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Abstract

This report 1►reIsVttts ► t srtr ►Iq ► al'tlte tlwo):v of the owth's twainou and rht^,►,^e`t ►̂ ^ttrs^►Ytl

l ►he'tt ►nnettn ef11-e`ttng it, with emphasis on polrtr mottonr etttel 01 ►krraftttenrs. Ill(- thei ► n`rtt^

all development tit this rate ►► I hestr ►s with first l ►rhte'fNes rtrtel ti ►rtttttlrtNs they I ►rr ► l► lettt Of
poktr Inottearr and OT/ mrrrtti►rrrs ht vonstilci► tlrle Ro wntlity ►t►►xl detail, I'hv troltrrrew
inchide'v rill rtrrrttrsis q(thel e+ltMs+tt'varth delionatlenrs tend the solid north tides.
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A Survey of the Theory of the Earth's Rotation

I. introduction
In recent years the technique of long baseline Intel,.

feromdry (1131) has demonstrated its abllity to carry otit
measurements of the variations ill earth's rotation rate
WTI) and of tilts variations In the position or the earth's
rotations axis with respect to the earth's crust (polar motion)
with all accuracy which Is conaparible to that obtained by the
classical methods using photographic zenith tubes (I'Z1"s).
While the classical methods have probably been extended to
their rnnaxh ►nutat capabilities by their present- tiny use, it Is
expected that continued development of the technique of long
baseline interfcrornctry will ultimately yield measurements of
these geophysical gwintltles Mile accuracies which exceed,
present dray capabilities by all 	 of magnitude.

'finis document was prepared In anticipation of these future
developments. its purpose is to comprehensively review the
present clay dymunieal theory of the earth's rotallon Inn order
to provide a coherent theoretical basis for the development or
future data analysis procedures ,arid software models for the
lreatuncat of` future :high quality long baseline interferomelry
data. its purpose theft Is to serve as a tutorial handbook for
workers who will be Involved in the process of extracting
geophysical fnformaVont from the Interleromctry data. In
order to enhance its usefulness in this respect the work Is
presented Ill 	 detail,

origin of coordinates hn a direction parallel to the associated
vector, 'Elie point of Iaatersectlon of Win Taxis with the surface of

the earth or tine celestial sphere Is called a "pale" .. In tine
f4mner case na 'Terrestrial bole" anti ill ti ►e tatter else a
"celestial hole," If not explicitly siuled which, "terrestrial
stole" will be understood,

In establishing a theoretical and operallonal framework for
describing the earth's rotation It Is necessary to use two
coordinate frautcs, a space-fixed fra y ►,e spinivid by basis
vectors Pr P, Pa and a body-fixeJ frame spamnod by basis
vectors spa ^"z P., Coordinate systoins cant be grouped Into

"geonnctrical" and "dynamical" classifications according to
the nature of their fundamental defining quantities, llybrid
coordinate systems requiring a combination of geometrical and
dynamical quindiles for theie definition are also possible.

The present space-fixed, coordinate fra nac Is a dynarinieal
coordinate rranne which uses the orbital and equatorial planes
of the earth to define t?n f, P, "rhe fa axis is parallel to the
earth's uican orbital angular momentum vector of 1950,0 and
Pa Is contained by the Intersection of the mean orbital and
mean ,cquatorlal planes of 1950,0 and points toward the
ascending node, The', axis is orthogonal to PI ant! alit
complete a right-landed coordinate frai ne. The origin of the
space-fixed coordinate frannc Is placed at the center or mass of
the earth, Including the oceans and atmosphere. Inn clelinhng
the paean orbital inane of (lie earth It Is necessary to reckon
with the Tact that tile- motion of the earth .about the still is
continually ,perturbed by the gravitational attractions of the
other bodies of the solar system and that the actual orbit of

1

II, Coordinate Systems
The ternn "axis" will 'always be associated with it corre-

sponding vector. Aj , axis is a stttalght line parsing through file

^ m
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tie earth's center of mass is an irregular acid ever varying curve 	 unity Is mulotahned by adopting the same amt of length In
in space (Woolard and f'lemonce, 1966),	 both systems,

a

liven ilt the case of a rigid earth certain difficulties are
encotuitered when operationally defining tite celestial equator.
`Clio Instantaneous celestial equator Is usually del)ned as being
contained by a plane which Is orthogonal to the earth's
I ►hsta ►hta ►icous rotallo ►i axis. Fora rigid_ earth tits Instaintaneous
rotation axis Is defined by the vector sum of the angular
rotation rates of polar motion, spin, procession, and nutntion
and Is unobservable by conventional astronomical means, What
is observable Is a position on the celestial sphere, to be here
caned tie celestial reference pole, located at the center or tile
gl ►askircuhar diurnal paths of the stars In the sky. 

,fie celestial
reference pole is ill motion across the sky owing to
tite effects of precession and nutntion alone. Polar motion
cliallges tite latitudes of observatories and nut tite declination
of stars and so dons not contribute to tite motion of the
celestial reforwice pole o ►i the celestial sphere. The motion of
the celestial reference pole across tite sky Implies the existence
of ,

ill
	 rotation rote (due to procession and nutatcln)

which, along with tale rotation rate due to tie polar motion,
Must be added vectorially to the spin to obtain tie total earth
roWtIon vector.

The rcttli/,ation of file above dynamically 4letined space-
fixed basis vectors is provided ill tai implicit manner by tie
cciordinates assigned the stars of the i-*Kst catalogue whose
positions have been measured with reference to the earth's
orbital and equatorial platies. The l inen catalogue contahis
about 1500 stars and has all 	 consistency of A':15 arc
and an coverall intermit accuracy of 10".10 are (Kolacick and
Weiffenbach, 1). 3". 1975), Soon to replace (lie FKcl catalogue
is Cite FKS catalogue with about 3000 stars and all Internal
consistency of A".10 arc and an overall accuracy of "+ 0°0: tire.

Long baseline interferometry is eapecled to provide the
relative positions of roughly loo . conipact radio sources with
all overall internal accuracy or !0';001 are ill tine near future
'Phis celestial coordinate system will be essentially gcometricai
and some effort should be dedicated to tying it to the
dynamically defined W4 and hK5 coordinate systems, at least
to the icwnl of the errors Inherent Ill stellar coordinate
systems.

The body-Axed coordhuttc system spanned by basis vectors
e l ra ca has its 008111 at the center of mass of tie earth
including the ocerms alhd atmosphere, 11ence the space fixed
coordinate system and tine body-fixed coot ditiatesystem share
a comnhon origin, and the general linear coordinate trans-
formation relining tile two at any particular time consists of _a
rotation about some axis and ii scaling, A relative scaling of

The 1011 basis vector is defined to be parallel to tite mean
axis of figure of the carill. 'Clio axis of figure corresponds to
tine principal elgenvector (the elgenvector of maximum clscn.
value) of tite earth's Inertia tensor. For it deformuble earth tine
body-fixed orlentallon of tie uxis of figure Is (Ime-dependent
since file Inertia tensor is ilmc-dependent.

i ,be mean axis of figure is defined as corresponding to tiro
principal oigonvector of tine moan Incrtla tensor.

The fi t basis vector Is orthogonal to the 'P3 basis vector grid
contained In (lie 1110110 of tilt conventional prime (zero)
meridian. The s'2 basis vector is orthogonal to ? ► 73 and
oriented so as to form a right h0nded orthogonal triad, The
realization of the body-fixed basis vectors I 1 (rM Va is provided
Implicitly by the coordinates of n set of f axed observatory sites
located oil the earth's surface. The following Is a brief
exan3hhation of current practices Involved Iii the determination
of the terrestrial coordinate frame.

ill presatoliite era the gcocenter was, to it large extent
inaccessible geodetically speaking, stud geodctle networks were
essentially „local" coordinate systems, 'file location of (lie
geocenter relative to the earth's surface could be determined ill
principle by solving the boundary value problem Ill 	 theory
of gravitational potential. Ilowever, the practical realm aeon of
this procedure was hampered by tite lack of gravity nhcasure-
tmcnts over tite oceane, and any attempt based oil the limited
data available excluded (fie earth's atmosphere .since It was
outside the surfaceover which the measurements were mtdc,

The artificial satellite senses the center of mass of the earth
directly since the osculating orbit plane passes throughlt, The
usual procedure is to use satellite tracking data to solve
si ►liultunoolisly for the goocentric position of the tracking
station and the spherical harmonic coefficients Ill the expaun,
lion for the earth's gravitational potential. 

Ill 	 man gler the

location of (lie geocenter relative to points oat the earth"s
surface call

	 determined to about *0.5111 ^,1,Om.

Even Ill the ease of a rigid earth, owing to the presence of
(lie nuld portions, the geocenter does not remain fixed relative
to the carth's solid surface, The seasonal redistribution of the
masses of the oceans and atmosphere and particularly the
redistribution of global ground water displace the geocenter
relative to the solid earth periodically Ill year along a roughly
elliptical path with a major axis of the order of O-Scni (Stolz
1976).

2
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Considering the real dofornnable earth, ilia tidal deforms•
tions of t)te solid portion, because of their symmetry, do not
displace the geocenter. )lowever, owing to their osymntetry
ilia tidal redistribution of the masses of the oceans does
displace the geocenter, Each tidal constituent will displace the
geocenter along a carved path relative to the solid earth Willi a
period equal to that of the tidal constituont, l3rosrlie and
Siindermann (1977) have shown that theM 2 tidal constltisont
displaces the goocenter relative to the solid earth arfow,^ ►d a
closed curve of the order of a cm In extent with a period of
12.42 hours. The emotion of Cite geoconler clue to tho M2 time
I^ essentially confined to the piano of the equator (tile
displacement parallel to the polar axis being all of
magnitude smaller) along the directions X -- 45"li.135°W.

It can be shown (Coidrelch and Toonua, 1969) that for it
quasi-rigid, evolving, extended body rotating In the absence of
external torques about its axis of largest moment of inertial,
the axis of figure Is constrained dynamically to coinelde Willa
the axis of rotation, Ilowever, the earth, lading subjected to
external torques, differs In some respecU fronn the body being
considered by Goldrelch and Tounnre,

Por historical reasons the motion of it rigid body In the
absence of cxternsl torques Is known its "Eulerlan motion." In
the case of Ilse earth subjected as It Is to external torques it
call shown (Woolard, 1953) that the motion of Ilia rotation
axis within the body-fixed frame is almost entirely due to the

Ilulorian motion, will only a small perturbation of ilia order
of 0"02 are occurring as a result of llte luni-solar gravitational
torques. Although the clastic yielding of the earth greatly
altars the liularian motion front what would prevail emit it rigid
earth, the offect of tiic luni-solar torques is simply to displace
the Instantaneous rotation axis lot a diurnal circular path of
dianiater roughly 0',02 are about ilia I ulerian position. Thus
ilia mean axis of rotation of Ilia earth coincides wills ilia
Iiulerian (torque-free) axis of rotation and hence, byllte
ar$mnenls of Coldrelch and Tooinre, also coincides with ilia
mean axis of figure ,4'a.

Iii general, at tiny Instant the rotation axis Is displaced, in
the body-fixed frame, from Its {neon posltlon oil the axis of
figure. The figure axis of ilia earth or Clio 113 basis vector can
be determined by establishing ilia mean position of ilia
rotation axis. In practice ilia procedure of determining the
location of (lie "Instantaneous" rotation taxis hi the bodyl7xad
fr rote by I'ZT observations yields ilia position of the "ha.,tmi•
tancous" Vulerian or slain axis- I lowever, the meant position or
the hulerialt axis will also serve to detertnline the eaartil's figure
axis or Via.

Figure I1 .1 (after Smylle and Mansinha, 1971b) Illustrates
the geometrical relationships pertaining to polar Innollon. The
figure Is drawn with rercrence to ilia l olerian or spin axis
rather than the rotation axis, since It Is Willi reference to this
axis that latitudes on earth are observationally deterniiued.

Figure 11.1. The geometry of polar motion. For clarity the figure is drawn in a body-fixed frame so
that the figure of the earth defined by 0-3 appears fixed In orientation. When viewed in
a space-fixed frame, the equator and the spin axis appear fixed in orientation while the
figure of the earth Is displaced. (After Smylle and Mansinha,1971b)

3



Figure 11.2. The geometrical definition of the angles, m^ m2 used by
geophyskists to WACSO the location of ilia Eulerian
pole or spin axis of the earth mlative to the CIO (Conven-
clonal lntemsttonsl Ori&). The axis of the CIO is con-

k	 sidsred to be coincident with is, the flquts axis of the
earth.

0Rik4*'Ni%L P"' U#o '7'r-
OF POOR QUALITY

K+
In Figure It-I the point O refers to an observer oil ilia

earth's surface or alternately to tite body fixoa angular
coordinates or an haterfaromotor baseline. The point C is Ilia
gcocantor, the origin of tits terrestrial coordinate system, Tile
displacement of the liulorlan or spilt pule front P, the axis of
figure or reference hole, to I" changes the latitude of tits
observer or the declination of ilia lnterferomotor baseline at O
from tale ante GCM to the inglo OCM' and changes ,local
sidereal time lit 0 or the sidereal hour angle of ilia iwt iidlan of
the Interforomoter baseline at 0 from tite angle KM to the
angle F.'C'M' where C and G' rotor to ilia subequitiox paint oft
cite earth's equator before wid after polar motion respectively,

'1'laere are two systems of reckoning lit use today to describe
polar notion. One is most widely used by astronomers and
corresponds to the usago of tite Bill (Bureau International do
I'licure) while the other is most widely used by geophysicists
and corresponds to the usage lit this document, The gee.
physicist orients tite surface of tine earth so that tile positive
normal points toward tits zenith. The use of it right-hnoded
coordinate system then requires that the location of tite
"Instantaneous" Eulorlan axis In the body-fixed frame be
specified by ml  the angular displacement, "',lie Buisrian stole
parallel to the prime (Greenwich) mer.:tj,t, and 1►1 21 tine
angular displacement of the Bulerlan polo parallel to the 90%
meridian, This Is illustrated In Figure 11-2. The net angular

4

a

displacement of the Fularlon pole from the figure axis Is given
by angle P, whore

01 '. In I + III, + o (111 1 ).	 (11.1)

The astronomer adopts a right-handed coordinate systein
on the celvstial sphare, with the "surface" of the celestial
oriented so that the positive normal points toward the earth.
As a consequence of this ilia astronomer Is required for
consistency to orient the surface or ti ►e earth with the positive
normal pol-itting toward the geocentcr. Tice use of a right.
handed coordinate system theft requires that tite location of
ilia "Instantavootts" l ulorlan axis lit ilia body-fixed frame be
specified by :v, alto angular displacement of ilia Einar an pole
parallel to the prime (Greenwich) meridian, and j-, tile angular
displacement or the Bulcrian polo parallel to fie 9U'W
nloridian.

Both systems of reckoning use the CIO or Conventional
International Aright as the reference (Sole defining the Nora
axis or p 1 . The CIO is ilia nominal paint or 90°N latitude at1,i
is defined implicitly by ilia assigned nominal coordinates of 
number of observatories around the world, The CIO was
donned Initially by tile, mean latitudes ^j and longitudes'Xt I
1,,....5 of a obsemtarless its a re.uh or latitude id
longitude observations made at these sites extendi ng over ilia
Interval 1900.0 =-> 1905.0. Tito CIO defines the 'Fa basis
vector, the axis of which makes all of 90° ` — ^j with the
verticals or each of the 5 defining observatories.

It call shown that for tin observatory (htterforometer
baseline) with nominal (referred to ilia CIO and ilia Greenwich
meridian) geocentric coordinates given by latitude ¢e and east

longitude An, tite increments to tim latitude A00 (OCM
OCM In Figure 11 .1) and to the longitude AX, (li'CM' , hCM
In Figure 11 . 1) accompanying a displacement rrl i n1, radiu ►is of
the Hulerian pole are given by

Arse a 1ti 1, cos NO + Inn sill NO	(11.2)

AN  
m tan 00 (ni t sin Xa  M eras No) .	 (11.3)

uro is a "raw" measure of Universal Time based oft data
obtained at a particular site where the assumptions t ► re made
throughout the data analysis tit-it

(1) The observatory (interraroineter) coordinates are Its
nominal coordinates rerarenced to the CIO and the
Greenwich merldian.
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(2) Tile earllr has boom spinning about an axis through the
CIO.

Uri is tit "true" measure of Unlvet y .11 Tfnto intended to
give Cite hour angle or the olcan still at Grooinwich whets tine
effects of pour rtnotion described above are duly taken Into
account, LITI cannot be measured front a single point oat IN
eariiti's surrace slnco It Is fnipossible to distinguish the effects
or polar inotfon which are to be incorporated Into UTI rrom
the effects of variations in the earths rotation (spin) rate,
which are normally Incorporated Into UT2.

UTO sand UTI are related by

	11,170W U ,i, I + gG O tin
(ni t'n It	 pit cos 1^ )	2rr	 o	 t	 o	 ^	 a

(11.4)

LiTC Is 
all

	 thnic scale broadcast by national time
services and malntaincd continuously by onsile atomic fre-
titieney standards tit observatory sites, At each of in observa.
tory sites it is possible to observe directly the quantities

UTQi - UTC	 I = 1, 3, 3 ... in

	

¢i - 001	 I . 1, 2 , 3 ... pit

where ¢i is the "htsta l itancous" latitude or the Ith observatory
and Dal the nominal latitude or the Its observatory, These two

	observables are related to nit ► in and U'rI	 UTC by

UTA - UTC w UT 1 + 86400
1 	tan ¢ (nr sin	 tar cos 1s )

1^	 of a Nl 2	 (it

- UTC	 (11.5)

01 00r 
R iri a cos %nl 

+ 111 2 sin col	 (11.6)

wlicre XOj Is the nonninal longitude or tae /tit observatory,

l=ronn a large set (of ilia order or 50) of such observations
the Bill solves for the quantities rrr i ir12 and UTI --- UTC by
least squares adjustment, This adfustnrent procedure produces
a value or UTI which Is.not reduced to the prince (Greenwich)
meridian passing through the nnerldlan c ►rcle or ilia transit
telescope at Greenwich but to ti meridian which is displaced
front Greenwich by several milliseconds or tine. The trnerldlan
to which UTJ is ndjuMed is called the incridlan or the"trnean
observatory" or the Greenwich Mean Astronomic Meridian,
The corrections ror the displacc,^nent or the nacaan observatory
from Greenwich (usually of the order or 2 .5 insce) are
published In the Bulletin Iloraire of the hill.

111. Dynamics of Rotating &Wi•s

Before proceeding to a treatment or the rotational
dynattnics or ilia eartt we situii review the dynamical tboury of
rotating bodies generally, arriving finally at tits Liouvillo and
Fiviler equations.

A. Rotational Dynamics of an Assemblage of
Particles

We consider all or  particles whoso masses and
positions relative to our origin or coordhtG(es are given by in,

and rl, I a 1, 2, 3 - _ - N. respectively. lf Jej Is Ilse acceleration of
the All particle relative to the origin or coordinates and lr$ is
the acceleration of the origin or coordinates relative to inertial
space, then Newton's second law applied to the Ith particle
gives

N
rrtr (+rj) x Fi+ E 

Rjl	 (111.1)
V, t
jVkt

where Fj Is the net force oil 	 Ith particle clue to all
Influences external to rte assemblage and RI; is the force on
tlieltit particle clue to thelth particle of the assemblage.

Son nting over all particles

Erni(S + 'r) '^	 r.t +F 
r 

Rjl
r't	 Iml	 lit ja°I

j0l

and denoting

N
F _ 

E Cl
rP a

as the total external force oil 	 asseariblage and denoting

N
Al * F ►rt$.

lot

as the total truss of the assennblage gives

N	 N N
Al 's +rn l 'ej 	r +	 Rjl ,	 (Ifl•'?)

14 t	 r ► j- n
joI

6



Simply stated 11'115 Im lies that tine force exerted by r! A Ith
particle on the /tit particle is equal and opposite to tine force
exerted by the /tit particle on the All, particle, If the weak form
of Newton's third law is assumed. then 

III 	 double sum

N N
E Rll

err

the terms cancel In pairs with tile conclusion that the net force
on the assemblage of particles sue to Internal action and
reaction pairs vanishes,

Returning now to Equation (1111) and taking the cross
product of Equation ( 111.1) with the vector r and ,summing
over all the particles gives

N	 N	 N
E 1111 rt X 9 4. LI in, rJ X V, z 1: x 1'!
lei 1	 X01	 101

*	 F r  X Rai

(111.5)

ORIGI14AL PACK I3

OF POOR QUALiV

Introducing p as the position of the comer of leas 	 ,Assuming nonrolhtivistic mochanics ror which din, filt s 0,
several terms In Equation (111.5) can be rowrltion

N

	

N	
cc
N

^^	 }
P	

l ^nr	
(111.3)	 (l)	 rnr rr X it w cl

r (1` rllr r
r
 x Ill 

,
lot

rI ►n1

	

	 1
since i t X t, = 0

N

allows Equations (111 .2) to be writ,on as	
(2) E M/ rr x S -Alp X 9

tit

N	 N	 using Equation (1113), and If we define.
M(9 + 0) n V + E F R .	 (111-aIt	 )	 (3) L the total angular ntotne ►stuot of the assemblage aboutPI 13 1

101	 origintho 	 of coordinates 0 as

N
fit 	 "weak" form Newton's third law merely asserts the

equality of act ton and reaction and gives
	

lot

kit IN ^ Rl/
(a) N the net external torque oil 	 assemblago about the

origin of coordinates 0 as

N
N' n E rlxif

/an

then Equation (111.5) call be written

N 
^
N

+NIP X	 1, N + E L. rl x Rj1 ,	 (111.6)
lo t 101

101

The Fast term,

E rl X R)1

1°k t

In Equation (111.6) represents the net torque on the assemblage
resulting from its Internal actions And reactions. to order for
this term to vanish It is necessary to invoke Newton 's third lawtit

	 "strong" form, namely, that

11/1	 */1 [rr - rd ; a// a ail .	 (111.7)

Simply stated this Implies that the force exerted by thelth
particle on the lth particle Is equal and apposite to the force
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exerted oil the fill particle by the /tit particle and that these
forces act aions tite line joining the centers of tite particles.

If Newton's third law In its strong form Is assumed, then

N N	 N N

E E r
t X Rat -	 a/t rt X rt	 (111.8)

t^h Jam !	 i^l /^i

lot	 lot

and the terms oil the 1tNS of Equation (111 .8) cancel fit
since rt X rl P; - rl X rt and a/I w oatl . It follows that the
dynamical equation (111-6) reduces to

	

Mp X;a+L - N,	 011.9)

It should be noted that Equation (1117) Is not valid for
clectrodynamicat Lorentz forces acting between charged parti.
cle pairs. however, tite conclusiar of Equation (111 .9), which is
still valid when the mass assemblage Includes charged particles,
must be obtained by a more extensive argument than that
presented ltcre.

tit for the term Al p X S to vanish It Is necessary to
choose ,tit origin of coordinates to coincide with the center of
mass, in which case p=0  and the dynamical equation (111.9)
further reduces to

Is the linear momentum of the particle relative to the origin of
coordinates, If we now consider a second coordinate frame
sharing the same origin 0 as tile Inertial frame but rotating
relative to It with an angular velocity w (defined as usual hi
the right-hsnd sense), then the velocity of (lie particle relative
to an observer at rest in the rotating frame denoted drN,)r/dt Is
related to rte velocity of the particle relative to 

art 	 at
rest In the Inertial frame by the kinematical relationship

r	
Ica 

t +w X r ,	 (IIC-33)

It follows from these considerations that (he angular
momentum of the particle may be equivalently written

L	 rX III (±r't,+wXr^, 	 (111.14)

in considering tit 	 of particles of masses tit and
position vectors rt i - 1, 2, 3, .  , N, we can express the total
angular motnenturn of the assettiblage its

N
L -E Lt

l71n

L - N,
	 (111-10)

where

In dealing with the dynamics of rotating bodies it is )tit,
portant to realize that the dynamical equation governing art rvr
rotation only assumes this simple form of (111-10) when 	 Lt = rt X Ot t ( 

dt 
+ w X rt

expressed in a coordinate system whose origin coincides with
the center of mass of the body, The coordinate system need
not be all Inertial frantic in that 9 need not vanish to achieve	 is the angular momentum of the itt particle.
tinis simplification. The simplification occurs because o van-
Islics, however, winile the origin of the coordinate system may
be accelerating arbitrarily with respect to inertial space, the	 introducing Vt where
coordinate system itself cannot be rotating, for nowhere in our
dynamics have we allowed for this, 	 dr

Vt	
Ir

ot

(111.15)

The angular momentuml of a particle of mass tit 	 in
a nonrottding frame tr"th origin 0 _relative to which the
particle has position r is defined

L = r X p	 (111.11)

is the velocity of the ith particle relative to the i-otatirtg
coordinate fraine, it is possible to write the total angular
momentum of the assemblage of particles as

where

P = tit	 (111-12)
L =	 rm X til t Vt +	 ttmt art X (w X rt)] . (It 1-17)

r-t	 t=m

7
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Introducing pt where	 Now using the Bhtsteht summation and range convention

pi . 011yt 	rt - w = (r1)t w/

& C

and
Is the linear momentum of the ith particle relative to the

	

rotating coordinate frame,, we can rewrite Equation (111.17) as	 rt . rt N r 

/V	 N
and so

L F rt X pt +	 trrt [rt X (w X rt),] . (111.18)

logI
	
^ 
	 N

Lk = hk +	 ni t Crt Wk (rt)t w/ (rt)k]

Introducing h where
which -an be written as

N
h_ L r X p	 (1it•19)	 N

t.S ► f	 ► 	 I, k = h  +	 mt [rr Sk/ - (rt)/ (rt)k ) w/
!^ 1

is the "relative angular momentum" of the assemblage of

	

particles, that Is, the angular momentum of the assemblage 	 where &k/ Is the Kronecker delta defined by
relative to the rotating coordinate Frame, then Equation
(111 . 18) can be written 	 0 k 0 j

ski = I k=J
N

L = h +	 n►t [rt X (w X rt)] ,	 (111.20)
! ► 	 The quantity lk/ derned by

N
Using the triple vector protiuOt expansion 	 /k/ 	 mt [r1 S k/ - (rl)k (rt)/ j	 (111.24)

AX(BXC) _ (A•C)B-(A•B)C

Is a second order tensor (although we have not proved its
	the total angular momentum of the a-.3emblage of mass points	 tensor character) referred to as the inertia tensor, The inertia

can be written	 tensor is clearly symmetric in the indices k, /, and its six
Independent elements consist of the six: independent second•

N	 order moments of the mass distribution of the assemblage of

L = h + E m j [(rj . rr) w - (r, w) rt ] ,	 particles.

	(11-21)	 With this result we can write the kth. component of the
angular momentum of the assemblage of particles as

Considering for the moment only the kth component of
this vector	

Lk	 lk/ wl +1
1 k ((11.25)

N
!,k = h +	 mj [(rr ' rt)'k (rt w)(ri)k] .	 or in coordinate free notation

i=1

	

(111.22)	 L = I • w + h .	 {IU•2G)

,i

e
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To avoid possible 400rt on it should be empl ► t► sized, that
tile- vector w was Introduced in Equntloo (111.13) its 1l ► e
al ►gallor velocity of it rotating coordbinte Claim and lilts
tiollibig to (it) with the angular rotation rate (if filly) of ilia
mass assellibiage.

It is assumed wit ►oot loss or gellerallty that fit $011 ie h ►stant
durlog the rolatbatl the basis vector$ spawn ► ilis the nourolfith ►g
rra ►lae and ilia basis vectors spam► illg the rotating frmlle
colncldo.'rite lastant Is called file "nldamelit or cohaelde lice ,,,

VIxing attention on the moment of collicitlence permits %is
to compare compodents of the vector equation 	 and
the tensor equatloo	 as well as tbeir time derivatives its
represented Ili the rowhit; and noorotaling coordinate frames,
At lite moment of cohicideliee the basis vectors of the rotating
ataif ► lo►►rotallog coordinate frames coiueldo and such colopari-
sons sire ►nathelnetically permissible.

it sbouiti tic cuipbasited that the inertial tensor f consists or
the second=ilrtler mass moments or tha mass distributloti takell
about tie coordinate axes tit the fttoulott of' oilltfdolve. lr
the all;lss (list ribillioal remab►s fixed relative to file tlollrut III ing
coordinite frame, tl ►efi clearly the body Is ilot rolating altd
I,, r- 0. however I . w is still nut ► toro flan is cancelled exactly
by 11, If file Inalas distribution rotnaih ►s fixed relative to ilia
rotating frame then clearly the body Is rolatlns ntid L.1 , 0,
l loweverj"+ to is exactly the sittile valuo as Ill the malifotatil ► g
easol 'rhis time, however, It o 0.

'Chere is hi general only one circunlstalice folder Willett the
vector to Is to be ldentifled with tie "rotation rate of it body"
and that Is ilia ease wherein it rolfith ►s coordlmlte frame Is
round such that It a 0. In this case

1.	 'r- W .	 (111.27)

llowever, to is ,dill tie rotliton Vale of the cut>rdimhte syoolil,
but the above fola ionsilip occurs only for rh uniquo value of W,
which call then be dolltied its "the rotation rata of the body,"
`Chis unique rotatblg coordinate system caul always he found.
for the case or rigid bodies by fixiog the rotatltis coordinate
fixes relative to the rigid body itself.

,rills discussion Illutilillates the ossontlal kineatlalio Ilature of
the (criu r w appearing In Equation (111.26). The mtagnitodo
or 7- w Gaul be chailgod at will by as change of coordhlates. It
is file sum of )'" W [alas It which Inns dyalaillicai. S fgilifIcallce
and yields the quantity L The term , w drily has dynamical
significalleh: if the rott tillg coordhhate system is referenced, or
"attached" Iii some way to ilia rotating body.

B, Rotational Dynamics of Extended Deformable
Bodies

I'nsslos Not the case or III) asse ll►binge of particles to it
contlmtous, exicodod and deforu ►able ulnas distribution It Is
necessary to hilroduce it class doosity distribution functloo
p(r, t) which will bi general Ile thuo-lepandoill. 'Clio fit ► ass
density distribitlon functloti 1 ►eed not bo it difforeatilablo or
even it f►metioll of position as rte body play
possess Internal density discootiouitlos.Tile extended deform.
able body occuples tiro Hole-del ondeot volume 1 1(t) hounded
by tile tltne lel>ctidol ► l enclosing surface S(t). The sunlnlattoil
over individual part,clos Is replaced by till Intogratlon over the
volume IV).

(once again we consider two coordinate frames sharing it
common orighl t), olle coordhlate frama rotttlog nlld one
coordinate I'rnme uotnoI tit ing. 'rile insular velocity of the
rotating frame Is defined by Ilse vector w. At the moilent or
colncidence of ilia two coordinate frames the velocity vector k
relative to file 11011rotating froole is relaled to the velocity
vector d1rr,0i/'d1t relative to ilia rotating rhum by tie k.inemati.
cal feint lollship

cl tillt I, w X r	 (111•~8)

It will be col ►venicat to Introduce, v(r, t) Its the velocity
vector relative to the rotating coordinate system told l)(r, () its
file velocity vector f(olative to (lie nonrotat,ng coordinate Sys.
lean. 'Pints we have

tlrro i
^^^' 

t) 
^	

(111•219)cat 

ti(r, t) a 	 (111.30)

and so u( the ntorlleot or collicidellce

v(r, 1) - v (r, t) .t, w X r .	 (111.31)

1. Dynamics of rotatialti without the lnertin tensor. 'Clio
total angular toomentuin of the extended deforlaurble body is

L	 a(r, t) trX u(r, t)] dF	 (111$12)

9
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nds3

Figure 111.1, The mathematical constructions used to evaluate the
time derivative of integral quantities w„hose values de-
pend on an Integral taken throughoot the volume of a
body whose shape Is changing with Nmo.

And so we have

x";
t

dL	 p(r.,I+dt) [rX v(r, t+(It)] (IV

p (t, t) [r X v(r, t)] d V

or

dL
 =f

{p (r, t +dt) [r X v (r, t +dt)]
►r ►

- p (

'

r, t) [r X v (r, t)]) d V►

*J p(r,t+ dt) [rX v(r,t+dt)](IV,

11'v^
p (r, 1) [r X V (r, t)] d V3 ,

 3

It is clear from Figure 111-1 that

d V2 = irdS2 vdt

dV 3_ -iidS3 , vdt

ORIGINAL PAGE IS
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I

and if the origin of coordinates Is at the center of mass of the
body then the dynamical equation governing the rotation Is
given by Equation (111-10) as

L - N	 (111.33)

where, as before, the dot "." Indicates a time derivative takers
with respect to the nonrotating coordinate system,

In establishing the time derivative of the Integral In
Equation (111.32) the deformable stature of the body must be
explicitly recognized, To do this we consoler two instants of
time t and t + dt and the increment dL to the angular
momentum which occurs in the Interval A

dL	 p(r, t+dt) [rX v(r, t + dt) I dV
f^(r^^t>

p(r,t)[rXv(r,t)IdV.
vtt)

In evaluating the above integrals we have adopted an
hulerlan viewpoint, The vector r refers to a fixed position In
the nonrotating coordinate frame.

The volumes V(t +dt) and V(t) are related by

V(t +dt) = V I + Vz

V(t) " V u •^ V3

where, as shown in Figure 111 . 1 (after Prager, 1973),

(1) V  is the volume common to bath V(t + dt) and V(t).

(2) V, is the volume swept out in the Interval dt by those
portions S. of the hounding surface S(t) whose
velocity v (relative to the nonrotating frame) has a
component parallel to the positive direction of the unit
outward normal 1, S. refers to that portion of S for
which iu v > 0,

(3) V3 is the volume swept out in the Interval dt by those
portions S. of the bounding surface S(t) whose
velocity v (relative to the nonrotating frame) has a
component parallel to the negative direction of the unit
outward normal n, Sa refers to that portion of S for
which it v < p,

10
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and that the vohnnc Integrals over volume Yx	 1, call be Have Ads • Mt-a 0. It follows that Including these regions In

replaced, to first order In Infiniteslntals, by surface Integrals the surface Integrals will not altar the value of the Integrals,
over the regions S 	 Sa respectively Consequently we may write

dL	 fr	(p (r, t +dt) [r X P (r, t +dt)] dL is	
r! 

(p (r, t +d`t) [rX P(r, t +dt)I

p (r. t) [r X P (r, t)]) d lit - p (r, t) [r X v (r, t)j } d Vd t

+ff p (r, t +rd) [r X P (r, t +dt)] it dS z̀ . Pelt
2 Aso) p 

(r, t) [r X P (r, t)] n dS - Pdt

*JJ p (r, t) Ir X P (r, t)] h'(1S 3 . Pd/ ,	 (111.34) front winch it follows that

sia

L -	 I { p (r, t + dt) [r X P (r, t + dt)]
We now make the approximation that since dt isanhtfutltesfr V(r) (it
nlal bate Increment Whose tmgnitllde Is going to be allowed to
shrink In the limit. to a vanishingly small quantity, we call set

_ P (r, t) [r X P (r, t)]} d lr

111 =I'V)

and write p (r. t) [rX 0 (r, t)) P (r. t)' I CAS,

Ism

1
(111.36)

dL	 eft {P (r' t +dt) [r X P(r, t +zit)]
I ?(r)

In	 Equation	 (ill-36)	 we	 recognize	 the	 C-ulcrian	 tune

p (r, t) [r X P (r, t)]) d Vdt
derivative taker, with respect to the nonrotating frame

f
r J
	

p (r, t) (r X v (r, t);! n ('S2	 vdt

8Q r, t	 1	 {p (r, t +dt) [r X P (r, i +dt)]
at	 c!t

2(t)
- p (r, t) [r X P (r, t)])	 (111.37)

p (r, 1) [r X if (r, t)] n dS3 • Pdt .
AS30)

where R(r, t) given by

(I11r35) R(r, r)	 P (r, t) [r X P (r, t)]	 (111.38)

The entire area of the bounding surface S(t) is divided into
regions which is alt angular momentum density field defiled also relative to

the nonrotating frame,
(1)	 lic;intS2,

(3) lie in S,, Consequently Equation (111 .36) can be written
(3) lie neither in S2 nor Sa

It follows from the definition of S. and S 	 that rot, the L =	 a dV+	 Q P • is dS .	 (111-49)
latter classiticatiolt winch tic neither in S2 or S	 we necessarily t)	 s(r)

t

n q 11
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The quantity RV appearing In Equation (111 .39) and given by	 Collecting, terms in Equation (111.45) hives

R v p (r, t) Cr X v (r, t)I v (r, t)	 (111.40)	 OR + V - .'1' x [12  + 
V - (pv)l (r X p) r,

1T

is a second-order tensor. 	
* p (r X v) + pp v (r X v)

	

It is an .angular tl)on)enhult flux	 ^{
density and shall be denoted .06(r, t),

and by Invoking the equation) of continuity ]?r

t

(r, t) - p(r, t)f r X v (r, t)J v(r, t) , f,I1L4I)
PA+ V	 (pp) ?	 0	 (111.46)

The elements 9,,'rl of the tensor density .0 are

'Clnls reduces to
} ^	 ` p (r,t) [rX v(r,t)]rvl(r,t)

^^ + V • ,Vl	 p (r X v) + pp , V (r X v)	 (111.47) t
and so Equation (111 .39) can be written

(,	 dV +	 ^ ' I► CI,S
at

and Equation (1 1 1 .44) assurros a final form

L	 p(rX0)+pv- V(rXP)^ dV, f

We may now use Gauss's theorem to convert the surface V(t)
Integral in Equation (11142) Into a volume integral (IMI.4$)

, '• nc1S =	 V , ,(7till The MIS of the governing equation (M-32) represents tl)e

t

V(r)s(t) torque acting on the extended deforntable body. The net
torque on the body arises as a result of the combined actions

where of a system of body forces f and surface stresses ,'S N can be
expressed quite generally as

N r

V • .1' =
ax/

(111.43)

N(t) -	 r X f d V+	 S	 11 tl,5	 (111.49)
ft,ffsN

which then gives ft) j
where It Is understood that in general both f and S are

v r	

aR + V •	 dil ,
O

(111 .44) time-dependent fields,

The complication which must be borne In mind when
applying Equation (111 .49) Is that usually the vector field f E

It can be shown directly_that the i)ntegrand of Equation representing the system of body forces and the tensor field S

(111 .44) can be written representing the system of surface stresses are referenced to
the material of the rotating body. When expressed as vectors
and tensnts in the nonrotating coordinate system the body f

ak+ V • „%^	 a (r X v) + p (r X v} forces will in general appear as the time-dependent vector field
f(r, t) and the surface stresses will In general appear as the
time-dependent tensor field Ar, t), where r refers to a fixed

+ V • (pp) (r X V) +pp - V (r X P). (111.45) position In the nonrotating frame, even if, when viewed by ail V

12
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observer at rest relative to tie body, these fields 
have 

no tittle
depettdonce. `t"11118 itt ti ►e nollrutatinl; fra ► tte

NW 	 r X f (r, t) ct if +	 t) + f dS
f`(t)	 ffSM S (r,

(111.50)

The bounding surface 8 de1711ing the volume 1-' of "the
bialy" caul be drawn arbitrarily. Material density P(r, t )
exciuded from the volume is regarded as an external ltlediutll
nol holmiging to "the body," ht such cases the external
medlimi caul In general itch oil hotly" by It system of
Induced tautly forces curd surface stresso.s.

2. Dynamics of rotalie-i with llte lnertht tensor. The lacrtia
tensor call be introduced into the dynamics by the kinematical
oxp dicnt of Introducing .

ill 	 vector w such that the
volodly 11old 1+ r, t) is kinematically decomposed into

P(r, t) c v(r, t) + w X r

which when substituted Into Equation (11132) gives the total
angular naonlcntunl as

L z-	 P(r, t) jr X v (r, t) + r X ( ,w X r)] d h`

1,W

(11151)

where V(r, 1) is a "residual" velocity field (wi11e11 Illay or Itlay
not he small depending tail t11e choice of w) defined as a
f►uletloat or position r ill alt,^ nonrotating frame.

introducing It the "`residual" angular 11101110011111 vector

	

It IV
p(r, t) [r X v (r, t)] dl,*	 (111,52)

(t)

we may write 13quation (111 .51) as

L	 p(r,6 it X (w X r)[ dV+ It
r^(rt

fly a Sot of manipulations identical to those Carried out tt

haluatons (111•20) through (11124) It is possible to show that
Equation (111.53) may be written as

Ilore the inert Ill tensor!" Is &,Nett by

P(r, t) [r2 1 r r] (IV	 (111.55)
►'t t}

where ! is the unit, tensor

1	 0	 0

1	 0	 1	 0	 (Itl^S6)

0	 0	 1

and where

rx	 r , r
(1MIw57)

rr=rkr1.

Substituting F'quation (111 .54) into the dynamical equation
goverilhig rotation, Equation (111 .33) gives

I• w t I w, li = N	 (i11•SS)

where tine fndicatod time derivatives lire reckoned ref ►ative to
tlae nonrotating frailte Of roference.

Once again we are faced with the problem of establishing
tle title derivative with respect to the tionrotating frame of
civantitles, tlatuely % a iid h, whihch depend oil Integrals
carried out In tiro nonrotating frame.

We proceed h1 the samo antulmr as before by considering
two ittstaots of time t and t + rlt and the .increments till and dT
to the relative angular momentum and Inertia tensor respec-
tvely ill tle 111tervai alt.

till	 P (r, t + (lt) [r X v (r, t + rlt)] ell '

P (r, t) [r X v (r, t)] d V	 (11151)
► 'ft?

rl%J P(r,t+alt)[r' l - rr] dlr1 ( t + d r)

4,	 i{

	 L : / , w + It 	 (111.54)
	

1'(t) 
p (r, t) [r2I - r r] rill'	 (11160)
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can be written as

A'*
	
at ( p (r, t + dt) [r X v (r, t + dt)]

►'(t)

p (r, t) [rX v(r, t)] )dVdt

where,^7(r, t) Is an inertia flux Onsity given by

, ,,7'(r, t) * p (r, t) (r" 1- r r) v(r, t) .	 (111.68)

(r, t) Is a third-order -tensor density with elements ilk given
by

	

,	 .l fk '2 p (r, t) 02 d tl - rt rl) Pk (r, t) ,	 (I1 "69)

+	 p (r, () [r X v (r, t)] R dS • vdt	
We may now use Gauss's theorem to convert the surfaceffs(t)	 integrals" In Equations (111,63) (111 .67) into volutmo Integrals to

	

(111.61)	 obtain

i	 2	 h	
Y(r) 

J ah + V • 3C d V	 (111.70)d!	
Ott (p (r, t + d t) - p (r, t) ) [r I - r r] d V d t	 ] at	 J

t'ltt

(111.62)	 1	 (r, t) [r2 7- r r] + V •,f dV	 t
V(t)	 u

(111.71)
^i

w1►er!^
b

S

axctl	
,

(111.63)/ •C	 (111.72)
ail

+	 p (r, t) [r2 1- r r] ft dS , u (It.
S(t1

from this it follows that

ii► = a^dV+	 X nds
►^(t^	 s(ta

V • *	
m 

h,llk
	

(111.73)
ax

3, Discussion, A theoretical description of the rotational
dynamics of an extended, generally deforniable body has been
presented both with and without the Introduction of the
Inertia tensor. The velocity of the material of the body and the
deformatton of the body with respect to time relative to the
system of coordinates Is accommodated, in the first place by
the introduction of	 t), the tensor density flux of absolute
angular momentum, and in the second place by the Introduc•
tion	 of R (r, t) and ;'(r, t), the tensor density fluxes of
residual angular momentum and inertia respectively.

Although this development illustrates the theoretical tools
necessary to handle problems of this sort, the choice of a
nonrotating frame	 of reference in which to describe the
dynamics of rotating borne., is generally a poor one. This fact
can be illustrated byconsidering the ease of the rotation of a
rigid body. Even in this simple case the t ensor fields rP, 3—C,
and +7do not in general vanish although rC can be made to
vanish by an appropriate choice of w.

where h(r, t) Is a residual angular momentwn density given by

h (r, t) = p (r, t) [r X v (r., t)]	 (111.64)

and where R is a residual angular momentum flux density
given by

3C(r, t) = p (r, t) [r .X v (r, t)] v(r, t).	 (111<6S)

The quantity 3C is a second-order tensor density whose ele•
ments are Xtl given by

jCtl = p (r, t) [r X v (r, t)] t ul (r, t).	 (111-66)

It also follows from this that

fa

(r, t) (r2 1- rr) dV+ 	 , it dS
ftJ
	

ffs(r)	
(111.67)
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The Corm r' t t appearing lit Equation (11I.58) has 'it general
only khlenlatical significaitco, Its value cats be changed tit will
by a change ht the choice of w. It ► particular It cats be made to
v►► n61t by choosing w Its constant. It Is the colnblilation Of

. a plus h which has true dymm ilool significance. Pffects not
appearing In olle will appear III the other.

For tie case or rigid bodies mid quasirigid bodies the
rotational dymmiles call greatly simplified by transforming
to it rotating, frame of reference. Such it transformation Is not
accomplished by simply Introducing the inertia tensor Into the

	

dynamics as In Vgtratlon 	 for this trnsor Is still dalimed
by 111o111e11ts or file fllass (list ribittioil taken about the lion'
rotating coordinate axes. The transrormollori to a rotating
frame of reference Is accomplished by tiro Lionville equation
lit which file necessary time derivatives are taken with
reference to it rotatiig system of coordinates,

C. The Liouville and Eui•r Equations

To obtain the Lionville equation we begin wits the
dy llailli4al equalion governing earth roWtiotl expressed In a
nonrotating center of Mass coordinate system

L - N	 (I11.74)

	We then consider .I 	 center of mass coordinate
system whose rotation rate relative to the lionrotating coordl•
mates Is given by the angular velocity vector w. At the moiueitt
or coincidence we etas relate the time derivative L taken with
respect to tie nonrot:sting frame to lime derivative tIL/(!t
taken with respect to the rotating frame by the kinematical
rela (loll ship

	

L	 L-+wX L,	 (I11.7S}
tit

'Cite angular momentum of the rotating body call
expressed as

L = I - w + 11	 (i I I.7ti}

fiquations (111 .74) (111 .75) (111.70 together yield

it

	

(! ` w +	 it) + w X (I • w + it) - N	 (111.77)

which is the 1.Iotiville equation first obtained by Liouville in
1358.

At Ills point lit 	 analysis the elements of the teiisor 7
Gild the compormits of the vector it are by dellnitlon (LItia•
tions 111.1) tutu 111.24) reckoned relative to tite basis vectors of
the rotattug, coordinate frame and lei particulor the appeoramce
of the operator "dldt" ratter than tite operator " - " oil tire
WIS of P(loallon (111 .77) hidicates that we Pro to difrorentlmo
these quantities with respect to tire basis vectors of the rotat.
ing frame. That is, we are to consider the rate at which the
compmonts of ran d It are changing with lime whoa projected
onto the basis vectors of the rotating coordinate frome. By the
saute takers the components or the torque N appearing oil the
,RIIS of Vgttatlott (11177) most also be given with respect to
the basis vectors of )lie rcltathig coordinate frame. This aspect
of the l.Iotiville equation Is discussed at some length lit Munk
and Macrionald (1960 pp 1 w•l4),

Written out Ito Nil

+ l , ilw + r/l ►
 ,t Co X I. to + w X It m Ni!t	 t!t i!t	 (11I^7S)

For a generally defortuable body we can use the previous
arguments to show INN in the rotating frame

1st ^	 ^C 
1l1^+	 ^r^,t ' li rGS,	 QIG71))

1'(t1
	
ff^vto

and

1!1	 clp (r, 
t? (r~ 1 ° r r) cJ 1`+	 ,r,t ' it CIS,

W, frtt) at	
S(q

where r now refers to a fixed position in the rotating frame,
and as before the relative angular momeatum detlsity h(r, t) is
given by

h (r, r) - p(r, r) [r X v (r, t))	 (Ilk, 1)

The rotating frame tensor density Mixes Crc,r and 47- t are
by definition obtainer) from their nonrolathig frame egtilva-
letits 3C and 7by rte replamileut oru(r, 1) with v(r, r),

Thus

	

CraC (r, t) 
a p(r, t) [rX v(r, t)J v(r,,t)	 (111.82)

	

(r, t) - p (r, t)[r2 ] r r) v (r, r) .	 (111 8,1}

15
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+ wn wa (A,-CD 'e2	 Now

+w 1 w2 (D A)ca .	 (111.87)
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Using Gauss's theorem In Equations (111 .79), (111.80) gives	 It w 1108 410118 a principal axis of Inertia then two compo-
nents of w t w2 'A), must vanish and sow X I; w vanishes,

;,

(it "	
^t + D ► rfrot) V (111.51)

t'(t)

[Y.dlT((r2 1- r r) + 9 ►: Qt di".  (111.85)

In the case of a rigid body w can be chosen so that v(r, t)
vanishes with the consequence that:

2a=0
at

h=0

M
3Crot * 0

'r .0
The maintenance of the above four conditions implies that

the coordinate system remains in corotatlon with the rigid
body or that the coordinate system Is "attached" to the rigidly
rotating body. When expressed In the corotating coordinate
system the dynamical equation governing the rotation of a
rigid body reduces to

I t̂ - N- w X  - w.	 (lll•86)

The quantity -w X I - w is called the gyroscopic torque and
vanishes If the rotation axis coincideswith luny of the principal
axes of inertia. To prove this we consider the inertia tensor
expressed in the principal axes coordinate system

A 0 0

1 -~ G 8 0
0 0 C

and the rotation vector expressed in the saute coordinate
system is

w w1 e1 + w2 e2 + w3 e

Then

W X I . w = W2 W3 (C-'B e,

Ir Equation (111.86) is expressed In the principal axes
coordinate system It becomes

LO"
	 ,, rrwa

A (It e1 * 13 
at 

03 * C di ^ ^^t a w2 w3 (C." 01

+ [A'2 ° w I wa (A .01 ^2 + (Ns ` w 1 w2 (B-A)l ea

(111.88)

This Is Huler's equation for the dynamics of rigidly rotating
bodies obtained by Euler In 1765,

A comparison of the Liouville equation, Equation (111.78),
valid in the rotating frame with Equation (111.58), its counter-
part valid In the nonrotathng frame procedures

I • w +I, w + li - N	 (111.58)

rit `w+ d^+ a - N^ wX1,	 (111.78)

where we have used

L It I- w+h

In Equation (111.78),

D. Kinetic Energy of a Rotating, Extended,
lDeformable Body

The total kinetic energy of a rotating, extended, deform-
able body is T where

T xJ f 1/2 1 S +'r 12 dint	 (111.89)

where the Integral is taken over the entire volume of the body
under consideration. in Equation- (111.89) S is the velocity of
the origin of coordinates relative to inertial space and r is the
velocity of the mass element din relative to the origin of
coordinates.

=a



The position of the center of mass of the body relative to
our origin of coordinotes is denoted by p where

Lx 

r tint

P N	 _ If rc1m	 (II1.93)

fl, 
thn	 At

and where At Is the total mass of Ilse body.

It follows front Equation (111 .92) that

i all) 0 Afo	 (111.94)
fV

and using this result In ptluation (III.92) the expression for the
total kinetic energy of the body becomes

	r .. 112Af 1S 11 +AtS . P, 1/1 	 Ir 1 2 d,► t,
t'

(II1.9S)

Equation .(111 »95) Illustrates how the total kinetic energy of
a rotating extended defornuible body can be decomposed into
a translational kinetic energy associated whit the motions or
the center of mass relative to Inertial space denoted Ttrp„ s and
it kinetic energy associated with velocity of rotation
of the body about Its confer of mass denoted 7`rer. Thus we
may rewrite .Equation 1111•95) as

c

	

x' Ptrarls +` ern,	 (11I•)G)

where

E	 TIMIS 
u 1/2 At 151 2 +A/ S' P

ax
(111.97)
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and so the total kinetic energy con be written	 and

;rmr 1 1/ f 1112 Hitt.	 (111.98)
7' x	 f n i s 1 2 rlr►t *	 l / I r 12 riot +	 t tf dill.	 `

rs	 t'	 ^.

(IIl•9l)	 if ttte origin of our c+^ur^li^ute aystenr is itinced ut the center nC
moss of the body (licit • 0 and Cite translational Mitotic

The vector S Is common to all the mass Clements In I'tasd can	 enemy reduces 10

crass through the Integrals

7' n 1/2 1 S P

	

	 (Im + I/"I t 12 ►Irtr + g • fr:l►it.
rx fr 	 v

(I I I^9,3)

fi',raW - 1/2 At I S 1 2	 (111.99)

where S Is now the Wloclty of the center or mass of the body
relative to Inertioi space.

We shall not concerts ourselves farther with the propeales
of the translational kinetic energy but shall investigate fit some
detail the properties of the rotational kinetic energy.

The rotation vector w for a rotating, deforsnable extended
body with fluid regions can be unambisuomly dofined as the
angular rotation vector of the mean body axes frame in which
the relative angular momentum It vanishes, (Note that there Is
no treed for w to be parallel to any of the three body-fixed
basis vectors of (lie meats body axes frame.) If drrer/dt Is Ilse
velocity of a mass element relative to oil :fixed at
position r Its the rotating mean body axes frame then drr,r/dt
Is related to r, the velocity of the mass clement relative to an
observer fixed In Inertial space, by the formula

i- j {^ `+ w X r	 (111.100)

and so the rotational kinetic energy Trot can be expressed as

	

Trot	 1/2	 ^ r + w X r 2 di►t
r}

which becomes

TIUr Y/2	
1 !^=

dr  
2 d,►r+ 

r dr (W X r),f/„
{ 	t 	 l

	+112	 1 w X r 1 2 <1►,t	 (111.101)
tj

Using th vector Identities:

(l) A (BXQmB (CXA)

(2) 1 A X B 1 2 -(A X B) - (A X B)

(3) (A X 0) - X X D)'- A * [B X (C X D)]'
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Equation (111-141) can be written

	

	 are respectively tiro spaced xod and body-ftxod oxhrossions for
ilia rata of change of kinetic energy.

rot " 1/2	 I V 12 dnt + ter	 (r X V) dire
fill	 fV	 Since the Inertia tensor is symmetric it can easily be shown

that

r	
+ 112W }	 [r X (w X r)] der	 (111-102)

JV	 6-7,  w a w - / » w»	 (111.107)

where we have made use of Equation (111-29), 	
r I► w	 w» j,	 (lit-1411)

Defining the mass element din as

dirt x p(r, t) dV
	 and so Equations (111-105)(111-106) can be written

and using Equations {111 »52)» (111.53) and (111 .55), Equation	 »
(II1 . 102) can be written as

	
Prot - 1/2	 I V 12 din +tw.Ir+w-6+w•I.w

Y

Trot	
t.

- 1124 IV12 din +wth+1/2tj*7ow	
+ 1/2 w
	

(111.109)
(111.103)

It Is of interest to obtain an expression for the time derive»
live of the rotational kinetic energy Trot of an extended
deforrnable body. Since Trot Is a scalar quantity we can
conclude that Its time derivative can be taken relative to a
rotating or nonrotating frame of reference with Identict]
results. If we persist with the convention of using dot " 0' to
Indicate a time derivative taken with respect to the nonrotat»
Ing fratne and d/dt to Indicate a time derivative taken with
respect to a rotating frame then

dTrot	 Adding and subtracting 1/2 w - 1- w and 1/2 w - d!/dt - w
rro r W;

` ;dr`	 (111.104)	 in Equations (111 . 109) (01 . 114) gives

Where

Trot - I /2	 I V i 2 dnt +w It +W (I. w+1 - w+6)
Plot  1/2	 IV1 2 din +tip» It+w -6+ 1/20 I-tj

v

ill rot	 112	 IV I2din +	 ,h+w•`^i
at	 dt	 dt

+ 	 dw L/2 w »	 R sa	 (11t-110)
at	 Ott

}V,

^r

ii

	

+1/2w . /»w+1/zw-/ w	 (111.145)

dT- - 
1/2	 1 V 1 2 dnr + dw • It + w - t!h

dt	 dt 
fV	

dt	 at

T	 dt

N`r
- 1 /2w -1 » ca

drdtt -1/2 dt	
1 V 12 dnr +Lw»h+w»^^t.w

V

(111.111)

+ 1/2 w » I • 
dry

dt
(111-.146) +1 ' 

t +'	 " 1/2 w 
:fit w	 (111.1 1 2)

is
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Using Equations (111.5$) (111.78) lit Hquatlotns (111 . 111) and	 chosen to that v * 0 and b it 0 and Equations (111.1 13) (lit.
(111-112) reduces theist to	 115) reduce to

	

rrot' W ! N «. 112w-t+ w ,	 (111.117)
Trot = 1 /3

	

	 I wi2 flit) +ca h * w • N -112w P.W
t.

(11i«i13)	 dryot	 dl
--fit - m w- N- 112'	

at 
W	 (i1i*1i8)

de r 112 
c1	 IYl 2dn)`	 b where the vector N In Equation (111.117) represents the cotntdt at	

t
	 at	

ponents or the torque as seen lit the space-fixed frame and Cite
vector N lit 	 (111.11$) represents the components of

^„	 the torque as seen In the bodyfixed frame. if one of these
+w * (N- w X L)-- 1/2 w 

-fit,
	 (111.114)	 vect ors Is cunstant the outer Is generally IIme•depandent,

Now

	

	
For a rigidly rotating body with w chosen that V m 0 and

It w 0 it follows that dlydt me 0 and so the two expressions
W} W 

X 
L 

0	
reduce to

	

Trot `w`N"112w'!'W	 (111.11 0)
and so Equation (111»114) reduces

rlt
^'	 d Tt = 1/2 dt
	 t v l

= 

at?)

Egtiat[o)n (111 . 120) Is recognized as the familiar work
theorem of rotating rigld bodies,

dw•

it W ^N^ l/zw^^^^w	 (111.115)
71-7dt

lit 	 Equations (111 . 113) or (111 . 115) to the case of it
generally defornnable rotating body It Is necessary to establish

The kinematical relationship for vector bate derivatives	 the time derivative with respect to tine space-fixed anti body
taken ht Cite rotating and nonrotating frames gives 	 fixed coordinate frames respectively of the time dependent

integral

dw
W	 +WXw

I Y t^ du)=fvttjp(r, t) I v (r, t) i d V•
t:,t1 

and since 	 (111.121) {
W k w 0 It can be shown that in tine case of the space-fixed thno

we have	
derivative

}	
w as dw	 (111.11.6)	 1/2

L
p(r, t) l v r r, t) I' d V _	 ar' d V +	 E it' dS

t 	 V(ff at	 ,SftJ

(111.122)
The time de 	 of the rotation vector is Cite same

E	 whether viewed front 	 rotating or nanratat4ng frame.	 whero c(r, t) Is a relative kinetic energy density

t

R If we consider the case of a tigid Wdy, then w can be	 e(r, t)	 1/2 p(r, t) l x(r, t) 1 2 (111.123)

Li....	 . ...	 ,.	 _	 ^Y- —..._...... --
•--«

:vrt+rewc++'rcfresiKC.._ =T.'.x"`-r.^A.+rm.->'mx _ :.2^.	 -+rn^Mwu..y.trAS::	 .», .	 i.
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and where 90, t) Is it relative kinetic energy flux density
measured 

III
	 space-fixod franre.

L(r, t) w 112 p(r, t) I v (r, t)1 2 Ar, t) _ (111.124)

In tine case of the oodyfixed time derivative It call be shown
that

1/2 d	
p(r,t) Iv(rt) i2 dV	 e d 

	

V10	 V10

+	 Erot' irdS	 (111.125)
Sttl

where Urn) (r, t) Is a relative kinneth; energy flux density
measured in the rotating bodyOxed frame

X110 r (r, t) at 112 p(r, t) I v (r, 01 2 v(r, 0. (111.126)

Using Gauss's theorem, hquations (111 .122) (111425) can be
written:

I/2	 I v 12 din	 ^ o + v• ) dY,
V(q	 Vfr1	 !!!	

(111.127)

1/2	 I v( Mitt1
	

Q Ern r) d i,

	

fVM	 VLtI

(111.12$)

This completes the discussion oil the general question of
the. rotational dynamics of extended deformable bodies. We
will now turn our attention to the application of the theorcti.
cat tools developed here to the question of the rotation of the
earth.

IV The Uouville Equation and the
Dynam'".1.9 of Earth Rotation

Will) the exception of its fluid portions Include the
oceans, atmosphere, ground water and Cite liquid outer core,
the rest of the "solid" earth is so neA,:y rigid that departures
of the actual earth .from a ► rigid body may be incorporated into
the dynamical theory of the earth's rotatiotn by it perturbation
scheme.

In tine t,aroth order approximatlon tine earth is art axially
symmetric rigid body rotating with uniforto jonsular velocity 12
about an axis colocident will) tine axis of figure ftp In a
coordinate Nine which Is corotathng with the earth about the
Taxis of figure tine zeroth order inertia tensor7e is given by

A 0 U

7°	
Cl

o	 A	
/0
	 (IV_l ^

0 0 

and the zeroth order rotation) vector is given by no where

	

W M S2t
3
 .	 (IV•2)

Henceforth when we speak of the Inertia tensor of the earth
we shall )mean tine Inertia tensor of the earth as measured in
the body-fixed coordinate frame runless we explicitly state
otherw. ,e.

The Inertia tenor of the "real" earth Is7winere

(IV-311

and the I nstantanrneous _rntution vector of tine body-fixed
coordinate frame is

W = no+51mml+S2 m2 + 521113+ .!.	 (aV•m)

where the perturbation terms )numbered 1, ?, 3, , - - appearing
In these expressions are the result of a variety of perturbing
geophysical phenomena,

We shall find It convenient to use tile notation

	

7 =7e +7	 (IV.$)

W n no + S11n M
3 

+ N)	 (IV-6)

where ttae tensor') has elements

r ► ) r r ,a raa,

r s r2) 122 123

r3) r32 r33

And Is given by the sum

rrn +'P 2 +r^ 3 + ..,

(IV-7)

(IV-8)

`i

'i
4

7^ 7e +fi n ^' +	 + , . ,
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and where the vector mihas components

111 i° III?C?t + ►11 2 4 + 111.)	 (I V.9)

and Is given by the sum

M x 11) 1 + 1112 + 1113 + , , , w	 (IV"Iq)

In general both?and n1 arc tihne-dependent perturbations,

`1'lhe angular momentum of the real earth is given by L
where

L & 7- w+Ih,	 (1'•11)

In the above equation to refers to the total Instantaneous
angular rotation rate, including file effects of precession,
nutation, and spin, of the body ,lixed coordinate s frame, In
general w Is a time-dependent vector, The physical definition
of the vector w Is Implied by the physical definition of the
body-fixed basis vectors e, r!2 23 and their orientation or
rather their rate of change of orientation hh inertial space,

Observationally however the sithnution is more cemplicated,
The measurement of w Is accomplished by combining data
from a set of observers scattered over the earth's surface and
attached to the earth's crust at various points, The solid earth
and in particular its crust is continuously deformed by tides
and other geophysical processes and is also the subject of
large-scale systematic gootectonic motions, The question of
the physical nicasurentent of a unique vector w, conforming to
its definition, and derivable from  set of terrestrial observa-
tions from scattered positions oil 	 earth's surface, becomes
somewhat problematic at the level of ultralhlglh precision
measurements. We shall consider this problem later in this
work and for now will proceed oil 	 assumption that a
unique vector co is an observable quantity and that tlh+s
observable co conforms to the definition offered in the context
of this theory,

While tine body-fixed coordinate system is corotating "with

the crust" in some uniquely definable sense the presence of
the fbiid portions of the earth, namely the oceans, atmosphere
and fluid core, will contribute to -a nonzero value for the
vector h. Also contributing to h will be those portions of the
solid earth which, as a result of tectonic processes, are in
motion relative to the body-fixed coordinate .frame,

It .follows that wlhile h does not vanish in the body-fixed
frame of reference the quantity ihi/ILJ is very small. To first

order in small quantities file angular momentum vector L has
components Ili the rotating coordinate franlo

!, t	 At2ml + r13 El /11

L2 * Anm2 + r2a " + h2

113 x Cn [I +1113 1 + r23 91+ /13 ,	 (IV,12)

To appreciate the nature of file approximations being made
by retaining only the first-order terms In our theory it Is useful
to recall (Munk and MacDonald LOGO) that the total relative
angular ntontctltum In the zonal circulation of the earth's
atmosphere Is of the order of 10 23 gill cm 2 see" ► and that of
the earth's oceans is of the order of 10 32 gut cn12 see- I.
whereas the angular momentum of the rotating earth Is
roughly G X 104e gill cm  sca t , It follows that
IiII/ILl — 10°a for the atmosphere and ^-10-9 for the oceans,

purthernlore It has been shown (Sinylle and Mansinlha
1971,► ; Mansinha, Snhylfc, and Chapintm 1979) that the
changes in the earth's products and moments of Inertia r11
resulting fronh Ilse Clhllean cortlhquake of 1960 twid file
Alaskan earthquake of 1964 lire of the order of 1035 gill c1112,
which Is to be compared to the earth's monhents of Inertia C -
A ^ 1044 gilt c1112 , Thus even for the largest of mass
movements in the solid earth r111C r111A 10-9

The Llouville equation governing (lie dynamics of earthh

rotation expressed In a rotating body-fixed frantic of reference
Is given by Equation (111.78) as

c1%, w+^, -dw + clh
+raXI• w+wXh N

1t	 at lit
(IV-13)

Substituting Equations (IV-5), (IV -6) and (IV-11) into Equa-
tion (iV.13) and retaining only terms which are first order In
small quantities, we obtain (lie perturbed Liouville equation
governing earth rotation which in component form becomes

ding	 dr 1 3d111
N ► A S2 

clt ` 
+ 
92 dr + dt 

+ 99 (C - A) m

	

n21.23 - St h2	 OV.14)

din	 dr23 dh
N2 = AS2 

dt 
+St 

clr + dt	
Ste (C-A)m ►

	

+ Std rt a + nil i	 (IV 15)
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and Introducing the complex quantities

111 = m + + 11112

F=r +ir2l
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tltti	 tlr	 rah
Na % M c1 	 + SZ 

(it	 (it

	

4 
^tlt

a 	 (IV•lb)

)Yt obtaining Equations (IV * 14) - (iV-16) we have made use
of ilia fact (lint A ,$l are constants and their time derivatives
vanish, pqualloor, (IV-iii) = (IV•16) are expressed lit the
rotating coordinate frame and so the components N ► N, Na
of tite Impressed torque oil earth must be expresser) lit tite
rotating frame its well,

Equations (IV=14) _ (IV-16) are "separable" ill sense
that the quantitles m 3 raa and h3 appear exclusively confiner
to ilia equitlion for N,, Tills is it cousequence, In mart, of tits
restriction to it first-order theory and floes not occur in a
secood•order expansion of the Liouville equallon. This means
In effect that the effects of ilia torque N i caul be trea ted
separately from the effects of the lorrlue g NJ N2 , The set of
equations (IV-14) w. (1V-16!; _decouples into what Is usually
described as it pair of equations governing polar mollon or
"wobble" anti involving only the ►►1 t ►► 1 2 perturbations to
the rotation vector w turd it single equation governing un and
involving only the tit ,, perturbation to tite rotatlon vector r).

r 0 it t +11, 2

7*N1+1N2

the complex wobble equation becomes

rf SZ 1ItiT ,+, 
0 

tlt^ 4..[lrfi _ f IS9 (C`wr1)33I- Wr-R mil

	

(it	 tit	 lit
0V-20)

which together with

	

rCr► 1	 cl► .	 rlh .
NI	 ^'SZ 

rltj^ 
+ Sx

(it	 ill	
(IVY; I)

consilttite the governing equations for aarih rotation. With
some simple manipulations these equations call be written cis

(Im	 C- A	 i	 tlf' car
pt%t " ► G fix. S^iip' " ^1 S2 ^N .. S "c%t rat '" r' (S r+ 52r

(I V•4.2)

Multiplying Equatio ►t (IV-15) by 1, where 12	1, and	 and
adding it to Equation (iV•14) gives the complex wobble
equation; cl►►l

i	 l	 d► to	 WII
	Q .} — (At a SZ ^f -:,	 .	 (IV-23)

alt	 0z a	 cat	 cif

A'► + IN2 = r1St 
tit 

(ill + + hii.1) + R 
cat 

(r ► a + k2,1)

►` tit(11
► + 111 2)+ 5' (C-A)(x1 2 -11111)

W (ra a ' ir t o) – 910 2 - ill 1 ) .	 (IV-17)

Recognizing that

m2 - fmI = — i (11ti +11112)

raa - 1r ► 3 = » i (r 13 + Ir2a )	 (IV-l8)

(IV-19)

Written ht this way equations (1V-1 2) tuld (IV•23) appear
explicitly its equations governing changes o il 	 ecu-th rotation
vector w Includlog both polar ntotlon (wobble) and U` .J. The
MIS of laquations (iV,2) and (IV.23) appear as forcing
Auctions ill dynamics of cartb rutation w and are often
referrer) to as tile, geophysical excitation functions for molar
motion and U'rl Chictuatiolts.

It is possible in principle to Ilse our present knowledge of
geophysical processes to model the excitation functlons and
lichee predict polar motion and UT1 from these equations,
However, our ability to do this successfully at this time is
limited by a general lack of accurate information regarding the
clu► ra*r of ilia geophysical excitation functions.

It sceius most scietitifically productive at this point to
reverse the above argument and set about: to accurately
measure ►► i t x12 ►na by long basellne interferormetry or other
methods with the objective of learning more about (lie
geophysical excitation functions, Silica these functions reflect
the effects of atmospheric and oceanic circulation, external
gravitational torques, dislocations due to carihrtuake faulting,
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c
1113(t)	 S2	 N,t(t') clt' Sxr^ a Ira * 111 (Q)

0
(tV•29)

"These ctluiltons can be integrated directly to give

1111(t) R Constant (V.3)
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Iluli tuollons Ile file core, cloctrol ►►lloltetic euUplills betweon
llte core turd 1111111110, challses In sell level, chltuges lit ground
water col ► tent lilld other Intpor(ant goodyuanlical PI10nun1e1111,
this ptofram slwuld hold great potential for scientific
discovery.

Utfutrlions (IV-22) and (IV.23) are referred to tine roltitlog
body-fixed basis vectors 'F I pj J , and so till gllanlites
tappea r itig In (110111 ntllst also be expressed relative to these
basis vectors. tr N, Nj Ala are rte coallpuncats of it grtivita-
tlom►l lorgue whose ltiitgiti(tide tiitl direction tine Mixed to
inertial space. Cheri when expressed relative to V l ^ Rx't (lie
tortilla colupotlellfs N i ya Na we viuyillg perindicnlly Willi
perind 2rrf tool.

Altlioi gli we hive rel'orred, and will conthrue to corer, to
file vee(o: co its (Ire "rutatioll vector or file earth" it should be
boine in litilid tIllt W is In fact (lie r'ollitioli vector of it
gcopbysictil coortilmtte system and strictly six aklug has only
kineivaticnl sign(fictilec. Wile i iligue "rottillon valor of (he
eartl" is it vector R for which file Carib's angular ntatnentill)
L is exprossed as

I.	 7 . It.	 (IV..'.ii)

We can obtain it relntionsidp betwcoil R ;rod co by (l0conl•
poshig file rolat(ve angultc 111ontenttwo 11111

	

is - 7 . 5W.	 OV. 5)

Flom (Ills we call see tbitt

it = w + Sw .	 (I V.21

but shire 18C0i11wl << I we have

R ^ w	 (I V•27)

t quiltfoll(IV .2d) miry be wrlilen

tklr,r	 1	 t!	 r	 ,	 ,

f

Nz Ct) sit - S^ra^ -Iraiii	 C'St rlt	 `
U

The flitter equal(on allows is to 11110pite the. equation for
J11 *t (t) to obtilirl

I?guatioo (tV.21)) expresses the varlltloos of UT  its it function
of little.

`i'M ctuan(lties)t and ruppearlog to flit) ecillti(lou for polar
itiolloit UV•2z) ns well its file quantities i1 3 told rJ3 lippattrius
III 	 etlualloo for UTI (IV.28) depend oil voluoic Inlograls
defhied 

III
	 body-fixed frame. The rigorous def(nlllon of

Iheir tittle derivatives for the case or it genertilly deforoiable
body tire giveir by Ftluallotis (I11 .$4) nod (111.85) respectively,
However, later In (ills work we slmll oxaniiiie sorne tisoftii
tipproxhilate 11101tods for calcillntilig lliese little derivitilves
whiell treat lite earth its it rigid body Willi iluld portions,

V. Rotational Dynalptca of an Axially
Symmetric Rigid Earth

Although (he eartl is to retdity it defortnable body, its
opproxlniatioo to a rigid body is sufl'icienlly good flint
Coll sl (to rnble iitslgitt into (be card's rotational dylinnlics can
be oblahled by callilliing solutions to file dyllinnicill crate.
lions goverlillig curih ro(llllon In lbeir zeroti lipproxilnalioll
nanrcly file speclal case ortl rigid axially syllulleldc 011011.

A. Eulerlan (Force Free) Motion of an Axially
Symmetric Rigid Earth

lit 1705 1_`uler Investigated the dynatuics of rigidly rotating
bodles Iii Etc abscnee of exteriHl torques. Stich mollon has
collie to be known ns "I uloriall ulottoll." We sludl investigate
file I?olerlalt ttlotioll of the earth from file point of view of it
body-fixed coordinate fr'aitle tied it space fixed coordirrn(e
rrilille.

t. Etderlal notion of (Ire otr(b lit it body-fixed franlc.11w
rotallooal dynnnlles or it rigid carth hl lire itbsence or any
t(eopilysicitl excilitliolt Is governed by

dill	 C' T rl

zit " i	 t̂
 ;., St III' = U	 (V•1)

thtra^

t!t	
0	 (V..,)

w(ticli tire obtah► ed front Htloalloos (IV.22) and (IV.23) by
setting file exclttttion ftinvtion to zero,
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midi

M(t) W exp 1 
(g-

  
nt+

where V is a complex constant of integration,

-Oti+i0t,

If wa introduce the angular rotation rate 0r where

0r ^ A 1 S2

we see that Equations (V-d) and (V-5) yield

f►t(t) = exp [- Ot + i (Or t + O R )l

Setting

au = exp - Ot

arte = - OR

and recalling that

and so one way of viewing this solution is to see that it
corresponds to a constant angular rotation rate of magnitude

(V-4)
12(1 4- ►►►a) about the axis of figure P3 combined with
time-dependent angular rotation rates of magnitude Stm t (t)
Stntx(t) about the Gt and ir,2 axes respectively.

A more Instructive way of viewing this solution Is to

(V-5) consider the rotation vector w In terms of Its magnitude and
direction In the body-fixed coordinate frame rather than in
terms of its components in tite body-fixed coordinate frame.
The magnitude of the rotation vector is given by w =
(w . w) 1 i2 where

(V-6)
W = (w • w) t/2 = S2 (I + 2m3 )	 (V.12)

to first order In small quantities. The direction of the rotation

(V•7)	 vector Is specified by the angles In I(') ►nt(t),

For ;I positive value of a,, we see that this solution
corresponds to the uniform circular motion of the axis of
rotation about the axis of figure in a prograde or west to east

(V-g)	 direction, The axis of rotation moves within the earth on a
body-fixed cone whose axis coincides with the figure axis is
and whose apex angle is 2p,, The ro ta tion axis co mpletes one
revolution about the figure axis In a period 27rwr, This
geometry is illustrated in Figures V-1 and V-2,

m t (t) + i m2 (t)	 (V-q)

we have the solution for the rotational dynamics of a rigid
earth in the absence of geophysical excitation

M i (t) = A, cos 0r (t - te)

►1l2W = P. sin yr (t - to)

or

TRW = Q, e►°r(t-ro)	 (V-10)

n
•2

Figure W1. The Eulerlan (torque-fns) polar mottos for the came of
an axially ay, mnebic rigid earth. The Eulerhm axis of
rotation Is confined to the awrfaa of a geomef cone
of apex angle 2a, alipnrrd with the fipurrr accts.

and

IrrP) = L'U►tStQllt ,v	 j
i

From Equations (1V-2) and (IV-6) we have

W = n Ifn I (t)e, +nr2 (t)c2 +(1 + ►►ra(t))e3)
1	 ("-11)

ij

si

if

i

Sit
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Figure V•2. A polar view of Eukdan (torque-free) polar motion, The
Euleden pole Is amen to nova at a uniform rata In a
prograde manse around the figure axle at a constant
angular distance

Froitn Stacey (1977) we have

C = 81 ,03700 n 1044 gm 
CHI 

it = 8.01 Is k 10`11 gill ctu2

rind so

C- 
A = 0,0032828 304,11

and since 01, = (C - AIA)U ;Ind 27r/11 corresponds to an
interval of one mean sidereal day we see that the axis of

rotation completes one revolution about the axis of figure In
304.6 sidereal days, In the case or a rigid earth Its -angular rate
around tine figure axis Is 2nJ304.0 radians per ntcan sidereal
day.

2. Eulerian motion of the earth in a spaee-fixed frame. The
analysis of the carth's rotational dynamics from the point of
view of a space-fixed frame in the special case of Force free

AMotion does not require knowledge of the coordinate trans.
formation equations relating the body-fixed frame to the
space-fixed frame. This is because fit the special case cat' force
free motion the angular momentum vector Lprovides us with
an invariant direction in inertial space as a consequence of the
conservation ofangular IttoMetlttutt.

Now in general
n

L = 1 w + h	 (V-I 3)

and in the special case of a rigid et ► rill we hilt choose a set of
rotating body-Axed coordinates such that b * t) and so we can
write

L - T. w	 (V.III)

ror all appropriate cholce of w corresponding to "tta rotation
rate of lite earth",

Using Equations (IV . I) and (IV. 11) we have

L - A 111111 `FI 4, A Slm 2 P2 + M(1 + ma ) t-3

(V. 1 5)

which can be written

L N oMm I F I +M1111 2(̂"2 +rtd2 (1 4. 111.1) ra

+(C'- rl) d2 (1 +^1t. ►) va	 (Vw1(I)

Using Equations (IV}11) and (V•G) In (V-16) gives

L AW+A0jI +11 ► a) a	 (V= 17)

or finally, neglecting the small ter ►ll In 011111,

L = rt(w + or C' a ) ,	 (V. 18)

Front the results of Equation (V•18) it is clear that 4 .r1w,
.elane 3 form ; ► Closed vector triangle and are Jtence coplanar.
Since IwI > lal,l these vectors can be represented as shown in
Figure V•3.

The angle Pe is the displacement of tine rotation vector w
from the axis of figure ^e., and the angle y is the displacement
of the rotation vector w from (lie axis of angular monlentunt
L. The angle y represents it motion of the rotation axis In
space and appears as a "mutation;' Such n motion of the
rotation axis fit space Ili the absence of externally applied
torques is called "Eulerian nutation" since It is associated
with the Eulerian (force fro.) motion of a rigid body. This
Lulerlan notation has been called "sway" by some authors
to distinguish It front "forced notation" which arises as it
result of Impressed torques, The terns "free nutation" has
also beets used to denote 4ulerian notation.

Observationally Euleriatn nutation and forced notation are
difficult to separate, Physically, however, they are quite
distinct as Ettlerian nutation does not displace the angular
momentum vector In space and forced notation does displace
the angular momentutu vector In space.
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Using Equation (V«18) as an expression for L we have

L "a
W3 +0 
r 	 (V-22)

and

I -AL I x (W ' W + 20rW • i'3 + oy e3 • '^Y' 12 , (V•23)

Since

or V'3 c3 	 ur

2or w , 43 x 2or W3

and by Equation (V. 19)

W • W '9 IW12 . W23 W2 tan2

we can rewrite llquatiot ► (V•23) as

r'1 i	 (W2 + W1 t1
1 1,1 p, + 2QrWa + Q2)i12

Figure V•3. The geometrical relationship between the earth's figure
axis tl'3 , Eularlan rotation axis W, and angular momen-
turn axis L for a rigid axially symmetric earth with
moments of Inertia A, A, and C. The angles Ra and y are
greatly exaggerated and not drawn to relative scale.
(After M, G, Rochester, unpublished research notes.)

The following analysis allows us to deduce a relationship
between the Rulerian polar motion described by the angle p„
and the Eulerian nutation described by the angle y.

From the constructions shown in Figure V•3 (M.G.
Rochester, unpublished research notes) we can deduce:

which reduces to

L a 
[(W3 + ad2 + W3I ,► n 2 p^A	

, ,/2 .	 (V-24)

From Equations (V-21) and (V-22) we have

17L 1

2

	

= sect 	Y)
(W3 

+a 
r )2

	

and using the identity sect% - y)	 lan2(0,, - y) + l we

(l) By Pythagoras's theorern	 obtain	 if

IwL	 co( 2 + (W3 tan p)2 tIz
	

(V-l^^)	
1 

L	 i

tan, (p 	 y) =	
I.4 I	

1 ,	 (V•25)
(2) By the definition of cos	 (W3 + °r)2

IWI	 W3 see pe	 (V-20)
Subsututsr+g Equation (V-24) into Equation (V•25) gives

(3) By the projection of L onto F3
+ a )2 +(W3	 W3 t an2 p,	 Y

n 	
tan2	 wf	 {

[.	
L Q^	 t(pe y)

A	
= ill cos U3e * y) •	 (Y=21)	 (W3 + vr)2

4

I



which reduces to

w
(an (P e -'Y) _ W
	

tan A^ .	 (V•26)
( 3	 r

Using the standard trigonometric formula tills can be
written as

' h	 tan 	 tan 7	 w3
tun P. tan y (w3: +ore) t.nl Ra

f
t

or

:^	 ta ►̂ ^ °r	 I
tan a w3	 2^

I + tan Qr 
W3

ay ^ r
R,..

_. 
w3

We see that the Eulerian nutation in space is roughly arlw3
times the wobble amplitude on earth.

For a rigid earth:

or =T04 .6  radians per sidereal day,

W3 = 2hr radians per sidereal day,

and so

l
'Yr	 304.6

where yr denotes the amplitude of the Eulerlan nutation oil a
rigid earth. For a maximum value of 2P, 0."40 arc we have

2,yr	 1;'30 X .10`3 arc

i

However, In the case of tihc "real" earth, elastic yielding of the
mantle lengthens the period of (lie wobbl y to roughly 435
days. For t)le actual earth

1
y 43S0e

and hots a maximum value of roughly

2y w 0;93 X 10"3 are .

B. Poinsot Geometrical Description of Eulerian
Motion of an Axially Symmetric Rigid Earth

The famous construction of Poinsot is a general method of
geometrically describing Eulerian (torque-free) motion of a
rigid body without having to integrate the governing
dynamical equations, Since the Poinsot construction provides
a complete description of the motion and since the Integration
of the dynamical equations generally involves the use of
elliptic integrals, the Polosot construction is quite useful as
well as elegant.

The general method of application of the Poinsot construe
lion Is given in Goldstein (1950, pp, 159 .161). The approach
adopted in this work will be that of M.G, Rochester (unpub-
fished research notes), We shall compute the time derivatives
of the rotation vector ca, both with respect to a space fixed
frame III which the invariant angular momentum vector L
provides the reference direction, and with respect to the body-
fixed frame with reference directions provided by the body-
fixed basis vectors c, ee2 e3 . The result we seek can then be
obtained by appealing to Equation (111.116) and equating
these two time derivatives.

We have seen in Figure V•3 that for the case of the earth
executing Eulerian motion the rotation axis w and the angular
momentum vector L are inclined at angular P, and P, — y
respectively to the axis of figure c3 and that all three vectors
w, L, e3 lie hh the same plane. Since the angle y between co
and _L is a constant of the motion, w can only be incremented
by the motion in the direction of tile unit vector i which is
orthogonal to both  and L. Also since L is a constant of the
rnotion we can calculate the space-fixed time derivative of w,
denoted according to our convention by w, by referring to L
as an invariant space fixed vector.

As shown in Figure V-4, in an interval of time dt the
increment dw to w is in the direction of Z a unit vector
o, tlhogonal to both  and w

LX w 
IL X wl
	 (V-28)

27

and finally

Lail y = or r 
yr 

* sect a ~ ► .	 (V-27)
tan 9, w3 \ wa

Since or < < w3 and y, A,, are small angles tills exact
relationship can be approximated very well by

k

i

6
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r^t R OUAUTY By dividing both sides of Equation (Vw3») with tine thne

Increment dt we have the final result,

LX w IwI	 (V•33)
ILllwl

"	 where, by our convention, ilia dot	 denotes a time
derivative taken with respect to it space-fixed frame.

To compute the time derivative of w witli respect to the

w+dW	 bodyfixed frame, denoted by our convention as dw/dt, we

begin with

i

^j
r^

Figure V4, The dynamical quantities used to obtain the Poinsot
construction for the case of Eulerian motion on a
rigid axis symmetric earth.

The increment dw has magnitude given by

Idw l = IwI sin y A	 (V-29)

where A is the Increment in the interval dt to the azhnuth,
reckoned in a space-fixed frame, of the plane containing L and
w. Combining the direction and magnitude of dw we have

from Equations (V-28) and (V-29)

dw = Idwr^

LXw
dw IwI sin 7 IL X w1 A, 	

(V.30)

By definition

sin y ^ 
IL X wl
ILI Iwl

which when substituted into Equation (V-30) gives

dw = ILI 
IwI Iwl A .

	

W M St [Ill, C71 + lll2 v2 +(I +Itl a ) ra I	 (V.34)

and so

[^W	 dlltl ^	 4111 2 ^	 dltla r
clr 

SZ 
^4

	

dt i * tit `^ * dt 
0	 (V-35)

since the derivatives rlir t lot dv2 ldt dijldt all vanish In the
body-fixed frame of a rigid earth,

'rite dynamical equations governing the Isulerian 'motion of
the rotation axis In the body-fixed frame are given by
Equations (V . I), (V.2) and (V-G) as

	

AM - l0^ ^! = 0	 (V-36)

dn1

dt3 _ 
0	 (V-37)

where

YR = lil t + lln2

and which wizen substituted Into Equation (V-35) yield

d
tit
	 „ Qr^ (1112 61 -^ 111 1 2 t 0:'?)) ,	 (V-38)

(V•31)	
Using e relationships e X e^ e e X E, e e X ct>	 P	 1	 2^a,z	 s = tea	 t

c2, between the body-fixed basis vectors we can rewrite
Equation (V-38) as

(V-32)	
dt = O

rStea X 011 1 t' i + ni 2c2)	 (V-39)

28
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and so for the rotatin g vector w we 1 ►wve in general

w W* * w X w	 (V-43)

which, since w X co = U, reduces to

dw-

n'
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laid since ^ j X i?a 0 we call 	 zero to the KiIS of Equation	 The result of Equation (V49) expresses algebraically the
i	 (V.39) to obtain 	 result of the Polnsot construction, Poinsot (1021) showed that

tiny continuous rotation of a rigid body Is gcometrically

of S2 a X [►et a a ^ art	 (I aaa a) j (V• l0)	 vlu ivalent to the rolling of a cone, fixed witliln the body, oil it
alt	 colic JUM within space. The colic fixed within the body is

called the poillode colic and the colic fixed within space is
i	 or finally, lasing Equation (V.34),	 called tite lierpolhode cone. Tile Instantaneous rotation .axis of

the body relative to Inertiail space w lies along tine line of

m arr^'a X w .	 (VII i )	 contact between ilia' two cones.
tit

Tito general transformation relating the tpoce-fixed tlnte
derivallve G to the body-fixed ting e derivative c1G I"rlt of an

arbitrary vector G Is

C w --- - + to X G	 (V-421)

The geometry or tints arrangement is illustrated In Figure
V-5, The rnrdion Is as conthmous rotation w around the line of
contact between lice cones, durins which the axis of rotaition
w describes successive circuits around the colic o f apex angle
2,y In sprrre and also around tiie cook of apex angle *1Pr lax the

tY7rt h ,

as was shown l i t
	 (111.11 G). Substituting Equations

(V. 33) and (V.dl) Into liqu,ation (V•44) gives

ICI Iw iwl Jc = tr
rEa X to .	 (V•45)

Equating the* magnitudes oil boot sides of the vector
Equation (V.45) gives

Ii L' 
wI 

IwI X- o r le^a X W 	 (V46)

Now from Figure V-3 we have

10̂3 X W1 =  I W I silt pe	 W-47)

and using Equations (V-3 i) and (V-47) III
	 (V-46) we

have

lwlsiny? - `rr lwi sill pt,

or finally

Sill pe

o,,	 sill y

Figure V•5. The resultant Poinsot construction for Eulerlan motion
on a rigid axis symmetric earth. The large body-fixed
cone of apex angle 2Q, centered on tot figure axis 13
rolls without slipping on the well Mixed cone of
apex angle 2y centered on tot angular monnnturn
vector L

Fairing each- complete eiretilt around tiie cone III (lie
axis of rotation w progresses along the colic In the curth only
through it distanceequal to the circumference of the small
space-fixed colic. lience as the rotation axis successively
returns to the same position iii space at the end or cash circuit
around 4 It lies at successively different positions within the
earth, with the consequencethat the earth lies Indifferent
Positions in space.
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'fills aspect of the motion call undorstood by recalling.
Iliat or Is the angular rate lit the botly,Ixed fraine of tae
t►zit►►uth of the moving axis of rolotion for which ^ is ti ►e
angular rate lei the sjmce ftxrd frame of tite ozinuilh of the
moving axis of rotation, Equation (V49) call be written

I le	cos t tact Pe
°► sill	

or cos 7. • tttti'Z'	 (V-50)

and using Equation (V•27) lit Equaton(V•SQ)

CCl3 ^^ ^,1^ or 	n	 1

	

r Cos'Y^ or W  #S
ec'	 J .	 (V•J^l^

Since all angles are small cos Pe w 1, cos T m 1, a nd sec'2
Ad ft 1, i:quation (V=S l) reduces to Its approximate form

X N W  .t or .	 (V•52)

Equation (V•Sw) shows that the angular title of w obout L Is
slightly larger dial, the diurnal rate, being equal to the diurnal
rate plus the polar motion or wobble rate,

C. Non-Eulerlan (Forced) Motion of an Axially
Symmetric (Rigid Earth

In reality the motion of the carte departs from the ideal
case of Culerlan motion for two reasons;

(1 .) The real cartl, Is subjected to rotational excitation of
both all internal and external origin,

(2) The real earth Is not an Infinitely rigid body but a
deformable solid with a strengtit comparable to that of
steel —109 dynes C11172 and lit 	 possesses fluid
portions 

lit
	 forth of it liquid outer core, an

atmosphere, and oceans.

We shall examine here the consequences for the earth's
rotation of the geophysical forcing functions and leave the
investigation of the zonsequences of the departure of the earth
front a rigid body for a later portion of this work.

The geophysical forcing functions can be broadly classified
Into rotational excitation of external origin and rotational
excitation of Internal origin, rotational excitation of external
origin would include effects such as tlac lu ► lisolar gravitational
torques, Ile gravitational effects of the other bodies of the
solar system, coupling to the solar wind by fluid or electro•
magnetic processes, meteors passing through the atmosphere,
meteorites striking tine earth and so on. Of the effects listed
above only the lunisolar gravitational torques call be reliably
demonstrated to hove any observable effect on the earth's
rotation. Even the direct gravitational effect of the other

bodies of the solar system coil be shown ('Woolard, 1953) to be
smaller than thoir h ►direct effect ►nt 1111estod trough the
I rlurbations these 4 405 produce on (lie positions of Ilia suit
and rrloon relstivc to (lie earth,

External rotational excitations are distinguished by lite fact
thtat tl ►cy, and only Ihey, may allo y the total angular
momentum vector L of Ilic earth, Such processes which cause
a chonVe of the magnitude and orientation of L lit it
sphee•fixed frame are studied under the general rubric of llte
theory o f tite precession and nulation of the cartit.

Rotational oxcitatloo of in(crr)al origin would Include
effects such as variations lit ocean current systems; variations
lit Atmospheric wind systems, redistribution of &fotnrd water,
cliogcs in sea ievel; oceanic, atitiospheric, and solid earth
tides; fluid motlons io tie earth's core, oletronragnetle effects
involving the operation of the geodyntuno responsible for the
stain magnetie field of the earth; long term geologic processes
such as post-glacial rebound, oroslon and sedimentation,
geologic uplift, and continental drift; and so oil,

internal rotationalexcitations are distinguished by the fact
UM they inny not Mter t ►e toted angular moinentuin vector of
the earii ► . This is true even of tine electromagnetic p,ocEr Cs
Involving the geodynau ► o and the earth's magnetic field. Tice
total angular momentum of tine earth L necessarily Includes
the angular inomentum of all its associated fields and In
particular tiro angular momentum of the gcwrragnelle Held,
'Mien this is done, angular momentum is conserved oil
earth for ait Internal processes.

To prescribe the corth's orientation In space It Is necessary
to ,specify the orientation of the body-fixed bails vectors
4t cz 'a relative to the space-fixed basis vectors fr 4', fs3,
The external rotational excitations of the earth, principally the
luirlsolar gravitational torques, are related by physical tlieory
to the time derivative of the earth's angular momentum vector
L, The aartlt's angular momentum vector and Its time
derivative are not directly observable and so h► order to deduce
observational consequences from physical t ►cory It Is neces-
sary to Invoke sonic geophysical model for the earth to relate
the angular mon ►entum vector to some observable geopitysicai
quantity, If the angular mon►entum vector L call related to
some observable body-fixed vector within the earth, Ilion in
observational as well as in ti ►eoretteal practice fire earth's
orientation in space call described by determining the
orlentatioo of this observable body-fixed vector witli respect
to both lute set of basis vectors ct e2 c3 turd the set of basis
vectors Ra fix R3 , lit practice tits "observable" body
fixed vectors chosen for tills role have been t►e earth's figure
axis, ids Itself, and ti►e earth's Instantaneous rotation axis, w,
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Current astronomical theory holds tite fundamental refer=
once direction In space to be the mean celestial pole of the
ecliptic being defined by the nhcan orbital angular momoolum
vector of (he earth. The present theory of the precession Is
based on %nown astronomical gravitational torques and known
moments of inertin or all 	 rigid corth and its such
describes tite thcoretical svidar motion of the earths axis of
ngure p`a relative to (he icon pole of (lie ecliptic, ThIs motion
consists of the suns of the secular motion of pa about the
Instantaneous celestial pole of the ecliptic, known as lutilsolar
precession and clue to the gravitational torques of the still and
the moon oil carth, plus the secular motion of the
[list all atteous celestial stole of the ecliptic about tits meats
celestial pole of tie ecliptic, known as planetary precession
and due to the perturbations imposed on :he earth's orbital
plane by (lie other plancts of the solar system. Together these
two motions combine to make vp general precession,

'rite present theory of inuation Is also based oil
astronomical gravitational torques and known moments of
Inertia of an assumed rigid carth and Is tabulated In such a way
that it describes the periodic motion of the earth's rotation
axis w relative to the inenn pole of the ecliptic.

Tire compete motion Is the sum of the secular and periodic
components and strictly speaking should be obtained by
adding the secular motion of *V3 to the periodic motion of r3
or by adding (lie secular motion of w to the periodic motion
of w, l^lowever, the secular motion of 73 and tiie secular
motion of w are Identical (Uoldrelch and Toonire 1969) and
so the complete motion Is described In practice by adding tite
secular motion of t3 to the periodic motion of co.

We see that the present theory of precession and notation
together describe the orientation of w relative to the basis
vectors Fri P, l.^, for a rigid earth. Ili order to orient the earth
In space it is also necessary (but insufficient) to descriae the
orienta°tion of w relative to 6 1 ra V3` This requires knowledge
of the location of the axis of rotation relative to body or the
earth or the effects of polar motion. However, that this is an
Insufficient condition to fix the orientation of cr G2p3
relative to Pt P2 Pa can be seen from the fact that fixing tine
orientation of w ha the system ca l l ^3 and P-1 !='a stil l
allows both the set 4r 82 ea and IP r P2 fs3 to be rotated
arbitrarily about w. The set of basis vectors a fe23, behig
space fixed, are assumed to be not rotating about the direction
w and tite rotation of the set of basis vectors Pi P2 '073 about
the direction w is measured (very nearly) by UTI.

(It should be mentioned that known errors In (lie present
theory of precession indicate that the set of basis vectors

1't P2 P3 Is rotating, at a rata of roughly I" 1 arc pe r century.
The clew theory of tits precession Is Intand+od to roducc this
error to tine level of roughly o, I are per century, which, while
quite small by the standards of conventional astronomical
measurements, Is still roughly 1 milli are second per year and
probably observable by lung baseline Interfarometry
techniques)

Although the title of tills section, "Non»llulcrian Motion of
oil 	 Symmetric Rigid Earth," clearly embraces both the
changes In the rotation vector relative to the space-fixed frame
(precession and nutation) and tite changes of the rotation
vector relative to the bodyflxtd frame (polar motion and
UTI), It Is the tatter phcnomcna with which this document will
primarily concern Itself and It Is tite latter phenotncna which
are described by the egaaations (1V•22) and (IV.23), Conse-
quently we shall not be concerned with it general development
of (he theory of precession and notation but with a general
development of the theory ofpolar motion and UTI,

7'lie superposition of the two processes, precession and
nutatlon occurring simultaneously with polar motion and UTI
variations, call understood on1v alljn tinately by referring
to Figure V•5 and imagining the external lunlsolar gravitational
torques displacing the previously space-fixed vector L around
on the surface of a space fixed cone of apex angle about 47°
(twice (lie obliquity of the ecliptic) with a period of roughly
26,000 years. Tice "space fixed" cone In Figure V-5 Is now no
longer space fixed but follows the vector L. This description Is
only approximate acid Is In error for two reasons,

First, the above description neglects the effects oreutation
which would be inanifested by small amplitude (^gyp " arc), high
frequency (-2 days — 18,6 years) periodic departures of L
from the surface of this space fixed cone.

Second, Cite external gravitational torques perturb the
Rulcrian (torque-free) motion described so elegantly by the
Poinsot construction. This call seen by Cite appearance of
the torque components Nt Na N3 In the RHS of Equations
(IV-22) and (iV•28), in particular the lunisolar gravitational
torques displace the instantaneous rotation vector in a circuit
around Its Culerian position in aretrograde sense, The radios of
this circle Is about 0.'02 are and the period of the circuit is
very nearly one sidereal day. Thus the simple "cone-on-cone"
description breaks down,

The problem of the body-Axed rotational perturbations
which occur in a rigid axially symmetric earth In response to a
prescribed forcing function is of considerable interest In goo-
physics for its solution allows us to model a variety of goo•
physical processes and Investigate their possible role In exciting
polar motion and UTI fluctuations In the earth, A general
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^►'^"	 solution to the equations governing polar motion and UTI
variations in terms of arbitrary excitation functions and 'their
Integrals is ea3ily obtained. If the geophyslcul exoita(lon Cunt;
(ions were sufficiently well known this solution cou p be used
(o predict the position of the rotation pole and the value of
un In advance. However, such a program Is not practical on
(he basis of our present geophysical knowledge

1. General solution to the dynamical equations governing
polar motion and UTI fluctuations, Tito dynamical equations
governing the motion of the rotation axis in a body fixed
frame are given by Equations (IV-22) and (IV•23). Using
Equation (V•6) these can be written us

dM  In M X if	 (V*53)
tit	 r

drtt 3	 dea
rl7 " rlt	

(V44)

where ?! Is the complex wobble excitation function given by

tr u e n + tLrz	 (V.55)

and where Equation (IV-22) gives

si 
ĴV- S2 

dr - dt
L t(11z i= + r)	 (V.S6)

In Equation (V•56) the quantity dC3 1dt is the UTI excitation
function given by

r

dt	 CSZ dt	 N3(t') dt' - SZ r33 - h (V•57)
0

in Equation (IV-23).

Since ]if, ma are dimensionless angles the excitation Tune.
tions 2; de3 /dt, have the units of sec" t or "frequency".

The solution to Equation (V•50) can be obtained by the
usual method of variation of parameters. Introducing the
dimensionless complex excitation function a where

r' - e?, +I C ,2 	 (V•58)

ORIGINAL PAGE 13

OF POOR QUALITY ^i
given by

'
	 for

(t* t +t eu)	 (V.59)
r

Equation (V«56) can be written

	

t " tar (Z:` + ltt) .	 (V-60)
^t

	

The general solution to the homogeneous (e 0) equation	 ^€
(V.60) is

MW n 	 etar{rrel	 (V•61)

to which must be added a particular Integral 	 -'

t	 ,

	

I)Vt) far 
etort	 A[) a 

tort 
lIt'	 (V-62)

o

to give the general solution to the hthomogencous (c'* 0)
Equation (V-60) as

Moe
	 tutu

fo

J	 ..tQrt 	 '

MWW* MT a	 +10	 e(t) a	 d t

(V.G3)

That Equation (V•63) Is the most general solution to Equa•
tion (V•60) can be verified by direct differentiation. In Equa•
tion (V>63) M Is a complex Integration constant,

The general solution to Equation (V•57) we have seen in
Equation (IV-30) Is given by

	

nta(t) - e3 (t)+t11 3
0	 (V•64)

where
r
s

C3 (t)
CSZ
	 N3 (t) dt ' - n r33 " h 3] (V•65)

If

and where rrt 3 Is an integration constant,

2. Some idealized examples of polar motion excitation in
an axially symmetric rigid earth. As an illustration of the
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usefttiriosa of tite solutions (V•o) and (V-64) we shall consider	 produces a discontinuous and permanent change In ilia earth's
ilia case of a row idealired examples of ilia excitation or polar 	 inertia tonsor and acts as an abrupt generator of the porturba•
motion (Nfunk and MacDo nald,1960).	 Lions r13 r23 In Equation (V•68) (Sinylle and Manslnha,

1 g71a;Monsinho,Sinyllo, and Chapman 1979).
It can be soon from ilia governing equations for polar

motion (Wo) that the complex wobble excitation function
it' a ej + l c' and ilia complex coordinate of it ►e polo of ilia
rotation axis M* tit  + 1m 2 have the same "dinnonslons" of
radians. Th is leads naturally to ilia concept or a wobble
eveltatioll avls, It will prove mathematically convenient to
define ^ as ilia cotupiex coordinate or the pule of the wobbia
excitatiorn axis where

WK.fir►

¢+ t + 102 r - (c , + 1 a# ).	 (V-66)

Substituting the wobble excitation function (V-69) Into ilia
general solution, Equation (V-63), gives

MQ) 1 Pit"' 
et©r(t- to) µ 

lure 
tar r

711(t,. to) r±
=t ,
 

at
ft

 

(V-71)

Since we are assuming an absence of wobble excitation for
t < to we have

le"0
If the wobble excitation Is small in the sense that IV'I <I
than the excitation axis defining ilia polo of wobble excitation	 and so tiquation (V-71) becomes
Is ossoclata6 ;vith the unit vector$ where

• 0 1 V1 +02V2 + 1l ° 2 (^^ + 02)] a. (V-07)

The excitation polo rp can be expressed In terms of ilia
geophysical entities such as the components of the external
Torque NJ N2, the perturbations to the Inertia tensor r 13 r23,
and the relative angular momentum components Pr 1 11 2 as

s 
Anna 1()V2 - dt d ° 512r 13" SZ It 1)

dr la dl► t

" 1 (Nt ` dt .^ d * Six ,21 + n h2) - (V•68)

a Step functlon wobble excitation. Stop fuunction wobble
excitation can be represented mathematically as

Rt) _ 711 (t  - (0)	 (V.69)

where Tis a complex constant given byY-J, + 32 and where
ll(t - to) is the Heaviside stop function defined by

0 t<to
11(t - to) _	 (V•70)

r to

Physically we might expect step function wobble excitation
to be on approximate model for the effect of earthquakes on
polar motion. In such a simple model the fault dislocation

r

MW 1vrâ 1err
	

N 
lvrr 

dt'
to

which Integrates to give

71(t) tv
(t) - 7 [l - e r 

tr - to)
 a .	 (V.72)

The geographic coordinates tn t (t) 111 2 (1) of the pale of
rotation can be obtained from. Equation (V•72) by setting
7'+i 3 1 +U2,M min t +Nn2,toobtain

tit ► (t) W J1 — J1 COS or (t» t
o
) +'t2 Sill fir (t " to)

111 2(t) _ J2 « 32 cos or (t - to ) + 3 1 sill or (t - to) .

(V-73)

In this solution we see that at t < to the rotation pole
coordinates are Inl I : 0, tut - 0. As soon as the step function
excitation Is imposed and the excitation pole appears at the
coordinates

7U7

the rotation axis begins to describe a steady prograde cimuiar
path of radius 171 about the excitation pole. This Is illustrated
In Figure V-d. The angular rate of the motion ofof the pole of
rotation Is or. The pole completes one circuit in an interval
27r/o,.
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b. &N function wobble exellation. Impulsive or 6-func•
tion wobble excitation can be represented mathematically as

	

;(t) 76 (t - to)	 (V.74)

where I Is a complex constant given by )r"JI * l J2 and has
the dlmenstotts of th pic and where 6(t - to) Is the Dirae
5-function. The dimensions of Tfollow from the requirement
that

	

(t _ te) dt * I	 (V-75)

hence h(t - to) has the dimensions of time-' , a nd that At) be
dimensionless,

Physically we might expect impulsive wobble excitation to
be an approximate model for the effects of short lived atmo•
spheric storms on polar motion largely as a result of the
changes In h t and h2 which might accompany such events,

Substituting thiswobble excitation function (V-74) into
the general solution, Equation (V•63) givs

W 
to 0- tot ^	 tart	

'760 '
	 °tarn r^(t) - ^t c	 lore	 rs(t to) c	 t!t

0

(V•76)

Since we are assuming the Absence of wobble for tto we
have

moa0

and so lquation (V.76) becomes

t
MW 	 toret er7' fo 6(t' - te; 

e.terr 
dt ` 	(V-77)

 j
which Integrates to give

0	 t<1
M(t} 	 tt-t	 (V.7g)

far Ye r	 o	
t to

	

Since 7 has the dimensions of time and Or leas tite dimensions 	 fir'
of time- ► the quantity or7 is dimensionless and will serve as a
dimensionless wobble amplitude K

	

K orf	 (V•79)

and the solution, Equation (V•78), can be written
t

l)	 t < t o

	

Tfl(t) R 
-9et°r (r^ro)	

t >t
	 (V.$0)

0
E

The geographic coordinates ttt t (t)tt1 2 (1) of the pole of rota
tion can be obtained front Equation (V-80) by setting'=Ka
+tK2 ,M= pn i +t?n l , to obtain

M I (t) Kt sin or(t - to) + K2 cos or(t - to)	 t

_f

rr► 2 (t) K. sin or(t- te)- K1 cos or(t TM to)

In this solution we see that at time t u t0 the pole of
rotation moves discontinuously at the time of the impulse to
the complex coordinate -1.9 or to m t (t) w K2 , m 2(t) --K ',
For times t> to the pole of rotation moves in a steady
prograde circular path of radius 191 = orM about the excita-
tion pole, which, for tithes t > to resides at the origin since for
times t> to the excitation Is zero, This is Illustrated In Figure
V-7,
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Figure V-7, Thii polar motion which results from a S •functlon excite-
tlon at time f 0,t.- The rotation axis is displaced discon•
tinuously at time t = to from Its original position and
subsequently execute* uniform progreds circular
motion.

A comparison of step function wobble excitation and S
function wobble excitation leads to the following general
conclusions

(1) Stop function excitation displaces the excitation pole
but not the rotation pole .at t = to,

(2) & function excitation displaces the rotation pole but
not the excitation pole (except for an Interval of mea-
sure zero) at t = to.

(3) Both excitations lead to prograde polar motion about
the excitation pole.

c. Harmonic wobble excitation. Harmonic wobble excita•
tion can be represented mathematically as

^(t) = T° cos a (rt w to) + T' sin a (t - to) (V•82)

where 7° T are complex constants given by T = Ji + i Jz,
T Jr + i J2, and where a is the frequency of the harmonic
excitation which is arbitrary and not necessarily equal to a,.,
the "resonance" wobble frequency of the axially symmetric
rigid earth.

Physically harmonic wobble excitation on the earth occurs
as a result of the external lunisolar gravitational torquesNt N2
which, when viewed in the body-fixed rotating frame, are
harmonically varying. It is in fact this excitation which pro-
duces the retrograde motkm of the rotation pole about its
Eu.lerian position previously mentioned.

Alternate forms of the harmonic wobble excitation func.
tion of ,Equation (V-82) are

tn(t-to)	 "lo(t-to)

and

(t)	 I^*i 
dtin(t-(n) * h*I 

+ I 
I C-tle(t-to) + a"I

(V•84)

where

(V,8S)

and where

'SIAM0	 JIhtAG

	

N* = tan— '	 X = tan`,

RL'AL	 (J;EAL)

(V•86)

In the formulation of Equation (V-84) the quantities 17'1
and 17"1 are the modulii of the complex amplitudes P J'
respectively. 17` 1 represents the amplitude of a prograde rotat-
ing excitation function T' whose phase angle at the epoch
t = to is A'. 17"1 represents the amplitude of a retrograde
rotating excitation function 7` whose phase angle at the epoch
t = to isX .

It is most convenient to proceed with the solution to the
problem of harmonic wobble excitation by choosing the form
of the excitation function given in Equation (V-83), If we
consider the harmonic wobble excitation to have commenced
at time t = to then substituting the wobble excitation function
(V•83) into the general solution equation (V-63), gives

/a (t •• t 
° )
	 !a ► 	 t	 1u(t' - t) -.to t'

	

T11(t)  = )i° e r	 iarc '	 71` e	 ° e ' dt'
to

is t T^ c
-latt° to) a-Tart' dt'

to

mt



t

M n runt +tn► .,,

'RT,. = "1111 +1111,02  ,
	 (V-92)

^l(a ^ ar)r t
lot

10+ar) t
0
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which integrates to give

0 ea r0 "- to)	 lart	 Mato	 * e 
Ito a ar)r i t

M(t) - M a	 lace	 a	
i(a ad I

to

reference frame has been analyzed in detail by Woolard (1953)
for the case of an axially symmetric rigid earth. The lunisolar
wobble motion can be expressed as the vector addition of the
complex coordinate MP to the Eulerlan motion I'iir , where as
usual

0

which becomes

t	 tit° elar(t - 
to) - ar r 

I 
e 10(t - to) - 

etar(t - toiFl )̂(t) "	 a „ a 

+

	

Or J„ ru(t^- to) - elar(t ^- ro) 	 (V-$9)

a+or

Equation (V-89) can be rewritten as

a _	 a	 _
W = ►►t° 

+ a- ra J
+ - 

a 

o
r
 

J elar(t - 
to)

r	 r

-
	 up'

	 e la(' - to) +
	

Or 
J- 

a-1a (t - to)
U - or	 a +or

(V-90)

We see that the solution consists of two wobble compo-
nents; one occurring at the Eulerlan frequency ar and one
occurring at the forcing frequency a. The Eulerian component
is a prograde rotation or> 0 of the pole of rotation with
amplitude IJtII where

ImI =I Tie + Or j+	 Or J I	 (V-91)a- ar	 a+ar

The wobble occurring at the forcing frequency consists of a
prograde component of amplitude [ar/(a - a r)] 11+ 1 and a
retrograde component of amplitude [o,/(u + ar)] I 3 I•

The fact that harmonic excitation at frequency a can also
excite the Eulerian wobble at frequency Or is intimately con-
nected with the presence of both the annual and Chandler
frequencies in the spectrum of the earth's wobble.

3. The lunisolar harmonic wobble excitation in an axially
symmetric rigid earth. The effect of the lunisolar torques on
the position of the instantaneous rotiltion axis in a body-fixed.

Formulae for the lunisolar wobble motion are obtained by
solving Equation (CV-22) written as

dt

	 or!_11 P

 An

where N = N t + t Nz is the complex linisolar torque on the
earth expresm,-J in the body-fixed frame, The solution to this
problem is given in Woolard acid Clemenee (1966)

ntpt = + 0"0087 sin 0 - 0°0062 sin (0 - 2 L^,)

- 0"0029 sin (0 - 2 LO) + . - -	 (V-94)

►np2 + 0;'0087 cos 0 - 0'0062 cos (0 - 2 LC)

- 0'0029 cos (0 -- 2 LO) +,	 (V.95)

where

(1) 0 is Greenwich Mean Sidereal Time (CMST).

(2) L^ is the mean longitude of the moon.

(3) Lo is the mean longitude of the sun.

The lunisolar torques superimpose on the slow Eulerian
motion of angular rate ar a retrograde nearly diurnal circular
motion of the rotation axis with radius ranging from zero to
0."02 arc depending on the positions of the sun and the moon,
This motion, which results from the non-vanishing complex
torque Nin Equation (1V-22), is illustrated in Figure V-8.

4. The damping of the wobble and wobble Q. It is apparent
from the form of the solution for harmonically forced wobble
on the earth, Equation (V•90), that even infinitesimal
harmonic excitation at the Eulerian frequency ar will produce
an infinite wobble amplitude. This unphysical prediction
results from the fact that we have considered the earth to be
infinitely rigid and hence free of any internal dissipation.

The real earth is not infinitely rigid. The earth's finite
rigidity, in addition to greatly altering the character of the

i
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x
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where the integral is taken over one comple(e cycle of the
oscillation. It can be shown Munk and MitcDonald, l Q60) (fiat.
the Q Is related to the sharpness of tiie resonance peak of the
oscillator by

LUNISOLAR
POLE PATH

INSTANTANEOUS
ROTATION AXIS

PION POLE
m POSITION

MI

f

EULERIAN
POLE PATH

Figure V4. TM consill nd ether of the Euiodari polar motion IN
and tM kin"ar polar motion M , The rotetton of Hi, ie
pruarede wMN iM rotatlon of Is rat mole. TM
vector sure of M. and ftf conaikit ft total polar
motion m. TM amplitude Ŵ j is tlno-dependent.

Etilerian response ht a manner to be investigated in it latter
section of this work, will also result Ill dissipation of
wobble energy within the earth, Since the spectrum of
naturally occurring wobble excitation Is quite complex it will
inevitably contain sonic flower lit Itinnitesimai frequency
band contalning ilia htilerlan frequency or, It. is tl ►e internal
dissipation within tl ►e earth which results lit line observed finite
wobble aatiplihide even IIi the presence of conthmal. wobble
excitation,

Strictly speaking the question of tlic danipitis of the earth's
wobble does riot belong In it theoretical treatment of the
rotational dynamics of it rigid earth for Its answer necessarily
lies Ili an investigation of the detailed mechanism of ilia
wobble damping till(] lience till Investigation of ilia general
theological mature of the eartli including its fluld portions,
However, by Introducing tile "specific dissipation" or Q It Is
possible to Introduce dissipation Into tine theory without coll-
fronting the question of the detailed niuchanism responsible
for the dissipation,.

The Q of all 	 system with total energy A; alid
Internal dissipation rate sill/(It Is defined to be

dal, ^ f	 rlE 411
	 (V,96)*r^ 	 411

(V•97)
Or

where or' AO arc the fr"Itteucles tit the half rawer points of`
the resomnice curve,

The Q or the earth's wobble Is generally estimated by thls
► nethod from spectral analysls of polar Iaotion datai, hsilutates
for Q Based oil present day data tune only precise enougli to
place It roughly within tine bounds 30 <Q <GO (1'adersen and
Rochester, 1072). Improved data which could yield it more
preelse figure for Q would be of assistance iIi tmderstandhig
the niechainism of dissipation withht lire earth.

Vl. Equilibrium Deformation Fields In a Real
Deformable Earth

A complete theoretical understanding of the rotational
dynamles of tine "real" earth which Incorporates realistic
models for tine Theology of ilia deformable eartli and its fluld
portions as well as till tine fortes doling Oil them Is it distant
goal for geodynamfeal theory. Such till achievement is greatly
hari ►pw-ed by:

(1) Incomplete knowledge of the properties of tine earth's
nuid core and its iuteractfott with the nest of tine earth
Including its electromagnetic and viscous effects,

(3) Incomplete knowledge of tine long terra Theological
properties of the inner care, mantle, and crust of ` the
earth.

(3) Incomplete knowledge of the currant systenis lit
oceans and atmosphere and their Interactio n wI01 the
shell and each other, to home bait a few major Itetussin
ti very long list:.

Nevertheless it shinple techi ►Iclue developed originally by
A. p, H. Love (1909) allows reasonably rigorous treatnictit of
the effects of earth deformations for certaiii classes of
deforming force fields, Three Important geophysical disturbing
.forces which tire capable of deforming the earth and which can
be treated adequately by trove's teethnique tire:

(1) Centrifugal farces and their effects oil a)irth roiatioir.

(2) Tidal farces aiid Chair effects rail earth rotation.

(:3) Surface loads and their effects oil 	 rotation,
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Shuce Love's theoretical technique plays a major rote in the
incorporation of earth deformation into the theory of earth
rotation for a wide class of deforming force fields we shall first
review Love's theory In sonic detail before proceeding to
discuss the effects of the above three phenomena on earth
rotation,

A. Low Numbers and Equilibrium Earth
Dekwonatlone

The use of Love numbers in geophysics is subjected to a set
of restricting assumptions which are;

(1) The earth is assumed to be spherically symmetric in its
elastic parameters and overall structure.

(2) Thu earth is assumed to be In static equilibrium with
the system of deforming forces. Strictly speaking this
restrictive assumption prevents the use of Love num•
bers in anything but problems of geostatics, However,
their use in geodynan cs is justified in instances where
the time scale of the change; in the system of
perturbing forces is large compared to the elastic
response time of the earth in which case the Internal
displacement field u(r) is at all times infinitesimally
close to being in equilibrium with the deforming forces,
The time scale of the e;irth's elastic response is of the
order of the transit time of a seismic wave across an
earth diameter or of the period of the bravest mode in
the earth's free oscillation spectrum, Both these inter.
vals are of the order of one hour and so the use of Love
numbers to describe the geodynamical response of the
earth to perturbing forces whose characteristics are
changing significantly on time scales large compared to
one hour is possible,

(3) The perturbing force field is assumed to be weak
enough that the resulting stresses are small compared to
the strength of earth materials, which is typically 109
dynes cm-2 . In this case the response of the earth will
be linearly related to the perturbing stresses.

We begin by considering the earth in equilibrium in its
unperturbed state characterized by a gravitational potential
Vo(r) and a density profile po(r), both functions only of
radius r Irl. We then consider the earth subjected to a
perturbing force field f(r) which results in an internal
deformation field u(r), When the perturbing force field f(r) is
derivable from a potential VP(r) ,

f(r) = — V VP (r)	 (V1-1)

then it can be shown (Smylie and Mansinha,1971) that under
the restrictions stated above the radial displacement u,(r) and
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the dilation V u(r) are proportional to the perturbing
potential. In general for anyradius r (rl within the earth we
can write

Ur (r) = tf'(r) VP(r)	 (VI.2)

V - u(r) _ P(r) VP(r)	 (VI-3)

where Y(r), t,'(r) are radian functions which depend on the
earth's elastic properties,

Following Love it will be convenient to define functions
11(r), I^ (r) such that

H(r) = go(r) H'(r)	 (VI,4,)

P(r) = ge(r) P(r)	 (VI-5)

where go(r) Is the positive scalar magnitude of gravity at radius
r within the undeformed earth. In other words

o	 Gmo r
g (r) =	 2	 (Vl•G)

r

where n► o(r) is the mass contained in a sphere of radius r given
by

rnt°(r) = 41r J PO(r) r2dr .
e

It follows that

Ur(r) = H(r)
 V

P (r)	 (VI-7)	

d

O

V . u(r) = o r VP(r)	 (V[ 8)
g (r)

In general the perturbing potential VP(r) will have a solid
spherical harmonic expansion

VP(r)( u In P'n' (cos B) (G'," cos Pty +S'" sin mX)
n=0 m=0

(VI-9)

valid for r <a; where 0 is the geocentric colatitude and h is the
geocentric east longitude and P' (cos 0) is the associated

14	 ;G
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L,egendro polynomial of degree it and order tit, Symbolically
we may write

Vp(r) _ E E Vntr► (r) , r 4a,	 (VI.10)
it	 m

where Vn"'(r) is the ►t, mill element in the double sum.

It fellows that

Ur(r) = --I--
o 	 E E ",,(r) Vn ►►, (r) (V"' 1)

900 to ,n

V , „(r) Y I EF F,0 VP, 	 (VI-12)
90(r) n	 n,

where the quantities H,,(r),1%,,(r) are radially varying functions
depending on the earth's elastic properties and depending on
the degree it of (lie spherical harmonic V p "'(r), That H (r),

F,,(r) depend only oil degree n and no
to
 he order in of the

spherical harmonic is a consequence of the fact that spherical
harmonics of'the. same degree but different order all have the
same radial dependence.

The deformation of the earth u(r) produces a perturbation
in the equilibrium density profile of the earth. If p(r) is the
density profile after deformation and pl),(r) is the density
profile before deformation, then the perturbation to the
density p' (r) is defined

P , W - p(r) - po(r)	 (VI-13)

and is related to the displacement field and the original density
field by

p t (r) _ - u(r) , Opp(r) - p°(r)V • u(r) . (VI.14)

Now po depends only on radius r = Irl and so

, d o
{	 Vpo(r) 

= dr(r) r	 (VI-I S)

which allows Equation (VI-14) to be written

p'(r) - d d

n

(r) ur (r) - po(r)V u(r) . (VI.16)

Using Equations (Vl•7XVI .8) in Equation (VI .16) we see that

P I (r) = - .,. 1 [96 Ur 1(r) + pe(r) !;(r)] VP (r)
90(r)	 dr

(VI•l7)

It follows from Equations (Vl- IOXVI.17) that p t (r) can be
written

pt (r) = G(r)	 VnM(r)	 (VI.18)
to	 ►n

where

G(r) = --I— rd !O r H(r) + pe(r) F(r) ^
90(r) (. ar

(V1.19)

The deformation of the earth and subsequent redistribution

	

of the mass of the earth produces a perturbation to the	 l
equilibrium gravitational potential. If V(r) is the gravitational
potential after deformation and V o(r) is the gravitational
potential before deformation then the perturbation to the
gravitational potential V'(r) is defined i

V'(r) = VW - V° (r) ,	 (V1.20)

Both V(r) and Vo(r) necessarily satisfy Poisson's equation
for the density distributions p(r) and po(r) respectively,

V2 V(r)	 - 47r Gp(r)	 (VI-21)

V 2 Vo(r) = - 41r Gpo(r)	 (VI-22)

and since the Laplacian is a linear differential operator we can
conclude from Equations (VI.13) (Vl •20) (VI-21) (VI.22)
that r

V2 V' (r) = µ 47T Gp' (r) .	 (VI-23)

It can be shown (Kaula, 1968, pp. 61-69) that the
gravitational potential V' (r) resulting from a density distribu-
tion p'(r) given by Equation (VI-18) will have the form

3

V, (r)	 ^, ^, Kn(r) Vn'n (r)	 (VI.24)
n m

i

lid,.
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where the quantities Kjr) are radially varying functions
depending on radial Integrals Involving the density distributiotn
P I (r) and depending on the degree it of the spherical harmonle
P ^'"t (r). That K11(r) depends only on the degree is land not the
order tat of the spherical harmonle Is again a consequence of
tine fact that spherical harmonles of the same degree but
different order all Lave the same radial dependence,

We now consider a perturbing potential field VP(r) ofsingle

fixed rlegive it, lit 	 words we take

and can only be defined lit .raglan r 1^u. Also the radial
fitttction K, a (r) depending on Cite elastic properties of the earth
cast rattly be defined lit the rcglun r <a, lit general Equation
(Vi-28) oily has meatiing lit fie region r *4u.

Second, the Newtonian gravitational potential or the carih
1'(r) (exclusive of the disturbing potential) depends call)) on
the mass distribution, let rite mideformed earth we had

I°(r) - 
i,ro(r)	 (VI-30)

,a

IVN(r) - V"'V) * E I1P, 111 (r) .	 (V,1.25)	 but. it, the deformed earth l'(r) consists of ante snot of
to -o

It follows from Equation (VI-I1) that the radial displacement
ar,.(r) within the earth lit 	 to the perturbing potential

'(r) Is
if

TI (r)
tt ,(r)	 '^ 1't'{r)	 (V1.36)

r	
S'e(r)	

,a

and that the perturbation Vl (r) to the curth's gravitational
potential lit 	 to the perturbing potential v l'(r) is

1' i (r) g Kjr) r'l,'(r) ,	 (VI-27)

The total perturbed potential Vi(r) In the region r <a
Inside the earth is the stun of

(1) t'e(r) the original unperturbed potential,

(2) Y (r) the perturbing potential of the del:orming force
ri

field causing the deformation ti(r),

(3) 111 (r) the Increment to the gravitational potential
resulting from tite redistribution ^)f the earth's muss
accompanying the displacement u(r),

V t(r)	 i, o (r) 4. 111'(r) + V t (rI,	 r e u ,

m(r) * it0 (r) + V I (r)	 (Vi•3I)

and, so Is given ht Ilia region r <a by

1"(r) - r av) + Kw 1#ri w '	 (VI.32)

'Third, the analysis presented thus for is carried out from an
Culeriatn viewpoint lit the vector r refers to some fixed
position relative to the origin of coordinates (geocenter) and
Involves the comparison of 14(r) before deformation with
I't(r) and V(r) after deformation (Equations (VI.28) and
(V1-32)), For an observer or it particle moving with the
deforming earth a: Ugrauqlan description Is more appropriate,
A .Latgrangian description would Involve a comparison of VO(r)
acid V I Cr +u(r)] and I'`(r + u(r)],

A Lagrangiatt analysis begins with the definition

I'(r) = Ij e (t-) + It I (r)	 (VI-33)

from which it ,follows

'(r + ta) = Vo(r + u) + I' t (r + u) ,	 (VI.34)

(VI-'28)

For a perturbing potential V' Ofr) of single fixed degree it we
can use iigrsnatiott (VI-24) to wrlte

I''(r) = Iro (t`) + [ I +l , 1 V)I V P, (r),	 r<n ,

(VI.29)

There are it number of aspects to this theoretical develop-
inent which require emphasis tit this point.

t	 first, the potential C" p(r) refers to it powntial field from

i	 which. the system or ddorming body forces is to be derived

A Taylor series expansion of Equation (Vt•34) gives

V(r + u) = 1'1e(r) + V Y0(r) - ti(r) + 1'' t (r) +V V a (r) • ti(r)
(V1.35)

wtdch to first order inn small quantities reduces to

If(r + u) = i'e(r) + V Va(r) . u(r) + I" (r) (VI-36)

Now by definition

90(r) - _ V i.a(r)
ti

t fr:

j

40

k



ORIGINAL PACE IS
OF POOR QUALITY

turd since go(r) has only it radial component owing to the	 lktzgningPa ► t Pely1 stint
assumed splicrical symmetry of the undeformed earth we can
write	 !/ (r)

	

^a	 ^ .. a	 ^^ „ ,o	
(r)	 !!

V I (r) - Or)	 g (r) %Kr)	 (0 t1r(r) (VI-37)

	

I'(r t u) 	 i o(r) + 1 ►!(r) 1l►! (r)^ l";i(r),	 r'C ,
which when substituted Ittto Equatlon (VI .36) gives	

(V145)

	

V(r + ti) = V O (r) - gO(r) ttr(r) + 1't (r)	 I't(r + rr)	 Iro(r) + 11 + K (r) 
_ 11,p)1 t '(r)	 r ++ a

Using Equations (V1.11) and (VI•24) In Equation (V1 .38) gives

	

	
(Vi^^(►)

Love numbers of degree ►t, k► ! , /t o , uro Introduced lttto tite

	

1'(r+ n)	 llpo(r) -go (r)	 ^^	 11 (r) Ira! ►n (r)	
theory by spowlalizing the formu1ae(Vl4 )-(Vl-#b) to tine case

°Cr) ► !	 , ► ,	 "	 '"	 of alt observer or particle at the surrace of the carts' r ma,

Defilling

t.	 (r)	 ►i;^n ►^(r),	 ►' 4*a ,	 (VI-39)

r ► 	 r► !	 ,^	 I	 kIn 
a K(r)ir , a	 (Vi-47)

or Pin	 11(OV, (V148)

'(r+u)	 I °(r)'t`	 L.^	 Lf,' ►^(r) -ll ►!(r11 	 I^,^
!►!(r)

°	 '^ ,S'e(►')Ir, (VI I`')a

r <tt .	 (VI-40) and setting

I:duxttlon (V140) expresses the Ugrooghm varlotion in the l}(r)^r-r!	 l^'(►r) M-50)

gravitational	 potential	 for	 an	 observer	 moving with	 the
deforming earth. The total effective poteutiol V l(r + u) sensed l^t(r)^ ► 	 ^ i^t(a)

►'
(V1. t)

by it particle would include the porturbhig potontial 0 1 (r)
respousible	 for	 the	 body force	 deformation field,	 Using
Equation VI-GO we call write1>

Vt(r + u) - I10 (r) +	 lI	 ll'!!(r) -,H1 1(r)1 	 ►̂ 'n'(r) , 1tr(r),r _ ►► 	 11 ,0) (V1.53)
!!	 nr

r	 a x	 (V141) where It Is understood 	 the	 argument a indicates that tile
clumtity Is Still a function of ii, %, the geocentric colatitude

Considering once again a perturbing potential of slogle
11110 east longitr ► tto respectively, yields the following results;

harmonic degree it we clot Summarize the results'
i iilerian t'iewpoint

l,ulerta►t t'iewpttP►tt The potentials '!lung a spherical surrace of Mud radius

i^(r)	 110 (r) + ^` jr)r► (r) ),,	 (r) ;,	 r < o ,	 (V I	 mo)
14(a)	 i*U (►r) + k

 lip (VI.54)
T10(r) + [I +A' (r)1 VII (r) ,	 r <a ,Irt(r)

(VI	 I) hr(►t) = V o(a) +(i +t i t If (a) (Vt.55)

rs
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1.48ra►ig/a►i Vletvt►tal►► I

`Ciie potentlaia along the surface of the defornted earth
r-a*u,

11r(a)	
/► 

lit(a)	 (Vl•56)
k'

V(a + u) K 110(a)  + (k11 - h 1l) Val' (a)	 (VI-57)

Vi(a + u) - 1/ o(o) + (t +4-►, - h ot) 1/111'(a) , (VI-58)

B. MacCullagh's Formula and Porturbatlons to the
Earth's Inodla Tensor

The Love numbers allow a calculation of the surfaco
deformations of tho real earth In terms of the potential of the
perturbing force field and hence are of great utility In
gcutlynaluics, Another forinula of equal utility is MoXiillagh's
forntulo, which wizen combined with Love numbers allows a

calculation of the perturbatlons ri/ to tlio Inertia tensor of the
coal carth in terms of the potential of the perturbing force
field,

We begin by considering the gravitational potential V(r) at a
fixed point r 

fit 	 region exterior to an extended spherical
body of Internal density distribution p(R). The geometry of
the situation is illustrated in Figure VI-I,

Tito contribution dlt(r) to the gravitational potential at r
due to the mass clement p(R)dV at the position R within the
body is

	

dV(r) = - A dV	 (VI.59)
isl

where
r = R + S	 (Vt-60)

`Cite toted gravitational potential at r is V(r) given by

 
r

G	 I(R) d 	 (V1.61)
JV 0 1

where the integral is to be carried out over the volume of the
body. This Integral can be expanded in the usual way as

V(r)..	 p(R) r?, 1'►r (cos) clY, r >R
Vnl. r^^e

(VI-62)

Figure VIA. The definitions of ttre gsomstrlaal quantities used In
the development of tM theory of the earth's gravity
field.

where;
ii

(1) r = lrl, R = IRI,

(2) 0 is the angle between r and R .

(3) /-,,,(COS ^) is the Legendre poiynominal of degree n,

It can be shown (Mueller 1969, pp, 3 .6) that with tite origin
of coordinates chosen to be at the center of mass of the object

t}

1'(r)	
" C //°
	 ^(rli + X22 " 2 433 ) p2 (cos 0)
2r 1

+ 2 423 P2 (cos 0) sin h + 2 C i t p2 (cos 0) cos h

(122 " / 1t )P2 (cos 0) cas 2A

122 (cos 0) silt 2h^ + 0'(- 
a!
	 (VI-63)	 k

r!!
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,

where:

(1) At is the total miss of the extended body.

() I11 lire the elements of the inertia tensor dewed In the
body fixed coordinate system for which 0 is geocentric
colatitude anti X Is east, longitude,

(3) 1""(Cos 0) Is the associated L,egendre polynomial of
degree it rind order tit,

tiquatioir (VI•63) Is h1aceullagh's formula and is valid to
this forth ht the region exterior to tire body tit fixed (tlulerian)
positions r, The useruhtess of maccuilagh's rormuin for the
theory or earth deformations Is illustrated in the following
example.

Suppose the wadel'Ormed equilibrium figure of the earth is
Spherically symmetric with radius r = a, In which Case the
undeformed gravitational potential 1 10 (r) is given by

("AIM
V a(r) 	 rya .	 (VI.64)

.since, for such tilt earth, the undeformed Inertia tensors Is
given by

e,1	 0	 0

	

70 - 0 A q	 (VI.65)

0 0 A

the undeformed gravitational potential may equally well be
written

110(r). GAIm '^ [(1 ► + 1 z `° 21 0 ) PO tcos 0)
2r

+" It 1', (Cos 0) silt X + 2101'2 (cos 0) cos X

+ QQ -1 a )1'2 (cos 0) cos 2X
6

-10 
p2 (cos 0) s ilt 21a^ , r tr,	 (VI-66)

since the terms inside: the brackets vanlish.

Now If the earth is subjected to some deforming force field
which produces displacements u(R) internally within the earth.

g

a
t

the inertia tenser is perturbed from tire, undeformed value
O to the deformed value rgiven by

rl 
+ rta	

rr2	
r 1

ra t	,I + r22	 r7a	 (VI-07)

rat	 1`32	
ti + r

and the gravitational potential is perturbed from its
undefortned value IV(r) to Its deformed value P(r) where
according to Equation (VI.20)

11r) - 14(r) + 1' i (r)	 (VI.68)

The gravitational potential V(r) or tilt deformed carth will
also be given by AtacCulh ►gh's formuin Equation (VI-03) and
so from Equations (VI .03), (VI-66), (VI•67), and (VI-68) we
deduce that

Idt (r)	 , —' (re, t + r22 w W rte) I'2 (cos 0)
^.r

+ 2 r23 1l2 (cos 0) sift X + 2 raa PI (cos 0) cos X

(r.2 # rI t ) P2 (cos 0) Cos 2N
4

r12 /' (cos 0) silt 21a1 	 r+0( a ^ ,r>a . (VI.69)

Combining Equation (VI.24) valid for r 4a with Equation
(VI-69) valid for r > a we call 	 for r = a,

Pill"t(°) 1 ►^ (n) ^	 ^ (rte ,a. rzz " raa)
re,	 oil	

2

I10 (cos 0) + 2 r a P, (Cos 0) sin X + 2 r ► ., ]'2 (Cos 0) cos A

L (r„ 2 ” rr t)I'2 (cos 0) cos ?X

r122 (Cos 0) silt 2d +0 1 4^	 (VI.70)
a

where VP"' (r) is Cite potential cram which the deforming farce
field is obtained,
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i
Of particular Interest Is the spacial case of a second degree

perturbing potential W,1(r) which fills it general representation
valid for r Ott its

2	 2
V3(r)	 (.a) P", (Cos 0) (C12" Cos In% + 4, sin mx)

m=o

(VI.7 I)

or

I^(r) _ (	
2 [ 0 P

2 (Cos 0) + CxI sz (cos 0) Cos Jt

S2 1'2 (COS 0) sin A + C2 I (COS 0) COS H

*.S2 P2 (COS 0) Sill 'h	 (VI.72)

Substituting Equation (VI .72) Into Iquation (VI .70) and using
Equations (VI.47) gives

k [	 "02 (cos 0) C2"I (COs 0) COS h + S2 -P' (CO'- 0) silt X

+ Ci' 1'3 (cos 0) Cos 2IN + Sz 1'? (Cos 0) silt ^)'X]

. f'' r (ru + r32 - 2r33 ) 1 2I (COS 0)243LL

+ 2 r23 Pit (cos 0) sin X + 2 e ll P I (cos 0) Cos X

1	 2k2aa
(r22 - r it ) .^	 ,
	 (VI-77)

2k (d
rt t + r22 2r	 g ° ^	 (VI.78)

Those five equations are Insufficient to solve for the six
Independent valtics of ell . A full solution for file perturbations
to the Inertia tensor ell requires an additional equation to
Supplement the set (VI.74)o-(Vl-78). Tits; usual technique for
obtaining it 	 for the rt/ is to use as it Supplementary
equatiotn

	

ell + r22 + ran , 0 ,	 (Vi,79)

This crluation expresses the (assumed) property flint file trace
of the Inertia tensor Tr7 Is a dynamical Invariant whose
magnitude Is not changed by fine deformation of the earth,

Rochester and Smylic (1174) have criticized fie use of
Isquatlon (VI.79) fn geody_mmiles and point oat flint, while
Tr 7 Is conserved for nil earth deformation fields derivable
from it potential which Is expandable III solid spherical
harmonics, there exists it class of cartli deformation
fields for which tills is not true and for which T.7 is not a
dynatnfcal Invariant.

The correct supplementary equation to use to provide it
solution to tine rtl is

rtt + r22 + r1J , 5(7')1 7)	 (VI.80)

* (r22 r tn ) P2 (c os 0) cos 2^ - rn2 P22 (Cos 0) $tn 2AI.

(VI-73)

Since spherical harnnonic functions tire aII linearly independent
we can equate the coefficients of harmonics of the same

	

degree It and order nn fit 	 (Vi»73) to obtain the five
equations

	

rn2	

:S:a^ S2
(V •74)	 r, 3	^G,r C')	 (VI.82)

2k2 t1 3 	 k2aa
2rta =	 C'
	

(VI.-75) 	 = _ G .,ya	 (VI.83)

2kza a 	k2aa
S'

	

(VI-76)	 r - l 6(T /)+2 C2 
I CO 1	 (V!•84)

	

2a	 G 2	 nn " 3 ,^	 C	 2" 3 z I

where S(T; 7) is the variation in the trace of the inertia tensor
which occurs as a result of tine deformation field,

The correct solution for die rte Is then obtained from
Equations (Vir74)-(Vi=78) and Equation (VI .80) gives

t' t2 
= ~k a Ss
	 (VI-81)
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"^ ":3 ^
(r7) . , (i °.^ ( 

rya	 iVl•KS)

12 k-243
ra3 fi(T?7') + 3 -d,= 0 . 	 (VI^BG)

In addition to raa above, tl►e dynamlcal equations (IV•22)
and (IV-33) governing polar motion and url depend on
Y it rp + k2p From this analysis we see that

t 3

r *	 (C.t.181) ,	 (VI-87)

'rl►ese results, Equations (VI.81)-(VI.86), obtained for the
case of it spherically symmetric cartlr whose u ndefdrmcd
Inertia tensorr Is given by

and Ilse gravitational potential for Ilto defortttetl earth V(r) Is
givers by

vo - vow + I" (r) .	 (VI.9 )

It cast readily be seen slit ► t substituting Fgatitlon (VI-90 into
MacCullugh's formula, liquallon (VI .63), and using liquallons
(VI-90) and (VI-921) gives

I; t (r)	 ,. 
,(a y (rtt +r ^ -2r0l'2 (cos 0)

4. 1r?a P' (cos 0) sin X+ yr► a P' (Cos 0) cos X

.1-1. 0,22 -r t 1 )11 2 (cos 0) cos k^

,i	 0	 0	 -r1 2
 

l'a (cos 0) stn »1^	̂ (VI-93)
0	 rI	 0	 (VI=88)
0	 0	 A	 whlclt Is identical to Equation (VI-69), It follows that degree I

perturbing potentials will, even In the case of the flattened real
	are not altered at all when we consider the flattened real eartli 	 earth, result in perturbations to the earth's inertia tensor r1l

whose undefortned Inertia lensorh° Is given by	 given by Equations (VI-8 I)-(VI-86).

A 0 v

°	 n	 o	 (VI-89)	 Symmetric
The Rotational Dynamics of an Axially
Symmetric Deformable Earth0 

in the case of tltc flattened earth the equilibrium gravita.
tional potential VO (r) is given by

C►Al,^
V0 (r) = a. 

r	 2r3
v [(A +A - 40P20 (cos 0)
h

? 1 023 1'3(co s 0) sin X + 21°a P!; (cos 0) cos

+ (A - A) 111 (cos 0) Cos 2N
u

A. The Effect of Rotational Deformations of the Earth
on Its Eulerian Motlon

Its (lie real cartlr the centrifugal forces or rotation produce
deformations which greatly alter the character of Its Eulerlan
motion, it is these deformations wh ich are responsible for the
famous lengtltcning of the Eulerian or Chandler wobble period
from 304,6 days predicted on the basis of rigid cartlr dynamics
to the observed period of 435 days, In addition the yielding of
the earth to the centrifugal forces of rotation causes an
enhancetttent of the wobble amplitude.

The Centrifugal force field r(r) on the rotating earth is
12 /'2 (cos 0) $it 2A
	

(VI.90)	 given by

	

for the undeformed earth, 'rite deformed inertia tensor fof a
	 r(r) = - w X (w X r)	 (VII .I)

flattened earth 1 is given by

A + rdt	 rna	 rsa

1 x	 ri,	 A + 
r.,	 123

N	 rr,	 C + raa

where w is "ttic earth's rotation vector" and the superscript c
will be used to denote pltenotucna associated with centrifugal

(VIG91)	 effects,

(Ilcre is an instance where, from the standpoint of strict
nmtnei-natic-al rigor, we make at) error. It is to be recalled that
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w Is the wation l'mor of some rotating geophysical C00IT11.
►tale system and front the standpoint of formal logic trlay or
may not (depending on Its definition) relato to (lie properties
of the rotating carth, lit of course ► because tiro
geophysical coordinate system Is dcfinod to be nearly rigidly
attached to tiro nearly rigid earth the consoquencos of tine
"error" are entirely negligible.)

Tire centrifugal forco Geld call 	 obtained front the nega•
live gradient of it centrifugal scalar potential field V(r).

fe(r) N > V U0(r)	 (VII.2)

where

Uc(r) n m [w2r2 - (w • r)2 ]	 (ViI•a)

and where

w2 a W , W.	 (VII-4)

In terms of tiro body-fixed basis vectors e, F2,01,3 we have

the conitifugal potential Worries

U C(r)	 - r2 (w2 - (4 
sinl 0 cost X - w2 $1,12 0 sln2 A

w2 cost 0 - 2 w r w2 sine 0 Sincds

2 w r w2 $111 0 cos 0 cos A

2 w2w2 sin 0 cos 0 sin X)	 r 4 a.	 (VII-7)

f;
Equation (VIi•7) can be rewritten in terms of tine associated

I egondro polynomials !,' (cos 0) of second dogree ( ►► *2)
where

PO (cos 0)	 (3 cos, 0 - l)

P I (cos 0) _ - 3 sin 0 cos 0	 (VII-8)

C2 (cos 0) n 3 $1,12 0

to become, for r <a,

r m xe^ +y ee +zt3

w = w r eI + ca2 c2 +W3 ca

	 (vll.$)	 U°(r)	 - r2 
^3 

w2 ( a) + 3 W2

and so
	 3 w3 ) r2 (c os 0) + w2 w3 p2l (cos 0) Sill

U'(r) _ - [(w; + W'2 w2) (x2 +y2 + z2 ) w2x2

W22)12 - w2z2 +2w  r w2xy + 2 w M waxz

+2 w2 WayZ1	 (VII.6)

Replacing x, y, z lit tquation (V1i •6) by their equivalents in
spherical polarcoordinates

X = r sin 0 cos X

y - r sin 0 sin A

z : r cos 0

^.. 2 w t wa Pz (cos 0) cos X

+ (cat - W2 )p2 (cos 0) cos 2),

	

w r wa r2 (c os 0) sill 	 (V II.9)

This can be written as

a
Uqr)	 - r2 w2 + F	 pm 	 [Cm cosntJ^

rn^o

+Sz" sirt mX] ,	 r+tia,	 (VII^i(l)
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4RI(}M^^ l<"i4 ►

K*
where th0 coefficients of the harmonics are glven by

C'z	 -	 (w^ + wi - 2 WI)	 ,° t

Front I*tluatlons (VII-13) we Soo that 1110 centrifugal poton-
tlni U1(r) can be decomposed Into a secular Hart UI-(r) due to
the steady tncan rotation of the earth andindopenAut oft ►t1,
m2, m3 and a thnc-varying perturbation V,,(r) due to portur-
battons fit the earth rotnilon and depending oft 111 t 01 2 1 it12

Uc(r) K U°(r) + Un(r) ,	 (VII-14)

'2
z	 2

'^ " 12 (w2 ')	 2 '	 G W 1 
cat Selecting those portions of the coefficients which are rode-

(VII.11)
pendent of 

III 
I , m2 , m3 In Equations (Vit.13) and substiluting

(lien) Into Equation (VII-10) to obtain the secular centrifugal
Now the earth's rotation vector w Is given by potential we find

(S	 S2 (III 	 +11122 +(l +1113)V31

US (r)	 w,	 l r2 S12 	 02 
S12	

1,0 (cos 0y1 a
and so the coefficients In ( l ie centrifugal potential become

w2 _ Std + S12 (4111^ +1t1l +ilt3 + ►n,)
which cart be written as

CO A'- Sly 	S12 	 2111	
2	 i	 2

2i
►t2itlt3

G	 6
I1t1

CIr(r) r	 r2522	 P - Pe (COS 0)J .	 (VII-15)s	 32

2a2 Tire rotation	 perturbation	 potential U^(r) Is obtained by
UzS 22 (111 1 +nt 1 ►tta) select ► ,^,a those portions of the coofflclents which depend on

(VI1 i2)
the quantities 111 1 , 111 21 1113 In Equations (VII-13) and substl-

2 tilling th;tur Into Equation (VII-10) to give
SZ n2 (III2 +11121113)

U^ (r) « „	 r2	
21^ttt3	 3 112 5Z211t 3	
) 

P20 (CO S 0)

C72
x

 -	 x 122 
(1112 ^ttt^)

n

2

n2 5 2 /► t 1	 Pz (ens 0) cos

Sz
2

G 
Ste ►i1 1 t/t2 2

02 S2211t2 ^) P (COS 0) Sin X .	 (".1 Via)

which to first order In tit s 1112 111 3 reduce to
The action of the secular centrifugal potential over geologic

W2 * 522 '1. 2 SZ2 1►t time has given rise to the earth's equatorial bulge and the3 observed polar flattening f wheref t	 298.256. The observed	
}

2 ma G e2 n2 1 6 ^2 522 /113
value of the flattening together with the value of the earth's

co.abined with themean radius and mean rotation rate when_
potential U1(r) allows the computation of a "secular" Love
number of degree 2 kz s , It can be shown that k2s Is very

C 1 	-	 112 522 111 1 nearly equal to the fluid love number k2p which would

(VIhl3)
describe the yielding of the earth to the secular centrifugal
potential were it to earth a perfect fluid. This Is regarded as n

S t 	 W	 n2 St2 r► t 
2

demonstration of the fact that for deforming force fields
2	 G which act over long intervals the global rheology of the earth

20
closely resembles a perfect fluid. We shall not concern our-

butselves further with the secular centrifugal potential US (r)
will consider the effects on the earth's pulerian triotion of the

$2	0 retntion perturbation potential U'(r).
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We sea from the from, of equation mw iiiat

2

Un(r) _ - r2 Sx2r►13 + F ") 1"3" (des 0)

t►1 ; 9

	

(Cz' CUs m% + ,S 11 sill mX)	 (VII .17)

where the harmonic cooMclents C"^' ,Sz' are slvan by

CO . 3 a2 $t21)13

Cz = .. -L 	 S22t111

	

8 1 'g _—I a2 S2'2 t1r2 	 (VII.18)

C2 02

S2 . 0

From Equations (VI.8l)-(VI.86) and Equation (VII .18) we
see that the perturbations to the earti0s rotation described by
the dimensionless parameters m l , m2 , m3 cause perturbations
to the earth's Inertia tensor t 1,0 given, to first order In m l , m2,
M 3 by

1`13 a 0

k2 a s S2
1̀ 13 3G 1111

k2a s Ste
13 3G 1)12

l	 2as Ste
r 1
	 (fir	

2k
a .0	 9U	 1113

3 

1	
2k2asSZ2

1`22 3	 9G 
►►t3

The time derivatives of the perturbations to alto hnortla

tensor reckoned In the rotathig froma of the earth are

dr * 0	 (Yli•25)
at

(Irj3 k2a l ul a 12
(It

n 	 n
rot	

(VI I•',G)

dr13 k2002 dmIl

cot • s 3 cot
(VI 1-27)

rlr 	 2k a 3' Ste th► 1

dC t s 3 5(7 r7) ^ air• ^
	 (VII.28)

(11`22 	 1 d	 2k2a5St2 (11)13

tt— 	 dt ^ (1 r	 c 9G	 dtt (VI 1.29)

drag X t ^1	 4k2asS22 din
t!t 3 tit S (Tr7) + J^ 9(	 cot ' 

(VI I.30)

Owing to the presence of the term (2/3)x2 02 1)1 3 ht llm^
rotation perturbation potential Ur(r) (Equation (VII-17)) -we
see that U,,(r) contains a term which cannot be Incorporated
Into a spherical harmonic expansion. The presence of this term
In the perturbing potential Is sufficient to Insure that the
deformation field ttssoclalad with the yielding of the carih to
perturbations in 1)12 1)1 3 ht Its mean rotation will not preserve
the value of 7"1.̀- (Rochester and Sinylle 1974). There does not
exist in tine literature at this tinnc to my knowledge a solution
for the quantities 8(Tr1') and ((tlrlt) 6(Tr7) required In order to
solve explicitly for the quantities rrl and (rlr e/dty/t As a result
the effect of the yielding of the earth to centrifugal forces and
Its effect on Its Eulerlan motion Is not a completely solved
problem In geodynamics today, "Solutions" to tine problem
witiclt have ignored the terms in 8(Tr7) such as that presented
fit 	 and MacDonald (1960, pp, 25) are In error,

Fortunately the effect of5(Tr7) Is confined to the Inertia
tensor perturbations r11 t = 1, 2, 3, and so only enters Into the
value of UTI [m 3 (t)1 through the term 12r33 In Equation
(IV•30). So that while the effect of rotational deformations on
UT'I Is atpresent unknown, the effect of rotational deformn•
tuns on polar motion, Equation (IV-22), can be calculated
because these effects are seen to depend only on the quantities
7 and drldt where 7 m rn 3 + tr23,

(VII-19)

(VI1.20)

(Vil.21)

(VII.22)

(VII.23)

We can see from Equations (VII . 19)–(VII .24) and Equations

I	
4k2asS12	 (VII.2$)–(VII.30) that In the event of polar motion on the

1`3	 ^ 6(Tr7) *	 11`1`3 . 	 (VI1.2d)	 earth the yielding of tine earth to tire. perturbed centrifugal
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force field call 	 aceoinmodated Into the dynamical equation 	 Substituting Equations (Val-37) (VII-38) into Equation (VII.

i

governing polar motion, Equation (IV-22), by Includlttg the 36) gives
effect In tite terns drAlt and 7 appearing In the excitation
function oil 	 RHS. This Is accomplished In the following

/-'[I	 ] dfft	 C •- A ,^ A^'
way, +A at

i ^..- ^I„^ M )Tif	 0 (VII-39)

Tite Eulerian (force free) polar motion of u rigid earth Is
where

governed by the equations

i C	 sz^ = 0 ,	 (VII-31) F _ 
k2 (VIM-40)

at	 A 3G

The yielding of the earth, in response to Its Eulerian motion Front Stacey (1977) we have
modifies the rigid body motion by generating a centrifugal
deformation excitation function V given by

k2	 0129

a = 6.3708 X 103 cm
Af S2 a	 + t St2Po 	 (VII-32) n = 7.2921 X 10-5 rad sec" ►

G = 6,6732 X 10-8 cm3 gm" r seC 2
where C = 8.0378 X 1044 gm cm2

A	 = 8,0115 X 1044 gill em2 (VII.41)
To = re 3 +ir23	("1.33)

from which we can deduce

c	 dre 	 dr0dP	 =	 ► s +i ?3	 (VII-34)
at	 at	 at

F = 8.082 X 1041 gilt cm2 (VII-42)

areiven b	 E uadons (VII-20), (VII-21), (VII 2G) (VII-27) ,q	 (	 )s	 ^	 sB	 Y	 V
and

above. The equation governing Eulerian motion in a deform-
able earth is then jE

	
1.008 X 10`3 .

A
(VII-43)

i
 C- 	

SZ^t = 	 (VII.35) Equation (VII-39) can be written

or	
\1 + 

f ) dr _ ! C A 
(1- F } SIM = 0

A dt	 A	 C-A

s (VII-44)
dam- ► CAA	 All (SZ dt + i n2 r°) .

(VII-36)	 and since

F = 0,3073
C- A	

(VII.45)

(VII.37)	 we see that with an accuracy of 1 part in 10 3 we can write
Equation (VII .44) as

(VII-38)	 df _ i CA A (1 - C FA ) nm = 0. (VII-46)
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`	 The approximation which. Leads to Equation (VII^46) depends	 as the angular rate of Eulerlan polar motion on a deforntuble
on FIA laving mach sniallor than FICA or oil 	 condition	 earth and where Equation (VII-52) was obtained by using
that

/LA
	

-
	 Ur s C- 

A 
n	 (VII.54)

CA
FICA A

	

C l	 (VII-47)

as the angular rate of Culerian polar motion oil a rigid earth,
which Is of course true for the earth.

We see from Equations (VII-51) and (VII.53) that the

	

With: (lie approximation of Equation (V1146) we see than 	
principle effect of the deform ability of the earth is to reduce

	

the dynamical equations governing Euleria n polar motion oil 	 the angular rain of hulerian polar motion by an amount
r

the deformable earth can be written to all 	 of I part
in j Oa aas/'

	 L

ur 00	 C- SZ ,	 (VII-55)

AlitC A	 1^ S2
dt -1 

^°z s m -1 ^ 	̂ (VII-48)	 This effectively lengthens (lie period of the Bulerian motion or
the "Chandler wobble" to

Thus we may Introduce the apImAnatc centrifugal defornw-

	

tiott excitation fanction WO , to be used instead of the exact	 2n ,	 27rA	 (VII-56)

	

centrifugal dej'vrmation exeltatlon function V (Equation	 °o	 Q (C- A - F)

VII-32) because of the simplifications It brings to the theory,
and write	 This is a period of about 439 days which is all 	 by a

factor of 1,44 over the pcilod predicted for an equivalent rigid

	

dw -1(,' A 
^ .M ; 7V,1(VII»49) 	 earth.

In order to understand more fully the effects of centrifugal

	

for the approximate equation governing Euterian polar motion 	 earthdeformation oil 	 Eulerian motion it is instructive to

oil deformable carth where 	 introduce the dimensionless centrifugal dej'vr ►ttatlon exaltation
jutictlon In Its approximate foram, V (as opposed to its exact
form toy) defined, in accordance with Equation- (V•59), by

	

° = _ i FSt iii' ,	 (VII.50)A 

	

	 7	 (VII-57)
for

Two equivalent forms for the equation governing Eulerian
polar motion oil deformable earth are

	

	 along with the corresponding complex coordinate of the cen-
lrifugal deformation excitation pole ;TO defined, in accordance :?

AT
with Equations (V.66), by

	

1 a VF = 0	 (VII-51_)
dt	 o 

and

	

	 The definition of iTl' by Equation (VII-57) allows the
equation governing Eulerian motion in a deformable earth,

dam- i a in	 (VII-52) Equation (VII-52), to be written in the convenient form
dt	 r

j - i v (w + ^i^) 0 .	 (VII-59)

	

where Equation (VII-51) was obtained frotra Equation, (VII-46) 	 dt	 r
f^

by setting
It call 	 shown that the instantaneous axis of figure of a

_ C- A(	 r \	 body wi^tlr instantaneous moments and small products of iner
oe _ A	

1 - C-
A J	

(VII.53)	 tia given by A, A, C, r 12 , r l a, r73 respectively is displaced

so
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from the xa coordinate axis by angles p ► p2 parallel to the
x ► x2 coordinate axes respectively where

µ ►
 Cry ̂ 	 N2 _'

 r23 
	

(VII•60)

and that the complex coordinate P ac 
N ► *!µe Is then given in

terms of the complex quantity7w r13 +11,23 by

	

11 s F	 (VII.61)C-A

It follows front Equations (VII-50) (VII-54) (VII-57) that

	

we # = - CA
	

(VII.62)

and so we see that the centrifugal deformation excitation pole
V given by

	

^ Too =	 Cr	 (VIi•63)

coincides with the instantaneous figure axis of the rotationally
deformed earth.

From Equations (VII.37) (VII-40) we see that

	

T = l"Fiff	 (Vlt•64)

and so

V =
C 
F in

	

—A
	 (VII-65)

and using Equation (VII-45) we have

	

V = 0,3073 n► 	 (ViI.66)

The result of Equation (VII-66) indicates that the deform-
ability of the earth allows the instantaneous figure axis V to
partially adjust itself to the location of the instantaneous
Eulerian rotation axis m, the amount of the adjustment being
about 30% of the total displacement of the rotation axis from
the mean figure axis,

B. The Effect of the Rotational Deformations of the
Earth. on Its Non-EuWan Motion

It is clear from the previous analysis that the elastic yielding
of the earth to the changing centrifugal force field which

accompanies the changing earth rotation vector w profoundly
alters the Eulerian (force free) motion of the earth, Tito period
of the Eulerian (Chandler) motion Is lengthened by opproxi•
stately 44% and the amplitude of the Eulerian motion Is
Increased by roughly 30%,

The deformability of (lie earth will also alter the character
of its non•Eulcrian motion or the forced motions which result
from a combination of external torques and Internal goo-
phy.., A excitation, The effects of earth deformations on its
non.Eutcrlan motion can be conveniently broken down into
two separate aspects,

The first aspect considers the effect of earth deformations
on the geophysically Induced polar motion or equivalently the
effect of deformations on the changes of w relative to the
basis vectors a► , e21 ea,

The second aspect considers the effect of earth defor ►na-
tions on precession and nutation or equivalently the effect of
deformations on tine motion of w relative to the basis vectors

A complete treatment of the effects of earth deformations
on its rotation would include a third aspect; namely, the
effects of deformations on the geophysically induced varia-
tiers in UTI. As pointed out previously i ►n this section (Equa•
tions VII-19 fly this requires a detailed solution, for the case of
the real earth, of the variations in T,,7 which accompany
variations in m3 . This shortcoming in present geodynantical
theory has been pointed out by Rochester and Smylie (1974)
and could be remedied by an extension of the work of
Manshi na and Short (1974) or of Salto (1974) but to my
knowledge has yet to be done.

1. Non-Eulerian polar motion on a deformable earth. The
results of the analysis of Eulerian polar motion on a deform-
able earth, summarily presented in Equations (VII-49) —
(VII-52), indicate that on a deformable earth Eulerian polar
displacement ni gives rise to an additional polar motion excita-
tion Ti` = i (r,9211) in arising solely from the deformation of
the earth in response to the original poiar displacement, Thus
as far as polar motion is concerned the deformability of the
earth. acts as positive feedback and enhances the motion, This
viewpoint leads naturally to a prescription for the treatment of
non-Eulerian polar motion on a deformable earth. This pre-
scription for the general treatment of non-Eulerian (forced)
polar motion on a deformable earth is described below,

First, consider the complete -onsembie of identifiable geo-
physical phenomena capable of exciting polar motion on the

51

r

iiqq
t



I

ORIGINAL. pAQR IS

OF p®oR QUALITY

I

earth and assign ant Index k m 1, 2, 3 .. , tit to each, Equations
(IV-22) and (IV-23) show that according to first-order theory
each me ►uh r of lite ensemble of geophysical phenomena only
contributes to polar motion and UTl variations through lite
effect it has on,

(1) The external torques N► l x 1, 2, 3,

(2) The perturbations to the inertia tensor r►l,

(3) The perturbations to the relative angular momentum hi
1- 1,2,3.

Furthermore, as seen from Equation (IV-22), for considera.
tion of polar motion above it is necessary to be concerned
only with the elements N t , Al2 , It,, h2 , r ta , r,,,a,

The second step of lite procedure is to calculate for each
member of the ensemble of geophysical processes its individual
perturbing contributions It k , Ile, rk I.k k = 1,2,
3, , , , In to the external torque, relative angular momentum,
and Inertia tensor respectively. Following this It is necessary to
form the complex polar motion excitation function ek , k = 1,
2, 3, , , , tit for each member of the ensemble of geophysical
processes according to the formula,

fist I ^ fat - ^dr - t (^2rk + SZTk)]

k = 1, 2, 3, , , , , 	 (VII•67)

where

	

Nk = N1 + iN2	 k	 1, 2 1 3.... to

	

Irk 	Jt 1 + ilt k 	k	 1, 2, 3,

	

rk = r 1 + Irk 	 k = 1, 2, 3, . , , In

(VII-68)

On it rigid earth each member of the ensemble of geophysi-
cal processes would give rise to a component of polar motion
itir(t) k = 1, 2, 3, . , , In described by the solution to the
equation

(Imk ^. - A
dt	

I	 A	 litr - Gk ,	 k	 1, 2, 3, ... In

(Vll•Gq)

and given by lquallon (V-63) as

r

nr (t) _curt Pr (0) + fur
fo

ak'(t) 1 
crrt 

atI

(VII.70)

where

	

vrc^ St	 (VII-71)

and

k'	 t" kC,	 !a	 (VII.72)
r

Letting P-j r(t) denote Cite total polar motion )ccorring on a
rigid earth as a result of the ensemble of geophysical processes,
then

it)

iiir(t)	 ^Ir(t) .	 (VII-73)
kot

It follows front Equation (VI1•69) that Mr(t) Is given by'the
solution to

to

	

^m" - i^
A
 St7irr =	 i?A	 (V11-74)

k=l

and is given by

	

t	 »t	 ,

tltr(t)	
e ►

^rt Ciit,,(0) + Iork"(t^) c~ te r tdt,
l

	

fo k n. t	 J
(VII-75)

Oil deformable earth each member of the ensemble of
geophysical processes would give rise to a component of polar
motion Itik(t) k = 1, 2, 3...., tit, However, on a deformable
earth ►ttk(t) must be calculated by recognizing that each mcm-
ber of the ensemble of complex excitation functions Zk, k = 1,
2, 3, .. , tit will be affected by the effects of "positive feed.
back" resulting from the yielding of lite earth, The earth
deformation will produce, for each member ck , k = 1, 2,
3 tit of the ensemble of complex excitation functions, an
additional excitation Tk`, k = 1, 2, 3 , . , tit, arising solely
front 	 effects of the deformation itself where, according to
Equation (VII-50)

	

Tse - - I F ink	 (VII-76)

r
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Oil deformable earth then, each member of (fie ensemble of
geupl'ysical processes will have alt effective Complex oxeltiltioll
f'tinellon give ►► by e + Wko, km l , ",1. , , art, and will give rise
to it Component of polar ►notion fI k(t) k - 1, 21 , 3, . , , In
described by file solution to (lie equation

ilea 
i Yri 

of $
	

W k + Wkt # 

(VII.77)

and given by Equation (V,03) as

'r
S ► k(t)	

Galore	
't1i k(0) + to
	 (^'^^ ^ ,wk's,) l"^

Itxr,t 
t^C r^

Jo

(V11.75)

Where

k, c	 ;Ar	
k	 t, 2, 3, , , , trl , (VII .79).ray

A►1 alternative and completely equivalent formulation of
polar luotion oil a deformable earth can be obtained by
substituting Equation (VI1 .76) into Equation (VII-77) to
obinin

t!1, ` r ^^	
' ̂ > gtmk _	 k 1 .t, 2,

(VII-80)

which Is shown by Equation (V-63) to have the solution

1l^r
	 ^ G'

nk(t) ^ G,trrer [ink (0) 4• to  J	 ^Jepr, 
(11"

r

0
k	 1, 2,3, ,,, m,	 (VII.31)

where we have made Ilse of Equation (VII-53)

C- A - I^	 (VII.; 2}
'IQ	 r1

:Getting M(t) denote the total polar motion occurring oil
deformable earth as a result of the ensemble, of geophysical
processes then

e»

(t}	 T rr ^(t} ,	 (VII-83)
k:i t

It follows from Ecitialioos (VII-77) and (VII .80) that M(t)
Is tho solution to ellher of the two equivalent differenlial
equations

t	
rr1

llil':t3 1 ^ °I S2^i` ^* ^ ^k •H ^ikr	 (Vil•84)
tIt 	 tf	 k I

or

(I Fit
(it 	

i (^^^.^1 .°'^l 327^i	 ^k .	 (VIl•g5)
!1	 k,

Tito general solutions to I i4intions (VII•84) and (VII•85) are
given by

? m
^(t) ,: elorr 

Pm + i0i	 V  't. 
TWO) e- NI

X
 

ill 
r

	

0 k-1	
l

(VII-86)

and

('	 1 ill

T(t)	 etoor ^;i(t)} `F ere 	 v ^ ^ t`rt► r
,

 Clt r

(VII-87)

respectively,

2. Non •Culerian precession and mutation on it deformable
earth. In principle (tie elastic yielding of the earth to the
system of body forces which give rise to the torques responsi-
ble for precession and notation tillers the observed precession
and nutation from that which would prevail were the earth a
rigid body, It has beep shown (Lamb 1945, pp. 74 ft) that in
the case of it disturbing force distribution which is fixed fit
Inertial space the precession of it rotating mass of ideal fluid
proceeds exnetl► r the same as if the mass were solid through•
out, r±urtbermorc It has been shown (Umb 1945, pp, 724 to
that when the disturbing force distribullon varies slowly rela-
tive to inertial space with a period 2rrJrr, then the precession of
it mass of` ideal fluid rotating with angular velocity w still
proceeds almost exactly the saute as if the mass were solid
throughout, providing that the ratio of w/ ►t is small compared
to a where a is the ellipticity of tl ►e rotating n ►ass, For the
earth e = 3 X 10`"3,

u, Pit,>cessibrq, Considering the case of precession on a
deformable earth where =rr/w - I day and 27t/n - 26000
years we sec that w/rl	 IO" ? , wllicit is very rtueh less (halt

9
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C ft 3 X 10. We conclude that the effect of file yielding of a
defortnable earth to the system of body forces driving the
procession will have it negligible effect: on ilia observed preces•
lion, The earth will essentially process its though It were it rigid
body.

At tie lAt,l General Assembly in Grenoble In 1976 It was
recommended that an Improved theory of the precession based
on the FKS star catalogue and roforrod to it new standard
epoch of 2000,0 be adopted. The dotails of the new theory of
earth precession have been published by Ueske of al. (1977).
The corrections to the previous theory arose principally from
a failure to distinguish between the "catalogue equinox" of
the FK4 star catalogue (the zero point of right ascension on
the catalogue celestial equator) and the "dynamical equinox"
(the intersection at tine ascending node of (lie ecliptic anal (lie
terrestrial equator) combined with new values for the masses
of tine planets of the solar system and some effects due to the
galactie rotation of the FK4 catalogue stars. 'nic new theory
of 1ho carth`s precession is expected to be accurate to i0,' l are
per century or roughly fl .0 milllarc second per year,

welt from Figure V11»1 that t o equaiur of figure and the
equator of rotation intersect each other with ittt tingle Pg where

	

Pe ft I me 1	 (VII.88)

Is the amplitude of the Fulorian polar motion, It call also be
seen from Figure VII-1 that the equator of angular momentum
and the equator of rotation Intersect each other with an angle
y where, from Equations (V-6), (V . 11), and (V-27), we have

	

! -A	 (VIi•gq)
c

where

is tae amplitude of the Hulerian wobble (of Figure V-7),

It will also be convenient to introduce;

(1) yt, the ascending node of the fixed ecliptic of the
fundamental epoch on (lie equator of angular
snomentuan.

(2) y,, the ascending node of the fixed ecliptic of the
fundamental opoch. o il the equator of rotation.

(3) yf the ascending node of the fixed ecliptic of the
fundamental opoch on the equator of figure.

b, ,NHtatlon, Considering the case of the notation on a
defornnable earth whore 27r/n ;^, 18.6 years we sec that w/rr m5
1.4 X .10° 4 , wlieln is sufficiently near to c---4 3 X 10- 3 to
expect that the effect of (lie yielding or it defortnable carlb to
the system of body forces driving the natation might produce
measurable discrepancies whoa precise observations of earth
notation tare compared against that which is theoretically pro•
dicted for it rigid earth, Woolard (1953, pp. 136) was evidently
aware of this problem and adopted an "observational" value of
9"210 are for the constant of no tation in preference to
"thcorelical" values of the order of 9;'224 are derivable from
tine relationships of the constant of notation to other astro.
nonnical constants which hold in the Case of a rigid earth.
Recent observational determinations of the notation constant
place it in the range 9;"201 — 9;'206 arc, with tine discrepancy
between theory and observation now of the order of 0"02 are
being attributed to the effects of the deformation of the earth,

.r

In proceeding with his solution Woolard actually integrated
it se t of differential equations known as Poisson's equations,
which approximately describe the motion in Inertial space of
the earth's angular momentum vector L (Kinoshita el tai„
1979). The solutions to Poisson's equations we shall denote as

^o doe where > 0 Uo are thne-dependent Eulcr angles defined
by Woolard referenced to a set of space-fixed basis vectors Vin,

e. lVookrrd's theory of the nutnlion. The present 'iAU
theory of the earth's notation, is due to Woolard (1953) and
describes thetheoretical motion of the instantaneous rotation
vector w of an assumed rigid card with an axially symmetric

ell, 

distribution relative to the sot of space-fixed basis vectors
el 1, P2 , C,

g 

a , A description of Woolard's theory requires the
Introduction of three reference equators; the equator of angu-
lar momentum, the equator of figure, and the equator of
rotation, Each equator is defined as passing through the earth's
q4tnter of mass perpendicularly to the angular momentum axis,
!;Ise figure axis, and tine rotation axis respectively. It can be

S4

P,;,, f defined by title fixed ecliptic and the fixed mean
equinox of the fundamental opoch of 1900.0. According to
the conventions adopted by Woolard, the angle 21r T 00
approximately represents thecombined effect of lonisolar
precession (since(since It is referred to the fixed ecliptic of the
epoch) and lunisolar notation of tie angular momentum axis
since the epoch and the angle to o approximately represent tine
obliquity or tine fixed ecliptic of the opoch on the angular
momentum equator of date. In Woolard's work the corm
sponding motion or the earth's axis of figure, described by
angles of O f, and tle earth's axis of rotation, described by
angles a r Oe, is obtained to the order of tie approximations
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Figure V11.1, The relative location on the celestial sphere of the equator of figure, equator of
angular momentum, and equator of rotation, The angles 0, and y are greatly
exaggerated and not drawn to relative scale,

Involved In tiro theory by the additions of correction terms epoch of the axis of figure Fa and of the axis of rotation w
(S CI &o	 to give respectively. The angles 0f, Or represent, to the order of the

apirroxirrtations Involved, the obliquity of the fixed ecliptic of
o the fundamental epoch on the equator of figure of date and

(VII-90) the equator of rotation of date respectively. Woolard then

0	 ,^	 t SOo	 f
decomposes	 tine angles f̂ O f and t r Or Into secular tenus

VSO j and g sOr and,periodic tenors c1*fAOf and tlO AOr with

and correction terms 80r He to give

O r	 00 + S Or (VII-rJ?.)

(V II•h1) 0^	 0$+ d0f

0	 0	 + 60r	 p	 r
} and

`	 respectively, The gurgles	 2ir- yl/^,	 21r- 0r	 represent to the Sri x. Or _ "rr	 0'- Ar r
order of the approximations involved the combined effects of (VII•93)
lunlsolar precession (since: they are referred to a fixed ecliptic)

Or	 Or * A0and hrttisolar tlrtlation in longitude since the fundamental

€ 55
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The secular brats In Wf, 0" and 2a fir, 0" are Identified by
Woolard with the lunisolat , precession of the earth's figure axis
and roladon axis respectively. The periodic terms - AO /I ^r^0 f
and = A¢ . A0r rare identified with file lunisolar natation of the
earth's figure axis and rotation axis respectively.

Note: in his paper Woolard uses ^r and cr to denote the
angles ^, O r and lie uses W and 0 to denote the angles f 0f,
Furthermore Woolard does not distinguish in his notation
between 0 0 , 0 0 and y'r f.0 j. using 0.0 for both.

In Wool► rd's paper, Poisson's equations apimar as equations
(30) oil 	 34. The solutions of their descendents, equations
(44) and (45) oil 	 47 and 48, provide the functions 00,
0 0 . Equations (19) oil 	 24 govern file motion of the tigurc
axis and their solution yields the functions t f. Of. Equations
(24) oil 20 govern the motion of the rotation axis and
their solution yields fire functions fir, Or, Equations (53) on
page 131 govern the correMlon terms Sw f , 80f, which yield
the solutions 01, Of from the solutions 0O 0 0 . The solutions
60f 60 f ;ire given by the expressions (54) oil 132. Tito
equations governing the correction forms 60, 60, are shown
by Woolard to the Larder of approximations Involved to be
obtainable directly from equations (53) for the correction
terms 60,50f by multiplying by (lie factor - (C ° A)/A.
Bence fire solutions 5^ r 80 r can be obtained directly front
e-presslo;rs (54) for 5 f fi0f 1%y snultipl.1 0 by (C-' <i)J,i
and ore given Iii expressions (55) oil page 1:32,

5 r - 
C'A 1 & 

f
	

(VII-94)

50 " = -.	 S0 f .	 (Vii-95)

Presumably motivated by the conviction that the motion of
the rotation axis In space is that which is observable by
astronomic means, Woolard tabulated the results of his solu-
tions for 21r - ^P, 0r, and -.stir, 4'0r In two locations in his
work. The first appears in Table 24 11, 135 ff, wi ►ich gives the
precession and natation In longitude and obliquity of the
rotation axis relative to the fixed ecliptic of January 0 1900
Greenwich Mean Noon (JD 2415020,0). The epoch for these
expressions is January 0 1900 Greenwich Moan Noon
(JD 2415020.0). Since the contents of this table t y re refer-
enced to a fixed ecliptic, the expressions therein reflect only
the motion of (ire equator spice the epoch, and as such
represent only the lunisolar contribution to precession and
nutation,

The second tribulation appears in Table 26 p. 153, which
gives the precession and nutation In longitude and obliquity of
the rotation axis relative to the moving ecliptic of date. The

epoch for these expressions Is also January 0 1900 Greenwich
Metui Notre (M2415020.0). Since the contents of tills lable
are referenevd, to a moving ecliptic the expressions therein
reflect the combined motion of (lie ecliptic and equator since
file epoch. Table 26 represents the iKfoct of general precession
and timation which Is tine sum of lunlsohrr precession and
notation, which perturbs only fire equator, plus planetary
precession and nutationr, which perturbs only the ecliptic.
Tabic 20 is generated froin Treble 24 by the addition of the
contents of Table 2 *5, P. 152, which contains the forms which
account for lire planetary perturbations to the ecliptic,

At the time of this writing the expressions for the nutation
of the rotation axis of Table 26 of Woolard's work constitute
the TALI standard series for the outallon and are reproduced
oil pages 44 and 4S of (lie r:rftlurrrrtcrr,t! ,Sulu 4ement to the
Asti-o noinf'al ['/Meng e-M lint/ the lttt ei-imn h'IMemerls on(I
A ntleal Almanac (146.1),

The ca.rth's trulation is driven by the gravitational torques
of the sun. and moon, and It is not surprising that the expres-
slous for the nutation find their most convenient representa-
tio ►r in terms of the angles aI a2 cc  ct,t n S where

CY, i C; ^ is the mean anomaly of the moon

^ 960 00' 16«'59 + 1325" 198 050' 503°79 7' I
33;'0''7'2 + 0.`051873

0l2 'n t' is the lnea ►t anomaly of (lie sun
t,'	 :3580 28' 33'.'00 + 99" 359002' 59;'10 T., 0:`547'2

0'.'01207'3

a3 	 F Is the mean argument of the latitude of tie moon

F	 11 ° 15' 03;'2- + 1342" 82°01' 30'' -547'-- l 1°567'2
0'.'00127'3

a - I.1 is the mean elongation of lire J110011 front tine sun

D .0 350044' 14;'95 + 1236" 307 006' S 1.'l 8T ° 5.'l 7T*-' +
0"0008T3

as	 fl is the mean longitude of the ascending lunar node

SZ = 259010'59"'79 r 5" 1.34"08'31'.'23T + 7;48272
0','00807"3

and where T Is measured in Julian centuries of 6525 days
from the epoch. January 0 1900 Greenwich Mean Noon.
(JD 2415020.0):

The nutrition series Is traditionally tabulated in terms of
amplitudes ,A1(7), 131(7), j = 1, 2, 3, . , N, and argument
coefficients ail, l = 1, 2, 3.... 5, u. such a way that the
nutation in longitude 60(7), reckoned positive to the east
along the ecliptic, and tiie nutation In obliquity, reckoned

^.	 ^[	 56
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positive if the obliquity is Increased, are given by expressions
of the form

N	 s
600	 AP) sin	 k11 alm

)^1	 fit

+ diurnal nutation In longitude 	 (VI 1.96)

N	 5

&CM a 'E 111m cos I ra 1111 aim

The diurnal. Motion. In the nutation was shown h1 section V
and Illustrated III V•3 of this work to arise from the fact
that the axis of figure ^3 and the axis of rotation co In general
depart from the axis of angular momentum L by the small
tingles p ,y and y respectively, Furthermore (lie Poinsol con•
structioll developed hl section V and illustrated in Figure V-5
of the work shows that the figure axis Ps and the rotation axis
cis make nearly diurnal rotations in a space-fixed frame about
the angular momentum axis moving oil the surface of the two
canes of apex angles 2 g and 27 respectively.

1 r	 t`1	 (1, Woolarel's theory for the r ► trtrttlUn of the minllorl axis.
Woolard's series for the nutation of the rotation axis Is given b1

+ diurnal nutation 
III
	 (VII-97)	 Table VIl.1.

T" VW1. Mutation sod*@ for the rotation axis (WoohW, Its)

Index period, a
1

a
2

a
3

a4 a
S

Amplitude Amplitude

J drays
k11 k12

'J3
k14

k1s
A

(0:0001 arc)
Û /

(0',OOR1 arc)

1 6798 0 0 0 0 1 -172327 -173.7T 92100 + 9,1 T
2 3399 0 0 0 0 2 2088 + 0.2T -904 + 0,47'
3 1305 -2 0 2 0 1 45 -24

4 1095 2 0 -2 0 0 10 0

5 6786 0 -2 2 -2 1 -4 2
6 1616 -2 0 2 0 2 -3 2
7 3233 1 -1 0 -1 0 -2 0
8 183 0 0 2 -2 2 -12729 - WT 5522 - 2,9T
9 365 0 1 0 0 0 1261 - 3.1 T 0

10 122 0 1 2 -2 2 -497 + 1,27' 21.6 - 0,6T
11 365 0 -1 2 -2 2 214 - O,ST -93 + 0,3T
12 178 0 0 2 -2 1 124 + o.tT -66
13 206 2 0 0 -2 0 45 0
14 173 0 0 2 -2 0 -21 0
15 183 0 2 0 0 0 16-mr 0
16 386 0 1 0 0 1 -15 8
17 91 0 2 2 -2 2 -15 + 0.17' 7
18 347 0 -1 0 0 1 -10 5
19 200 -2 0 0 2 1 -5 3
20 347 0 -1 2 -2 1 -5 3
21 212 2 0 0 -2 1 4 -2
22 120 0 1 2 -2 1 3 -2
23 412 1 0 0 -1 0 -3 0
24 13,7 0 0 2 0 2 -2037 - 0.2T 884 - 0.5T
25 27.6 1 0 0 0 0 675 + O.i T 0
26 13.6 0 0 2 0 1 -342 - 0.4T 183
27 9.1 1 0 2 0 2 -261 113 --0.1 T
28 31.8 1 0 0 -2 0 -149 0

29 27.1 -1 0 2 0 2 114 -50
30 14.8 0 0 0 2 0 60 0
31 27.7 1 0 0 0 1 58 -31
32 27.4 -1 0 0 0 1 -57 30
33 9.6 -1 0 2 2 2 -52 22
34 9.1 1 0 2 0 1 -44 23
35 7.1 0 0 2 2 2 32 14
36 13.8 2 0 0 0 0 28 0
37 23.9 1 0 2 -2 2 26 -11

38 6.9 2 0 2 0 2 -26 11
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TOW V#-1. Nu6@*m %@ $cw #w M- otl.a10 (WooWd , 1U3) (C *nuW)

Index 1'erlod, a , a
x

a
3

a
4 a s Amplitude Amplitude

days kl^
Al

t0",00 	 are) t0"0001 arc)k12
k/a k14 kIS^

39 13.6 x	 0 0 2 0 0 25 0
40 27.4 -1 0 2 0 1 19 -10
41 32.0 -1 0 0 2 1 14 -7
42 31.7 1 0 0 -2 1 -13 7
43 9.5 -1 0 2 2 1 M9 5
44 34.8 1 1 0 -2 0 -7 0
45 13.2 0 1 2 0 2 7 •3
46 9.6 t 0 0 2 0 6 0
47 14.8 0 0 0 2 1 -6 3
48 14.2 0 -1 2 0 2 -6 3
49 5.6 1 0 2 2 2 -6 3
50 1218 2 0 2 -2 2 6 -2
51 14.7 0 0 0 -2 1 -5 3
52 7,1 0 0 2 2 1 WS 3
$3 23.9 1 0 2 -2 1 5 -3
$4 29.5 0 0 0 1 0 -4 0
$5 15.4 0 1 0 -2 0 -4 0
56 29.8 l .1 0 0 0 4 0
57 26.9 1 0 -2 0 0 4 0
58 6.9 2 0 2 0 1 -4 0
59 911 1 0 2 0 0 3 0
60 25.6 1 1 0 0 0 -3 0
61 9.4 1 -1 2 0 2 -3 0
62 13.7 -2 0 0 0 1 -2 0
63 32.6 -1 0 2 -2 1 -2 0
64 13.8 2 0 0 0 1 2 0
65 9.8 -1 -1 2 2 2 2 d
66 7.2 0 -1 2 2 2 -2 0
67 27.8 1 0 0 0 2 -2 0
68 8.9 1 1 2 0 2 2 0
69 515 3 0 2 0 2 -2 0

e. The Astral lunation of the rotation axis, The diurnal
motion of the rotation axis w In space cart be seen front
V.4 to have an amplitude y where Equation (Vii-89) gives

y 29 !Z- A R	 (VII.98)

and where 0e is the amplitude of the Eulerlan wobble. The
angular rate of the motion of the rotation axis w about the
angular n,otnentum axis L in the space-fixed frame is given by
Equation (V•52) as w  + a.; namely, the sum of the earth's
spin angular rate (diurnal rate) plus the wobble angular rate,
Since the wobble angular rate or Is very small (435-day period)
we see that this motion of the rotation axis in space tins very
nearly a diurnal period.

inertial space we can see that the diurnal motion In space of
the rotation axis w produces a diurnal nutation in longitude
S ^.. with amplitude given by

=^ =C-A go
Surd sin 0 	A sin 0	 (VII-99)

and a diurnal nutation In obliquity Sera with amplitude given
by

Sara = 'Y  - 0,	 (Vil•100)

	

Referring to Figure V1I .1 and adopting the angular momen .	where _0 is the obliquity of the ecliptic. To establish the phase

	

tum equator as a slowly moving reference plane relative to 	 of the diurnal nutations we refer to Figure V-7 and see that

se



I
I`

CI1R1Ca1NAt' 
P411CW roQt

the body-fixed plane containing the vectors P, and w has it

geographic east longitude X. where

*tan- r tit

	

N,	 (VIl•101)
fit  I

and where HT ,x the 
n 

+ ltne2 specifies the body-fixed position
Of the Eulerlan axis, The right ascension of this plane In the
space-fixcd frame Is X0 + 0, where 0 Is Greenwich Sidereal
Time, Referring to Figure VII .1 we see that when

X" + K 0, it 	 (VII.102)

the displacement y, - y,, or equivalently & 0rd achieves its
maximum negative and positive values respectively and that
when

+	 ir , 3i	 (VII.103)

the displacement yr - y,, or b Ord vanishes. [fence we can set

C- 
A sin 0

A a,	 . cos (0 + Xc) (VI 1.104)

and by a similar argument we can set

baseline joust be obtained from the motion of the refcrvnco
axis by subtracting frond the motion of line reference axis In
space the motion of the reference axis relative to the
body-fixed frame.

Alternatively on a rigid earth the figure axis ^3 Is a
body-fixed axis and Its motion In space Is shared directly by all
other body-fixed axes such as Interferometer vector baselines,
If the figure axis Is chosen as a reference axis for the mutation,
then the motion In space of any other body-fixed axis such as
an Ioterferomotor vector baseline Is Identical to that of (lie
1lguro axis, For this reason, In computing the d facts of
nutation on the orientation In space of an Interferometer
vector baseline It is useful to have a theory for the nutation of
the earth's figure axis P3.

In Woolard's theory It Is possible to generate a series for the
,notation of the figure axis from his series (Table 26) for the
nuta,ilon of the rotation axis by

(1) Subtracting from the entries of Table 26 the terms of
the equations (55) p. 133 of Woolard's work,

(2) Adding (noticing the change In the sign of 50) to the
entries of Table 26 the terms of the equations (54)
p. 132 of Woolard's work,

The results of this procedure are presented in Table V1I.2
below,

. The diurnal nutation of the figure axis, The diurnal
Sera	 Ape sit (^ + ^) ,	 (V,11-105)	 motion of the figure axis e3 In space can be seen front

V•5 to have an amplitude Q^ _ y where R. Is the amplitude of
the wobble and

Now since p ,, < 0.2 are and (G- A)/A x 0.00328 we see that
taking 0 s:4 230 Implies that the diurnal nutations in longitude
of the rotation axis S Ord are less than

Sara <0;'0018 are	 (VII.106)

and that the diurnal nutations in obliquity of the rotation axis

Gerd are less than

Sera <0'0007 are.	 (VII.107)

f. Woolard's theory for the nutation of the figure axis.
Since even on a rigid earth the rotation axis w does not remain

a fixed in a body-fixed frame, the motion of the rotation axis in
space is not precisely shared by body-fixed axes such as
Interferometer vector baselines. In fact if the rotation axis is
chosen as a reference axis for the nutation, then the motion in
space of a body-fixed axis such as an interferometer vector

i

tF
A4

'f

?S

r
5

<

-y 
A 

A p^ .	 (VII.108)

Equation (V-18) and Figure V-3 show that the vectors w L
and a are all coplanar and so cite rate of the motion of the
figure axis e3 about the angular momentum vector L in the
space-fixed frame is identical to the rate of the rotation axis w
about the angular momentum vector L !it space-fixed
frame and so is also given by Equation (V-52) as w 3 + 0r . Just
as in the case of the diurnal motion of the rotation axis in
space this rate is the sum of the earth's spin angular rate
(diurnal rate) plus the wobble angular rate, and since the
wobble angular rate is very small (435-day period) we see that
this motion of the figure axis in space has a nearly diurnal
period,

Referring to Figure VII-1 and adopting the angular momen-
tum equator as a slowly moving reference plane relative to

g 
bra -
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ToW V0-2, NOWW" W*§ Mr IM NUrs We (WOOWd, M)

_._--------^..t^^,.^^ ^ ^^-- ^-_TAN.-ter, _ ^	 •:^:rr^.^

lndti l'erlud. ^1 *2 03 *4 a^ Amplitude Atnt plitodo1
J

..,.^.

411
,^/2 Ali kj4 Kj5 (0"00011 arc) (0".001 arc)

1 6798 0 0 0 0 1 »172293.1-173.7T 92090+9.17'
2 3399 0 0 0 0 2 2088 +0.27' •904+0.47'
3 1305 -2 0 2 0 1 4S -24
4 1095 2 0 -2 0 0 10 0 j
5 6786 0 -2 2 -2 1 -4 2
6 1616 -2 0 2 0 2 -3 2
7 3233 1 -1 0 -1 0 -2 0
8 183 0 0 2 -2 2 -12804.5-1.37' 5$49.6«2.97'
9 365 0 1 0 0 0 1261-3.17' -1.4 r

10 122 0 2 -2 2 -$01.4 + 1.27' 217.6-0,67`
11 365 0 -1 2 -2 2 214-0.57' -93+0,37'
12 178 0 0 2 -2 1 124+O.i7' -66
13 206 2 0 0 -2 0 45 0
14 173 0 0 2 m2 0 -21 0
15 183 0 2 0 0 0 16,0.17' 0
16 386 0 1 0 0 1 -15 8
17 91 0 2 2 -2 2 -15+0.17' 7
18 347 0 -1 0 0 1 x-10 5

19 200 -2 0 0 2 1 -5 3 w
20 347 0 -1 2 -2 1 -5 3 1
21 212 2 0 0 -2 1 4 -2
22 120 0 1 2 -2 1 3 -2 k
23 412 1 0 0 -1 0 -3 0 j
24 13.7 0 0 2 0 2 21990.27' 943.2.0.57'
25 27.6 1 0 0 n n 673 + 0,17' -9.7
26 13.6 0 0 2 0 1 -375.5-0.47' 19219 ;{
27 9.1 1 0 2 0 2 -291.8 124.3.0.17'
28 31.8 1 0 0 -2 0 -149 -118
29 27.1 -1 0 2 0 2 118.6 -51.7
30 14.8 0 0 0 2 0 60 - 116
31 27.7 1 0 0 0 1 8.6 -31
32 27.4 -1 0 0 0 1 -54.2 30
33 9.6 '-1 0 2 2 2 -57.9 24,1
34 9.1 1 0 2 0 1 -50.4 24.9
35 7.1 0 0 2 2 2 -36.9 15.8
36 13,8 2 0 0 0 0 28 0
37 23.9 1 0 2 -2 2 -27.2 -11
38 6.9 2 0 2 0 2 -3011 12.5
39 13.6 0 0 2 0 0 2S 0
40 27.0 -1 0 2 0 1 19 -10 'n
41 32.0 -1 0 0 2 1 14 A7
42 31.7 1 0 0 -2 1 -13 7
43 9.5 -1 0 2 2 1 -10.2 $
44 34.8 1 1 0 -2 0 -7 0
45 13.2 0 1 2 0 2 7 -3
46 916 1 0 0 2 0 6 0
47 14 8 0 0 0 2 1 -6 3
48 14.2 0 -1 2 0 2 -6 3
49 516 1 0 2 2 2 -7.2 3
50 12.8 2 0 2 -2 2 6 -2
$1 14.7 0 0 0 -»2 1 -5 3
52 7.1 0 0 2 2 1 -6 3
$3 23.9 1 0 2 -2 1 5 -3
S4 29,5 0 0 0 1 0 -4 0
55 15.4 0 1 0 -2 0 -4 0
56 29.8 1 11 0 0 0 4 0
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and
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i

aN where C/A ft 1.
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T" VM•x. "utotlon 	 for IN tip m oxis (Woolen-4, 1"3) (Coniintod)

Inde% Period, of .02 4`3 C'4 as Amplitude Amplitude

J days
k11	 4,ix kla 1'14 kjs t01,10001 arc) (0".00111 arc)

67 2619 1 0 -2 0 0 a 0
68 619 2 0 2 0 1 -4 0
$9 9.1 1 0 2 0 0 3 0
60 25.6 1 1 0 0 0 -3 0
61 9.4 1 -1 2 0 2 -3 0
62 131 -2 0 0 0 1 -2 0
63 32.6 -1 0 2 -2 1 -2 0
64 13.8 2 0 0 0 1 2 0
0 9.8 -i -1 2 2 2 -2 0
66 7.2 0 -1 2 2 2 -2 0
67 27.8 1 0 0 0 2 -2 0
68 8.9 1 1 2 0 2 2 0
69 5.s 3 0 2 0 2 -2 0

Inertial space we call see (lint il ie diurnal tuotion In space of
the figure axis 1.1, produces a diurnal nutation In longitude
6w,, with amplitude given by

	SiG	
pf ^.y = A,, 

^^ ^ ) (VII.109)
tr► 	 sGt 0	 sin 0	 A

and a diurnal nutation it obliquity Sc,,, with amplitude given
by	

j-

	

8C	 - pe - y	 p., 	 (VI1.110)
A

where 0 is the obliquity of the ccliptic.

By referring to figure VII.1 we see that the nutation

7t` yj, or equivalently 6 ^ f(j is opposite In phase to the
nutation yr -  yt, or 6 bird as a consequence of the fact that the
figure axis ^'a and the rotation axis w lie oil opposite sides of
the angular rtromentutm vector L. hence by arguments similar
to those used In the case of the rotation axis we can establish
the phase of the diurnal notations of Hie figure axis as

& old - sin —0 1 2  A ) cos (0 + Xe) (VII-I I I )

l►, Comments on hloolartf s theor). It Is apparent from
`fables VI1.1 and ViI.2 that the nutritious In Woolard's series
call be exhaustively grouped Into mutations whose period
exceeds 91 days, which are normally referred to as tite long
porlod nutritious, and nutations whose period Is Mess than 35
days, which are normally referred to as tiie short-period
notations.

Apparent sidereal time is referenced to the mutated.

equinox. If the rotation axis Is chosen as the reference axis for
nutrition then consistency requires that the rotation equator
be used to provide tine reference equinox y r, for apparent
sidereal time. From Equations(V.II .10a) (VII.106) we see that
tills equinox suffers diurnal mutations In longitude of the order
of 60 "'I ft 0."0018 arc which correspond to diurnal in
equalities of apparent sidereal (line of tine order of 0.12 rusec.
This diurnal hi equality In apparent sidereal time is usually
Ignored In most present-day applications of the theory.

'file ,notion M % in * Irn 2 of Hie rotation axis w relative to
the figure axis ^3 in tie body-fixed frame Is composed of the
suni of

(1) A geophysical or Eulorian (torque-free) component Me
excited by a variety of Internal processes oft the earth
and which is unpredictable on the basis of present-day
geophysical knowledge.

(2) A non-pulerlan lunlsolar component nrp = tnpr +hnrra
excited by the gravitational torques N of the sun And

(VII-I 12) the moon acting on the earth, often referred to as the
"dynamical variation in latitude," and which is pre-
cisely predictable, Expressions for tnp ► and niP2 are
given in Equations (V-94) and (V•95) respectively.
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The Eulcrlait minion has an amplitude of ilia order of 0"2
are maximum and ilia lunlsolar motion has oil 	 of
0."6178 are maxims nt. The lunissolor motion or cite dynamical
variations In latitudo is a retrograde .notion with a nearly
diurnal. period. Tice center of Its diurnal circular path
corresponds to the Culerlalt position of tine rotation axis In the
body-fixed frame as ahown h1 Figure V•8,

Tho mean amplitude of the lunisolar mollon or dynamical
variations lit latitude 11r Is roughly Cat,) * 0.'0089 arc and so
we see iliac lit body-Kod *%tno tiro lunholar motion of the
rotation axis can be described as motion around abodyfixed
come of mean apex angle 20p) r* 0.'0178 ore. fit the absence of
gcophysically induced polar motion or Gulorlan motion ilia
precession of tine earth's rotation axis w and figure axis ^a hx
inertial space call be visualized by a Poinsot construction lit
manner described by Woolard oil 31 and illustrated below lit
Figure VII-2,

Figure VII-2, The Poimot construction appropriate for Ow descrip•
lion of the motion of Ow earth's figure axis in Inertial
space or lunieolar precession. The beab vector E s is
normal to ft ecliptic, U is Ow mean obliquity of the
ecliptic referenced to the equator of rotation, and

r# Is^ 
manan ampUtuds of ere lunleol.r polar

The lunisolar body-fixed cone of moan apex Angie 20p)
rolls without slipping on tine Interior of a space•fixed Gone
centered oil tine pole of file ecliptic P3 of apex angle 20 where
0 is Qv-- obliquity of the ecliptic and with the rotation vector
w occupying the title of contact 'between the two cones, Tile

rotrogrado lunisolar motiotn of the bodyfixod cane drives It In
it 	 sense around the Interior of ilia space-fixod cone.
lit Ilia absence of geophysically induced polar motion or
eulerian motion tiro t uiman position of ilia rotation axis 1n
ilia body*fixed frame coincides with the figure axis t3 , Ilonco
In Figure VII.2 tea occupies tine axis of the bodyflxed colic.
Toking d m 23.'473 (Stacey 1977) the diurnal rotation of ilia
bodyflxod cons transports to and w around the space fixed
cona In about 26,000 years,

Figure V11.2 Illustrates rho fact that during tills motion the
angle between R3 and 8'3 is systematically smaller than the
anglo between R, and w by ilia amount tPJ,? * 0.'0089 are.
'Chic is ilia kinematical reason for the fact that the mean
obliquity of ilia ecliptic for ilia figure axis ?'a is less than the
moan obliquity of the ecliptic for the rotation axis w,1phis
kinematical construction accounts for (lie existence of the
constant term of -0.'00868 arc appearing lit 	 (54)
p,132 of Woolard's work involving the transformation from
tine obliquity of ilia rotation axis to the obliquity of the figure
axis,

The secular terns of =0.'00043`1' appearing lit equations (54)
p,132 of Woolard's work Involving the transformation from
the node of the rotation equator to the mode of ilia figure
equation has ber±.it ottawn by Murray (1977) to be spurious,
Kinoshita et ol, (1977) and Kinoshita (1977) have shown ht, i
tine spurious secular tern identified by Murray and others like
It appearing fit work arise from Incorrect mothe.
motical procedures.

Woolard's theory of the nutation is widely regarded as
being Inadequate for present-day requirements, Ci^^.'' the
theory treats a rigid earth and there are Indications thu: ads
restriction Is responsible for errors lit the predicted mutation of
tine order of 0.'02 arc, This is Insufficient accuracy for the
requirements of modern observational techniques, In particular
long baseline interferonietry,

Furthermore It is apparent that the Instantaneous rotatloo
axis w Is not directly ob 4 ^ w1:able, Tills conclusion follows from
the fact that any attempt to observe the vector w necessarily
requires observations extending over a finite Interval of time,
which for the classical methods is typically several flours lit
duration and often as long as 12 or 24 Hours, during which
thnc ilia vector w will complete a significant portion of Its
diurnal circuit lit the bodyfixcd frame. The result of this Is
that the aids which is observed lit Is not w but an axis
coinciding with some mean position of w averaged over the
observing Interval.

t. 71te revised theory of the natation. In 1977 at the IAU
Symposium No. 78 oil 	 and the earth's potation, a

02
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working group was convened wliose task It was to revise the
theory of the earth's nutation and to recommend a new series
for the earth's nutation to be adopted by the, rAU at its 17th
General Assembly In 1979 in Montreal, Canada, At the (line of
this writing this group has completed its task and Its
recommendations to the IAU General Assembly are two-fold
Q. G. Williams personal communication): (I) a change of
reference axis, (11) the computations of earth nu?ntions for a
deformable earth,

/. The change of reference axis, Since all attempts to
observe the present nutation reference axis w invariably yield
a mean position for w, averaged over the finite observing
internal in both the body-fixed frame and the space-fixed
frame, it Is recommended that the revised theory of the
nutation make explicit recognition of this fact and replace the
instantaneous axis w with a new reference axis defined
explicitly as the mean position of w when averaged over Its
predictable (Le,, driven by external gravitational torquesW)
diurnal motion T17 The new reference axis will be given a
name to distinguish it front others with which It might
potentially become confused. Suggested names include 'celes-
tial reference pole," "mean. diurnal axis," "Culerlan pole of
rotation" and In Section 11 of this document it has been
referred to as the "spin axis,"

Tho new reference axis is most precisely described nnatlte
maticaliy. before doing so we require the result of a small
Itunma: we wish to show that if the matrix M is an orthogonal
Unnsformation matrix representing a spatial rotation then the
matrix if M7', where the dot "•" denotes differentiation with
respect to time, is antisymmetric. The proof of this is as
frfiows:

Since M is orthogonal MT M-I and since MM-1 =l
wliere ! is the identity matrix we finve MMT -1. Differentiat-
ing with respect to time gives

[A1MT ] = hMT + M1Vfr = 0

[kMT ] T

MMT _ - [MMT ] T

and M MT is antisymmetric. Q.E.D.

The transformation of the components of a body-fixed
vector denoted r,, to the components denoted r. of the same
vector viewed In the space-fixed frame Is

rs a P N S Wr►,

where the matrix:

P	 represents the precession of the reference axis of the
body-fixed coordinate system.

N	 represents the nutation of the reference axis of the
body-fixed coordinate system

S	 represents the net rotation (spin)about the reference
axis of the body-fixed coordinate system (UTI ).

W	 represents the orientation of the reference axis within
the body-fixed coordinate system (polar motion),

In reality, observations are trade in a bodyflxed frame of the
body-fixed components r t, of a vector (the direction to a
quasar or a star) whose components In the space-fixed space
frame x,, are considered to be constant,

r  = WT S7' NT yT rs .

The body-fiyed motion of the quasar or star is given by

tb = r dW " S7' 1yT f r + W T S NT ^i7^ ^ W T ST _ PT

dr
+ Wr' ST NT T1 r, + WT ST N" P7' dts (VII-I IS)

dt J

Note: Equations (VII-113) and (VII-I14) deal explicitly with
the components X, of the vector rs and the components rb of
the vector rb and so when differentiating with respect to time
there is no need to distinguisli between time derivatives taken
in the body-fixed frame and time derivatives taken In the
space-fixed frame.

If we consider the case where drs/dt = 0 which corresponds
to a constant space-fixed direction and is achieved in practice
by removing effects of aberration for sources exhibiting no
proper motion, then Equations (VII-113) and (VII-11S) give

drb	
NT PT + WT dS

T NT PT + WT ST d1V^ PT
dt

[dWT ST
dt	 dt	 di

T
+WT ST NT ! PNSWrb
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which call the Written as
0" - IVx' S ' NT 

t 
P At S IV	 (VII-126)

!i,	 d lt^ 7' IV + 
IV r 

dSx' 
S IV + I ig Sq' 

dN't' 
N S IV

c
71t 	 d 	 dt	 tit	 and are all antisytmuetric (Goldstein 1950, pp. 124 fly,

+ Ittt' 
S". N" 

P
P V S IV

J r
	 (VII-I 17)	

The Instantaneous rottation vector w is given by^ 
fit	

w n1v + ns +Sts + Sit,	 (VII-I27)
Each terin In the square bracket. of Equation , (VII-117) Is
either all 	 matrix of the form AfAt7. or is it	 and consists of the vector suns of the separate rotation rates
similarity transformation oil 	 a matrix. Since It is the	 due to polar motion, split, mu(ation, and precession, The
property of similarity transformations that they preserve 	 components of these separate rotation rate vectors hi the
antisymmetry of matrices, we conclude that all four terms in 	 bbd),-fixer! coordinate frame	 ex ea are given by Equations
the square brackets of Equation (VII-I 17) are anllsymmetric	 (VI 1•119) —(V11.126).
matrices and so Equation (VII-I17) can be written !it
form as	 The magnitudes of the rotation rates III

	 (VII.127)
are of the order of

drG

dt	 IV + V?,,s + SAN + ap) X r% (VII-118)

where

(1) St ty is a polar motion or wobble rate vector given by

n!`,
e +0"' a +O%V a

W	 2:#	 h	 31 
F. 	 12	 3

(Vl1-119)

(2) Sts Is a spin rate vector given by

ns = 02 3 ea + 
p 11 c2 + 0 1 2 e3 (VII-120)

(3) "A' 	 a nutation rate vector given by

n" O^ e1 +O ĥ e2 +O hs e 1 (VII-12 1)

(4) np is a precession rate vector given by

Sir = O1 3 a t + OP31 e2 + 0120 3 (V11-1.22)

and where the matrices 0 1V 04 ON O P are given by

0 tv ^ dW7' Its
dt	

(VIIR123)

-,ta^I __ 2 X 10` 13 raid see p maximum

flv l ;:ts 7,29 X 10 rad sce'h

nv Inl,I ^,-s 7.9 X 10.12 rad see"

and the vector relationship of Equation (VII-1 13) is illustrated
III 	 VII-3.

n

i^

06 = 1Vr 41fdt S IV	 (V11-124)

T
ON IVT ST ddt JVS IV	 (VII-1,25)

41

Figure VII-3. The vector relationships pertinent to earth rotation.
The Instentanoous axis w executes a diurnal circuit in
a bodVAxed hams about the EuWan rotation axis wo.
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In Woolard's theory of the mutation the vector w is the
reference axis. The small vector nN + Sgt, represents the
diurnal dynamical variations fit

In the revised theory of (lie nutation the vector w o Is the
reference axis where

wo c W - SZN .__ 521+ ,	 (ViI.128)

Front their definition It can be seenthat the vectors i21V and
n,, tare rotating diurnally In the body-fixed frame and so wo
coincides with the mean position of w when averaged over as
diurnal circuit, The tangle between w and w e is of the order of
0"02 are,

The small vector SZ ia, represents Cite small rotation rate
arising as it result of the slowly varying position of w within
the body-fixed frame dine to geophysical causes other than
external gravitational torques, The angle between the split
vector 11 and coo Is of the order of 5" X 10- 4 are luaxinntin,
and so we see that tine reference axis of the revised nutation
theory lies very close to the split vector, This is n convenient
choice of` reference axis for It coincides with the general
conception of the earth's motion its consisting of a rapid spin
about all axis which is In turn changing direction slowh v fn
bath the bdelyfixed frai ne and the space-fixed frame.

The new reference axis of the revised nutation theory also
has the advantage of removing the diurnal oscillations of the
position of the reference equinox oat the rxed ecliptic, Since
wo coincides with the mean diurnal position of w it follows
that the equator corresponding to wo coincides with the mean
diurnal rotation equator or the mean position of the diurnally
varying rotation equator of the vecto. w (Figure VII-1), If yo
is the ascending node out the fixed ecliptic of the fundaitnerntal
er..)ch oil 	 nncan diurnal rotation equator it is clear that ye
coincides with rho rnnean position of yr and so can be Identified
with yt, . Since the angular momentum vector L and the
equinox yl, are slowly moving In it frame, we see
that by adopting the new reference axis we remove undesirable
diurnal tnonunifor ►nin es of the order of 4,12 milliseconds fit
the definition of apparent sidereal time.

This principal advantage of adopting the new reference axis
is that it is all axis, In a body-fixed frame It lies at
the center of the quasicircular diurnal paths of the stars inn the
sky. Apart front slow .Culerian motion tine vector wo is a
body-fixed vector and its nutation In space will be nearly
Identical to the figure axis es,

k. Vie nutation series for a deformable earth. A theory of
the nutation for a deformable earth has been developed by

Kinoshita ct al, (1979) using the Molodenski 11 carth model
(Molodenski 1961) and based oil file accurate rigid earth
theory of the of Kinoshita (1977) with appropriate
modifications ,^ ^Ilr , for file elastic yielding of fine earth, The
earth model Molodeuajki 11 has it liquid cutter core and it sollti
Inner core with radially varying elastic constants,

'File modirications to the rigid earth theory are descrNA
briefly by Kinoshita et al, (1979) as follows, For each 0rcolar
component of mutation with angular frequencyArl

tl()1

	

N!	
c!t	

(VII.129)

where

01	 .Kit at(t)
r^ t

is the so-called argument of the nutation (Kinoshita 1977), a
theoretical ratio, (alao)NI, is computed for the amplitude of
file nutation for the de.formable earth to the .amplitude or the
nutation for the rigid earth for each mutation frequency NI.
This ratio is computed by it 	 formula,

41.15 	 13	 (VIi.110)

012159 - loop 1w
a

= 1 +0A 124 [0 - 4.1] / (VII•131)

	

(a2o) N!	
W3

where w„? is the angular rate ofcarth rotation about the figure
axis and the numerical constants fit formulae are derived
from the Molodenskl It earth model.

Kinoshita et al, (1979) then give the amplitudes of nuta•
lions lit longitude AON and _nutations in obliquity 

AON
/
 
for

the Molodenski 11 "real (' earth in terms of the corresponding
amplitudes of nut;ations in longitude AOR/

 
and nutatiom in

obliquity D0§
1 

for the rigid earth as

oaf 1 sin 0 = — [(7a
`I + dots sin 0

	

N2	 o/N• (a0)—N 
I	

N!
A 

	

a F14	 (^ 1^ AO'R (VII .1 L)
L 0 Jv1 1°0 J N!	 >

Q =
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1	 1

Fl a 	 + 	 AOR (VII433)
C
(7̂a)N
	 (W11O_)_iV11 Nl

1

Using this procedure 'Kinoslilta et al. (1979) have generated
the fo'llowhig notation series for the figure axis P,3 of it deform•
able earth whose irroperties are those of the model "Moloden-
skille' This series has been reconiinendud to the TAU for
adoption at the 1701 General Assembly in Montreal In August
1979 and Is Nremited 

fit 	 VII-3 below. The fundamental
epoch for this series is 12000,0 [JED 245154S.01. The vari-
able TIs measured fit Julian centuries front the epocli.

1. Diurnal t utations in the revise(l theory of 1he titration,
The diurnal i'notions of the figure axis in the revised theory of
the nutallon are essentially identical to the diurnal motions of
the figure axis in Woolard's theory of the notation, This can be
seen by combining figures V-8 anti Vi1-2 and ..representing the
lunisolnr Motion of Figure ViI-2 in the presence of gcopliysi-
cally induced polar motion or pulerfan motion, This is shown
below fit 	 V11.4,

In this case the body-lined hinisolar cone is centered oil
axis occupying the Culerian pole position, its 

call 	 seen in-
Figure V•8. The lunisolnr body-fixed cone ofnican apex angle
200) -'.%t 0"0178 are rolls without slipping on the intert,ar of 0,10
space-fixed cone of apex angle 2 n, wlicre Q is the obliquity of
the ecliptic, The rotation :axis w occupies the litre of contact
batween the two cones and the motfov,, is retrograde its sltown
fit V-8, Tice result of Otis motlgn is the steady retro=
grade progression of co about %3 with it period of dearly
26,000 years.

Figure V114 indicates clearly that the figure antis ca ntoYe$
In it prograde sense around the axis w e as a result of retrograde
inotion of to around tiie lunisolnr path fit the body-fitted
franie. The figure axis 'e'3 Is moving In it prograde sense on a
colic of apex angle 29" where RC = j Kiiel.

It follows that the forittvNe (VII-11 i and (VI t-11;x) MLI

serve to describe the diurnal notation in ,°ltitutle wid obl.ig.
uity fit the revised tltm, ,y of the nutation aL welL

ORIGjNRL Q^A^j^
of POOR

Flours VITA The spow-fixed dlurrat wM%, n of the earth's noun
axle % wile! occure as a result of the lurrleoler polar
motion i x whenew tlMre M s naneerrMhltts oaophVe-
WOV Induced or Eulerten polar notion nP,.

C. The Effect of Saud Earth Tides on Earth Rotation

1. Tidal perturbations to the earth's inertia tensor, Me-
mentary considerations are sufficient to show (Stacey 1977,
pp. 90 A) that the tidal perturbing force per unit mass ft(r)
acting (ltrougliout the body of the cartil due to a celestial
body of niassAf at it 	 R front the earth's center of mass
pan be expressed as the negative gradient of it 	 potential
Ur(r) Its

fr(r)	 - VU,(r)	 (VII-134)

where
It is also of interest to observe that do reference axis wo is

slowly moving in tiro space-ffxed franio as indicated by Figure
V114, In die, absence of Etdoriiin motion we coincides with ca
in F*Igure Vll-1

Cr(r) _ Of
	 r 	 (cos 0) (VII-135)

R	 ^r 1
11=2
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T" VN-3. fl Wkm wi" tow N» flpun amla of f1M MokmWu 11 N dah wip 	 o wlh waodN (Mmoh is et N.,1979)

	

a	 C#	 a	 a	 Amplitude	 AmplitudeIndex	 Period,	 1	 2	 3	 4	 5 11J	 JaY 	
4,/1 	 k/2	 "13	 k14	 415	 (0",0001 are)	 (0. 001 fire)

1 6798.4 0 0 0 0 1 -172058-1742.2T 92044+8.97'
2 3399.2 0 0 0 0 2 2063+0.IT -895+11157'
3 1305.2 -2 0 2 0 1 46+0.OT -24+0.OT
4 1095,2 2 0 -2 0 0 11 + UT 0+0107,
5 1615.7 -2 0 2 0 2 -3 + 0,07' 1+ 0,07'
6 3232.9 1 -1 0 -1 0 -3 +OAT 0 + O,oT
7 6786.3 0 -2 2 -2 1 -2 +- UT I + 0107"
8 943.2 2 0 y,2 0 1 1+ 0.07' 0+0,07'
9 182.6 0 0 2 -2 2 -13152 - I.ST $719 - 3.17'

10 365.3 0 1. 0 0 0 1411- 3AT 49 - OAT
11 121.7 0 1 2 -2 2 -515 + 1.2T 224 - 0.67'
12 365.2 0 -1 2 -2 2 217 - 0.57' -95 + 0,3T
13 177.8 0 0 2 -2 1 129+0.IT -70+UT
14 205,9 2 0 0 -2 0 48 + 0,07' 0 + o.or
15 173.3 0 0 2 -2 0 -22+UT 0+UT
16 182.6 0 2 O 0 0 17-0,17' O+0.07'
17 386,0 0 1 0 0 1 -1$+0.07' 8+ UT
18 91.3 0 2 2 -2 2 -15+03T 7+0,07'
19 346.6 0 -1 0 0 1 -12 +• 0,07' 6 +OAT
20 199.8 -2 0 0 2 1 -5 + 0,07' 3 + UT
21 346,6 0 -1 2 -2 1 -5 + UT 3 + UT
22 212,3 2 0 0 -2 1 4 + UT -2 + 0,07'
23 119,6 0 1 2 -2 1 4 + UT -2+0107,
24 411,8 1 0 0 -1 0 -4 + 0,07' 0 •+•OAT
25 131.7 2 1 0 -2 0 1+0.07' O+UT
26 169.0 0 0 -2 2 1 1+0.07' 0+UT
27 329,8 0 1 -2 2 0 -1 +OAT 0 + UT
28 409.2 0 1 0 0 2 1+ 0,07' 0+ O.OT
29 388,3 -1 0 0 1 1 1 +UT 0+• 0.or
30 117,5 0 1 2 -2 0 -1 + 0.07' 0 + UT
31 13.7 0 0 2 0 2 -2260 - 0.2T 972 - 0.5T
32 27.5 1 0 0 0 0 709 + 0.1 T -7 + O.OT
33 134 0 0 2 0 1 -384 - 0.47' 199 + O.OT
34 9.1 1 0 2 0 2 -299 + 0,07' 128 - O.1 T
35 31.8 1 0 O -2 0 -157 + O,OT -1 +OAT
36 27,1 •-1 0 2 0 2 123 +OAT -53 + O.OT
37 14,8 0 0 0 2 0 63 + UT -2 + 0,07'
33 27.7 1 0 0 0 1 63	 O.IT -33 + UT
39 27.4 -, 0 0 0 1 -58 - 0.1 T 32 + O,OT
40 94 -1 0 2 2 2 -59 +OAT 25 + 0.07'
41 911 1: 0 2 0 1 -51 + o.07 26 + O.OT
42 7.1 0 0 2 2 2 -38 + O,Or 16 + 0,07'
43 13,8 2 0 0 0 0 29 + O.OT -1 +OAT
44 23.9 1 0 2 -2 2 29 +OAT -12 + UT
45 6.9 2 0 2 0 2 x-31 + UT 13 + O,OT
46 13.6 0 0 2 0 0 26+O.OT -1 +OAT
47 27.0 -1 0 2 0 1 21 +UT -10+UT
48 32.0 -1 0 0 2 1 15 + UT -8 + UT
49 31.7 1 0 0 -2 1 -13 + O.OT 7 + O.or
So 9.5 -1 0 2 2 1 -10 + UT 5 + UT
$1 34.8 1 l 0 -2 1 -7+UT O+O.OT
52 13.2 0 1 2 0 2 7 +OAT -3 + O,OT
53 .14.2 0 -1 2 0 2 -7+UT 3+0,07
54 5.6 1 0 2 2 2 -8 + o,OT 3+ O,OT
55 9.6 1 0 0 2 0 6+ O.oT o+ OAT
56 12.8 2 0 2 -2 2 6+UT -,3+UT
57 14.8 0 0 0 2 1 -6+O.Or 3+OAT
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T" V". Mrt Om mrin !or #w hr" axis M #W AAo"wnki H deform" awIh 'nodN (KWmhitm M N., I9?9) (mi )

Index Period, Of
! a2x 9 0'4

a s Amplitude Amplitude
ell LT/

J clays
kjl "12 "Ia 1;14 ISIS (0°0001 are) (0':0001 lire)

5$ 711 0 0 2 2 1 -7+0.07 3+0107
59 23.9 1, 0 2 -2 1 6 + 0.07" a3 + 0.07'
60 14.7 0 0 0 -2 1 -5 + O.OT 3 + 0.07'
61 29.8 1 -1 0 0 0 5+O.OT 0+0.07'
62 6.8 2 0 2 0 1 -5 + 0,07' 3+ 0.07'
63 15,4 0 1 0 -2 0 -4 + 0,07' 0 + 0107
64 26.9 1 0 -2 0 0 4 + 0,07 O+ 0,01'
65 29.5 0 0 0 1 0 -4 + O.OT 0+0107,
66 25.6 1 1 0 0 0 -3 + 0.07' 0+0.07,
67 911 t 0 2 0 0 3+0.07' 0+0.0T
68 9.4 1 -1 2 0 2 -3 + 0,0T 1 + O.OT
69 9.8 -1 -1 2 2 2 y3+O.OT 1+0.07'
70 13.8 -2 0 0 0 I -2 + 0M 1 + O,OT
71 5.5 3 0 2 0 2 »3 + O.OT 1+ 0,07
72 7.2 0 -1 2 2 2 «3 + 0,0T 1 + 010T
73 8.9 1 1 2 0 2 2+0.07 -1+O.OT
74 32.6 -1 0 2 •-2 1 -2 + 0.07' 1 + 0,07'
75 13.8 2 0 0 0 1 2+ O.OT -1 + 0.07'
76 27,8 1 0 0 0 2 -2 + 0.0T 1+ O.Or
77 9.2 3 0 0 0 0 24.0.07' 04.010T
78 9.3 0 0 2 1 2 2+0.07' -1+0.0'7'
79 27.3 m1 0 0 0 2 1 + O.OT M1 + 0.07'
80 1011 1 0 0 -4 0 -1+0,07' 0+ 0,07'
81 14.6 -2 0 2 2 2 1 + 0,07' -1+0.021
82 5.8 -1 0 2 4 2 -2 + 0.07 1 4.0.07'
83 15.9 2 0 0 -4 0 -1 +O,OT 0+010T
84 22.5 1 1 2 -2 2 1 + UT -1 + 0,0T
85 5.6 1 0 2 2 1 r-1 + O.Or 1+ 0,01'
86 7.3 -2 0 2 4 2 -1+01071 1 + 0,07
87 9.1 -1 0 4 0 2 1+ O.OT 0+ 0.07'
88 29.3 1 -1 0 -2 0 1 +O.OT 0+.0.07'
89 1218 2 0 2 -2 1 1 + O.OT -1+0.07'
90 4.7 2 0 2 2 2 -1+O.OT 0+0107'
91 9.6 1 0 0 2 l M1 +0.07' 0+0,0T
92 12.7 0 0 4 -2 2 1+ 0,07' 0+ 0,07'
93 83 3 0 2 •.2 2 1+0107' 0+0,07'
94 23.8 1 0 2 -2 0 -1 + 0,07' 0 + 0,07'
95 13,1 0 1 2 0 1 1+0"07' O+ ur
96 35,0 -1 -1 0 2 1 1 +OAr 0 + 0.07'
97 13.6 0 0 -2 0 1 -1 + 0.07' 0 + 0,0T
98 25.4 0 0 2 -1 2 -1 + O.OT 0 + 0.07'
99 14,2 0 1 0 2 0 -1 + O.OT 0+ O,OT

100 9.5 1 0 --2 -2 0 -1 + 0.07' 0 + 0107
101 1.4.2 0 -1, 2 0 1 -1 + 010T 0 + O,OT
102 34.7 1 1 0 -2 1 -1+0107 0+o,0T
103 32.8 1 0 -2 2 0 -1 + 0.07' 0 + 0.07
104 711 2 0 0 2 0 1+0.07' 0+0.07'
105 4.8 0 0 2 4 2 -1+0.07' O+O,OT
106 27.3 0 1 0 1 0 1+ UT 0+ 010T

and where
	

(3) P,, (cos 0) is the L.egendre polynomial of degree n.

(1) r= lrl<o.	 (4) C is the gravitational constant.

(2) 0 is the zenith angle of the celestial body as seen by	 Figure V11 .5 Illustrates the geornetry of the situation. The
the observer at r. 	 geographic coordinates of the observer are Oo Xo and the
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Flpure VII-5. Tim definitions of the geonutd h quenthiw used In
the dov*kWnwnt of On theory of the @MW oarth tides,

geographic coordinates of a line Joining the earth's center of
,pass and the celestial body of mass At are 00, x► , ► '

The addition theorem for spherical harmonics allows its to
write the expression for the tidal potential U,(r) in terms of
the geographic coordinates Ao No, On xn,,

Prr(caa 3) : 1'rr(Cos 011,) pit (Cos 00)

 ]
(►t om 1!1)!

)1 ]-", (Cos

►r	
N	 tt,	 ,, (	 I,►

)

P'#'(cos Qo) cos m(J^rrr " X o) , r 4 a , (VII-136)

Forthe still the moon (rjR0 ) G < I and (rlR ^) < < I
and sufficient accuracy Is ,t`sutilly aci ►teved in Equation
(VII.135) by truncating the suai_at n = 2.

	

Ut(r) = . G— 1`2(ec:0)	 u , (VII-137)
R

which in geographic coordinates 00 No, d,► , NM , becomes

Ut(r) = _ GA ^r2 IP2(COS 0 ►a ) P2 (cos 0e)

z

t (2 + ►n)! 2	 ) P211
	 0

„ ► 	
)

i	 cos nt(Arr► • 'NO)	 r < a	 (VII.138)

ORIGINAL PACE I3

OF POOR QUALITY

For a celestial body Such as the surf or the moon whose
celestial coordinates are changleg relatively slowly we see titat
the argument Irt(x", , N O) Is periodic In an interval of approxi•
mately nrl days. The term in ti I gives rise to the diurnal tidal
variations and the term in m 2 gives rise to the semidlornal tidal
variations,

The tidal deformations of the earth cause perturbations
t"'rtj to the elements of the earth's Inertia tensor which cart be

calculated using MacCullagh's formula. Written out in Tull
Equation (VII.138) becomes

Ut(r)	
("mr,

I (Cos (l,r► ) P (cos oo)

G 1l2(cos 0,,,) P2( cos Oe) coOr ►, " Nd

+ 2 P2(cos Or, ► ) /'2 (COs 0 0 ) cos 2(X►rt - Xb)^

	

r < a	 (Vil-139)

	

This expression call 	 rewritten

Ur(r) ., GAO [PO(C-oso i„)1'z(COS OU)

+ 1 P2(cos 01 ►,)P2'(cos O o) cos X.. Cos Ap

1' I2 (Cos O rn )P21 (Cos O o) sin X,r, sin ?to

+ 12 P2 (COs O», ) P2 (cos 0 ) cos 2 N,,, cos 2 NO

+1^2 
1?'(COS O n,) P2(cos O o) sin 2 Nil , sin 2 No ,

	

r < a ,	 (VII.14O)

which in turn can be cast In the form

	

2	 2

Ut(r)	 1R) fit (COS Oo) [Cl COS "I No
,nmo

N

r

+ Sit ► sin in X0 ^ , r < a ,	 (VII-141)
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GAO 0
= ^ r;a P2 (cos Q ►n)

Sz - 0

2	 — ' 3R3 P2(cos O ►►r ) Cos X ►►t

Sl	 GA.tr2 P2(cos Q ►►t) silt Ain
3R3

q2	
GAIr2 P2 (cos 0 )cos 2
I2Ra 2	

fit
	 ►► t

S2	 G302 1i2 (cos 0 )sin 22	 12R 	
x	 ►rt	 rn  `

(VII-142)

	It then follows front 	 VI.2 and specifically from
Equations (VI-74) — (VI.78) that

k2Mas
rat e = ^-	 P2 (cosO ►„) sin 2A►^

6R3

(VII-143)

2k A1as
2r^ a =	

2	
P2 (cos O ►►t ) cos X►n

3R 3

 above five equations ht six, unknowns are supplemental
witli the additional equation

r'kre +r22a fr33c = b (TrT)rrd”	 (VII.148)

where 5 (T .1)' O Is the tidally induced variations In the trace
of the inertia tensor of the earth,

It has been shown by Darwin (1910) that for oil
sable earth In which all possible deformation fields u(r) have
the property that V u = 0, the trace of the inertia tensor Is
preserved under earth deformations. In his analysis of the
effects of earth tides oil earti ►'s rotation Woolard (1959)
assumed that the earth was incompressible in order to use the
property that & (T^^^Me =0 in Ills solution, later Rochester
and Smylic (1974) showed that the value of T►,% was preserved
under a much wider class of deformation fields than those for
which G u = 0, in particular they show that even on a com-
pressible earth for which 9 - it 0 the deformation field
arising From the effects of tidal perturbations preserves the
value of Trl, Following Rochester and Srnylie we call, without
any restrictive assumptions, take

	

r ride + r lido + tilde	 s (T % )true	 0
ll	 2z	 33	

(Tr

(VII.149)

Equations (111 . 143) — (VII-149) have as their solution

lida	 k Ma'

	

1`12
= —	 P2 (cos Orn) sat 2ANl

6R3

(Vil-150)

where

(VII-144)

2k Mas
2rt1 e _	 P2 (cos O ►►t ) sin X►►t

3R3

(VII.145)

k2Mas
r 3a =	 P2 (cos 0 ►►r ) cos ?011 (VII.151)

312

S

r23e  
= k2Ma 

P2 (cos 0 111 ) sin Mn (VII-I52)
3R3

k Mas
^rrde _ r gde] = 2 a P2 (cos 011) cos Tun

6R 3

Ma5
aide = 

k2	
(2 pz (cos 0 ►►1)+P2 (cos 

Of'
) cos 21v>•l)

6R 

(VI I -146)
	

(VII-153)

k2N1as

rZle =	 [2P2 (cos 0) _p (cos 0 ►► t ) cos 2^m]
2k Ma'

rrtde + rude _ 2rrrde =	 2	 P° (cos 0
11	 2.2	 33	 R3	 2	 tit)

(VII-147)
	

(VII-154)
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`
2X Afars Using Equation (VII.140) In Equation (Vl1.160) and Integral.

r	 re	 -	 - 1'z (cos O tto ) .	 (VII . 1 SS) ing over the variables r, X gives
3R1

For the sun and the moan tine angles X m , namely X0 0 X
^4

2rr CAfas	
n	 (111, (cos 0)

Nt •^	 P O (cos 0 ►► ^)	 S1110 	 dO
are varying diurnally with a period near 1 day. Ilence r 12 , %Z	 0
file	 rtue are diurnally varying products of inertia which are^
na	 23 (VII.161)We	 ddeperiodic In about I day, The moments of Inertia r i it	 , r2 	,

r ̂ e have ions period components which depend on the ang?es The integral. In the above equation vanishes with the result that
O tto , namely 00 ,0 ^ , which are In tact given by

Not 	 0	 (Vll•! tit)
0^ ^ 900-60  

(VII.156) and so in the absence of dissipation the angular momentum L
0	 = 900 - 6-I of the earth is conserved under the action of the tidal forces,

where 6 0 , 5 4 are the declinations of the sun and moon

N
If the unperturbed earth is described by an Inertia tensor to

respectively, where

2. The effect of the solid earth tides on UT1. It Is relatively
0	 0

x
easy to show that In the absence of Internal dissipation which 10 0	 A	 0 (VII-163)
Introduces phase lags in the tidal response or the earth the 0	 0	 C
tidal forces exert no net torque on the earth, ,e

The net torque Nr on the earth due to the tidal forces f r(r) mad a rotation vector we where

Is r
we S2 ea	(VII-164)

N r = J r X fr(r) d 	 (VI I.157)
v then the tidally perturbed earth is described by an Inertia

tensor I where	 y'

where the Integral is taken throughout the volume of the
earth. If the vector field f r(r) has components A +arse	 rridc	 r't`'e

11	 12	 13

1 r Me	 A ,F r , Me	 tide..	 ,.

fr(r) - frr(r)r+fio (r) O +fr1^(r) X	 (VII .1 S8)
1	 22	

fr

rtide	 C+ rfiderude

L 31	 32	 j

then (VII.165)

Nr	 Ir Crfro(r)	 rfo, (r) O] d V	 (VIt-I59) and a rotation vector co where

t

r
w	 SL [m

 

10,+a^1	rn ^e e2	 (1 + m ^e) e3)

Using Equation (VII-134) in Equation (VII-IS9) this becomes (VII-166)

a	 2	 ^U► ^	 1	 3 r̂ Conservation of angular momentum under the influence of

Nr	 I drI 	d	 dB r2 sLt 0
 f

0

[- D0	 + sin 0 a	 O^ the tides gives

0	 0

(VI I.160)
^^Ie ._we =	 w	 (VII -167)
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which gives rise to the three equations

12 ((A + r (id) III IkIe +r1z 	 k10d IIIZt'ie + r t 	 +InMe)] K 0
11	 1	

(VIII 68)

$1 [rt kta rt1 ^c + (A + rOdg) tn^2kte +,tk e ( I + m IkteA : 0

(V11•1 69)

n [rode rl1 ttdo + r 1410 111 tktc + (C + r'WO) ( 1 + tit tide )j x I C31	 1	 32	 2	 33	 3 

(VII-170)

is a measure of (lie amount by which the earth's rotation labs

behind that of a hypothetical uniformly rotating, earth. The
tidal contribution to r(t) denoted mite (t) Is

I
We (t) .^ fnita(t')t1t' seconds. (VII.178)

 to

From Equations (VII.155), (VII-176) (VII .178) we have

t 2 k Ma'tide(r) X -	 lee (Cos 0 (t')) dt'
fro 

3 CR 3 (t) 2	 t►►

(Vht•179)

	for the three unknowns ►n tide 11I Me M' "!. To first order In	 Now
small quantities Equations &11 .168) —'(V'11 .1 70)  reduce to

SI (Am(idc +r t te ) - 0	 (VII.171)
1	 13

and
SI (Ain+ de + rode j x 0	 (VII.172)

2	 23

Po° (cos 0 ►►► ) = 2 (3  cos2 Q,n 1)	 (VII.180)

0111 
= 900 - 6 U	 (VII.181)

Q(C+Cma ` +rM `'} SIC,	 (V11.173)
where 5 M is the declination of the celestial body of mass M, It
follows that Equation (VII. 182) can be written

The first-order solutions for the unknowns to I^te , nag nt3 e

are then	 t k Mas

Me (t)	
2	 [1 - 3 sine 8 (t) j dt'

rode	 fle 3 Clt a (tr)	 rn

to	 = -	 (VII.174)

tide
in tide = - r2	 (VII.175)

rrkt^
tide = - C	 (VU-170)

The tidal variations in UTI are dependent on the history of
the quantity Ittf1de , It is customary to express the variations in

the earth's rotation rate by parameter r(t) where

t

T (t) = m J 1II 3(t') tit' seconds	 (VII-177)	 to obtain in n expression for Ttlde(t) wluch includes both the

t o 	 lunar and the solar tides,

72

(Vl1.182)

Woolard (1959) integrated the above Equation (VII-182)

for the combined effects of the sun and the moon,

s	 t
Ttidr(t) 

J^ 2 a	 Mo 
[1- 3 sine 60 VA3C fto R 3 (t 1)0

+ R t')
t' (I - 3 still k0 l)j dt' (VII-183)

Q (
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0
Woolard's expression for 7 trde(t) is given in the form

20

r ttd^(r) = k^E Al stns milliseconds,
PI

(VII-184)

where the epoch to is 1900,0. Equation (VII.184) can be
evaluated from Table VII-4, taken front Woolard's work. The
tabulated amplitudes are in milliseconds and the valim of the
second degree Uve number k2 can be taken to be

kz a' 0,29

Table VII-4, The edmento used In Equation (VIM P) to Qenerste the
thoontical contribution to 70 = (UTi•UTC) "due to the effects of
the solid earth tide, (After Woolard, Mitte),

Al,
cosecs

herlod,
days

1 0.32 21,+g 911.
2 0,13 21,+g	 st 9,1
3 2,47 21. 13,7
4 1,02 2L- n 13,7
5 0,10 2L - 291 13,7
6 0,11 41 13,8
7 0,23 2L-20 14.8
8 2.63 g 27.6
9 0.17 g+n 27.6

10 0.17 8-n 27,6
11 0.14 2L - g 273
12 0.06 2L-g-n 27.1
13 0.58 2L-g_20 31.8
14 0.60 20+g' 122
15 15.29 20 183
16 0.37 29-n 365
17 4.88 g' 365
18 0,23 20 -g' 6793,7 (18.6 year)
19 $1510 n 3396.9 (9.3 year)
20 2.7 2n

The arguments 01 of the sine function are defined by taking:

L mean celestial longitude of the moon

g mean anomaly of the moon

9' mean celestial longitude of the moon's ascending node

0 mean celestial longitude of the sun

g mean anomaly of the su.n.

3. The effect of the solid earth tides on polar motion. The
effect of the solid earth tides on polar motion can be deduced

directly from ftitaatlons (VII.151) (V11-IS21 ) and (VII-174)
(VII=175), whleh taken logo thcrgive

ttlfide	 d k 
Am . 

P' (cos 0 ►►► )Cos X"r (VII-185)
3AR

s
1110de ,	 k2 ^ fn —a P I (cos 0►►r ) sit X,►r (VII-186)

3A R

where Al is the mass of the perturbing body and R Is Its
geocentric distance and where OM Nrr► are the geographic
coordinates of the position vector R.

Due to carth rotation the argument X,,, decreases by 27r in
slightly more titan one sidereal day, allowing for the eastward
progression of the tide inducing body, be it the sun or the
moon.

The complex quantity nitrde given by

it ride - tat tde + f fit side 	 (VII.187)

defines the angular motion of the tidal perturbations to the
rotation axis in the body-fixed frarne. Equations (VII-185)
(VII. 186) (VII-I87) together gives

ittttde	 k Ma pt (cos O )erg'" (VII.188)a 3ARa 2	 m

and since NM continuously decreases (moves continuously
westward) we see that made Is a retrograde motion of the
rotation axis as shown in Figure VII-6.

Using the formula P2 (cos Om ) = cps Om sin Om and
recognizing that the coordinate O m Is related to the
declination of the celestial body 5,,, by

Om ,^ 90° - fin

we can rewrite Equation (VII-191) as

fit tide "k2 AL cos gm sin Ern ctx", , (VII-189)
3AR3
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A general formula which Includes the tidal perturbations to
the rotation axis of both tae sun and the moon can be written
directly fromEquation (VII-189) as

$
inside = ., kxi . o cos So sin 8 0 et1\0

R30

D. The Oeophytt► A Excitation Funetiora for Pokr
Motion oW UTI V01atione

As pointed out previously In this work one of the
Important objectives of obtaining precise measurements of
variations fit UTI and polar motion on (lie earth Is to'learn
more about the global geophysical processes which are
responsible for the variations. In order to carry out such a
program It will be necessary to use existing geophysical
knowledge to generate realistic theoretical rotation excitation
functions whose predicted consequences for UTI and polar
motion variations can be compared against observed data.
Such a program will require as Inputs, in addition to precise
polar motion and UTI observations, considerable global
synoptic data concerning the state of the earth's oceans and
atmosphere as well as information concerning the Internal
state of tine earth.

Our ability to generate models for tine oceans and
atmosphere of the earth has advanced dramatically In the last
decade with the development of earth satellites capable of
monitoring the global state of the earth's atmosphere and
oceans. In addition the ability to theoretically model a number
of important Internal processes In the earth such as earthquake
faulting and to accurately deduce their effect on tine earth's
inertia tensor for the case of a realistic earth has advanced

considerably In (lie post decade. These trends will no doubt
continue Into tile future and the forthcoming data will provide
the basis for generating a priori rotational excitation functions
which could be refined by the precise UTI and polar motion
measurements.

Our analysis of the geophysical excitation functions begins
by decomposing tine density field of the earth p(r,t) Into a
mean density po (r) and a geophysical perturbation to the
mean 4p(r, t), Tito position vector r refers to a fixed position
In the rotating geophysical coordinate fra ►ne

+ 'I cos k sin 8 (c e t
^Q	

(VIi.190)
R3Q

where:

(1) Mo AfQ are the masses of the sun and moon
respectively.

(2) Ro R( are the geocentric distances to the sun and
noon respectively,

(3) S Q 8, are the declinations of the sun and moon
respectively.

(4) xo - ao — G.A.S.T. and N^ = a4 — G.A.S.T, where
	as ad are tine right ascensions of the sun and moon 	 where

respectively and CAST refers to Greenwich Apparent
Sidereal Time.

N
The maximum combined amplitude of polar motion due to

	

the Iunisolar solid earth tides Is of the order of G" X 10_ 3 are	 v

or IS cm of motion. The motion is retrograde with a nearly
diurnal period,

+	 (Vii-192)

.4+r ► t 	 rat	 r13

p(r, r) [r2 1- r r ] (IV	 rs i A +r22	 r2,

ran	 t'32	 C+r33

(VII-193)

p(r,t) = pe(r) + Ap(r, t)	 (VII-191)

The inertia tensor of the earth 1 is similarly decomposed
according to Equation (IV-5)  Into a mean inertl y tonsorlo and
a geophysical perturbation r
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l 4	 0	 and so, apart from the question of the externally applied

	

pa(r) fr2 1- r r I d  w 0 A	 0	
torques N. the excitation of polar motion and UTl tluclua-

ftions depend entirely on the tensor ?`and the vector h and
	0 0	 C.	 their time derivatives taken in the rotating frame.

(VII-194)

rtt r12 r13

r =4p(r, t) [r2' 1- r r I dV n r^1 r22 r23
11

Y31 raz r33

(VII.195)

Front 1quation (IV-21 2) we see that the geophysical
excitation function for polar motion '(t) Is given by

e(t) A 5t CN	 r! 	
l (S , F+ Sir,	 (V11.1oG)

where

F w rta +f rx3

Ir a +l h2 	 (VII.197)

N = Nt +W2

and where

N a Nt e^t +N2 V2 +N3'"3

(VII.198)
It : h I P, +h2%+h363

are the external torque and relative angular momentum
respectively measured In the rotating geophysical coordinate
frame. The relative angular momentum It by Equation
(111 .52) as

h (r, t) : f p(r, t) [r X v (r, t)] d V	 (VI 1.199)
V

where v(r, t) Is the velocity of the material of density p(r, t)
relative to the rotating geophysical coordinate frame,

From Equation (IV-30) we see that the geopiayslcal
excitation function for UTI Is

r
e3(t) = 

CL
I
 N3 (t) dt' e Q r33 - h3

 
(VII-200)

in order to simplify our dynamical theory (Cquotlon
(111.14)) we have chosen to define "'the earth" to Include Its
oceans and atmosphere and according to this formulation of
Its rotational dynamics the motion of the oceanic currents and
atmospheric circulation by being hart of ""the earth" are
incapable of exerting an "external" torque on the earth.
through some sort of viscous boundary layer Interaction with
the solid surface. The effect of ilia occonic and atmospheric
circulation on the earths rotational dynamics Is entirely
Included In the relative angular momentum term h.

At the cost of complicating the dynamical description of its
rotation we could have defined "(lie earth" to exclude the
oceans and atmosphere. In this case the motion of the oceans
and atmosphere do exert an external torque on "the earth"
through viscous boundary layer Interaction " In addition to
being dynamically disadvantageous this formulation of the
problem of the earths rotational dynamics Involves the poorly
understood phenomenon of the boundary layer Interaction of
the oceans and atmosphere with the solid earth and with each
other by requiring that we model this process in order to
express the occonle and atmospheric torques on "the earth" fn
terms of their respective velocity fields. While these two
approaches to the problem are formally equivalent, the
definition of "the earth" to include the oceans and atmo.
sphere is dynamically simpler and has been shown (Lambeck
and Cazenave, 1973) to be capable of a more accurate
treatment of the effects of oceanic and atmospheric circula•
tion. Similar remarks could presumably be made for the fluid
motions of` the earth's fluid core and Its effet;t on the earth's
rotational dynamics Is complicated by the fact that no direct
measurements of the fluid velocity of the core are presently
possible.

It Is our present objective to obtain explicit formulae for
the contribution to the rotational e,,icitation arising from
Internal geophysical processes and wlil not be concerned at
this point with developing detailed expressions for tlae
lunisolar gravitational torques N. It Is our objective to obtain
expressions for the terms ra3 r23 r33 lta 11 2 h 3 drt31dt
dr23Jtlt dhr/dt dh 2 /dt which appear as the Internal Sec.
physical contributions to the rotational excitation functions in
Equations (Vit•196) and (VII .200) In terms of observable
global .fields such as mass density, velocity, ►pass displacement
etc,
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If the gcocentrle position vector r In the rotating gcophyst=	 which coax be written
cal reference frame is

r W rtgr +rA+r,P,	 (V11^2n1)	 ! , f i[ —+V , (pv)l IrXvJ+ p rX t
v

Ilion we have front
	 (VII. 186)

rt/ ►*
fV 

4p(r, t) (r" fit,- rt rl j dV (VII.202)

and from Equation (VII-199)

1t1 n^ p(r, t) C'uk rl vk (r, t) d V (V"'203)
v

where fi t/ Is the Kronecker delta defined by

0 t o/

fi,/
I	 /W/

and where ct/k Is the alternating tensor defined by

	

+1	 i/K cyclic 123
e,/k 	0	 ilk not all distinct

	

-1	 1/k noncyclic 123

The time derivative dh/clt, reckoner[ In the rotating frame,
Is given by Equation (111.84) as

	

dt f	 Ol	 1

where Equation (111.81) gives

A(r, t) - p(r, t) jr X v (r, t)]

and Equation (111 .82) gives

(r, t) " p (r, t) v (r , t) (r X V (r, t)]

It follows that

J a (tX v)+p^rX 't
V

+ 'V (pv) (r X v) + pv r V (r Xv) d V
J

+ pv . V (r X v)^ 41V	 (VI 1,204)
I

which by virtue of the continuity equation

	

b-+ V , (pv) a 0	 (VII-205)
at

reduces to

qtr J p r Xr * pv q (r X v) cIV (VII-206)
V ^

To obtain the components ofdlr/►lt we write

At f	 a v *	 av
dt	 V 

p ►1k CI at +pYk 
ax 	 r/ v ►n ) dIc

A t avf	 k	 Or,

d0	 J	 p etlk rl
 

at * pv k Ct/m a v lti ^rl 

av ►► ^
axk

 ^ fli/

L

dPt,

	

f [

a y j 	 Y 1^
p CIA rl at + p v ac 4^/m talk v ►►► + rl axk^/J d 

V

	

avk	 avk 
)] dV,

at f Cpetlk rlat '-pellk v/ vk +rl vnt ax1► r
V

Since

et/k V  Vk = 0

this reduces to

are,	 r r	 avk	 a vk
 )]dV

(it J Lp 
etlk rl at	 vm axv	 „►
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Recognizing which can be written as

aVk	ilvk	 Dvk

at + Vin axm ¢ Dtt d+ 	 d • (pv) [r2" r rfilat
as the Logranglan time derivative we conclude that

At	
f	 Dvk + pv - V [r2 1- r r j	 d V

..
dt	 J	

p etlk rI Dt 
d V	 (VI 1.207)

V

which by virtue of the continuity equation, Equation (111.46),
or In coordinate free notation, reduces to

do -
fV

p r X D
t

(IV,	 (VII.208)
v

^t - f pv , q [r2!- r r	 dV, (VA-214)
V

In addition to dh/dt we also require expressions for dr'/dt. In component form Equation (VII .214) gives
From Equation (IV-5) we have

d!	 d' °	 dr+ dt	 (VII.209)T 
c ^rlt =	 f	 v	 a	 r	 r	 b- r r	 d V

dt	 J	 k ax	 [ m m	 I/	 1dt V	
k

and since
i

±1L r
= J	 P  [2r	 S	 S	 r 5	 r 5 ] dV

dt	 k	 tip	 in k 	 0 -	 t	 Ik "	 I	 !k
dln = 0	 (VI 1-210)dt

V_

which finally gives:
P

we have
drll = 	 p (2 r

k v k S r/ '" rt v) - rI v r) dV ,	 (VI 1.215)dt f
(VII-211)dt	 dt '

V

From Equations (VII-1.95) (VII-1.99) (VII-207) (VII.215).
From Equation (111.85) and (V11-211) we have we see that the relevant quantities appearing in the geophysical

excitation functions are

(1.2	 r r) + V • P rot]
dt ' dt _
	

[at d V
J

V r13 =	 AP (r, t) r,r3 d V 	 (VII-2 16)
(VII-212) V

where #wr is given by Equation (111 .83) as
r23	 -	 Ap(r, t) r2 r3 d V	 (VII-.217)

ra1(r ► t) = p (r, t) v (r, t) 
(r2	

r r ) . J
V

l
(VII-213)

It follows that r33 =	 Op (r, t) [ra + rz	 4-	 (VII-"218)
V

{ a (r2 T— 	 ir)+V•(pv)[r21 "r rJ
V	 t it,	 -	 p(r , t) [r2v3(r, t)" r3 v2(r, t)] d if

,. + pv • V [r2 1-r r]	 d V

J V
(VII-219)
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Substituting Equations (VII-216)-- (VII .225) Into Equa-

	

H 2̂ 	 p(r, t) wave (r, t) ^^ r t v 3 (r, t)1 ^	 Lions (VII.196) (VII-197) (VII.200) gives expr4sslons for the
V	 geophysical excitation f►lnetions for	

i

(VII.220)
(1) Polar Motion	

G

h3 x P(r, t) [r t v 2 (r, t) ^ rz Yi (r, M ,
f

V	 (VII.221)
	

rQ) _ --î  Nt +W ..2R2 f Ap(r.,r3`ir^r,)dv

t.

	

cir i 3 	

f p(r,

	

t) + r(rv1)	 ^v

	

dr1	 ,	 [r r 3 , 3 `vr (r, t) ^ dV	 ff (	 2
it	 + f jA 92Stw3 v r +r3

 /BY
 *v . pv2)

V
(VIl•22;2)

dr23

	

(17r 	+v- p v) +7p2^2r v

dt 	
p(r,t) Crv3(r;t) +r3v(r, 01rile 	a 	 3 z

v

(VI I.223)	 av	 a v	 )
+ri

 ( at3+v^ ^v3) ^r3(at + v.17vjdV!
11lI i Mf

	 (! I

v 	

/dt	 Xr, t) r2 	 v ' ' v,^
 (VII.226)

Jv2

	

- r^ at + v • d v2) dV.	 (VII.224) (2) UT I

A2	
\a^v+	

r1	 e (t) r 1 ^Lf X 
(t ^) dry n J Ap (r2j + r2 ) dV

dt ., f 
p l.r, f) [r., 8! + v	 v J

	 3	 Cr	 a	 3	 t	 r	 2
V

a v3
. ri Mat +v# V v3	 d V. 	 (VII.22$)	 _ f p(riv2 - r2 vi ) dV	 (VI1.227)
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