
NASA-CR-168993
19820017656

A Reproduced Cop_
t oF

Reproduced for NASA

by the

NASA Scientific and Technical Information Facility

LAhL,_EYRESE'Ap.r-_CENTER
LIORARy NASA

HAMPTON, V!R'JlNIa

FFNo 672 Aug 65



.... "" ' " ..... : : 3 1176 01327 5772 ......... " " .......... ""

-JPL PUBLICATION 8!-72

; (NASA-CR-I,_8u931S1£EC_U_{ALZg_,A_ICS I18_-2_.32
AIiAL_.SES_.ES_ZSG A_;Z CGS.i£LA:&[._(JCt

" Propu._.sio,.Lab.} 59 _.n_;A6._/a£AOI
CSCI 2.3_. Uacla s

•-. G3/39 27962

, :, : Structural Dynamics Analyses
-: • Testing and Correlation
• T.K. Caughey

:. • May 1. 1982

!.

Nationa_Aercnauticsand
Space Acminis:ration

Jet Propuls{on Laboratory
- CaNornia : -'""o of _,N_;h_._ T£chnc:::Cy

Pasadena. Ca!ifornia



JPL PUBLICATION 81-72

• Structural Dynamics Analyses
• Testing and Correlation

T. K. Caughey

. May 1. 1982

N,ttionai Ae:emlutics and
Space Adm:n;strab_m

Jet Propulsion Laboratory
031ifof['_3 If'uq',dLl[O Of Tec:_,,qo_c_y



The,rt_earch d("scribod in this publrC_!_n W_S C.3.rr_,,.__ul by tho Jc! Pr_l.'_.Irs_cr_
Lnbor,ltory. C_tt.f('rm,,L Institute _,! Techn_oqy. under c_t_trac! _,_th the t_,l!tC.r_,l!
Aetonauhcs and Space Admm_strahon.



!

I

€.

! . ACI_NOI_LEDG_,'E:_T

- ,_ The research £n this publicatLon l.zas carried out under the auspices of the

i Applied !,echanlcs Division of the Jet Propulsicn Laborato_,,. California InstI-

_ tute of Technology under NASA: contract ._o. IIAS 7-100. Z_.e effort was supported

1" by _Ir. Sa=uel Venneri _::terlals and Structt,res Division, Office of AeronautlcgL". •

i! and Space Technology.
i:
! •

t.
I



ABSTRACT

This report examines some aspects of the lack of close correlation between

the predictions of analytical modeling of dynamic strue.tures and the results of

vibration tests on such structures, and suggests _ys in which the correlation

- may be improved.,-

!
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- Designing a structure, to sur_,ive a prescrlb,-d dynamic envtron'_ent ts

most often perforn.ed no_,.tdays by nsin;_ an analytical model of the structure.

Since many structures _,,ill not be subiected to their design environment prior

to co_issiening, it is very important, therefore, that the analytical mode

• mimic tile behavior of tile physical system _'ith reasonable accuracy, g'hlle

" modern analytical technique.q have the capability of modeling a physical system

to any desired degree of accuracy, financial or tiv_e constderatio:ls may pre-

clude the use of highly accurate analytical models of the system. Clearly, if

the cest of analytically modeling the system bec,_es co.-parable leith tl:e coat

of building anti testing the physical system, then it may _,'ell be that cut-and-

try methods are more cost effective th.m analytical methods. While the air-

craft and aerospace industries have used analytical modeling for decades,

until recently the automotive Industry found that, due _o the conplex double

curvature of the automobile b¢_dy, it _.'as more cost efficient to use cut-and-try

=ethods rather than analytical modeling. To co=promise bet_.'een cut-and-try

r.ethods and the use of highly accurate, but very expensive, analytical models,

eng!neers are frequently wtlling to accept a fairly crude analytical model of

the desired structure and to resort to a limited progra_ of testing to

"qualify" the analytical model, Since the engineer, unlil:e the mathematician

or scientist, must al_'ays t,alance rigor against cost, an important question

is, "given that the dynamic environment is kzamm with only limited accuracy,

ho_€ accurate must the analytical model be to obtain 'adequate' predtct'.'ons of

the dyna--.ic response of the structure?" This report examines a number of

aspects of the problem of trying to correlate tim results of dynamic testing of.

a structure wlth the analytical predictions based on rather crude modeling.

i
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• SECTION II

' A_ALYTICAL HODELI_G _RD PREDICTION OF RESPONSE

:_ : Almost all structural systems are distributed parameter (continuous)

systems; this is particularly true in the case of aerospace vehicles where

the desire to minimize weight results in a design with mass and stiffness

'. distributed throughout the system. The complex geometry and boundary condl-

• tlons in space vehicles seldom permit exact solutions of the partial dif-

ferential equations describing the dynamical behavJors of the vehicle. For .-

this reason, finite differences, finite element, Rayleigh-Ritz, or Galerkin

techniques are normally used to discretlze the system and reduce the problem

to that of a lumped parameter system. _ile these techniques differ in

detail, they all have the same general properties. They attempt to approxi-

mate a space-continuous system by a discrete system having a finite number of

degrees of freedom, R. A co_on feature of such discrete approximating

schemes is that only the first H =odes, M = I/3 N, have a reasonable chance of

accurately modeling the first H modes of the continuous system. [:aturally,

the larger N is, the larger H may be, and the better the degree of approxima-

tion in the lower modes. The higher discrete modes are, in general, poor

approximations of the continuous =odes, even when N is large.

Since the stress in a continuous structure depends on tilespatial deriv-

atives of the deformations, the order [_of the discrete approximating system

should be large to obtain accurate approximations of the spatial derivatives;

however, in many important problems in structural dynamics, the number of

dynamically active modes, H, is much smaller than N. For this reason the

analyst will frequently reduce the size of his model to more closely corre-

. spond to the number of active modes. This practice, unfortunately, reduces

the accuracy with which stresses and forces in the structure may be deter-

mined, particularly in the ease of transient motions.

A. STRUCTUP&L DYN._H CS

Damping in d:._amic structures is u_ually a parasitic effect because its

exact origin and form is seldom kn.:_,m accurately before the structure is

built, in additic,n, in we!! built structures, t!_eda::p!ng fs usually small.

For these tees ns it is ::s::al to a::g,::_e !hal lh: _tructure has vis,:eus
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damping and admits classical normal modes. It will be shown that, if the

da=ping is small and the eigenvalues well separated, this is a reasonably good

_ approximation, at least in the lo_r modes.

i. Continuous Systems

To illustrate the techniques, let us restrict our attention to a rela-

_ tlvely simple continuous structure such as a beam, a plate, or a shell that
f

can be described by Equation 2-1:
!

O(x) utt + LlUt + L2u = f(x, t) on D

(2-D

u(x, 0) = ut(x, O) = 0

with Bu = O on _D O(x) > O. Caughey and O'Kelly (Reference 2-1) have sho_'n

that Equation (2-1) admits classical normal.modes if the following conditions
are m_t:

(I) LI and L2 are self-adjoint spatial operators.

I

(2) o_x) Ll and --_x) L2 eor_ute.

(3) _le boundary conditions prescribed on _D are compatible with the

operators L l and L2. Under these conditions there exist_ a com-

plete set of linearly independent eigenfunctlons Xl(_) , I _[1, _,)
such that

f s(x_)XiXj dx = 6ij (2-2)

_D XiLIXjdx= 2w _
- i "i_ij (2-3)

Q

":.L._X. dx = _ 5:. (2-4)

2-2

. . ......
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Thus if

u(x, t) =E Yi(t)xi (x-) (2-5)
i=l

k

" Equation (2-1) reduces to
!
i

" Yl + 2'_f_i'_'i + _iyi2 = qi(t )

where

• (2-_,)

qi(t) =£ X(_x, t)f(x, t) dx

For ho,.':ogeneous initial data,

1

Yi(t) = exp -_j;i(t - r) -. qi(T) dT

(2-7)

_ 2

2. Discrete Systems

given the system

Hu + t)6 + Ku = f(t) )

(2-8)

u(O) : 6(o) = o M, _, K- :: _ x

: Caughey and O'kel!:" (Reference 2-1) have sh,_-n that Equation (2-8) admits

-' 1Dclassica! normal --des iff '1 *;" and :-,'- ccrm-t,te.



If H, D, and K are s)_etrfc with I! positive definite and D and K at

least positive senidefinite, there exists a complete set of ordinary eigen-

vectors _(i) such that:

= ¢(I)T rt "(j) = _i (2-9)

.(t)T
£ D _(J) . (2-10)- = 2wilt 5ij

_(i)T K "(j) 2 (2-11)
_ _" = wt,51j

I _ [l, N1

If we _.-rite

u(t) = _y(t) /
(2-12)

_=[4_(i),,,_(2),...£(S)]

then

I
'I* _" _ :" +,,2 = (t)'-i:'i:1 "i'_i qi

(2-13)

y!(O)--5,,t(o)= o

where

e.(t) = CTf(t)
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For homogeneous initial data,

" = )
f] -: :.Jo o_p(-_jt __))_n _(t_- "_%(Od_

{2-14)

•_ i -_[i."q

3. Excitation of Pure Hodes

If in the case of Subsections II-A-1 and II-A-2 the forcing function is

given by

\

fCx, L) = O(x)Xi(x)P(t) )

or I (2-15)_(i) (t)f(t) = M ; p

we see that

qj(t) = p(c)Sij (2-16)

ltence, in the case of Subsection II-A-1,

t
• v.(t) --" h (t - :) p('-) d_ 8..

-J j 1J
.I 0

: ." { (2-!7)

sin 7t

h.(t) = exp (-..<.t) 3
3 .1 3 -

ti-::._ u(x, t) = X.(x,.'.(tJ.
-- ]. -

2-3

°-.
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!
In the case of Subsection II-A-2,

i
i
!

f0ti
i yj(t) = hj(t - x)p(z) dr 6i. i
_. (2-18)

i sin o t

_jt) -----J--hi(t) = e×p (-=j g.
= ]

i
I thus tj(t) = €(i)vi(t)"
I In
i llence ,re see that in both cases a pure nor':_al mode is excited.

particular, if p(t) = PO cos _t, then. as t . =, we have

j " PO cos (-t - a i)

! u(x, t) = Xt(x) N](.j22 2) 2i _ _., + (2wi_i)2

L
I (2-19)

or

I Pn cos (,2t - a i)
I u(t) = 6(1) --;
! ,J _ 2 +

._ •

r where

! -1 ~*i-*'i
; a. = ta._ -f--'f
i. x _i- _

(i)
"' Using the result of Equation (2-19), we can d_termiue _)i" c'i' and

4. Nonclassical Normal :.'edes

For simplicity, we sha]! r,_.strictthe discussion to discrete, visceusly

,:-l..
dam?ed sXstcms. If in .qt:bsectionIi-A-2 M-ID and . _,do not co_ute, then

classical neff_at modes d_- not (-::ista'.:dit will be she,:..--,thac it is i_pes-

siblc to excite pure eigen_odes hy any choice of real forcing functions, it

-" should be noted that _,vcn in this c-_-se it is possible to excite "fairly

"311 _'t "t' i'J J'JTI "r]_) _ '-_ s "
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TI_- for_l,lation of 2N ._pac'e !_ as folhu,'s:

I.e_ z "(_, then I'quation (Z-S)<'.m ._, re,-ritte,, h, the form

£ - A.-.+ b(t)

.-..(o). o

'b,'ht"r 1,

and (:-20)

-o)._I-Ifit)

If tl,,, .".._rix A is r._c,b[_..f_,,5.liy.e, _h,-re ,,xfs:s a n,-usingul,lr matt ix T such

that :

T-1AT . .,' = (2-2I)

•4h(_re

\1"2 l

0

" o .. _2-22)" I /
L .N
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is a diagonal matrix of complex elgenvalues. The matrix T has the

structure:

[o_.lI
¢F

---Lo_Ti....o,,:j
where (2-23)

@=[_(1)z, __(2),...,__(.'I)]

and

H + ),iD+ I __

In general, tile_(i) are conplex N vectors. The inverse of T is given by:

where

c3 = Cl

c_ = _,-I _4,,.
- _" L. -_

C.,= C_ f
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Let

z = Tv (2-25)m

Then

"" ° !

; ,.v= Av_+ qCt)

i •

v(0) = _0 (2-26)

! fl(t) = T-lb(t)

T-lk(T) d: (2-27)

.. ,,(t) --.,o [ o exp(Xl(-

Using Equations (2-24) and (2-25), we have

_0 t

_ : - - M-If(:) dTx(t) 2_',e € exp(,',l(t :)14-1[_,'_10-1 €:.1€-i] 1
o

(2-28)

_0 t
.. x(t) = Im(O exp(.'.. (t-_))O-])[Im(_,_l_b-1)l-l,'l-lf(,*) dr (2-29)

Since .Y-If(t)__ Is a real vector, and Im[_ exp(.'.lt)O -11 and Im(O'l O-l) are real
.-..:_.trices. no choice of the forcin,l function f(t) will result in the excita-

i
: tion of a pjlr3- eigen---_de. It mav al.,;o be shown that it _s impossible to

c_ci:,, .: pair of ;-_-.-plex t'-:il]ll}:ii_e p_llI'5"- eig_,nmo:_es. Tim--, unlike _i:,_".qvstem

of Subsections II-A-! and :I-A-2, modal te'Jtin:; does llot enable us to5

,i,c,,rat,,ly _dt'iltifv the ei::,.nvalues and t, igenvectors of s::stems -'ith ntm-

.,a:_:;-<_i :_.,_rv.:il z;',!_, i,,:.-pit_- "i:i_ fact, if -n Equa:ic-. (2-:.) :h, ,,iamp_n-"

.-.:_r!:-: .' i'_ :<':,:If ,m2 :.h_..,_.:,.r:v...'u,:s '-,-I] s,4,:<at_-d, E::::-t_en (2-2._1 ,:au be
i
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t

Let €0 be such that

:i_,o= I; €oi:_o= 2 = _

L If _-e set

f(t) = ._t_O(i)p0 cos _t (2-31) .

and in Equation (2-30)

[r.ff/_ij [ << "J2i Vi, J (2-32)

then after the initial transients die out,

!'o*'x(t) .................... ¢ cos (_'t--_.)

- _(9 _)2 (, )2 t- 1
_i - _- + _ 1 i'"

N ,a't-_ki sin(,-'t - a i - v_k)

+ l/ _ _\2 _ _0 (2-33)

-1 ____i.1__= tall
ctj 2 2

l

if

.u-d ..... md .c. arc di..;tin,:t a'_al '-el1 sc:'._.r._t'-',1 and • " .. :}:,.n fx,,:_

":T,.:t:ati,'n(.:-_'.') ti,.t, rz.ain (.)l,-t't t,( p_-:,cl.;,_lcal d.!.-api::..: i:; _." ca_::.c l"."..q,"

,. 2-!()
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shifts in the response vector. F_eh __.ass no longer passes through its

equilibrium portion at tile same tize as all the other masses, as _as the

case for classically damped systems. In particular, Equation (2-33) sh_as

that if

'°_'k l _ki I
<< 1

2 - _k1_k _2 I

then

P0 cos(,.,t - a.)
X(t) t (i) _ ,--" ." (_-3.4)"-0

Thus, for s=all damping, the response is almost a pure nor=ml mode. As the

damping increases and the separation between tile eigenvalues decreases, the

effects of nonclassical damping become stronger and tile response is no longer,

even approximately, in a pure norr_l mode (Reference 2-2).

5. Useful Properties of Discrete Systens with Classical :,ormal tkMes

Returning to Systc_ (2-8) in the case of Subsection II-A-2, ,*he Proper-

ties (2-9), (2-10), and (2-11) can be rewritten in the form

+. #,]
"1"

' _'_ = I

1 1

_- cO = . -i



Since thL" vector.-; i) are _linearly |halt.pendent, the _,atrix _ I:; :

nonsingular: therl, fore:

,'t = (,I,-]) T (.-i)

o=
.. K = H_' "i _'TH "

B. SYSTI2i REIII'CTION

_,'t, shall now prove two intt, rest in? theorem._.

1. Theo rt-'_ I

A contim:ous dyna¢ic.i| syster_, .,¢tlt'h as that or" Subsection I1-A-I, i.q

given. It exhiblts'a complete set of linearly llld¢t_'ndetlt viscously damped

_-l.,ssicnl normal =odes having eiBeBfullct ion:; Xi (x), And eip_.'nvahtes

"1" i t_ [I. _']. (:ivt'tl .t positive inte|-er N. ther,- exists an :_tll-order vis-

c¢'usly dn=;,¢d discrett- system exhibiting a complt.te set of classical nortaal
.tit "-

_o,h,_ havint: the property that Its t t,i_:ellv_lhl¢l ¢orrL, sponds exa_'tly to

the i th ei_cnvalue _i of t|lo eotltilltlou.q s\-stera and lurtht, r the i th ei._etl-

;'ector : corrt'::pond_: to ;I proiection or" the" i th L-igt.rtiunctioB of the
I

•",nit !ntwu_ sv.qtem. Th._t is,

,,_. = ,_,. t! l) _ Xi(x j)t t 3

{2-37)

--J

Proof: Si:;.-_, the t-i._:,-:'_functions of the cotltitt::oti._ vr,_blt'm art- Iim'._rlv i::&'-

pc.'Ildt'Ilt • t_t" t'Utl¢'t i,m

?:1×}_ = _ t.X, i(':/-
{ 2- .;S)

I

[ - -
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; cannot vanish identically unless a. =- 0 Vi c (1, ._1). Hence, there exists1

_!. X points xj j c (i, ._) such that the vectors

:: = • C

:(i) _ Xi(xj ) i, j (1, R) (2-39)

_. are linearly independent.

Let

• _ , ... (2-'.,0)

Since the .(i) are linearly independent, the matrix _ is nonsingular. Let

"*!= a2('_-l)T(_-l) 1

2
_here a is chosen such that

TrM = ._ p(x) dr. (2-42)

Using H, D, and K constructed as in Equation (2-41) to for-- the .':th-order

discrete systc=,

_ °.

:1_2 + Dh + Fu = _"_(t) = h'Cff. (t)

(2-'3)

,,,(o) = ,.',(o) = o

2-!]
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This syste._ has the following properties:

ordinary . eigenveetors

(I) There exists a coeplete set of q
. €(i) i c (I, N) such that if • = [€(I), _(2) ... _(ll

as in Equation (2-40), then

_TH_ = a21

i

(2) = 2w.l;. ,t
l t

N

(4) If f(x, t)=_ql(t)Xl(x)o(E)
i=l

(2-_d,)

then qi(t) =£ O(x)f(x, t) X.(x) dx

If in Equation (2-a3) t2 =_, Equation (2-43) is reduced to:

° 2 "-

Yi + 2_l_'iYi + _aiYi = qi(t) (2-:.5)

which is exactly tile same as the i th mode of the continuous system of Sub-

section II-A-1 with f(x, t) given by Equation (2-44).

llence, sillce

=_,-cO (2-a6)
"'lt)__,x



then

.N

E ,(i)yi(t): uj(t) = "J (2-47)
i=l

N

• =EXI(_j)Yi (t) (2-48)
1=1

•". uj(t) - u(x.,t) (2-4.9)-j

That is, tile solution of the d:screte Problem (2-38) is the projection of the

solution of the continuous problem of Suhseetton II-A-I _,'ith f(x,t) given by
Equation (2-_4).

It should be mr,ted that there exist, in general, infinite sets of points

{x.} j _ [!, Y] that may be used to define tile sets of vectors t0 (i)}
.,th .

i ,: [I, N]. Thus tht, re exist infinitely e-any ,_ -oraer models that c;m be

used to mimic the behavior of tt,e continuous system. It is not surprising,

therefore, that observations at N points in a continuotts system do not permit
vnique identification of the continuous sv.qtem.

2. Theoren I I

Given a discrete gth-order dynamical s vste_ exhibiting a complete set of

linearly independent visc¢,uslv damped classical normal modes ,(i) , i :- [I, NI.

(,i\'en any positive integer "" < :;, there exists an g_th-order discrete- .!.}

dynamical system exhibiting a co=F-!ete set of linearly independent classical

c.i> [ ]nor__aI mod,,_; :_. , j c 1, .X2 , having the pr,_perty that tt._ i th -'f.';vnvaitw

eorresp,:nds exactly to the i ill t_igtql\,;llue s,I" tilt' larger system and further
" tim i th ei::,'nvector (i) " '. cgrre,;.,,nd.q .:::a-:oily to .-. proi,,ctio:: of t]_e ,th(i) - - elgcn-

v,'ctor : of t{_t. larger syste.-:..
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Proof" Since tileeigenvectors of tilegiven system are 11nearly independent,

the matrix

is nonstngular• that is,

. o (2-51)

tlowever, if this is true• there must exist nonvanishtng minors of all orders

less than N. In partieular• there must exist at least one nonvanishing minor

of order N2. Let

_(i) = S _(i) i c [1", N2] (2-52)

gqmre S ts an R2 - N matrix whose columns consist of either the null vector

O• or distinct unit vectors e.," j € [1• "'2] have zero entries in all but the
•th

" 3 ro_, which has unity. The matrix

__ 1) ,(2) ""• 0 (2-53"J

is such that I_1 is a minor of @ of order :;2 and so does not vanish for an

appropria_'e choice of the matrix S. Let

H2

T .... 7 :'. (2-33_r'2 r " '



ORIG,N.ed.pAGS!_
: OF POORQUALITY

4

Using the H2, D2, and K2 constructed in Equation (2-54) to form the N2th-
order discrete syste=,

M2u2 + D2u-2 + K2u2 = f2(t) 1 (2-56)
u2(0) = _ (0_ = 0
- -2

• Thls system has the follot:ingproperties:

(1) There exists a complete set of ordinary eigenvectors

3'

_T/12_ = a-I

(2) _TD2, = --'j_j a

(3) = _j a

N2

(4) If f(t) =E ni(t)qi(t)' then
i=l

:;2

f2(t) =E (_)'_"- .'I2-" * qi(t) (2-57)
t=1

If E2 = _,then Equation (2-56) is reduced to: (2-58)

•" _. r "" + _ = qi(t )zI + _-i_izi _izi; °

[ (2-59)

_ zl(O)= £1(0)= 0 }

2-17
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Equatlon (2-59) is exactly the same as the ith mode of the large system. :

Hence, since

_u2(t) = Cz(t) (2-60)

N2

u-2f(t) = "'i "'j'_" (2-61)
1=1

Using Equation (2-52), we have

N2

u_2t(t) = S E_x._(j)zj(t).
j=l (2-62)

= Sx.(t)
--1

.-. _2(t) = S_(t) (2-63)

That is, the solution of the lover-order system Is the projection of the

solutian of the higher-order system.

It should be noted that there exist, in general for each N_ --" ;,", several

nonvanishing minors. Therefore, there exist several "¢2th-order models that

mimic the behavior of the ?;tt;-order system. It is not surprising, therefore,

•, Nth_orderthat observations at .,, points in a discrete system do not. in

general, permit uniq_e identification of the Ntn-order system, unless 2;_ : Y

or there exists seT..e sper'ia] structure to the system.

Th,-ore.'n..s I a_:d ii en_>'are that thore exist finite-di.'v..ens[on l_.'mped param-

eter .-.odel__ that can mimic ezaetly the be!_v.,ior of a higln-r-order lu..-.ped

parameter or conti:_uo_ls s)'.qteL'i _mder apprc>priate " ", _""
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forces to the structure at only a snail finite number of points. By limiting

- the number of points at which _'e excite the structure and observe the

response, _'e prejudice the outcome of any attempt to identify the structure

uniquely. In general, if we excite a structure and observe its response at

"%2points, we can uniquely identify only an R2th-order lumped parameter
model.

! C. EFFECT OF HODELINGERRORS ON PREDICTED RESPOXSE

, Given the System (2-6_),
1

!, f(t) t _ T

: rL,_+ n;:+ Kx =

i _ 0 t > T (2-6")

x(O) = _(o) = o

It Is semetir:es more convenient to write the equations in lst-order

form.

\

(I_ t g(t) t _- T_=Az+
dt

0 t >T

z(0) = o

-.'here

A = _:I_ID.. [_.,t-ll:

.:..:l.d

- I 1, '! t;t)
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Suppose now that we have an analytical modei of System (2-65).

dz Ih(t) t z r

--- = By + i
dt

0 t > T (2-66)

I (o) = 2

where

B = A h(t) -- g(t) (2-67)

_e wish to know what errors are induced in the solution by modeling

errors in A and g(t). Let

w = z - v (2-68)

thus

dw

d--t= Aw + (B - A)l + ]6(t) - _h(t)t (2-69)

w(0) = 0 (2-70)

thLls

J_O Hin(t'T) [( ( )]

_(t) = exp A(t - r) B'- A)v(_) + g(:) - h(_) dr (2-70)

thus

fXtn(t.:) rIt_'_t; i : : ' " '-,-(:')ie:.:F A('. - -)i. I(_ - A) : i',

"I

- "t 7 ) _ ;,t- ) J l ;'__711



ORIGINALPAGZ-I_
OF POOR QUALITY"

:_ ]lexp(AOII-<'_Ie×P(-slt) }

(2-72)

i l l_':p (Boll < e_. " _2 > o. - M2 , (-a2t) a1,

Let
L'
L

._! = Max (MI, H2)

a = Min (a 1, a2)

(2-73)

d = supII_(o - b(t)ll
t

[: . ,]k=M_xs pils(t)il,supilh(t)l
t

Then

ilw(t_ll- Iu-':lsupll,'(t)ll+ -- p -

(2-74)

where

:' t = t if t <T
(2-75)

= Tif t _T I

•:(t) c::p B(t - T) 12(:) d_ (2--76)

-. • [
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. __ [c<_.,>.. iIz(t)ll <Msupllh(:)[l._p.(t-t -
t

(2-77)

q

•. II,:,c,:)ll ,,,,_
(2-78)

There are two cases of special interest.

1. Case (a) - Short Transient l,oads

If aT << 1, then Equation (2-78) yields:

s.pil-_'(t)t[ -<(',"r)"kll_ - All + :m' (2-79)
t

_,-"_T'- OCUt_,,..,,th,.,,:,-,,,:,.,=s,_,._,',dk lib - ,",1'• i arL' of t, qt_tlL i=portal,ce.

e{,.,_,,,th_erro_._!IB- ajl and Ilk(t) - !2(t)l] ar., of eq-,.] significance

and the systt.-m l,arnmett.rs ileed not be known with any ',,:i.<hcr acct, racv t!:an

tt_c forcing functions.

2. Case (b) - Persli_tcnt Excitation

If ,T ""- 1, then l'quation (2-78) yield,;:

()s,.vil.(t)l[ "-"' " It.- ,xl'+ : a (2-80) '

Since in many structuraU 'd'.,'lla--.ics probl_,;.-.s tE._. d.t._pin_; is sm..aiI, _'a_"

"vrm -_'/a b¢co_.:es v,,rv l::re," comp,_r,.d tt- unity. It: ti_i:; c;_sc, "_ht" f_.rst te:-r-

k' IB - Xi! dsst,nt's mu,.'!_gle/lter ir'pt,:'t.m('_, thdn th," st.covld t_ r.-n d; th_:i :_hows

the po:;sible eff,','ts of FtSt',_/lllel'. Thu.'; '-," .-.,,e t_:.it u-!,h,r l', rsi:z:,,n: cx,'£ta-

r:::.:_ ':'," .!,': _:_t'd ;.{,.Ix .l .-.':.'!; !:i';h,':" .:.'ct'r.,c;" tb.m :L,' i.,:,'ip,,: }_;_::'t':,,_:_.. 11
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ls interesting to note that Chen and Uada (Reference 2-3) established a

similar result using perturbational analyses.

D. EKrECTS OF NECLECTTNC IIICIIERMODES

let us tirst consider the case of an Nth-order discrete System (2-8) in

which the forces fit) are basically low frequency in nature

+ _ + Ku = f(t)
m --

(2-81)

u(O) = _(o) -- o

, where ._I-1D and _!-IK co:mute. Then

N

E,(i) zi(t ) (2-83)u(t) =
i=l

_texp (-_=i_itt - :))

z.(t)x =JO a.-1 sin a.l (t - ;) qi(;) d;

(2-84)

u-here

q(t) = _Tf (t)

_IY4' = " • = "_"i"i

- r_.....-"_. = ,_. ,_ - i -_ (1, ',;)
I l "i
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If the frequenEy spectrum of _(t) contains only frequencies _f which are

small compared to all but the lowest eigenvalue _i" then

flf < wi for i > N , N < N (2-86)

In this case it is reasonable to approximate the solution u(t) by the

truncated series,

N

-u(t) : UT(t).=E €_(i)zi(t) (2-87)
i=l

If u_ look at a typical term In tlle re_ainder of the series,

t
zj (t) = .h'] (t - T) qj (z) de

(2-S8)

= hj(r) qj(t - 7) d_.

Expanding qj(t - T) in a Taylor's series about z = O, we find

fot fotzj (t) = qj(t) hj (7) dr - _j (t) 711. (7) d- ._J

_.(t!/"t
• 9

+-_"2---]0 :'h.(T) d_ + "'" (2-89/



ORIGINI_.PAG_IS
OF POORQUALITY

If _._.t > 1, then
.1 .1

thj i

(T)d_--!2
.1

" _t'chj(z) dr --"2r_J3 (2-90)_j

t 2 - t_
T2h.(r) dz ;° 4 '

-] ,j.
3

Thus
I-

- 2 -< 3 (2-91)

[ -j

If

C ' (t) i < 1 (2-92)
_jlqj

max

i.e., qj(t) is Io'-"frequency coz:paredto ,xj,then

qj(t) ,
z.(t)j. ..... 2 ' J _ (:; 4-. l, ';) (2-93)

_;;
J

2-23
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In thts case _e =ay improve the approximate solutionof Equatfon (2-87)

by addfng the additfonal terns of Equatton (2-93). '

u(t) =E_C(J)zj(t) + Z $(j) (2-94). . zj(t)
i

j=l tl +i

Let

qi(t)
-(s)(t) = _ i _ (I s) (2-95)

1

Equation (2-9_) _ay be rewritten,

_J) (t) - z. (t + (t) (2-96)
u(t) = _ j ]

j=l j=l

:_o_€

(t)
q = ¢T_f (t) (2-97)

v°

.. L #\J -j=!

:_ut

_TK_ [ "',.* ]
= - (2-99)

. . t - = €. _ .... ,

E ( -i. . :.z: s)(t) = -: f(t) = t2Cs)(t) (2-[01)
t="
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I
i

t

t_ where _u(S)(t) is the "static" response of the system to the applied forces

- f(t)

)

If we write

N

u(d)(t) =E ¢1[ zi(t) - z_S)(t)] (2-102)
_ i=l

then

u(t) = _u(d) (t) + _U(s) (t) (2-103)

Thus we see that the total response is approximated by two separate

terms; _(d)(t) consists of the d)mamic response of the active modes less the

"static" response in these modes and u(S)(t) the "static" response of the

whole structure to the applied forces f(t). These results are identical to

what im sometimes called the mode acceleration method.

As a measure of the error in neglecting the higher modes we have

II (t)li - lluT(t)il
n = ilu(t)]] (2-104)i --

This error tends to be smaller for the case of persistent excitation where

resonance may occur, and higher for short transients where resonance has no

chance of occurring.

- E. ERRORS IN EIG_;VALUES AND E!CE'_I'ECTORS

From an analytical point of vie'.-,errors in eigenvalues and elgenvectors

"" are usually the -_1resu_, of modeling errors or the use of too crude a level of

[ discr;tization of the continuou._ system. In practice, it is us,ally possible

to model the lower eigenva!ues and eigenvectors of aerospace structures "with

- ;m a,_curac,-of five to ten perc_.nt, or better. Th_ eigenva!uL.s are usual!v

nr_re accuratelv mp_-:-ied than the ci_7_nvectors t_',',:_h this r:a': b,-. :_im.',17

;t Pr::b1. ,. "_. related_ t<_ the diffic,:i/!_._ encountercc;_ in tostin;; .,.,a' ..-.casuring

c[¢¢-nva'_-:es and eit,:n'.'t-ctc.rs. Ti:is .,'i;:je_ t :.,';_l,, }:c _.rea_u__"_ in .-._-re deuni _.

2-27
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F. ERRORS IN HODAL "FORCE" COEFFICI_,'TS

Errors in eigenvalues and eigenvectors have a significant effect on the

modal "force" coefficients; hou'ever, even if the elgenvalues and eigenvectors

of the first N =odes are Imo_ exactly, errors in the modal force coefficients

will still arise due to discretizatlon effects. For example, a central dif-

ference approximation may be used to calculate the curvature of a beam using
t

the discrete displacements of the beam.

9 9

.. Thus 3"u/_x" Is approxir,ated by t

Un+ I + Un_ 1 - 2Un
h (2-105) I

u(xn) =where Un = , xn nh, and h is the mesh s:.'acing. Now

-}

- 2a 9 h2 3"u O(h 4)Un+l + Un-i n = ._-tt + ; + (2-106)12
h 2 _X- 3x_

Thus

Un+l + Un_ I 2u - h2 9241 !_l

max L_ax

If

u,x,.A ,2_10 ,

I h 2 "--u!iUn+l * Un_1 - 2u .... ;;!• . n 2..,2---

I ':< i 5 "_--/_ 2) (2-!0,9"!i "_ i =-u I
" _ 21

i3:.- I :z.:::.:

'_ -L.
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Now Xlh = " the number of mesh points per wavelength"
•Im • •

l Un+ + Un.. 1 - 2u n - h2 _2u I

2

. . _.x2

h2 1_2u m. I_ I 3N2 (2-110)

l_x2i _ax {max

since

_2u
oB = E z-_---_- (2-111)

d_

The relative error in the bending stress is also given by Equation (2-110).

Thus, the relative error in the bending stress increases rapidly as Nm, tlle

nunber of mesh points/wavelength, is decreased. Since we have shogm in

Section II-B that it is theoretically possible to construct discrete models
\

whose eigenvalues agree exactly with the first :geigenvalues of the continu-

ous system• and tbmt eigenvectors are projections of the eigenfunctlons of

the continuous system, it shoulg not be too surprising that the accuracy of

modal "force" coefficients is usually lower than that of either the eigen-

values or the eigenvectors.

In addition to the dfscretization errors dlscussed abovr, additional

errors arise because of modal spill-over caused by experimental diffic_Itles

in obtaining pure r_odal excitation, and the fact that the real structure may

not admit classical normal modes; these errors will be discussed in more

detail in Section III of this report.

2_21o
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SECTION III

DYNAMIC TESTIXG

Though it is possible, using modern analytical and numerical techniques,

to model the dynamic behavior of a structure to any desired degree of

accuracy, few engineers would be happy to co=isslon a new space vehicle

without at least some limited d)mamic testing. The main reasons for this

conser_'ative approach are: (i) while it is possible in theory to model the

structure accurately, it is usua!ly too costly or too time consuming to do

so; (2) It is very easy to omit some significant effects such as geometric

or material nonlinearities in modeling the system. For these reasons, most

engineers require at least a limited program of d)_a_le testing to "qualify"

the analytical model. If tile limited program of testing yields good agree-

ment between measured and predicted values, the engineer is happy; unfor-

tunately, if the agreement is poor, as it frequently Is, the engineer is left

In a quandry. It has been suggested that the test data be used to update

the analytical model and so increase the precision of the analytical predic-

tions. Thls is a vet'.,-useful technique and can yield good results if prop-

erly applied. First of all, it must be pointed out that due to the non-

uniqueness of the iden=iflcation process, it cannot be used to identify the

parameters of the co_-plete structural system. It c_n, however, be used to

obtain updated estir.etes of the natura! frequencies, damping factors, and

v_ode shapes of the finite numbers of modes observed, and hence to make better

estimates of the contributions of these modes to the response of the struc-

ture. While this approach Is useful in improving the analytical and predic-

tive capabilities for a given physical structure, it cannot help improve the

analytical and predictive capabilities for new and unbuilt structurt.s.

A. ._:.3DAI.TESTIXG

As sho'-,_ in Subsection II-A-3, discrete and continuou.'; systems exhibit-

i._g classical norr.Ji .--Odes ar*_ capable of being e:-:cited in pure nor:-._;l!m_.des.

,'-._4sho_'n in St,bs(-ction II-A-4, discrete systems exhibitim; nonclassical nor-

=.al =:,Je5 canno t be excited in pure normal =odvs. Despite this fact,

_a'?:_-l'- ' (?:,..:,,rznce 2-2) !,a:_ ._!,oa._ that if tP._. d;c:pi--.g in a ,:tructure i_ small
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and the elgenvalues yell separated, the lower modes of any viscously damped

- structure can be excited in rather good approximations to pure =odes.

In structural d)mamics, it is c_only assumed that the system possesses

classical normal modes, h_ile this is seldom strictly true, the damping in

many aerospace structures is often quite small, and so fairly pure nodes can

be excited, particularly in the lower =odes.

Consider the Nth-order discrete system that exhibits classical normal

modes:

°°

nu + D_ + Ku - f(t)
(3-i)

u_(to) - G(to) _ o

Let

f(t) = C cos _t, t o "+ -_ (3-2)

Since Equation (3-I) has classical normal modes, the solution of Equation

(3-1) vith Equation (3-2) can be written

u(t) = Re(_>R@Tc exp (j,_t)) (3-3)

',qlere_ is the modal r-atrix (2-12) _nd R is the response m_trix:

_ exp (-Jai) _ (3-4)

R = J 2

,/_ 2 21 + (2,1r.i,_)2
J
i
p

_ere , ts defined in Equation (2-19).?

; l.t_t

_-2
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Then

If

_3= qkek (3-7)

then
J

u(t)_ = ¢(k)qk cos (.:t - _k) 2 _ ,_2) 2 + (2_k_k_,)2. (3-8)

Condition (3-7) requires that

C = qkM_e k (3-9)

However, _ is unkno_ at the beginning of the test.

We observe that if- _ _:k, _i << Vi and the eigenvalues _i are distinct

and well separated, then iR(k)!;>> !R(i)I i = k; thus:

cos (_t- _k )

u(t) = €(k)q k (3-10)

,f( ?
This suggests that an iterative scheme can be used to generate pure modes.

Using Equation (2-6), we can define an Iterative scheme.

1
Uk(t) = ?e _k(tJ

_, (t) = #vP. _;>:ptj,:t) (3-11)
=k q-k-I

ik(:> = -:,.._k(t)--, co,_stant

= l-, ,.')
• " 2:. "¢':'!P. c,. , _9-_.)

._--°J
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Usir$ the properties of classical normal modes, we have "

_I,TN @ = I (3-13)

%

" qk " Rqk-I {3-14)

_here

_. = _ exp (-J'*')l /

Ril _( 2iz _ _2)"(2_,i;t._,2"+ ( (3-15)

%

RI( = O, i #

Thus,

_I= Rq-o

% %9

q2 = R_I = R-90

(3-t6)

-nq _n-1 =

If

(_2l - u2)+ (2_i.-.1_.)2
<< 1 Vi # ; (3-17)

.-:.''.,, [; "_',:":_clect r ,:'x9 (-j,',.; such that

% i

- 2 -:



• ._,_ "e_

¢,R'_"..IAL P ..... _"

OF _C'C/_ 'al';'L:_" :',-

then

liu R = Ei (3-!9)
N-_

Where E. are nonn_ative, definite matrices sat.fsfy tile following property:l

EiEj = Ei_lj (3-20)

_ Thus, using Equation (3-16), -'e }lave

lira q-X= liw R"q--O= qoiei (3-21)
N-_ N-'_

Using Equations (3-21) and (3-Ii), _'e find

lim Uk(t) = lim exp (j_t)
k -_ k_ _Rqk-I

e::n [j(,_'t - ai)l O---)
.(l)

= %

"_ 2 2

". lira !lk(t) = Re li.-. __{(t)

(3-23)

= :(i) cos (=t - a i)

:)._. - + (2-: " -_"
1 I

Thu_. l!,--,iterati'.'eprocess: cenverges :o .l ._olutlonproI)orti,.zalto the pure

-_dv : , ."rt,n"_hichthe _atural fr_-<:.uenc>'.: and IL,"dar:vir.<::ar_::_:er'i
- :i)

r_lv b.." obt,:ined in additlt,n to :



It sheuld be noted in passing that uhat has been said for the discrete

System (2-8) is also true of the continuous System (2-1). Ally systt_-a, con-L -

tlna,_us or discrete, that exhibits classical normal modes lends Itself to an

Iterative schL_e, like that above, which cotaverges to a pure mode.

,..

B. ERRORS IX ,HODALTESTING

1. Nonclassical Norraal Hodes

Even if _he system, under test can be regarded as an N-degree-of-freedom

discrete syste-n it is highly unlikely° in practice, that the system will

possess classical norr_al modes. Thus, theoretically, there exists no choice

of forcing functions that excite pure normal mode.,;. As previously pointed

cut, if tilt: system damping Is small and tile eigenvalues well separattq,

relatively pure modes of vibration may be excited. If the system da=ping is

not small and the eigenvalues closely spaced, as often happens in rea! struc-

tures, it may be impossible In practice to excite even relatively pure modes

of vibrations in :ill but the very lowest modes.

2. It:pure }',,-dal Excitation

Even if the syste:= under test can be regard,,d as an N-degree-of-freedo.'a

dis.:rete systt_ possessing classica! nor_..al re..odes, excitation of a pure =ode

of vibration requires that each mass in the system be excited by a force

proportiona_ ._o that mass alld to the r:odal displaccmcnt of tllat mass. In

}_quation t3-1"_, ",'e have sho_,-n that an iterativc technique can he used to

.!t|lit,re this end, provided the mass matrix of the ";ystem is kno_,-n and pro-

vid,'d that _,e have tile _-eans to apply ft, rvt.s to each mass. _21ile we will

seldom kno'_ t.-._" mass raatrix prek'ise]y, we often have .tth'qu.ltely good e.<;ti-

• t2.1tes; ]lOWt,ver. we seldc_ hay<. v-force transducers availaable to ctmduct tilt,

tt,:;t. In the case of a Ct_lltillu,3tlS syst¢','2, =odal excitatien should a!st_ be

t'O.'ItillllOUS, a-':.-I at least an adequate d i:;cr_:te approxinati{m t_ a co:it i,'lllOll,;

di-._ribution 05 r.'tlrccs----dll e\'t'll ,'_.ort- diif;.,rult task to acct,.-,plish,

_. ._'.t'/1: u F _.7.<_ t }_:"rO F.q

As,_;'-'ui:_;:. as in Sub,section,,; III-_;-1 and I!l-B--'. th,i_ til__,di:;crc'_- N

d,.,:r,,,, o: lrc_.','.-a is .t r;,'..,l r.a_del of the s'..s_t.n0 tht.re .';till rt.2ains r.ht.

7" a'ltTa _': :-'-'-::tiFi'1_, ',};t" ilia_)].ltt'P_-t'r]t:, ,:_ "1 i _!_:][:_ {tie t+',l_'2i [F_."!ilt':i,''." . 711_,,_



g displace=_'ut transdvcers available for a test; true, it is possible to use

N0 - X transducers° aud move them around the structure, but this is a tl--e
consur_ing procedure and greatly increases tile cost of tile test. However, even

if ix'_ have Y transducers available, and even if _,'e could excite pure no_ll

modes, there still exists the question of t-.<,asurement error, particularly

errors in phase _easurements, which are notoriously difficult to make with

accuracy.

4. Effects of Diseretization or Conden.-'at|on

" At.r,-spat'i" structure:; are almost always t, entinuotlS |n llattlre_ or, at best,

very-high-order discrete s\-stcms; however, for purposes of aualysis and test-

ing, we .-.,,_st diseretime tile eOlltinuolls structure or _2ondellse the high-order

discrete sv-;tem to obtain a m_inageable system- In Suhsection III-B it was

sho'-'n th.lt if the original system, eonti'mous 4.,:-discrete, exhibited classical

normal m.,des, it was possible to construct an .R-degree discrete model whose

eigenvalue coincided exactly with th_ first .R e:.genvalues or tile original

s.x'stem and whose eigenveetors were projeetious of tile eigen[une_ions or

ei¢enve.-tors of the erigina! system. It was furtiler shown that for certain

classes o_ excitation° the response of the model exactly mimicked that of tht'

origina! structure. Despite these very useful properties, _t should be clear

tit:at the model is no= one to one With the origillill structure. Ibis filet

shows up immediately in m_dal testing. Let us suppose that we have a con-

tim,ous structure a,nd that we assign to it ,_; c:ordlnates X. i .. (1, N_, and-1

tt:at we shall m.lkemeasurements .t:ld apply l'orcea only at these .N points.

l,n Equation (2-43), let t:(tl be given b':
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The points of application of these forces correspond to the points

x. i c (I, N) of the continuous system of Equation (2-]) Thus

N

f(x,t) = EtJi(t) 5(_ - xi) (3-25)
i=l

-'- qi(t) = Xi(x_)f(x,t)dx . (3-26)

:1

= EXi(xj) _.(t)j (3-27)
j=l

With Equations (2-39) and (2-40), if i c (1, N), then

q_

q(t) =_rf(t) (3-28)

bd_

}'(t)_ = }_q(t) (3-29)

thus

_(t) = _T_(t) = _)T:lq(t) (3-30)

.'. _.._.(t)= _(_)

Dr,,;idt.d !_, ;"
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OFFOORQUALFW
_le note that

?;

_1_(t) = Z X_ (xj)_j (t) (3-31)
j=l

lc IN+ 1, =1

In general, (3-32)

q.(t)# 0 (3-32)k

For example, if

f!(t) = qk(t)Sk

k [I, -

Thus q_(t) = qt(t)._k t,k € [1, S], but

:i

Zqt(t) = X_(xj)fj(t) _ > N (3-3_,)
j=i

# 0 in general

. 1 thThus, for the. first N modes, only the : mode is excited. However,

there exist higher-order modes, t " ?;, which are excited. If k is much

smaller than X, then the separaticm in eigenw_lues is usually such that the

response of these "al!ased" modes is small ¢c,_:p,=r_-d to the response of the

h th t.-.,:de, particular1_." if rh,: frt,cu_'r:cy of *'>:citation is clo._t, to the natur,ii

frequency of the k th .-.._de. If, h,,'_'e'-er, th(, fr_,Ivency of excitation is c!oye

to tha_ of one of the "ali_ed" n_.,.i,_,s, seri,,_._s errors can result.



C. OTHERID_IFICATIOY TECI_IQUES

Since modal testing as an identification technique is restricted to

classically damped systems, or at least systems with small damping, it is

reasonable to ask if there are other identification techniques that could

do a better Job. There _xists a variety of identification techniques, both

parameter and nonpara=eter; however, if one wishes to identify the mass,

stiffness, and damping matrices, one is faced with a fundamental limitation:

the number of points N2 at which measurements are _ade must, in general, be

equal to N I, the ntmber of degrees of freedom of tilestructure. Unless this

is done, the solutions obtained are not unique. Since, as already pointed

out, aerospace structures are almost always centinuous, or at least bare a

large number of degrees of freedom, unique identification of tilestructure

is virtually impossible. One has to conclude therefore that, at least for

structures with small damping, nodal testing is probably as good an identi-

fication technique as any available.



°

SEc'rZON !V

- CONCLUSIONS,\X_ RECO._i_I_XD,\TIONS

The object of this report has been to exanlne tile proble.'_s of analyses

and testing of aerospace structures and the dlfficulti,__s of correlat,.'ng
the results.

• A. CONC.i.USIo,_s

The following conclu,;ions have emerged from this study:

(1) Hodal testing (and indeed art\" other technique) ca!mot be used

as a =ett:od for uniquely dett.r=ining tilt, mass, damping, and

stiffness ,"_trtces of rt.al aerospace structures, _,'hich are

usua! [v cont inu,-',ls in nature, ,rod the r:odal test int: thereby cannot

provide a reans of impr,'vtng the analytical technique._ for deter-

ralni_ g dynamics response. ,_I_da! testing is an extrer._,ly useful

tool for obtainin_ accurate measures of the eigenvalt:es and ,'i,_ien-

vectors of the lo_.'er =odes of the structure. The,-ae measures can be

correlated with analytical results, or provide tile basis ft_r dis-

crete models of the structure, which nay be extremely useful in the

analysis of stability a.').! contr,_l.

(2) Analv:ical teclmiques arc capable of =odeling dynanic structures t_

amy desired dt'_-ree of ac,'ttracv. It is cleat" that eigenvalues cm_

be pr,_ilcted with il higLer degrt:e of accuracy than can e|ge:l-

vectors, anti th,l_, t'lgenvt.dtors call be predicted with a higher

de_;re¢ of accuracy til;m ".hat accuracy with t.'hieh the _,d,tl force

cocff_cient can be prt.dicted. Accurate analytical pr,'diction of

._tr,'g'at's .ITi.! lt_r,zt, s 1.'_I. 1 l't?-I_!'-'."_" a liP, dr ]eve[ of dlSdl't'L[-.lt[Oll

than _-'ill the prt'dicti,,r: o:" e-gtmvnlu,.s and ei._:c,w,:ctot's. If accu-

,",it,- ._:'._ivtic.tl i,r,'di_:t£,mr- oi :.t.t','._-, .Itld fortt.s ,lrt- l-t.c.uir_,Q., tilt.

.ldd'-'t',,n.:l ,'ff,,r: ,-'.nd c_.7,.i::_ ,. ,,i tl:;i_; fit_._'r ,alld ! illt._ :_t..-.]_.:; flu:eL
L

be ac,-,,p', ed.



(3) Accuracy of modeling is a central question in all mathematical

modelln}.: "Given that the data has only finite accuracy, lu.v

accurate need tile raodel be to obtain acceptable accuracy in tile

response7" This topic s.'a:; dealt _,'lth at sore length in Sub-

section ll-C, and the an.-,a,'er depends on tile form of excitation.

For short transients, tilt- tory.tel need m_t be any more accurate than

the input data; for persistent inputs that create the possibility

of resonance, the model nust be specified with a mu'h higher

degree of accuracy than tho input data. These results are col:sis-

tent _,'lth the results obtained by {:ben and Igada (Reference 2-]).

B. RECO._I}._ DAI"I O:¢S

As a rest, It of tile present study, t_.'o recora=endation:; ernergt.:

(1) To deter'aine stresses and forces in aerospace systems, an appro-

priatt, level of discretization mtst be used, even if this is much

finer than would be used for determininR elgenvalues and

eigenvecters.

(2) ghile it is virtually i_.passible to "idcatifv" the structure

uniquely from the result of raoaal testing, such tests provide

a valuable check on the analytical r:ethod and can be used to

provide an accurate, discrete model of tl|e-systcm for use in

studies of stability ,rod contr_,l. .*lodal testiug has am addi-

tional virtue that should be exploited to the fullest. There, are

mimv physic/ll phenorat.na, such as the sloshing t_f fuel in a spitzning

spacecraft tlmt are rather difficult to model accurately since

boundary !aver friction an_] dissipati_:n pIay il central role. In

such a t-a_.d, .*_.,tsda[teats t,f the phv:;I,'at syslt.._ can t-astl) pr,,vide

tilt' data ,_n _,'hich to bast* all an;,.Ivttca[ model. Thi:: :....,dal t,_'sting

then bec,-a,:s part and p.irce!_ of the ;:._&-lit_g ".echnique in '-'hich

:_,,r:e paris of tk," .';tr,,ct,,r,, are model,-d .d, il:i'_it,, .:nd _,,'-e parts

.LI'*" tnOtlt'It'_'.' Oil '*._la' b,!Si.'_ O: t}l*- ' ,'P,t',I;*1 [,'St.
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.-" OF pOOR QUAUTY
Consider the probIem

_2u + 2g ?u ?2u + if(x, t) 0 < x< I
_t 2 . _t _x2 -

u(O, t) = u(1, t) = 0 (a-l)

u(x, o) = _(x,o) = o

Tile eigenvalues and etgenfunetions of Equation (A-!) are

2
_i = (1_)2 t c [I, _,)

(^-2)
X(i)(x)= /2 sin i_X

If we write

u(x, t) =E Zi(t)x(i)(x) (A-3)
:=I

then

o- ° ?

Zi + 2mZi + _iZi = qi (t) (,\-4)

_.'he re

u.(0) = 6.(0) = o
I !

and

qi(t) = f(::, t) :': (::) (::_: (A-5)
I



C_u:N_L
oF FOC;_qUALrTY

Di.qcretization of Equa.tfon (A-k)

If we use central difference spatial discretization or constant mask

matrix finite ele=ent spatia! dlscretization, Equation (A-l) bec_.es

ui + + (N)- ui - Ui+l - ui-i i

where

ui(t) = u(ih, t) _i(t) = f(lh, t) (A-7)

h = ._, t c , (_-I

The eigenvalues and eigenvectors of Equation (A-6) are

r2 i_
'_i = 4N2 sin2--2N

(a-S)

.(1)_j ,. sin ,N

Let

ii)
_(i) _ = _(1) _(2) !(N-l)

'_i)l
;-i/

C,\-9)

-1



OF pOc.a_UALrrY,
m

Let

u ='I' Z

"1

Z = Z2i__Ii (A-10)

where

.°

"'" Zi + 2_ki + "qlZt = (II(t) (A-If)

q_'(t)= = ¢?(t)

q:;-I

:;-I

,(J)_r.(t)
j=t

Co=parisons of Equations (A-8) and (A-9) shows that

.(i) = X(i)(j..) (A-i2)-j

[-: i::
_ o,: sin _. sin Z':'i *i -* I __- 1 (a-13)



-/

OF PoORQUt.,.LITY

Thus, in this case, the eigenveetors of the approx _ir_ting system are

projections of the first N eigenfunc:l_ns of the continuous system.

For the sake of illustration, let us use N = 4. Equation (A-13) then

gives

8

From Equation (A-14)

cI = 0.0255

€2 - 0.0997 (A-15)

c3 -0.2158

Tnis shows clearly how the errors I-_crease with mode order. If Equation (A-6)

is _.Titten in matrix form,

Mu + 2.'.q4u_ Ku = g(t) (A-16)

1:ii]K= 4 2-

0 1 (A-17)

i 2
,;,,:} = -f . :- (:_,

I-(!,
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OF POOh QUAL[? ._

Let us now use Theorem I to construct a 3rd-or_er syst_ having
the

same eig_values of the continuous system. Let us select

slni!

€(I)= sin _ (A-19)4

1
Eerice

= o - 2 (A-20)

-¢2

Using Equation (2-4!). ve have

I
=_I

HO 4

', . DO=_Z

(.,,-2')

= I-_,"_ 20 -S¢'Ko -- ..

-8;2 I_3J



OF pOOR QU_UT¢

9

In this case _ have chosen a" so that H i_ the same as that obtained by finite
.- difference. Thus,

-. [11.103-6.9785 1.2337]

and

K _ 8 - (A-23)

Comparison of Equations (A-17) and (A-21) show that both =_dels have

the same M and D matrices (they were so constructed); however, the K _atriees _:

of Equations (A-23) and (A-27) show ccnsiderable differences:

_--- (!) K0 is a fu!l matrix, while K is a tridiagonal Jacobi =atrix.

(2) The =agnituiesof the elementsof the two K matrices:::emarkedly
different.

Thus, we see td_t if modal testing is used to identify a 3r£-order model

of the continuous sys:em, the matrices of Equation (A-17) _:ouldresult. If the

stiffness r-atrixK0 is compared with K, the mahrix obtained from finite dif-

ference or finite element discretization, we see that they're not even close.

Hence, we see that a stiffness matrix obtained from mtxlaltestin_ cannot be

used to check that obtained from systematic analytic reducticn techniques

such as finite difference or finite element.

A-_



OF FO0_ QUALITY

"_- To illuntrate aliasing, suppose that g(t) in Equation (A-16) is given

by

g_(t )'= ,'_ cos -'t (A-2_)

whichwill excite only tile first aode of oscillation of Equation (A-16).

-_ Using Equations (3-25), (3-26), and (3-27), we have

qi(t) = _'2 sin _ + ¢t_ sin _ + sin cos ,=t (A-25)

[ i- ] (A-26)
i_ _- cos --+ 1 cos a't

=2 sin_- ,
_;-. : _

Thus

qt(t) - 0 unless i = 8k : 1 (A-27)

k = O, 1, 2 "'"

qSk__lit) = (±!) 4 cos -t (A-2S)

Thus

_ ql(t), q7(t), qg(t) etc. # 0

If 0 ": J -: 4:, only the first mc_'e wi!l be strougly e,:cited. If, i_L-:-ever,

'" 0 " :z. - ,q-. the I st arid 7 th mode of the con._ipuous structure ca:_ be

str,,n_;lv cxcitt.d.



For structures with well separated elgenvalues and excitation

restricted to the ban@width of the first N modes, aliasing does not present

a serious problem. Some structures, _uch as shell-like structures, tend to

have rather closely spaced eigenvalues and, in this case, aliasing becomes

a more serious problem. _ile this discussion was restricted for sim_pllclty

to the case N = 4, the same features show up for all values of N.
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