR A S S (1.6.31)
(2) (2) _
Dorrt * ¥rrrVerir - 0 (1.6.32)
(2) (2) _
Ao+ ok, v =0 (1.6.33)
Here: Kp and Kire K111 and Ky, are principal curvatures of surfaces
Zl and 22 at contact point M.
After eliminating 6 unknowns a system of 3 linear equations in two
- (1 Y )
unknowns X) = Vg > Xy = Vogg can be got:
d11%Xg * 2%, = by
ay1Xy * ayX, = b2 (1.6.34)
331%) * 33X, = by
Here:
a5 = - Kp* 12 BKIII R Oppp - Kiv)°°52"];
aj, =3, = 1/2 [(KIII - Kiv)51n20] 5
3y, = - Ky * 1/2 [(KIII gy - ppp - Kiv)°°52°] ;
- (1) (12). _ (12}
a31 © [ Ll A
_ (1) (12), _ (12)
432 © [ 304 IS S Ad 4
(12)
_ (1), (12), V1 - -
b, = [E @ il 3 (Kppp * <5 *(Kgpp - Ky )cos 20
(12)
11 ) .
—— (Kypp - Ky, )sin20
v (12)
Ly a2. I ) )
b, = [’3 RS § 3 ) (Kppp = Ky,)sin2o -
VII(lz)
2 [(KIII * Ky )= (kppp - Ky )eos 20]
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by = [E(I)QCZ)Xtﬁl)] - [e(l)e(l)xtf-z)]

The number of equations (1.6.34) is not equal to the number of unknowns.
Therefore, requirements to this system by which the system will have a
solution must be discusse&.

Let us consider two cases: (a) the instantaneous contact of surfaces
21 and 22 is a linear-contact; (b) the instantaneous contact of surfaces
is a point contact.

In the first case surface Zl is covered with instantaneous contact
lines (Fig. 1.6.2,a) and the direction of Yr(l) from point M to the
neighboring one is an indefinite one and the system (1.6.34) must have an
infinite number of solutions. In the second case contact points makes on
surface Zl a line (Fig. 1.6.2,b), the direction of Yr(l) to the neigh-
boring point is a definite one, and the system (1.6.34) must possess one
solution.

It is known from linear algebra that system (1.6.34) possesses an

infinite number of solutions if the rank of matrix

a5, 212 By
2,1 a5, b2 (1.6.35)
a a b

31 32 3
is equal to one

That yields

87 B2 P8y %y B (1.6.36)

.3 b0 &, -3, b, 6.
21 22 2 31 32 3

Taking into account that a5, = 2, equalities (1.6.36) can be repre-
sented as:

a a a b

3.1_1 = ;1_2_ = 31 _ b_l_, (1.6.37)
21 22 32 2

a b

__a21 =2 (1.6.38)
31 bg

43



)
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Directions of Velocity of Contact Point
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The system of equalities (1.6.37) provides only two independent
equations because

- (12)
b a IT

. a2
1 317 V1 41V

= _y (12) (12)
11 b a vI alZ—VII a

VI 32 22

Equality (1.6.38) and

a a a
11 12 31
L L L (1.6.39)
31 %22 32
provide three equations for definition of KiT1? Kiv and 0O:
2F
tan 20 = — (1.6.40)
KI KII + G
Kigr * Kiv S K * ¥p * S (1.6.41)
K -K + G
17011
K111 ~ Kiv © 7 cos 20 (1.6.42)
Here:
- 331%32
) (12) (12)
by + vy Tagy tVip T2
a 2 a 2
G= 31 _ 732
(12) (12)
by + vy Az Vi T2
a 2., a z
g = 31 32
h - (12) (12)
by + Vit Tagy *Vyp T2
For the case when surfaces 21 and 22 are in point contact and the sys-

tem (1.6.34) possesses one solution the rank of matrix (1.6.35) must be equal

to two. That yields that the determinant of matrix (1.6.35) must be equal
to zero. Consequently,
23 %12 Py
a, 3, b2 =0 (1.6.43)
331 233 D3

Equality (1.6.43) provides an equation
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£(k KK Tp7K5y00) = 0 (1.6.44)

which relates the principal curvatures and directions of two surfaces in
point contact.

Sample problem 1.6.1. Let us compose equations to define principal curvatures
and directions of a spiral bevel gear generated by a cone surface (sample

problem 1.5.1). The generating surface 1 is represented by equation

1
(1.5.22).
The relative velocity vr(l) is represented by the following equations
Bxf au , axf_cﬁ
Ju dt 98 dt
ay dy
Dy _ f du f dé
[vr = sac T 96 at (1.6.45)
azfi‘i+ Bzfé_e_
Lau dt 96 dt |

Equation (1.5.22) and equality (1.6.45) yield

] -

du
—co's \pca -l
. . du . de
51n1bC51n(6—q+¢1) Fra u51nwccos(6—q+¢1) Fra (1.6.46)
. d . . doe
Lsm \pc cos (9—q+¢1) d—':— - usin chsm(e—qﬂbl) el

The unit normal of generating surface was represented by equations (1.5.24).

It results from (1.5.24) that

0
[hr(l)] =l cos wc cos(e-q+¢)1) %?:- (1.6.47)
dé

-cos Ll)c sin(e—q+¢1) rra
Vectors (1.6.46) and (1.6.47) are co-linear for principal directions of

surface Zl. Consequently,
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A ) )

Xr _ yr _ zr
[ES N ES Y (1.6.48)
vxr Vyr Vzr

Equalities (1.6.46) - (1.6.48) yield that

du do

dTa -0 (1.6.49)

One of the principal directions with unit vector iI corresponds to

du _ o The principal curvature
at
SR
K1 = - " " Ty - wrany (1.6.50)
\} v c
yr zr

The unit vector i, can be represented by equation

~1

,

T du _
i = y (1)’ by dt 0 (1.6.51)
~r

Equations (1.6.46) and (1.6.51)"'yield
0
[i;;]=] cos(-q+¢)) (1.6.52)
-sin(6-q+¢,)
The second principal direction corresponds to Friia 0. The principal

curvature is

Kip = 0] (1.6.53)

and the unit vector of the principal direction is
-cos wc
[111] = 51n1pC51n(6-q+¢1) (1.6.54)
sin Il)c cos (6-q+¢1)

A case is suggested when A2 = 0, m(1)= lg—g—. Then:

cu(z) = 1 ,
siny,
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-1

[wcl)] = 0 »

0
-sin Y,
(2{] _ 1 0
[cu " sin Y,
cos Y,

[vclz)]= -cot Y, X s
0

where (x,y,z) are represented by equations (1.5.22), the lower subscript "f"
is eliminated. Equations (1.6.40)-(1.6.42) define principal curvatures and
directions of tooth surface 22 of the generated gear.

Let us define principal curvatures and directions at the mean contact
point M with coordinates x=y=0, z=L. It results from equations (1.5.22)
and (1.5.24) that point M is generated by ¢1=0, 6-q=90°-B. By x=0, y=0
vector 3(12) is equal to zero. Coefficients azqs 3z5s b3, F and S are
represented by equations:

ag, = [5(1)9(12)51] = siny_sinf coty, (1.6.55)
Here:
sinl.b_c
[n(l)] - |cos wc cos B
roswcsinB
[0

[m(IZ)] _]o

L-COt 'Y2

0

[iI] =] sinB

-c0s B
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1) (12).
232 =[l‘( )‘i’( )3II] = cosBooty, (1.6.56)

Here:
—coswc
[iII] = sinlpccosB
sinwcsinB
= o) (2), (1) 1) (1 2 .
b3 = [E O Ve, - B( )9( )Xt£ ) = - L51n¢EcotY2 (1.6.56,a)
Here:
-1
= . @] _ M - Dys5 -
[cu(l)] i [Vtr T Ver = WUXOM =
0
ir jf kf 0 -1
-1 0 oy = JL{; [w(Z)] 10
0 0 L 0 coty2
2a_.a sin2B coty
=232 2 (1.6.57)
3
a.2 - a (sinzw sin28 - coszs)cotyj
_ 31 32 _ c 2
G = - = - TSTRT (1.6.58)
3 c
a2 + a2 (sinzw sinZB + cosZB)cotY
_ 31 32 _ c 2
S = 5 = - TSIy (1.6.59)
3 c
Equation (1.6.50) yields that at point M
cos Y
_ 1 _ [o
KI = - Gtany = - T (1.6.60)
c c

It results from equations (1.6.40)-(1.6.42) and (1.6.57)-(1.6.59) that

2F
tan2¢0 = —mm——— =
KI - KII + G
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sin 2 B cot Y,

. 2 (1.6.61)
L (Slnzw sin“B - coszs)coty
c 2
;7‘C05¢c + STy
< c
Kipp * Kiy " Ky * ¥ * S =
. L2 2 2
cos Ibc (sin wc51n B + cos B)cot 'Y2
- - - (1.6.62)
T Lsmwc
PR Sl & S
111 iv cos 20
. 2 . 2 2
] coswc } (sin wC51n B ~ cos B)coty2
T, Lsinlpc
B cos 20 (1.6.63)

Equations (1.6.61)-(1.6.63) define the principal curvatures and directions
of the generated surface of spiral bevel gear at the main contact point M.

These equations may be applied for bevel gears with straight teeth, too.

For this case R=0, ?L—=O, KI = KII =0 because the generating surface is a

c
plane. Equations (1.6.61)-(1.6.63) yield

cot Y,

=0, K, = = == (1.6.64)

a = K -
tan2o = 0, iv LsmlpC

III

1.7. Contact Ellipse

The bearing contact of spiral bevel and hypoid gears is checked on a
test-machine under a small load. The bearing contact depends on the con-
tact ellipse of tooth surfaces which are considered as elastic ones.

There is a typical problem in the theory of elasticity: (a) the magni-
tudes of contact forces and mechanical properties of surface materials are
given; (b) the principal curvatures and directions of surfaces at their
contact point are known. Methods known from the theory of elasticity permit

to define the approach of surfaces, the size and location of contact ellipse.
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body given by 6i

To appraise conditions of tooth contact it is more reasonable to
consider as given the approach of surfaces under the action of load. Then,
the size and location of instantaneous contact ellipse can be defined as a
result of a simple geometric solution. The magnitude of surface approach
is known from experiments.

Fig. 1.7.1 shows surfaces Zl and 22 in tangency at point M. The
unit normal and the tangent plane are designated by T and t-t. The
deformed surfaces are shown by dotted lines. The areas of deformation are
K1M11' for surface Zl and l(ZML2 for surface 22.

Let us choose points N(p,k(ll) and N’(p,lcz)) where p 1is the
distance from M and Q(i) (i=1,2) is the distance from the tangent plane.
As a result of deformation, body 1 will be displaced in a direction opposite
the unit normal n by 61 (Fig. 1.7.1, Fig. 1.7.2); body 2 will be dis-
placed in the opposite direction by 62. The approach of both bodies is
6=61+62.

The approach of bodies is accompanied with their elastic deformation.

It is necessary to distinguish the displacement of a body point with the

from elastic deformation.

Let us define the new location N2 of point N. With the body point

1 will displace by 51 and get the position Nl' Due to elastic deformation

which is equal to fl point N will be displaced from N1 to N2. The
distance £ between point N2 and the tangent plane t-t is represented

by the following equation

_ o) + 7.
L =2 -8 f1 (1.7.1)

! . ! .
The resulting position of point N of body 2 is Nz. The distance

£ between point N; and the tangent plane t-t is represented by equation

2 7.2
2,=9,()+52-f2 (1.7.2)

51

(i=1,2), and a displacement relative to the body resulting



Fig. 1.7.1

Surfaces z] and 22 in Tangency - Before and After Deformation
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Fig. 1.7.2
Displacements of Surfaces z] and 22
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Due to the approach of bodies and their deformation, points N and N!

must coincide and

1) _ = ¢(2)
2 61 + fl =L + 62- f2 (1.7.3)
Equality (1.7.3) yields
1 _ @ 2
)2 L = dl + 62 - (f1 + fz) (1.7.4)

Equation (1.7.4) is observed at all points of the area of deformation.
Without this area

f(1) (2

(1.7.5)

>4 = 61 + 62

The right part of equation (1.7.4) is larger than zero because 61>f1,

§,>f Therefore the left part of equation (1.7.4) represents the absolute

27t
magnitude of the difference between 2(1) and 2(2).

Within the area of deformation

2 _ @ <5 (1.7.6)
Equation
PACORNAC R (1.7.7)

corresponds to the edge of deformation area. Equation (1.7.7) defines the
line which limits the area of deformation.
Let us correlate l(i) with surface Zi curvatures. Surface Zi is
represented by equation
r= f(u,e) (1.7.8)
Curve MM' (Fig. 1.7.3) on a surface I 1is represented by equation
r = rfu(s), 6 (s)] (1.7.9)
where s is the length of an arc.

Let us designate by As= ' the arc length and by Ar=MM' the increment
of vector-radius r. The increment Ar can be expressed by Taylor-Series
Expansion.
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Fig. .73

Tooth Surface and Tangent Plane
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dr d°r 2 dr 3
"ﬂ1=Ar=;As+__“LAS—)——+—l£—ASL+...., (1.7.10)
~ ds 2 2! 3 31
ds ds
where
2 2

T, X iLE(d_u)ﬂ
ds ou ds 00 ds ds2 auz ds

2 2
zf.z_d_ui@..‘.a_;‘l:_ ﬁ 2 and so on

9udb ds ds aez ds .

Let us draw a plane I tangent to the surface I at point M and then
draw from point M' a perpendicular M'P to II. Vector PM' which is
parallel to surface unit normal n represents the deflexion of point M!'

from the tangent plane «. This deflexion is

PM' = &n (1.7.11)

Here: &£>0 if directions of PM' and n coincide.
Equalities

MM = Ar, MM' = MP + PM' = MP + n

yield
2 3
dr d’r 2 d'r 3
W+ in = bs + —5 &) . = (‘2?) R (1.7.12)
- s ds : ds :
dr

Because vectors MP and n, - and 1 make right angles the scalar

product
(MP + %n).n (1.7.13)
yields
2 3
d’r 2 d'r 3
YRR (-5 R ) RO (1.7.14)
dsz ~ 21 dSS ~ 31

Up to members of third order & is represented by the equation

2
g - dx. (8s) (1.7.15)
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It is known from differential geometry that
d2r

—5.n =, (1.7.16)
ds® ~

where K is the surface curvature in normal section.

Equations (1.7.15) and (1.7.16) yield

As

> (1.7.17)

L =K

Let us express As in terms of components of the coordinate system
n, ¢ and £ (Fig. 1.7.3); axes n and  are located on the tangent plane
.
As™ = n” +¢° = p°, (1.7.18)
where p = MP.
It results from (1.7.17) and (1.7.18) that

£ =1/2 k p2 (1.7.19)

The surface normal curvature can be expressed by principal curvatures
and angle q (Fig. 1.7.3) made by MD and MP, where MD is the principal

direction with principal curvature Kq

K = KICOSZq + K sinzq = KIcosz(u-o) +

I

KIIsinz(u—o) (1.7.20)

Equations (1.7.19) and (1:7.20) yield

. 2
2% = pz[%lcosz(u-c) + K1151n (u-c)] (1.7.21)
Figure 1.7.4 shows a plane tangent to surfaces Zl and 22 at point
M of their contact; MDl and MD2 with unit vectors i%l) and i%z) are

principal directions of Zl and 22 with principal curvatures K%l) and

K%Z), MP defines a common normal section of surfaces X%. and 22. Deflec-

1
tions of points of surfaces Zl and’ 22 from the tangent plane T (Fig.
1.7.3) are represented by equations
(M) - o[ (D) 52 ey) (1 gin2? (1)
2% = p7[xy “cos (u-a ) +KII sin (ﬁ-—a ) (1.7.22)
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Fig. .74

Location of Contact Ellipse

Fig. L.7.5
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200 . [(Z)cos m-a(®y + Kgi)sinzw-a(z))] (1.7.23)

At the edge of the area of deformation equation (1.7.7) must be held.

Equations (1.7.22), (1.7.23) and (1.7.7) yield

p2 [<§1)cosz(u—a(l)) + K%%)sinz(u—a(l))- K%z)cosz(u—acz))

-Kﬁ)sinzcu—a(z))] =+ 26 (1.7.24)

Let us transform equation (1.7.24) taking into account that

p2 = n2 + cz, cospu= —, sinus= & (1.7.25)

p

o3

It results from (1.7.24) and (1.7.25) that

n?(ceos’a )+ «Dsin W P eosa® - «sin?a(2)y o

2 xMsin®a™ 4 «DeosaM el sin®a ) - D eos?aPy o

ni;(glsinZa(l) - gzsin2a(2)) = + 26, (1.7.26)
where

TR S A S

( .
Let us designate a(z) - a‘l) = ¢ (Fig. 1.7.4). The angle a(l) defining the

location of MD1 - the principal direction with principal curvature Ky -

can be chosen in an arbitrary way, particularly the way that

glsin2a(1)-gzsin2u(2) =0 (1.7.27)

Equation (1.7.27) and equation

a(z) = acl) + 0 (1.7.28)
yield
tan2a(l) = g—_gz—ség:—o (1.7.29)
1 2
It results from equations (1.7.26) and (1.7.27) that
Bn® + AL = + & (1.7.30)
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Here:

1 . (@ 2 2.%

A= 7 [KE Ke - (g1 - 2g1g2c05210 + gz) ] (1.7.31)
11,1 (2 2 2. %

B = 7 [KE Ko (g1 - 2g1g2c052<3 + g2) s (1.7.32)

where

D < o D) < D

Equation (1.7.30) confirms that the projection of the area of deformation
on the tangent plane is an ellipse with lengths of major and minor axes of

2a and 2b (Fig. 1.7.5), where

5
(1.7.33)

1
7

» b=

(3 §
A B

Equations (1.7.29), (1.7.30)-(1.7.33) define the size and direction of
contact ellipse with known values of & and principal curvatures of surfaces.
Sample problem 1.7.1. Surfaces of spiral bevel gears being in point

contact are considered. There are given:

K%l) = (0.004122047, K%%)= -0.000292913,

K%z) = -0.001513779, K%i) = -0.000279921,
h L . . . (D 2y .
e angle o made by principal directions with Ky and K1 is equal

to 12.47°. 'The approach of surfaces' § = 000787401. It is necessary to
define the size and direction of contact ellipse.

Equations (1.7.29) and (1.7.31-1.7.33) yield

acl) = - 7.95%, a = 0.539370078, b = 0.035826771
angle (1) is made by axis 0On and principal direction with curvature Kfl).

By positive value of a(l) this angle is counted from axis O0On counter-clock-

wise. (Fig. 1.7.4).
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2. GEOMETRY OF SPIRAL BEVEL GEARS

2.1 Introduction

Spiral bevel gears which are used in practice are normally generated with
approkimately conjugated tooth surfaces by using special machines and tool
settings. The geométry of spiral bevel gears is not defined until these
special settings are calculated; and the geometry of spiral bevel geérs with
all machine and tool settings is a very complicated one.

There are some important reasons why simplified mathematical models
of the geometry of spiral bevel gears must be developed. These models can
be applied as a basis for designers and researchers to solve the Herzian
contact stress problem and define dynamic capacity and contact fatigue life,
to develop the theory of lubrication of tooth surfaces. Dynamic load capacity
and surface fatigue life was considered by J. Coy, D. P. Townsend, and E.
Zaretzky for spur and helical gears [ 1 ]. The proposed geometric models
of spiral bevel gears will enable researchers to extend this work to these
gears, too.

The offered models of the geometry of spiral bevel gears are based on
an assumption that tooth surfaces are conjugated ones. The aim to use
special machine settings is dictated by the attempt to generate conjugated
surfaces. Therefore the mentioned assumption is not in contradiction with
the practice.

The basic idea of generation of conjugated surfaces of spiral bevel
gears is grounded on the following principles:

(1) Two generating surfaces ZF and Ek are considered being in
tangency along a line.

(2) Surfaces EF and Zk are rigidly connected with each other in the

process of an imaginary generation of surfaces 21 and 22 of the pinion

and the member gear. It is supposed that surface ZF generates surface Zl
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of pinion teeth and surface Zk generates surface I, of member-gear teeth.

2

(3) There are three axés of instantaneous rotation which correspond:
(a) to the meshing of ZF and Zl in the process of generation of Zl;

(b) to the meshing of I, and 22 in the process of generation of 22;

k

(c) to the meshing of surfaces Zl and 22. All three mentioned axes of
rotation must coincide with each other.
(4) The contact of tooth surfaces Zl and 22 is localized because

generating surfaces ZF and Zk does not coincide with each other (they have
a common line only).

There are two kinds of bearing contact of spiral bevel gears applied
in practice. The first one sorresponds to the motion of the contact ellipse
across the tooth (Fig. 2.1.1,a), the second one to the motion along the tooth
(Fig. 2.1.1,b). Accordingly, two mathematical models of the geometry of

spiral bevel gears corresponding to the mentioned cases will be proposed.

2.2. Geometry I: The Line of Action

Generating surfaces ZF and Zk are two cone surfaces (Fig. 2.2.1)

which are in tangency along the generatrix AB.

Let us imagine that generating surfaces being rigidly connected with

(d)

each other rotate about axis Xg (Fig. 2.2.2) with angular velocity
(d = F,k) while gears 1 and 2 rotate about axes 0a and Ob with angular
w(l) and m(z). Axis Zp is the instantaneous axis of rotation

because angular velocities w(l), w(z) and w(d) are related by ;he follow-

velocities

ing equations
W <k, (2.2.1)

where

@(ld) EENCO NG 9(12) - 9(1d), (2.2.2)

where

W9, _ @
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(a)

(b)

Fig. 2.1, 1

Two Types of Bearing Contacts
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Fig. 2. 2.1

Generating Cone Surfaces
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PITCH CONE

Wi ,012)

Fig.2.2.2

PITCH CONE
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Vectors m(l), w(d) and wcz) are represented by the following equations

9(1) - w(l)(—sinvlgf + cos Y, kg) (2.2.3)
N (2.2.4)
2)(2) = - @ (siny, i + cosy, k), (2.2.5)

where Yl and Y2 are pitch cone angles.

Equations (2.2.1)-(2.2.5) yield

(d)
w1 = (:inYl (2.2.6)
siny (d)
w® 2,4 1 _w (2.2.7)

siny, siny,
The generating surface Zd(d = F,k) can be represented by equations

which are analogical to (1.5.22)

@ _ .
xg o = T c0ty - ujcos P,
y(d) = u,siny _sint, - b,sin(q, - ¢,) (2.2.8)
£ C G R -
L@ -y siny cosT, + b.cos(q, - $,)

f d c d d d d’’

where Ty = Od -qg ¢d
Here: (ud,ed) are generating surface coordinates, ¢d is the angle of
rotation about axis Xgs wc is the shape angle of head-cutter blades; rd,bd

and qq are parameters of tool settings (Fig. 1.5.4).

The surface normal is represented by equations

N =.?_}‘ixa}:_f=
~f 986 du
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if g k¢

Bxf Byf Bzf _

06 a6 26 -

Bxf Byf Bzf

du oJu 98y

udsin\pc (sinwcgf + COS wc sin‘rd;'i_f + cosq)C cos Tdkf)’ (2.2.9)

where Tyq = ed - qy ¢d

The surface unit normal is represented by equation

Ne

Slnwcif + coswC51an2f + COSwCCOSTdEf
(by ud51n1pc # 0) (2.2.10)

To define the line of action of gears 1 and 2 let us imagine that all

four surfaces - ZF’Zk’Zl and 22 - are in meshing. Surfaces ZF and Zk

are rigidly connected with each other and are in tangency along the generatrix

AB (Fig. 2.2.1). Surfaces ZF and Zl are in linear contact and lines of

instantaneous contact cover these surfaces. The same statement is true for

surfaces Zk and 22. Fig. 2.2.3 shows surface Zd(d = F,k) covered with

instantaneous contact lines; the location of contact lines on the surface

depends on the angle ¢d of rotation.

Surfaces Zl and 22 can be in point-contact only. Contact points

of these surfaces move along the common generatrix AB (Fig. 2.2.3, Fig. 2.2.1)

while all four surfaces - ZF,Zk,Zl and 22 - are in meshing. The line
of action of surfaces Zl and 22 is the locus of contact points represented

in coordinate system Sf by equations

(d)
Ie

~

= oD
= Te o (uys04.0,) (2.2.11)
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By (FD)

Ng-"Ve = fl(uF,GF,¢F) =0 (2.2.12)
(k) (k2) _ -
Ng. Yf = fz(uk,ek,¢k) =0 (2.2.13)
Equation (2.2.11) was represented in terms of components xgd), ygd) and

zéd) by equations (2.2.8). The surface normal Ne and unit normal ne

were represented by equations (2.2.9) and (2.2.10).

Vector Yf(FI) is represented by equation

v (FD o (D) y 5 (P

Ig o o=

i I¢ ke

wéil) mgil) wgil) (2.2.14)
Xg Ve g

Equations (2.2.1), (2.2.3) and (2.2.4) yield that by d=F

w(FI) = PCF)- w(l) = - w(l)COS'ylgf = - m(F)cot'Yllff (2.2.15)

It results from equations (2.2.8), (2.2.9), (2.2.14) and (2.2.15) that

(F1),, (F1) _ (F)
Neg - "Ve =W

cot‘yl(yfnfx— xfnfy) =

(F) _ . -
w cot Yl Up chot wc cos wc )sin Tg

bFsinlpcsin(qF - ¢F)] =0, (2.2.16)

Where g = 6F -qp + ¢F-

Equation (2.2.16) yields that

(uF- chot lpc cos wc) sin(GF- ap * d)F) -

bFsinq%:sin(qF- ¢F) =0 (2.2.17)
Similarly, equation (2.2.13) can be expressed as

(uk— rkcot wc cos wc)sin(ek— q + ¢k) -

bksinlh:sin(qk~ ¢k) =0 (2.2.18)
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At contact points of surfaces Zl and 22 the following equations must

be observed

Xp = rkcot lpc -u, cos wc = chot lpc ~upcos IDC (2.2.19)
Yg = u.ksm wc sinT, - bk51n(qk- ¢k) =
upsin npc sinTg - bF51n (qF— d)F) (2.2.20)

2 = wsiny cos T, + b cos(q - ¢,) =

ugsin l'bc cos Ty + chos(qF— ¢F) (2.2.21)

Here: T, =0 (d=F,k)

a~ % %* %
Parameters ud,Td(d=F,k) are related by equations (2.2.17) and (2.2.18);
¢k= ¢F because generating surfaces Zk and ZF are rigidly connected and
rotate with the same angular velocity.
After elimination of uy and ug the system of equations (2.2.17)-
(2.2.21) yields a system of two equations

sin (q,- ¢.) sin(q, - 9.)
k "d' _ F d
Y C P TSint, O %F T P%F Tsint, (2.2.22)
k F
sin © b, sin(q, - ¢.)
b .—k+ T, - k. k d cos P cosT, =
k sintT k sinT c k
k k
sin 8 b sin(q. - ¢.)
F F F d 2
bF —sﬁ + I‘F - sin _[_F cos IPCCOS TF (2.2.23)

These equations will be observed for all values of d)d if machine sett-
ings will satisfy the following equations

¢p = 9p> 8 - q = Op - Qs bysin B, = bpsin Op 5

b, singq b_singq
r - K kK _ . F F

k cos B F~  cosB (2.2.24)

k]

where 8 = 90° - 6 - a) = 90° - (6p - ag)
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The geometrical interpretation of equations (2.2.24) is represented by Fig.
2.2.4.
The line of action of surfaces I, and 22 is represented by equations

1

sin(qy - ¢
..
Xf T l:rd - by -T)] siny cosy ,

d
sinTd
Yf= tanlp_xf’ (2.2.25)
c
L bd51ned . coS T4 .
f 51an tanlpC f

where

it

Tg = 8g -9 "0 d=Fke =6
Equations (2.2.25) represent coordinates of the line of action as functions
xp(8g) Ye(dg)s 2(9,) .

2.3. Geometry I: Contact Point Path on Surface Zi(i=1,2)

Contact point path on surface Zi(i=1,2) is a locus of points of con-
tact represented in coordinate system Zi rigidly connected with gear 1i.

Fig. 2.3.1 shows coordinate systems Sf and Sh rigidly connected with

the frame and system S rigidly connected with gear 1. The coordinate

1

transformation by transition from Sf to S1 is represented by matrix

equation (Fig. 2.3.1)
] ) B -
cosd;1 sin ¢1 0 cos Yl 0 51nYl Xf(¢d)

-51n<p1 cos ¢1 0 1 0 yf(¢d) =

o

0 0 1 —sinY1 0 cos Yy zf(¢d)
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Fig. 2.3.1

Coordinate Systems Associated with Gear 1
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cos¢]cosY1 sin¢1 COS¢1 sinY1 xf(¢d)
= 1-sin¢,cosy, cos ¢, ~sin¢; siny,; Ye(d)

-siny; 0 cos Y, zf(¢d)

xf(q;d)cos q>1 cos Y, + yf(qad)sm ¢1 + zf(d)d) cos ¢1 siny,

—xf(¢d) sin d)l cosy; + yf(d)d) cos d)l - zf(¢d)51n ¢1 sin Yl (2.3.1)

“Xp(9g)siny, + z(dg)cos Y,
Here: x.(¢;), yp(¢;) and z.(¢,) are functions represented by equations
(2.2.25). The angle of rotation ¢l of gear 1 and the angle of rotation of
generating gear are related by the equation which is analogous to
equation (2.2.6)

%

¢, = stnv, (2.3.2)

Fig. 2.3.2 shows coordinate systems Sf and Sp rigidly connected

with the frame and coordinate system 52 rigidly connected with gear 2. The

coordinate transformation is represented by matrix equality

o) - [LZP] [Lpf] [7e]

coqu2 —sin¢2 0 cos Y, 0 -sinvy, xf(¢d)
sin¢, cos¢, 0 0 1 0 yeld ) =
-0 0 1 sin‘Y2 0 cos Y2 zf(¢d)

xg(9y)cos b, cosy, - ye(d,)sind, - z (b )cos ¢, sin¥,
xp(94)5in ¢, cos v, + yo(9 )cosd, - z.(6)sind, siny,| , (2.3.3)
xg(9 )siny, + zf(¢d)c05Y2

where

£

siny2

4, = (2.3.4)

Matrix equality (2.3.3) and equations (2.2.25) and (2.3.4) represent the

contact point path on the surface 22 of gear 2.
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Fig. 2.3.2

Coordinate Systems Associated with Gear 2

75



2.4 Geometry I: The Instantaneous Contact Ellipse

The size and direction of the instantaneous contact ellipse may be
obtained by the equations given in Items 1.6 and 1.7.
The solution of this problem can be divided into three stages: (1) the

determination of principal curvatures of surfaces I, and 22, (2) the

1
determination of the principal directions of surfaces Zl and of 22, and
(3) the determination of contact ellipse.
Principle Curvatures and Directions of Surface 21
Surface Zl is generated by cone surface ZF. Principal directions
and curvatures of ZF are represented by the following equations (see sample
problem 1.6.1):
3ff 0 0
(Fy_ 06 = i - 2.4.1
ip = Grfr =| costg sin(B ¢F) s ( )
a6 -sinTg -cos(8 - ¢p)
L) N S
I uFtanlpC
cos(B - ¢-)
R i F (2.4.2)
bFsmlpC tanlpcsm(qF - ¢F)+ rpcos \pc cos(B - ¢F)
83 -coswc -cosxpc
i(F) = du =] siny _sinT.]=}siny cos(B - ¢.) (2.4.3)
~II or c F c F
Su sin lpccos Tp sin xpc sin(B - ¢F)
(F) _ (2.4.4)
Kip = 0

The principal curvatures and directions of 21 are represented by equations

analogical to equations (1.6.40)-(1.6.42)

1y _ 2

=z —_—— (2.4.5)
K%F)+ Gcl)

tan 20
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K£1)+ K%%) - K§F)+ s (2.4.6)

(F), ~(1)
K + G
K%1)_ K%%) . I (2.4.7)

B (1)

cos 20

Here: K%l) and K:E%) are principal curvatures of surface 21;0(1) is the
angle made by the directions of principal curvatures K%F) and K%l). Co-

efficients F(D, S(l) and G(l) are functions of ¢F and represented by

equations
a,.,a
(1) _ o Sl_fi(Fl) (2.4.8)
byt Vp agy Vi e
a 2 -a 2
GU)=b +vﬂﬁ ?VGD (2.4.9)
3771 2317 Vi %32
(1) a321 * a322
- .4.10
° b v, «v{F, . )
3*Vr T3t Vin %32
- [E(F)Q(F1)3§F%] - Py (2.4.11)
) _ |, F (F1).(F) (F),,(F1)
833 = [E w 111] - K1 Von (2.4.12)
[
ol BCF)E,(UYE?] ) [B(F)&’(F)Yﬁi)] (2.4.13)
- sin wc
[n(F)—J = | cos wc COS(B - ¢F) (2.4.14)
cos lpc sin(B8 - ¢F)
0
EBCFI)] =lo (2.4.15)
W

cot Yl
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To simplify equations for V(Fl) and az; let us note that

b = cos B | (8- 6.) - bsin( Ly
F~ TF Sinqg Tpeos(P - ¢p) - bpSin(qg - ¢p) =
sin q)Fcos(B - ¢F)
g <in i H bF51n wctan wc51n (qF - ¢F)

cos B sin(qF - ¢F) + coszxpcsin d)Fcos(B - qF)

+ Tpcosy cos(B-¢p) = T sinqgcos y_

(F1)

After that v can be represented by the following equation

cos(B-d,)cos Y
(F) F o]

.o
[}(Flﬂ__ W TeOtY¥1COs ¥eSIn b | _siny (2.4.16)
=TIy sian
0
L J
Vectors i%F) and igi) were represented by equations (2.4.1) and (2.4.3).

Equations (2.4.11)-(2.4.16), (2.4.1) and (2.4.3) yield

W _

431

cot Ylsin lPCSin(B - ¢F) .

cos B sin(qF - dJF)

- (2.4.17)
cos B sin (qF - (bF) + sin q)Fcos lIJCCOS(B - ¢F)
agg = 0P ot Y, cos (B - ¢p) (2.4.18)
bgl)= - L (u)(F))Zcot Y, cos B sind)c (2.4.19)
COS(B - ¢F)
ViFl)a(:,)ll) - _ rF (w(F) cot 'Ylsin 1’)CCOS IPC) cos B,
sin ¢ sin(B - ¢) sin (qy - ¢p)
% E E_"F (2.4.20)

sin q [cos B sin (qF - (bF) + coszwcsin ¢Fcos (B - ¢F)]
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(F1)_Q) _
Vir “asz;

-1 [w(F)cot‘chos(B-¢F)] ? sin ¢ cos Y_ (2.4.21)
sin ag
Equations (2.4.2), (2.4.5)-(2.4.10) and (2.4.17)-(2.4.21) represent the
principal directions and principal curvatures of surface Zl. At the mean
contact point the principal directions and curvatures are represented by the

following equations

sin wcsin 2B

tan 20 (1) - (2.4.22)
L tany,sin 2y + sin28 51n2w - cosZB
21‘F 1 c c
| .2, .. 2 2
1) 1) cos Y, cot Yl(sm B sin lpc + cos B)
|<( +Ky;7 = - - - (2.4.23)
I IT T Lsiny
F c
cos wc cot Yy (sinZB sinzlpc - coszs)
+ T
T Lsiny
(D -K(i) - . F T (2.4.24)
I I cos 20

Now, let us define principal curvatures and directions of surface )32

generated by surface ZK. They are represented by equations analogical to

equations (2.4.5)-(2.4.7)

5 1 (2)
(2) 2F
2 =—=F - _ (2.4.25)
tan 20 K(K) . G(z)
I
I<§2) . K%%) - K%K) + s(2) (2.4.26)
(x) , (2
2 (2) o S (2.4.27)
I 1 cos 20(2)
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To define functions F(Z)(cpk), c(2 (6,) and 5% (6 (8, =0p) it is
sufficient to change subscripts "F" for "k" and "1" for "2" in expressions
(2.4.17)-(2.4.21).

(k)
1

The principal curvature of surface Zk is represented by equation

analogous to (2.4.2)

O

cos(B-—¢k)
- b. Sinl’) tanlp Sin( '¢ )+r Cosw COS(B—q) ) (2.4-28)
k c c Y - %% k c k
Equations (2.4.28), (2.4.2) and (2.2.22) yield that
r -1
1 1 _ K F .
K%k) "K£F) cos P (2.4.29)

Equations (2.4.25)-(2.4.27) and (2.4.28) represent principal curvatures
and directions of surface 22.
On the third stage of solution the size and direction of instantaneous

contact ellipse is to be obtained.. Equations (1.7.30)-(1.7.34) are to be

applied for this aim.

2.5. GEOMETRY II: GENERATING SURFACES

Fig. 2.5.1 shows two generating surfaces Zk and ZF rigidly connected .
with each other. These surfaces are in tangency along their common circle
C of radius T (Fig. 2.5.1). Surface Zk is a cone surface represented
in the coordinate system by equations (2.2.19)-(2.2.21). Surface ZF is a
surface of revolution. It is generated by the revolution of an arc m-m of a
circle of radius p about axis x, (Fig. 2.5.2,a). The arc m-m is represent-

ed in the auxiliary coordinate system Sa(xa,ya,za) by equations.
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Fig. 2.5.1

Generating Surfaces: Conical Surface and Surface of Revolution
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x = p(sinlpF— sinlpc)

a
ya =0 (2.5.1)
z, = p(cos wF— cos wc) + T

Surface ZF is represented in coordinate system Sc(xc,yc,zc) by matrix

PRINIE

1 0 0 x

equality

0 cos BF sin BF y (2.5.2)

LO -sm(-)F coseF za

x = p(sinlpp— sinwc)

c
Yo = p(cos wF - cos wc) + rF] sin SF (2.5.3)
z, = o(cos wF - cos tpc) + rF] cos BF

Here: wF and GF are surface ZF coordinates. The coordinate transformation
by transition from Sc(xc,yc,zc) to Sf(xf,yf,zf) (Fig. 1.5.4) is represented

by matrix equality
[rf] = [Mfc] [rc] (2.5.4)
Expressions analogousto (1.5.9) and (1.5.15) yield
[ -
Fl 0 0 0 -1
0 cos (qF_ ¢F) _Sin(qF- ¢F) -b Sin(qF -¢F) (2.5.5)

0 Sin(qp- ¢F) cos (q'F— ¢F) b cos (q.F - ¢F)

Lo 0 0 1 A
It results from expressions (2.5.3)-(2.5.5) that the generating surface ZF

is represented in coordinate system Sf by equations

xg’) = p(sinyy -siny )
yéF) = [p(cos l,bF— cos wc) + rF] sin'L'F - bsin(qF - ¢F) (2.5.6)
zéF) = [p(cos Yp - cosy )+ r] cos T + bcos(qg - ¢p),
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where
Tp = Op-(ap~ 9p)

The surface normal is represented by eqﬁation

N(F) _ Ty < e _

~ awF BGF

if If ke

p cos I,IJF - psin IPF sin TF - psin lpF cos TF =

0 ACOSTF : : —AsmrF

ApsmwFif + Apcost SInTp jg + Apcost cos1:Fl~<f (2.5.7)

Here:
A= p(cost— COSlPC) +T

(®)

F

The surface unit normal n is represented by equation

N(F)

2 e

-~

NN

= sinwFif + cos Y (sinTFif + cos‘rplff) (2.5.8)

The generating surface I, and its unit normal are represented by

k
equations (2.2.8) and (2.2.10) with subscript d=k.
) .
By pr = lpc Tp =T Wy = S—lTﬂT surfaces ZF and )Zk are in tangency

along the circle of radius Ty = Tg-

2.6 Geometry II: The Line of Action

The law of meshing of surfaces Zk and 22 was represented by the
equation [see(2.2.18)]
(uk - I'kcot'l\bC cos wc) 5111(6k =Gy * d)k)
- bk51n1pc 51n(qk ~ ¢k) =0 (2.6.1)

At contact points of surfaces Zl and 22 parameter

u.k sinlpc =T, . ' _ (2.6.2)
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Equations (2.6.1) and (2.6.2) yield

T sin o, -(q. - ¢ J1- bksin(qk- ¢k)=f(6k,¢k)=0 (2.6.3)

k

This equation relates the surface parameter 6, with the angle of

k
rotation ¢k By gg # 0 this equatlon represents in 1mp11c1t form a
k :

functlon 6 (¢k)
" Equations (2. 2 8), (2.6. 2) and (2 6.3) yield that the line of action
can be represented that way .
Xf =.0, Yf =0, zf = rkcos[ek-(qk- ¢k)] +
becos(q. - ¢ ) = z (¢ ) (2.6.4)

where angles [0 - (qk-'d)k)] and (qk- ¢k) are related' by (2.6.3).

Contact point paths on surface Zl and 22 can be defined the same

way mentioned in item 2.3.

2.7. Geometry II: The Instantaneous Contact Ellipse.

The principal curvatures and directions of surface 22 generated by

surface I, were defined in item 2.4 by equations (2.4.20)-(2.4.21). For

k
surface ZZ with geometry II coefficients agi), a:,(,g), b(z), F(Z), G(z)
and 5(2) are represented by following equations
1
( ) = -w(k) cot stin lpccos Tk (2.7.1)
2(?) - .
az, —-w( )COt'Y251nTk _ (2.7.2)

cos T,s8in q, + cos B cos(
bgz) = rk(m(k))zcotyzsinlpc[ k k Ak ¢k)]

sin Gy
(2.7.3)
F(z) ) az,3z, ) sin chqt Y,cos Tksin Tk . (2.7.4)
b3 T [cos Ty Sinq, + cos B cos (qk - ¢kj]
2 2 . 2 2 . 2 .
G(2) ) az1 - 24, ) (sin Y cos"Ty - sin"T )sinqpcot Y, (2.7.5)
ba T, [cos T,5inq, +cos B cos (qk - ¢k)]
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2

a + a
s _ 231

. 2¢ 2T + ein? R ¢
(sin oCos T, * sin Tk)51n qcoty,

32 _
T T, [cos T, Sinq + cos B cos(qy - ¢, ]]

(2.7.6)
bS

Parameters ek and ¢k are related by equation (2.6.3).
Now, let us define principal curvatures and directions of surface Zl

generated by ZF. To solve this problem we must in first define principal

directions and curvatures of surface ZF;

It is easy to verify that principal directions of surface ZF correspond

dy dé :
to EEE-= 0 and to T - 0 and that principal curvatures are represented

by equations

K§F) - - = u)cﬁsiif R (2.7.7)
p(cos Y s, F
(F) __ 1
Kiy = 5 (2.7.8)
At the point of contact of surfaces ZF and Zl the principal curvature is
cos Y
(F) o c (2.7.9)
I TR

because at this point wF = wc.

Principal curvatures and directions of surface Zl are represented by

equations
- (1)
1 _ 2F
tan 20 = Kgp)_ K§§)+ G(1) (2.7.10)
I<%1)+ K%%) - K§F)+ K§§)+-s(1) (2.7.11)
(F) (F), ~(1)
K - K + G
K§1)_ K§%3_= I Iil) (2.7.12)

cos 20
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Here:
(D2 (@ g (2 (1) ()

The size and direction of instantaneous contact ellipse are defined the same

way which was mentioned in item 1.7.
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3. METHODS TO CALCULATE GEAR-DRIVE KINEMATICAL ERRORS.

3.1. Introduction

It is well known that errors of ménufacturing and assemblage of gears
induce kinematical errors in gear-drives. These errors can be represented
by a function

A¢, (9,,4Q), (3.1.1)
where ¢1 is the angle of rotation of the driving gear 1,

Ag = (Aql,qu, ees) (3.1.2)

is the vector of errors;

Ad, =¢5 - b, (3.1.3)_
is the kinematical error of the gear drive represented as the difference of
theoretical and actual angles of rotation of the driven gear.

In this part of the report two methods to calculate the function (3.1.1)
are presented: the first one is a numerical computer method and the second
one is worked out as an approximate method but with a possibility to obtain
relatively simple results which are in mest cases in an analytical form.

3.2. The Computer Method.

In the process of motion tooth surfaces .Zl and 22 must be in contin-
uous tangency. It was demonstrated (see item 1.1) that following equations

are to be observed (see equations (1.1.12) and (1.1.13).

(1) = (2
:‘!‘:f (u1’91,¢1) - }:f (u2362)¢2) (3- 2.‘1)
(1) = (2
net 0 (u,01,0) = ne"" (v,,6,,4,) (3.2.2)
Here: rf(i) and chl) are the position vectors and normals of surfaces

Zi as defined in coordinate system Sf rigidly connected with the frame;

u;, ei are the surface coordinates, ¢i are the angles of gear rotation.
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Here it is assumed that errors of manufacturing and assemblage did not
appear.

For gears with errors. represented by vectors Agl and AQ2 following
equations of tangency must be observed instead of equations (3.2.1) and
(3.2.2)

(1) - (2)
(1) - (2
Ne (u1’61,¢1:Ag1) = g (u2’62’¢2’AQ2) : (3.2.4)
Equations (3.2.3) and (3.2.4) yield the function
—_ -]
0,(9,,8Q;, Q) = ¢5(6;) + B, (6;,8Q;,4Q,) (3.2.5)
Here: ¢§(¢1) is the theoretical function yielded by equations'(3.2.1) and
(3.2.2).
Equations (3.2.3) and (3.2.4) also yield the functions

u; (6,,0Q,,0Q,), 8, (9;,80,,00,) (i=1,2) (3.2.6)

Functions

T, (,0,), u(6,,80,,89,), 8,(0,,09,,8Q,) (i=1,2) (3.2.7)
represent the path of contact points on surface Zi corresponding to gear
meshing with errors of manufacturing and assemblage.
Functions

T (uy,0,), ul(ey), 67() | (3.2.8)
represenf the path of contact point on surface Zi correspondent to the
meshing without errors. Coﬁparison of functions (3.2.8) and (3.2.7) yields
the change of contact point path induced by errors.

Let us consider the detailed solution of equations (3.2.11—(3.2.2)

and (3.2.3)-(3.2.4).
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Vector-equations (3.2.1) and (3.2.2) yield only five independent scalar
)y _ (2),
| = 2

equations because lnf

fj(u1’91’¢1’u2’62’¢2) =0 (j=1,2,...,5) (3.2.9)

It is assumed that

{f f2 f3 f4 fs} sC

and that the system of equations (3.2.9) is satisfied by a set of parameters
* * * * * *

P = (U1361s¢1:u2:92:¢2) . (3-2.10)

and surfaces I, and I

1 2

22 will be in point contact in the neighborhood of M, if by the set of

parameters P the following inequality is held

are in tangency at a point M,. Surfaces Zl and

Bfl Bfl Bfl Bfl afl
e el 1Y G20
1°71°72°72°72 5 5 S 5 5

3u, 96, 3u, 96, 39,

Then in the neighborhood of P equations (3.2.9) provide functions
1

o
{ug(61),8, (81),u,(61),6, (470,056 D} eC (3.2.12)

Function ¢§(¢1) represents the ideal law of motion transformation.

Mostly, ¢§(¢1) is a linear function.

Equations (3.2.3)-(3.2.4) also yield a system of five independent
equations

Uy (u156,501,U5,6,,9,,4Q = 0 (3.2.13)

By the same value of ¢1 this system is satisfied by a set of parameters
*k kk X dk k% *k

1
P o= (u 91,¢1,u2,92 595 ) (3.2.14)

which is different from the set P represented by (3.2.10).
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System of equations (3.2.13) can yield functions
1
t T
in the neighborhood of P if at P the following inequality is held

TR
D(u;»0,,u,,6,,4,)

(3.2.16)

Function ¢2(¢1,AQ) represents the real law of motion transformation.

Kinematical errors of the gear-drive are represented by function
Doy = $3(91)-9,(4,,4Q) (3.2.17)

The demonstrated method can ﬁrovide not only the kinematical errors
induced by errors Ag but new contact point path on the surface Zi, too.
(see functions (3.2.7)).

The solution of a system of five non-linear equations is a hard problem
and needs iterations. To save computer time a more effective way of solution
was recently proposed by F. Litvin and YE. Gutman [12]. The principle of this
method follows:

The system of equations (3.2.13) can be represented as follows

£,(u)50,,045u,,0,,9,,A,H,,H,)=0 (3.2.18)
£,(u;,8,,9,,u,,0,,¢,,A,H,,H,)=0 (3.2.19)
£50uy50,50,,u,,8,,9,,A,H,,H,)=0 (3.2.20)
£,(u;,8,56,,u,,6,,¢,) = 0 (3.2.21)
£ (uy50,,0,5u,,8,,¢,) = 0 | (3.2.22)

Equations (3.2.18)-(3.2.20) are yielded by vector equation (3.2.3) and equa-
tions (3.2.21)-(3.2.22) by vector equation (3.2.4). Parameters A,H1 and
H2 are linear measurements which represent the shortest distance between

gear axes. of rotation and axial settings of gears (Fig. 3.2.1).
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Let us suppose that points Ml(ul,el) and Mz(uz,ez) of surfaces Zl

and 22 are chosen. By a set of given parameters (ul,Gl,uz,Gz) system of
equations (3.2.21) and (3.2.22) becomes -a system of two equations in two
unknowns which may be expressed as

Fi(9:59,)=0 (3.2.23)
F,(0;5,)=0 o (3.2.24)

After that a system of three equations must be solved

A_Kl(ul’el’¢l’u2’62’¢2)=0 - (3.2.25)
Hl—KZ(ul’el’¢1’u2’62’¢2)=0 (3.2.26)
Hy-Kq (u),81,6,,u,,0,,0,)=0 | : (3.2.27)

The method of solution of the two systems of equations (3.2.23)-

(3.2.23) and (3.2.24)-(3.2.26) is an iterative procedure. By computation

one of four variated parameters (ul,el,uz,ez) is fixed and the three others
must be changed that way that two mentioned above systems of equations are to
be satisfied.

The advantage of the proposed method is the opportunity to divide the
system (3.2.18)-(3.2.22) of five equations into two subsystems -- of two

and one of three equations - and solve them separately

3.3. Approximate Method

Accuracy of gear drives investigated by the above computer method
can be defined as a rule only numerically and this is a certain disadvantage
of this method. Therefore, in addition to the computer method an approximate

method with the opportunity to obtain results analytically is proposed.
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Figure 3.3.1 shows two surfaces Zl and 22 which are in tangency at

point M. Points M, and M_ of these surfaces coincide with each other -

1 2
at M, position vectors gél) and géz)

(1

normals ne

drqwn from 0f and surface unit

and Qéz) coincide at M, too. Surfaces Zl and 22

rotate about axes I-I and II-II and angles of rotation ¢1 and ¢§ correspond
to the positions of surfaces shown in Fig. 3.3.1. It is supposed initially
that Zl and 22 are manufactured and assembled without errors. Due to
errors surfaces Zl and 22 cannot be in tangency by the same valuesAof

¢1 . and ¢§ - either a clearance will appear between these surfaces or the
surfaces will interfere with each other. Figure 3.3.2 shows that surfaces

Zl and 22 are not in tangency: points Ml and M2 do not coincide with

(2)

1) (1) (2)
each other, gf # gf and gf # gf . To get surfaces Zl and 22

in tangency it is sufficient to rotate one of the surfaces by an additional
small angle. It is more preferable to hold the position of surface Zl and

to rotate surface 22 until it contacts Zl. Then the additional angle of
rotation A¢2 will represent the change of theoretical value ¢§ induced
by errors of manufacturing and assemblage., It can be predicted that A¢2

is a function of the vector AQ and changes in the process of motion. So

Ap, = £(9,4Q). (3.3.1)

The definition of function (3.3.1) can be based on the equations of
kinematical relations discussed in Item 1.1.

Because tooth surfaces Zl and 22 are to be in continuous contact the

following vector equations must be observed

ar{t) = ap{P (3.3.2)
anlH = an{? | (3.3.3)
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FIG. 3.3.2

Tooth Surfaces with Clearance Induced by Errors
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It results from equations (3.3.2) and (3.3.3) that

dféi) * dfﬁl) = dféi) * d§§23 (3.3.4)
dﬂéi) * dBﬁl) = dBEi) + dEiz) (3.3.5)

Here: dgéi) is the displacement of the contact point of surface Zi
(i=1,2) in transfer motion (with the surface); dgﬁi) is the contact point
displacement in relative motion (relative to the surface); notations of
dggi) and dgﬁi) have the same meanings for the tip of the unit normal
vectors; subscript "f" is dropped for simplification.

Equations (3.3.4) and (3.3.5) are similar to equations (1.1.35) and
(1.1.36).

Errors of manufacturing and assemblage induce that the theoretical con-
tact point changes its position. To hold surfaces in tangency following

equations must be observed

angy + D+ an{D < an® 4 4 nD o)

Here: the subscript ''q" corresponds to the displacement induced by errors.
It is necessary to empha' .ze that not only angular errors but linear errors
also induce dgél).
It was mentioned above that interference of surfaces or their clearance
. 1
can be compensated by rotation of surface 22 only. Therefore, dsEr)=0

(1 _
and thr =0 and

dﬁﬁl) * diél) = dféi) * dﬁiz) + dEéz) . (3.3.8)
anlt dﬁél) = anD v a5 o dBéz) : : (3.3.9)

It was demonstrated in item 1.1 that
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dfgi) = dQ(Z) X 9(2) (3.3.10)

where
NN M)
is a vector drawn from an arbitrary point N(z) of axis rotation to the con-

tact point MP) . (Fig. 1.2.1).

Then, (see item 1.1),

dEEi) = g™ x 2 - | (3.3.11)

Here: vector d¢(1) is similar to vector m(l) and is directed along

the axis of rotation according to the direction of rotation

ap@ - 9(;)dt’ : | (3.3.12)
where t is time.

Let us compose following scalar products

n.(dgil) + d§él)) = D.(dfgi) + d§£2) + dféz)) (3.3.13)

n.(dgil) " dgél)) = B.(dgéi) . dgiz) " dgéz)), (3.3.14)

~

where n 1is the common unit normal of surfaces.

Vectors dsgl) and dsﬁz) belong to the common tangent plane T (Fig.

3.3.1). Therefore,
n.ds§1)=0 (i=1,2) ' = (3.3.15)

Equations (3.3.13), (3.3.10) and (3.3.15) yield

[d?(Z)g(Z)E] = [as™)- as@) (3.3.16)

~ ~

It is easy to be verified that both parts of equation (3.3.14) are
equal to zero identically. Indeed, vectors dgﬁl) belong to the tangent

plane and therefore
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n.an{t = o (3.3.17)

It results from equation (3.3.11) that

g.dgéi) - [ﬁ d9(2)§]= 0 (3.3.18)

Vector dgél) (i=1,2) can be represented the expression

(1) (1)
dn = d§ Xn 3.3.1
n, 5.5 X n (3.3.19)
where d§(1) is a vector represented by the angular error.
Therefore

B'dﬂéi) = [B d§§i)§]= 0 (3.3.20)
Equation (3.3.16) is the basic equation for the determination of kinematical
errors of gear drives. Its application will be demonstrated in the following
items.

3.4. Kinematical Errors of Spiral Bevel Gears Induced by Their Eccentricity

Gear eccentricity occurs when a gear's geemetrical axis does not coin-
cide with its axis of rotation (Fig. 3.4.1). By rotation the geometrical axis
of a gear generates a cylindrical surface of radius Ae. The vector of
eccentricity Ae is represented by a vector of constant magnitude which rotates
about gear axis.

The initial position of vector Ae (the position at the beginning of
motion) is given by the angle o and its current position by angle (¢+ )
(Fig. 3.4.2).

Fig. 3.4.2 shows coordinate systems Sl(xl,yl,zl) and Sf rigidly
connected with gear 1 and the frame; the coordinate system § is an auxiliary
one which is also rigidly connected with the frame. The driving gear 1 rotates

about axis Zh The position of Ael in coordinate system S1 is given by the

angle a; made by e, 454 axis x,. The current position of Ae, in coordinate

1
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FIG. 34.2

Coordinate Systems Associated with Gear 1
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system Sf(or Sh) is defined by the angle (¢1+0L1). Vector Aeél) is

represented by the matrix equation

[A.ef_.l)] - [th] [A.e}(ll)] _

cos Yl 0 siny, Aelcos (¢1+ al)
0 1 0 -Aelsm(q‘)1+ cxl) (3.4.1)
-sin Yl 0 cos Yl 0

Matrix equality (3.4.1) yields
Aelcos (¢1+ al) cos Y,
cl)] = e si
[A.ef = Ae151n(¢1+ al) (3.4.2)

-Aelcos (¢>1+ al) siny,

(2)

The vector of eccentricity of the driven gear 2 Ae can be defined

the same way. Fig. 3.4.3 shows coordinate systems 52 and Sf rigidly
connected with gear 2 and the frame. Coordinate system Sp is also rigidly

connected with the frame.

Vector Afe (2) is represented by the matrix equation

] - ][]

cos Y, 0 -siny, Aezcos (¢2+ 0L2)
0 1 0 Ae251n(¢2+ az) (3.4.3)
sin Y, 0 cos Y, 0

It results from matrix equality (3.4.3) that
Aezcos (¢2+ 0!.2) cos Y2
[Aeéz)] = | Be,sin(d,+ o) (3.4.4)
Aezcos (¢2+ 0L2)51n Y,
Kinematical errors induced by gear's eccentricities are defined by an

equation similar to (3.3.16):

102



FIG 3.4.3

Coordinate Systems Associated with Gear 2
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[A‘B*E'Z)Bgz)[‘f = (Afél)'migz))'ilf» (3.4.5)

r
where Agi_:l) and Agéz) are represented by matrices (3.4.2) and (3.4.4);

Agi(_.z) (Fig. 3.4.3) is represented by matrix

Fcos Y, 0 -siny, ' 0
2)]_ i 2n._ 0 1 0 0 =
[Ai‘pf B F‘fp] [A b ]"
sinv, 0 cos Y, A¢2
—A¢2 sin Yy - J - J
0 (3.4.6)
A¢2 cos YZ
Vector BEZ) represents the position vector of a point which belongs to the

line of action and Ry Tepresents the unit normal of the contacting surfaces
at their point of tangency.

Equations (3.4.5) and (3.4.6) yield

n_XAe +n ZAe +n_ZAe -
X X y Uy Tz z

A¢ = = < T (3.4. 7)
2 Yy cos anx+ (x cos Y2+ Z sin Yz)ny- Y sin Yz nZ
. = e An(2) = Aa(D)_ 7 (D) = pe(D) (2)
Here: ZAex— Aex —Aex s ZZAey = Aey -Aey , ZAeZ = AeZ - Aez . The sub-
script "f" was dropped in equation (3.4.7). The unit normal was represented

by equations (2.2.10)

ne = sinwc3f+ cos wcsin Tgdg* cos wCCOST 1~<f =

51nwczf+ cos wc cos(B - ¢d) Jgt sin(B —¢d) Bf] =

sin wcif + cos wc[cos(B - ¢151n Yl)lf +sin(B- ¢151n Yl)kf] (3.4.8)
Equations (3.4.7) by ¢1=0 represent the surface unit normal at the point
of intersection of the tooth surface with the generatrix of the pitch cone.

Coordinates x,y,z of a current point of line action were represented:

(a) by equations (2.2.25) for spiral bevel gears with geometry I; (b) by
equations (2.6.4) for spiral bevel gears with geometry II.
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In the process of meshing of one pair of teeth the angle of rotation ¢1

changes in the interval [—n/Nl, ﬂ/Nl], where N1 is the number of teeth
of gear 1. Considering ¢lsiny1 as negligible the unit surface normal

can be represented by the equation

ng = sintpC i.f + coswc(cosBif+ sinsljf) (3.4.9)

With the same assumption for ¢lsinY1 it can be taken that

Xp = o, Yg = 0, zp = L _ (3.4.10)
Equations (3.4.7), (3.4.9) and (3.4.10) yield

anAex-rnyZASy-+nzZAez

- C 3.4.11
A¢2(¢1) L 51nY2 cos qé cosB ( )
Here:
anAex-+nyZAey-+nzZAeZ = alsln(¢1-+al) +b1cos(¢1-+a1)
. (3.4.12)
+ a251n(¢2 + az) + bzcos (q>2 + cxz)
Here:
a; = -AelcoswccosB H b1 = Ael(cosylsinwc-sinchoswcsinB)
a, = —AezcoswccosB 5 b2 = —Aez(cosyzsinwc-+sinY2coswCsinB)
Ny (3.4.13)
¢2 = (bl 'N'; 4.

It results from equations (3.4.12) that kinematical errors of spiral bevel
gears can be represented as the sum of four harmonics. The period of two
harmonics coincides with the period of revolution of gear 1; the period of
the other two harmonics coincides with the period of revolution of driven
gear (of gear 2).

The function A¢2(¢1) as defined by equation (3.4.11) is a smoothed
function. In reality this function breaks by changing teeth in meshing.
This break can be discovered if the function A¢2(¢1) is defined by equa-

tion (3.4.7).
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Equation (3.4.11) can be applied for spur gears, too. By Lsiny2 =T,

B =0, sinyj'= sinY2== 0 equations (3.4.11) and (3.4.12) yield:

Aelsin(lpc - ¢l o)+ A.ezsin(lpc +a, + ¢1)

86,06 = T,C0s P _ »

(3.4.14)

where T, is the pitch radius of gear 2.

Parameters al and az influence the distribution of function

A¢2(¢1) in the positive and negative areas. For a drive with N1 = N2,

a, = w-+a1 and Aez = Ae1 the function A¢2(¢1)E 0. In other words, kine-
matical errors induced by eccentricities Ae1 and Aez are compensated
completely.

3.5 Kinematical Errors Induced by Misalignment

There are following kinds of misalignment (Fig. 2.2.2): (a) displace-
ment of a gear in direction of positive or negative axis xf; (b) axial displace-
ment of gear 1 in direction of its axis 0a; (c) axial displacement of gear 2
in direction of axis 0b; (d) an error of the angle made by axes (0a and 0b.

Let us suppose that gear 1 is displaced in the direction of negative

axis Xe by

(1) _ .
qu = —AAEf (3.5.1)
Equations (3.3.16) and (3.5.1) yield
[AdJ(z)p(z)n] - - Agf{l)g (3.5.2)
It results from (3.5.2) that
-AAsmwc
(3.5.3)

Do, (6y) =

-ycosy,n_+ (x cos Y, tz sin Yz)ny -y sinyznz
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Here: qu = ¢lsinY1 = q)zsinyz is the angle of rotation of the generating
gear; Xx,y,z are coordinates of the line of action represented by equations
(2.2.25) and (2.6.4) for spiral bevel gears with geometry I and II, respec-
tively.

Now, let us consider a case when gear 1 is displaced in the direction

of negative axis e at
1 .
qu = Ang (3.5.4)
By analogy with equation (3.5.3) it will be

AEn
Y

-y cosy,n + (x cos Yot Z sin Yz)ny -y siny,n,

8d,(94) = (3.5.5)

The variation of the angle made by gear axes Oa and Ob can be represent-
ed as a result of rotation of one of the gears about axis Ygs for instance,

gear 1. The vector of rotation is

AS = A8 . (3.5.6)

and the displacement of contact point is represented by equation

AE(gl): AS x 0, (3.5.7)

where p is the radius-vector drawn from Oc to the point of action.

Kinematical errors induced by A§(§1) are represented by equation

[Ag;(z)gxﬂ - AGpn] (3.5.8)

PUPNEVIP

Equation (3.5.8) yields
A9, (94) =

(z n -x nz)A6

0s Y,n_+ (xcos +zsiny,)n_-ysiny,n (3.5.9)
-yc¢ Yz X X Y2 Y2 y y 27z

Equations (3.5.3), (3.5.5) and (3.5.9) canbe simplified for spiral bevel

gears with geometry II taking into account that in this case x =0,
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y=0 (see equations (2.6.4)).

Equations proposed in this item can be applied for approximate determina-
tion of kinematical errors induced by incorrect methods of generation of spiral
bevel gears and for determination of machine séttings to compensate such
errors.

It was mentioned in item 2.1 that a correct meshing of spiral bevel gears
can be gotten by coinciding three axes of instantaneous rotation. In reality
these axes do not coincide and therefore kinematical errors represented by
equation (3.5.9) appear by A8 -equal to the sum of dedendum angles of the
two gears.

To compensate these errors corrections of machine settings for cutting

the pinion are used. These corrections are pinion displacements represented by

equation
AsD o ARj. + ALk, (3.5.10)
2 if ~f
where AE and AL are algebraic values.
Equations (3.3.15) and (3.5.10) yield
B, (h,) =
AEn_ + ALn
y z (3.5.11)

-y cosy,n + (xcosy2 + zs1nyz)ny-y51nY2nZ
To compensate kinematical errors (3.5.9) the following function

£(6q) =

AEn_ + ALn_ - (zn,-xn_) AS
Y z X Z (3.5.12)

-y cos anx + {x cos Yy + z sin Yz)ny -y sin Yon,

must be minimized.

Let us represent function f(¢d) as a difference of two functions as

follows:
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£(9q) = £,(94) - £,(d) (3.5.13)
Here

(z n -_x_nz) AS

£,00) = - - - (3.5.14)
2+7d ycosyznx + (x cosy, + zsmyz)ny—ysmanz
is the function of errors, and
AEn_+ Aan
£ (6g) = Y (3.5.15)

-ycosy,n + (x cos Yo *+ 2 s:LnYz)ny -y siny,n,
is the compensating function which is applied in order to compensate the

kinematical errors induced by AS as a result of an incorrect method of gear generation.

df df

Let us define derivatives ——— and —= at the main contact point at
dby dé,

which y=0, x=0, z=L for gears with geometry I and geometry II.
Geometry I. Projections of the surface unit normal were represented by

equations (2.2.10)

n = 51n¢c
ny = cosxpcsm(ed—qd+¢d) (3.5.16)
n =

cos d}ccos(ed -qqt ¢d)

where \bc, © and q are constant parameters and ed -9y = 90° - B.

d

Coordinates of contact point were represented by equations (2.2.25)

Sin(qd - (bd) .
X = [rd—b ————————] 51n1pccoswc

d COS(B'd)d)
cos(B —d)d) .
y = ——W— (3.5.17)
bdsin ed Sin(s _q)d)

cos(R - ¢d) * tan ll)c X

109



At the main contact point ¢d=0, x=y=0, z=L.

(3.5.17) yield that at the main contact point

dnx dn dnZ
—X =0, L= cosP sinf, w5 = -
d¢d d¢d c dcbd

ax _ Pa*inf sind cosy =

dd)d cos?B c c cos B
dy _ 2

dq’d L cos wc

dz _ ¢ sin%

d¢d = - Lsin .})ctanB

At the main

contact point the derivative

dz n - dx n
df2 i dd)d X dcbd z
dd)d L sin yzny

Equations (3.5.16) and

coswccosB (3.5.18)
51n1,bccosq1c (3.5.19)
(3.5.20)
(3.5.21)
df
- 1is represented by equation
d¢d

n_|cos —Ey—n +—d£-n +sin -d—zn +zdn—y——9Ln
x [ Y2 " 37 ™ T T, Ty Yolde, My 235, ~ 3. ™2
- d d d d d
= [ AS
. 2 2
L sin Y,ny
(3.5/22)
Equations (3.5.22), (3.5.16) and (3.5.19)-(3.5.21) yield
df2 tan B tany
= - — € AS (3.5.23)
do siny,cos B
d 2
Equation (3.5.15), (3.5.16) and (3.5.19)-(3.5.21) yield that
dn dnZ
ae, PEgg tAlgg :
1 d d _ AEsinB-ALcosB
do = Lsiny.,n = Lsiny,cos B (3.5.24)
d 2y 2

Kinematical errors will be compensated in the neighborhood of the main

contact point if
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8F Bfl sz

= - =0 (3.5.

Bd)d 8¢d '3¢d
This requirement is satisfied by

AEsinB-ALcosB
L

A requirement that functions fl(cbd) and f2(¢d) must be equal at
main contact point yields

AEcosB+ALsinB
L

It results from equations (3.5.26) and (3.5.27) that

tan q)ccos 2B

B cos B

L
Equations (3.5.28) and (3.5.29) provide approximate magnitudes of

machine settings for spiral bevel gears.

For spiral bevel gears with geometry II functions (3.5.14) and (3.5.

will be the following ones.

AS n tan t,bc

X
f2(¢d) = = AS (3.5.

sin any sinyzcos B

df2 cot a4 tan wc

dd)d - cos B

AEn +Aan AEcosB8+ALsinB

£ (9,) = . = =3
1-"d zsmyzny LsmY2 cos B
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+ AS tanBtanlpc =0 (3.5.

- AS tanlpc =0 (3.5.

= —————— A§ (3.5.

-= 2tan1pcsinBA6 (3.5.

- AS _ (3.5.

(3.5.

25)

26)

the

27)

28)

29)

15)

30)

31)

32)



af, 1 cot g,
d¢d = Lsinyé AL <cosBsinB_]> - AE cotp (3.5.33)

Requirements that at the main contact point

df1 df2
d d
yield
ATE = (cosB - sinB tan qd)tampc AS (3.5.34)
AL _ . s
T = (51nB+cothanqd)tanlpc A (3.5.35)

4. CONCLUSION

a. General kinematic relations for conjugate gear tooth surfaces are proposed.
The proposed equations relate the motions of: (a) points of contact and
(b) surface unit normals. The equations above are applied to define:
(a) relations between principal curvatures and directions for two gear
tooth surfaces which are in mesh, (b) kinematical errors induced by

errors of manufacturing and assemblage.

b. Two mathematical models of geometry of spiral bevel gears are proposed.
Models above correspond to the motion of contact point across and along

the tooth surface.

c. The bearing contact of spiral bevel gears for both models is determined.

A computer program for this has been worked out.

d. Method to investigate kinematical errors of spiral bevel gears is worked

out.
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Section 1
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[Mij]

(1)
I'labs
R (ui ei)

(3) () ()
~Z

~x ~y

LIST OF SYMBOLS

half the length of major axis

auxiliary function used in Eq. (1.7.30) represented by
Eq. (1.7.31)

half the length of the minor axis

auxiliary function defined by Eq. (1.7.32)

shortest distance between axis of rotation

elastic deformation of surface Zi

auxiliary function to determine size of contact ellipse
auxiliary function to determine size of contact ellipse
distance of point N from tangent plane t-t

projection transformation matrix

point of contact of tooth surfaces

coordinate transformation matrix; transformation from
S. to S.

j i
absolute velocity of the end of unit normal
unit normal vector to surface Zi
. . i} . .
projections of n( )1n coordinate system Sf
relative velocity of the end of unit normal vector n,
transfer velocity of the end of unit normal vector n,
a point on surface Zl

new position of point N after displacement

final position of point N after displacement and
elastic deformation

point on surface 2

final position of N' after displacement and elastic
deformation
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K11
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(2) ,
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+ K(l)

(2)
11

(1)
Vi

normal vector to surface Zi

position vector describing surface Z with surface
coordinate (u 6. )

coordinate system i

tangent plane to surface Zl and 22

absolute velocity of contact point on surface Zi
relative velocity of contact point on surface Zi
transfer velocity of contact point on surface Zi

transfer velocities of points on surface Z in
coordinate system 1

relative velocity of point 2 with respect to point 1

Cartesian coordinates of contact point on surface Zi
as expressed in coordinate system Sf

(1)
( )

angle made by axis n and 1
angle made by axis n and 1
angle of crossing of axis of rotation
approach of surface Zl and 22

displacement of surface Z when Zl and 22 are in
meshing

displacement of surface 22

unit vectors along principal direction of surface 21
unit vector along principal direction of surface 22
principal curvatures of surface 21

principal curvatures of surface 22

auxiliary function

auxiliary function

distance of points N and N' from point Mo

(1 1)

angle between iI and iII
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Z. surface i
¢ angle of rotation of gear i

angular velocity of surface Zi

Section 2 (i=1,2) (d=f,k)

agi) auxiliary function defined by Eq. (2.4.11)

agé) auxiliary function defined by Eq. (2.4.12)

bél) auxiliary function defined by Eq. (2.4.13)

bd a parameter of tool setting

F(l) auxiliary function used to compute the principal direction
of surface Zi

G(l) auxiliary function used to compute the principal curvatures
of surface Zi

[L..] projection transformation matrix

1)
[Mi'] coordinate transformation matrix; transformation from S.
J to S. J
i

ne surface unit normal

Ngd) surface normal to surface d

a4 a parameter of tool setting

réd) locus of contact point on surface d

T4 a parameter of tool setting

S(l) auxiliary function used to compute principal curvature of
surface Zi

- i nat

Sa (xa,ya,za) auxiliary coordinate system

S (x.,y ,z) coordinate system used to represent surface ZF in

¢ cre ¢ geometry II

Sh coordinate system rigidly connected with frame

Si coordinate system rigidly connected with gear i

uy generating surface coordinate
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(F1)
Ve

(K2)
Ve

(xf’)’fﬁ Zf)

SOIMOMC)

£ 2YF

(@
(d)

II
5(1)

@1

(d)
(i)

relative velocity of a contact point on surface Z with
respect to contact point on surface Z

relative velocity of a contact point on surface Z with
respect to contact point on surface Z

coordinates of the line of action of surface Zi

components of the equations of the generating surface Z(d)
[+]

90° - (ed- qd) see Eq. (2.2.24)

half of pitch cone angles of gear i

generating surface coordinate

unit vector representing the first principal direction of
surface d

unit vector representing the second principal direction
of surface d

principal curvature I of surface d

principal curvature of II of surface d

angle between i%d) and Di positive clockwise
tool surface d

generated surface of pinion and gear
ed-(qd-—¢d) auxiliary function

angle of rotation of generating surface about axis Xg
angle of rotation of gear i

shape angle of head-cutter blades

relative angular velocity of contact point on surface d
with respect to contact point on surface 1

angular velocity of surface d

angular velocity of gear i
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Section 3

AA gear displacement

AE machine setting

Ae(i) eccentricity vector of gear i

AL machine setting

Mi contact point on surface Zi

ggi) unit normal vector of surface Zi

Ag vector of errors

Qi components of vector of errors

géi) position vector of point on surface Zi

d§éi) displacement vector of contact point due to kinematical errors
oy angular position of eccentricity vector

AS sum of dedendum angles of gears 1 and 2

Zi surface i

A¢2 kinematical error function

¢; theoretical value of gear 2 angle of rotation
¢2 actual value of gear 2 angle of rotation
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