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ABSTRACT

This report examines some aspects of the lack of close correlation between
the predictions of analytical modeling of dynamic structures and the results of

vibration tests on such structures, and suggests ways in which the correlation

may be improved.
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SECTION 1
INTRODUCTION

Designing a structure, to survive a prescribad dynazic environzent is
most often performed nowadavs by using an analytical model of the structure.
Since many structures will not be subjected to their design environment prior
to cozmissioning, it is very important, therefore, that the analytical mode
mimic the behavier of the physical system with reasonable accuracy. While
rmodern analvtical techaiques have the capability of modeling a physical systea
to any desired depree of accuracy, financial or time considerations may pre-
clude the use of highly accurate analytical models of the system.  Clearly, it
the cest of analvtically modeling the system becezes comparable with the cost
of building and testing the physical system, then it may well be that cut-and-
try methods are more cost effective than analytical methods. While the air-
craft and acrospace industries have used analytical modeling for decades,

until recently the automotive industry found that, due fo the complex double

curvature of the autozebile body, it was more cost efficient to use cut-and-trv

methods rather than analvtical modeling. To compromise between cut-and-try
rethods and the use of highly accurate, but very expensive, analyvtical models,
engincers are frequently willing te accept a fairly crude analytical =model of
the desired structure and to resort to a limited progran of testiang to
“qualifv" the analvtical model. Since the enginecr, unlike the zathematician
or scientist, must alwavs balance rigor against cost, an important question

is, "Given that the dvnamic environment is knoun with only limited accuracy,

how accurate must the analvtical rodel be to obtain "adequate' predictions of
the dvnazic respoase of the structure?” This report examines a number of
aspects of the problea of trrying to correlate the results of dvnamic testing of -

a structure with the analytical predictions based on rather crude modeling.



xe

ety

SECTION II
NALYTICAL MODELING AND PREDICTION OF RESPONSE

Almost all structural svstems are distributed parameter (continuous)
systens; this {s particularly true in the case of aerospace vehicles where
the desire to minimize weight results in a design with mass and stiffness
distributed throughout the system. The complex geometry.and boundary condi-
tions in space vehicles seldom permit exact solutions of the partial dif-
ferential equations describing the dynamical behaviors of the vehicle. For
this reason, finite differences, finite element, Rayleigh-Ritz, or Galerkin
techniques are normally used to discretize the system and reduce the problen
to that of a lumped parazeter system. Vhile these techniques differ in
detail, they all have the same general properties. They attempt to approxi-
mate a space~continuous svstem by a discrete system having a finite number of
degrees of freedom, N. A common feature of such discrete approximating
schemes is that only the first M zodes, ¥ = 1/3 N, have a reasonable chance of
accurately médeling the first M modes of the continucus systen. Katurally,
the larger N is, the larger M may be, and the better the degree of approxina-
tion in the lower modes. The higher discrete rmodes are, in general, poor

approxinations of the continuous modes, even when N is large.

Since the stress in a continuous structure depends on the spatial deriv-
atives of the deformations, the order % of the discrete approxirating systen
should be large to obtain accurate approxinations of the spatial derivatives;
however, in”nany important problems in structural dynarmics, the number of
dynamically'active nodes, ¥, is much smaller than N. For this reascn the
analyst will frequently reduce the size of his model to core closely corre-
spond to the nuzber of active modes. Tais practice, unfortunately, reduces
the accuracy with which stresses and forces in the structufc ray be deter-

nined, particularly in the case of transient notions.

A. STRUCTURAL DYNAMICS
Dazmping in dvnamic structures is usually a parasitic effect beczuse its

exact origin and form is seldonm known accurately before the structure is

built. (n additicn, in well built structuree

<y

the darmping is usualily small,

For these rezs ns it {5 us:al to asstme thar the vtructure has vicaous
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L damping and admits classical normal modes. It will be shown that, if the
damping is small and the eigenvalues well separated, this is a reasonably good
approximation, at least in the lower modes.

1. Continuous Systems

% To illustrate the techniques, let us restrict our attention to a rela-

}\ tively simple continuous structure such as a beam, a plate, or a shell that

i can be described by Equation 2-1:

p(§) utt + Llut + L2u = f(§, t) en D
(2-1)
u(x, 9) = u (x, 0) =0
with Bu = 0 on 8D p(x) > 0. Caughkey and 0'Kelly (Reference 2-1) have shown
that Equation (2-1) admits classical normal.modes if the following conditions
are net: '
(1) Ll and L_ are self-adjoiat spatial operators.
(2) L L, and L L, commute.
. p(x) "1 n(x) 2

(3) The boundary conditions prescribed on 3D are compatible with the
operators L1 and L,. CUnder these conditions there exists a com~
plete set of linearly independent eigenfunctions Xi(§), iefl, =)

such that

a(x)X.X, dx = §, T (2-2
(§)\1YJ x 61) (2-2)
D
XL X, dx= w78 a_
1“1\J dx 171713 -
/D
- . 2,
'.iLZ.*.j dx = .)1“_) (2-4)

gt o
]
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Thus if

E 3

u(x, t) = Z )’i(t)xib_!)

i=1

Equation (2-1) reduces to

. ) 2
+ z ) v =
g ¥ 20g0 ¥y gy =y (0)

where

qi(t) = X(E; t)f(§9 t) d§
) D

ie [1, “J

For homogeneous initial data,

“-e

t .-
sin w,(t - 1)

y;(e) = exp (-ujci(t - T)) —

Discrete Systenms

Given the system
Mu + Di + Ku = f(t)

u(0) = ¢(0)

(]
(=]
»
"J
-
|
w2
<
i

(2-5)

(2-6)

(2-7)

auohew TSR ; - .
Caughey and O'Kellv (Reference 2-1) have shown that Equation (2-8) adnmits

‘Z—\

1

i

classical normal =vdes iff M "% and 4 ' cemmiute,
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If ¥, D, and K are symmetric with ! positive definite and D and K at

least positive seaidefinite, there exists a complete set of ordinary eigen-

vectors g(i) such that:
' G(i)r M ¢(j) = §
- - i_]
f WT. ) L.

T .. (D) 2
& a = {
@ K : 151j

1 e [1, n]
If we write

u(t) =oy(t)

5 - [i“)- L 9.(“)]

|

then

- 2
v, +20.n.v, Fw v, o= qg. (t
: i"i ‘x( )

fl
(=]

¥, (0) = §,(0)
where

3TE(0)

1

c(t)

(2-9)

-(2-10)

(2-11)

(2-12)

(2-13)
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For homogeneous initial data,-

t - .
‘ sin « (t - 1)
yi(t) = exp (—Qici(t - T))-——"?E———-——- qi(T) dr
0 i
_ > (2-14)
v ey JE o8y
1¢[1, ¥]
3. Excitation of Pure Modes

If in the case of Subsections IT-A-1 and I1-A-2Z the forcing function is

given by

fx, t) = g(§)xi(§)p(t)
or . _ : (2-1%)
(1)

£(r) = M¢ 7 p(e)
we see that

qj(t) = p(c)sij (2-16)

llence, in the case of Subsection IT-a~-1,

t
v.(t) = R.(t - 1) p(z) d1 &,
“3 b] P ij
O’O
(2-17)
sin t,L
ho(ty = exp (.. 0, t) o
i 3 -
3
thus nix, ty = ¥, (xiv.{ty
- 1 - a

ro
|
i
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'
i In the case of Subsecticn 11-A-2,
t A
S Yj(t) = hj(t - 1)p(1) dr 6“
0
, > (2-18)
. sin o t
() = cu g t) o
! hJ(t) exp ( %y ) _:
W,
; J
thus g(t) = g(i)yi(t).
Hence ve see that in both cases a pure norzal mode is excited. In
particular, if p(t) = Py cos wt, then, as t + =, we have
[
‘ pn cos (.t - ai) \
| ulx, ©) = X, )
i ,  2\2
i \ (35 - ) + (Zuiuci)z
i
P
\ or N (2-19)
]
i P, cos (ut — a )
i u(oy = ¢ 0 ;
5 (12227 + upe?
: \'(’“i )+ Qugety )
{ where
2,08,
N e, = tan-l -
i 2 2
L o
}
’ (1)
; Uysing the result of Equation (2-19), we can deternine vy ;i, and : N
}

G, vonclassical Normal ledes

Pt

For simplicity, we shall re

damned systems. If in Cubsectio

classical normatl modes de not exist an

te excite pure eigennodes

5ible

should be noted that even in this

v . s
M CISenneoe s,

strict the discussion to discrete, visceusly

. -1 -1
n 1i-A-2 M D and ¥ "il do not commute, then
d it will be showm thar it is izmpos—
functions. It

Ly anv choice of real forcing

s case iz is possible to excite “rfairly

¢
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The formulation of 2N space is as follows:

let z =<

). then Equation (2-8) can be rewritten in the form

LE S

: = Az + b(0)

z(0) = 0
vhere
0 I \
A=
EYRLF P
and > (2=20)
0
b(t) =
\"l : /
M)

If the matrix A is pendefect fve, there exists a neasingular matiix T sueh

that:
:‘A
1
- 2-210
T 1.\T = L= - ( i
-\1
where
it
L
2 0
ot L (I-20
Q0 ‘.\,
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is a diagonal matrix of complex eigenvalues. The matrix T has the

structure:
r= [(D, @, ., E(2.\)] \
- !
-
S
A L&A
.é.xl = fll
where : > (2-23)
5= [3(1)’ ﬁm, 2u)]
and
(AZ.H + X.D + K) :(i) =0 ice [1, 2\’]
i i = . ‘ }
In gencral, the 9(1) are comnlex N vectors. The inverse of T is given by:
GG
-1 —fe
T = i
G311 G
where
-1
- L ] l .—l -1 Q‘ -‘] - [A
c, = ) ot - 220y
C3 = C1
_ 1 s | |-t
C.’Z =& L¢/~.]<b -% lé |




ORIGINAL PAGE IS
CF POOR QuALITY

Then

r<
~~
e “
n 1
[=] s
=
+
¥
~~
(2]
A d
™~
~~
()
!
)
o
N’

Ka
~
aJ
~
1
-
t
et
c
~
(a4
~

Sy = () ar (@-21)

.. =(t)

$l
L
e
———
£
[
A
=
———
o
~~
(ad
|
\
~
p
G
]
[
ha S g
—~——
y—

3
T
on

r-:_.
<
ot
e
—)
L}
[
=
[
rh
—~
-
A
[9
]
~
[
U
t
\D
~

Since .‘5—]}:&) is a real vector, and In{é -;'.\'p(."lt)()—]] and Im(fb.‘.lﬁ’-l) are real

matrices, no choice of the forcing function E(t) will result in the excita-
tion of a pure cigenzode. It mav also be shown that it is impossidble to
cxcite a2 pair of cemplex canjugate pure eigenmodes.  Thus, unlixe the systen
of Suhscections [1-a~-1 and [T1-A-2, nodal testing does not enable us to
gecuratelv identify the cizenvalues and eigenvectors of svs

NOTMGEL TUe s, Despite this fact, 1i in Egquaticon

- O | e 4 . . S e A T avs LT e e ] T e
s =mall and the oivenvaiues Weld Separaled, Houdllc
Y - -
VGl W AU TN L LT .
~

Cinid oy |
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Let éo be such that

Tow = 1. Tpw o ,,2'T=(,=T' _
<:>0.x¢0 1; éomo [\_\] <:>0D¢0 G =D (2-30)

If we set

(1)

o Pg s wt (2-31)

_{(t) =M}

and in Equation (2-30)

IQUQ << m? Vi, j (2-32)

then after the initial transients die out,

Py .
S S (‘(1) cos {wt - ai)

X(t .
- 2 ¥ (o )70
JE =)+ (4)

N ,m‘_')_ sin{wt - a, -« ) 1
ki i k :(k) (2-33)

M el

"’ 2
o k=1 \/(:.'-k - ) + (Qkk‘u)

wif
-1 _Tii
2 2

W, = W

1

a, = tan
h]

1f

7 BRI vi. j

Ll &

and Wl oand .. ave distinct amd well separated, and . o then
i

Pognation (1-33) the main etftect of nenclan<ical Jampine dis

cracy

S
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shifts in the response vector. Fach mass no longer passes through its
equilibrium portien at the same tize as all the other masses, as was the
case for classically damped systems. In particular, Equatien (2-33) shows

that if

A l g’ki I

«< ]
W

5
lwi - w"! k

then

Py cos(wt - ai)
2
(L.‘:.Z - --2) + (m.‘l‘..)z
i ii

Thus, for sxmall danmping, the respense is almost a pure normal mode. As the

x(t) - L)

dazping increases and the separation between the eigenvalues decreases, the
effects of nonclassical damping becoze stronger and the response is no leager,

even approximately, in a pure norral zode (Reference 2-2).

5. Useful Properties of Discrete Systens with Classical Normal Modes
Returning to System (2-8) in the case of Subsection 11-A-2, the Proper-

ties {(2-9), (2-10), and (2-11) can be rewritten in the form

5o [3(” L 9(N):l \

| |
A N
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i)

Since the vectors'c( are lnearly independent, the rmatrix ¢ is

nonsinpular: therefore:

; D= ne»[\z‘:ir.i\.‘ ¢Tﬂ (2-36)
' d
K = .\w[\.q \-l e,»Tu

Ve shall now prove two interesting theorems.

B. SYSTIEXt REDUCTION

1. Theorem 1

A contipuous dynamical svstenm, such as that of Subsection 1I-A-1, is
given. It exhibits a complete set of linearly independent viscously damped
classical normal modes having cipentfunctions Xi(x). and eigenvalues

. . . . th
Sy ic [1. *]. Given a positive integer N, there exists an N ~order vis-
ceusly danped discrete system exhibiting a complete set of classical normal
. .th ~

modes having the properzy that its i cigenvalue 53 corresponds exactly teo

.th - . : .th
the i cizenvalue “y of the continuous svstem and turther the i cigen=

(it . . - th : , _

vector correspends to a projection of the i cigentfunction of the

continuous svstem. That s,

(2-37)

Proof: Since the eipenfunctions of the continnous rroblem are linearly iode-

pendent, the tunction

wix) - v, N () (2-38)
Z z [

ra Ty

.
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cannot vanish identically unless ey =0 Vi e (1, ¥). Hence, there exists

X points x, j ¢ (1, ¥) such that the vectors

b}

1) =$ Xi(f')l i, jc (1, W) (2-39)'

U

14

are linearly independent.

Let

5 - [2(1)' RO T :::] (2-40)

(1)

Since the ¢ are linearly independent, the matrix § is ncnsingular. Llet

T \

e @ h-

= i— o 2. 0r aT\,t
D 7 --_‘b[\-*iszj [ \ .
a ;  (2-52)
H‘}F bz \] :T!{
1
a

M

L}

e
]
l.\l"‘

2
where 1~ is chosen such that

T M p(x) dx ] (2-42)

74

e
0
"

: . . , .th
ng M, D, and K constructed as in Equatien (2-41) to for= the N -order

Mu + D4+ Fu = E(n\ = MN¢; ()
(2-13)
u{0) = 1(¢) = 0

- s
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This systen has the following properties:
(1) There exists a complete set of ordinary eigenvectors

oM i e (1, M such that if &= [9(1)’ PALIREE 3(“)]
as in Equation (2-40), then

¢IM¢ = 021
2) ¢ne = [\m.c, 2
11
(3) @Ke= [\Ui\]az
\; \
(%) T f(x, ©) =§ 1,40 (@0 (%)
i=1 :
> (2-a0)
then  q(t) = p(x)f(x, t) X (x) dx
@

If in Equation (2-43) u = ¢y, Equation (2-43) is reduced to:
2 - -
v. +2u. oy, tuw ¥y © qi(t) (2-35)

s s .th .
which is cxactly the same as the i mode of the continuous systen of Sub-

secrion II-A-1 with f(x, t) given by Equation (2-44).

flence, since

a{t) =y (0) (2-36)




(£

s

then
q
N LG | ,
uj(t) ' )i(t) (2-47)
i=1
X 4
“in‘ﬁj’-"i“’ (2-48)
=1
A uj(t) H u(ij.t) (2-49)

That is, the solution of the discrete Problem (2-38) is the projection of the
solution of the continuous problem of Subsection I1-A-1 with f(x,t) given by

Equation (2-44).

It should be noted that there exist, in general, infinite sets of points
{x.7 § < [1, N] that may be used to define the sets of vectors {i(i)}

I, N}. Thus there exist infinitely many Rth-ordcr models that can he
used to mimic the behavior of the centinuous system. It is not surprising,
therefore, that observations at N points in a continuous system do not pcfmit

unique identification of the coatinuous svsten,

2. Theorea 11
. .th . . X
Given a discrete N -order dynamical svstem exhibiting a3 cozplete sot of
. . . i . ,
linearly independent viscously damped classical normal nodes :( ). i«f1, x].

. . . . . th .

Given any positive {nteger N, < XN, there exists an N, -order discrete

dynamical svster exhibiting a cozplete set of linearly independent classical
agr o : . th | .

norzal rmodes ., J v j € [l. 39], having the properey that {es zigenvaiue

Lt R .
corresponds exactly to the i cigenvalue of the iarger systen and further,
Lth (i) f . . PR & )
the i elvnvector | COrrespands exactly to a2 projection of the | cigen-
(i}
Vvegtlor )

of the larger svstem,
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(¢4
Proof: Since the eigenvectors of the given system are linearly independent,

the matrix

¢=[3“’, {@ L, i(“)] : (2-50)

is nonsingular, that is,
|8] # o ' (2-51)

However, if this is true, there must exist nonvanishing minors of all crders
less than N. In particular, there must exist at least one nonvanishing ominor

of order )\’2. Let

J B s W [1‘, x,] (2-52)

3

Where S is an 52 * X matrix whose columns consist of either the null vector
0, or distinct unit vectors ei; je [1' x,] have zero entries in all but the

“th . .
T . ] row, which has unity. The matrix

(x.)
v - 2(1)’ 2(2) ey v 2 (2-53)

is such that !¥! is a ninor of & of order %, and so does not vanish for an

appropriate cholce of the matrix S. Let

l=]
12%]
1]
.
3|
.
2
t9
'
/
(19}
L
[y
g
/La.
C—
3
~]
y,
(28]
~~
(%]
]
w
&\
g

7~
19
1]

- :H
>4
137
3
7-‘ (K
| SN—
&

p—.‘
-
[

~

where 1 is chosen so that
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h

order discrete systenm,

Myu, + Di, + Ku

24y ¥ DU, + Ko, = £, (1)

2
(2-56)

u,(0) = u (0) =0
- “2

This system has the following properties:
(1) There exists a complete set of ordinary eigenvectors

(j)j c [1. Nz] such that if ¥ = [2(1)‘ 2(2) see '_.'3(“2)], then
2
\PTHZ\P = a1

T ~ 2
2y v Dz‘l' = [ Z;Jj(,j\] a

(&) If £(0 =Zﬂi(i)’(\ii(t), then

i=1

2;2

()~ -
= b ) -

£,(0) E My e () (2-57)

i=1
If u, = ¥z, then Equation (2-56) is reduced to: (2-58)

2 2 g
zy + 225020 + “iZy = qi(t)

(2-59)

N
[
~~
o
N
L]
Ne
[y
~~
(]
SN
1]
[eo]
LN
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Equation (2-59) is exactly the same as the ith mode of the large system.

Hence, since

u,(t) =¥z(t) (2-60)

Y

<o
N

g(j)

uy (0) = a0 (2-61)

i=1

Using Equation (2-52), we have

e

0
w
[er
e o~
s
Nt
N
.
~
r
A

Zi(t)
j=1 (2-62)

L]
w
b

[N
—~
re
~

s uy(e) = sx(t) (2-63)

That is, the solution of the lower-order system is the projection of the
sclutieon of the higher-order system.

It should be noted that there exist, in general for each N, < N, several

nonvanishing nminors. Tnerefore, there exist severa N,L}Lordcf rodels that
aicic the behavior of the S‘h-order system. 1t is not surprising, therefore,
that observations at XN, points in a Xth-order discrete systea do not, in
general, permit unique identification of the Ntn-order svsten, unless %, ° N
or there exists scme special structure to the svstem.

Theorems I and IT ensure that there exist finite-dimension lumped param-

eter models that can mimic exactlw the behavior of a higher-order lumped
A B t

parametsr or continuaus systes under appropriate conditions.

. . i P : v e
It nracsice we sheeryve the responee of a4 svsterm at ol g omgll finite
Aumheer of nofnte; the resnonae 2t thece nointe o da clearte g onratection oy
B 1 - .- R —— N o .o N 1
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forces to the structure at onl.y a small finite number of points. By limiting
the number of points at which we excite the structure and observe the
response, we prejudice the outcome of any attempt to identify the structur¢
uniquely. 1In general, if we excite a structure and observe its response at
.\'2 points, we can uniquely identify only an Nzth-order lunped parameter

nodel.

: C. EFFECT OF MODELING ERRORS ON PREDICTED RESPONSE
Given the System (2-64),

_ | Si(t) £5T

: Mx + Dx + Kx =

l 0 t > T (2-6%)
x(0) = %(0) = 0

It is sozmetimes more convenient to write the equations in lst-order

ferm.
i ‘gm £2T
T
l 0 t > T '
z(0) = 0 j
- - i
wiere
[ 0 I (2-63)
A= .
d : !_-.\z"lh -t
~d

tr.
-~
-~
QD
—
et TP ——

2-19
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Suppose now that we have an analytical modei of Svstea (2-65).

<
dy ‘}_l(t) t ST
—_—— B;\_’ +
l 0 t>T (2-66)
¥{0) =9
where
B=A  h(t) = g(o) (2-67)

We wish to know what errors are induced in the solution by modeling

errors in A and g(t). Let

w=z -y (2-68)

thus

dw

o= M+ (B - 0y + {g(e) - h(o)} (2-69)
w(0) =0 (2-70)

thus

Min(e,T)
w(t) = exp At - 1) [(3 - Dy + (56 - ;_1(:))] ds (2-70)
0
thus
’

Min(t,7)
. x_:(t),i z fexp Al - 7)%_[.”(5— A) P
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[{exp
fexp
Let
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Hutar |l = [HB .
where
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(av)]] = My exp(-4yt)
(2-72}
(Bt)” < !lz exp(—azt) 2y, 2, >0
Max (Ml, Hz) \
Min (01, 12)'
> (2-73)

sup ||g(t) - h(t){]
t

Max[Supilg(c)él, Sup Hh(c)i!]

t t

[c;:p (—cx(t - t*)) - exp (-at)]

sup [1v(0)]] + e] 3
- - X

<

(2-7%)
%
t =t ift<T z
(2-73)
=Tif ¢t =27 j
~Min(t,T)
=/ exp (B(t -7 ?_}(T)) d- (2-76)

0

-
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coo ol 2 % sup |[h()|]]exp (—n(t - t*)) - exp (-at)

2-77)

)

-

) _
oo el = (!) k (c'xv (—\1(t - c*)) - exp (—ut)) [ - afl

(2-78)

+ 2y (oxp (—a‘(t = t9) - exp (-m)

There are two cases of special Interest.’

1. Case (a) - Short Transient lLoads

1f aT << 1, then Equation (2-78) vields:

. . 2
supi Jw(o) ] £ emk]le - Al] + wTd (2-79)
t
If MT ~ 0(1), then the two terms d and k ||B - A} are of equal irpertance.
Hence, the errors ||B = Aj] and |]a(t) = h(e)]] are of equal significance
and the system parameters nead not be known with anv higher accuracy than

the forcing functions.

2. Case (b) ~ Persistent Excitation
16 AT > 1, then Equatien (2-78) wiclds:

]

Supile(]] < (’) N ]IB - Al +("?) d (2-80)

t t

Since in many structural ‘dynanics problems the dasping is small, the
term Mz becomes very large compared te unity.  In this casce, the {irst tern

KB = A assumes much greater isportance than the second tera d: this shows

the possible eoffects of rescenance. Thus we see that under persistent excita-
rion, svatem errors can plav o dezinant roll: henoe, the svetan porvam tors
ot be derined with g ook higher cocuracy than the torcin, Tunctiona, it
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is interesting to note that Chen and Uada (Reference 2-3) established a

similar result using perturbational analyses.

D. EFFECTS OF NEGLECTING HIGIER MODES
Let us tirst consider the case of an Nth-order discrete System (2-8) in
which the forces {(t) are basically low frequency in nature

..

Mu + Du + Ku = f(t)

(2-81)
u(2) = u(0) = 0
where H-ID and H—IK commute. Then
\ ~t ]
u(t) = (& (e -0 leTee) ax (2-52)
L7
we) = Y ¢ 2o (2-83)
i=1 )
[t exo (== .. (zt - =)
zi(t) = y/ z i sin w, (¢ - 1) qi(:) dz
0 “i
(2-8%)
where
a(t) = & ()
- 2 - ~
ara- 02 | #The- 2, -‘ > (2-55)
. |
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1f the frequency spectrun of f(t) contains only frequencies Qf which are

small compared to all but the lowest eigenvalue wyv then
. * *
Q, < w for i>N,N <N (2-86)

In this case it is reasonable to approximate the solution u(t) by the

truncated series,

u(t) = u (t) =:§:: 12 0 (2-87)

If we look at a typical term in the remainder of the series,

t

N

.

~

(ad

~
]

_hj(t - 1) qJ,(T) dz
0

> (2-58)
t

h_ (=t -1 T
j()qj(t ) d

0

Expanding qj(t - 1) in a Taylor's series about 1t = 0, we find

t

t
zj(t) = qj(t) A hj () d- - qj (t)/ '.hj (z) d-
: 0

i,
+ e :“..j(:) dt + =*- (2-89)



If «,z.t > 1, then
J]

Thus

If

0
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t

hj(r) dt =

0

0

t

t

<h, dz
J(r)

rzh,(r) dr
]

q,(t)
(5 R F

T < l
o At
‘o}q ( )

max

i.e., qj(t) is low freguency cozpared to w,, thea
J

-

i

(2-90)

(2-91)

(2-92)

(2-93)

i ]
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In this case we rmay improve the approxirate solution of Equation (2-87)

by adding the additional terms of Equation (2-93).

N

*
. N
Joou(e) =Z o(j)z.(t) + Z ¢(j)z (t)
- 3 X j
j=1

%
H +1
Let
q(t)
Zis)(t) - 5 ie (1, N)
“i
Equation (2-93) may be rewritten,
%
! N
ult) = 2 IE‘U) [zj(t) - z§s)(t)] + E(J)Z(S)(t)
j:l j:l
Now
S(t) - éTi(t)
o E :i(j)zj(S)(t) - @[\—}; ]4,1‘{(:)
j=1 EHAN
3ut

% -.'.
K
™
s
—~
v
~
~~
~
It
[}
[
-
~~
~
#
1=
—~
iz
Nt
—~~
P
N’

(2-94)

(2-95)

(2-96)

(2-97)

(2-98)

(2-99)
(2-100

(2-101)
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where u™" " (t) is the "static" response of the system to the applied forces

f(v).

If we write

x
N
g(d)(t) =) gi[zi(c) - zfs)(t)] (2-102)
-1
then
o) = u Doy + (o) (2-103)

Thus we see that the total response is approximated by two separate

E(d)

terns; (t) consists of the dynamic response of the active modes less the

. ' - s .
"static" response in these modes and u( )(t) the "static" response of the
whole structure to the applied forces f(t). These results are identical to

what ic sometimes called the mode acceleration method.

As a nmeasure of the error in neglecting the higler modes we have

Hut) ] = [u_(e)]]
nr oo ]

(2-104)

This error tends to be smaller for the case of persistent excitation where
resonance may occur, and higher for short transients where resonance hzs no

chance of occurring.

E. £RRORS IN EIGENVALUES AND EIGENVECTORS

Freo an analytical point of view errérs in eigenvalues and cigenvectors
are usually the result of medeling errors or the use of too crude a level of
discretization of the continuous svstem. 1In practice, it is usually possible
to medel the lower eigenvalues and eigenvectors of aerospace structures with
an accuraey of five to ten percent, or better. The eigenvaluvs are usually
nore accurately modeled than the eivenvectors though this mav he aimple

a predlim related te the difficuizies encountered in testing and measuring

civenvalues and eigenvectors. iiis wnuhijeat will e treated in —ore dezail

in Section LI of tois repore.
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F. ERRORS IH ¥ODAL “FORCE" COEFFICIEXTS

Errors in eigenvalues and eigenvectors have a significant effect on the

nmodal "force" coefficients; however, even if the eigenvalues and eigenvectors

of the first N rodes are known exactly, errors in the modal force coefficients

will still arise due to discretization effects. For example, a central dif-

ference approxiration may be used to calculate the curvature of a beam using

the discrete displacements of the bean.

2 2
Thus 3 u/3x” is approximated by

u +
n+l n-1 n

where v = u(xn), X, = nh, and h is the mesh suacing. Now

+ - 2e 2 2
R s T T 4
=20 08 o)
2 .2 12 .4
h 3% 9x
Thus
]
4
( 2 374 3 u
+ - 2u - n° 22 Su
’“n+1 R B e 2%
- 3% < 3% imax
2 =<5 ;
l 2 ’3“4‘ 12452,
h™ f— 3
2| 3x
H ax 1 max
max nax
If
2=
u{x) = A sin [:Tﬁ]
then
| 2,1
2 s
: - -7 - R M
!un+1 Ya-1 <ty h 2f 2 2
i N E < 7 h

(2-106)

(2-107)

(2-108)
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Now M /h = Nm’ the number of mesh points per wavelength;

2 ézu
U + U1~ 2un - h :xz ) ﬂz

- - T3 (2-110

2 {Bzu 3N2 )
) h :—'"—

tax| nax - max
since
azu
op = Ez—5 (2-111) .

ar
Hj

The relativz error in the bending stress is also given by Equation (2-110).
Thus, the relativs error in the beading stress increases rapidly as Rm’ the
nunber of mesh points/wavelength, is decreased. Since we have shown in
Section 1I-B that it is theoretically possible to construct discrete models
whose eigenvalues agree exactly with the first N eigenvalues of the continu-
ous systenr, and that eigenvectors are projecticns of the eigenfunctions of
the continuous system, it should not be too surprising that the accuracy of
nodal “force" coefiicients is usuallv Jower than that of either the eigen-

values or the eigenvectors.

In addition to the discretization errors discussed above, additional
errors arise because of modal spill-over caused by experimental difficclities
in obtaining pure modal excitation, and the fact that the real structure nay
not admit classical normal modes; these errors will be discussed in rore

detail in Section III of this report.
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SECTION III
DYNAMIC TESTING

Though it is possible, using modern analytical and numerical techniques,
to model the dynamic behavior of a structure to any desired degree of
accuracy, few engineers would be happy to commission a new space vehicle
without at least some limited dynamic testing. The main reasons for this
conservative approach are: (1) while it is possibie in theory to model the
structure accurately, it is usually too costly or too time consuming to do
so; (2) it is very easy to omit some significant effects such as geozmetric
or material nonlinearities in modeling che system. For these reasons, rost
engineers require at least a limited program of dynaaic testing to “qualify"
the analytical model. If the limited progran of testing yields good agree-
ment between measured and predicted values, the engineer is happy; unfor-
tunately, if the agreement is poor, as it frequently is, the engineer is left
in a quandry. It has been suggested thét the test data be used to update
the analytical medel and so increase the precision of the analytical predic-
tions. This is a very useful technique and can yield good results if prop~
erly applied. First of all, it must be pointed out that due to the non-
uniqueness of the identification process, it cannot be used to identify the
paraczeters of the cozplete structural system. It can, however, be used to
obtain updated estimates of the natural {requencies, damping factors, and
rmode shapes of the finite numbers of modes observed, and hence to nzke better
estizates of the contributions of these modes to the response of the struc-
turc. Wwhile this approach is useful in improving the analytical and predic-
tive capabilities for a given physical structure, it cannot help improve the

analytical and predictive capabilities for new and unbuilt structures.

A. MIDAL TESTING

As shown in Subsection 1I-A-3, discrete and centinuous systens exhibit-
ing classical normal modes are capable of being excited in pure nor=al =cdes.
&5 shown in Subscction 1T-A-4, discrete systems exhibiting nonclassical nor-
=al =odes cannot be excited in pure normal modes. Despite this fact,

(Feferemee 2-7) has shown that if the damping in a etructure s small
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and the eigenvalues well separated, the lower modes of any viscously damped

structure can be excited in rather good approximations to pure codes.

In structural dynamics, it {s cozmonly assumed that the system possesses
classical normai modes. While this is seldom strictly true, the damping in
many aerospace structures is often quite small, and so fairly pure modes can

be excited, particularly in the lowver rodes.

Consider the Nth-Otder discrete system that exhibits classical normal

modes:
Mu + Du + Ku = £(t)
(3-1)
u(ty) - u(ty) = 0
Let
f(t) = C cos ut, tg > - (3-2)

Since Equation (3-1) has classical normal modes, the solutlon of Equation

(3-1) wvith Equation (3-2) can be written
u(t) = Re(ﬁﬂéfg exp (jut)) {3-3)

Where & is the modal matrix (2-12) and R is the response natrix:

I exp (-ja;) :
R = (3-[‘)

/z 2\? 2
N + (ZwICiJ)

Where » is defined in Equatiea (2-19).

Let

N

2 = q o (3-3
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Then
a(c) = ke (2Rq exp (j;t)).
1f
3% NS
then

7/

u(t) = i(k)qk cos (ut - uk) \/kui - uz) + (Z,k:kw)2

Condition (3-7) requires that

owever, & is unknown at the beginning of the test.

We observe that if . % .y, T4
>

and well separated, then ER(k)f > gR(i)E i = k; thus:

cos (.t - lk)

u(t) = 2 'q, -

K [ )
2 2)“ 2
\ (mk -Ww + (Z*kau,

(3-6)

3-7)

(3-9)

<< ¥i and the eigenvalues wy are distinct

(3-19)

This suggests that an iterative scheme can be used to generate pure modes.

I'sing Equation (2-6), we can define an jiterative schene.

gk(t) = Feo §k(t}
Ek(:) =&2 3k~1 exp i)
Y (e) = M (t) - ¥ constant
tk(-) : —k( ) §
. ~ = (:)T“JJ o
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Usir; the properties of classical normal modes, we have
T
S MP=1 (3-13)
. y '
K RS;-...] (3-14)
where
. vy exp (-ja.) )
R i
ii 5
2 2y 2 ‘
\/(*i T ) *(2ugy) > (3-15)
K. =0, i#c¢
it
/
Thus,
91 7 "o \
~“ A"Z
9, = Rg; = R g,
. (3-16)
= = ph
9, " "G TR 9 /
If
v, 2 2
(1-) s e’
— - e R (3-17)
(-; - mz) + (2_42,;)2
1 1 we select o {=ju, such that
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then

N
1in R" = E

BE

i

YWhere 'fi a

. . £ = E &
’ BE, = Eidyy

- Thus, using Equation (3-16), we have
AN
Mo gy = 2R3 " %1%y

Using Equations (3-21) and (3-11), we find

lia ﬁk(t)

= linm équ p exp (j=t)
boee k»« KT
exo [jlut = a,
(1) ex? ¢ !
/ 22z 2
\ (-i - ) + (-Jiﬁiu)
lim u, (1) = Re li=m a(t)
k—-q. = k""‘- -

(i) cos (.t - 24)

. 22\, .
. (ui - W ) * (ZJi i

Thus, “he iterative process converges o

-sde 1 00, frem which the natural frecuend .. and the dam
R s s - Y,
=iy e obiained in additien to

Y

inl

wler

it e s an e

(3-19)

re nonnegative, definite matrices satisfy the following property:

(3-20)

(3-21)

i
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It sheuld Le noted in passing that what has been said for the discrete
System (2-8) is also true of the continuous System (2-1). Any systex, con-
tinaous or discrete, that exhibits classical rormal modes lends itself to an

{terative scheme, like that above, which coaverpges to a pure mode.
8 P

B. ERRORS IN MODAL TESTING
1. Nonclassical Normal Modes

Even if the system under test can be regarded as an N-degree-of-freedom
discrete systen it is highly unlikely, in practice, that the system will
possess classical normal modes. Thus, theoretizally, there exists no choice
of forcing functions that excite pure normal modes. As previously peinted
ocut, if the system damping is small and the eigenvalues well separated,
relatively pure modes of vibration may be excited. 1f the system damping is
not small and the eigenvalues closely spaced, as often happens in real struc-
tures, it may be impossible in practice to cxcifc cven relatively pure nodes

of vibrations in all but the very lowest modes.

2. Izpure Modal Excitation

Even if the system under test can be regarded as an N-degpree-of-freedon
discrete systea possessing classical normal wodes, excitation of a pure zode
of vibration requires that each mass in the svstem be excited by a ferce
proportional o that mass and to the rodal displacement of that mass. In
Equation (3-13}, we have shown that an iterative technique can be used to
achivve this end, provided the mass matrix of the system is known and pro-
vided that we have the means to apply forces to cach mass. While we will
seldom know toe mass matrix precisely, we often have adequately good esti-
cmates) however, we seldom have N-force transducers available to conduct the
test. In the case of a continuous svstem, modal excitation should alsoe be
continuous, axl at least an adequate discrete approximation to a cont inuous

distributien of forces—— an cven rore ditficuolt task to accomplish.

-

. Measurezent Errors

Assuming, as in Sebseotions I1i-8-1 and [11-B-2, that the discrete %
doegree o rreedem is g ogoad moedel of the svsten, there still remains the
e '-‘! -~

et neasuring the displacenents ot U points Yor cach tregaeney .oamd

CThe R Toe o the Joreim Tunvtion, Firao or all, 00 e onot asuaal to o have
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N displacezent transducers availadle for a testy true, it i{s possible to use
No < N transducers, and move ther around the strecture, but this is a tize
consuming procedure and greatly increases the cost of the test. However, evell
if we have N transducers available, and even if we could excite pure norz=al
modes, there still exists the question of measurement ervor, particularly
errors in phase ceasurements, which are notoriously difficult to make with

accuracy.

4. Fifects of Discretization or Condenrat fon
Acrespace structures are almost alwavs continuous in nature, or, at best,
verv-high-order discrete svstems; however, for purposes of analysis and test-

ng, we mist discretize the continuous structure ov condense the high-order

oo

discerete svatem to obtain a manageable system. In Subsection ITE-B it was
shown that if the original systes, continuous or discrete, exhibited classical
normal omodes, it was possible to construct an X-degree discrete =odel whose
cigenvaiue coincided exactly with the first N eigenvalues of the original
svstea and whose cigenvectors were projections af the ecigentunctions or
cigenvectors of the original system. It was further shown that for certain
classes of excitation, the respease of the model exactly mizmicked that of the
original structure. Despite these very useful propertiecs, it should be clear
that the zmodel is no? ene to one with the original structure. This fact

shows up immediately in medal testing.  Let us suppose that we have a con-

tinucus structure and that we assign to it N coordinates X, 1 (1, N, and
8 R

that we shall make peasurezcats and apply lorces only at these N points.

e}

Ir Equation (2-43), let j(t) be given by

'f‘,(t)
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The points of application of these forces correspond to the points

X, i € (1, X) of the continuous system of Equation (2-1). Thus

N

£(x,t) =Z“{i(c)s(§ - ¥;) (3-25)
i=1

C. qi(t) = X, (X f(x,t) dx . (3-26)
Ja
N

= Z§i(§j) £, (x) (3-27)
i=1

With Equations (2-39) and (2-40), if i ¢ (1, N), then

1
9,
q(t) AL R0 (3-28)
q!‘
but
“. v
£(t) = ¥gq(t) (3-29)
Thus
a(t) = ¢;§(:) = ¢Tn¢§<:> (3-30)

-.oglr) = é{(t)

arovided thae
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¥We note that

.
o

q,(t) --Z NENING (3-31)
3=1
1e [N+1, «]
In general, (3-32)
g (0) # 0 (3-32)
For exasple, if
q(t) = q (e,
ke[1,n] - (3-33)

Thus

=]

(t) = ai(t)fik 1,k € [1, X], but

e

ot
v
= N \ £ >N - ,)
g, () E 'i(’-{j){j(“ £ >N (3-34
j=i

# 0 in general

Thus, for the- first I modes, only the k[h =ode is excited. However,
there exist higher-order modes, ¢ ~ N, uhich are excited. If k is nuch
smaller than ¥, then the separaticen in eigenvaluces is wsually such that the
response of these "aliased
'.:th rede, particularls if the frecuency of excitation is close to the natural

¥
Srequency of the k5 =sde. If. howove he ireauency of excitation is claze
LTequency of the K Tode. b, however, the rrequency of excitation 1s close

zodes is small coempared to the response of the

to that of one of the "aliased" modes, scerious orrors can result.
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C. OTHER IDENTIFICATIOX TECHNIQUES

Since modal testing as an identification technique is restricted to
classically dacped systems, or at least systems with small dazping, it is
reasonable to ask if there are other identification techniques that could
do a better job. There exists a variety of identification techniques, both
parameter and nonparazeter; however, if one wishes to identify the mass,
stiffness, and damping matrices, one is faced with a fundamental limitation:
the number of points NZ at which measurements are made must, in general, be

equal to N, the number of degrees of freedon of the structure. Unless this

1’
is done, the solutions obtained are not unique. Since, as already pointed
out, aerospace structures are almost always centinuous, or at least have a
large number of degrees of freedom, unique identification of the structure
is virtually i=possible. One has to conclude therefore that, at least for
structures with small dazping, modal testing is probably as geod an identi-~

fication technique as any available.
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SECTION 1V ,
. : CONCLUSIONS AND RECOMMENDATIONS

The object of this report has been to exanine the problens of analyses
and testing of aerospace structures and the difficulties of correlating

the results.

. A, CONCLUSIONS

The following conclusions have emerged from this study:

(1) Modal testing (and indeed any other technique) cannot be used
as a =zethod for uniquely deterzining the wass, damping, and
stiffness matrices of real aerospace structures, which are
usually continucus in nature, and the modal testing thereby cannot
provide a means of improving the analvtical techniques for deter-
m{niﬁg dvnamics response.  Modal testing is an extremelv useful
tool for obtaining accurate rweasures of the eigenvalues and eigen-
vectors of the lower modes of the structure. These measures can be
correlated with analytical results, or provide the basis for dis-
crete models of the structure, which aav be extrexely useful in the

analvsis of stability an! control.

(2)  Analvtical teclmiques are capable of zudeling dvnazic structures to
any desired degree of accuracy. 1t is clear that eigenvalues can
he pradicted with a higker degree of accuracy than can eigen-
vectors, amd that eigeavectors can be predicted with a higher
depree of accuracy than that accuracy with which the nodal force
cocfficient can he predicted.  Accurate analyeical prediction of
stresses and forces will require a finer level of discretization

than will the prediction of cigenvalues and eivenvectors.  If accu-

rate anaiveical proediciions of sfress and forees are recuired, the
additional effors and exceuse of using finer and Yiner roeshes must

P L4
Y adCenidca.
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Accuracy of modeling s a central question in all mathematical
modeling:  “Given that the data has only finite accuracy, how
accurate need the model be to ebtain acceptable accuracy in the

response?™

This topic was dealt with at some length in Sub-
section 11-C, and the answer depends on the form of excitation.
For short transients, the model need net be any more accurate than
the faput data; for persistent inputs that create the possibility
of resonance, the model nust be specified with a much higher
degree of accuracy than the input data. These results are consis-

tent with the results obtained by Chen and Wada (Refereace 2-3).

B. RECOMMENDATTONS

As a result of the present studv, two recomzendations emerge:

n

To deterzine stresses and forces in acrospace systems, an appro-
priate level of discretization rust be used, even if this {s cuch
finer than would be used for determining eigenvalues and
eigenvectors.,

While It is virtually impossible to "{deatifv™ the structure
uniquely from the result of modal testing, such tests provide

a valuable check on the aralyrical methed and ean be used to
provide an accurate, discrete model of the-system for use in
studles of stability and contrel. Modal testing has an addi-
tional virtue that should be exploited to the fullest. Thvr& are
nany physical phenomena, such as the sloshing of fuel in a spinrning
spacecraft that are rather difficult to mudel accurateiv since
boundary Ifayer friction and dissipatien play a central role. In
such a case, modal tests of the physical Svstem can casily provide
the data oa which to bhase an analvtical model.  This =edal testing
then beceaes part and parcel of the odeling technique in which
Aore parts of the stracture are zmodeled ab initio, ond some parts

are modeled on the basis of the oedal! test,
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Consider the problem
32 . 32 v
——‘;-+zs§“-=—»‘2‘-+f(x, t) O0O<x<1
at” - t Ix -
u(0, t) =u(l, t) =0 (A-1)

u(x, 0) = u(x, 0) =0

The eigenvalues and eigenfunctions of Equation (A-1) are

mi = (i:r)2 1ell, =
(A-2)
X(l)(x) = V2 sin i=x
If we write
ulx, t) = E 2 (0x P (4-3)
=1 :
then
- T 2 4
Z; + 232 + <4 = qi(t) (A-4)
where
ui(O) = ui(O) = 0
and
.
iy,
qi(i) = f{x, t) = (%) ¢x (A=5)
Jn

-
'
v
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Discretization of Equatfon (A-1)

If we use central difference spatial discretization or constant mass

matrix finite element spatial discretization, Equation (A-1) becozes

" 'L w2 " N A
u, + 28uy + M) 120 ~ug, - ui—l] = ?i(t) (A-6)
wvhere
) () = ulih, ) F () = £(1h, ©) (a-7)

h=%- i c[l, (N-l)]

The eigenvalues and eigenvectors of Equation (A-6) are

e S
‘i 10.! sin 7Y
(a-8)
Let
(1) \
(41
() E
2
NONRD SN é,[sm RE R :(::-1)] i
. (D)
“y-1/ \
7 (.\-9)
X : [

e
n
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Let
u=¢7
('il \
b4
. ~2 (A-10)
.7: = < . >
\ “x-1)
where
. ;:+°;'+Q2"' a 11
. Z, + 267, .izi=qi(t) (A-11)

- \ NN
qi(t) Z'i fj(f.)

j=1

Comparisons of Equations (A-3) and (A-9) shows that

;;” . x® (J) | (A-12)

:i -~ 20 sin E- sin 7% o ‘.
—_— s -1 = |— (A-13)
T )
- i 2N

=/
.
1

| SUUS



Thus, in this case, the eigenvectors of the approximating system are

projections of the first N eigenfunctions of the continuous systen.

For the sake of 111ustration; let us use ¥ = 4. Equation (A-13) then

gives

D -y sia .i—:
ui '.i KIG 8 )
€y = '——:§“—— = i -1}, 1e¢ [1, 3] (A-14)
3
From Equation (A-14)
= 2
& 0.0255
€, " 0.0997 (A-15)
€y = 0.2158

This shows clearly how the errors izcrease with mode order. If FEquation (A-6)

is written in matrix form,

M3 + 2245 = Ki = a(t) (4-16)
M=21
[2 -1 0
K=4|-1 2-1
l'a -1 2 (A-17)
.71 \
be ("7, L
i g 2 )1
sir) = Z"_i (:, t)
|- ¢ )S
S ) t
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\ Let us now use Theorem 1 to construct a 3td-on.er systea having the
same eigeavalues of the continuous system. Let us select
X, =1 5[1. 3] (4-18)
Thus
Q‘(i) = (t\‘lg)
Eence
1 Y2
d=1"2 0o /7 (A-20)
1 -7 1
Tsing Fguation (2-51), we have

e
4
]
b pee
-4

D, = —;— I
(a=21) ;
18 -8/2 2
..2 °
Ko = g &2 20 -8/2

2 =82 18
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2 .
In this case we have chosen a” so that M is the same as that obdtained by finite

difference. Thus,

11.103 -6.9785 1.2337
KO = {-6.9785 12.3370 -6.9785 (A-22)

1.2337 -6.9785 11.103

and

8 -4 0
K= |-4 8 -4 (A-23)
0 - 8

Corparison of Equations (A-17) and (A-21) show that both zodels have
the saze M and D matrices (they were so constructed); however, the K ratrices

of Equations {A~23) and (A-27} show ccasiderable differences:
(1) K, is a full matrix, while K is a tridiaconal Jacobi marrix.
2 g

(2) The magnitudes of the elements of the two K matrices e zarkedly

different.

Thus, we sece that if modal testing is used to identify a Brd-order zodel
of the continuous svstem, the matrices of rquation (A-17) would z=sult. If the
stiffness matrix KO is compared with K, the matrix obtained froz finite dif-
ference or {inite elzzent discretization, we sce that they're not even close.
dence, we see that 2 stiffness patrix obtained frozm modal testing cannct be
used to check that cbtained from systematic analvtic reducticn rtechriques

such as tirite difference or finite element.

o
1
~
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To illustrate aliasing. suppese that g(t) in Equation (A-16) is given
by -
1
gt ) = v2 72 cos wt (A-2%)
1
which will excite only the first mode eof oscillation of Equatien (A-16). -
Using Equations (3-25), (3-26), and (3-27), ve have
q,(t) = 3 [sin %3 + /2 sin 2}1 + sin éii] cos ot (A~-23)
1 4 4 4
N i~
= 2 sin Y [02 cos - + 1] cos ut (A-26)
Thus
qi(t) 2 Qunless i = 8k =1 (A=27
k=0,1, 2 °°"
s = . 1 ” N - o ; _zq
qSkillt) (£1) 4 cos ot (A=25)
Thus

ql.(t). q7(t). qq(t) ctc. # 0

If 0 %4 «< 47, onlv the first mode will be strongly excited, If, however,

.- . st -th - .
0w <8, thel and 7 mode of the continuous structure can be

strongly excited,
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For structures with well separated eigenvalues and excitation
restricted to the bandwidth of the first N modes, aliasing does not present
a serious problen. Some structures, such as shell-like structures, tend to
have rather closely spaced eigenvalues and, in this case, aliasing becomes
a more serious problem. While this discussion was restricted for simplicity

to the case N = 4, the saze features show up for all values of N.

NACA = Lo LA Caed . ST
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