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Abstract

This report preseats a survey of the theory of the earth’s wotation ad the geophysieal
phenomena affecting it, with emphasis ot polr mation and UTH wariations. The theoren

cal developiment in this review beginy with fivrst prineiples and fornudates the problent of

palar wotion and UT'1 variations in considentble generalite and detadl, The trearment
neludes an analvsis of the effeets of varth deformations aud the selid earth tides.
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A Survey of the Theory of the Earth’s Rotation

I. Introduction

In recent years the technique of long baseline inters
ferometry (LBI) has demonstrated its ability to carry out
measurements of the varations in the earth’s rotation rate
(UT1) and of the varfations In the position of the earth’s
rotation axis with respeet to the earth’s crust (polar motion)
with an aceurney which Is comparable to that obtained by the
classical methods using photographie zenith tubes (PZT's).
While the classical methods have probably been extended to
their maximum capabilities by thelr present day use, it is
expected that continued development of the technique of long
baseline interlerometry will witimately yield measurements of
these geophysical quantities with uceuracies which exceed
present day capabilities by an order of magnitude,

This document was prepared in anticipation of these future
developments, Its purpose is to comprehensively teview the
present day dynamical theory of the earth’s rotation in order
to provide o colierent theoretical basis for the development of
futnie data analysis procedures and soltware models for the
treatment of future high quality long baseline interferometry
data. Uz purpose then is to serve as a tutorial handbook for
workers who will be involved in the process of extracting
geophysical information from the interferometry data, In
arder 1o enhance its usefulness in this respeet the work s
presented tn considerable detail,

Il. Coordinate Systems

The term *axis™ will always be associated with a corre-
sponding veetor. Ae axis is 4 stinight line passing through the

origin of coordinates in a direction parallel to the assoclated
vector, The point of intersection of an axis with the surface of
the earth or the celestial sphere is called a “pole™; in the
former ease a “ferresirial pole™ and in the Jater case o
“celestial pole” If not explicitly siuted which, “terrestrial
pole™ will be understood,

In establishing a theoretieal and operational framework for
describing the carth's rotation It Is necessary fo use two
coordinate frames: a space-fixed frame spamad by basls
vectors £, E, £, and a body-fixed frame spannad by basis
veetors @, @, @, Coordinate systems can be grouped into
“geometrical™ and “dynamical™ classifications according to
the nature of their fundamental defining quantities, Hybrid
coordinate systems requiring a combination of geometrical and
dynamical quantities for their definition are also possible,

The present spacesfixed coordinate frame is a dynamical
coordinate frame which uses the orbital and equatorial planes
of the earth to define £, £, £y, The £y axis is parallel to the
carth’s mean orbital angular momentum veetor ol 1950,0 and
)?‘, is contained by the intersection of the mean orbital and
mean equatorial planes of 19500 and points toward the
ascending node, The £, axis is orthogonal to B, and £} to
complete a right-handed coordinate frame. The origin of the
space-fixed coordinate frame is placed ot the center of mass of
the carth, including the oceans and atmosphere, In defining
the mean orbital plane of the carth it is necessary to reckon
with the fact that the motion of the earth about the sun is
continually perturbed by the gravitational attractions of the
other bodies of the solar system and that the actual orbit of
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the earth's center of mass is an irregular and ever varying curve
in space (Woolard and Clemence, 1960),

Even in the case of a rigid earth cortain difficulties are
encountered when operationally defining the celestinl equator,
The instantaneous celestial equator is usually defined as being
contained by a plane which is orthogonal to the carth's
instantaneous rotation axis. For a righd earth the Instantoneous
motation axis §s defined by the vector sum of the angular
rotation rates of polar motion, spin, precession, and nutation
and is unobservable by conventional astronomieal means, What
is observable s a position on the celestial sphere, to be here
ealled the eelestial reference pole, located at the center of the
quasi-cirentar diurnal pathis of the stars In the sky. The celestial
reference pole is in continual motion across the sky owing to
the effects of precession and nutation alone. Polar motion
changes the latitudes of observatories and not the declination
of stars and 50 does not contribute to the motion of the
eelostial reference pole on the eelestial sphere, The motion of
the celestinl veference pole across the sky implies the existence
of an additional rotation rate (due to precession and nutation)
which, along with the rotation rate due to the polar motion,
must be added veetorially to the spin to obtain the total earth
rotation vector,

The realization of the above dynamically defined space-
fixed basis vectors is provided in an implicit manner by the
coordinates assigned the stars of the FRe4 catalogue whose
positions have been measured with refeyence to the earth's
orbital and equatorial planes, The FK4 eatalogue contains
about 1500 stars and has an internal mnmtemy of 018 are
and an overall internal aceuracy of +0°10 are (Kolezek and
Weiffenbach, p. 32, 1978), Soon 1o replace the FK4 eatalogue
is the FKS catalogue with about 3000 stars and an internal
consistency of *010 are and an overall aceuracy of #0%02 are,

Long baseline interferometry is expected to provide the
relative positions of roughly 100 compaet radio sources with
an overall internal aceuraey of 207001 are in the near future,
This eelestial coordinate system wilk be essentinlly geometrical
and some effort should be dedieated to tying it to the
dynamically defined FR4 and FKS coordinate systems, at least
to the level of the errors inherent in the stellar coordinate
systems,

The body-ﬁ\cd courdinate system spanned by basis veetors
&, & @, has its origin at the center of mass ol the earth
im,ludlnp, the oveans and atmosphere, Hence the space-fixed
coordinate system and the body-fixed coordinate system share
a common origin, and the general linear coordinate trans.
formation relating the two at any particular time consists of a
rotation about some axis and w scaling, A relative sealing of

unity is maintained by adopting the some unit of length In
both systems,

The @, basls vector s defined 10 be parallel to the mean
axis of figure of the earth, The axis of figure corresponds to
the principal eigenvector (the elgenvector of maximm eigen-
value) of the earth’s inertia tensor, For a deformable enrth the
body-fixed orfentation of the axis of figure Is time.dependent
since the inertia tensor Is time-dependent,

The mean axis of figure Is defined as corresponding to the
prineipal eigenvector of the mean inertia tensor.

The &, basis vector Is orthogonal to the T, basls veetor and
conmincd in the plane of the convcmlonnl prime (zcm)
meridian. The @ basis vector Is orthogonal to &, & and
oriented so as to form a right-handed onho;,onul trind The
realization of the body-fixed basis vectors @ @, @, is provided
implicitly by the coordinates of a sot of fixed observatory sites
located on the carth’s surface, The following Is a brief
examination of eurrent practices involved in the determination
of the terrestrial coordinate frame,

In the presatellite era the geocenter was, to u large extent
inaccessible geodetically speaking, and geodetic networks were
essentially “local” coordinate systems, The location of the
geocenter relative to the earth’s surface could be determined in
principle by solving the boundary vilue problem in the theory
of gravitational potentinl, However, the practical realization of
this procedure was hampered by the lack of gravity measure-
ments over the oceang, and any attempt based on the limited
data available excluded the earth's atmosphere since it was
outside the surface over which the measurements were made,

The artificial satellite senses the center of mass of the earth
direetly since the osculating orbit plne passes through it, The
usual procedure is to use satellite tracking data to solve
simultancously for the geogentric position of the tracking
station and the spherical harmonie coefficients in the expan-
sfon for the carth's gravitational potential, In this manner the
location of the geoventer relative to points on the earth's
surface ¢an be determined to about #0,5m - £1,0m,

Even in the case of a rigid earth, owing to the presence of
the fluid portions, the geocenter does not remain fixed relative
to the earth's solid surfuce, The seasonal redistribution of the
masses of the oceans and atmosphere and particularly the
redistribution of global ground water displace the geocenter
relative to the solid 2arth periodically in & year along a roughly
elliptical path with a major axis of the order of 0.5¢m (Stolz
1976).
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Considering the real deformable earthi, the tidal deforma-
tions of the solid portion, because of thelr symumetry, do not
displace the geocenter, However, owing to thelr asymmetry
the tidal redistribution of the mnsses of the oceans does
displace the geocenter, Each tidal constituent will displace the
geocenter along a curved path relative to the solid earth with a
perfod equal to that of the tidal constituent. Brosche and
Siindermann (1977) have shown that the M, tidal constitnent
displaces the geocenter relative to the solid earth arsind n
closed curve of the order of 4 em in extent with a perfod of
12.42 hours, The motion of the geocenter due to the M, tide
I= essentinlly confined to the plane of the cquator (the
displacement parallel to the polar axis belng an order of
magnitude smaller) slong the directions A = 45°E, 135°W,

It can be shown (Goldreich and Toomre, 1969) that for n
quasi-righd, evolving, extended body rotating in the absence of
external torques about its nxis of largest moment of inertia,
the axls of figure s constrained dynamically to coineide with
the axis of rotation, However, the earth, being subjected o
external torques, differs in some respects from the body being
considered by Goldreich and Toomre,

For historieal reasons the motion of a rigid body In the
absence of external torques Is known as “*Bulerian motion,” In
the case of the carth subjected as it is to external torques it
can be shown (Woolard, 1953) that the motion of the rotation
axls withine the body-fixed frame is almost entirely due to the
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Eulerian motion, with only a small perturbation of the order
of 0702 nre oecurring as a result of the lunbsolar gravitational
torques. Although the elastic ylelding of the earth greatly
alters the Eulerian motion from what would prevail on o rigid
earth, the effect of the lunisolar torques is simply to displacy
the Instantaneous rotation nxis In a diurnal eireular path of
dinmeter roughly 0%02 are about the Eulerinn position, Thus
the mean axls of rotation of the earth coincides with the
Eulerian (torque-free) axis of rotation and hence, by the
arguments of Goldreich and Toomre, also colneides with the
mean nxis of figure 25,

In general, at any instant the rotation axls Is displaced, in
the body-fixed frame, from its mean position on the uxis of
figure. ‘The figure axis of the carth or the @ basis vector e
be determined by establishing the mean position of the
rotation axis, In practice the procedure of determining the
location of thie “instantaneous” rotation axis in the body-fixed
frame by PZT observations ylelds the position of the “instan.
tancous”™ Eulerfan or spin axis, However, the mean position of
the Eulerian axls will also serve to determine the earth's figure
axls or @,

Figure 114 (after Smylie and Mansinha, 1971b) flustrates
the geometrical relationships pertaining to polar motion, The
figure Is drawn with reference (o the Eulerian or spin axis
rather than the rotation axis, since it is with reference to this
axis (that fatitudes on earth are observationally determined.

%y FIGURE AXI5
(REFERENCE o
POLE) / HINSTANTANEOUSY

EULERIAN (5PIN)
POLE

=== REFERENCE
EQUATOR

s HINSTAN TANEOUSH
EULERIAN (SPIN)
EQUATOR

Figure II-1, The geometry of polar motion, For clarity the figure is drawn in a body-tixed frame so
that the tigure of the earth defined by &, appears fixed in orientation, When viewed in
a space-fixed frame, the equator and the spin axis appear fixed in orientation while the
figure of the earth is displaced, (Atter Smylie and Mansinha, 1971b)
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In Figure Il-1 the point O refers 1o an observer on the
earih’s surface or alternately to the body fixed angular
coordinates of an Interferometer baseline. The polnt C is the
geocenter, the origin of the terrestrinl coordinate system, The
displacement of the Eulerlan or spin pole from P, the axis of
figure or reference pole, to P changes the latitude of the
observer or the declination of the Interferometer buseline at O
from the angle OCM to the angle OCM' and changes local
siderenl time at O or the sidereal hour angle of the weridion of
the Interforometer baseline nt O from the angle ECM to the
angle E'CM' where E and E' refer to the subequinox point on
the carth’s equator before and after polar motlon respectively,

There nre two systems of reckoning in use today to deseribe
polar motion, One Is most widely used by nstronomers and
corresponds to the usage of the BIH (Bureau International de
1'Hesire) while the other is most widely used by geophysicists
and corresponds 1o the usage in this document. The geo-
physicist orients the surfuce of the earth so that the positive
normal points toward the zenith, The use of a right-handed
coordinate system then requires that the location of the
“Instantancous™ Eulerian axis in the bodyfixed frame be
specified by m, the angular displacement s * {he Eulerian pole
paraliel to the prime (Greenwich) merifig, and m,, the
angular displacement of the Eularian pole parallel to the 90°E
meridian, This fs Hlustrated in Figure 1i-2, The net angular

44 EUL

ERIAN
(SPIN) AXIS

Figure li-2, The geometrical definition of the angles, m, m, used by
geophysicists to indicate the location of the Eulerian
pole or spin axis of the earth relative to the CIO (Conven-
tional international Origin). The axis of the CIO is con-
sidered to be coincident ‘vith @, the figure sxis of the
earth,

displacement of the Eulerlan pole from the figure axis is given
by angle f, where

= md emd o md), (1)

The astronomer adopts a right-handed coordinate system
on the celestial sphere, with the “surface” of the celestial
orfented so that the positive normal points toward the earth,
As 8 consequence of this the nstronomer is required for
consisiency to orlent the surface of the earth with the positive
normal poiuting toward the geocenter, The use of » rights
handed coordinate system then requires that the location of
the “instantaneous™ Eulerfan axis In the bodysfixed frame be
specified by x, the angular displacement of the Eulerian pole
parallel 10 the prime (Greenwich) meridian, and y,the angular
displacement of the Eulerian pole parallel to the 90°W
meridian,

Both systems of reckoning use the ClO or Conventlonal
international Origin ns the reference pole defining the figure
axis or &, The CI0O is the nominal point of 90°N Jatitude an-
s defined implicitly by the assigned nominal coordinates of o
number of observatories around the world, The ClO was
defined Initially by the mean latitudes @, and longitudes X, | =
I, 2,,..,5 of 5 obscrvatorics a5 & result of latilude and
longitude observations made at these sites extending over the
interval 19000 - 19050, The CIO defines the @, basis
vector, the axis of which makes an angle of 90° ~ & with the
verticals of each of the § defining observatories.

It can be shown that for an observitory (interferometer
baseline) with nominal (referred to the CIO and the Greenwich
meridian) geocenirfe coordinates given by latitude ¢, and east
longitude Ay, the Increments to the latitude Ag, (OCM' -
OCM in Figure 11:1) and to the longitude A\, (E'CM' - ECM
in Figure 11-1) accompanyling a displacement m, m, radians of
the Eulerian pole are given by '

9 )
A, = M, cos A Fmy sin J\c (-2

A}\O = tan ¢, (m I sin Ay «m, cosAy), (11-3)

UTO is o “raw” mensure of Universal Time based on data
obtained at a particular site where the assumptions are made
throughout the data analysis that

(1) The observatory (interferometer) coordinates are fts
nominal coordinates reférenced fo the C1O and the
Greenwich meridinn,
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(2) The earth has been spinning about an axis through the
0.

UTL is 8 “true" measure of Universal Time intended to
give the hour angle of the mean sun at Greenwich when the
effects of polar motion described above nre duly taken into
necount, UT1 eannot be mensured from u single point on the
carth’s surface singe it is impossible to distinguish the effects
of polar motion which are to be incorporated into UT! from
the effects of varlations in the earth's rotation (spin) rate
which are normally incorporated inta UT2,

UTO and UT1 are related by

uro = ury + 89990, ty (my s, iy cOs XD,

2
(11-4)

UTC s an atomie time seale broadeast by national time
services and maintained vontinwously by onsite atomic fre«
quency standards at observatory sites. At each of m observa.
toty sites it Is possible 1o observe directly the quantities

U‘I‘O,-UT(‘ { = 1,2,30m

‘:’(“‘{jm = 1,23 m

where ¢, Is the “Instaatancous” latitude of the th observatory
and By, the nominal latltude of the /th observatory, These two

observables are related to m, my and UTL  UTC by
UTO, = UTC = UT) +§~—9§;?9~ an gy (my sin Ay, = m, coshg))
~UTC (11-5)
b =g ® My cos Ay i, sindy, (11-6)

where Ao, Is the nominal longitude of the ith observatory,

From a large set (of the order of 50) of such observations
the BIH solves for the quantities nty; my and UTL -~ UTC by
least squares adjustment, This adjustment procedure produces
a value of UT1 which is not reduced to the prime (Greenwich)
meridian passing through the meridian circle of the transit
telescope at Greenwich but to a meridian which is displaced
from Greenwich by several milliseconds of time. The meridian
to which UT1 is ndjusted s called the meridian of the "mean
observatory” or the Greenwich Mean Astronomic Meridian,
The corrections for the displacessient of the mean observatory
from Greenwich (usually of the order of 2.5 msec) are
published in the Bulletin Horaire of the BIH,

ni.; p! i: ft*'t ‘~*
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Ill. Dynamics of Rotating Bodies

Before proceeding to & treatment of the rotational
dynamics of the earth we shall review the dynumical theory of
rotating bodies generally, arriving finally at the Liouville and
Euler equations.

A. Rotational Dynamics of an Assemblage of
Particles

We consider an assemblage of N particles whose masses and
positfons relative to our origin of coordinctes are given by m,
and v, 1% 1,2,3 4 N,respectively. I ¥, Is the acceleration of
the jth particle relative to the origin of coordinates and If § Is
the ncceleration of the origin of coordinates relntive to inertial
space, then Newton's second law applied to the /th particle
plves

N
m (§+1) = F+ § R, (1)
I#i

where F; Is the net force on the ith particie due to all
influences external to the assemblage and Ry, Is the force on
the {th particle due to the jth particle of the assemblage,

Summing over all particles

N y N N N
Y mS+i) =Y F4Y > R,

i3] i=1 ol )
Jai
and denoting
N
F=) F
11

as the total external force on the assemblage and denoting
N

M= Z n,

ol

as the total mass of the assemblage glves

N N
MS+3 mi = Fa 3 3 R,. (12)
I 1
j
' 5

.
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Introducing p us the position of the center of muss

N
): mr
= »
p e N (11.3)
> m
=1

allows Equation (111-2) to be written as

N

N
MS+p) = F+Y5 35 Ry,

=1 %)
[#l

(111-4)

In its "weak” form Nowton’s third law merely asserts the
equality of action and reaction and gives

R” - QR{,I

Simply stated this implies that the foree exerted by tha jth
particle on the fth particle Is equal and opposite to e force
nxerted by the ith particle on the fth particle, If the weak form
of Newion's third law Is assemed, then In the double sum

N

)>

=

R,

s t~<’::

Ny Moy
- -

in 3
7
the terms cancel in pairs with the conclusion that the net force

nn the assemblage of particles Gue to Internal action and
reaction palrs vanishes,

Returning now to Equation (I11-1) and taking the cross
product of Equation (111-1) with the vector r and summing
over all the particles glves

N
E mx ,XS4Z me X '2 nXF,

i) =

(11:5)

Assuming nonrelativistic mechanics for which dm /dt =0,
several terms In Equatlon (11-5) can be rewritien:

N N
(1Y meX i‘,n?g* (Z mr X i,) )
131 i1
since i, Xf, = 0

N
(2) Y mr, X 8=MpX$§,

=}

using Equation (111-3), and if we define:

(3) L the total angular momentum of the nssemblage about
the origin of coordinates 0 ns

o
L ‘IZE m X,

(4) N the net extornal torque on the assemblage about the
origin of coordinates 0 as

then Equation (111-5) can be written

N N

MoXS+L = N+33 37 nXR,.
ja) Jai
54:/

(11-6)

The Yast term,

N N
Z Zr,XR

I

——
by

1
£ 1

in Equation (111-6) represents the net torgue on the assemblage
reswiting from its internal actions and reactions. In order for
this term 1o vanish it is necessary to invoke Newton's third law
in its “strong” form; namely, that

R

=y [r, - /] by e a 7y

Simply stated this implies that the force oxerted by the jih
particle on the ith particle is equal and opposite to the force
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exerted on the /th particle by the jth particle and that these
forces act along the line Joining the centers of the particles.

If Newton's third law in its strong form [s assumed, then

N N N N
Y X nXR ==30 3 Xy (1)
=) J=} =) /=1

ot J#1

and the terms on the RHS of Equation (I1[-8) cancel in pairs
since iy X 1y = =r; X v, and o, = o 1t follows that the
dynamical equation (111-6) reduces to

MpX§+L =N, (171.9)

It should be noted that Equation (I11<7) is not valid for
electrodynamical Lorentz forces acting between charged parti-
cle pairs, However, the conclusion of Equation (111-9), which is
still valid when the mass assemblage includes charged particles,
must be obiained by a morc extensive argument than that
presented here.

In order for the term M p X 8 to vanish it is necessary to
choose an origin of coordinates to coincide with the center of
mass, In which case p=0 and the dynamical equation (111-9)
further reduces to

L=N, (111-10)

In dealing with the dynamics of rotating bodies it is im-
portant to realize that the dynamical equation governing
rotation only assumes this simple form of (1il-10) when
expressed in a coordinate system whose origin coincides with
the center of mass of the body, The coordinate system need
not be an inertial frame in that 8§ nced not vanish to aghieve
this simplification. The simplification occurs because o van-
ishes, Hlowever, while the origin of the coordinate system may
be accelerating arbitrarily with respect to inertial space, the
coordinate system itself cannot be rotating, for nowhere in our
dynamics have we allowed for this,

The angular momentum of a particle of mass m reckoned in
a nonrotating frame with origin O relative to which the
particle has position r is defined

L=rXp (-11)
where

p = mr (111-12)

is the lincar momentum of the particle relative to the origin of
coordinates, If we now considet a second coordinate frame
sharing the same origin O as the inertial frame but rotating
relative to it with an angular velocity w (defined as usual in
the right-hend sense), then the velocity of the particle relative
to an obseryer at rest in the rotating frame denoted dr, , /dt Is
related to the velocity of the particle relative to an observer at
rest in the inertial frame by the kinematical relationship

dr

5 rot
f o b Y X1,

o (11-13)

It follows from these considerations that the angular
momentum of the particle may be equivalently written

dr
L=rXm (-——“’—"1+wx r). (111-14)

dt

in considering an assemblage of particles of masses m and
position veetors r, 1= 1, 2, 3,7, N, we can express the total
angular momentuni of the assemblage as

N
L=Y, L,
I=1
where
dr
= —Lrot
L, = r X m‘,( i +w X r,) (1nt-15)
is the angular momentum of the ith particle.
Introducing V, where
dr
= i toL A6
\# ar (11-16)

is the velocity of the jth particle relative to the rotating
coordinate frame, it is possible to write the total angular
momentum of the assemblage of particles as

N N
L= Z XVt ,Z my [r, X (@ X 1)} .(N1-17)
iz =1
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Introducing p, where

p,=my,

is the lincar momentum of the ith particle relative to the
rotating coordinate frame, we can rewrite Equation (111-17) as

N N
L = ?:; nXpt lz; m, X X)), (111-18)

Introducing h where
N

h = Z rXp

he1

(1-19)

is the “relative angular momentum” of the assemblage of
particles, that is, the angular momentum of the assemblage
relative to the rotating coordinate frame, then Equation
(111-18) can be written

N
L=h+Y mnX@Xr)]. (11-20)

=1

Using the triple vector product expansion
AX(BXC)=(A-C)B-(A-B)C

the total angular momentum of the azzemblage of mass points
can be writien

N
L=h+ Z m, [(r, Crw- (r,- w)r,] .
i=1
(Im-21)

Considering for the moment only the kth component of
this vector

N
L o=h+ ?: L (G ATERER (RRES) (AW I
=1

(111-22)

Now using the Einstein summation and range convention
and
. 2
NN

and so

N
L = Iy * f\:n n, [rl2 Wy, ~ ('i)/ W, (r,)k]

which an be written as

N
Ly =Myt ; m 7 8- (), (1))

(11-23)
where 8, , is the Kronecker delta defined by
0 k#j
by = - .
The quantity /,, / defined by
N
Iy = § my 12 8- () ()] (111-24)

is a second order tensor (although we have not proved its
tensor character) referred to as the inertia tensor, The inertia
tensor is clearly symmetric in the indices &, /, and its six
independent elements consist of the six independent second-
order moments of the mass distribution of the assemblage of
particles,

With this result we can write the kth component of the
angular momentum of the assemblage of particles as

Ly =1y othy (111:25)
or in coordinate free notation
L=T -wth, (111-26)

g R T e e

T T
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Ta avoid possible confusion it should be emphasized that
the vector w was Introduced In Equation (ME13) as the
angular veloeity of n rotating conrdinate frame and has
nothing 1w do with the sgular rotation rte (if any) of the
mass assemblage.

It is assumed withoul loss of generality that at some Instant
during the rotation the basts vectors spanning the nonrotating
frame and the basis veclors spanning the rotating frame
eoineide, The nstant is ealled the “moment of coincidence,”

Fixing attention on the moment of cofneidence permits us
to compare components of the vector equation (M1-13) amd
the tensor equation (HE24) as well as thelr time derivatives as
represented in the rotating and nonrotating coordinate frames,
At the moment of coincldence the busis vectors of the rotating
anty nonrotating coordinate frames colnelde and such comparis
sons are mathematienlly permissible,

It should be emphasized that the inertia tensor 7 consists of
the second-order mass moments of the mass distribution taken
about the coordinpte axes af the woment of coineidence, i
the mass distribution remains fixed relative to the ronretating
coordinate frame, then clearly the body is not rotuting and
L =0, However 7+ w is still nonzero but is cancelled exactly
by h W the mass distribution remains fixed relative to the
rotating frame then clenly the body Is votating and L # Q.
However, 7' ¢ is exnetly the same value ns in the nonrotating
ense! This time, however, h# 0,

There is In general only one elrcumstanee under which the
veetor ¢ is to be fdentified with the “rotation rate of 1 body”
and that is the case whereln a rotating coordinate frame Is
found such that h = 0, In this ease

L=T w. (1-27)
However, e is still the rotation rate of the ceordinate system,
hut the above relationship oceurs only for n unique value of w,
which can then be defined as “the rotation rate of the body,"
This anique rotating coordinate systent can always be found

for the ease of rigid bodies by fixing the rotating coordinate
axes relative to the rigid body itself,

This discussion Hluminates the esseptial Kinematic nature of
the tern T e appeaving in Bquation (11-26). The magnitude
of 7' w can be changed at will by a change of coordinates, It
is the sum of 7"+ w plus h which has dynamical significance
and yields the quantity L, The term 7 w only hias dynamical
significance il the rotating coordinate system is referenced or
“attached™ in some way 1o the roiating body.

B. Rotational Dynamics of Extended Deformable
Bodies

Passing from the case of an assemblage of particles to a
continuous, extended and deformable mass distribution it s
necessiry 1o Introduce a mass density distribution function
A, 1) which will in general be time<lopendent. The mnss
density distribution function need not be a differentiable or
even & continvuons function of position as the body may
possess internal density discontinuities, The extended deforms
able body aceupies the time-dependent volume ¥(f) bounded
by the time-dependent enclosing surface S(£). The summntion
over individual particles Is veplnced by an Integration over the
volume (7).

Onee again we consider two coordinate frames sharing n
contmon ovigin O, one coordinate frame rotating and one
coordinate frame nonrotating, The angular velocity of the
rotating frame is defined by the veetor @, At the moment of
colneidence of the two coordinate frames the veloeity vector &
relative to the nonvotating frame is related to the velocity
veetor dr,, fdt relative to the rotating frame by the Kinemati-
el relationship

(11-28)

It will be convenient to introduce v(r, £) as the velogity
veetor relative 10 the rotating coordinate system and u(x, ) as
the velocity vector rplative to the nonrotating coordinate sys.
tem, Thus we have

i
vir, N = at (H1.29)
pin 1) = ¥ (111-30)

and so at the moment of coineldence
pin ) = v(n NtwXr, (1-=31)

1. Dynamics of rotation without the inertin tensor. The
total angular momentum of the extended deformable body is

L n[ p(n ) [eX v(y, ) dV (1-332)
J ¥
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and if the origin of coordinates is at the center of mass of the
body then the dynamical equation governing the rotation is

i .
given by Equation (11-10) as -l by

L=N (111-33)

where, s before, the dot *+" indicates a time derivative taken
with respect to the nonrotating coordinate system,

In cstablishing the time derivative of the Integeal in
Equation (111:32) the deformable nature of the body must be
explicitly recognized, To do this we consider two instants of
time ¢ and ¢+ dr and the increment dL to the angular
momentum wiich oceurs in the interval dt,

Figure lil-1, The mathematical constructions used to evaluate the
time derivative of integral quantities v:hose values de-
pend on an integral taken througholt the volume of a
body whose shape is changing with time,

dL =j pe t+dt) e X p(n, t+dt)) adv
V(r+dt)

-f e ) [k Xv(r, 0] dV,
V(1)

And so we have

dL *f ple t+de) [k X v t+d)] dV

V. eV
172
In evaluating the above integrals we have adopted an
Eulerian viewpoint. The vector r refers to a fixed position in - Pty [x X iy, D] dV
the nonrotating coordinate frame, Vv,

The volumes V(¢ +dr) and V(¢) are related by or

V(t+dt) = Vl +V, i
dL = {p(r, 1 +d0) [t X v (r, t +dr)]
VY=V, 4V, v,

where, as shown in Figure [11-1 (after Prager, 1973), =P N [rXv(n N} Yay,

+f pr, t+d) [t X v, t +d)) dv,
v

(1) v, is the volume common to both V(f + dt) and W(f). \
(2) V, is the volume swept out in the interval dr by those
portions S, of the bounding surface S(r) whose -
velocity v (relative to the nonrotating frame) has a
component parallel to the positive direction of the unit
outward normal f, .5, refers to that portion of § for

which i < » >0,

(3) V, is the volume swept out in the interval df by those It is clear from Figure 111-1 that
portions S5 of the bounding surface S(r) whose
velocity v (relative to the nonrotating frame) has a de = ﬁ‘dS2 e
component parallel to the negative direction of the unit
outvard normal i, S, refers to that portion of S for dV. = -HdS. « vdt
which 7i - v <0, 3 3

o N Ir X v, N)dV,,

Yy

10

B O e
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and that the volume integrals over volume ¥, ¥, can be
replaced, 1o first order in Infinitesimals, by surfnce Integrals
over the regions 5, S, respeetively

dl.sf {p@r, e de) [ Xv(r, t+d))
V
i

=p(r 0 [rXv(n N1} dV,

+]f prrtd) [e X (n t +di)} RdS, » vdt
S

2

+jj- p(e, N e Xw(, 0] f?a’S3 cwdt . (111:34)
N
3

We now make the approximation that since dt is an infinitesi-
mal time Increment whose magnitude is going 10 be allowed to
shrink in the Hinit to a vanishingly small quantity, we can set

= W)

and write

dL = {p(e, 1 +dt) [r X p(r, ¢ +dD))
vy 1r

“p(n D) (e X e, D)} dVde

Fff a0 [r X v, 1)} r'l‘dS2 . pdt
8, (1)

*jf pn 1) [r X p(r 0} fidsa vpdt,
LXO

(11-35)

The entire arca of the bounding surface S(¢) is divided into
regions which

(1) licin 8,0

(2) liein s,

(3) lie neither in S, nor S,

It follows from the definition of S, and S, that for the
latter classification which lic neither in S, or S, wc necessarily

have fids * vdt =0, It follows that including these regions in
the surface integrals will not alter the value of the integrals,
Consequently we may write

dL "f o t+dn) [eX v(, £ 4dD)]
dt
v(n

-, 0 [r X v(r, 1))} Vit

+ff p(r, ) [r X v(x, ) RdS + vdt
S(r)

from which it follows that

L =[ m {p(r, t+dt) [r X v(r, ¢ +d1b)]
v(n

o ) [k Xv(n 01} dV

*jf pln ) [rXe Ny 1) nds,
0

(In-36)

In Equation (111-:36) we recognize the Eulerian time
derivative taken with respect to the nonrotating frame

39%‘.”) =.[%; {p(x, r+de) [t X v (x, 1 +d1)]

-p(n ) [r XN} (mn-37)
where £(r, /) given by
e, ) =p D xXe@ ) (111-38)

is an angular momentum density field defined also relative to
the nonrotating frame,

Consequently Equation (111-36) can be written

L=f ———~c1V+jf RveRdS, (111-39)
v(t) 5(n

11
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The quantity &v appearing In Equation (111-39) and given by

Qv =pr, D) rXv (unlvn D (111-40)

Is a second-order tensor, It is an angular momentum flux
density and shull be denoted D‘Z(r. .

L@ ) = o DleXp @D v 1), (41
The elements &), of the tensor density 7

Jﬁwlf =p(r, ) [k Xvir n]g "/ (9]
and so Equation (111-39) can be written

Lsf -g—;’idwff P hds
¥(r) 8

We may now use Gauss's theorem to convert the surface
integral in Equation (111-42) into a volume integral

ff 7 s f o Pav
S(1) 140))]

(1142)

where
~ O
v =Ll (111.43)
0x,

which then gives

T ({1 St ’

L= FTi ) dv, (1144)

v(r)

It can be shown directly thut the integrand of Equation
(111-44) can be written

2, o a0 :
-57*\7 .,‘/,’ﬁal «XV)+p(rXV)

9 (pr) (e X V) tpve V(e Xp).  (111-45)

12

Collecting terms in Equation (11-45) gives

Frvd e[y @] exn
Fpr XD)+ppe 9(rXp)

and by Invoking the equation of continuity

g.§.+ Ve on =0 (11-40)
"This reduces (o
W yg.5 ~ 1147
—5;-+v B pX)tppe V(e Xp)  (11147)
and Equation (111-44) asswmes a final form
L :f [p(er))+pv- v (rX v)} av .,
ven
(111-48)

The RHS of the governing equation (111:32) represents the
torque acting on the extended deformable body. The net
torque on the body arises as & result of the combined actions
of a system of body forces f and surface stresses S\ N can be
expressed quite generally as

N() =] rdeV-!-[[ Temds  (11.49)
Y O]

where it is understood that in general both £ and S are
time-dependent fields.

The complication which must be borne in mind when
applying Equation (111.49) Js that usually the vector field f
representing the system of body forces and the tenser field §
representing the system of surface stresses are referenced to
the material of the rotating body. When expressed as vectors
and tensors in the nonrotating coordinate system the body
forces will in genera) appear as the time-dependent vector field
f(r, £) and the surface stresses will in general appear as the
time-dependent tensor field S(r, ), where r refers to a fixed
position in the nonrotating frume, even if, when viewed by an
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observer at rest relative to the body, these ficlds have no time
dependence, Thus in the nonrotating frame

N(1) ‘*f rXf(r,z)cll«“rﬂ F(r, 1) RS
Y0 0]

(11-:50)

The bounding surface S defining the volume 17 of *“the
body” can be deawn arbiteardly, Material density p(r, 1)
excluded from the volume is regarded as an external medinm
pob belonging to “the body In such cases the external
medium can In general act on “the body"” by u system of
induced body forees and surface stresses,

2, Dynamics of rotatien with the inertin tensor, The inertia
tensor ¢an be introduced into the dynamics by the kKinematienl
expadient of introducing an arbitrary veetor w such that the
velocity field e, £) is kinematically decomposed into

W, = vt wXr

which when substituted into Equation (111-32) gives the total
angular momentum as

L Ef plr, ) [rX v, Dt e X (w X 0] dV
Fn
(-5
where v(r, £) is a “residual® velocity field (which may or may

not be small depending on the choice of w) defined as a
funetion of position ¢ in the nonrotating frame,

Introducing h the *residual™ anguhir momentum vector

h ﬂf ple, D [e X v(n )] a¥ (152
()

we may write Equation (111:51) as

L‘“f PN [FX (WX ) di+h  (I1153)
4G

By a set of manipulations identical to those carried out in
Equations (111:20) through (1124) it is possible to show that
Equation (11-53) may be written as

L=l w+h, (U1-54)
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Here the inertin tensor J'is given by

T= f ple, 1) [P T=re] aV (1L-55)
4O)]

where Tis the unit tensor

1 0 0
T=l0o 1 o0 (111:506)
0o 0 1
and where
rt =gy
(57
I R

Substituting Equation (111-54) into the dynamical equation
governing rotation, Equation (111:33) gives
TowtTrd+h=N (11-58)

where the indicated tme derivatives are rockoned relative to
the nonrotating frame of reference,

Once again we are faced with the problem of establishing
the time derivative with respect to the nonrotating frame of
quantities, namely uand h, which depend on volume integrals
carried out in the ponrotating frame.

We proceed in the same manner as before by considering
two instants of time £ and ¢+ dt and the increments dh and df
to the relative angular momentem und inertia tensor respec-
tively in the interval dt.

¢h =f protddn) [eX v (r,t+dn)) dV
Virde)

f e (e, [t Xy (£.0)) 4V (111-59)
#(1)
drﬁ—/ p(r,t+de) 2T~ ve] a¥
Peetde)
- f p(e.0) [PAT=rr] aV (111-60)
¥(n

13
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can be written as
dh ~f ‘71- {p(roetde) [rXv(r, e tdn))
¥(1) J

=p (.0 {rXv(x ) }dVdt

+[[ p (D) [EX V(D) RS vt
St

(11-61)

(IT-] ;t {p(r,t +dO)= p(r,0) }[r? Twrr] dvde
¥

+j]- p )P T ye) Rdsvar,
St}

From this it follows that

i =] -%’ldwf Ferds  Qn63)
¥(1) SN

where A(r, £) is a residual angular momentum density given by

(111-62)

h(r,f) = p (e, 1) [t X v(r, 1) (11-64)

and where 3 is a residual angular momentum flux density
given by

Hmn=pm )Xyl v@ ).  (1-65)

The quantity 3 is a second-order tensor density whose cle-
ments are J(y; given by

i, = p(n ) [rXv(r )], v (r, 0). (111-66)

It also follows from this that

~Q
"

33_("9’)(”2 T.. r.-)dV+[ ﬁ'ﬁdS
S(t)

N
v
tw (111-67)

14

where J(r, 1) Is an Inertin flux density glven by

Fa0= o T-r0vw ). (1168)

F (v, 1) Is n third-order tensor density with clements Fy glven
by

'Z[k * ﬂ(f. t) (’a 8”"””) Vk (f) ‘)u (1“'69)

We may now use Gauss's theorem to convert the surface
integrals in Equations (I11-63) ()11-67) into volume integrals to
obtain

h nf {%%’-+V'5Z'£ dv (11-70)
70

'i"'zf {%?(r,t) [r'zT-'rr]-i'V'.!?g dv
V(N

(n-71)

whare

(11.72)

0
L (11-73)
axk

3, Discussion, A theorctical deseription of the rotational
dynamics of an extended, generally deformable body has been
presented both with and without the introduction of the
inertia tensor, The velocity of the material of the body and the
deformation of the body with respect to time relative to the
system of coordinates is accommodated, in the first place by
the introduction of ."’/\"(r, £), the tensor density flux of absolute
angular momentym, and in the second place by the introduc.
tion of 3 (r, #) and Z(r, 1), the tensor density fluxes of
residual angular momentum and inertia respectively.

Ve g =

Although this development illustrates the theoretical tools
necessary to handle problems of this sort, the choice of a
nonrotating frame of reference in which to describe the
dynamics of rotating bodiez is generally a poor one, This fact
can be illustrated by considering the case of the rotation of
rigid body. Even in this simple case the tensor fields .‘Z’, X,
and Z do not in general vanish although ¥ can be made to

- vanish by an appropriate choice of w.

e b

e S
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The term 7™ < appearing in Equation (111-58) has tn general
only kinematical significance. lis value can be changed at will
by a change in the cholee of w. In particular it ¢an be made to
zz)nlsh by choosing e as constant, It Is the combination of
T+ ¢ plushwhich has true dynamieal significance, Effects not
appearing In one will appear in the other,

For the case of rigid bodies and quasirigid bodies the
rotational dynamics can be greatly simplified by transforming
to o rotating frame of reference. Such n transformation is not
accomplished by simply introducing the inertia tensor into the
dynamies as in Equation (111.55), for this tensor is still defined
by moments of the mass distribution taken about the nons
rotating coordinate axes. The transformation to 4 rotating
frame of reference is accomplished by the Liouville equation
in which the necessary time derivatives are taken with
reference to u rotating system of coordinates,

C. The Liouville and Euler Equations

To obtain the Liouville equation we begin with the
dynamical equation governing earth rotation expressed in a
nonrotating center of mass coordinate system

iL=N, {tii-74)

We then consider a rotating center ol mass coordinate
system whose rotation rate relative to the nonrotating coordis
nates is given by the angular velocity vector . At the monient
of coingidence we can relate the time derivative L taken with
respect 1o the nonrotating frame to time derivative dL/de
taken with respeet to the rotating frame by the kinematical
relationship

L= oxe,

7 (n-75)

The angular momentum of the rotating body can be
expressed as

L=7 wth (111-70)
Equations (11-74) (H1-75) (111.76) together yield
L@ wrmtoxTwth =N um)

which is the Liouville equation first abtained by Liouville in
1858.

AU this point in the analysis the elements of the tensor T
and the components of the vector h are by definition Equa.
tions 119 and 1124) reckoned relative to the basis veetors of
the rotating coordinate frame and in particular the appearinee
of the operator “d/fer” rather than the operator *+™ on the
LHS of Equation (11177) indieates that we are to differentiate
these quantities with respect to the basis veetors of the rotats
ing frame, That is, we are to consider the rate at which the
components of 7and h are changing with time when projected
onto the basis veetors of the rotating coordinate frame, By the
same token the components of the torque N appearing on the
RHS of Equation (1177) must also be given with vespeet 1o
the basts veetors of the rotating coordinate frame, This aspect
of the Liouville equation is discussed at some length in Munk
and MacDonald (1960 pp 12:14),

Written out in full

dl Cwd T zlw+¢lh

il i ”HoXI wtwXh=N

(11-78)

Far a generally deformable body we can use the previous
arguments to show that in the rotating frame

dh f I/ AV 4]] 52‘ CRdS, (11.79)
l{t} Stt)
and
%}.[ %’:(M) - e dV f/ o S,
, i Sft)

where r now refers to a fixed position in the rotadng frame,
and as before the relative angular momentum density A(r, 1) is
given by

h(r, ) = p(r, ) [t X v (r, ) (-a1)
The rotating frame tensor density fluxes ff("nu and z,, ¢ are

by definition_vbtained from their nonrotating frame equiva-
lents ¢ andZby the replacement of r, 1) with v(r, ).

Thus
a‘c‘m, (n 0 = olr, D [eX v(n O] Wr,r)  (11-82)
Iy (1 D= o@D T=rr)v (). (183
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Using Gauss's theorem in Equations (111:79), (111-80) gives

dh oh
(”f (mw»ncm,)dv
i

dl 2%, ,
= f,, . [-f(r 0+ .%o,]dv. (111.85)

In the case of a rigid body w can be chosen 50 that v(r, f)
vanishes with the consequence that:

% .
ot 0

(111:84)

Wy = 0

‘Zot’o

The maintenance of the above four conditions implies that
the coordinate system remains in corotation with the rigid
body or that the coordinate system is “attached” to the rigidly
rotating body, When expressed in the corotating coordinate
system the dynamical equation governing the rotation of a
rigid body reduces to

1-‘-3-,- =N-wXT* w (111-86)

The quantity =w X T+ w is called the gyroscopie torquo and
vanishes if the rotation axis coincides with any of the principal
axes of inertia, To prove this we consider the inertia tensor
expressed in the principal axes coordinate system

. [A 0o o
=16 B 0
0 ¢ C

and the rotation vector expressed in the same coordinate
system is

wF W el+wzez+wsea

Then
WwXT* w = w,w, (C-B),

+ W, w, A-0) ?2

+w, w, (B-4)¢,. (111-87)
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If e lios along a principal axis of inertia then fwo compo-
nents of w; w;, wy must vanish nnd 50 w X T+ w vanishes,

I Equation (111:86) Is expressed In the principal nxes
coordinate system it becomes

Iw2 “

dw, dw,
@ 4} - c,+C

= [N, = wywy ()] &
+ [N, = w wy (AC)) B, + [Ny = w0 w, (BA)] Ey
(11-88)

This is Euler's equation for the dynamics of rigidly rotating
bodies obtalned by Euler in 1765,

A comparison of the Liouville equation, Equation (111-78),
valid In the rotating frame with Equation (II1-58), its counter-
part valid in the nonrotating frame procedures

Trwtl  dth =N (111:58)
-‘g--g_: +T "d‘% » NewXL  (III78)
where we have used
L= T' wth

in Equation (I11.78),

D. Kinetic Energy of a Rotating, Extended,
Deformable Body

The total kinetic energy of a rotating, extended, deform-
able body is T where

( .
T "j 1/21 S+t 12 dm (111-89)
v

where the Integral is taken over the entire volume of the body
under consideration, In Equation (111-89) S is the velocity of
the origin of coordinates relative to inertial space and r is the
velocity of the mass element dm relative to the origin of
coordinates,

Now

S+F? = ISP+ i +28 ¢ (111-90)

A
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und so the total kinetie energy ean be written

'l’nf 11218 I’dm*f l!.’.!i-l‘dnmfs-fdm.
¥ oy 3 P

(H191)

The veetor $ is comnion to all the muss elements In ¥ and can
pass through the integrals

T=1/218 l"‘f dm o+ l/l[ li 12 d/)z+S-f sm,
v ¥ B

(111.92)

The position of the center of mass of the body relative to
our origin of coordinates Is denoted by p where

f rdm

P W e W B gl (111.93)
f dam M 1
V
and where M Is the total mass of the body,
It follows from Equation (H1:92) that
f vdm = Mp (N1.94)
‘P

and using this result in Equation (111-92) the expression for the
total kinetic energy of the body becomes

T=12M18 12 +MS-,‘;+1/2[ e 1> dm,
V
(111.95)

Equation (111.95) illustrates how the total kinetic energy of
a rotating extended deformable body can be decomposed info
a translational Kinetic energy associated with the motion of
the center of mass relative to inettial space denoted T, and
a rotational kinetic energy associated with velocity of rotation
of the body about Its center of mass denoted 7, . Thus we
may rewrite Equation (J11:95) as

T = Tfmlﬁ.} + Tmf (1“-96)
where
Tlraus = 1 2MISP+MS P (8%

and

Tyt ® U2 [ 1E1 . (111:98)
¥

If the origin of our coordinate system is placed at the center of
winss of the body then p=0 and the translational kinetlc
energy reduces o

T = I2MISP?

trang (111-99)
where § Js now the velocity of the center of mass of the body
relative to inertlal space.

We shall not concern oursslves further with the properties
of the transiational kinetie energy but shall investigate in some
dotail the propertiss of the rotational kinetic energy.

The rotation vector w for a rotating, deformable extended
body with fluid regions can be unambiguously defined as the
angular rotation veetor of the mean body axes frame Jn which
the relative angular momentum h vapishes, (Note that there s
no need for w to be parallel to any of the three body-fixed
basis vectors of the mean body axes frame.) If dr,, fdt 1s the
velocity of n muass element relative to an observer fixed at
position r In the rotating mean body axes frame then dr,, Jdt
I related to £, the velocity of the mass element relative to an
observer fixed in Inertinl spaee, by the formula

de, .
Pty Xy

= (111-100)

and so the rotational kinetic energy 7,,, can be expressed as

which becomes

" q
T = 1/“‘[
l.’

+ 1/2f lwX r1? dm
Vv

Using the vector Identities:

() A (BXC)=B:(CXA)

(2 JAX BI=(AXB):(AXB)
BG)(AXB)'(CXD)=A: [BX(CXD))

dr
'_Jg"""wxr

2
i dm

dr dr
'--é,‘-f-'- 2L (WX 1) dm

2 am+
am T

Vv

(m-101

17
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Equation (111:101) can be written

T [y Pdmtew: f (rXv)dm
v

rot = 112

l!

12w f (rX (X 1) dm (11102)
v

where we have made use of Equation (111-29),
Defining the mass element dmt a3
dm = p(r,0)dV

and using Equations (111:52), (11-53) and (111-55), Equation
(111-102) can be written as

fﬂ'

uzf IVRdmtwe b+ 120 T w
(111-103)

It is of interest to obiain an expression for the time derivae
tive of the rotational kinetic energy T,,, of on exiended
deformable body, Since T,,, is a scnlnr quantity we can
conclude that its time dcrivnuvc can be taken relative to a
rotating or nonrotating frame of reference with identics)
results. If we persist with the convention of using dot *+* to
indicate a time derlyative taken with respect to the nonrotats
ing frame and dfdt to indicate n time derivative taken with
respect to a rotating frame then

dr

Tpp &= (111-104)

where
Tyot ™ I/Z[ (VP dm+o htw h+12d: T w
v

tpw T wtiRe T o (I11-105)

dr :
u-ozvgl = -iln 2 -qu—- dh
o 172 T ];, Iy Pdm + i chtw: T

o

do , 7 T,
+1/2 w7 Fo+ 12w g
~ dew
1200 T —F (I11-106)

18

are respectively the space-fixed and body-fixed expressions for
the rate of chunge of kinetic energy.

Since the Inertia tensor 1s symmetric It can easily be shown
that

GeTrvwmwe T o, (111107)
-‘-ﬁ;‘;‘ii"wuwﬂ%, (111-108)

and so Equations (111-105) (111-106) can be written
Trat = 1/2.[ v lg dntd+h+w: fH«w .T. )
v

12w T w (I11-109)

dr, d dhi
ot 2 w
T = 1/2 M(L lvl dm) i chtw: T

dT

e T '-—-+ 12w = (111-110)

Adding and subtracting 1/2w T wand 12w+ dlldt » w
in Equations (111:109) (113-110) gives

Tt l/zj[ IV P dm+ohtawe @ w+Tr k)
v

(1111

dr
m' ®1[2 — (f IVlzdrn)'*g-‘e'h*w'(Zﬁ
| 4

7odo,d AL ,
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Using Equations (I11-58) (J11<78) Iu Equations (J1-111) and
(111-112) reduces them to

Toor ™ tl;’f IvRdn+&rhtws N=» 1/2«»7‘»«;
‘I

(113
ATy, d 3 dw
- " 112?17 V” 2dm *'-(-l-,-ﬂh
twe(N=wX L) 1/2 wi’--w (1 14)
Now
w'wXL=0
and so Equation (I11+1 14) reduces
dTm: d(f )
% |[2 & v i*dm
dt d\ J,
PO N- 12w IS

The kinomatical relationship for vector time derivatives
taken in the rotating and nonrotating frumes glves

dt
and since
wXw=0
we have
o dw
= T (1i-116)

The time derivative of the rotation vector is the same
whether viewed from the rotating or nonrotating frame.

If we consider the case of a rigid body, then w can be

chosen so that v =0 and h=0 and Equations (11-113) (Hl-
118) reduce to

B ® @ N=120:Tvw,  (IL117)
drT, _ di’ .
—ol gy Ne 2w G w  (ELIS)

where the vector N in Equation (I1-117) represents the come
ponents of the torque as seen In the space.fixed frame and the
vector N In Equation (111-118) represents the components of
the torque ns seen in the body-fixed frame. If one of these
vectors Is cunstant the other is generally time-dependent.

For a rigidly rotating body with w chosen that V =0 and
h=0 it follows that dlfdt =0 and so the two expressions
reduce to

Ty = @ N= 120 Tvw  (L119)
dTmr
2 % N, (11.120)

Equation (I11-120) Is recognized as the familiar work
theorem of rotating rigld bodies,

In applying Equations (I11-113) or (I11-118) to the case of &
generally deformuble rotating body it Is necessary to establish
the time derivative with respect to the space-fixed and body-
fixed coordinate frames respectively of the time dependent

Integral
f Ly 1?am 'f ple, )V v(r, ) 1 av.
Vi) Vi)

(1H-121)

It can be shown that in the case of the space-fixed time
derivative

l/2f o) lv(e, ) 2 av = f “dVJf E+%idS
Jvit) U] S(t)

( ul'lu )

where e(r, 1) s a relative kinetlc energy density
e(e, ) = 1200, 0) \v(r,0) 12 (111-123)
19
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and where E(r, 1) is o relative Kinetic energy flux density
measured in the spacesfixed frame,

E(r,0) = 12p00,0 1,0 B in, ). (111:124)

In the ease of the vody-fixed time derivative It ¢an be shown
that

4 2 e
uzd‘. j;mp(r.l)lv(u)l dy = [ T dv

Yiy
Sit}

where E,,, (v, ) Is » relative Kinetic energy flux density
measured in the rotating body-fixed frame

(1-125)

B (0 = 12005,0) v, 0 v(r, ). (111126)

Using Gauss's theorem, Equations (111:122) (111-128) can be

writicni;
1/2]1 1v 12 dm -f (%%+V~E)dl’.
20} iy (111:127)

d de
l/2~f I v 12 dm -f (—-—-+Vv E )dV,
dt Vi) Vit o et

(11-128)

This completes the discussion on the general question of
the rotational dynamics of extended deformable bodies, We
will now turn our attention to the application of the theoreti-
cal tools developed here to the question of the rotation of the
earth,

IV. The Liouville Equation and the
Dynam!:s of Earth Rotation

With the exception of its fluid portions whinh include the
oceans, atmosphere, ground water and fhe liquid outer core,
the rest of the “solid” earth is so neazly rigid that departures
of the actual 2arth from a rigid body may be incorporated into
the dynamical theory of the earth's rotation by a perturbation
scheme,

20

In the zeroth order approximation the earth is an axially
symmetric rigid body rotating with uniform sngular velocity §
about un axis coincident with the axis of figure &. In a
eoordinate frame which Is corotating with the earth about the
axis of figure the zeroth order inertia tensor 79 Is given by

A 0 0
T9= {0 A O (IV-1)
0 0 ¢

and the zeroth order rotation veetor is given by ° where

o=, (1<)

Henceforih when we speak of the Inertia tensor of the earth
we shall mean the inertia tensor of the earth as measured in
the body.fixed coordinate frame unless we explicitly state
otherw. e,

The Inertia tensor of the “real” earth Is 7 where

aid the Instaniancous rotstion veetor of the body.fixed
coordinate frame Is

w = 2%+ Om o+ Qm? +Qmd 4 o (\V-4)

where the perturbation terms numbered 1,2, 3, + appearing
In these expressions are the result of a variety of perturbing
geophysical phenomena,

We shall find it convenient to use the notation

T =T0+% (1V-3)
w = 0°+0m = QF +Om (IV-6)
where the tensor¥has elements
LT g Nya
£ Faa Fas
and is given by the sum
FeF 472474 e (1v-8)
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I



AR toie: S

SN

ORIGINAL PAGE IS
OF POOR QUALITY

and where the vector m has components

m = m @ +my@, +m,e, (1IV9)
and Is given by the sum
W T T D
m=m +m tmit o, (1v-10)

In general both 7and m are time-dependent perturbations,

The angular momentum of the real carth {s given by L
where

L= Tewth, (Iv-11)

In the above equation w refers (o the tota) instantaneous
angular rotation rate, including the effects of precession,
nutation, and spin, of the body-fixed coordinute frame. In
general w is a time-dependent veetor, The physical definition
of the veetor w is implied by the physlcal definition of the
body-fixed basis vectors @ @, @ and their orientation or
rather their rate of change of orientation in inertial space,

Observationally however the situation is more cemplicated,
The measurement of w i3 accomplished by combining data
from a set of observers scattered over the carth’s surface and
attached to the earth’s crust at various points, The solid earth
and in particular its crust is continuously deformed by tides
and other geophysical processes and is also the subject of
large-scale systematic geotectonic motions, The question of
the physical measurement of a unique vector w, conforming to
its definition, and derivable from a set of terrestrial observa-
tions frem scattered positions on the earth’s surface, becomes
somewhat problematic at the level of ultrahigh precision
measurements, We shall consider this problem later in this
work and for now will proceed on the assumption that a
unique vector w is an observable quantity and that this
observable w conforms to the definition offered in the context
of this theory,

While the body-fixed coordinate system is corotating *with
the crust” in some uniquely definable sense the presence of
the fnid portions of the earth, namely the occans, atmosphere
and fluid core, will contribute to a nonzero value for the
vector h, Also contributing to h will be those portions of the
solid earth which, as a result of tectonic processes, are in
motion relative to the body-fixed coordinate frame,

It follows that while h does not vapish in the body-fixed
frame of reference the quantity (h|/|L] is very small, To first

order in small quantitics the angwlar momentum vector L has
components in the rotating coordinate frame

L = AQm‘ thy (1] h]
L2 * As‘Zm2 tryq (Y] +112

Iy = CSZ (Lmy) 4ry, Q4. (1V-12)

To apprecinto the nature of the approximations being made
by retaining only the first-order terms in our theory it is useful
fo recall (Munk and MacDonald 1960) that the total relative
angular momentum in the zonal circulation of the earth’s
atmosphere Is of the order of 10?3 gm cm? sec™! and that of
the earth’s oceans Is of the order of 1032 gm cem? sec™!,
whereas the angular momentum of the rotating carth is
roughly 6 X 10% gm cm? sec™!. It follows that
Ik}/IL[ ~ 108 for the atmosphere and ~10~2 for the oceans,

Furthermore it has been shown (Smylie and Mansinha
19710 Mansinha, Smylie, and Chapmen 1979) that the
changes in the carth’s produets and moments of inertia r,
resulting from the Chilean ecarthquake of 1960 2nd the
Alaskan earthquake of 1964 are of the order of 1035 gm cm?,
which s to be compared to the earth’s moments of inertin €~
A ~ 10% gm em?, Thus even for the largest of mass
movements in the solid earth ry/C ™~ ry/d ~ 109,

The Liouville equation governing the dynamics of carth
rotation expressed in a rotating body-fixed frame of reference
is given by Equatijon (111-78) as

dr ~ dw  dh . -
T wt! ar +a’t +wXl wtwXh=N
(1V-13)
Substituting Equations (I1V-5), (1V-6) and (IV-11) into Equa-
tion (IV-13) and retaining only terms which are first order in

small quantities, we obtain the perturbed Liouville equation
governing earth rotation which in component form becomes

dm, dri, dh, )
N, = AQT +Q rTE +~;1-r—- + Q5 (C-A)m,
-QPry, -Qh, (1V-14)
dm dr,, . dh
o 2 23 2 2
N, = AQ 7 + 8 i + T Q4 (C-A)ym,

+ QP+ Qhy (1v-15)
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am dr dh
3 KA
ar ST Y

Ny = 0 (AV:16)

In obtaining Equations (IV-14) = (IV+16) we have made use
of the fact that 4,82 nre constants und their time derivatives
vanish, Equations (IVs14) = (1V-16) are expressed in the
rotating coordinate frame and so the components Ny Ny Ny
of the Impressed torque on the earth must be expressed in the
rotating frame as well,

Equations {(1V-14) = (1V-16) are “separable” in the sense
that the quantitics iy #3y and ly nppear exclusively confinerd
to the equation for Ny, This is o consequence, in part, of the
restriction (o a fitst-order theory and does not occur in a
second-order expansion of the Liouville equation. This means
in effect that the effects of the torque Ny ean be treated
separately from the effects of the torques Ny Ny, The set of
equations (IV-14) - (1V-16; decouples into what is usually
described us a pulr of equations govering polar motion or
“wobble” and involving only the m, m, perturbations to
the rotation vector w and a single equation governing UT1 and
involving only the my perturbation te the rotation veetor w,

Multiplying Equation (IV-15) by i, where i =1, and
adding it to Equation (IV-14) gives the complex wobble
equation:

N, +iN, ASZ (m +imy) + S ” Py i)
+ »5"7 (h, + i)+ Q2 (C=A) (g =im,)
S (g mir ) =Ry =ik ). (IVALT)
Recognizing that

my=im, = ~iGmy +imy)

Fag =irgy = =i (ry tiry) (1V-18)

hy=ilt, = =iChy +ih,)

and introducing the complex quantities

o= oyt im,

Far,t ir”
(1V-19)

22
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= hy+ih,

N =N, +iN,

the complex wobble equation becomes
W= il o ‘J' - [ (Ce )~ 03P SR)

dar (lt
(l V‘..O)

which together with

im 3 . "5y dh,

Ny = CQ et b Qi et

dr i (av=h

constitule the governing equations for earth rotution, With
some simple manipulations these equations can be written s

dit . Cd 1 dr _ dli - ]
T am [N Q 4 = G =1 (@R Qi)

(V.22
and

dm. dr, dh
ST - () et o
T (Na “ ( )

Written in this way Equations (IV-22) and (1V-23) appear
explicitly ns equations governing changes on the earth rotation
veetor w ingluding both polar motion (wobble) and UTL, The
RHS of Equations (1V-22) and {1V-23) appear as forcing
functions in the dynamics of carth rotation w and are often
referred to as the geophysieal excitation functions for polar
motion and UT1 fluctoations,

It is possible in principle to use our present knowledge of
geophysical processes to model the excitation functions und
hence predict polar motion and UT1 from these equations,
However, our ability to do this successfully at this time is
limited by a general lack of aceurate information regarding the
character of the geophysical excitation functions,

It seems most scientifically productive at this point to
reverse the above argument and set about to accurately
measure my My my by long baseline interferometry or other
methods with the objective of learning more about the
geophysical excitation functions, Since these funetions reflect
the effects of atmospheric and oceanic circulation, external
gravitational torques, distocations due to eartheuake faulting,

-
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(uid motions In the core, electromagnetic coupling between
the core nnd mantle, changes in sen lovel, chunges in ground
water content and other important geodynamical phenoment,
this program  should hold great potential for seientific
discovery,

Equations (1V=22) and (1V-23) are referred 1o the rotating
bodysfixed basis vectors @,8,8y, ad 50 all quantities
appearing in them must also be expressed relative to these
busis vectors. I Ny ¥y Ny are the components of a gravitae
fional torque whose magnitude and divection are fixed in
ertial space, then when expressed relative to @ 2,2, the
torque components ¥y Ny Ny are varying periodically with
perind 2n/lewl.

Although we have referred, and will continue Lo refer, 1o
the vector ¢ as the “rotation veetor of the earth™ it should be
borne in mind that o is in fact the yotation veetor of a
geophysieal coordinate system and strictly speaking has only
Kinematien! significance, The unique “rotation veetor of the
earth® is n veetor R for which the earth’s angular momentum
L, is exprossend as

LeT:R. (AV-24)
We can obtpin o relationship between R and @ by decoms
posing the relative angular momentus hag

hoTodw. (1V=25)
From this we can see that
R = w+dw, (1V-26)
but sinee [Seo]/lw] << 1 we have
R ™ w, (1V-27)
Equation (1V+<23) may be written
dmi\ L« "t NN |
tlfw = oW . N3 (Yde' - QI‘“ "lla N
' (IV-28)

The latter equation allows us 0 Integrate the equation for
4 (1) to obtain

[4
my(1) = ‘f‘k [f N, (1" ‘“'“Q’aa =iy | ¥y (0)
0
‘ (IV-29)

Equation (1V+29) expresses the variations of UTT us o function
of time,

The cunntities 7 and rappenring In the equation for polay
motion (1V-22) as well ns the quantities iy and ryy nppenring
in the equation for UT1 (1V<28) dopend on volume integrals
defined in the body-fixed frame, The rigorous definition of
thelr time derivatives Tor the case of a generally deformable
body are given by Fquations (111-84) and (111:85) respectively,
However, Inter in this work we shall examing some usaful
approximate methods for caleulating these time derivatives
which treat the earth as u vigid body with fluid portions,

V. Rotational Dynamics of an Axially
Symmetric Rigid Earth

Although the earth is In reality a defornable body, its
approximation to a «gid body s sufficiently good that
considerable Insight into the carth's rotational dynamics enn
be obtained by examining solutions to the dynamical equas
tions governing earth rotation in their zeroth approximation -
namely the speeint case of a rigid axially synumetric earth,

A. Eulerian (Force Free) Motion of an Axiaily
Symmetric Rigid Earth

In 1765 Buler investiguted the dynamies of yigidly rotating
bodies in the absence of external torques. Such motion has
come (o be known as “Eulerian motion,” We shall investigate
the Bulerinn motion of the earth from the point of view of a
body-fixed coordinate frame and u space Tixed coordinate
frame,

1, Eulerian motion of the earth in o body-fixed frame, The
sotational dynamics of o rigid earth in the absence of any
geophysical excitation is governed by

am_ . Cr A .
a1 Qm=0 (V1)
dm
- .
dt (v2)

which are obtained from Equations (1V-22) and (IV:23) by
setting the excitntion function 10 zero.

These equations can be integeated divectly to give

m 3(r) = constant (V-3)
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and
Ti(r) = expi (%ﬂ’lﬂrwnv)
where T is a complex constant of integration,
T=o0R+iol,
If we introduce the angular rotation rate 0, where

C- A

g, ® e ()

we see that Equations (V-4) and (V-5) yield
wi(r) = exp [~ 07 +i (a0 +0%)]
Setting
8, = exp-0'

. R
0ty = -0

and recatling that

) = m (¢) +im, ()

(v-4)

(V-5)

(V-6)

(V-7

(V-8)

(V-9)

we have the solution for the rotational dynamics of a rigid

earth in the absence of geophysical excitation

m, () = B, coso, (t-ty)
my(t) = B, sina, (t-1,)

or

Tﬁ(t) - Bc elar(""o)

and

m,(f) = constant ,
From Equations (IV-2) and (IV-6) we have

w = Q [m (D8, +m, (e, + (1 +m,(1))e,]

24

(V-10)

(v-11)

and so one way of viewing this solution is to sec that it
corresponds to u constant angular rotation rate of magnitude
(1 + my) about the axis of figure @ combined with
time-dependent angular rotation rates of magnitude Qm (1)
S, (1) about the € und &, axes respectively,

A more instructive way of viewing this solution is to
consider the rotation vector w in terms of its magnitude and
direction in the body-fixed coordinate frame rather than in
terms of its components in the body-fixed coordinate frame,
The magnitude of the rotation vector Is given by w=
(w* w)/? where

W= (@- W) = Q(1+2m) (V-12)

to first order in small quantities. The direction of the rotation
vector is specified by the angles m (1) m, ().

For a positive value of g, we see that this solution
corresponds to the uniform circular motion of the axis of
rotation about the axis of figure in a prograde or west to east
direction, The axis of rotation moves within the earth on a
body-fixed cone whose axis coincides with the figure axis @,
and whose apex angle is 20,, The rotation axis completes one
revolution about the figure axis in a period 2n/0,. This
geometry is illustrated in Figures V-1 and V-2,

AXIS OF § EULERIAN
FIGURE AXIS OF
ROTATION

Figure V-1, The Eulerian (torque-fres) polar motion for the case of
an axially symmetric rigid sarth. The Eulerian axis of
rotation is confined to the surface of a geometric cone
of apex angle 23, aligned with the figure axis.
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EULERIAN AXIS OF
ROTATION AT 1= 0

™

AXIS OF
FIGURE

Figure V-2, A polar view of Eulerian (torque-free) polar motion, The
Eulerian pole is seen to move at a unifonn rate in a
prograde sense around the figure axis at a constant
angular distance 3.

From Stacey (1977) we have

¢ = 80378 X 10™ gm em?

i

8.0115 X 10" pgm em?

]

A

and so

gg;m‘:!_ = ) = --='lw

and since 0, = (C = A/A)2 and 2n/82 corresponds to an
intorval of one meun siderenl day we see that the axis of
rotation completes one revolution about the axis of figure in
304,06 sidercal days, In the case of a rigid earth ivs angular rate
around the figure axis is 2n/304.0 radians per mean sidereal
day.

2. Eulerian motion of the earth in a space-fixed frame, The
analysis of the earth’s rotational dynamics from the point of
view of o space-fixed frame in the specinl case of foree free
motion does not require knowledge of the coordinate trans
formation equations relating the body-fixed frame to the
space-fixed frame. This is because in the special case of force
free motion the angular momentum vector L provides us with
an invariant direction in inertial space as a consequence of the
conservation of angular momentum,

Now in general

L=T (V-13)

and in the special caso of u rigid earth we ¢an choose n set of
rotating body=fixed coordinntes such that h = 0 and so we can
write

L=Trw (V-14)

for an appropriate cholee of w corresponding to *the rotation
rate of the earth,”

Using Equations (IV-1) and (IV-11) we have

L = AQm, Z"| + A $2m2 6‘2 + CQ(1 + mj) &,

(V-15)
which can be written
L= ASZml’«?l AL, @, A AQ () my) E,
H(C=-AQ+m)Ey (V-10)
Using Equations (1V<11) and (V-6) in (V-16) gives
L = dw+do (1 +mg) L»‘a (V-17
or finally, neglecting the small term n o,
L= Alw+o,8). (V-18)

From the results of Equation (V-18) it is clear that L, Aw,
Ao, @, form a closed vector trlangle and are hence coplanar,
Sinee |w| > [o,] these vectors can be represented as shown in
Figure V-3,

The angle B, is the displacement of the rotation vector w
from the axis of figure &, and the angle y is the displacement
of the ratation vecior w from the axis of angular momentum
L, The angle v represents a motion of the rotation axis in
space and appears as @ “nutation,” Such a motion of the
rotation axis in space in the absence of externally applied
torques is called “Eulerian nutation” since it 15 assoclated
with the Eulerian (force fre2) motion of a rigid body. This
Eulerian nutation has been called “sway™ by some authors
1o distinguish it from “forced nutation™ which arises as o
result of impressed torques, The term “free nutation” has
also been used to denote Eulerian nutition,

Observationally Eulerian nutation and forced nutation are
difficult 1o separate, Physically, however, they are quite
distinet as Bulerinn nutation does not displace the angular
momentum vector in space and forced nutation does displace
the angular momentum vector in space,
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Figure V-3, The geometrical relationship between the earth's figure
axis ‘,, Eulerian rotation axis w, and angular momen-
tum axis L for a rigid axially symmetric earth with
moments of inertia A, A, and C. The angles 3, and y are
gieatly exaggerated and not drawn to relative scale,
(After M. G. Rochestar, unpublished research notes.)

The following analysis allows us to deduce a relationship
between the Eulerian polar motion described by the angle 8,
and the Eulerian nutation described by the angle v,

From the constructions shown in Figure V-3 (M.G.
Rochester, unpublished rescarch notes) we can deduce:

(1) By Pythagoras’s theorem

lwl = [w? + (o2, tan B )2} (V-19)

(2) By the definition of cos §,

lw| = w, secf, (V-20)
| (3) By the projection of L onto &,

L-&,

=M, - . (v-21)

Using Equation (V-18) as an expression for L we have

L+2,
T oWy to, (v-22)

= (w* w+20,0 0 +0%e, 7). (V23)

I
£ ‘

a’e 'esﬂu:‘

p’ o
20w, = zarw:,

and by Equation (V-19)

wrw = jw? = wltw)tn?p,
we can rewrite Equation (V-23) as
l’!‘, = (w2 + w3 tan?p, + 20 w, + o?)1?
A k] 3 ¢ r3 r
which reduces to
%] = (wy+o)? vt g ) B (v24)

From Equations (V-21) and (V-22) we have

IAI

rm— = sec? (6, = 7)
(wy
and using the identity sec2(B, - ) = tan*(B, = 1+ 1 we
obtain
4
2 - A
tan® (B, - 7) = 5 1. (V-25)
(wy t0,)

Substituting Equation (V-24) into Equation (V-25) gives

(w, +0,)* + W5 tanp,

tan?(g, - 4) =
n“(, - 7) @70y
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which reduces to

“a,

tan (B, = 7 = 7w ian g, (V+20)
3

Using the standard trigonometric formula this can be
written as

tan B, « tany . w, an
I tan g, tany - (W, toy o Pe
or
{ o 1
sany L. r .
tan w ¢
¢ 3 2 r
1+ tan* g, +-—
e wa
and finally
, a g ol
t‘"_____.] 7_ 2 —— ...f..+ 5002 g , (V'27)
tnf, w, \w, ¢

Since 0, <<w, and v, B, are small angles this exact
relationship can be approximated very well by

X
B,

3

We see that the Eulerian nutation in space is roughly 0,/c,
times the wobble amplitude on ecarth.

For a rigid earth:

0, = ?g;q—a'radians per sidereal day,

w, = 2 radians per siderenl day,

and so

1
Y ™ 3046 e

where 4, denotes the amplitude of the Eulerizn nutation on a
rigid earth, For a maximum value of 28, # 0/40 arc we have

2y, ~ 130X 10 arc,

However, in the cuse of the *real” carth, elastic yielding of the
mantle lengthens the period of the wobble to roughly 435
days. For the actunl earth

1
'Ye'ﬁpe

and has & maximum value of roughly

2y = 0793 X 10" arc .

B. Poinsot Geometrical Description of Eulerian
Motion of an Axially Symmetric Rigid Earth

The famous construction of Poinsot is a general method of
geometrically describing Eulerian (torque-free) motion of a
rigid body without having to integrate the governing
dynamical equations, Since the Poinsot construction provides
u complete description of the motion and since the integration
of the dynamical cquations generally involves the use of
clliptic integrals, the Poinsot construction is quite useful as
well as elegant,

The general method of application of the Poinsot construc-
tion is given in Goldstein (1950, pp. 159-161). The approach
adopted in this work will be that of M.G, Rochester (unpub-
lished research notes), We shall compute the time derivatives
of the rotation vector @, both with respect to a space-fixed
frame in which the invariant angular momentium vector L
provides the reference direction, and with respect to the body-
fixed frame with reference directions provided by the body-
fixed basis vectors € &, @,. The result we seck can then be
obtained by appealing to Equation (IlI-116) and equating
these two time derivatives,

We have seen in Figure V-3 that for the case of the earth
executing Eulerian motion the rotation axis w and the angular
momentum vector L are inclined at angular §, and §,~ %
respectively to the axis of figure €, and that all three vectors
w, L, 2, lie in the same plane. Since the angle ¥ between w
and L is a constant of the motion, w can only be incremented
by the motion in the direction of the unit yector £ which is
orthogonal to both w and L. Also since L is a constant of the
motion we can calculate the space-fixed time derivative of w,
denoted according to our convention by @, by referring to L
as an invariant space fixed vector,

As shown in Figure V-4, in an interval gf time dt the
increment dw to w is in the direction of £, a unit vector
¢:thogonal to both L and w

LXw
ILX w|'

£= (v-28)
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Figure V-4, The dynamical quantities used to obtain the Poinsot
construction for the case of Eulerian motion ona
rigid axis symmetric earth,

The increment dw has magnitude given by

ldw) = |w] sin y d\ (V-29)
where dX is the increment in the interval dt to the azimuth,
reckoned in a space-fixed frame, of the plane containing L and
w, Combining the direction and magnitude of dw we have
from Equations (V-28) and (V-29)

dw = ldwlf

dw = e siny "& . (V-30)

By definition

IL X wl
Lt ol

siny = (V-31)

which when substituted into Equation (V-30) gives

LXe

49 =0l Tw

Tl dN (V-32)
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By dividing both sides of Equation (V-32) with the time
increment dr we have the final result,

LXw
& = jr I A

(V-33)

where, by our convention, the dot *+" denotes o time
derivative taken with yespecet to a space-fixed frame.

To compute thie time derivative of w with respect to the
body-fised frame, denoted by our convention as dw/dt, we
begin with

w = Qw8 +my@, +(1+my) e, ] (V-34)
and so

dw dm, R dm2 dm3 .

ar = ( Gt g Rty h) (V)

since the derivatives d@, [dt d@,[dt d@,[dt all vanish in the
body-fixed frame of a rigid earth,

The dynamical equations governing the Eulerian motion of
the rotation axis In the body-fixed frame arc given by
Equations (V-1), (V-2) and (V-6) as

dm =

0 io, M=0 (V-306)
dm,, v
~5i =0 (v-37)

where

M= mgt+im,
and which when substituted into Equation (V-35) yield

%7‘9-' = =0 (m,e -me,+ b\va) (V-38)

Using the relationships €, X &, =€,,8, X €, =¢,,8, X &,
= ¢,, between the body-fixed basis vectors we can rewrite
Equation (V-38) as

dw _
=== 0,02, X(me +m,e,)

= (V-39)
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and since @ X @y = 0 we can add zero (o the RHS of Equation
(V-39) 1o obtain

‘{;;3: = 0,08, X lm_,i“, a2y (1 *"'a)?;l (V+10)

or finally, using Equation (V-34).

dw
weo Loy B .
o “r?a Xw

(V-41)

The general transformation relating the spacesJixed time
derivative G (o the body-fixnd time derivative dGldt of an
arbitrary veelor G is

G al‘ll—?wf«w X G (V-42)

and so for the rotation veetor w we have in general

o =49 4 X w

dt (V-43)

which, since w X w =0, reduces to

TRY
b =& (V-dd)
s was shown In Bquation (M1-116). Substituting Equations
(V-33) and (V-41) into Equation (V-44) gives

_LZSA(,:’,, \ = o
Ll 'Iw”\ ar¢3><w.

= (V-45)

Equating the magnitudes on both sides of the vector
Equation (V-45) gives

JLXw \ = g 12 Vs
KOl ) = gl X @l (vag)
Now from Figure V-3 we have

12y X w] = |ew]sinf, (V-47)

and using Equations (V-31) and (V-47) in Equation (V-46) we
have

lwlsinyd = g, || sin g, (V-48)
or finally
o, sin 7y

The result of Equation (V-49) expresses algebraically the
result of the Poinsot construction, Poinsot (1852) showed that
uny continvous rotation of n rigid body is geometrically
ouivalent to the rolling of a cone, fived within the body, on &
cone fived within space, The cone fixed within the body is
called the polhode cone and the cone fixed within space is
called the herpolhode cone, The instantaneous rotation axis of
the body relative to inertinl space w lies along the line of
contact between the two cones,

The geometry of this arrangement is illustrated in Figure
V-5, The metion isa continuous rotation w around the line of
contact between the cones, during which the axis of rotation
w deseribes successive cirenits around the cone of apex angle
2y in space and also around the cone of apex angle 26, I the
carth,

Figure V-5, The resaltant Poinsot construction for Eulerian motion
on a rigid axis symmetric earth, The large body-fixed
cone of apex angle 23, centered on the figure axis &,
rolis without slipping on the small space-fixed cone of
apex angle 2y centéred on the angular momentum
vector L,

During each complete ¢ireuit around the cone in space, the
axis of rotation w progresses along the cone in the carth only
through a distance equal to the circumference of the small
space-fixed cone. Hence as the rotation axis successively
returns {0 the same position in space at the end of each circuit
around L it lies at successively different positions within the
carth, with the consequence that the earth lies in different
positions in space,
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This aspect of the motion can be understood by recalling
that o, Is the angular rate in the body«fixed frame of the
azimuth of the moving axis of rotation for which X is the
ungular rate i the spacesfived frame of the azimuth of the
moving axis of rotation, Equation (V-49) can be written

. sin 3, cosfi, tanfp,
0wy " %y Ty V0
and using Equation (V-27) In Equation (V-50)
. s, wy [0, n
A=o pyvc ”5:“ (ws + s0¢ 6&) . (V51

Since all angles are small cos f, ™ 1, cos y & 1, and see?
B, % 1. Equation (V-51) reduces to its approximate form

A= w,ta,. (V-52)
Equation (V-52) shows that the angular rate of w nbout L is

slightly larger than the diumal rate, being equal to the diurnal
rate plus the polar motion or wobble rate,

C. Non-Eulerian (Forced) Motion of an Axially
Symmetric Rigid Earth

In reality the motion of the earth departs from the ideal
case of Eulerian motion for two reasons:

(1) The real carth is subjected ta rotational excitation of
both an internal and external origin,

(2) The real carth is not an infinitely rigid body but a
deformable solid with a strength comparable to that of
steel ~102 dynes em™2 and in addition possesses fluid
portions in the form of a liquid outer core, an
atmosphere, and oceans.

We shall examine here the consequences for the earth's
rotation of the geophysical forcing functions und leave the
investigation of the consequences of the departure of the earth
from a rigid body for a later portion of this work.

The geophysical forcing functions can be broadly classified
into rotational excitation of external origin and rotational
excitation of internal origin, Rotational excitation of external
origin would include cffocts such as the lunisolar gravitational
torques, the gravitational effects of the other bodies of the
solar system, coupling to the solar wind by fluid or electro.
magnetic processes, meseors passing through the atmosphere,
metcorites striking the earth and so on, Of the effects listed
above only the lunisolar gravitational torques can be reliably
demonstrated to have any observable cffect on the carth's
rotation. Even the dircct gravitational effect of the other
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bodies of the solar system can be shown (Woolard, 1953) to be
smoller than their indirect effect manifested through the
perturbations these hdies produce on the positions of the sun
and moon relative 1o the enrth,

External rotational excitations are distinguished by the fact
thut they, and only they, may alter the total angular
momentum veetor L of the earth, Such processes which cause
o change of the magnitude snd ordentation of L in &
space~fixed frame are studied under the general rubric of the
theory of the precestion and nutation of the earth,

Rotational excitation of interpal origin would include
effects such as vardutions in ocesn current systems; variations
in atmospherie wind systems; redistribution of ground waters
changes In sen lovél: oceanic, ntmospherie, and solid earth
tides; fluid motions in the earth’s core; electromagnetic effects
involving the operavion of the geodynamo responsible for the
main magnetic field of the earth; long term geologie processes
such as post-glacial rebound, ¢rosion and sedimentation,
geologle uplift, and continental drift; and so on,

Internal rotatlonal excitations are distinguished by the fact
that they may not alter the total angular momentum veetor of
the eartiy, This 1s true even of the clectromagnetic processes
involving the geodynamo and the carth's magnetic field. The
total angular momentum of the earth L necessarily includes
the angular momentum of all jts associated fields and in
particular the angular momentum of the geomagnetic fleld,
When this is done, angular momentum is conserved on the
carth for all internal processes,

To preseribe the carth’s orientation in space it is necessary
to specify the orientation of the body-fixed basis vectors
2, , 8 relative to the space-fixed basls veotors £, By By,
The external rotational excitations of the earth, principally the
lunisolar gravitational torques, ure refated by physical theory
to the time detivative of the earth’s angular momentum vector
L. The carth’s angular momentum vector and its time
derivative are not directly observable and so in order to deduce
observational consequences from physical theory it s necess
sary to invoke some geophysical model for the earth to relate
the angular momentum vector to some observable geophysical
quantity, 1f the angular momentum vector L can be related to
some observable body-fixed vector within the earth, then in
observational as well as in theoretical practice the earth's
orientation in space can be described by determining the
orientation of this observable body-fixed vector with respect
to both the set of basis vectors & @, €5 and the set of basis
vectors E, B, By, In uctual practice the “observable” body-
fixed vectors chosen for this role have been the earth’s figure
axis, & itself, and the carth’s instaniancous rotation axis, w,



Current astronomical theory holds the fundamental refers
ence direction in space to be the mean celestinl pole of the
ecliptic being defined by the mean orbital angular momentum
vector of the earth, The pregent theory of the precession s
based on known astronomical gravitational torques and known
moments of inertia of an assumed rigid earth and as such
describes the theoretieal seaular motion of the carth’s axis of
figure @ relative to the meun pole of the ecliptie, This motion
consists of the sum of the secular motion of 2y nbout the
instantaneous celestial pole of the ecliptic, known as lunisolar
precession and due to the gravitational torques of the sun and
the moon on the earth, plus the secular motion of the
instantancous celestial pole of the ecliptic nbout the mean
celestial pole of the ecliptie, known as planetary precession
and due 1o the perturbations imposed on he carth’s orbital
plane by the other planets of the solar system, Together these
two motions combine to make vp general precession,

The present theory of nutation Is also based on known
astronomical gravitational torques and known moments of
inertia of an assumed rigid earth and Is tabulnted in such a way
that it describes the periodic motion of the earth’s rotation
axis w relative to the mean pole of the ecliptic.

The complete motion is the sum of the secuiar and periodic
components md strictly speaking should be obtained by
adding the secular motion of 2y to the periodic motion of @,
or by adding the secular motion of w to the periodic motion
of w, However, the sccular motion of @ and the secular
motion of w are identical (Goldreich and Toomre 1969) and
so the complete motion Is described in practice by adding the
secular motion of 2, ta the periodic motion of e,

We see that the present theory of precession and nuintion
together deseribe the orientation of w relative to the basis
vectors &2, £, £ for a rigid carth, In order (o orient the earth
in space it is also necessary (but insufficient) to deseribe the
orientation of w relative to &, &, @,. This requires knowledge
of the location of the axis of rotation relative (o body of the
carth or the effects of polar motion., However, that this is an
insufficient condition to fix the orientation of & @,72,
relative to £, £, £ can be scen from the fact that fixing the
orientation of e i1 the system &, € @ und £y £y £y still
allows both the set 2,2, €y and By £y By to be rotated
arbitrarily about ew. The set of basis vectors £ By £y, being

space fixed, are assumed to be not rotating about the direction
w and the rotation of the set of basis yectors & &, @, about

the direction w is measured (very nearly) by UTH,

(1t should be mentioned that known errors in the present
theory of precession indicate that the set of basls vectors

BB, By is rotating at a rate of roughly 11 are par century.
The new theory of the precession is intended to reduce this
error to the lovel of roughly 011 uxe per century, which, while
quite small by the standards of conventionul nstronomical
measurements, §s still roughly 1 milli are second per year and
probably observable by long baseline Interferometry
techniques.)

Although the thile of this section, *Non-Eulerian Motion of
an Axially Symmetrie Rigid Earth,"” clearly embraces both the
changes in the rotation vector relative to the space-fixed frame
(precession and nutation) and the changes of the rotation
vector relative to the bodysfixed frame (polar motion and
UT1), itis the latter phenomena with which this document will
primarily concem Itself and it is the latter phenomena which
are deseribed by the equations (1V-22) and (1V-23), Conse
quently we shall not be concerned with n general development
of the theory of precession und nutation but with n general
development of the theory of polar motion and UT1,

The superposition of the two processes, precession and
nutation occurring stmultaneously with polar motion and UT
variations, can be understood only approximately by referring
to Figure V-5 and imagining the external lunisolar gravitational
torques displacing the previously space-fixed vector L around
on the surface of n space fixed cone of apex angle about 47°
(twice the obliquity of the ecliptic) with a period of roughly
26,000 years, The “space fixed" cone in Figure V-5 is now no
longer space fixed but follows the vector L, This description is
only approximate and Is In error for two reasons,

First, the above deseription neglects the effects of nutation
which would be manifested by small amplitude (~9" are), high
frequency (~2 dnys= 18,6 years) periodic departures of L
from the surface of this space fixed cone,

Second, the external gravitational torques perturb the
Eulerian (torquefree) motion described so elegantly by the
Poinsot construction. This ¢an be seen by the appearance of
the torque components Ny Ny N, In the RHS of Equations
(1V-22) and (1V-23), In particular the lunisolar gravitational
torques displace the instantaneous rotation veetor in a clreuit
around its Eulerlan position in a retrograde sense, The radius of
this circle is about 0702 arc and the period of the circuit is
very nearly one sldereal day, Thus the simple “cone-on-cone”
description breaks down,

The problem of the body-fixed rotational perturbations
which occur in a rigid axially symmetric earth in response to a
prescribed forcing function is of considerable interest in geo-
physics for its solution allows us to model a variety of geo-

physical processes and investigate their possible role in exciting

polar motion and UT1 fluctuations in the earth. A general

N




solution to the equations governing polar motion and UTI
variations in terms of arbitrary excitation functions and their
intograls I8 enaily obtained, If the geophysicul excitation funes
tions were sufficiently well known this solution could be used
to predict the position of the rotation pole und the value of
UTI in advance. However, such a program is not practical on
the basis of our present geophysical knowledge,

I, General solution to the dynamical equations governing
polur motion and UTH fluctuations. The dynamical equations
governing the motion of the rotation axis in a body fixed
frame are given by Equations (IV.22) and (IV:23), Using
Equation (V:0) these can be written as

.‘!7’;.1 - 10 777 = E (v-53)

dm, de, v
o (V-54)
where @ is the complex wobble excitation function given by

and where Equation (1V-22) gives

[N szZ; ‘(’1’; QT+ nr)] (V-56)

In Equation (V-56) the quantity de,/dt is the UT1 exciiation
function given by

g 1 d 'N(r')a:'-m “n) (V-57)
dt cQ dt 0 3 B "3

in Equation (IV-23).

Since M, m, are dimensionless angles the excitation func.
tions &, deg/dt, have the units of sec1 or “frequency”.

The solution to Equation (V-56) can be obtained by the
usual method of variation of parameters, Introducing the
dimenstonless complex excitation function & where

¢ = ¢ +i, (V-58)
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given by
?oe-lowclie +1e)) (V-59)
lg, g~V 73
Equation (V-56) can be written
‘” == g (0" +m). (V-60)

The general solutfon to the homogeneous (2' = 0) equation
(V-60) is

m) = me oo (V-61)
to which must be added a particular Integral
o[t . o,
m‘,,(r) % g, e " g()e "t (V-62)
0

to give the general solution to the Inhomogencous (¢’ # 0)
Equation (V-60) as

la (t= _ ! -
m) = moe +fo,e"’"f oY
0
(V-63)

That Equation (V-63) is the most general solution to Equa.
tion (V-60) cen be verified by direct differentiation. In Equa-
tion (V-63) m° is a complex integration constant,

The general solution to Equation (V-57) we have seen in
Equation (1V-30) is given by

my(f) = e,(0)+my (V-64)

where

't
€5(r) = 215 [[ N';,(I') dr'= 21y~ 113] (V-65)

and where m$ is an integration constant,

2. Some idealized examples of polar motion excitation in
an axially symmetric rigid earth. As an illustration of the
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usefulness of the solutions (V-63) and (V-64) we shall consider
the case of a few Idealized examples of the excltation of polar
motion (Munk and MacDonald, 1960),

It can be seen from the governing equations for polar
motlon (W!O) that the complex wobble excitation function
t'= ¢ +1 ¢ and the complox coordinate of the pole of the
m!atlon nxis MEm my o+ gy have the same “dimenslons” of
radians, This leads naturnlly to the concept of a wobble
exeltation axis. 1t will prove mathematically convenlent to
define & as the complex coordinaie of the pole of the wobble
excltntion axls where

fuot

E =g tig, ==(c) +ic)) (V-66)
If the wobble excitation Is small In the sense that '] <<
then the excltation axis defining the pole of wobble excitation
Is associnted. with the unit veetor 3 where

8= o8, vo,+ [1-501 ] v

The exciiaiion pole @ can be expressed in terms of the
geophysical entities such as the components of the external
forque Ny N,, the perturbations to the Inertin tensor ry3 ry5,
and the relntive angular momentum components ity Jty as

| drys dhy . 02
a = n;—i‘ﬁ?’-:[(Nz - Q""i’;c""”"w“’“ ﬂ rm l SZ”I

drm dh,_ ) )
'»i(]\ll §)emn i TI;—*Q Fay ¥ Q0,1 (V-68)

a. Step function wobble excitation. Step function wobble
excitation can be represented mathematically as

HO = TH (1) (V-69)

: where J is a complex constant given by .T-rJ +1J, and where
?

BN M s e 2 e

II(( = 1) s the Heaviside step function doﬁncd by

0 1<,
H(t~1) = (V-70)
SN A

Physically we might expect step function wobble excitation
to be an approximate model for the effect of earthquakes on
polar motion. In such a simple medel the fault dislocation

produces a discontinuous and permanent change in the earth’s
inertia tensor and acts as an abrupt generator of the perturba.
tlons ryy ey In Equation (V-68) (Smylie and Mansinha,
1971a; Mansinha, Smylle, and Chapman 1979),

Substituting the wobble excitation function (V-69) into the
general solution, Equation (V-63), gives

" f e 4
miy = m* " '°)~ia,¢la" f TH(!' = 1) ¢ o ar
0
(v:11)

Since we are nssuming an absence of wobble excitation for
t <ty we have

m* =0
and so Equation (V-71) becomes

t

==1
m(z)-a;oe’:r " ar
which integrates {o pive
I P
) = T -0 (V-72)

The geographic coordinates ’"1(') m,(1) of the pole of
rotation can be obtained from Equation (V-72) by setting
T=Jy 105, T =y + i my, to obtaln

m(e) = J = J, coso,(t= 1)), sing, (¢t~ t,)

my(f) = J, = J,cos0,(t=t)) +J, sina, (1= t,).
(V-73)

In this solution we see that at ¢ < ¢, the rotation pole
coordinates are m =0, m, =0, As soon as the step function
excitation is imposed and the excitation pole appears at the
coordinates

F=T

the rotation axis begins to describe a steady prograde circular
path of radius [] about the excitation pole. This is illustrated
in Figure V-6. The angular rate of the motion of the pole of
rotation is o,. The pole completes one circuit in an interval
2n/u,.
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Figure V-4, The polar motion which resulis from a siep funciion
sxcitation at time ¢ = {,, The rotation axis execuies
uniform v prograde 2ircular motion sbout the exchation
axis,

b. Delta function wobble excitation, Impulsive or §-func.
tion wobble excitation can be represented mathematically as

He) = T8 (1t (V-74)

where T Is a complex constant given by J=J, + 1J, and has
the dimensions of time and where 8¢t = 1,) is the Dirae
§-function. The dimensions of J follow from the requirement

that
f S(I-ID)dt = ]

hence 8(f ~ ¢,) has the dimensions of time=! , and that &) be
dimensionless,

(V-75)

Physically we might expect impulsive wobble excitation to
be ar approximate model for the effects of short lived atmo-
spheric storms on polar motion largely as a result of the
changes in i, and /1, which might accompany such events,

Substituting this wobble excitation function (V-74) into
the general solution, Equation (V-63) gives

fo(t=1) or [ =la 1’
wi(r) = me A1= T ~iloe ’ ffﬁ(t'-—to)e “ar
0

(V-76)

Since we are assuming the absence of wobble for ¢ <ty we
have '

m =0
and so Equation (V-76) becomes

$

{ J =]
() = <lg,¢ i f BU'= 1y e “ ar (V+17)
0
which Integrates to give
{ 0 1<ty
m(() » N = Fi (V’?S)
=g, J Jortho) Lty

Since J has the dimensions of time and o, has the dimensions
of time=} the quantity 0,7 Is dimensionless and will servo as a
dimensionless wobble amplitude X

RwylT (V79)
and the solution, Equation (V-78), can be written
0 t<t,
(e = 0 (1o . (V-80)
W Saaa 131,

The geographic coordinates m (f) my(¢) of the pole of rota-
tion can be obtained from Equation (V-80) by setting K =K,
1Ky T=my +1my, 10 obtain

m() = K, sino (- t,)+K, coso(t~t,)
. (V-81)

my(1) = K, sing (1~ t))- K, coso(t~¢,)

In this solution we see that at time £=¢, the pole of
rofation moves discontinuously at the time of the impulse to
the complex coordinate =i K or to m (1) = K,, m,(f) ==K,
For times t>1, the pole of rotation moves in a steady
prograde circular path of radius |K|= o,17] about the excita-
tion pole, which for times ¢ > ¢, resides at the origin since for
times ¢ > ¢y the excitation is zero, This is illustrated in Figure
V1.
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A comparison of step function wobble excitation and &
function wobble excitation leads to the following general
conclusions

(1) Step function excitation displaces the excitation pole
but not the rotation pole a¢ t = ¢,

(2) & function excitation displaces the rotation pole but
not the excitation pole (except for an interval of mea-
sure zero) at £ = ¢y,

(3) Both excitations lead to prograde polar motion about
the excitation pole.

¢. Harmonic wobble excitation. Harmonic wobble excita-
tion can be represented mathematically as

() = Tecoso(t-t)+Tsino(t-t,) (V-82)

where J® J* are complex constants given by J° =J{ + i JS,
J* =J7 +1J3, and where o is the frequency of the harmonic
excxtution which is arbitrary and not necessarily equal to o,,
the “resonance” wobble frequency of the axially symmetric
rigid earth,

Physically harmonic wobble excitation on the earth occurs
as a result of the external lunisolar gravitational torques N, N,
which, when viewed in the body-fixed rotating frame, are
harmonically varying. Jt is in fact this excitation which pro-
duces the retrograde mottun of the rotation pole about its
Eulerian position previously mentioned.

Alternate forms of the harmonic wobble excitation func-
tion of Equation (V-82) are

[ - "I -
O =Tt e"(' o +T e o(t=t,) vE3)
and
y - - . *w
F0) m (T NN e OG-0+
(V-84)
where
J*:’%( "lfs) T"g.%fc”'ffs)
(V-85)
and whete
Vs Fruao
A" = tan™! A" = tan™!
J;UML Jl;EAL
(V-86)

In the formulation of Equation (V-84) the quantities 7|
and [J-! are the modulii of the complex amplitudes J* T~
respectively. |J*| represents the amplitude of a prograde rotat-
ing excitation function J* whose phase angle at the epoch
t=t, is A*. 77| represents the amplitude of a retrograde
rotating excitation function J~ whose phase angle at the epoch
t=tyis\ .

It is most convenient to proceed with the solution to the
problem of harmonic wobble excitation by choosing the form
of the excitation function given in Equation (V-83), If we
consider the harmonic wobble excitation to have commenced
at time ¢ = ¢ then substituting the wobble excitation function
(V-83) into the general solution equation (V-63), gives

i (t - lo,t b ot -1) ot
m) =me " ~iare’[/ T+ 10 T
'

0

t ' '
. ~fo{t - b
- io, [ 7= ar'] (V-87)
fo
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which Integrates to give

-~ fto=~o,)t |t
o "0’(“- ‘0). {0" ’a'o e e
m{) = e fo,e J WTey 3 }

(V-88)

+ emo [.T'

which becomes

() = e GIO,.(I = to) - '__g_r__ T [ela(t = fg) _ elar(r—- to)]

U"Or

g;l(a to)rit
o +o0,) ,
0

+ (v-89)

- | =lo(t~ty) o t=1,)
Or J"[c Caegr 071,
a+or

Equation (V-89) can be rewritten as

[ — g — o (t=t
’—ﬁ(t) = [.’_ﬁo + r J+_ r J._] ear( 0)

0-o0, o+ar

. g, 7+eta(t~to)+ o, 7 ~lo (1~ tg)
o-0, gto,

(V-90)

We see that the solution consists of two wobble compo-
nents: one occurring at the Eulerian frequency o, and one
occurring at the forcing frequency ¢, The Eulerian component
is a prograde rotation g,> 0 of the pole of rotation with
amplitude |} where

M| = |m° + or AR o J I
i o-0 oto

The wobble occurring at the forcing frequency consists of a
prograde component of amplitude [0,/(0 = 0,)] [*| and a
retrograde component of amplitude [0, /(o +a)] 1771,

The fact that harmonic excitation at frequency o can also
excite the Eulerian wobble at frequency o, is intimately con-
nected with the presence of both the annual and Chandler
frequencies in the spectrum of the earth’s wobble,

3. The lunisolar harmonic wohble excitation in an axially
symmetric rigid earth. The effect of the lunisolar torques on
the position of the instantaneous rotation axis in a body-fixed
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N,

reference frame has been analyzed in detail by Woolard (1953)
for the case of an axially symmetric rigid earth, The lunisolar
wobble motion can be expressed as the vector addition of the
complex coordinate 7, to the Eulerian motion 77, where as
usual

m, = my, +im,,

W, =m, +im, . (V-92)

¢

Formulae for the lunisolar wobble motion are obtained by
solving Equation (IV-22) written as

dm“ N v
_d——t—"mmp =T (V-93)

where N = N, + i N, is the complex linisolar torque on the
carth expressad in the body-fixed frame, The solution to this
problem is given in Woolard and Clemence {1966)

n

m + 00087 sin ¢ - 00062 sin (¢ ~ 2 Lg)

p
- 00029 sin (¢~ 2 Lg) +*+ * (V-94)
My, =+ 0Y0087 cos ¢ - 00062 cos (¢ - 2 Lg)
- 010029 cos (¢~ 2 Le) +++ * (V-95)
where

(1) ¢ is Greenwich Mean Sidereal Time (GMST).
) Lg is the mean Jongitude of the moon.
(3) L is the mean longitude of the sun,

The lunisolar torques superimpose on the slow Eulerian
motion of angular rate o, a retrograde nearly diurnal circular
motion of the rotation axis with radius ranging from zero to
0702 arc depending on the positions of the sun and the moon,
This motion, which results from the non-vanishing complex
torque Nin Equation (IV-22), is illustrated in Figure V-8,

4, The damping of the wobble and wobble Q. It is apparent
from the form of the solution for harmonically forced wobble
on the earth, Equation (V-90), that even infinitesimal
harmonic excitation at the Eulerian frequency o, will produce
an infinite wobble amplitude, This unphysical prediction
results from the fact that we have considered the earth to be
infinitely rigid and hence free of any internal dissipation.

The real earth is not infinitely rigid. The earth’s finite
rigidity, in addition to greatly altering the character of the
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Figure V-3. The combined eftect of the Eulerian polar motion i),
and tha lunieciar poler motion i, The rotation of /i, is
prograde while the rotation of M. s retrograde. The
vector sum of i, and Ai, const the total polar
moﬂonm.muaplmﬁﬁpl is time-dependent.

Eulerian response in a manner to be investigated In a later
seetion of this work, will nlso resalt in internal dissipation of
wobble energy within the carth, Since the spectrum of
naturally oceurring wobble exeitation is quite complex it will
inevitably contain some power in the infinitesimal frequency
band containing the Eulerinn frequency o, It is the internal
dissipation within the earth which vesults in the observed fInite
wobble amplitude even in the presence of continual wobble
excitation,

Strictly speaking the question of the damping of the earth’s
wobble does not belong in o theoretical treatment of the
rotational dynamics of u rigid earth for its answer neeessarily
lies in an investigation of the detatled mechanism of the
wobble damping and hence an investigation of the general
rheological nature of the carth including its fluid portions,
However, by introducing the “specific dissipation” or Q it is
possible to introduce dissipation into the theory witliout cons
fronting the question of the detailed mechanism responsible
for the dissipation,

The @ of an oscillating system with total energy £ and
internal dissipation rate dE/dt is defined to be

1 U gl
0" Bﬂls‘f ar

(V96)

where the integral is taken oveér one complete cyele of the
oscillation, 1t can be shown (Munk and MacDonald, 1960) that
the @ is related to the sharpness of the resonance peak of the
oscillator by

(V97

where o, + Ao are the frequencies at the half power points of
the resonance curve,

The @ of the earth's wobble is generally estimated by this
method from spectral analysis of polar motion data, Estimates
for @ based on present day data are only preeise enough to
place §t roughly within the bounds 30 < Q < 60 (Pedersen and
Rochester, 1972). Improved data which could yield a morm
precise figure for @ would be of assistance in understanding
the mechanism of dissipation within the earth,

V.. Equilibrium Deformation Fieids in a Real
Deformable Earth

A complete theoretical understanding of the rotational
dynamics of the “real” carth which incorporates realistic
models for the rheology of the deformable earth and By fluld
portions as woll as all the forces acting on them Is a distant
goal for geodynamical theory. Such an achievement is greatly
hampered by:

(1) Incomplete knowledge of the properties of the earth’s
{luid core and its intexaction with the rest of the carth
including its electromagnetic and viscous effects,

2} Incomplete knowledge of the long term theological
properties of the inner core, mantle, and erust of the
earth,

(3) Incomplete knowledge of the current systems in the
oceans and atmosphere and their interaction with the
shell and each other, to name but a few major items on
a very long list,

Nevertheless o simple technique developed originally by
AJEIL Love (1909) allows reasonably rigorous trgatment of
the effects of earth deformations for certain classes of
deforming foree fields, Three imporiant geophliysical disturbing
forces which are capable of deforming the earth and which can
be treated adequntely by Love's technique are:

1) Centrifugal forces and theiv effects on anrth yotation,
(2) Tidal forces aird their effects on earth rotation,
(3) Surface loads and their effects on earth rotation,
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Since Love's theoretical technique plays a major role in the
incorporation of earth deformation Into the theory of carth
rotation for a wide class of deforming force fields we shall first
review Love's theory in some detail before proceeding to
discuss the effects of the above three phenomena on earth
rotatjon,

A. Love Numbers and Equilibrium Earth
Deformations

The use of Love numbers in geophysics is subjected to a set
of restricting assumptions which are:

(1) The earth is assumed to be spherically symmetric in its
clastic parameters and overall structure,

(2) The earth is assumed to be in static equilibrium with
the system of deforming forces, Strictly speaking this
restrictive assumption prevents the use of Love num-
bers in anything but problems of geostatics, However,
their use in geodynamics is justified in instances where
the time scale of the changes in the system of
perturbing forces is large compared to the elastic
response time of the earth in which case the internal
displacement field u(r) is at all times infinitesimally
close to being in equilibrium with the deforming forces,
The time scale of the eurth’s elastic response is of the
order of the transit time of a seismic wave across an
earth diameter or of the period of the gravest mode in
the earth's free oscillation spectrum, Both these inter-
vals are of the order of one hour and so the use of Love
numbers to describe the geodynamical response of the
earth to perturbing forces whose characteristics are
changing significantly on time scales large compared to
one hour is possible,

(3) The perturbing force field is assumed to be weak
enough that the resulting stresses are small compared to
the strength of earth materials, which is typically 107
dynes cm™2, In this case the response of the earth will
be lincarly related to the perturbing stresses.

We begin by considering the earth in equilibrium in its
unperturbed state characterized by a gravitational potential
Vo(r) and a density profile p°(r), both functions only of
radius r=|r. We then consider the earth subjected to a
perturbing force field f(r) which results in an internal
deformation field w(r), When the perturbing force field f(r) is
derivable from a potential VP(r) ,

f@r) = -9V (r) (VI-1)

then it can be shown (Smylie and Mansinha, 1971) that under
the restrictions stated above the radial displacement u,(r) and

the dilation v+ u{r) are proportional to the perturbing
potential, In general for any radius r = |r| within the carth we
can write

u () = H'¢r) VP@) (VI-2)
v ule) = F'() V@) (V1-3)

where H'(r), F'(#) are radial functions which depend on the
carth’s elastic propertics,

Following Love it will be convenient to define functions
H(@), F(r) such that

H(r) = () H'() (VI4)

F©) = O F'( (V1-5)

where g9(r) is the positive scalar magnitude of gravity at radius
r within the undeformed earth, In other words

0
0 = E’_'!_Z.Ql LVI-6)
r

where m°(r) is the mass contained in a sphere of radius r given
by

r
mo(r) = 4n j p°() ridr .
Q

It follows that

u @) = 2O prgy (VI7)
£°0

veulr) =20 peg, (VL8)
£°0)

In general the perturbing potential PP{x} will have a solid
spherical harmonic expansion

o= X

n=0 m=0

n
(—;—) P! (cos 0) (C)7' cos m\ +S)" sin mN)
» (V1-9)

valid for r < a; where @ is the geocentric colatitude und X is the
geocentric east longitude and P (cos @) is the associated
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Legendre polynomial of degree n and order i, Symbolically
we may write

VP(r) = E Y V@), r<a,

m

(V1-10)

where V" (r) is the n, mih element in the double sum.

it follows that

u(r) =-—- Z > HEOVE (Vi)

] m

7+ u(r) -*--—-Z E

n m

F.@) VR () (VI-12)

where the quantities /,,(), F7,,(r) are radially varying functions
depending on the earth’s elnstic properties and depending on
the degree n of the spherical harmonic VE™(r), That H,(r),

F,(r) depend only on the degree n and not the order m of the
spherical harmonic is a consequence of the fact that spherical
harmonics of the same degree but different order all have the
same radial dependence,

The deformation of the earth u(r) produces a perturbation
in the equilibrium density profile of the earth, If p(r) is the
density profile after deformation and p°fr) is the density
profile before deformation, then the perturbation to the
density p* (r) is defined

p'(@) = p() - py(¥) (VI-13)

and is related to the displacement field and the original density
field by

P () = - u(r) Vo) - p°¢)V c u(x) .  (VI-14)
Now p° depends only on radius r = |r} and so
Vo) = f%fr_(_’}? (VI-15)
which allows Equation (VI-14) to be written
dp’(r)
P = - 0@ 207w . (VHE)

Using Equations (VI-7XVI-8) in Equation (VI-16) we see that

pl(r) = - -wz'—)- [wa..ﬁl,,(,) +p°() l"(r)] V(o) .
4 (VI117)

It follows from Equations (VI-10)(VI-17) that p'(r) can be
written

PN =GO XD D VEME  (VIg)
where
-1 [dp’0)
G(r 0 [ H) +p°(r) F(r)]
(V119)

The deformation of the earth and subsequent redistribution
of the mass of the earth produces a perturbation to the
cquilibrium gravitational potential, If V(r) is the gravitational
potential after deformation and VO(r) is the gravitational
potential before deformation then the perturbation to the
giavitational potential ¥ (r) is defined

Vi) = V@) - V(). (VI1.20)

Both V(r) and V() necessarily satlsfy Poisson’s equation

for the density distributions p(r) and p°(r) respectively,

VAV(r) = - 47 Gp(r) (vi-21)

VIVO(r) = - 4n Gp(r) (V122)

and since the Laplacian is a linear differential operator we can
conclude from Equations (VI-13) (VI-20) (VI-21) (VI-22)
that

V() = - 4n Gp'(r). (V1-23)

It can be shown (Kaula, 1968, pp. 61-69) that the
gravitational potential V! (r) resulting from a density distribu-
tion p*(r) given by Equation (VI-18) will have the form

Vi = 3 2 K,0OVP"m  (V124)

n
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where the quantities K, () are radinlly varying functions
depending on radinl integrals involving the density disteibution
p'(1 and depending on the degree n of the spherleal hurmonie
PEM(r). That K, () depends only on the degree # and not the
order m of the spherieal harmonie Is ngain a consequence of
the fact thai spherical harmonics of the same degree but
different order all have the same radial dependence,

We now consider a perturbing potential field ¥P(x) of single
Jixed degree ny In other words we take

n
VR = PRy = 3 VIR,
m -0

(V125)

It follows from Equation (VI-11) that the radial displacement
u,(r) within the earth in response to the perturbing potential
lf’l"’(r) is

( ""(I‘) V[’()
HAr) = ormemmee f
' a0 N

[s

(Vi-20)

and that the perturbation (1) to the carth’s gravitational
potential in response to the perturbing potential ¥/(r) is

Vi) = K,0) VI, (VI-27)

The total perturbed potential 1'(r) in the region r KRa
inside the earth is the sum of

(1) 7o) the original unperturbed potential,

) V2(r) the perturbing potential of the deforming force
ficld causing the deformation u(x),

(3) ¥X(r) the increment to the gravitational potential
resulting from the redistribution of the carth’s mass
accompanying the displacement u(r),

r<da.
(V1-28)

v ’(l’) = V()(r) & ];’,{’(r) + ‘(l‘),

For a perturbing potential ¥/7¢) of single fixed degree 1 we
¢an use Equation (V1-24) to write

r<a,
(V129)

There are a number of aspects to this theoretical develop-
ment which require emphasis at this point.

Vi) = VO + {1 +K, 0] PP,

First, the potential ¥P(r) refers to a povential field from
which the system of de(‘orming body forces is to be derived
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and can only be defined In the region r Sa. Also the radial
function K, () depending on the elastic properties of the carth
con only be defined in the reglun r Sa, In general Equation
(V1:28) orily has meaning in the reglon r Sa.

Second, the Newtonlan gravitationnl potentint of the carih
F(r) (exelusive of the disturbing potential) depends only on
the mass distribution, In the undeformed earth we had

V() = Vo) (V1-30)
but in the deformed earth 1(r) consists of the sum of
Pe) = Vo) + V() (VI:31)
and so s given in the region r <a by
V() = VOu) +K,0) 1) (VI-32)

Third, the analysis presented thus far is carried out from an
Eulerian viewpoint in which the vector r refers to some fixed
position relative to the origin of coordinates (geocenter) and
Involves the compurison of 0() before deformation with
() and V() after deformation (Equations (VI-28) and
(VI-32)), For an obsesver or a particle moving with the
deforming earth » Lagrangian description s more appropriate,
A Lagrangian deseription would involve a comparison of ¥ ()
and e +u(r)] and V [+ u(n)].

A Lagrangian analysis begins with the definition

M) = Vo) + V() (V1-33)
from which it follows
V(r+u) = POr+u)+ Pi(r+u), (V1:34)

A Taylor series expansion of Equation (VI1-34) gives

Pietu) = PO + PO « u(e) + V(@) + 9P () u(r)
(VI-35)

which to first order in small quantities reduces to
Vir+u) = VO0) + VIO « u(e) + ¥(r). (VI-36)
Now by definition

8°) = - vV
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md since g%(r) has only a radinl component owing to the
nssumedd spherleal symmetry of the wndeformed earth we can
write

VEO)  u(@) = =) » w(r) = g% 0 () (VI3
which when substituted into Equation (V1:30) gives
Vrtw) = VoY= g u ) + 1, (VI38)

Using Equations (VI-11) and (VI:24) In Equation (VI-38) gives

Pt u) = PO =0 - w) > a6 vy

" m

+ 35 KOV, r&a,

noom

(V1-39)

or

P(rtu) = "’o(") + Z E lhn(’) ”n(r)] ano.)’

H m

r<da. (V1-40)

Equation (V1-40) exprosses the Lagrangian varlation in the
gravitational potential for an observer moving with ihe
deforming earth, The total effective potential F(r + u) sensed
by a particle would include the perturbing potential FP(r)
responsible for the body force deformation field, Using
Equation (VI-00) we can write

Pl ru) = PO+ D 30 [L+K, 00 -H,00) Y,

n m

re<a. (Vi41)

Considering once again a perturbing poilentinl of single
harmonie dogree 1t we can summarize the results:

Eulerian Viewpaoint

) = VOO +K, (O VAR,  r<a,  (VI42)

Vi) = VO (LK, 0] VI,  r<a,

(V1-43)

Lagrangion Viewpoint

neo .
“r(l') = go(r)” I n (l') ) rsi, (Vl"“‘)
Vet w) = PO+ K, (0= 1,00) VP, rRa,
(V1-45)

e +w) = POp) o+ {1 TR D=0 O VI, r<a.
(VI-40)

Love numbers of degree n, Ky, &y, ure introduced into the
theory by speeinlizing the formulae (V142)-(VI-406)to the case
of an observer or particto at the surface of the easth r =q,

Defining
k, = K(r)]r. a (Vi)
h, = ll(r)[r,a (V1-48)
,0 = 70 * vk
¢ =00, , (V1-49)
and setting
Fe),., = F@) (V1-50)
l"(r)lm = Pia) (VI-51)
'fl)(‘.)" . = ',!';')(a) (Vl°52
w0, = 1 (V1:53)

where it Is understood the argunient @ Indicates that the
quantity is still a function of @, A, the geocentric colatitude
and east longitude respectively, ylelds the following results:

Eulerian Viewpoint

The potentials along o spherical surface of fixed radius
r=a,

V) = FOa) +k, VP(a) (V1-54)
@) = PO+ (1 +k,) V@) (VI-55)

i
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Lagrangian Viewpoint

The potentials nlong the surface of the deformed carth
r=gtw,

h,
() 'm Vi) (VI-50)
éo'

Via+u) = Vo) +(k, = h,) Vi@  (VI-57)

Vi +u) = Voa)+ (1 + k, - h") v (a) (V1.58)

B. MacCullagh's Formula and Perturbations to the
Earth's Inertia Tensor

The Love numbers allow a caleulation of the surfaco
deformations of the real earth in terms of the potential of the
perturbing force field and hence sre of great utility in
geodynamics, Another formula of equal utility is MacCullagh’s
formula, which when combined with Love numbers allows a
calculation of the perturbations ry to the inertia tensor of the
real carth in terms of the potential of the perturbing force
field,

We begin by considering the gravitational potential 1(r) at a
fixed point r in the region exterior to an extended spherical

body of internal density distribution p(R), The geometry of .
the situation is illustrated in Figure VI-1, Figure VI-1. mm omo'mn""'"wm..';:x
field.
The contribution d¥(r) to the gravitational potential at ¢ B

due to the mass clement p(R)dV at the position R within the

body is where:
(1) r=lt,R =R},
av (e = -8 gy (V1-59) .
S| (2) s the angle betweenrand R,

where (3) P, (cos ) is the Legendre polynominal of degree n,

r=R+S (V1-60) It can be shown (Mueller 1969, pp. 3-6) that with the origin
of coordinates chosen to be at the center of mass of the object

The total gravitational potential at ris ¥(r) given by

. vy = - [(1“ 1y = 2 153) P (cos 0) ¢

V() = -G j -%l dv (VI-61) o i

vel +21,, P} (cos0) sin A+ 21, PL (cos 0) cosX

where the integral is to be carried out over the volume of the i
body. This integral can be expanded in the usual way as
) +_;_(,22 = I,,) P2 (cos 0) cos 2\ ’

1] i

V() = ~-‘f— 3 p(R) (’r—‘-) P, (cos Y)dV, t>R 1 i
Vol. n=0 2 frore AL . ¥

(VI-62) = I, P3 (cos 0) sin 2>\] +0 (r 4) (V1-63)
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where:
(1) M s the total mass of the extended body,

() 1;; wre the clements of the inertis tensor defined in the
body fixed coordinate system for which 0 s geocentric
colatitude and A is cast longitude,

(3) P)'(cos 0) Is the nssocinted Legendre polynomial of
degree n und order m,

Equation (VI1:63) is MacCullagh'’s formuls and is valid in
this form In the region exterior to the body t fixed (Eulerian)
positions r. The usefulness of MacCuliagh's formula for the
theory of ecarth deformations Is fllustrated in the following
example,

Suppose the undeformed equilibrivm figure of the earth is
spherically symmetric with radius » = a, in which case the
undeformed gravitational potential PO(r) is given by

GM,

vo(r) = e red, (VI-64)

Since, for such an earth, the undeformed inertia tensor 10 is

given by
A 0 0
To=lo 4 O (V1-65)
0 0 4

the undeformed gravitational potential may equally well be
writien

Y p 4

GMy ¢
Vo) = oo .,_;‘,;3;,_ [(I,f’l +19, = 219) P (cos 0)

+ 219 P} (cos 0) sin X+ 21y P} (cos 0) cos A

+108, - 19,)P3 (cos 0) cos 2

- 19 P2 (cos 0) sin 27\] A, (V1-66)

1272

since the terms inside the brackets vanish,

Now if the earth is subjected to some deforming foree ficld
which produces displacements u(R) internally within the earth

the inertin tensor Is perturbed from the undeformed value
79 to the deformed value Tgiven by

Atry, i 'y

T = Fay At by, Fay (VI67)

and  the gravitational potential is  perturbed from its
undeformed valug 90 to its deformed value P(r) where
according to Equation (V1.20)

V) = () + V() (V1.08)

The gravitational potential F(r) of the deformed carth will
also bo given by MacCullagh's formula Equation (VI-63) and
so from Equations (VI-63), (V1-66), (VI-67), and (VI-68) we
deduce that

i) = - :(!;;, [(Jrl e 2r.”) l’g (cos 0)
2

+ 21y P (c0s 0) sin X+ 27y P} (cos 0) cos X

5 (ryy - ri ) P; (cos 0) eos 21

= 1)y P3 (cos 0) sin 21\] +o(m:%;) srEa. (V169)

Combining Equation (VI1-24) valid for r <a with Equation
(V1-69) valid for r = a we can obtuin, for r=u,

. ¢
E E K, @ V") = .‘.;{; [('n Fry = 2ry)
n

m
P3 (08 0) + 2 1y P (cos 0) sin N+ 2y P) (cos 0) cos A
1 v
+-,,:(rn = r, ) P3 (cos ) cos 24

= Py P2 (cos 0) sin 22\] +0 (.%.)

a

(V1:70)

where Vﬂ"‘ (r) is the potentinl from which the deforming force

field is obtained,
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Of particular interest Is the specinl case of n second degree
perturbing potential ¥4(r) which has a general representation
valid for r <a s

2 r 2
Vo) = 3 (5) Py (cos 0) (€Y cosmh+ S} sinmd)

m=0

(VIL71)

or
2 -

VB(r) = (7';‘») [ €3 P} (cos 0) +C} P} (cos 0) cos A

+ 83 P} (cos 0) sin \ + €3 P3 (cos 0) cos 22

+82 P2 (cos 0) sin 21 ], (VI-72)

Substituting Equation (VI-72) into Equation (VI.70) and using
Equations (VI:47) gives

k, [ €2 P} (cos 0) + C) P} (cos 0) cos A+ 8} PL (cos 0) sin A

+ €2 P2 (cos 0) cos 2\ + §2 73 (cos 0) sin 2A]
(‘.
e [ (ryy * Fay ™ 233) P2 (c0s 0)

2(:3

+2 1,y P} (c05 0) sin X+ 2 7y P} (cos 0) cos A

+-=,!;(r22 =ry) P§ (cos 0) cos 2\ ~ ria I’§ (cos 0) sin 2h].
(V1-73)

Since spherical harmonic functions are all linearly independent
we cap equate the coefficients of harmonics of the same
degree n and order m in Equation (VI-73) to obtain the five
equations

2%,a* \
Fo =58 (V1-74)
2k2113 .
&, =- G Cy (VI1.75)
27»’2:1:l | ,
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.
|
Sa(rn - r") ® o -z;:,g'm c% (\,’l.’]’[)
2%,0°
p 2
Pty 2y ® o (VI.78)

These five equations are insufficient to solve for the six
independent values of ry- A full solution for the perturbations
to the inertin tensor ry requires an additional equation to
supplement the set (V1-74)=(VI-78), The usual technique for
obtaining a “solution™ for the ry; is to use as 4 supplomentary
equation

Pyt tryy =0, (VI-79)
This equation expresses the (assumed) property that the trace

of the Inertia tensor 7,7 is n dynamical Invariant whose
magnitude is not changed by the deformation of the carth,

Rochester and Smylic (1974) have criticlzed the use of
Equation (V1-79) In geodynamics and point out that, while
T, 7 Is conserved for all carth deformation fields derivable
from a potentinl which is expandable in solid spherical
harmonics, there exists o whole class of carth deformation
fields for which this i5 not true and for which 7,7 i not a
dynamical Invariant,

The correct supplementary equation to use to provide o
solution to the ry is
Py Fryy tray = &(r,T) (V1-80)

where (7', T) is the variation in the trace of the inertia tensor
which occurs as a result of the deformation field,

The correct solution for the ry is then obiained from
Equations (VI-74)~(V1-78) and Equation (VI-80) gives

Uy

(VI-81)
| = - (VI-82)

(V1-83)

(VI-84)
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1, kya ) 2.1 0
r22 '3’b(7;7)* "»“(v’{'a (2 (“2 ”"33‘()2) (vl,ss)
k.t
"3 "3’1“5(717) el (VI-86)

In addition 10 ryy nbove, the dynamical equations (1V-22)
and (1V-23) governing polar motion and UT1 depend on
F % ryy ¥ irgy» From this analysis we see that

- kia;‘ ) ol i
Fow e (€3 +i83), (VI-87)
These results, Equations (VI-81)=(VI:86), obtained for the

case of a spherically symmotric earth whose undeformed
inertia tensor 79 Is given by

A 0 0
T= |0 4 0 (V1-88)
0 0 4

nre not altered at all when we constder the flattoned real earth
whose undeformed Inertin tensor 7° fs given by

A 0 0
=10 4 o0 (V1-89)
0 0 ¢

In the ease of the flattencd earth the equilibrium gravita
tional potential ¥O(r) is given by

GM )
Vo) = o= = L. [(A +4 = 20) PY (cos 0)
r 2’.3

+ 219, Pi(cos 0) sin A+ 2]?3 P} (cos 0) cos A

+:‘,:(A = A) P} (cos 0) cos 2\
= 19, P2 (cos 0) sin 27\] (V1:90)

for the undeformed earth, The deformed inertia tensor for a
flattened earth 7 is given by

i A‘f‘r“ r r

12 1
T = ra Atr,, Fay (VI-91)
ry Fas Ctry

S ORERIRLEESERT T e o hadiint o b o

and the gravitational potentinl for the deformed earth ¥(r) is
given by

P = ¥+ 110, (VI92)
It can readily be seen that substituting Equation (V1-91) into

MacCullagh's formula, Equation (V1:03), and using Equations
(V1:90) aind (VI92) pives

¢ .
P = - ”r:‘ ':(r 1 F g = 2rgg) P (e0s 0)

4 2ryy P) (cos 0) sin N+ 2r 4 P} (cos 0) cos A
;",j (ry; =1, ,)P§ (cos 0) cos 2A

=1y P% (cos 0) sin 2?\] (V193)

which Is identieal to Equation (VI-69), 1t follows that degree 2
perturbing potentials will, even in the case of the flattened renl
earth, yesult in perturbutions to the earth’s inertia tensor ry
given by Equations (VI.81)~(VI1-86).

Vii. The Rotational Dynamics of an Axially
Symmetric Deformable Earth

A. The Etfect of Rotational Deformations of the Eartn
on its Eulerian Motion

In the real carth the centrifugal forces of rotation produce
deformations which greatly alter the character of its Eulerian
motion, It is these deformations which are responsible for the
famous lengthening of the Eulerian or Chandler wobble period
from 304.6 days predicted on the basis of rigid carth dynamics
to the observed period of 435 days, In addition the yielding of
the carth 1o the centrifugal forces of rotation causes an
enhancement of the wobble amplitude,

The centrifugal force field () on the rotating earth is
given by

() =~ wX(wXr) (ViL1)

where w is “the earth’s rotation vector” and the superscript ¢
will be used to denote phenomena associated with centrifugal
effects,

(Here is an instance where, from the standpoint of strict
mathematicul rigor, we make an error. It is to be recalled that
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w Is the rotation veetor of some rotating geophysical coordi-
nate system ond from the standpoint of formal logic may or
may not (depending on its definition) relate to the properties
of the rotating carth, In practice, of course, because the
geophysical coordinate system Is defined to be nearly rigldly
nttached to the nearly rigid carth the consequences of the
“error” are entirely negligible.)

The conirifugal force fleld can be obtained from the nega-
tive gradiont of u centrifugal sealar potential field US(r).

f°(r) = = YU() (Vi12)
where
US(r) = ==-:-l; (W = (w* ©)?) (VIE:3)
and wherg
W= wrw, (VII-4)

In terms of the body-fixed busis vectors @, €, @, we have
r=x? tye, +z8,
(VII:5)

”~ ~ ”~
W= w e 'H% cﬁ+w3 €y

and so
. 1
Uo() = =5 [(o} + o) + W) (2 )% +2) - ol

2.2 2,2 .
~Wyy° - wyz +2w,w2xy+2w!w3xz

+2 wyeyz) (VII-6)

Replacing x, », z In Equation (VII-6) by thelr equivalents in
spherical polar coordlnates
X = prsinf cos\

y=rsingsin

z = peosl

the centrifugal potentinl becomes

Ue(r) = -*—% P (w? = w}sin? 0 cos® A=wdsin? 0si® N

- w? cos? 0 =2 w, w, sin? 0 sin A cos A
2 W W, $in 0 cos 0 cos p

=2 0, W, 8in 0 cos 0 sin A, r<a, Vi-7)

Equation (VII-7) can be rewritten in terms of the associnted
Legendre polynomials P! (cos 0) of second dogroe (i%2)
where

PY (cos 0) =5 (3 cos? 0 1)
P} (cos0) = - 3sin0 cos0 (VII-8)
P3 (cos0) = 3sin® 0

to become, forr S a,

o ! 2 ] |
Ui = -5 0r* [—50)’4-(3- Wi+ 3 o

2
~% W) P (005 0) = w0, P (c0s0)sin

+ %— w, W, P} (cos 0) cosA

+ -!6- (w} - w?) P2 (cos 0) cos 21

-1 w, s, P2 (cos 0) sin 27\] (ViL9)

3

This can be written as

2 2 :
U = - %'r’ w? + E (»{E-) P} (cos0) [Cf cosmN !
meo

+8;" sinm)]

rea, (V11-10)
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where the coefficlents of the harmonles nre given by

2
. a
€)= =g witwl-2u])  Sim=o0

a2 2
l mn"a l ¥ -t%‘:!
4:-‘2 = «g‘* ANAN Sz - 6 0y Gy
2 a? 2 @
C,!-*m(wz-m) §2 wf- T Wy

(VIl-11)
Now the earth's rotation vector w is given by

w = Qm, g tmy e, 4 (1 +my)e]
and so the cocfficients in the centrifugal potential become
w? = Q2+ (2m, *m’f +mj +md)

c

»n o

P p 242 Loa 1 2. 2
rwg*ﬂ +»=«6m52 (2”’3"'3:"'1"35"’1"‘"‘3)

¢

N -

2
= . 2%“ Q2 (my +m my,)

B (VI112)
S; = ..,ng. 22 (m, +inyimy)

2
€2 = -ﬁﬁ Q2 (3 -m?)

2
a
52 = "y 02 mym,

which to first order in m m, Ny reduee to
w? = Q2 +2Q%m,

ch = % a? 2 ~+~2—a2 P,

- %a’ 2%m

2
"

i
(VIL13)

- %a’ Qm,

1%
2 -
K

c; =0

From Equations (VII-13) we see that the centrifugal poten-
tial US(r) can be decomposed Into a secular part US(r) due to
the steady mean rotation of the earth and Indepondent of m i
N, My and a time-varying perturbation U5(r) due fo pertur
butions in the earth rotation and depending, O Ny MMy My

U(n) = US(n) + UI‘;(r) . (VIi:14)

Selecting those portions of the coefficlents which are inde.
pendent of m,, my, my in Equations (VI1-13) and substituting
them into Equation (VN-10) to obtain the secufar centrifugal
potential we find

- 2
U = - [,.,L, PP - =02 (L) PY (eos n;]
which can be written as
VL) = - 1202 [1- PY (0s0)] . (VILIS)

The rotation perturbation potentinl US(¥) Is obtained by
selectirg those portions of the cocfficients which depend on
the quantities my, m,, my In Equations (Vil-13) and substi-
futing tham into Equation (V11-10) to give

s 2 2
US(e) = =5 1 Py -%—- a* QPm, (-f;) P (cos 0)

2
- *:!;- at Pm, (-%) P} (cos 0) cos A

L2 gt (L P! cos0)sinn. (Vi)
-Fa m,(a) 3 (cosO)sindh,  (Vil-16)

The action of the secular centrifugal potential over geologic
time has given rise to the carth’s cquntori-\l bulge and the
observed polar flattening fwhere /™! = 298,256, The observed
value of the flattening together with the value of the carth's
mean radius and mean rotation rate when ceunbined with the
potential US(r) allows the computation of a “secular” Love
number of degree 2 koo It can be shown that K, is very
nearly equal to the fluld Love number Ky, which would
describe the yielding of the earth to the sccular centrifugal
potential were the earth a perfect fluid, This is regarded as a
demonstration of the fact that for deforming force fields
which act over long intervals the global rheology of the carth
closely resembles a perfect fluid, We shall not concern our-
selves further with the secular centrifugal potential US(r) but
will consider the effects on the earth’s Eulerian motion of the
rotation perturbation potential U;‘(r).
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We soo from the form of Equation (VI1+16) that

2
U = --""r2 By + 2 ({;) Py (cos0)
m=0

€ cos A+ 8™ sin md) (VH-17)
2 2

where the harmonle coefficlents €7 5," are given by

¢

no

= ~§~ a* Pm,
c =~ -3‘; a P,

s1 = =% 2 0, (VIL-18)

Cl =0

§2 =0,

From Equations (VI-81)-(V1-86) and Equation (VII-18) we
see that the perturbations to the carth's rotation described by
the dimensionless parameters my, My, Iy cause perturbations
to the earth’s inertin tensor z" glven, to firest order In my, m,,
iy by

r, =0 (VII-19)
k,a® §22
s =M™ (VI1:20)
.kt 97 R
fas = e M (Vii21)
2% ns 9’
5(T~) ’ -my (VI122)
592
5( T) —2cmy  (VII-23)
4kza5$2'1 ,
rSy = 6(’1‘ Tyt iy, (VI124)
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The time derlvatives of the perturbations to the Inertia
tensor reckoned In the rotating frame of the earth are

drf,
= "0 (VI1:25)
drfy  kpa*Q2 dmy .
T ———, 15 .'1
TRt (VI1:26)
drfy  kya® % diny
v *==ET (VIL27)
iy 1 g 2k 0% 22 dm,y |
=ar "3 D= ur (Vi2s)
driy 1 d 2e,a® Q% dm,
i i D =g ()
drs, 4k,a® 2 dm,
= ST e G o)

Owing to the presence of the term ("/3)r3$"n33 In e

rotation perturbation potential U5() (Equation (VII-17)) we
sce that US(r) contains a term which cannot be Incorporated

info a spherlcal harmonlc expansion, The presence of this {erm
in the perturbing potential is sufficient to Insure that the
deformation fleld associated with the yielding of the carth to
perturbations m, m, nty It its mean rotation will not preserve
the value of 7'71(Rachcsler and Smylle 1974), There does not
exist In the lliera(u;e at this time to my knowledge a solution
for the quantities 5(7T) and (d/dr) 5(7,7) required in order to
solve explicitly for the quantities rf and (drefdt)f. As a result
the effect of the yielding of the carlh to centrifugal forces and
its effect on its Eulerian motion is not a completely solved
problem in geodynamics today. “Solutions™ to the problem
which have Ignored the terms in 8(7,T) such rs that presented
in Munk and MacDonald (1960, pp, 25) are in error,

Fortunately the effect of 5(7,7°) is confined to the inertis
fensor perturbations /= 1, 2, 3, and so only enters into the
value of UT1 [my(1)]through the term Qryy In Equation
(1V-30). So that while the effect of rotational deformations on
UTI is at present unknown, the effect of rotational deforma-
tions on polar motion, Equation (1V-22), can be calculated
because these effects are scen to depend only on the quantities
T and dFfdt where F=r, 5 +iry,.

We can see from Equations (VII-19)-(VII-24) and Equations
(VI11-25)-(VI1-30) that in the event of polar motion on the
carth the yielding of the carth {o the perturbed centrifugal
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force field can be accommodated into the dynamical equation
governing polar motion, Equation (IV-22), by including the
effect in the terms dFfdr and F appearing in the excitation
function on the RHS, This is accomplished in the following
way,

The Eulerian (force free) polar motion of a rigid carth Is
governed by the equations

dm_.C-4
y

ot Qm =0,

(VI1-31)

The yielding of the earth in response to its Eulerian motion
modifies the rigid body motion by generating a centrifugal
deformation excitation function & given by

df°

S -...L 2pe R
= -t (2 o v 0¥ (VI1-32)
where
o= ry tirg, (VII-33)
dré _ dry  dryy
dar ~ dt dt (VII-34)

are given by Equaiions (VII-20), (VII-21), (VII-26), (VII-27),
above. The equation governing Eulerian raotion in a deform-
able earth is then

dam_.C- A

- c -

Tl Qm = & (VIL-35)
or
dm_.C-4 A _ 1 dare oo

ar T s = AQ(th+'Qr)'

(VI1-36)
We see that

e ka2 VII-3
7' - BG m ( .7)
e kg dm VIL38
dar - 3G dr (VII-38)

Substituting Equations (VI1-37) (VII-38) Into Equation (VII.

36) glves
Fldm_,(C-A-F -
[J +A] i 1(»-—71———-«» )Qm =0 (VI39)
where
5¢y2
AL (VIL-40)
3G
From Stacey (1977) we have
k, = 029
a = 63708 X 108 ¢cm
Q = 72921 X 1075 rad sec™!
G = 66732 X 10”8 ¢m® gm™! sec™?
¢ = 8.0378 X 10* gm cm?
A = 80115 X 10* gm cm? (VIL41)
from which we can deduce
= 8.082 X 10*! gm cm? (VI1-42)
and
F_ -3
7= 1008X 1073, (VI1-43)
Equation (VII-39) can be written
F\dm_.C-A F ;
(”A) a4 (‘"c~A)Qm =0
(VI1-44)
and since
£ - 03073 (VIL-45
c-4- " 45)

we sce that with an accuracy of 1 part in 103 we can write
Equation (VII-44) as

e (VII-46)

ar A cox) =0,

49



CRIGINAL ¥

AGE 19

OF POOR QUALITY

The approximation which leads to Equation (VII-46) depends
on FfA being much smallor than #/C-A or on the condition
that

ﬁéf'; =£2dcq (VIL47)

which Is of course true for the carth,

With the approximation of Equation (VII-46) we sce that
the dynamical equations governing Eulerian polar motion on
the deformable earth can be writien Lo an accuracy of | part
in 103 as

IQ

dam CAQm'B-IA .

ar - y (V11-48)
Thus we may introduce the approximate centrifugal deformu-
tion excitation fimetion ¥e, to be used instend of the exaer
centrifugal deformation excitation function ¢ (Equation
VII-32) because of the simplifications it brings to the theory,
and write

C-A
-

am_,C=A o e

A€
o (VI1-49)

for the approximate equation governing Eulerian polar motion
on a deformable earth where

RPY i
e = IA'Ti

(VII-50)

Twa equivalent forms for the equation governing Eulerian
polar motion on a deformable earth ure

d)'i e ;

a iogymi=0 (VII-51)
and

%’;’—f— io, 7 = ¢ (V11-52)

where Equation (VH-51) was obtained from Equation (V1I-46)
by setting

(VII-53)

as the angular rate of Eulerian polar motion on a deformable
carth and where Equation (VI1-52) was obtained by using

(VI1-54)

as the angular rate of Eulerian polar motion on a rigid earth,

We sec from Equations (VIL-51) and (VII-53) that the
principle effect of the deformability of the earth is to reduce
the angular rate of Eulerian polar motion by an amount

4
ﬂnl

I |
o) (VI1:55)

=0y ®

This effectively lengthens the period of the Eulerian motion or
the “Chandler wobble” to

@ 2nA

Gy Q(C AT (V11-56)
This is a period of about 439 days which is an increase by a
factor of 1,44 over the peiiod predicted for an equivalent rigid
carth,

In order to understand more fully the cffects of centrifugal
earth deformation on its Eulerlan motion it is instructive 1o
introduce the dimensionless centrifugal deformation excitation
Sunction in its approximate form, ¢, (as opposed to its exact
form g¢') defined, in accordance with Equation (V-59), by

7 =9 (V1I-57)

iar

along with thie corresponding complex coordinate of the cen-
trifugal deformation excitation pole ¢ defined, in accordance
with Equations (V-66), by
o= (VIL58)
The definition of $¢ by Equation (VII-57) allows the

equation governing Eulerian motion in a deformable carth,
Equation (VI1-52), to be written in the convenient form

dit

< (V11-59)

+T) =0

It can be shown that the instantaneous axis of figure of a
body with instantancous moments and small products of iner-
tia given by A, A, C, ryy, ry3, rys respectively is displaced

TR R

B

TSR o My s e o

B2



WRIGINVAL AL I

OF POOR QUALITY

* from the Xy coordinate axis by ungles uy py parallel to the
X, ¥, coordinate axes respectively where

s r
b, = 2,,..57 Hy = ,,53;22. (VII-60)

and that the complex coordinate I » p, +ip, is then given in
terms of the complex quantity 7= r . +ir,, by

(VI1-61)

It follows from Equations (VIL-50) (VI1-54) (VII-57) that

Wc. = .._,Z..._.

oy (VII1-62)

and so we see that the centrifugal deformation excitation pole
3¢ given by
¢ = C“ = --—z,«- »l
¢ ==Y = (VII-63)

coincides with the instantaneous figure axis of the rotationally
deformed earth,

From Equations (Vi1-37) (V11-40) we see that

F = I (VIL-64)
and se
Y L. .
¢ = C“‘A m (V“ 65)
and using Equation (VII-45) we have
¢ = 030737 (VII-66)

The result of Equation (VII-66) indicates that the deform-
ability of the earth allows the instantaneous figure axis ¢° to
partially adjust itself to the location of the instantaneous
Eulerian rotation axis 77, the amount of the adjustment being
about 30% of the total displacement of the ratation axis from
the mean figure axis,

B. The Effect of the Rotational Deformations of the
Earth on Its Non-Eulerian Motion

It is clear from the previous analysis that the elastic yielding
of the ecarth to the changing centrifugal force field which

accompanies the changing carth rotation vector w profoundly
alters the Eulerian (force free) motion of the earth, The period
of the Bulerian (Chandler) motion is lengthened by approxl-
mately 44% and the amplitude of the Eulerian motion is
increased by roughly 30%,

The deformability of the earth will also alter the character
of its non-Eulerian motion or the forced motions which result
from a combination of external torques and Internal geo-
phy.. a1 excitation, The effects of carth deformations on its
non-Euicrian motion can be conveniently broken down into
two separate aspects,

The first aspect considers the effect of earth deformations
on the geophysically induced polar motion or equivalently the
effect of deformations on the changes of w relative to the
basis vectors 2, , 2,, 33.

The second aspect considers the effect of earth deforma-
tions on precession and nutation or cquivalently the effect of
deformations on the motion of w relative to the basis vectors

}1' Eﬁ’ '30

A complete treatment of the effects of earth deformations
on its rotation would include a third aspect; namely, the
effects of deformations on the geophysically induced varia-
tiens in UT1, As pointed out previously in this scetion (Equa-
tions VII-19 ff) this requires a detailed solution, for the case of
the real carth, of the variations in T,/ which accompany
variations in m,. This shortcoming in present geodynamical
theory has been pointed out by Rochester and Smylie (1974)
and could be remedied by an extension of the work of
Manshina and Shen (1974) or of Saito (1974) but to my
knowledge has yet to be done,

1. Non-Eulerian polar motion on a deformable earth. The
results of the analysis of Eulerian polar motion on a deform-
able earth, summarily presented in Equations (VII-49) —
(V11-52), indicate that on a deformable carth Eulerian polar
displacement 777 gives rise to an additional polar motion excita-
tion ¥* = ~ i (FSY/A) 7 arising solely from the deformation of
the carth in response to the original poiar displacement, Thus
as far as polar motion is concerned the deformability of the
carth acts as positive feedback and enhances the motion, This
viewpoint leads naturally to a prescription for the treatment of
non-Eulerian polar motion on a deformable earth, This pre-
scription for the general treatment of non-Eulerian (forced)
polar motion on a deformable earth is described below,

First, consider the complete 2nsemble of identifiable geo-
physical phenomena capable of exciting polar motion on the
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carth and nssign an index &= 1,2,3,..m to each, Equations
(1V-22) and (1V-23) show that according to first-order theory
each member of the ensemble of geophysical phenomena only
contributes to polar motion and UT1 variations through the
effect it has on

(1) The external torques N, i = 1,2,3,
(2) The perturbations to the inertia tensor e

(3) The perturbations to the relative angular momentum i,
i=1,2,3

Furthermore, as scen from Equation (1V-22), for considera-
tion of polar motion above it is necessary to be concerned
only with the elements N\, Ny, Iy g ryq.

The second step of the procedure is to calculate for each
member of the ensemble of geophysical processes its individual
perturbing contributions N'f,N;‘, h’f. 11'2‘, rfg, r;‘3, k= 1,2,
3,...m o the external torque, relative angular momentum,
and inertia tensor respectively, Following this it is necessary to
form the complex polar motion excitation function ¢k, k=1,
2, 3,...m for cach member of the ensemble of geophysical
processes according to the formula,

Ko ik
e =-—1—[N"-szfi'3~-~‘l‘—~i(nzrk +Q72")]

AQ dt dt
k=1,2,3,.., (VI1:67)
where
,N"=N’l‘“+iN,’; k= 1,2,3,...m
W o= h',‘*ih;‘ k=1,2,3,,..m
o=k ik k=1,23...m
(VIL68)

On a rigid earth cach member of the ensemble of geophysi-
cal proeesses would give rise to a component of polar motion
M) k=1, 2, 3,...m described by the solution to the
equation

dmi -
Lo S amk =, k= 1,2,3,0 0

(VIL69)
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and given by Equation (V-63) as

. b -lo t'
mE) = o [mﬁ (0) + i, f @y m]
0

(VI1-70)
where |
0, .ﬁé;ji:wd. Q (VI171)
and
' Gk
R A (VI1-72)
la,

Letting m,(r) denote the total polar molion necirring on a
rigid earth as a result of the ensemble of geophysical processes,
then

1]

m) = 2 M.

kel

(V11.73)

It follows from Equation (V1I-69) that M (f) is given by“the
solution to

dm . mo
mm'.‘.-,-g..,..ﬁ.‘,gmr: 2 o

(VI174)
dt A et

and is given by

) t m
lot | . , ~ !
mr([) =0 ! [”')'(0)+ 'o".-[ 2: f:k‘(t')(! l(frfdt'] .
0

k=1
(VIL75)

On a deformable earth each member of the ensemble of
geophysical processes would give rise to a component of polar
motion 7i¥(¢) k=1, 2, 3,...m, However, on a deformable
carth ¥ (f) must be calculated by recognizing that each mem-
ber of the ensemble of complex excitation functions e k=1,
2, 3,...m will be affected by the effects of “positive feed-
back” resulting from the ylelding of the carth, The earth
deformation will produce, for each member €, k = 1, 2,
3...m of the ensemble of complex excitation functions, an
additional excitation 'il/""", k=1, 2, 3.,.m, arising solely
from the effects of the deformation itself where, according to
Equation (VII-50)

7re = - zl;?- ik (V11-76)
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On o deformable earth then, each member of the ensemble of
peopbysical processes wnll In.wc an effective compiex exeitation
function given by & + UA¢ k=1,2,3 pi and will give rise
to a component of pol.lr motion WA A= 1, 2 3,...m
deseribed by the solution to the equation

K .
Aamz o & '|“’* Qi w @b 4 PR,
#

iy k=1,2,3 m,

(VU-77)
and given by Equation (V-03) as

C’ ' ,
me() = oo [m"’(O)MU, j @' & Gy ! d!']
0
(VII-78)

where

ke
w& [\ 3 .:»w«:
io

r

k= 1,23, m. (VI79)

An alternative und completely equivalent formulation of
polar motion on a deformable earth can be obtained by
substituting  Equation (VI-70) into  Equation (VI-77) to
obtain

k wd b y
%{j’g“ - (‘“’; /: 1 ) Q?ﬁk =g k= L2,3,m
(V11-80)

which is shown by Equation (V-63) to have the solution

' .
mh) = o0 ['m"(()) + 0, j gk’ ¢l dl']
0

k=1,23""m, (VIL.81)
where we have made use of Equation (V11-53)
Cod =l 82
0y == Q. (VI1-82)

Letting ¥(r) denote the total polar motion oceurring on a
deformable earth as a result of the ensemble of geophysical
processes then

() = }t‘: N OF (VI1-83)
k)
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It follows from Equations (V11:77) and (VI1-80) that #i(¢)
i5 the solution to either of the two equivalent differentinl
equations

"

‘”{’ (‘ U nr = E k4 ke

0t (VII-84)

or

dm ., (c

s ok
i ; )szm =Y 2. (vIgs)

4 133 |

The genernl solutions to Equations (VI1.84) and (VII-85) are
given by

m
i) = elurl [737(0) + iU,. Z (f" 4 wk "‘)C' fo, dl]

0 k=l
(VI1-86)

and

t m ,
mi(r) = o0’ [?‘ﬁ(())+iao f E g ol dz‘]
0

k=1
(VI1-87)

respectively,

2. Non-Eulerian precession and nutation on a deforinable
earth, In principle the clastic yielding of the cuarth to the
system of body forces which give rise to the torques responsi-
ble for precesston and nutation alters the observed precession
and nutation from that which would prevail were the earth a
rigid body, 1t has been shown (Lamb 1945, pp, 724 {f) that in
the case of a disturbing force distribution which is fixed in
inertinl space the precession of u rotating mass of ideal fluid
proceeds exaerly the same as if the mass were solid through-
out, Furthermors it has been shown (Lamb 19485, pp, 724 {1)
that when the disturbing force distribution vacies slowly rels-
tive to inertial space with a period 2m/n, then the precession of
aomnss of ideal Muid rotating with angular velocity o still
proceeds almost exactly the same as if' the mass were solid
throughout, providing that the ratio of w/n is small compared
to ¢ where ¢ is the ellipticity of the rotating mass, For the
carthe=3 X 109,

a. Precession, Considering the case of precession on a

deformahlc enrth where 2n/w = 1 day and 2m/n = 26000
years we see that /i s 1077, which is very much less than
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ex3 X 1073, We conclude that the effect of the yielding of n
deformable earth to the system of body forces driving the
precession will have a negligible effect on the observed preces.
sion, The carth will essentially precess as though it were u rigid
body,

At the TAU General Assembly in Grenoble in 1970 it was
recommended that an improved theory of the precession based
on the FK§ star catnlogue and referred to o new standard
epoch of 2000,0 be adopted, The details of the new theory of
carth precession have been published by Lieske et al, (1977),
The corzections to the previous theory arose principally from
a failure to distinguish between the “eatalogue equinox™ of
the FK4 star catalogue (the zero point of right ascension on
the catalogue celestial equator) and the “dynamical equinox”
(the Intersection at the ascending node of the ecliptic and the
terrestrin equator) combined with new values for the masses
of the planets of the solar system and some effects due to the
galactic rotation of the FK4 catulogue stars, The new theory
of the earth’s precession is expected {o be nccurate to 2011 arc
per century or roughly £1,0 milliare second per year,

b, Nutation, Considering the case of the nutation on a
deformable earth where 2a/n = 18,6 years we sce that w/n =
1.4 X 1074, which is sufficiently near to e~ 3 X 1073 to
expect that the effect of the yielding of a deformable earth to
the system of body forces driving the nutation might produce
measurable discrepancies when precise observations of earth
nutation are compared against that which is theoretically pre-
dicted for a rigid earth, Woolard (1953, pp. 136) was evidently
aware of this problem and adopted an “observational” value of
99210 arc for the constant of nutation in preference to
“theoretical” values of the order of 9V'224 arc derivable from
the relationships of the coustant of nutation to other asiro-
nordcal constants which hold in the case of a rigid earth,
Recent observational determinations ol the nutation constant
place it in the range 9201 - 97206 arc, with the discrepancy
between theory and observation now of the order of 002 arc
being attributed to the effects of the deformation of the earth,

¢. Woolard's theory of the nutation, The present TAU
theory of the carth's nutation is due to Woolard (1953) and
describes the theoretical motion of the instantaneous rotation
vector w of an assumed rigid carth with an axially symmetric
mass distribution relative to the set of space-fixed basis vectors
E, B, E, A description of Woolard’s theory requires the
intraduction of three reference equators: the equator of angu-
lar momentum, the cquator of figure, and the equator of
rotation, Each equator is defined as passing through the carth’s
center of mass perpendicularly to the angular momentum axis,
She figure axis, and the rotation axis respectively. It can be
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seen from Figure V-1 that the equuisr of figure and the
equator of rotation Intersect onch other with ntvangle g, where

B, ™~ Im,| (VII-88)

is the anplitude of the Eulerian polar motion, It can also be
seen from Figure VII-1 that the equator of angular momentum
and the cquator of rotation intersect each other with an angle
7 where, from Equations (V-0), (V-11), and (V-27), we have

X LA .

i a y (VI1.89)
where

B, = [, |

is the nmplitude of the Eulerian wobble (of Figure V-7),

1t will also be convenient to introduce:

(1) v, the ascending node of the fixed ccliptic of the
fundamental epoch on the ecquator of angular
momentum,

(2) 7, the ascending node of the fixed ccliptic of the
fundamental epoch on the equator of rotation,

(3) 7 the ascending node of the fixed ccliptic of the
fundamental epoch on the equator of figure.

In proceeding with his solution Woolard actually integrated
a set of differentinl equations known as Poisson’s equations,
which approximately describe the motion in inertial space of
the carth’s angular momentum vector L (Kinoshita et al,,
1979). The solutions to Poisson’s equations we shall denote as
Vo 09, Where Y, 04 are time-dependent Euler angles defined
by Woolard referenced to a set of space-fixed basis vectors £,
E,, E, defined by the fixed ecliptic and the fixed mean
equinox of the fundamental epoch of 1900,0, According to
the conventions adopted by Woolard, the angle 27~ ¢,
approximately represents the combined effect of lunisolar
precession (since it is referred to the fixed ecliptic of the
epoch) and lunisolar nutation of the angular momentum axis
since the epoch and the angle 8, approximately represent the
obliquity of the fixed ecliptic of the epoch on the angular
momentum equator of date. In Woolard's work the corre-
sponding motion of the earth’s axis of figure, described by
angles Y,0p, and the earth’s axis of rotation, described by
angles ¥, 0,, is obtained to the order of the approximations
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Figure Vil-1, The relative location on the celestial sphere of the equator of figure, equator of
angular momentum, and equator of rotation, The angles 3, and y are greatly
exaggerated and not drawn to relative scale,

lnvolved in the theory by the additions of correction terms
mbf 860, to give

Vp = Wyt 89,
(VH-90)
0, = 0,450,
and correction terms §y, 60, to give
Y, = W 8V,
(VI1:91)
0, =0,+80,

respectively, The angles 2w =, 2m=_ represent to the
order of the approximations involved the combined effects of
lunisolar precession (since they are referred to a fixed ecliptic)
and lunisolar nutation in longitude singe the fundamental

epoch of the axis of figure & and of the axis of rotation w
respectively. The angles 05, 0, represent, to the order of the
approximations involved, the obliquity of the fixed ecliptic of
the fundamental epoch on the equator of figure of date and
the cquator of rotation of date respectively, Woolard then
decomposes the ungles 0, und ¥,.0, into secular temms
w505 and Y305 and, periodic terms Ay A0 and AY, A0, with

g, = 2me Y- AP,
(Vi1:92)
$ 4
Of = OJ.+ AO,
and
W, = 2oy AP,
(VI11-93)
0, = 03+ a0,
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The secular terms 2 = v, vO%and 2= 5, 05 are identified by
Woolard with the lunisolar precession of the earth's figure uxis
and rotation axis respectively. The periodie terms - Av,, Af
and = Ay, A0, are Identified with the lunisolar nutation of the
earth's hgurc axis and rotation axis respectively.

Note: In his paper Woolard uses ¢, and ¢, 1o denote the
angles v, 0, and he uses ¥ and 0 to denote the angles v . 0.
lurthcrmme Woolard does not distinguish in his notation
between v, 0, and vf.o using ¥, 0 for both,

In Woolard's paper, Poisson’s equations appear as equations
(30) on page 34, The solutions of their descendents, equations
(44) and (45) on pages 47 and 48, provide the functions yr,
04+ Equations (19) on page 24 govern the motion of the figure
axis and their solution yields the functions ., 0,. Equations
(24) on page 26 govern the motion of the rotution axis and
their solution yields the functions ¥, 0,, Equations (53) on
page 131 govm\ the correetion terms vi.ﬁof, which yield
the solutions 1, 0, from the solutions ¥y 04, The solutions
6Y,80, are given by the expressions (54) on page 132, The
cqu.uiom governing the correction terms 8y, 80, are shown
by Woolard to the order of approximations involved to be
obtainable dircetly from equations (83) for the correction
terms 6,80, by multiplying by the factor - (€ = A)/A.
Hence the solu(iom 6y, 80 can be obtained directly from
expressions (54) for 511’,‘ 50f by multiplying by = (€ = 4)/4
and are glven in expressions (55) on page 133,

oy, = - £5 by, (VIL94)
80, = - <=4 50, (VI1-95)

Presumably motivated by the conviction that the motion of
the rotation axis in space is that which is observable by
astronomic means, Woolard tabulated the results of his solu-
tions for 27~ Wy, 07, and ~Ay,, A0, in two locations in his
work, The first appc.lrs in T ahle 24 p. 138 [T, which gives the
precession and nutation In longitude and obliguity of the
rotation axis relative to the fixed ecliptic of January 0 1900
Greenwich Mean Noon (JD 2415020,0), The epoch for these
expressions s January 0 1900 Greenwich Mean Noon
(JD 2415020.0), Since the contents of this table are refer
enced to o fixed ecliptic, the expressions therein reflect only
the motion of the equator since the epuch, and as such
represent only the lunisplar contribution to precession and
nutation,

The second tabulation appears in Table 26 p. 153, which

gives the precession and nutation in longitude and obliquity of
the rotation axis relative to the moving ecliptic of date. The
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epoch for these expressions is also January 0 1900 Greenwich
Meatt Noon (JD 2415020,0). Since the contents of this table
are referenced 10 u moving ecliptic the expressions therein
reflect the combined motion of the ecliptic and equator since
the epoch. Table 26 represents the effect of general precession
and nutation which is the sum of lunisolar precession and
nutation, which pertwrbs only the equator, plus planetary
precession and nwtation, which perturbs only the ecliptic,
Table 20 is generated from Table 24 by the addition of the
contents of Table 25, p, 152, which contains the terms which
account for the planetary perturbations to the ecliptic,

At the time of this writing the expressions for the nutation
of the rotatfon axis of Table 26 of Woolard’s work constitute
the TAU standard series for the nutation and are reproduced
on pages 44 and 45 of the Explanatory Supplement to the
Astronomical Ephemerls and the American Ephemeris ad
Nautical Almanac (1961),

The earth’s nutation is driven by the gravitational torques
of the sun and moon, and it is not surprising that the expres.
stons for the nutation find thelr most convenient representa-
tion in terms of the angles Q0 &y & 0 Where
«, £ Uis the mean anomaly of the moon
Q= 206" 006' 16Y59 + 1325" 198°50" 56V79 7 +
337007 + 0Y05187%

a, # 0 is the mean anomaly of the sun

¢ = 358°28' 33V00 + 99" 359°02' 5910 T - 0V547* -
0'01207°

a, = I s the mean argument of the latitude of the moon

= 11° 158 0302~ + 13427 82°01' 30 547~ 111567 -
0v00127%

a, = [)is the mean clongation of the moon from the sun

D = 350°44" 14795 4 1236" 307°06' 517187 = 51772 +
0700687

a2 Q is the mean longitude of the ascending lunar node

Q = 259°10'59"79 - 5" 134°08'31V237 + 7748272 +
0%00807

i

and where 7 is measured in Julian centuries of 36525 days
from the epoch January 0 1900 Greenwich Mean Noon
(JD 2415020.0).

The nutation series is tnditiomlly tabulated in terms of
amplitudes A,(79, B(T), 7= 1,2, 3,...N, and argument
coefficients Ky, i= 1, 2, 3,...5, in such a way that the
nutation in longitude SW(7), reckoned positive to the cast
along the ecliptic, and the nutation In obliquity, reckoned
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positive if the obliquity is increased, nre given by expressions
of the form

N ]
BW(T) = 35 ALT)sin | 37 Ky, (1)
/=1 a1

+ diurna) nutation in longitude  (V11-96)
N 5
5e(T) = ;S_j B(T) cos § ky (1)
=3 =
+ diurnal nutation in obliquity ~ (VIL97)

The diurnal motion in the nutation was shown in section V
and Hustrated in Figure V-3 of this work to arise from the fact
that the axis of figure @, nnd the axis of rotation w in general
depart from the axis of angular momentum L by the small
angles B,=v and y respectively, Furthermore the Poinsot con-
struction developed In section V and illustrated in Figure V.5
of the work shows that the figure axis &, and the rotation axls
w make nearly diurnal rotations in a space-fixed frame about
the angular momentum axis moving on the surface of the two
cones of apex angles 2&, and 2y respectively,

d. Woaolard’s theory for the nutation of the rotation axis.
Woolurd's serles for the nutation of the rotatlon axis is given in
Table VII-1,

Table VH-1. Nutation series for the rotation axis (Woolard, 1953)

s wrlod, «, o ay a, o Amplitude Amplitude
e i
11 J2 /3 [4 /5 (0 10001 ‘ll’e) (0 .00 1 nrc)
1 6798 0 0 0 0 1 =172327 =~ 17317 92100 +9.17
2 3399 0 0 0 0 2 2088 + 0.2T =904 + 047
3 1305 -2 0 2 0 1 45 =24
4 1095 2 0 -2 0 0 10 0
5 6786 0 -2 2 -2 1 -4 2
6 1616 -2 0 2 0 2 -3 2
7 3233 1 -] 0 -1 0 -2 0
8 183 0 0 2 -2 2 ~12729 -~ 1.37 5522~297T
9 365 0 1 0 0 0 1261 - 3.4T 0
10 122 0 1 2 -2 2 -497 + 1,27 216 ~0.6T
11 365 0 -1 2 -2 2 214 - 0.5T ~93 40,37
12 178 0 0 2 ~2 1 124 + 0,17 ~-66
13 206 2 0 0 -2 0 45 0
14 173 0 0 2 -2 0 =2 0
15 183 0 2 0 0 0 16 - 0,17 0
16 386 0 1 0 0 1 ~15 8
17 91 0 2 2 -2 2 ~15+0,17 7
18 347 0 -1 0 0 1 ~10 5
19 200 -2 0 0 2 1 ~5 3
20 347 0 -1 2 -2 1 =85 3
21 212 2 0 0 =2 1 4 ~2
22 120 0 1 2 -2 1 3 -2
23 412 1 0 0 -1 0 -3 0
24 137 0 0 2 0 2 ~2037 - 027 884 ~0.57
25 27.6 1 0 0 0 0 675+ 0.17T 0
26 13,6 0 0 2 0 1 =342 - 04T 183
27 9.1 1 0 2 0 2 ~261 113 -0.17
28 31 1 ] 0 -2 0 ~149 0
29 27,1 =] 0 2 0 2 114 -50
30 14,8 0 0 0 2 0 60 0
31 277 1 0 0 0 i 58 =31
32 27.4 -1 0 0 0 1 ~57 30
33 9.6 =1 0 2 2 2 ~52 22
34 9.1 1 0 2 0 1 ~44 23
35 7.1 0 0 2 2 2 32 14
36 138 2 0 0 0 0 28 0
37 239 1 0 2 -2 2 26 ~11
38 6.9 2 0 2 0 2 ~-26 11
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Table Vii-1. Nutetion series for the rotation sxie (Woolerd, 1983) (Continuud)

Index Period, a ay ay a oy Amlzi,tudc Allllglmdﬁ
d - ! :
W ki Kia ki3 Kiq ki (00001 ure) (00001 arc) :
39 13.6 0 0 2 0 0 28 0
40 27.0 -1 0 2 0 1 19 =10
41 32,0 -1 0 0 2 1 14 -7
42 317 | 0 0 - 1 =13 1 b
43 9.5 ) 0 2 2 1 -9 5
44 34.8 1 | 0 -2 0 -1 0 b
45 13.2 0 | 2 0 2 1 -3
46 9.6 1 0 0 2 0 6 0 i
47 14.8 0 0 0 2 1 -6 3
48 14,2 0 -1 2 0 2 ~6 3
49 5.6 1 0 2 2 2 -6 3
50 12,8 2 0 2 -2 2 6 -2 i
51 14,1 0 0 0 -2 1 -5 3 i
52 7.1 0 0 2 2 1 -5 3
53 239 1 0 2 ~2 ! 5 -3
54 29.5 0 0 0 ! 0 -4 0 i
55 154 0 | 0 -2 0 -4 0 j
56 29.8 1 1 0 0 0 4 0
57 26,9 1 0 -2 0 0 4 0 l
58 6.9 2 0 2 0 1 -4 0 i
59 9,1 1 0 2 0 0 3 0 ;
60 25,6 1 1 0 0 0 -3 0
61 9.4 1 -1 2 0 2 w3 0 |
62 13.2 -2 0 0 0 1 -2 0
63 32,6 -1 0 2 2 1 -2 0
64 12,8 2 0 0 0 1 2 0
65 9.8 -1 - 2 2 2 -2 0
66 7.2 0 -1 2 2 2 -2 0
67 27.8 1 0 0 0 2 -2 0
68 8.9 1 1 2 0 2 2 0
69 5.5 3 0 2 0 2 -2 0

e. The diumal nutation of the rotation axis, The diurnal
motion of the rotation axis w in space can be seen from Figure
V-4 to have an amplitude v where Equation (VII-89) gives

C- A

m—»pc

y (V11.98)

lrﬂ

and where 8, is the amplitude of the Eulerian wobble, The
angular rate of the motion of the rotation axis w about the
angular momentum axis L in the space-fixed frame is given by
Equation (V-52) as w, + 0 ; namely, the sum of the earth’s
spin angular rate (diurnal rate) plus the wobble angular rate,
Since the wobble angular rate o, s very small (435-day period)
we see that this motion of the rotation axis in space has very
nearly a diurnal period,

Referring to Figure VII-1 and adopting the angular momen-
tum equator as a slowly moving reference plane relative to
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inertial space we can see that the diurnal motion in space of
the rotation axis w produces a diurnal nutation in longitude
8, with amplitude given by

_C-a P
A sind

-
sin 0

8y, = (V11:99)

and a divrnal nutation in obliquity de,, with amplitude given ?
by

C-A

aerd =y =-71m ﬁc_ (V“'IOO) i

where 0 is the obliquity of the ccliptic, To establish the phase )
of the diurnal nutations we refer to Figure V-7 and sce that ¢ 3
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the body-fixed plane containing the vectors &, snd w has a
geographic east longitude A, where

1]
A, = tan”! =3 (VIl-101)

mﬂ

ad where 7T, = m,, + im,, specifies the body-fixed position
of the Eulorian nxis. The rlght ascension of this plane in the
space-fixed frame Is A, +¢, where ¢ Is Greenwich Sidereal
Time, Referring to l“lgurc VII-1 we see that when

Atg=0,m (VII-102)
the displacement , = 4, or equivalently 6y, , achieves its
maximum negative "and positive values rcspcctivcly and that
when

n 3n
}\e+¢ lmia,m

) (VH-103}

the displacement 7, ~ 7, or wm vanishes. Hence we can set

-A B
B,y = - A=t cos(p 4R (VII04)

and by a similar argument we can set

o,y % A g sin(par).  (VILOS)

Now since 8, < 0)'2 arc and (C'~ A)/4 = 0,00328 we sce that
taking 0 =~ 23 implies that the diurnal nutations in longitude
of the rotation axis 8, , are less than

5y, <0/0018 arc (V11-106)

and that the diurnal nutations in obliquity of the rotation axis
be,, are less than

8e,, < 00007 arc., (VI1-107)

[ Woolard’s theory for the nutation of the figure axis,
Since even on a rigid earih the rotation axis w does not remain
fixed in a body-fixed frame, the motion of the rotation axis in
space is not precisely shared by body-fixed axes such as
interferometer vector baselines, In fact if the rotation axis is
chosen as a reference axis for the nutation, then the motion in
space of a body-fixed axis such as an interferometer vector
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baseline must be obtalned from the motion of the refervnce
axis by subtracting from the motion of the reference axis in
spnce the motlon of the reference axis relative to the
body-fixed frame,

Alternatively on o rigid carth the flgure axis €, Is a
body-fixed axis and jts motion in space is shared directly by all
other body-fixed axes such as Interferometer vector baselines.
If the figure axls is chosen as a reference axis for the nutatlon,
then the motion in space of any other body-fixed axls such as
an interferometor voctor baseline Is identical to that of the
figure oxis, For this reason, in computing the afects of
nutation on the orlentation in space of un interferometer
vector baseline it is useful to have a theory for the nutation of
the carth's figure axis €.,

In Woolard's theory it is possible to generate a series for the
nutation of the figure axis from his serics (Table 26) for the
nutagion of the rotation axis by

(1) Subtracting from the entries of Table 26 the terms of
the equations (55) p. 133 of Woolard’s work.

(2) Adding (noticing the change in the sign of 5y to the
ontries of Table 26 the terms of the equations (54)
p. 132 of Woolard’s work,

The resuits of this procedure are presenied in Table VIi-Z
below,

8 The divrnal nutation of the figure axis, The diurnal
motion of the figure axis €, in space can be seen from Figure
V-5 to have an amplitude §, - v where §, is the amplitude of
the wobble and

(V11-108)

Equation (V-18) and Figure V-3 show that the vectors w L
and €, are all coplanar and so the rate of the motion of the
figure axis €, about the angular momentum vector L in the
space-fixed frame is identical to the rate of the rotation axis w
about the angular momentum vector L in the space-fixed
frame and so is also given by Equation (V-52) as w, + 0,. Just
as in the case of the diurnal motion of the rotation axis in
space this rate is the sum of the earth’s spin angular rate
(diurnal rate) plus the wobble angular rate, and since the
wobble angular rate is very small (435-day period) we see that
this motion of the figure axis in space has a nearly diurnal
period.

Referring to Figure VII-1 and adopting the angular momen-
tum equator as a slowly moving reference plane relative to

R
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Table V-2, Nutation series for the figure axis (Woolard, 1063)

Index Perlod, oy . %3 4 ag A"":]i?udﬁ Amplii’ludn

/ ays ke kp k3 kg ks (00001 are) (00001 are)
1 6798 0 0 0 0 L =1722931-17307 920904907
2 3399 0 0 0 0 2 2088+027 ~904 + 04T
3 1305 -2 0 2 0 ! 45 ~24
3 1095 2 0 -2 0 0 10 0
5 6786 0 =2 2 = 1 =4 2
6 1616 -2 0 2 0 2 -3 2
7 3233 i -l 0 -1 0 -2 0
8 183 0 0 2 -2 2 -12804.5-137 5549.6-2.97
9 365 0 1 0 0 0 1261-3.17 -4

10 122 0 l 2 “2 2 ~50ld+127 217,6-0.67

1 365 0 -l 2 -2 2 214087 =9340

12 178 0 0 2 -2 1 124 4017 -G6

13 206 2 0 0 -2 0 4 0

14 173 0 0 2 -2 0 - 0

15 183 0 2 0 0 0 16=017 0

16 386 0 1 0 0 1 =15 8

17 91 0 2 2 -2 2 =1540,17 7

18 347 0 -] 0 0 1 ~10 5

19 200 =2 0 0 2 1 =5 3

20 347 0o - 2 -2 ! -5 3

21 212 2 0 0 ~2 1 4 ~2

22 120 0 1 2 =2 1 3 =2

23 412 1 0 0 -] 0 w3 0

24 132 0 0 2 0 2 2199-0.27 943.0-0.57

25 27.6 | 0 0 0 0 678 +0,1T =9,7

26 13.6 0 0 2 0 1 =375,5<04T 192,9

27 9.1 ! 0 2 0 2 ~291.8 124.3-017

28 31.8 1 ] 0 -2 0 «149 -1.8

29 271 -1 0 2 0 2 118.6 =517

30 1438 0 0 0 2 0 6 -1.6

31 211 1 0 0 0 1 8.6 =31

32 27,4 3! 0 0 0 ] ~54,2 30

33 9.6 =] 0 2 2 2 ~57.9 24,1

34 9.1 1 0 2 0 ! ~50.4 24.9

35 7.1 0 0 2 2 2 ~36.9 15.8

36 138 2 0 0 0 0 28 0

3 23.9 | 0 2 -2 2 =27,2 =11

38 6.9 2 0 2 0 2 =30, 12.5

39 13.6 0 0 2 0 0 25 0

40 27.0 -1 0 2 0 1 19 =10

41 320 -1 0 0 2 1 14 ~7

42 na 1 0 0 -2 1 ~13 7

43 9.5 =1 0 2 2 i ~10.2 5

44 34.8 1 1 0 -2 0 =7 0

45 13.2 0 | 2 0 2 7 -3

46 9.6 1 0 0 2 0 6 0

47 14.8 (1 0 0 2 1 ~6 3

48 142 0 -l 2 0 2 -6 3

49 5.6 1 0 2 2 2 =72 3

50 12.8 2 0 2 ~2 2 6 ~2

51 14.7 0 0 0 -2 1 =5 3

52 7.1 0 0 2 2 1 -6 3

53 239 1 0 2 -2 ! 5 -3

54 29.5 0 0 0 | 0 ~4 0

55 154 0 1 0 -2 0 -4 0

56 29.8 ! ~1 0 0 ] 4 0

T
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Table VH-2, Nutation series for the figure axis (Woolard, 1953) (Continued)

p==

Index Petiod, o oy ay oy ag Amplitude Amplitude
J days & X . - ' oy , 1(){
1 12 A” kl" kﬂ {00001 are) (070001 sre)
57 26.9 1 0 =3 1] 0 4 0
58 6.9 2 0 2 0 1 =i 0
59 9.1 | 0 2 0 0 3 0
60 25.6 i 1 0 0 0 w3 0
61 9.4 1 =] 2 0 2 =3 0
62 13.7 =2 0 0 0 I =) 0
63 326 =] 0 2 2 | =2 0
G 13.8 2 0 0 0 1 2 ]
6S 9.8 =] =] 2 2 2 -2 0
66 7.2 0 1 2 2 2 =) 0
67 27.8 1 0 0 0 2 =2 0
68 8.9 1 1 2 0 2 2 0
69 55 3 0 2 0 2 0

Inertial space we can see that the diurnal motion in space of
the figure axis 8‘3 produces a divenal nutation in longltude
Wfd with amplitude given by

Be=r B, C
g * e ™ SinT (2 - 7) (VII-109)

and a diurnal nutation in obliquity de,, with amplitude given
by ”

by = Bymv =B, (2-5)  (vikL10)

where 0 Is the obliquity of the ccflptic.

By referring to Figure VII-I we see that the nutation
Y=y, or equivalently 8y, is opposite In phase to the
nutation 7, = v, or 8, as 4 consequence of the fact that the
figure axis &; and the rotation axis w lic on opposite sides of
the angular momentum vector L, Hence by arguments similar
to those used In the case of the rotation axis we can establish
the phase of the diurnal nutations of the figure axis as

B
by == (2-5) cos(@+a,) (VIR
and
begy = -0, (2-5) sinpen,)  (VILIIZ)

and where C/Ad = 1,

w2

h, Conments on Woolard's theory. It Is apparent from
Tables VII-1 nnd VIL2 that the nutations In Woolard's series
can be exhaustively grouped into nutations whose period
exceeds 91 days, which are normally referred to as the long
perlod nutations, and nutations whose period Is less than 35
days, which are normally referred to us the short-period
nutations,

Apparent sidereal time Is referenced to the nutated
equinox, If the rotation axis Is chosen as the reference axis for
nutation then consistency requires that the rotation equator
be used tc provide the reference equinox v, for apparent
sidereal time. From Equations (VI1-104) (V11-106) we see that
this equinox suffers diurnal nutations in longitude of the order
of 8y,,~ 00018 arc which correspond to diurnal in
equalities of apparent sidereal time of the order of 0.12 msec,
This diurnal in equality in apparent sidercal time Is usually

Jgnored In most preseni-day applications of the theory,

The motion 7 =m  +im, of the rotation axls w relative to
the figure axis @ in the body-fixed frame is composed of the
sum of

(1) A geophysical or Eulerian (torque-free) component 77,
excited by a varlety of internal processes on the ¢arth
and which is unpredictable on the basis of present-day
geophysical knowledge,

(2) A non-Eulerian lunisolar component i, =m, +im ,
excited by the gravitational torques N of the sun and
the moon acting on the earth, often referred to as the
“dynamical variation in Iatitude,” and which is pre-
cisely predictable, Expressions for m,, and Myy are
given in Equations (V-94) and (V-95) respectively.
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The Eulerlan motion has an amplitude of the order of 072
arc maximum and the lunisolar motion has an amplitude of
00178 are maximum. The lunisolar motion or the dynamical
varlations In latitude Is o retrograde motion with a nearly
diurnal perlod, The center of Its diumnal clrcular path
corresponds to the Eulerfan position of the rotatlon axis in the
body-fixed frame as shown in Figure V-8,

The mean amplitude of the lunisolar motion or dynamical
varlations In latitude BT, is roughly ¢8,)~ 070089 arc and so
we see that In n body~ﬂ'xcd frame the lunisolar motion of the
rotation axis can be described as motion around a body-fixed
cone of mean apex angle 2(3,) a 010178 arc, In the absence of
geophysically Induced polar motion or Eulerian motion the
precession of the carth’s rotation nxis w and figure axis @, In
inertinl space can be visualized by a Polnsot construction in a
manner dosceribed by Woolard on p, 31 and illustrated below In
Figure VIi-2,

Figure V-2, The Poinsot construction sppropriate for the descrip-
tion of the motion of the earth's figure axis in inertiel
space or lunisolar precession, The basis vector E, is
normal to the scliptic, 0 is the mean obliquity of the
ocliptic referenced to the equator of rotation, and
m)unnmmmmdmmmm

W,

The lunisolar body-fixed cone of mean apex angle 26,
rolls without slipping on the interior of a space-fixed cone
centered on the pole of the ecliptic £, of apex angle 20 where
0 is 432 obliquity of the ecliplic and with the rotation vector
w occupying the line of contact between the two cones, The
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rotrograde Junisolar motion of the body-fixed cone drives it In
a retrograde sense around the interfor of the space-fixed cone,
In the absence of geophysically Induced polar motion or
Evlerian motion the Euletian position of the rotation axis In
the body-fIxed frame coineldes with the figure axis &;, Hence
in Figure V1I2 2, occuples the axis of the body.fixed cone,
Taking 0 » 23,°473 (Stacey 1977) the diurnal rotation of the
body-flxed cone transports @, and w around the space fixed
cone In about 26,000 years,

Flgure VIL:2 fllustrates the fact that during this motlon the
angle between £, and #, Is systematically smaller than the
anglo botween £y and o by the amount (3, 0/0089 are.
This Is the kinematical reason for the fact that the mean
obliquity of the ecliptic for the figure axis & Is less than the
mean obliquity of the ecliptic for the rotation axis w, This
kinematical construetion accounts for the existence of the
constant term of =07008G8 arc appearing in oquations (54)
p. 132 of Woolard's work Involving the transformation from
the obliquity of the rotation axis to the obliquity of the figure
nxis,

The secular term of =0,00043'T appearing in equations (54)
p. 132 of Woolard’s work involving the transformation from
the node of the rotation equator to the node of the figure
cquation hns beat aown by Murray (1977) to be spurlous,
Kinoshita ot-al, (1977) and Kinoshita (1977) have shown ho?
the spurious secuiar term identified by Murray and others like
it appearing in Woolard’s work arise from incorrect mathe-
matical procedures,

Woolard’s theory of the nutation Is widely regarded as
being Inadequate for present-dsy requirements, Flis!v the
theory treats a rigld earth and there are indications thus this
restriction is responsible for errors In the predicied nutation of
the order of 0702 arc, This is insufficient accuracy for the
requirements of modern observational techniques, in particular
long baseline interferometry,

Furthermore it is npparent that the Instantancous rotation
axis w Is not directly obs>able, This conclusion follews from
the fact that any attempt 10 observe the vector w necessarily
requires observations extending over  finite interval of time,
which for the classical methods is typically several hours in
duration and often as long as 12 or 24 hours, during which
time the vector w will complete a significant portion of its
diurnal circuit In the body-fixed frame, The result of this is
that the axis which is observed In practice is not w but an axis
coinciding with some mean position of w averaged over the
observing interval,

. The revised theory of the nutation, In 1977 at the IAU
Symposium No. 78 on Nutation and the Earth's Rotation, a
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working group was convened whose task it was to revise the
theory of the earth’s nutation and to recommend a new series
for the carth’s nutation to be adopted by the (AU at its 17th
General Assembly in 1979 in Montreal, Canada, At the time of
this writing this group has completed its task and its
recommendations to the IAU General Assembly are two-fold
(J. G. Williams personal communication); (i)a change of
reference axis, (i) the computations of earth nutstions for a
deformable earth,

/. The change of reference axis, Since all attempts to
observe the present nutation reference axis w invariably yield
a mean position for w, averaged over the finite obserying
internal in both the body-fixed frame and the space-fixed
frame, it is recommended that the revised theory of the
nutation make explicit recognition of this fact and replace the
instantancous axis w with a new seference axis defined
explicitly as the mean position of w when averaged over its
predictable (i.e,, driven by external gravitational torques V)
diurnal motion M _, The new reference axis will be given a
name to distingufsh it from others with which it might
potentially become confused, Suggested names include “celes-
tial reference pole,” “mean diurnal axis,” “Eulerian pole of
rotation” and in Section Il of this document it has been
referred to as the “spin axis,”

Tho new reference axis is most precisely described mathe-
matically. Before doing so we require the result of a small
lesnma: we wish to show that if the matrix M is an orthogonal
transformation matrix representing a spatial rotation then the
matrix M M7, where the dot “+" denotes differentiation with
respset to time, is antisymmetric, The proof of this is as
foitows:

Since M is orthogonal MT = M™! and since MM ' =}
where [ is the identity matrix we kave M M7 = I, Differentiat-
ing with respect to time gives

5’; [MMT) = MMT + MM” = 0
Hence
MMT = - MMT =- (MMT}T
Therefore
MMT = - [MMTYT

and M M7 is antisymmeiric. Q.E.D,

QUALITY

The transformation of the components of a body-fixed
vector denoted r, to the compeuents denoted »; of the same
vector viewed in the space-fixed frame is

1, =PNSWz, (VIL-113)

*

where the matrix:

P represents the precession of the reference axis of the
body-fixed coordinate system.

N represents the nutation of the reference axis of the
body-fixed coordinate system

S represents the net rotation (spin) about the reference
axis of the body-fixed coordinate system (UT1),

W  represents the orientation of the reference axis within
the body-fixed coordinate system (polar motion),

In reality, observations are made in a body-fixed frame of the
body-fixed components r, of a vector (the direction to a
quasar or a star) whose components in the space-fixed space
frame r, are considered to be constant,

£, = WISTNTPTy (ViI-114)

The body-fixed motion of the quasar or star is given by

dr T T ” y T
—b = [_4..“,/_ ST NT PT + wT %’?__ NT P4 wT sT Z{‘V PT

dt dt
T o ar
7 o AT 4P T T NT pT =8 .
+ W ST AT S ]_L‘S-fW STNTPT—E (VIL115)

Note: Equations (VII-113) and (VII-114) deal explicitly with
the components r, of the vector r, and the components r,, of
the vector r, and so when differentiating with respect to time
there is no need to distinguish between time derivatives taken
in the body-fixed frame and time derivatives taker in the
space-fixed frame,

If we consider the case where dr_/dt = 0 which corresponds
to a constant space-fixed direction and is achieved in practice
by removing effects of aberration for sources exhibiting no
proper motion, then Equations (ViI-113) and (VII-115) give

dr T T r
Ay _|AW? rarpr o 957 A pr ot o7 AN o7
at [dt SNP+W’dtNP+WSmP
T
+WT 8T NT g—f—] PNSWI, (VII-116)
63
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which can be written os

drh [ dw”

Sl st 4V ‘”" NSW

w7 45 :;s

dr dt

dr?

+ W7 ST NT S PNSW] (VII-117)

Each term in the square bracket of Equation (VII-117) is
either an antisymmetric matrix of the form M M” or is &
similarity transformation on such a matrlx, Since it is the
property of similarity transformations that they preserve
antisymmetry of matrices, we conclude that all four terms in
the square brackets of Equation (VIL-117) are amisymmetric
matrices and so Lqu'\tion (VII-117) can be written in vector
form as

—b =@ F R+ Q) X1, (VIL1B)

where

¢ £, is a polar motion or wobble rate vector given by

2, = 047, 403, 8 +0, 3, (VIL119)
(2) Qg is a spin rate vector given by
=05 7 +05 ¢ +05 2 :
055 € 05, €, +07, 2 (VII-120)
(3) & isa nutation rate vector given by
= N N o N %
Q, = 0), ¢, +o¥ &, +0, 2, (Vil-121)
(4) 2, is a precession rate vector given by
Q, = 08,8, +0b, 8, +07, 2, (VII-122)
and where the matrices 0% 0% 0¥ 0" are given by
L '
0 ol (VII-123)
Ay T dST
= W —(«l-rsw (VlI-124)
N gyr gr AN d‘v NSW  (VII125)

0P = w"s"w"“g PNSW  (VIL126)

and are all antisymmetric (Goldstein 1950, pp. 124 ),

The instantancous rotation vector w is given by

W= b+ Q+ R, (VII-127)
and consists of the vector sum of the separate rotation rates
due to polar motion, spin, nutation, and precession, The
components of these ,sepamte rolnuon rate veclors fi the
body-fixed coordinate frame € € 02 e3 are given by Equations
(VI1:119) = (Vil-126).

The magnitudes of the rotation rates in Equation (VII-127)
are of the order of

12, =~ 2X 10717 rad sec™! maximum
Q] ~ 729X 105 rad scc™!
121412, 1 & 7.9 X 1072 rad sec™

and the vector relationship of Equation (VII-113) is illustrated
in Figure V1.3,
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Figure Vil-3. The vector relationships pertinent to earth rotation.
The lnutantnmoul axis wexecutes a diumal circuit in
abody-fixed frame sbout the Eulerian rotation axis w,.
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In Waolard’s theory of the nutation the veetor w is the
reference axis. The small veetor H‘l,, represents the
diurnal dynamical variations in latitude,

In the revised theory of the nutation the vector w, Is the
reference axis where

W, =W~ QN S'ZI,. (VI1-128)

0
From their definition it can be seen that the vectors £, and
Q,, are rotating divrnally in the body-fixed frame and so w,
coincides with the mean position of w when averaged over 4

diurnal circuit, The angle beiween w and w, is of the order of
0702 are,

The small vector §2,, represents the small rotation rate
arising as a result of the slowly varying position of w within
the body-fixed frame due to geophysical gauses other than
external gravitational torques, The angle bctwcen the spin
vector Q¢ and ¢, is of the order of 5" X 10™% arc maximum,
and SO we see (it the reference axis of the revised nutation
theory lies very close to the spin vector, This is a convenient
choice of reference axis for it coincides with the general
conception of the earth’s motion as consisting of o rapid spin
about an axis which is In turn changing direction slowly in
both the body-fixed framo and the space-fixed frame.

The new reference axis of the revised nutation theory also
has the advantage of removing the diurnal oscillations of the
pasition of the reference equinox ou the fixed ecliptic, Since
wy coincides with the mean diurnal position of w it follows
that the cquator corresponding to w,, coincides with the mean
diurnal rotation equator or the mean position of the diurnally
varying rotatlon equator of the vecte. w (Figure VII-1), If v,
is the ascending node on the fixed ecliptic of the fundamental
epaach on the mean diurnal rotation equator it is clear that v,
coincides with the mean position of +, and so can be identified
with 7y,. Since the angular momentum vector L and the
equinox v,, are slowly moving In a space-fixed frame, we sce
that by adopting the new reference axis we remove undesirable
diurnal ponuniformities of the order of #0,12 milliseconds in
the definition of apparent sidereal time,

This principal advantage of adopting the new reference axis
is that it is an obscrvable axis, In a body-fixed frame it lies at
the center of the quasicircular diurnal paths of the stars in the
sky. Apart from the slow Eulerian motion the vector w,, is a
body-fixed vector and its nutation in space will be nearly
identical to the figure axis 8.

k, The nutation series for a deformable earth. A theory of
the nutation for a deformable earth has been developed by

Kinoshita et al, (1979) using the Molodenskl I earth model
(Molodenski 1961) and based on the accurate rigid carth
theory of the =i tion of Kinoshita (1977) with appropeiate
modifications v «lie 1 for the elastic yielding of the earih, The
carth model MolodeénJki IF has u liquid outer core and a solid
inner core with radialty varying elastic constants,

The modilieations to the rigid earth theory are descritnd
briefly by Kinoshita et al, {1979) as follows, For each ¢lrenlnr
component of nutation with angular frequency ¥,

d(-)j v .
N, = wra (VIL-129)

where

§
O = ;; Ky a(0)

is the so-called argument of the nutation (Kinoshita 1977), a
theoretical ratio, (afag)y . is computed for the amplitude of
the nutation for the deformable carth to the amplitude of the
nutation for the rigld earth for each nutation frequency N,.
This ratio is computed by a two-stage Formula,

41,15

= +1,7 (VI-130)

0.2159 - 100

J
N,~ W,

N
(Jl-) = 1400124 [p- 4.1] =L (Vi3
Ul w, w3

where wj is the angular rate of carth rotation sbout the figure
axis and the numerical constants in these formulae are derived
from the Molodenski 11 earth model,

Kinoshita et al, (1979) then give the amplitudes of nuta-
tions in longitude A&IJN{ and nutations in obliquity Ay, for
the Molodenski 1T “real” earth in terms oi‘ the corrosponding
amplitudes of nutations in longitude At,lJN and nutations in
obliquity A0R N; for the rigid carth as

= )1 a) agr
M’Ni sin@ 2{& )N. + (“0)—-1\1, M}Ni $in @

. (—‘L) Ny a0+ (VI132)
o/, \%0/-n, ]
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N; 2{ [(”O)N, (“o)-NI] N;
+ 14+ .‘.f.) a0k

Using this procedure Xinoshita ot al, (1979) have generated
the following nutation series for the figure axis &, of a doform-
able earth whose properties are those of the model *Moloden-
skiIL" This series has been recommendud to the AU for
adoption at the 17th General Assembly in Montreal in August
1979 and is presented in Table VI3 below. The fundamental
epoch for this series is §2000,0 [JED 2451545,0), The vari-
able 7'fs measured in Julian centuries from the epoch,

(Vi1-133)

I. Divurnal nutations in the revised theory of the nutation,
The diurna! motions of the figure axis in the revised theory of
the nuiation are essentially identical to the diurnal motions of
the figure axis in Woolard’s theory of the nutation, This can be
seen by combining Figures V-8 und VII-2 and representing the
lunisolar nYotion of Figure VII-2 in the presence of geophysi-
cally induced polar motiosi or Eulerian motion, This is shown
below in Figure VII-4,

In this case the body-fixed lunisolar cone Is centered on an
axis occupying the Eulerian pole position, as ean be seen in
Figure V-8, The lunisolar body-fixed cone of mean apex angle
2(8,) ~ 0.0178 arc rolls without slipping o the interar of the
space-fixed cone of apex angle 2 ©, where © is the obliquity of
the ccliptic, The rotation axis w occuples the line of contact
botween the two cones and the motiow, is retrograde as shown
in Figure V-8, The result of thia motlon is the steady retro-
grade progression of w about 143 with a period of nearly
26,000 yeurs,

Figure V1I-4 indicates clearly that the figure axis 2, moves
in a prograds sense around the axis w, as s result of retrograde
motion of w around the lunisolar path in the body-ixed
{rame. The figure axis €, is moving in a prograde sense on a
cone of apex angle 26, whuc B, = I,

1t follows that the formulze (VII-11 & and (VIH-112) will
serve to describe the diurnal nutation in =eyituds and oblig-
uity in the revised theary of the nutation st well,

It is also of interest to observe that the reference axis wy is
slowly moving in the space-fixed frame as indicated by l“igura
VL4, In the absence of Exlerian motion ¢, coincides with @,
in Figure Vi1-2,
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. The Effect of Solid Earth Tides on Earth Rotation

1. Tidal perturbations to the earth’s inertia tensor, Ele-
mentary considerations are sufficient to show (Stacey 1977,
pp. 90 1) that the tidal perturbing force per unit mass f,(r)
acting throughout the body of the earth due to a celestial
body of mass M at a distance R from the earth’s center of mass
can be expressed as the negative gradient of a tidal potential
Udr) as

£,

= = YU,(r) (V1I-134)

where

U -«%’11 i“; (},’:)'
n=

P, (cos ©) (VII-135)
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Table Vii-3, Nutation series for the figure axis of the Molodenski i deformable sarth model {Kinoshita ot al., 1979)

gy

Index Period, a @, oy o s Am;;llltude Anu;l;imdc
d 3 3
s k) Kia ki3 K14 Kis (00001 urc) (00001 are)

] 67984 0 0 0 0 f =172058~1742.2T 9204448.97

2 3399.2 0 0 0 0 2 2063+0.17 ~895+0.57

3 1308.2 -2 0 2 0 i 46+0.0T ~2440,0T

4 1095.2 2 0 =2 0 0 11+0.07T 0+0,07

S 1615.7 -2 0 2 0 2 ~3 40,07 1+0,07

6 32329 | -] 0 -1 0 -3+ 0.07 0+0.07

7 6786.3 0 -2 2 -2 1 24007 1 4 0.0

8 943.2 2 0 2 0 1 14007 0+0.07

9 182.6 0 0 2 =2 2 ~{3152 ~ L.5T ST =34T
10 365.3 0 1 0 0 0 1411 - 34T 49 - 04T
11 121,7 0 | 2 -2 2 =515+ 1.2T 224 - 0,67
12 365.2 0 ] 2 2 2 217 =0.5T =95 +0.37
13 177.8 0 0 2 -2 i 1294017 =70 + 007
14 205.9 2 0 0 -2 0 48 + 0,07 0+0.07
15 173.3 0 0 2 ~2 0 -224 0,07 0+ 0,07
16 182.6 0 2 0 0 0 17-017 0+0.07
17 386.0 0 1 0 0 i -1+ 0,07 §+0.07
18 91.3 0 2 2 -l 2 «154+ 017 7+ 0.07
19 346.6 0 -} 0 0 1 =12+ 0,07 6+0.0T
20 199.8 ~2 0 0 2 1 =8 4+ 0.0T 3+0,0T
21 346.6 0 -] 2 -2 1 =5+ 0.0T 3+0,0T
22 2123 2 0 0 -2 ) 4 +0,07 =2+ 0,07
23 119.6 0 1 2 ~2 1 440,07 =2+ 0,07
24 411.8 1 0 0 =1 0 ~4 +0.07° 0+0.07
25 131,7 2 1 0 =2 0 1+0.07 0+0.0T
26 169.0 0 0 ] 2 1 1+0.07 0+0,07
27 329.8 0 1 -2 2 0 =1+ 0.07T g+0.07T
28 409.2 0 ] 0 0 2 14007 0+0.0T
29 388.3 ~] 0 0 1 i 140,07 0+ 0,07
30 117.5 0 1 2 -2 0 -1 +0.07 0+0.07
31 13,7 0 0 2 0 2 =2260 = 0.2T 972 = 0.5T
32 27.5 1 0 0 0 0 709+ 01T =7+ 0,07
33 13.6 0 0 2 0 i ~384 ~ 04T 199 + 0.07"
34 9.1 1 0 2 0 2 =299 + 0.0T 128 - 0IT
35 31.8 1 0 0 -2 0 ~187+ 0,07 =1 +0.07
36 27.1 -l 0 2 0 2 1234+ 0.0T ~33+0.07
37 14.8 0 0 0 2 0 63+ 0.0T -2+ 0,07
38 277 1 0 0 0 1 63+ 04T ~33+0.07
39 274 -3 0 0 0 1 ~58 - 04T 32+ 007
40 9.6 -1 0 2 2 2 ~59 + 0,07 25+ 0.07
41 9.1 ) 0 2 0 i ~51 4+ 0.0 26 + 0.0T
42 71 0 0 2 2 2 ~38+0,07T 16 + 0,07
43 13.8 2 0 0 0 0 29 + 0,07 =1+ 0.07
44 23.9 1 0 2 =2 2 29 + 0,07 ~12+0.0T
45 6.9 2 0 2 0 2 -31 +0.0T 13 + 0,07
46 13.6 0 0 2 0 0 26+ 0.0T -1 40,07
47 27.0 -1 0 2 0 I 214+0,07 ~10+0.0T
48 32,0 -1 0 0 2 1 15+ 0.0T -8 +0.07
49 317 1 0 0 -2 | ~13+0.0T 7+0.0T
50 9.5 | 0 2 2 1 =10+ 0.0T 5§+0,0T
§1 34.8 1 { 0 -2 1 «7+0,07 0+ 00T
52 13.2 0 1 2 0 2 7+ 007 =340,0T
53 14.2 0 -1 2 0 2 ~7+0.07T 3+ 00T
54 5.6 1 0 2 2 2 ~8 + 0,07 314007
55 9.6 1 0 0 2 0 6+0,07 0+0.07
56 12.8 2 0 2 -2 2 6+ 0,07 ~3+ 0,07
57 14.8 0 0 0 2 1 = + 0,07 3+0.0T
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Tabie V-3, Nutation series for the figure axis of the Kolodenski § deformable sarth model (Kinoshita et al., 1879) (Continued)

N o o o « o Amplitude Amplitude
lngcx P;;lc’:;l, 1 2 3’ 4 5 A B
w kl 1 k/: k}a k/q "}5 (070001 arc) (00001 are)
58 7.1 0 0 2 2 ] =7+ 0,07 3+0.07T
59 23.9 ! 0 2 w2 1 6+ 00T =3 +0.07
60 14,7 0 0 0 -2 1 S+ 0,07 3+ 007
61 29.8 1 - 0 0 0 5+007 0+ 007
62 6.8 2 0 2 0 1 =5+00T 3+007
63 154 0 | 0 =2 0 <4 + 0,07 0+0,07
64 26.9 1 0 -2 0 0 440,07 0+0.07
65 29,5 0 0 0 1 ] -4 40,07 00,07
66 25,6 3 1 0 0 0 ~3 40,07 0+0.07
67 9.1 1 0 2 0 0 3+0.071 0+0.07
68 94 1 =] 2 0 2 34007 14007
69 9.8 =] =] 2 2 2 =3 +0.0T 1+0.07
70 13.8 - 0 0 0 1 w2+ 00T 1+0.07T
71 5.5 3 0 2 1] 2 «3 + 0,07 1+0.07
72 7.2 0 =] 2 2 2 -3 +0.0T 1+0.0T
73 8.9 1 1 2 0 2 24 0.0T =] 40,07
74 326 -] 0 2 -2 1 -2 40,07 1+0.07
75 13.8 2 0 0 0 ! 24007 -1 40,07
76 27.8 1 0 0 0 2 -2+0,07 1+0.07
77 9.2 3 0 0 0 0 240,07 0+ 0,07
78 9.3 0 0 2 1 2 2+ 0,07 =1 +0.,07
19 27, -] 0 0 0 2 1 +0.07 =1+ 0.07
80 101 1 0 0 -4 0 -1 4+ 0.07 0+ 0.07
81 14.6 -2 0 2 2 2 140,07 =1+ 0.0%
82 5.8 -] 0 2 4 2 =24 0.0T 140,07
83 159 2 0 0 -4 0 =1+ 0,07 0+0.07
84 22.5 1 i 2 =2 2 1+ 007 w1+ 0,07
85 5.6 1 0 2 2 1 -1+ 0,07 1 +0.0T
B6 7.3 ~2 0 2 4 2 =] +0.07 1+0.07
87 9.1 -1 0 4 0 2 14007 0+0.07
88 29,3 1 -1 0 -2 0 1 +0.07 0+0.07
89 12.8 2 0 2 ) 1 140,07 =1+ 0,07
90 4.7 2 0 2 2 2 -] 40,07 0+0,0T
91 9,6 1 0 0 2 1 ~1 4+ 0,07 04007
92 12,7 0 0 4 -2 2 1+0.01 0+ 007
93 8.8 3 0 2 ) 2 1+ 0,07 0+0.07
94 23.8 i 0 2 -2 0 -1+ 0.07" 0+0.07
95 13.1 0 1 2 0 1 14007 0+0.0T
96 35.0 ~] -l 0 2 1 1+0.07 0+0.0T
97 13.6 0 0 ~2 0 1 -1 +0.0T 0+0.0T
98 254 0 0 2 -] 2 ~] +0,0T o+o0.07r
99 14.2 0 1 0 2 0 w1 +0.0T 0+0.07
100 9.5 1 0 -2 ~2 0 -1 40,07 0+0.07
101 14.2 0 -] 2 0 1 «]1 +0.07 0+0,07
102 347 1 1 0 -2 1 -1+ 0,07 0+0.07
103 32.8 1 0 =2 2 0 -1+ 0,07 0+0.07T
104 74 2 0 0 2 G 1+ 007 0+0.07
105 4.8 0 0 2 4 2 ~1 +0.0T 0+0,07
106 27.3 0 1 0 1 0 1+0.07 0+0.0T
and where (3) P, (cos @) is the Legendre polynomial of degree .

() r=Iri<a,
(2) © is the zenith angle of the celestial body as seen by

the observer at r.

(4) G is the gravitational constant,

Figure VII-§ illustrates the geometry of the situation, The
geographic coordinates of the observer are 0, A, and the
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Figure Vil-5. The definitions of the geometricti quantities uaed in
the development of the theary of the solid sarth tides,

geographic coordinates of a line joining the earth’s conter of
muss and the celestial body of mass M are 0,, A,

The addition theorem for spherical harmonics allows us to
write the expression for the tidal potential U,(r) in terms of
the geographic coordinates 04 Ay, 0,, A

"m?

P, (ce. ) = P, (cos®, )P (cos ©)

2 (- m) Plicos @, ):

n + m)' n

nig,,
P)'(cos ©) cos m(Q\, =

) » F<a . (VII-136)

For the sun and the moon (/Ry) <<1 and (/R o) <<1
and sufficient accuracy is wsually achieved in Equation
(VII-135) by truncating the sumat n = 2,

U =~ M p ey, r<a, (VMG
R?
which in geographic coordinates 04 Ay, 0,, A, becomes

(:Mr
Un) =~ e [I’ (cos0,,) P (cos 0)

2
2= m)!
r2 30 G prceos0, ) P (cos )
msi

cosmfA, = )\0):] , r<a. (V11-138)

For a celestial body such as the sun or the moon whose
celestial coordinates are changivg relatively slowly we see that
the argument m(d,, - No) Is periodic in an interval of approxi-
mately m=! days, The term = 1 gives rise to the diurnal tidal
varlations and the term m = 2 gives rise to the semidiurnal tidal
variations,

The tidal deformations of the earth cause perturbations
;" ¢ {0 the clements of the earth’s inertia tensor which can be
caleulated using MucCullagh's formula. Written out in full
Equation (V11-138) becomes

) P,(cos 0 o)

m

U = - Gt [l’ (cos 0
R?

o]
+ %Pé(coso YL 2(cos 0g) cos(r,, = A)

m

+ .3. l’,::(cos 0,) p2(¢oso ) cos 20\, - 0)] !

r<a, (VI1-139)

This expression can be rewritten

UG = . GMr® [Po(_ﬂs 0, )P%(cos 0,)
R

+ L 1"(cus 0,,)P(cos 0g) cos A, cos A,

n

My P‘(coso )P} (cos 8,) sin A, Sind,

m

12 2(cos o,pl)P*(cos 9,) cos 2 A, €0s 2,

v Pi(cos 0, ) Pa(cos 0y) sin 2, sin 2 )\O] ,

12 2 "

r<a, (VII-140)

which in turn can be cast in the form

2 2
U = Z% (l%) P (cos 00)[05" cosm A,
m=

+ 8 sinm A, ], r<a, (VII-141)

69
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where

C = . gt P)(cos0,,)
R®

$=0

c = -%-/%- P)(cos0,,) cosh,,

12

§) =~ %%' Py(cos0,,)sin ),
GMr?

C§ = - - 1:3 Pz(cosom) c0s2 N,
GMr? .

S§ = - T2R ’2(005 0,)sin2x

(V1I-142)

It then follows from Section V12 and specifically from
Equations (V1-74) — (V1-78) that

k, Ma®
de - . 2 p? i
r‘ 3" Py P2 (cos 0, )sin2X,
(V11-143)
2%k Ma®
ide _ <2 1
‘2"'13 e = p (cos Om) cos N,
(VII-144)
5
a
arfide = P} (cos0, )sin N,
(VII-145)
l Ma5
Hdc 5 —— P2 (cos6,,) cos 2un
(VI1-146)

1a®

tide tide _ o .fide .. 0
ree gy 2ry3 1 34 (cos Om).

(VII-147)

70

The above five equations in six unknowns are supplemental
with the additional equation

pide g plhle 4 ple w5 (r,TYHe (VII148)

where §(TTY* s the tidally induced varlations In the trace
of the inertla tensor of the carth,

It has been shown by Darwin (1910) that for an incompres-
sible eartit in which all possible deformation fields u(r) have
the property that v « w=0, the trace of the inertin tensor Is
preserved under carth deformations. In his analysis of the
effects of earth tiles on the earth's rotation Woolard (1959)
assumed that the carth was incompressible in order to use the
property that 6(7‘,7) ¢ =0 in his solution, Later Rochester
and Smylic (1974) showed that the value of T, Twas preserved
under a much wider class of deformation ficlds than those for
which ¥ » u=0, In particular they show that even on a com-
pressible earth for which v+ u#0 the deformation field
arising from the effects of tidal perturbations preserves the
value of Tl. Following Rochester and Smylie we can, without
any restrlcllvc assumptions, take

rtfde +rlfdc' +,.h'd¢ = 5 (T I)i‘idc =0,
(V1i-149)
Equations (V11-143) — (V1I-149) have as their solution

tide k,zMas 2 i
ride = - P} (cos0,,) sin 2Mm
(VIL-150)
kzMas
piMe = ——— P} (cos0,,) cosm  (VII-151)
3R3
iy k,Ma® 1
rt = . P, (cos0,,) sin M (ViI-152)
kMa®
fide. [2P2 (cos 0,,) +P3 (cos 0,,) cos 2\m)
(VIL-153)
- 5 N
plide = (2 P9 (cos0,,) - P2 (cos 0,,) cos 2m]

(VIL-154)
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2k,Ma®
P - e P Ge0s0,,). (VILISS)

For the sun and the moon the angles A, namely ?\@, :5,
are varying diurpally with a period near 1 day, Hence rf‘,j )
"ia“' r;“;" are diurnally varying products of inertia which are
perlodic’in about 1 day. The moments of Inertia pikle , ik,
r;;‘g" have long period components which depend on the angles
0,, namely 04,0 -, which are in fact given by

©
0o = 90° =58
(VII-156)
(\°
0 = 90° -5

where 8, § { are the declinations of the sun and moon

respectively,

2. The effect of the solid carth tides on UTL, 1t is relatively
casy to show that in the absence of internal dissipation which
introduces phase lags in the tidal response of the carth the
tidal forces exert no net torque on the earth,

The net torque N, on the earth due to the tidal forces f(r)
is

N, = f X () dV (VII-157)
4

where the integral is taken throughout the volume of the
carth. If the vector ficld f,(r) has components

£00) = £, +f,, D0+, (OX  (VII-158)

then

N, = f,, [rf,o(r)’X-rf,,\ M0 av  (VII-159)

Using Equation (VII-134) in Equation (VII-159) this becomes
2 ,. 1 U ,\]

a w ™
- in0 | - At b e ot
N,~fo drfo d)\]; do 1* sin0 [- At e o

(VIt-160)

Using Equation (V11:140) in Equation (Vi1-160) and integrats
Ing over the variables r, A gives

2 GMa® " (”’g (cos0) ..
N, = B0 P eos,,) L s 0 e 0
(VI1-161)

The Integral in the above equation vanishes with the result that

N =0

, (VI-162)

and so in the absence of dissipation the angular momentum L
of the earth is conserved under the action of the tidal forces,

If the unperturbed carth is described by an inertia tcnsor’l‘;
where

A 0
I, =10 A 0 (VII-163)
0 0
and a rotation vector w, where
w, = Q??a (VII-164)

then the tidally perturbed carth is described by an inertia
tensor / where

tide tide fide
Atry M2 Fia
- .
= tide o fide tide
1 ") Ayt
tide tide tide
31 £ Ctryy

(V1I-165)
and a rotation vector w where
w = [m{“’c 2, «Hn:"c g+ +r:z;'d”)?3]

(VU-166)

Conservation of angular momentum under the influence of
the tides gives

Irw, =1 (VII167)

A
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which gives rise to the throe squations

Q [(A +,.rklc) ml’"" + ,.ude m 1thie ,,,rrklc (1+m rklc)] = ()

(VIi-]168)

§ [r1de yMe 1 (A -+ rfde) mikte & pike (1 + miFe)) = 0

(V11:169)

Q['.ﬂde m! thde +rddc m thie 4. (C’+r“"") {] +,,,;ld¢)] = QC

(ViI-170)

for the three unknowns m 9 m!kte ! To first order in
small quantities Equations (VII- 168) (Vll 170) reduce to

Q(Amie +pife) = 0 (VI-171)
Q (Amfe +rae) = 0 (VII-172)
QC+Comie vty = QC,  (VI-173)
The first-order solutions for the unknowns m!“¢, mide , '3
are then
iy
e o . 13 N
mi € = y (VI1-174)
£
tide o . .23
mike = (VII-175)
ree
fide . _ 33 .
mide = (VII-176)

The tidal variatione in UT1 are dependent on the history of
the quantity m' e 1t is customary to express the variations in
the carth’s rotation rate by parameter (f) where

t
() =~ f my(t')dt" seconds  (VII-177)

to

72
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is & menasure of the amount by which the earth’s rotation Jags
behind that of a hypothetical unlfonnly rotating earth, The
tidal contributlon to () denoted 7% (1) Is

'

ke () = - f mike (¢"ydt' seconds , (VII-178)
¢
0

From Equations (V11-155), (V11:176) (V11-178) we have

e () = ' 2k, Ma® P9 (cos0,, (') dr’
to 3CR (1) m
(VII-179)
Now
PO (cos0,) =% (Beos 0, - 1) (VII-180)
and
0, =90°-5, (VIL181)

where 8,, is the declination of the celestial body of mass M, It
follows that Equation (VII-182) can be written

5

t k,Ma
e () = ]l ; ;R“ " (1-3sin®35, ()] dt'
0

(V11-182)

Woolard (1959) integrated the above Equation (VII-182)
for the combined effects of the sun and the moon,

B

ka® ot Mg
7ide(s) = ;C f { ; ,[1 35in® 8, (1]
ry (Ro()

My 1~3125 )d VII-183
;e-:&—(—-—-[ sin (t)]‘t (VI1-183)

to obtain an expression for 7/¥%(r) which includes both the
Junar and the solar tides,
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Woolard’s expression for r74€(s) is given in the form

20
1e() m &, 3 A, sin ¢, millisoconds,

1)

(VII-184)

where the epoch ¢y Is 1900.0. Equation (VII-184) can be
evaluated from Table VII4, taken from Woolard’s work. The
tabulated amplitudes are in milliseconds and the vales of the
second degree Love number &, can be taken to be

k, 2029,

Table Vii-4, The elements used in Equation (VIi-187) to generate the
theoretical contribution to " x (UT1-UTC)** due to the effects of
the solid earth tides, (After Woolard, 1959),

A!p

Period,
/ msec ¥ days
1 0.32 2L+g 9.1
2 0.3  2L+g-~9 9,1
3 2,47 2L 13,7
4 1,02 L= 13,7
6 0.1 2% 13.8
7 0,23 2L =28 14.3
8 2.63 I3 27.6
9 0.17 gt 8 27,6
10 0.17 XY 27,6
11 0.14 2L~g 27.1
12 0,06 AL =g =52 211
13 058  2L~-g-20 31.8
14 0,60 20+¢' 122
15 15,29 20 183
16 0.37 20«8 365
17 4.88 ¢ 365
18 0.23 20~g' 6793,7 (18,6 year)
19 515,0 1} 3396,9 (9.3 year)
20 2.7 20

The arguments ¢ of the sine function are defined by taking:
L mean celestial longitude of the moon
£ mean anomaly of the moon
£ mean celestial longitude of the moon's ascending node
© meéan celestial longitude of the sun

g mean anomaly of the sun

3, The effect of the solid earth tides on polar motion. The
effect of the solid earth tides on polar motion can be deduced

directly from Equations (VI.151) (VII-152) and (VII-174)
(VI1-175), which taken together give

YeosA, (VI-185)

m

e o M5 pi
mijde = ok, "y Py (cos 0,

5
m;""' * = k, ;ﬂflmpg (cos 0
’ /

o )sin},, (VII-186)

m

where M Is the mass of the perturbing body and R s its
geocentric distance und where 0,, A, are the geographic
coordinates of the position vector R,

Due to carth rotation the argument A, decreases by 2z in
slightly more than one sidereal day, allowing for the castward
progression of the tide-inducing body, be it the sun or the
moon,

The complex quantity 7" given by

iitide s pytide . j ptide (VI1-187)

defines the angular motion of the tidal perturbations to the
rotation axis in the body-fixed frame. Equations (VI11.185)
(VII-186) (V11-187) together gives

- Ma®
m”d" = o kB e

e P} (cos 0,) o' (VII-188)

and since A, continuously decreases (moves continuously
westward) we see that 7ifide js a retrograde motion of the
rotation axis as shown in Figure VII-6,

Using the formula P} (cos 6,,) = cos0,, sin0,, and
recognizing that the coordinate 0,, is related to the
declination of the celestial body 6, by

0, = 90°-5,

we can rewrite Equation (VII-191) as

" Mas
AR

i\
coss, sins, ¢ ™. (VII-189)

73



ORIGINAL PAGE I8
OF POOR QUALITY

m2

\ M
m

perturbetions 10 the earth's inertia tensor,

A general formula which includes the tidal perturbations to
the rotation axis of both the sun and the moon can be written
directly from Equation (VI1-189) as

k,a®\ M
2 9]

3
R@

g

N
+.1y.£§ cos 8¢ sin 5 e C (V11-190)
R3
q
where:

(1) My Mg are the masses of the sun and moon
respectively.

() Ry Ry are the geacentric distances to the sun and
moon respectively,

(3) 8g ¢ are the declinations of the sun and moon
respectively.

(4) N =ag = GAST, and A¢ = ag = G.AS.T. where
ap a¢ are the right ascensions of the sun and moon
respectively and GAST refers to Greenwich Apparent
Sidereal Time.

The maximum combined amplitude of polar motion due to
the lunisolar solid earth tides is of the order of 6" X 107 arc
or 18 cm of motion, The motion is retrograde with a nearly
diurnal period.

74

D. The Geophysical Excitation Functions for Poler
Motion and UT1 Variations

As pointed out previously in this work one of the
Important objectives of obtaining precise measurements of
variations in UT1 and polur motion on the earth is to'learn
more about the global geophysical processes which are
responsible for the variations. In order to carry out such a
program it will be necessary to use existing geophysical
knowledge to generate realistic theoretical rotation excitation
functions whose predicted consequences for UT1 and polar
motion variations can be compared ngainst observed data,
Such a program will require as inputs, In addition to precise
polar motion and UT1 observations, considerable global
synoptic data concerning the state of the earth's oceans and
atmosphere ns well as information concerning the internal
state of the earth,

Our abillty to generate models for the oceans and
atmosphere of the carth has advanced dramaiically in the last
decade with the development of earth satellites capable of
monitoring the global state of the earth’s atmosphere and
ocenns, In addition the ability to theoretically model a number
of important Internal processes in the earth such ns earthquake
faulting and to accurately deduce their effect on the carth’s
Inertia tensor for the case of a realistic earth has advanced
considerably In the past decade. These trends will no doubt
continue into the future and the forthcoming data will provide
the basis for generating a priori rotational excitation functions
which could be refined by the precise UT1 and polur motion
measurements,

Our analysis of the geophysical excitation functions begins
by decomposing the density field of the carth p(r,¢) into a
mean density p°(r) and a geophysical perturbation to the
mean Ap(r, 1), The position vector r refers to a fixed position
in the rotating geophysical coordinate frame

p(rt) = p°(r) + Ap(r, £)

The inertia tensor of the earth T is similarly decomposed
according to Equation (1V-5) into a mean inertia tensor/ 9 and
a geophysical perturbation ¥

(VIL-191)

T=T0+% (V11-192)
where
Atry ry, 'y
T= f o [P T=ev]dv = | 1, Atry, 1,
v
fy Ty Ctry
(V11-193)

T AR I e
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A 0 0
70 = fpom[r? Terejavm |0 4 O
Y 00 ¢
(Vil.194)

My T T
T pr(r.t)[rzr“"l“V“ Fap T T
V

Py T T
(VI}-195)

From Equation (IV+22) we see that the geophysical
excitation function for polur motion &(r) Is given by

dF _dhi

2
c:(l)llAQ [N Qil I ~{(5) r*ﬂ./’)] (V11-196)

where

F= I3 Hru

i =h, +ih, (V11197
N =N, +iN,
and where
N = N8, +N,8, + N2,
(VI1.198)

h = )2 +hzi?2 +h;,i?3

are the external torque and relative angular momentum
respectively measured in the rotating geophysical coordinate
frame. The relative angular momentum h s given by Equation
(111-52) as

hir, 1) = f p, ) [e X v(r,0) dV  (VII-199)
V

where v(r,¢) Is the velocity of the material of density a(r, )
relative to the rotating geophysical coordinate frame.

From Equation (1V-30) we sce that the geophysical
excitation function for UT1 s

1y ( ;
e\() = ‘c‘h"{J; Ny(ydt' = Qryy - /:3}
(V11.200)

snd so, aport from the question of the externslly applied
torques N, the excitation of polar motion and UT] fluctus-
tions depend entirely on the tensor Tand the vector h and
their time derivatives taken in the rotating frame.

In order to simplify our dynamical theory (Equation
(HI1-10)) we have chosen to defing “the earth” to include its
oceans and stmosphere and according to this formulation of
its rotational dynamics the motion of the oceanic currents and
ntmospheric circulation by being part of “the earth” are
incapable of exerting an “external” torque on the eurth
through some sort of viscous boundary layer interaction with
the solid surface. The effect of the oceanle and atmospherie
cireulation on the earth’s rotational dynamies Is entirely
included In the relative angular momentum term h,

At the cost of complicating the dynumical description of its
rotation we could have defined “the earth” to exclude the
oceans and atmosphere. In this cuse the motion of the oceans
and atmosphere do exert an external torque on “the eurth”
through viscous boundary layer Interaction, In addition to
being dynamically disadvantageous this formulation of the
problem of the earth’s rotational dynamics involves the poorly
understood phenomenon of the boundary layer interaction of
the oceans and atmosphere with the solld earth and with each
other by requiring that we model this process in order to
express the oceanie nnd atmospheric torques on “the earth” In
terms of their respective velocity fields, While these two
approaches to the problem are formally equivalent, the
definition of “the earth” to Include the oceans and atmo-
sphere is dynamically simpler and has been shown {Lambeck
and Cazenave, 1973) to be capable of a more accurate
treatment of the effects of oceanic and atmospheric circula.
tion, Similar remarks could presumably be made for the fluid
motions of the earth’s fluid core and its effect on the earth’s
rotational dynamics is complicated by the fact that no direct
measurements of the fluid velocity of the core are presently
possible,

it Is our present objective to obtain explicit formulae for
the contribution to the rotational eicitation arising from
internal geophysical processes and wiil not be concerned at
this point with developing detailed expressions for the
lunisolar gravitational torques N. It is our objective to obtain
expressions for the terms ryy Fay Faz My My hy dryy/de
dryaldt dhyldt dh,[dt which appear as the internal geo-
physical contributions to the rotational excitation functions in
Equations (VII-196) and (VII-200) in terms of observable
global fields such as mass density, velocity, mass displacement
ete,
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If the geocentric position vector r In the rotating geophysl
cal reference frame s

£ ® rB S,y E (VI1-201)

then we have from Equation (VII-180)
ry* f Bp(r, 1) [r? by=rrldv (VI1-202)
4

and from Equation (VII+199)
h, = j; olr, 1) €y Ty Vi (v, )dV  (VI203)

where 8, Is the Kronecker delta defined by
0

by =

}
and where ¢y, is the alternating tensor defined by

K
e =y O Uk

-1 ik

i f

i=]

eyelic 123
not aii distinct
noneyelic 123

The time derivative dh/dt, reckoned in the rotating frame,
iz given by Equation (111-84) as

BT i
where Equation (111-81) gives
A, t) = p(r, 1) (1 X v (0]
and Equation (111-82) gives
Rt @0 = p @OV [rXv, 0]

It follows that

‘j;; f‘: (er)+p(r><g¥)

9 (V) (e Xy) +py 9 (rX v)]dV
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which can be written

%'?‘.- L{[%%*vl(pv)] [rXv]+p [ X%}']

+pve ¥ (rX v)} v (V11,204)
which by virtue of the continulty equation
Bk g (pv) = 0 (VI1:205)

reduces 10
dh SN .
l er +pve 9 (rX v)j dv . (V11:206)
V

To obtain the components of dhfdt we write

T v ».p Cirk r/"é?“*ﬁvk’b‘;:(d’”m yi V)| @

dh, i oY, o, v, \1
?(T‘j; pellkrl ot +pV ci/m (—a}l’: )il+r]’5;;: av

dil, [ av, oy, ,
dt , peuk r, Y, ’*I’ vk cllm 8[kvm+rl axk av
" -/;: ? ety or TP e \Y T Y m ax av.
Since
a”k v V =0

this reduces to

dh, f [ (avk av, ):‘
— peg b |t v et ) Nay
¢t v k"1 \ ot m axm
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VIGINAL FAGL (o
OF POOR QUALITY

Recognizing

ov av Dyv
hkpy 2% OV

ar " max =or
as the Lagrangian time derivative we conclude that

& 2 V1120

or In coordinate free notation,

dh _ Dy .
'-(-1-;-—-‘/; p(rXDr)dV. (V11-208)

In addition to dh/dt we also require expressions for dFjdt.
From Equation (1V-5) we have

dr _dre . dr
o s ar tw (V11-209)
and since
dre
i 0 (VI1-210)
we have
dl’  df »
el d (VII1-211)

From Equaticn (111-85) and (VII-211) we have

%:- Z!{ f[ *T-r1)+v. ﬁm]dV

(Vii-212)

where .ﬁm is given by Equation (111-83) as

‘:im(r,t) =pm v T-r1).
(VI1-213)
1t follows that

%?: f {%e-[rQT—rw]*v-(pv)[rz?'-rr]
4

+p‘V°V[r2T~rr]}dV

which can be written as

tove 7[R T-r r]}dV

which by virtue of the continuity equntmn, Equation (111-46),
reduces to

.Sf:: f pve Y [r2T~ rr]dV.(Vil214)
d V

In component form Equatiorn (VI1.214) gives

.‘-l.’-‘!lz —?—.—.[ r &,~ ]dV
dt vak axk Fon T Oy~ i 7y

/.
dt _I:, PV 120y, 8 8= 18y 1) dV
which finally gives

From Equaticas (VII-195) (VII-199) (V11-207) (VII-215)
we see that the relevant quantities appearing in the geophysical
excitation functions are

Fig = f Bp(r, ) ryrydVv (V1I-216)
v

s = [ soorrav maim
VvV

Fag = f Ap(r,t) [r +r2‘ d¥  (VII-218)
V

v

p(r, 1) [r,v,(r, 1)~ ryV,(r, D] dv

(V11-219)
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hy = P, 1) [ra ¥y (r )= 1 V4 ()] AV

=

(Vi1-220)

hy j; 006, [r,v, (6 ) ry¥, (6, 0] 0V

(VI1-221)

dryy
e = ..‘l; plry 1) [r V(0. 1) 74 ¥, (r, D] dV
(VI1-222)

dr g -

(VI1.223)
dh, (av )
"'a}" ”Lp(rxt) at tve VY,

dv
-r,(a, ty e VVQ)] dv.  (V1I-224)
dh, , (av, >
i —-j‘: plr, ) {ry 0 tvevy,

\ at

rrt
&) = 'C"!fz[ f Ny(tydr' - ©
|/

av '
=ty VV) dv. (VII-225)

Substituting Equations (VII-216) -~ (VII-225) Into Equa-
tions (VII-196) (VII-197) (VI1-200) gives exprassions for the
geophysical excitation functions for

(1) Polar Motion

) = ';I-’la-(Nl tiN, =2 0* f Bo(ryry = irry)dvV
' i

dv,
+f{p [29:"3v1+r3 (at tye vv)
v
dv,
-r, '5}”'*""7"3 tip|2ry,

av \ v '
+r, (5;‘—’ Ty vva) “ry (—é-;l tys vy)]}av.)

(V11:226)

f Bp (3 412y dv

;/
fp(’lvz Ty n)dV]
v

(Vi1-227)
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